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    Abstract     Environmental stresses, both biotic and abiotic, cause negative impact 
on plant growth and development, and plants need to adopt certain strategies for 
maintaining proper growth under stress conditions. These strategies include certain 
physiological, biochemical, and molecular mechanisms to cope with these stresses. 
These mechanisms include the production of hormones (phytohormones) and 
osmolytes. Phytohormones are organic molecules that affect various plant physio-
logical processes like growth, development, and cell differentiation. Phytohormones 
regulate key physiological events under normal and stress conditions. They play a 
vital role for enhancing the ability of plants to adapt to the harsh environmental 
conditions by mediating a wide range of adaptive responses. These responses enable 
the plants to acclimatize to adverse soil conditions. Various types of phytohormones 
play an important function in plants individually or in coordination with each other. 
The nature and level of these hormones in plants are major factors that infl uence 
plant processes and functions. The present chapter describes the potential role of 
phytohormones for promoting plant growth and development under stress condi-
tions. The major classes of plant hormones and their source of production have been 
described. Metabolism of phytohormones and their physiological responses with 
special reference to their concentration-dependent or negative impact on plant 
growth have been discussed in detail. The impact of these hormones on plant growth 
under stress conditions has been reviewed and discussed with selected examples. 
Also, the role of microbes in phytohormone production has been elaborated with 
examples. Future perspectives of the area have also been discussed.  
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1       Introduction 

 Stress conditions cause signifi cant negative effect on crop productivity by disturbing 
plant processes owing to their impact on hormonal and nutritional imbalances. 
Some of the common stresses that cause negative impact on plant growth and devel-
opment include salinity, drought, heavy metals, nutrient defi ciency, and pathogens. 
These stresses affect the plant growth in one way or another. One stress may affect 
more than one plant processes by causing negative impact in a number of ways. For 
example, salinity affects plant growth by causing ion toxicity, oxidative stress, 
nutritional disorders, water stress, and hormonal imbalances (Munns  2002 ; Zhu 
 2007 ; Ashraf  2009 ; Nadeem et al.  2010a ). In natural soil environment, plant devel-
ops certain mechanisms to cope with biotic and abiotic stresses in harsh environ-
ment. Multiple pathways of cellular signaling are activated to any given stimuli. 
These signals enhance the accumulation of phytohormones. Phytohormones are 
signaling molecules directing physiological and developmental processes in plants. 
The amount of hormones varies greatly depending upon certain biotic and abiotic 
factors. Even very low concentration of these hormones may cause signifi cant 
impact on plant growth and development. 

 Hormonal signaling is critical for plant defenses against environmental stresses 
(Taiz and Zeiger  2010 ). Production of phytohormones plays central role in plant 
stress tolerance. The fi ve major classes of phytohormones are auxin, cytokinins, 
ethylene, gibberellins, and abscisic acid. In addition to these well-known plant hor-
mones, brassinosteroids, jasmonic acid, salicylic acid, and nitric acid have also been 
identifi ed as chemical messengers present in trace quantities in plants (Rao et al. 
 2002 ). These hormones move throughout the plant body via the xylem or phloem 
transport stream. 

 Among these hormones, abscisic acid (ABA) is the most studied stress- responsive 
hormone that is involved in number of stresses including osmotic, drought, and cold 
stress (Peleg and Blumwald  2011 ; Wasilewska et al.  2008 ). Auxin is involved in the 
regulation of plant processes like organogenesis, embryogenesis, and vascular tis-
sue formation (Petrasek and Friml  2009 ). Brassinosteroids, that is a new group of 
plant hormones, infl uence plant development processes like seed germination, fl ow-
ering, and senescence (Rao et al.  2002 ). 

 These biochemical substances (phytohormones) are produced by plants (Santner 
et al.  2009 ), and it is a well-documented concept that phytohormones perform many 
functions in plants by infl uencing a number of physiological and biochemical pro-
cesses of plant. These hormones also play an important role in mitigating the nega-
tive impact of various environmental stresses, both biotic and abiotic, on plant 
growth and development. These hormones integrate biotic and abiotic stress sig-
nals. Stress environment activates phytohormone signaling pathway that plays an 
important role in stress adaptation. It has been reported that adverse effect of salt 
stress on seed germination and plant growth was due to the decline in endogenous 
level of phytohormones (Wang et al.  2001 ; Debez et al.  2001 ). This argument was 
further supported when plant growth was enhanced under stress conditions by the 
exogenous application of phytohormones (Khalid et al.  2006 ; Egamberdieva  2009 ). 
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These and a number of other studies show that although plant itself has its mecha-
nism to produce hormones to combat stress responses (Wasternack  2007 ; 
Xoconostle-Cazares et al.  2010 ; Kolaksazov et al.  2013 ), however its application 
from some other sources like inoculation with hormones producing bacteria and/or 
application of synthetic phytohormones may be useful for alleviating stress-induced 
impact on plant growth and development (Khan et al.  2004 ; Afzal et al.  2005 ; 
Egamberdieva  2009 ). This review highlights the importance of phytohormones in 
plant stress tolerance. The sources of phytohormones, its metabolism, and physio-
logical impact of these hormones on plant growth particularly under stress environ-
ment have been reviewed and discussed in the following sections.  

2     Sources of Phytohormones 

 Plant hormones or phytohormones are naturally occurring organic compounds that 
affect various physiological processes of plant. These hormones could be either 
synthesized by the plant or the microorganisms. 

2.1     Plant Hormones 

 Plants have high plasticity for adaptation to certain environmental stresses by virtue 
of their specifi c mechanisms like their ability to synthesize endogenous hormones. 
Hormones are involved in response to certain environmental stimuli as well as for 
regulating internal development processes. Among phytohormones, auxin was the 
fi rst hormone about which Charles Darwin in 1880 provided clue in his book enti-
tled  The power of movement of plants . Later on, in 1926, Dutch botanist Frits 
W. Went discovered auxin.  L -Tryptophan is the precursor of the auxins, and root 
exudates are the main source of auxins in soil (Etesami et al.  2009 ). 

 These hormones serve as endogenous messengers against biotic and abiotic 
stresses. Initially, fi ve plant hormones are identifi ed including ethylene, abscisic 
acid, cytokinins, gibberellins, and auxins (IAA). These hormones are considered as 
classical phytohormones, and higher plants can synthesize all these fi ve major 
classes of phytohormones. In addition to these well-documented hormones, brassi-
nosteroids, jasmonic acid, polyamines, strigolactones, nitric oxide, and salicylic 
acid are also included in the list of phytohormones (Santner et al.  2009 ; Chen et al. 
 2009a ). These hormones have been identifi ed from a variety of plants (Table  1 ).

   The synthesis of a plant hormone is tightly regulated and subject to positive or 
negative feedback mechanism and often affected by other hormones and environ-
mental factors. A number of stress phytohormones can mediate stress tolerance in 
plants (Wasternack  2007 ). For example, drought tolerance limits the loss of water 
through abscisic acid-mediated closure of stomata (Xoconostle-Cazares et al.  2010 ). 
Also, an increase in content of jasmonates and salicylic acid in wheat has been 
observed under cold stress (Kosova et al.  2012 ; Kolaksazov et al.  2013 ). 

