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    Abstract     The rhizosphere is an area of soil surrounding plant roots in which soil’s 
most reactions take place. The term “rhizosphere” was coined by Lorenz Hiltner, and 
it is 1–2 mm wide. The rhizosphere is divided into three zones: endorhizosphere, rhi-
zoplane, and ectorhizosphere. The two dynamic properties of soil rhizosphere are root 
exudates and soil microbes. Root exudates are the chemical compounds that are 
secreted by roots and act as a source of food for soil microbes and play a pivotal role 
in soil microbe and plant interaction. These are low- and high-molecular-weight com-
pounds. The root exudates are important for root- microbe and root-root communica-
tion. The other important aspect of rhizosphere is soil microbes. The soil microbes 
include bacteria, fungi, and actinomycetes. These organisms are important for both 
soil and fungi. The main aspect of this chapter is to give brief information about the 
underground world, and its future perspective is to understand soil microbe and plant 
interaction for enhancing sustainable agriculture. Studies on gene expression in the 
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rhizosphere and the use of other molecular techniques like m-RNA, proteomics, 
labeled root compounds, stable isotope probes, and reporter technology will help in 
exploring underground undiscovered world.  

  Keywords     Rhizosphere   •   Roots   •   Exudates   •   Soil microbes   •   Allelochemicals   • 
  Ecosystem  

1       Introduction 

 The rhizosphere is the area of soil roots where most of the reactions are affected by 
plant roots. The rhizosphere is about 1–2 mm wide with no distinct boundaries 
(Brimecombe et al.  2007 ). Lorenz Hiltner is a German scientist who coined the term 
“rhizosphere” to explain plant root association. At Munich in 2004, a meeting was 
organized in his memory. The term rhizosphere is from the Greek words “ rhiza ” 
which means root and “ sphere ” which means fi eld or area of infl uence (Hartmann 
et al.  2008 ). The rhizosphere is broadly classifi ed into the following three zones, 
viz., endorhizosphere, rhizoplane, ectorhizosphere (Clark  1949 ; Lynch  1987 ; Pinton 
et al.  2001a   ). The endorhizosphere consists of root tissues including cortical cells 
and the endodermis. Rhizoplane is the area of root surface where soil microbes and 
soil particles interact. It comprises of the cortex, epidermis, and mucilage. The third 
zone is ectorhizosphere which is formed from soil particles adjacent to roots. In 
addition to these three fundamental zones, few other layers are also found which 
include the mycorrhizosphere, rhizosheath, and bulk soil (Linderman  1988 ; Curl 
and Truelove  1986 ; Gobat et al.  2004 ). Mycorrhizosphere is the mycorrhizal asso-
ciation of plants. Rhizosheath is the strongly adhering dense layer and consists of 
root hairs, mucoid layer, soil particles, and soil microbes. Bulk soil is the portion of 
soil which is not the component of rhizosphere (Brundrett  2009 ; Lambers et al. 
 2008 ) (Figs.  1  and  2 ).

    The rhizosphere is called the hot spot of soil microbes (Brimecombe et al.  2007 ). 
In Kashmiri Language, we may call rhizosphere as Wazwan point for soil microbes. 
The rhizosphere is also called as human gut microbiome for plants (Mendes et al. 
 2011 ). Rhizosphere is considered as the spot where soil genesis actually starts (Pate 
et al.  2001 ). To soil microorganisms, rhizosphere is the lush oasis in the desert. 
Because it is underground, rhizosphere is considered as the last frontier in agricul-
ture. Soil microbial community also has greater reservoir of biological diversity in 
the world (Curtis et al.  2002 ; Chaparro et al.  2013 ; Philippot et al.  2013 ; Buée et al. 
 2009 ). The rhizosphere soil contains up to 10 11  microbial cells/g (Egamberdiyeva 
et al.  2008 ) and over 30,000 prokaryotic species. The combined genome of the rhi-
zosphere is greater than that of plant and thus is called plants’ second genome (Bron 
et al.  2012 ). The eelworms are being used to quantify the extent of rhizosphere 
because they are highly in peculiar in reacting to chemicals exudated by plant roots 
(Bolton et al.  1992 ) (Table  1 ).
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  Fig. 1    Ectorhizosphere of the soil root ecosystem       

  Fig. 2    The endorhizosphere and its different components       
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2        The Dynamic Properties of Rhizosphere Are Root 
Exudates and Soil Microbes 