Role of Phytohormones in Stress Tolerance of Plants
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 Brassinosteroids are considered as the sixth group of phytohormones that was 
isolated from pollen of rape plant ( Brassica napus  L.) (Rao et al.  2002 ) and confers 
resistance to biotic and abiotic stresses (Sasse  2003 ; Mussig  2005 ). Brassinosteroids 
are present in plants at extremely low concentration, and their level varies in plant 
tissues with higher concentration of brassinosteroids in young tissues compared to 
mature ones (Yokota and Takahashi  1986 ). In addition to this, occurrence of jas-
monic acid and salicylic acid is also reported in plants which are involved in various 
developmental processes like seed germination, root growth, and senescence 
(Creelman and Rao  2002 ; Chen et al.  2009b ; Wasternack and Hause  2002 ,  2013 ). 

 Phytohormones move throughout the plant body and are distributed within plant 
tissues from cell to cell via the xylem or phloem transport stream. These hormones 
can cause signifi cant impact on plant physiological processes. The excess amount 
of hormones may be stored in plant tissues as conjugates for further use. Plant gene 
and phytohormones interact with each other. Some genes activate the plant hor-
mones, whereas certain hormones activate the genes as well. Many genes are 
involved in hormone perception and signaling pathways that control the production 
and activity of hormones by expression level of relevant gene. In plants, there are 
hormone receptors with high affi nity responding to the phytohormones. The 
 activities of phytohormones are affected by different parameters that include the 
properties and affi nity of the receptors as well as the cytosolic Ca 2+  (Weyers and 

   Table 1    Phytohormones production by plants   

 Plant  Hormone  Reference 

 Barley ( Hordeum vulgare  L.)  Indole-3-acetic acid  Ayvaz et al. ( 2012 ) 
 Abscisic acid  Ayvaz et al. ( 2012 ) 

 Alpine ( Arabis alpina )  Jasmonate  Kolaksazov et al. ( 2013 ) 
 Wheat ( Triticum aestivum )  Jasmonic acid  Kosova et al. ( 2012 ) 

 Ethylene  Datta et al. ( 1998 ) 
 Abscisic acid  Zhao et al. ( 2001 ) 
 Salicylic acid  Kosova et al. ( 2012 ) 

 Arabidopsis ( Arabidopsis thaliana )  Indole-3-acetic acid  Bartling et al. ( 1994 ) 
 Gibberellins  Kobayashi et al. ( 1994 ) 
 Abscisic acid  Xiong et al. ( 2001 ) 
 Cytokinins  Takei et al. ( 2001 ) 
 Auxin  Wang et al. ( 2015 ) 

  Rice  ( Oryza sativa )  Gibberellins  Helliwell et al. ( 2001 ) 
 Maize ( Zea mays )  Gibberellins  Spray et al. ( 1996 ) 

 Abscisic acid  Tan et al. ( 1997 ) 
 Bean ( Phaseolus vulgaris  L.)  Brassinosteroids  Yokota et al. ( 1987 ) 
 Conifer ( Cryptomeria japonica )  Brassinosteroids  Watanabe et al. ( 2000 ) 
 Tomato ( Lycopersicon esculentum )  Brassinosteroids  Yokota et al. ( 2001 ) 

 Ethylene  Mayak et al. ( 2004 ) 
 Chick pea ( Cicer arietinum )  Ethylene  Kukreja et al. ( 2005 ) 
 Potato ( Solanum tuberosum  L.)  Salicylic acid  Coquoz et al. ( 1998 ) 
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Paterson  2001 ). Most plant cells have receptors for different hormones. These cells 
recognize the hormones, and when a hormone meets the right receptor, it triggers a 
response. 

 The release of hormones is a normal physiological process of a plant during its 
life cycle and is also mediated by environmental conditions. After the release of 
hormones, these may act either close to or remote from their sites of synthesis to 
regulate responses to environmental stimuli (Davies  2004 ). Plant hormones operat-
ing at low concentration are able to translocate within the body and bind to a spe-
cifi c receptor protein.  

2.2     Microbial Hormones 

 It is well established that two types of hormones are available to plants, one is 
endogenous production by plants and second is exogenous production by microor-
ganisms. Like plants, a number of microorganisms residing in the soil also produce 
phytohormones; however, their pathways for hormone production may be different 
from plants. So far, a number of bacterial and fungal strains have been evaluated for 
their ability to produce phytohormones, and some selected examples have been 
mentioned in Table  2 .

   Table 2    Microbial production of phytohormones   

 Microbe  Hormone  Reference 

 Bacterial phytohormones 
  Stenotrophomonas maltophilia  
SSA 

 Indole-3-acetic acid, 
gibberellic acid, trans-zeatin 
riboside, and abscisic acid 

 Naz and Bano ( 2012 ) 

  Pseudomonas mendocina  Khsr2, 
 Pseudomonas stutzeri  Khsr3, and 
 Pseudomonas putida  Khsr4 

 Indole-3-acetic acid, 
gibberellic acid, trans-zeatin 
riboside, and abscisic acid 

 Naz and Bano ( 2012 ) 

  Bradyrhizobium japonicum   Indole-3-acetic acid  Minamisawa and Fukai 
( 1991 ) 

  Bacillus subtilis  IB-22  Cytokinins  Kudoyarova et al. ( 2014 ) 
  Pseudomonas putida   Indole acetic acid  Gravel et al. ( 2007 ) 
  Azospirillum  spp.  Abscisic acid, gibberellins  Cohen et al. ( 2009 ) 
  Rhizobium phaseoli   Gibberellins, indole-3-acetic 

acid 
 Atzorn et al. ( 1988 ) 

  Bradyrhizobium japonicum   Indole-3-acetic acid, 
gibberellic acid, abscisic acid 

 Boiero et al. ( 2007 ) 

  Pseudomonas putida   Indoleacetic acid  Patten and Glick ( 2002 ) 
  Rhizobium leguminosarum   Indole-3-acetic acid, ethylene  Dazzo et al. ( 2000 ) 
  Pseudomonas putida   Indole-3-acetic acid, ethylene  Mayak et al. ( 1999 ) 
  Azotobacter chroococcum   Gibberellin  Pati et al. ( 1995 ) 
  Azospirillum brasilense   Auxin, abscisic acid  Kolb and Martin ( 1985 ) 
  Bacillus pumilus ,  Bacillus 
licheniformis  

 Gibberellins  Gutierrez-Manero et al. 
( 2001 ) 

(continued)

Role of Phytohormones in Stress Tolerance of Plants



390

   Among this microbial population, benefi cial bacteria commonly known as plant 
growth-promoting rhizobacteria (PGPR) are the major contributor of phytohor-
mones. These PGPR promote the plant growth and development by the production 
of phytohormones and act as biostimulators (Glick et al.  1998 ; Jimenez-Delgadillo 
 2004 ). A number of workers have reported the production of phytohormones by a 
signifi cant population of bacteria (Arshad and Frankenberger  1998 ; Rao et al.  2002 ; 
Baca and Elmerich  2003 ; Khalid et al.  2006 ; Egamberdieva  2009 ). The type and 
amount of hormones produced by microorganisms are variable depending upon 
microbial community as well as suitable substrate or precursor available to the 
microorganisms. For example, Khalid et al. ( 2004 ) reported that among 30 bacterial 
isolates, 22 were able to use precursor of indole-3-acetic acid (IAA). They further 
reported that in the presence of IAA precursor, i.e.,  L -tryptophan, the bacterial effi ciency 

Table 2 (continued)

 Microbe  Hormone  Reference 

  Azospirillum brasilense   Indole acetic acid (IAA) and 
gibberellic acid 

 Kumaran and Elango 
( 2013 ) 

  Pseudomonas  sp.  Indole acetic acid  Malik and Sindhu ( 2011 ) 
 Fungal phytohormones 
  Cladosporium  sp.  Gibberellins  Hamayun et al. ( 2010a ) 
  Penicillium citrinum   Indole acetic acid  Khan et al. ( 2008a ,  b ) 
  Paecilomyces formosus  LHL10  Gibberellins, indole acetic 

acid 
 Khan et al. ( 2012a ,  b ) 

  Fusarium oxysporum   Gibberellin and auxin  Hasan ( 2002 ) 
  Phoma glomerata  LWL2 and 
 Penicillium  sp. LWL3 

 Gibberellins, indole acetic 
acid 

 Waqas et al. ( 2012 ) 

  Aspergillus fumigatus  sp. LH02  Gibberellins  Khan et al. ( 2011b ) 
  Aspergillus fumigatus   Gibberellins  Hamayun et al. ( 2009 ) 
  Trichoderma atroviride   Indole acetic acid  Gravel et al. ( 2007 ) 
  Pisolithus tinctorius   Indole-3-acetic acid  Frankenberger and Poth 

( 1987 ) 
 Cyanobacteria/algal phytohormones 
  Nostoc  OS-1  Indole-3-acetic acid  Hussain et al. ( 2015 ) 
  Nostoc  PCC 73102  Indole-3-acetic acid  Sergeeva Prasanna et al. 

( 2002 ) 
  Anabaena   Indole-3-acetic acid  Prasanna et al. ( 2010 ) 
  Oscillatoria annae   Indole-3-acetic acid  Varalakshmi and Malliga 

( 2012 ) 
  Scenedesmus obliquus   Indole-3-acetic acid  Correa et al. ( 2011 ) 
  Haematococcus pluvialis   Abscisic acid  Kobayashi et al. ( 1997 ) 
  Chlorophyta  (Cyanobacteria)  Cytokinins  Ordog et al. ( 2004 ) 
  Cyanophyta  (Cyanobacteria)  Cytokinins  Stirk et al. ( 2002 ) 
  Dunaliella  sp.  Abscisic acid  Tominaga et al. ( 1993 ) 
  Dunaliella salina   Abscisic acid  Cowan and Rose ( 1991 ) 
  Hydrodictyon reticulatum   Brassinosteroids  Yokota et al. ( 1987 ) 
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to synthesize IAA enhanced manyfold. Likewise, mevalonic acid is the substrate for 
the microbial synthesis of gibberellins and abscisic acid; however, formation of dif-
ferent intermediate compounds during the growth phase of a microorganism deter-
mines what will be the fi nal compound, i.e., a gibberellin or an abscisic acid. It is 
worth noting that the presence of a precursor in the environment can stimulate/
enhance the synthesis of phytohormones and it may or may not be the basic require-
ment for microbial synthesis of hormones. A PGPR strain can also produce a phytohor-
mone in the absence of a substrate in the soil environment as it has been observed in the 
case of IAA production by certain bacteria without precursor (Khalid et al.  2006 ). 

 Free-living bacteria and bacteria living in association with plants produce phyto-
hormones. For example, free-living  Azospirillum brasilense  and symbiotic 
 Bradyrhizobium japonicum  have been reported to produce indole-3-acetic acid, gib-
berellic acid, and zeatin (Cassan et al.  2009 ). Similarly, an endophytic bacterium 
 Sphingomonas paucimobilis  ZJSH1 has also been found to produce indole acetic 
acid, salicylic acid, abscisic acid, and zeatin (Yang et al.  2014 ). 

 Apart from bacterial population, a number of fungi present in soil environment 
are also able to produce growth hormones. Akhtar et al. ( 2005 ) reported that 78, 83, 
89, and 72 % fungal strains isolated from wheat, maize, potato, and tomato rhizo-
sphere, respectively, were able to produce ethylene in the presence of  L -methionine. 
Reports about phytohormone production by endophytic fungi are also available 
(Khan et al.  2008a ,  b ; Hamayun et al.  2010a ). Khan et al. ( 2011a ) reported gibberel-
lin production by endophytic  Aspergillus fumigatus  sp. LH02. Brassinosteroids 
have also been identifi ed in unicellular green algae  Chlorella vulgaris  (Bajguz 
 2009 ; Stirk et al.  2013 ). Kim et al. ( 2005 ) reported more than 50 naturally occurring 
brassinosteroids from the entire plant kingdom.   

3     Metabolism of Phytohormones 

 In an earlier study, Bont et al. ( 1979 ) observed that ethylene metabolism in 
 Mycobacterium  involves the epoxidation of the double bond by a mono-oxygenase. 
Wiegant and DE Bont ( 1980 ) found a new route for the degradation of ethylene 
glycol via acetaldehyde and acetate. They found that ethylene glycol was not an 
intermediate in ethylene metabolism. 

 It has been observed that in addition to synthesize IAA, some strains of  B. japon-
icum  are also able to catabolize IAA. Jensen et al. ( 1995 ) studied the catabolism of 
indole-3-acetic acid and 4- and 5-chloro-indole acetic acid by two strains of 
 Bradyrhizobium japonicum  (strains 61A24 and 110). They observed that both 
strains metabolized IAA with different effi cacies and IAA was metabolized via 
dioxindole-3-acetic acid, dioxindole, isatin, and 2-aminophenyl glyoxylic acid 
 (isatinic acid) to anthranilic acid. They reported that degradation of 4-Cl-IAA appar-
ently stopped at the 4-Cl-dioxindole. The metabolism of IAA by peroxidases has 
been reported by oxidizing IAA via two different mechanisms: one is conventional 
mechanism that requires H 2 O 2  (Schulz et al.  1984 ) and the other one is not dependent 
on H 2 O 2  and requires O 2  instead of H 2 O 2  (Savitsky et al.  1999 ). 

Role of Phytohormones in Stress Tolerance of Plants



392

 Cytokinins are present in plants both as free base and the corresponding nucleo-
sides and nucleotides. In earlier studies, fi rst of all, Paces et al. ( 1971 ) demonstrated 
the oxidative cleavage of cytokinins in a crude tobacco culture. Later on Whitty and 
Hall ( 1974 ) named this cleavage as enzyme cytokinin oxidase. Mok et al. ( 2000 ) 
reviewed the synthesis and metabolism of cytokinin and reported that a number of 
enzymes were involved in cytokinin metabolism and these enzymes were not cyto-
kinin specifi c. Cytokinin dehydrogenase is the enzyme that catalyzes irreversible 
inactivation of cytokinins. For years, it was assumed that molecular oxygen was 
essential for the activity of cytokinin dehydrogenase; however, the work of Galuszka 
et al. ( 2001 ) and Frebortova et al. ( 2004 ) showed that other electron acceptors, espe-
cially quinone types such as 2,3-dimethoxy-5-methyl-1,4-benzoquinone, also func-
tioned effi ciently other than oxygen. In addition to many plant species, the activity 
of this enzyme has also been reported in few lower organisms like moss, slime 
mold, and yeast (Gerhauser and Bopp  1990 ; Armstrong and Firtel  1989 ; Van Kast 
and Laten  1987 ).  