2.1     Root Exudates 

 The knowledge of roots and its biology, biochemistry, and genetic evolution 
has considerably increased during the last few years, but the certain processes 
occurring in the rhizosphere by the roots such as root exudates and root border 
cells are still unknown (Benfey and Scheres  2000 ; Hawes et al.  2000 ). The 
plant roots provide mechanical anchorage to the plants and assist in water and 
mineral nutrient uptake. Some special functions including synthesizes, secre-
tion, and accumulation of diverse group of chemical compounds are also per-
formed by the plant roots (Flores et al.  1999 ). These compounds exudated by 
the plant roots play a pivotal function as chemical attractants in the soil root 
ecosystem (Estabrook and Yoder  1998 ; Bais et al.  2001 ). These chemical com-
pounds are referred as root exudates. A diverse group of these chemical com-
pounds have been found exudating from intact and healthy roots. These 
compounds include sugars, amino acids, peptides, vitamins, nucleotides, 
organic acids, enzymes, fungal stimulants, and inhabitants and also some 
other compounds which help in plant water uptake, plant defense, and stimu-
lation (Pate et al.  2001 ; Pate and Verboom  2009 ; Taylor et al.  2009 ). Sugars, 
organic acids, coumarins, lipids, flavonoids, enzymes, amino acids, proteins, 
aliphatics, and aromatics are examples of primary substance found within the 
roots (Shukla et al.  2011 ). Among these, the organic acids are of considerable 
importance because of its role in providing substrate for microorganisms and 
also acting as intermediate in biological and chemical reactions in the soil 
(Philippe  2006 ; Wutzler and Reichstein  2013 ). The ability of plant roots to 
produce a wide range of chemical compounds is the most striking feature of 
plant roots with nearly 5–21 % of all photosynthetically fixed carbon being 
transferred to rhizosphere through root exudation (Marschner  1995 ). These 
root exudates are being classified as low-molecular-weight compounds and 
high-molecular-weight compounds. Sugars, amino acids, phenols, organic 
acids, and various other secondary metabolites are included in low- molecular- 
weight compounds, whereas mucilage and proteins are included in high- 
molecular- weight compounds (walker et al.  2003 ). These root exudates are 
relatively important in mediating the communication of plants with soil 
microbes (Bais et al.  2004 ;  2006 ; Weir et al.  2004 ; Broeckling et al.  2008 ). 
Root exudation is an important element of rhizodeposition and is a primary 
source of soil organic carbon released by the roots (Hutsch et al.  2000 ; Nguyen 
 2003 ). Whipps and Lynch ( 1985 ) first coined the term rhizodeposition as 
materials lost from roots, which include lysates, insoluble exudates, soluble 
material, and certain gases like carbon dioxide and ethylene. 

O. Bashir et al.



343

2.1.1     Interaction Studies of Root Exudates 

 Another important function of root exudates is that it acts as a messenger that 
initiates and intimates physical and biological communication between the soil 
microbes and plant roots. Root-mediated rhizospheric communication is grouped 
into two categories: negative and positive interactions (Weller et al.  2002 ; Mendes 
et al.  2011 ; Elsas et al.  2012 ). Positive interactions involve communication of 
plant roots with certain plant growth-promoting rhizobacteria (PGPR). These 
plant roots produce certain chemicals that act as signals and attract certain 
microbes and stimulate chemotaxis (Thimmaraju et al.  2008 ). Positive interac-
tions of root exudates also include growth enhancers that enhance growth of 
neighboring plants and help in cross-species signaling. The negative interaction of 
root exudates includes secretion of insecticidal and nematicidal compounds, phy-
totoxins, and secretion of antibiotics (Bais et al.  2006 ). 

   Root Rhizosphere Communication 

 Performance of plant species depends upon its ability to recognize and receive 
changes in environment and to respond to these changes for acclimatization. These 
changes are very important for growth and development of plants and microbes 
(Chaparro et al.  2014 ). Root exudate is a major food source of soil microbes that 
communicate with the plants and is considered most diverse ecosystem on earth 
(Vogel et al.  2009 ). These interactions of soil microorganisms and plant roots are 
categorized into root-root communication and root-microbe communication.  