4     Physiological Effects of Phytohormones 

 Phytohormones are naturally occurring substances that are produced by the plant 
and play a very important role in certain physiological processes of plant. These 
are released by the plant during its life cycle in normal conditions and also in 
response to some environmental stimuli. These signal molecules are present in 
trace quantities and are actively involved in many biochemical processes (Ogweno 
et al.  2010 ). Among these hormones, ethylene, jasmonic acid, and salicylic acid 
play a role in biotic stress tolerance, and abscisic acid plays a role in regulating the 
abiotic stress tolerance (Ton et al.  2009 ; Bailey et al.  2009 ; Kavroulakis et al. 
 2007 ; Hadi and Balali  2010 ). However, some of these phytohormones are also 
equally effective for promoting biotic and abiotic stress tolerance in plants like 
jasmonates and salicylic acid (Hadi and Balali  2010 ; Hara et al.  2012 ; Khan and 
Khan  2013 ; Kazan  2015 ). 

 These hormones affect almost all the processes of plant life cycle and also 
play a critical role in plant defense system against environmental stresses both 
biotic and abiotic (Taiz and Zeiger  2010 ; Williams  2010 ). The effectiveness of 
the hormone depends upon its suitable concentration, its production at the right 
place and time, as well as its interaction with specifi c receptor. Depending upon 
their nature and concentration, they may cause positive and negative impacts on 
plant growth and development. They exert their infl uence on target cells where 
they bind transmembrane receptors, and depending upon the context, they 
are subject to positive or negative feedback control. Some of the major positive 
and negative impacts of these hormones on plant growth are discussed in the 
following sections. 
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4.1     Positive Effects 

 The role of phytohormones for accelerating plant growth and development is well 
documented. Hormones affect almost all physiological processes of plant. These 
hormones also enhance the plant resistance against unfavorable conditions and 
 protect the plant from negative impact of a number of biotic and abiotic stresses. 
Among these hormones, ABA serves as an endogenous messenger in biotic and 
abiotic stress responses of plants (Adie et al.  2007 ; Ton et al.  2009 ). Gibberellic 
acids have been shown to have an effect on reactive oxygen and antioxidant activi-
ties (Tian et al.  2011 ; Wang et al.  2012 ). 

 Schumacher and Chory ( 2000 ) reviewed the role of brassinosteroids and reported 
that these hormones were required for a wide range of plant developmental  processes 
including shoot and root elongation, seed development and germination, and devel-
opment of vascular tissue. Gibberellic acids are also involved in stem and leaf elon-
gation, fl ower induction, trichome, anther, seed germination, and fruit and seed 
development (Pharis and King  1985 ; Singh et al.  2002 ). Jasmonic acid (JA) induces 
resistance to a broad range of herbivores and is known to reduce the growth and 
survivorship of many insects. Fan et al. ( 2014 ) reported the role of JA to enclose the 
invading nematodes at the initial site of infection and then inhibit nematode multi-
plication and spread. The application of cytokinins also proved useful for regulating 
the plant response to environmental stress (Ha et al.  2012 ). 

 Auxin is a well-known group of phytohormones that plays a signifi cant role in 
the initiation of primary root growth and promotion of root hair and lateral root 
formation (Takahashi  2013 ). The involvement of auxin in plant-microbe signaling 
is also known (Berg  2009 ). Recently, Kovaleva et al. ( 2015 ) observed that the addi-
tion of IAA to the nutrient medium increased the content of actin cytoskeleton 
(F-actin) in the apical and subapical zones of pollen tubes that might be responsible 
for the stimulation of pollen growth. This argument is supported by further observa-
tions such as the decrease in the content of endogenous IAA, inhibited germination, 
and/or blocked male gametophyte polar growth. It is also evident from the work of 
Tian et al. ( 2008 ) who observed that root inhibition due to high nitrate concentration 
was closely related to the reduction of IAA level in roots. 

 This positive impact of auxin is not only observed due to naturally occurring 
auxin compounds but also with the application of synthetic ones. It was observed 
from the work of Bajguz and Piotrowska-Niczyporuk ( 2014 ) that the application of 
natural as well as synthetic auxins caused signifi cant impact on the growth, metabo-
lite content, and antioxidant response of green alga ( Chlorella vulgaris ). 

 These phytohormones work individually and in coordination with each other and 
cause impact on plant physiological processes. An increase in ABA level has been 
observed in green algae when exposed to heat stress in the presence of brassino-
steroids (Bajguz  2009 ). The synergistic role of ABA in regulating plant growth and 
development with brassinosteroids, gibberellic acid, and auxin has also been 
reported by workers (Zhang et al.  2009 ; Achard et al.  2006 ). Similarly, physiologi-
cal activity of brassinosteroids is largely consistent with physiological infl uences 
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exerted by auxins. Stimulation of cell proliferation and endogenous accumulation 
of proteins, chlorophylls, and monosaccharides has been in algal cell by this syner-
gistic interaction (Bajguz and Piotrowska-Niczyporuk  2013 ). Although the basic 
mechanisms of these interactions are not much clear however, it has been reported 
that these interactions are possibly mediated through various metabolic pathways 
(Kudryakova et al.  2013 ; Bajguz and Piotrowska-Niczyporuk  2014 ). Along with 
auxins and gibberellins, brassinosteroids promote cotton fi ber initiation and elonga-
tion in the cultured ovule system (Sun et al.  2005 ; Shi et al.  2006 ). 

 These hormones in addition to controlling intrinsic growth also mediate adapta-
tion of plant development to changing environmental conditions (Tuteja and Sopory 
 2008 ; Wolters and Jurgens  2009 ). Javid et al. ( 2011 ) reviewed the role of phytohor-
mones in alleviating salt stress in crop plants. They concluded that the concentra-
tion of auxin, cytokinins, gibberellins, and salicylic acid decreased in the plant 
tissues under salinity stress, while an increase was observed in abscisic acid and 
jasmonate level. They demonstrated that changes in hormonal level is the cause of 
growth reduction under salinity stress and this negative impact can be diluted by the 
application of plant growth regulators. Cabello-Conejo et al. ( 2014 ) evaluated the 
phytoextraction capacity and growth of four Ni hyperaccumulating species ( Alyssum 
malacitanum ,  Alyssum corsicum ,  Alyssum murale , and  Noccaea goesingense ) in the 
presence of four phytohormones (B, C, K, and P) based on gibberellins, cytokinins, 
and auxins. They observed that plant species were varied regarding biomass 
 production and depend on the type of PGR and its rate of application. A signifi cant 
increase in plant biomass and Ni accumulation was observed with the application of 
phytohormones, and most effective results were obtained in case of Ni accumula-
tion with auxin-based product.  

4.2     Negative Effects 

 Phytohormones cause positive effects on a number of plant processes; however, 
certain negative impacts on plant growth have also been observed due to these hor-
mones. As discussed in previous sections, the effects on plant growth by phytohor-
mones may be variable which depends upon their concentration, environmental 
factors, and physiological status/process of the plant. A phytohormone enhances 
plant growth up to a particular concentration, and growth inhibition may occur if 
concentration increases from that particular level. For example, ethylene that plays 
signifi cant role in a number of plant processes also causes negative impact on plant 
growth and development due to its elevated level particularly under stress environ-
ment (Nadeem et al.  2010a ). At low concentration, promotion of root growth while 
at high concentration inhibition of root elongation has been observed (Mattoo and 
Suttle  1991 ; Belimov et al.  2002 ). Ethylene plays an important role in legume- 
rhizobia association and causes signifi cant impact on rhizobial infection in legumes 
(Penmetsa and Cook  1997 ). Inhibition of nodulation with ethylene has been 
observed whether it was applied directly as a gas or in the form of its precursor like 
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ACC (Yuhashi et al.  2000 ). This argument is further supported when nodulation 
was restored after treating with ethylene inhibitor (Guinel and Sloetjes  2000 ). 
Ethylene also affects the plant growth negatively by causing certain disorder or 
many other disorders such as leaf abscission, senescence, epinasty, and chlorophyll 
destruction (Shibli et al.  2007 ; Nadeem et al.  2010b ). In addition to ethylene, indole 
acetic acid and abscisic acid are also known to modulate abscission (Suttle and 
Hultstrand  1993 ; Sexton and Roberts  1982 ). 

 Kukavica et al. ( 2007 ) observed that IAA inhibited the root elongation of hydro-
ponically grown pea plants. IAA induced the disappearance of peroxidase isoforms 
and hydroxyl radical formation in the root and the root cell wall. Malik and Sindhu 
( 2011 ) while studying the impact of co-inoculation of indole acetic acid producing 
 Pseudomonas  sp. with  Mesorhizobium  on chickpea ( Cicer arietinum ) growth and 
nodulation observed that exogenous seed treatment with higher concentration of 
IAA (10.0 μM) inhibited the growth of seedlings. 

 Similar response was also observed in the case of other hormones. For example, 
the phytotoxicity caused by some bacteria and fungi was due to the suppression of 
root growth by secretion of IAA at high concentration (Barazani and Friedman 
 1999a ; Ditengou and Lapeyrie  2000 ). ABA positively affected the leaf size and bud 
dormancy and negatively infl uenced the size of guard cells and internode length 
(LeNoble et al.  2004 ). Severe inhibition of pollen germination and pollen tube 
growth was observed due to the application of gibberellins to grape fl owers before 
or during anthesis (Kimura et al.  1996 ). 

 The phytohormones interact with each other, and this interaction may be a nega-
tive one, as observed in the case of jasmonic acid and gibberellins (Heinrich et al. 
 2013 ) where a high level of jasmonic acid antagonizes the biosynthesis of gibberel-
lins. This decrease in gibberellins results in the inhibition of stem elongation of 
 Nicotiana attenuata . They reported that this inhibition of gibberellins was due to 
high level of jasmonic acid.   

5     Environmental Stresses and Plant Growth 

 The growth and productivity of plants are affected by various biotic and abiotic 
stresses. The plant growth is affected by osmotic stress, ionic toxicity, nutrient, and 
hormonal imbalances (Ashraf  2004 ; Munns et al.  2006 ; Ashraf and Foolad  2007 ). 
The important environmental stresses that effect plant growth and development 
include drought, salinity, high temperatures, freezing, fl ooding, and mechanical 
impedance. 

 Among environmental stresses, soil salinity is one of common problems of vari-
ous arid and semiarid regions. Salinity causes an adverse effect on soil by degrading 
its quality, reducing the area of crop cultivation, and minimizing the crop yield 
(Sadiq et al.  2002 ). In arid and semiarid regions, 50 % reduction in the yield of 
major crops has been observed owing to salinity (Munns  2005 ; Keshtehgar et al. 
 2013 ). Growth inhibition is one of the primary impacts of salinity on plants that 
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might be due to its negative impact on photosynthesis as well as cellular disruption 
and oxidative disintegration under saline environment (Zhu  2007 ). Almost all mor-
phological and physiological processes of plants are affected by salinity. In salty 
conditions, among various ions that cause a negative impact on plant growth, the 
effect of sodium is more pronounced that interferes the potassium uptake (Zhu 
 2007 ) that results in potassium defi ciency in plant (Nawaz and Ashraf  2010 ). This 
increased Na/K ratio causes certain cellular and nutritional imbalances in plants like 
reduction in soluble sugars and essential nutrients (Ibrahim et al.  2006 ). Lowering 
of membrane stability of vital cell organelles was also observed due to high Na/K 
ratio (Gadallah  1999 ; Heuer  2003 ). In addition to Na + , higher chloride (Cl − ) concen-
trations also disturb the plant metabolic activities by affecting the activities of cer-
tain enzymes. For example, plant losses its ability to maintain their osmotic pressure 
due to high chloride ion in the cytoplasm (Misra and Saxena  2009 ). In saline envi-
ronment, inhibition of RNA and DNA synthesis has been observed due to reduced 
production of certain amino acids and respective nitrogenous bases required for this 
purpose (Chen et al.  2003 ; Song et al.  2006 ). 

 For plants, water availability is considered as a major dictating factor for their 
production. Under salinity stress, due to the increase in soil osmotic potential, soil 
water becomes unavailable to plants and extraction of water from soil becomes 
diffi cult (Nawaz et al.  2010 ) that result in the disturbance of certain cellular and 
metabolic activities of plants that leads to improper plant growth and develop-
ment (Munns  2005 ). Under water-defi cit conditions, plant growth is adversely 
affected due to alteration in many key physiological processes related to growth 
and reproduction (Manivannan et al.  2008 ). Plants respond promptly to water 
stress, and the consequences of even a short-term drought at any growth stage 
cause negative impact on plant’s whole life cycle. Drought affects almost every 
morphological, physiological, and biochemical aspect of plant and poses severe 
limitations for crop production (Aroca  2012 ). The literature revealed that drought 
mainly affects key processes regarding cell division, water relations, nutrient 
uptake, nutrient assimilation, energy transfer, carbon fi xation, and photosynthesis 
(Yamance et al.  2003 ; Gomes et al.  2010 ; Taiz and Zeiger  2010 ; Asrar and Elhindi 
 2011 ). The reduction in water contents of cytoplasm restricts the cell division, 
elongation, and differentiation primarily due to decrease in turgor pressure, meta-
bolic activity, and inhibition of energy transfer (Taiz and Zeiger  2010 ). The inhi-
bition of cell multiplication adversely affects the vegetative and reproductive 
growth due to lower biomass accumulation leading to stunted root and shoot 
growth, poor fl owering, and fruit development (Asrar and Elhindi  2011 ). Under 
water-defi cit conditions, plants show limited nutrient uptake and become nutrient 
defi cient. Several reports indicate that under water shortage, plants show signifi -
cant reduction in all macro- and micronutrients in roots and shoots, especially 
nitrogen, potassium, and phosphorus (McWilliams  2003 ; Subramanian et al. 
 2006 ; Asrar and Elhindi  2011 ). 

 Temperature affects every physical, chemical, and biological process in living 
cells. A slight increase or decrease in temperature can cause irreversible damage to 
crop plants. High temperature is the most extreme form of temperature stress which 
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is challenging the plant’s survival in extreme climatic conditions. Plants under high 
temperature stress show a variety of responses at cellular and molecular level. High 
temperature adversely affects the growth, phenology, biochemistry, physiology, 
and anatomy of plant (Wahid et al.  2012 ). 

 Like other stresses, the effect of high temperature on plant growth can be 
observed at any stage from germination to seed production. Ren et al. ( 2009 ) 
reported that high temperature inhibits the germination due to alteration in 
expression of protein profi les. At germination, plants are more sensitive to tem-
perature change that severely inhibits the seedling emergence and its develop-
ment (Egli et al.  2005 ). Specifi c enzymes involved in germination are denatured 
by high temperature that inhibits the growth of germinating embryos (Wahid 
et al.  2012 ). Photosynthesis is also affected by heat stress as high temperature 
destroys the mesophyll cell followed by deshaping and swallowing of chloro-
plasts, stroma, and lamella, severely affecting the activity of photosystem II 
(Carpentier  1999 ). 

 The chilling injury refers to the extreme low temperature but slightly above 
freezing point, while freezing injuries occur when freezing temperature prevails and 
solutions in plants start freezing followed by crystallization resulting in complete 
ceasing of biochemical machinery and rupture of membrane structures (Sokolnik 
 2012 ). The disturbance in biochemical mechanisms also results in the production of 
reactive oxygen species (ROS) that induces oxidative stress, as low temperature 
hinders the functioning of oxido-reductive enzymes, e.g., catalase inhibition leads 
to higher accumulation of H 2 O 2  and free radicals (Los and Murata  2004 ; Sun et al. 
 2010 ). 

 At present, due to the rapidly increasing industrialization and urbanization, envi-
ronmental pollution is becoming a serious issue. The most toxic pollutants that pre-
vail in the environment are heavy metals that are toxic to every living, and reports 
showed that almost every ecosystem has been contaminated with these pollutants 
(Wei and Yang  2010 ; Azizullah et al.  2011 ). The release of heavy metals in soil and 
water is becoming a serious limitation for crop production not only in area sur-
rounding the industrial locations, but heavy metal stress is also becoming a serious 
issue even in remote areas as the injudicious and blind use of chemicals for crop 
production severely contaminated the soils with heavy metals (Hjortenkrans et al. 
 2006 ; Nada et al.  2007 ). These heavy metals pose cytotoxic, genotoxic, and muta-
genic effects on plants. Most of heavy metals are actively uptaken by plants and 
transferred into food chain resulting in serious health issues in animals and humans 
as well (Flora et al.  2008 ). 

 The above discussion showed that plants faces a number of stresses in soil 
environment. All these stresses affect the plant growth and development by 
causing negative impact on various plant physiological processes. These stresses 
also interact with each other, and the intensity of their impact may be increased. 
The intensity of these stresses may vary with plant species as well as growth 
stage. One stress may be more detrimental at particular growth stage, and con-
trol of this negative effect at that stage could be benefi cial for proper plant 
growth and development.  

Role of Phytohormones in Stress Tolerance of Plants



398

6     Mitigation of Stress-Induced Impacts on Plant Growth 
Through Phytohormones 

 The use of plant growth regulators is an effective approach to promote plant growth 
and development. Owing to their growth promotion abilities, phytohormones are 
being used effectively for enhancing crop production under normal as well as stress 
conditions. There are certain reports which show their effectiveness in agricultural 
production (Saeedipour  2013 ; Bano and Yasmeen  2010 ; Kovaleva et al.  2015 ; Afzal 
et al.  2005 ). 

6.1     Mechanism of Action 

 A variety of mechanisms are adopted by plants to cope with stress conditions. 
Among these, one of the effective and comprehensive mechanisms includes the 
biosynthesis of plant growth regulators or phytohormones. Production of these 
organic metabolites is a primary tool for plants to mediate a wide range of adaptive 
response systems (Santner et al.  2009 ) and be involved in regulating various plant 
processes under normal as well as adverse soil conditions necessary for normal 
plant growth and development (Kaya et al.  2009 ). 

 The phytohormones cause impact on all phases of the plant throughout its life 
cycle. Movement of phytohormones throughout the body takes place via the xylem 
or phloem transport stream. In order to exert their response, phytohormones bind 
transmembrane receptors or endoplasmic reticulum. Hormonal concentrations and 
tissue sensitivity regulate the physiological process that causes profound effects on 
plant growth (Taiz and Zeiger  2010 ). In response to stress conditions, plants tend to 
accumulate high concentrations of phytohormones like auxins and IAA (Javid et al. 
 2011 ; Wang et al.  2001 ). This high concentration of hormones might be helpful for 
mitigating the negative impact of stress. For example, under low soil water poten-
tial, auxins accumulation in plant roots takes place which are transported to leaves. 
At the surface of cell membrane of stomatal cells, these auxins bind to receptors that 
result in enhanced stomatal conductance (Babu et al.  2012 ). It is reported that IAA 
has infl uence on oxidative phosphorylation in respiration and enhances oxygen 
uptake. It has been assumed that growth enhancement by IAA might be due to 
increased energy supply. 

 Gibberellin biosynthesis is also greatly infl uenced by developmental and envi-
ronmental stimuli that disturb the level of hormone in the plant (Yamaguchi and 
Kamiya  2000 ; Olszewski et al.  2002 ). A decrease in endogenous level of gibberellic 
acid (GA) and reduced crop yield have been observed under salinity stress (Xie 
et al.  2003 ; Hamayun et al.  2010b ). It might be due to decrease GA biosynthesis in 
plant and due to the activity of oxidases that cause distraction of hormones in plant. 
Similarly, there are many reports which show that in order to get immunity against 
stresses, plants accumulate signifi cant amount of cytokinins in their body. Regulation 
of carbon and nitrogen assimilation with the accumulation of cytokinin that 
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enhanced drought tolerance in rice has been reported by Reguera et al. ( 2013 ). 
Rivero et al. ( 2007 ) also reported tobacco tolerance against drought through accu-
mulation of cytokinins. It has been hypothesized that cytokinins enhance wheat salt 
tolerance through interacting with other plant hormones by regulation and detoxifi -
cation of toxic ions and reactive oxygen species. Abscisic acid and cytokinins inter-
act antagonistically causing opposite effects on various plant developmental 
processes including stomatal conductance, seed germination, and cotyledon expan-
sion (Blackman and Davies  1984 ; Thomas  1992 ). It is also reported that high CK 
accumulating in plants show improved nutrient effi ciency during nutrient defi ciency 
(Rubio-Wilhelmia et al.  2011 ). It has been observed that cytokinins infl uence the 
nitrogen metabolism (Sakakibara et al.  2006 ) by enhancing nitrate reductase activ-
ity in plants (Sykorova et al.  2008 ).  

6.2     Phytohormones and Plant Stress Tolerance 

 Endogenous and exogenous applications of phytohormones play a signifi cant role 
in enhancing plant ability to maintain their growth under stress conditions. In addi-
tion to endogenous plant hormones, exogenous application of phytohormones also 
plays an important role in improving plant tolerance against adverse conditions 
(Table  3 ). A number of reports are available that are demonstrating the positive 
effects of endogenous and exogenous application of phytohormones on plant growth 
and development (Fan et al.  2014 ; Afzal et al.  2005 ; Fassler et al.  2010 ; Kumar et al. 
 2014 ; Shaddad et al.  2013 ).

   Auxins are well-known phytohormone that play an important role in plant toler-
ance against various environmental stresses like salinity, waterlogging, and soil 
acidity (Salama and Awadalla  1987 ; Ribaut and Pilet  1991 ; Gadallah  1994 ,  1995 ). 
In many plants and under certain environmental conditions, endogenous 
 phytohormone production may be lower which is not suffi cient to mitigate the neg-
ative impact of stress environment (Wyn Jones and Storey  1981 ; Yancey  1994 ; 
Subbarao et al.  2001 ). Exogenous application of phytohormones under such condi-
tions may be helpful in reducing adverse effects of stress (Makela et al.  1998a ,  b ; 
Yang and Lu  2005 ). For example, exogenous application of auxins caused signifi -
cant increase in crop yield by reducing the adverse effect of water stress (Abdoli 
et al.  2013a ,  b ). Similar response was also observed in the case of heavy metal 
stress where the application of IAA minimizes the negative impact of heavy metal 
toxicity on plant growth by regulating metal accumulation and decreasing oxidative 
damage (Gangwar and Singh  2011 ; Gangwar et al.  2014 ). It is achieved by enhanc-
ing the activity of antioxidant enzymes as reported by Kumar et al. ( 2012a ,  b ). They 
demonstrated that regulation of heavy metal uptake by auxin application was due to 
enhancement in enzymatic and nonenzymatic antioxidant activity. In water-defi cit 
environment, the closing of stomata reduces the CO 2  fi xation that disturbs the pho-
tosynthetic activity of the plants (Chatrath et al.  2000 ); however, reverse has been 
observed by application of IAA under such condition (Khalid et al.  2013 ). 
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 Gibberellins play an important role in plant growth and development owing to 
their impact on seed germination, root/shoot elongation, as well as fl owering and 
fruit patterning (Fleet and Sun  2005 ; Shani et al.  2013 ). Gibberellins are signifi -
cantly focused phytohormones by researchers to be used as stress protectant 
(Basalah and Mohammad  1999 ; Hisamatsu et al.  2000 ). An enhancement of wheat 
growth has been observed under saline condition by the application of gibberellins 
(Parasher and Varma  1988 ). According to the fi ndings of Maggio et al. ( 2010 ), 
exogenous application of gibberellic acid under stress conditions reduces the stoma-
tal resistance and increases water use effi ciency. Afroz et al. ( 2005 ) reported the 
improvement in photosynthetic effi ciency and nitrogen metabolism of salt stress 
mustard plant due to the application of gibberellins. Yield enhancement due to seed 
priming with gibberellin is attributed to the regulation of ion uptake and their parti-
tioning (Kumar and Singh  1996 ;  Iqbal and Ashraf 2010 ). Kaya et al. ( 2006 ) demon-
strated that maize drought tolerance can also be improved by the application of 
gibberellic acid. According to their fi ndings, it was due to enhancing chlorophyll 
and leaf water content as well as maintaining membrane permeability and nutrient 
concentrations in plant body. This can also be obtained by enhancing the activity of 
antioxidant enzymes against reactive oxygen species (Falkowaska et al.  2010 ). 
Plants under high temperature stress show increased acidulation of extracellular 
solution and decreased proteolysis level that can be regulated by the application of 
gibberellins (Aleksandrova et al.  2007 ). 

 The fundamental role of cytokinins is considered to maintain the indeterminate 
property of shoot apical meristems (Davies  2004 ; Hopkins and Huner  2008 ). 
Cytokinins also regulate the assimilate partitioning, sink strength, and source/sink 
relationships (Kuiper  1993 ; Ronzhina and Mokronosov  1994 ; Roitsch  1999 ). Like 
other phytohormones, cytokinins also affect the plant responses to environmental 
stresses, and this effect may be a direct and indirect one (Wilkinson et al.  2012 ). For 
example, under drought stress, the decrease in cellular contents of cytokinin results 
in an increase of abscisic acid (Davies and Zhang  1991 ) which caused the closing 
of stomata resulting to low photosynthetic activity of the plant (Rivero et al.  2010 ). 
In certain cases, stress-induced cytokinin synthesis like in tobacco (Rivero et al. 
 2009 ), cotton (Kuppu et al.  2013 ), and peanut (Qin et al.  2011 ) protects the plants 
from adverse effects of different stresses that cause negative impact on plant physi-
ology (Reguera et al.  2013 ). Barciszewski et al. ( 2000 ) also reported the plant toler-
ance against salinity and drought due to accumulation of cytokinins. Other workers 
also reported the role of exogenous application of cytokinins in plant stress toler-
ance (Wang et al.  2001 ; Gupta et al.  2003 ; Yang et al.  2003 ) which is considered as 
an economical and easy strategy for inducing stress tolerance in many crops (Torres- 
Garcia et al.  2009 ). For example, seed priming with cytokinin is reported to increase 
germination and seedling survival under salt stress (Iqbal et al.  2006 ). Improvement 
of wheat seedlings and potato plants with cytokinin application under salt stress has 
been observed (Naqvi et al.  1982 ; Abdullah and Ahmad  1990 ). Cytokinins also act 
as protectant agent against plant pathogens as reported by Ketabchi and Shahrtash 
( 2011 ). where the application of cytokinin signifi cantly reduces the negative impact 
of  Fusarium moniliforme  on maize seedlings. 

Role of Phytohormones in Stress Tolerance of Plants
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 Plants synthesize different phytohormones under stress conditions depending 
upon the strength of their defense mechanism. The exogenous application of differ-
ent phytohormones has been proven as an effective method to cope with stressful 
environments. It is concluded that the exogenous application of phytohormones to 
stress-sensitive plants can induce stress tolerance in plants.   

7     Enhancing Plant Stress Tolerance 
Through Phytohormone-Producing Microbes 

 As described earlier, plant growth regulators (PGRs) or phytohormones are organic 
compounds and produced by plants in very minute quantities and translocated to dif-
ferent tissues. These PGRs play a primary role in the coordination of physiological 
processes related to growth, reproduction, and stress management. In rhizosphere, a 
number of microbes also synthesize these hormones as signaling agents for phyto-
stimulation (Egamberdiyeva  2005 ). For example, auxins are important group of phy-
tohormones, which are synthesized by soil microbes in abundance. Under stress 
conditions, inoculation of PGR-synthesizing microbes enhances the stress tolerance 
of plants. Use of PGR-synthesizing microbes as biofertilizers has been proven as a 
highly effective technique for enhancing crop production under normal as well as 
stress conditions (Ahemad and Kibret  2014 ). A number of microbial strains produce 
a variety of phytohormones including IAA, gibberellic acid, proline, and zeatin 
(cytokinins). All these hormones play a pivotal role in the enhancement of plant 
growth and productivity not only under normal conditions but also under stress con-
ditions especially salinity, drought, temperature, and oxidative and photogenic 
stresses (Cassan et al.  2009 ). The role of PGPR for promoting plant growth owing to 
their ability to produce phytohormones has been reviewed in Table  4 .

   Literature indicates that PGR-synthesizing rhizobacteria greatly help in protect-
ing plants under stressful conditions (Khalid et al.  2006 ; Egamberdiyeva  2005 ; 
Nadeem et al.  2010b ). A number of bacterial strains are capable of synthesizing dif-
ferent phytohormones (Lugtenberg and Kamilova  2009 ). Commercially available 
PGRs are also being used exogenously to induce different plant responses and 
enhance plant growth under stress conditions. But, these artifi cially synthesized 
PGRs are not only very expensive but are also less effi cient than PGRs from microbes 
(Khalid et al.  2006 ). Under stress, the use of PGR-producing microbes as biofertil-
izer is reported to improve plant growth and production by the ameliorating action of 
phytohormones, secreted by rhizospheric microbes, that helps plant to regulate their 
osmotic potential, hormonal balance, and level of toxic ions in cytoplasm. 

 Leinhos and Bergmann ( 1995 ) reported that phytohormone-producing microbes 
enhance plant growth and induce drought tolerance in plants by producing IAA that 
is taken up by plants and performs a signifi cant role in alleviation of adverse effects 
of drought on plants. San-Francisco et al. ( 2005 ) also reported in pepper plants that 
inoculation of auxin-producing microbes enhanced the growth and physiology of 
pepper plants growing under nutrient stress conditions. The induction of stress tol-
erance was attributed to the production of free polyamines and enhanced levels of 
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spermine and decreased levels of putrescine that effi ciently regulated the mineral 
uptake in plants and reduced the stress intensity. Similarly, Wilmowicz et al. ( 2008 ) 
reported that several microbes were capable of producing abscisic acid, which is a 
vital phytohormone. The inoculation of such microbes to plants resulted in signifi -
cant improvement in reproductive growth including fl owering and fruiting (Zhang 
et al.  2006 ). Under stress conditions, microbial-derived phytohormones also help 
plants to withstand stress-induced oxidative destruction through maintaining the 
equilibrium between antioxidants and ROS (Arbona et al.  2005 ). 

 Under high nitrate supply plant shows reduced root growth due to nitrate stress. 
However, the introduction of IAA producing microbial inoculants increases the 
concentration of endogenous IAA which improves root growth under nitrate stress 
(Forde  2002 ; Tian et al.  2008 ). Liu et al. ( 2007 ) reported that the uptake of bacterial 
synthesized phytohormones increased the heavy metals chelation which reduced 
the severity of heavy metal stress on plants. Ahmad et al. ( 2014 ) reported the inocu-
lation with auxin-producing halo-tolerant PGPR. Ahmad et al. ( 2013 ) improved the 
productivity of mung bean grown under salinity stress. 

 Some soil microbes synthesize phytohormones from their precursors and release 
the soil solutions that are taken up by plants. The abundant availability of these pre-
cursors enhances the ability of plants to produce larger concentrations of phytohor-
mones. Zahir et al. ( 2010 ) reported that the inoculation of auxin-producing 
rhizobacteria and application of  L -tryptophan (a precursor of auxin) alone and in 
combination enhanced the endogenous auxins and signifi cantly improved yield of 
maize. The combined application was more effective for promoting plant growth and 
yield. Similar results were obtained by Arkhipchenko et al. ( 2005 ) as growth and 
biomass production were signifi cantly improved in legume fodder when applied with 
 L -tryptophan-synthesizing microbes under drought conditions.  L -tryptophan results 
in higher production of auxins in plant’s body resulting in improved water relations 
and vascular conductance (Barazani and Friedman  1999b ; Taiz and Zeiger  2000 ). 

 Under stress conditions, the production of ethylene is a fundamental phenome-
non that obstructs major plant physiological processes. Ethylene is a growth regula-
tor, and higher production of this restricts plant growth and induces early senescence 
(Nadeem et al.  2010a ). On the other hand, soil microbes having 1- aminocycloprop
ane- 1-carboxylate (ACC) deaminase restrict the activity of ethylene, produced 
under stress conditions. Several microbes have the ability to biosynthesize ACC- 
deaminase and help the plants in maintaining adequate levels of ethylene (Glick 
et al.  2007 ; Nadeem et al.  2007 ; Ahmad et al.  2011 ). Cheng et al. ( 2007 ) reported 
that the application of soil microbes having the ability to produce ACC deaminase 
was found to enhance plant growth under low temperature and salinity stress. 

 It may be concluded that phytohormones are unique substances involved in plant 
growth and stress regulation. However, the biosynthesis of these substances varies 
from species to species as not all the plants can produce ample concentrations of 
these hormones under stress conditions. In this case, soil microorganisms take part 
in plant stress tolerance mechanisms and provide them with already synthesized 
phytohormones which are highly effective for plant growth promotion under stress 
conditions so that plants can grow and produce better even under hostile conditions 
without any laborious input.  
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8     Conclusions and Future Prospects 

 The above discussed review shows the importance of plant growth regulators in 
plant growth promotion. In soil environment, plant faces various biotic and abiotic 
stresses that affect a number of plant physiological processes. To cope with these 
stresses, plant develops certain strategies, and the production of hormones is one of 
them. These phytohormones play an important role in plant growth and develop-
ment by accelerating plant processes. Not only the endogenous plant hormone but 
its exogenous application and microbial synthesized phytohormones are equally 
effective for promoting plant growth. It is also evident from the above discussed 
review that these phytohormones also interact with each other and this interaction 
may be positive or negative. Most of the negative responses by phytohormones are 
due to high concentration that directly affects the particular plant process or antago-
nizes the production of other hormones that results in impaired plant growth. This 
elevated level of growth hormone might be due to the result of some environmental 
stimuli or overproduction of a particular hormone by inoculated strains. 

 The work of a number of researchers discussed here shows that concentration of 
a hormone, its use for particular purpose, as well as application of phytohormone- 
producing strain are some of the major factors that should be kept in mind for 
improving plant growth and development under normal and stress conditions. In 
order to clear our understanding about these aspects, there is a huge gap that should 
be fi lled by conducting research on gross root level. Research should be focused on 
rate and timing of phytohormone application, their stability, as well as their bio-
availability in soil environment. The selection and evaluation of potential strains 
that have the ability to produce phytohormones need further research so that a suit-
able strain for a particular purpose can be used effectively. 

 By using biotechnological and molecular approaches, efforts could also be 
focused in developing genetically engineered plants that have the ability to synthe-
size particular hormones which enable them to withstand and maintain their growth 
in adverse soil conditions. These transgenic plants would be able to grow under 
various conditions with minimal yield losses.     
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