   Root-Root Communication 

 When roots communicate with neighboring roots of other plant species, they pre-
vent their invadence by release of certain chemical messengers (Ahmed et al.  2007 ). 
Allelopathy is the phenomena which involve benefi cial, harmful, direct, and indirect 
effect on plants through secretion of secondary metabolites (Li et al.  2010 ). 
Allelopathy is known for more than 2000 years with respect to plant interference 
(Callaway and Aschehoug  2000 ; Ridenour and Callaway  2001 ; Weston and Duke 
 2003 ). Allelopathy also has importance in agriculture, because the allelochemicals 
produced by the plants control weed population (Haribal and Enwick  1998 ). The 
most important allelochemicals in the plant ecosystem include phenolic compounds. 
Phenols are the chemical compounds having a hydroxyl group (−OH) attached to an 
aromatic hydrocarbon group (Zeng et al.  2008 ). Phenolic compounds which play an 
important role in allelopathy are produced from pentose phosphate pathway. 4- 
Phosphate erythrose and phosphoenolpyruvic acid undergo certain condensation 
reaction with sedoheptulose 7-phosphate and generate phenolic compounds. There 
occurs a series of reactions in shikimic and acetic acid metabolic pathway. The 
phenolic allelochemicals have adverse impact on the photosynthesis and respiration 
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of other plant species by weakening their oxygen absorption capacity and by reduc-
ing their photosynthetic rate by reducing chlorophyll content. Patterson ( 1981 ) 
reported that 10–30 μmol/l caffeic acid, ferulic acid, vanillic acid, coumaric acid, 
and cinnamic acid could considerably reduce growth of soybean. Bais et al. ( 2002 ) 
reported (+) catechin and (−) catechin as root phytotoxin. + catechin was produced 
invasive behavior of knapwood and (−) catechin was inhibitory to the soilborne 
bacteria. It has also been seen that certain allelochemicals released by the host roots 
stimulate haustoria formation (Estabrook and Yoder  1998 ; Yoder  2001 ). 
Allelochemicals produced by the black walnut causes growth inhibition and is one 
of the earliest classical examples of allelopathy (Bais et al.  2006 ). The naphthoqui-
none, juglone (5-hydroxy-1, 4- naphthoquinone), is responsible for the walnut tox-
icity. Juglone is generally found in nontoxic form, but when exposed to air it 
becomes oxidized and thus becomes toxic. Juglone is extracted from fresh bark of 
stripped roots or from fresh fruit hulls (Kocacali et al.  2009 ). Many other close rela-
tive species of black walnut like butternut or white walnut ( Juglans cinerea ) also 
produce juglone, but in limited quantities. Wheat is also known to produce root 
exudates with allelopathic activity. Due to simple phenolic compounds like 
p- coumaric, p-hydroxybenzoic, ferulic acid, vanillic acid, and syringic acid, the 
presence of hydroxamic acids is responsible for wheat allelopathy (Yongqing  2006 ). 
Sorghum roots also secrete a mixture of hydrophobic substances which are biologi-
cally active and include sorgoleone, characterized as (2-hydroxy-5-methoxy-3- 
pentadecatriene)-p-benzoquinone. Sorgoleone is used as an important bioherbicide 
which is used for broadleaf and grass weeds at concentrations below 10 μM in 
hydroponic bioassays (Xiaohan et al.  2004 ). Some plants also secrete secondary 
metabolites that suppress growth of specifi c plants (autotoxicity). Autotoxicity is a 
phenomenon mostly applicable in agricultural crops and weeds, as well as in some 
plants that inhabit natural systems. Phytotoxic root exudates play an important role 
in mediating autoinhibition in some species like  Cucumis sativus  (garden cucum-
ber),  Centaurea maculosa  (spotted knapweed) (Perry et al.  2005 ), and  Asparagus 
offi cinalis  (garden asparagus) (Yu et al.  2003 ).  

   Root Microbiome Communication 

 In the unseen underground ecosystem, some complex communication occurs which 
includes root- root and root-microbe interaction which has both benefi cial and 
harmful outcomes (Bais et al.  2006 ). The sophisticated processes include root- 
microbe interaction which includes both mutualistic and pathogenic relationship, 
metabolic processes including parasitic plants and root secretion, energy transfer 
which comprises electric potential, and resource distribution and information trans-
fer which include quorum sensing. These processes play a critical role in terrestrial 
ecosystem (Bouwmeester et al.  2007 ; Gewin  2010 ). Some microbial bioactive com-
pounds which function within the belowground ecosystem play a dynamic role in 
plant life. Roots of the plants continuously secrete organic compounds which help 
in harnessing benefi cial microbes and suppressing plant pathogens (Berg and Smalla 
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 2009 ; Marschner and Timonen  2005 ). Thus, these roots have stimulatory or inhibi-
tory infl uence on soil microbes which help in their community structure develop-
ment as they increase their competition for nutrients and other resources (Cesco 
et al.  2010 ,  2012 ). 

 There occurs a dynamic interaction between soil microbes and plants in nature 
which is based on coevolutionary pressures (Klironomos  2002 ; Dobbelaere et al. 
 2003 ; Duffy et al.  2004 ; Morrissey et al.  2004 ; Morgan et al.  2005 ; Reinhart and 
Callaway  2006 ). Consequently, the microbial communities in the rhizosphere vary 
due to certain factors like different species of plant (Batten et al.  2006 ; Innes et al. 
 2004 ), their genotypes (Kowalchuk et al.  2006 ), and their different developmental 
stages (Mougel et al.  2006 ; Wei et al.  2007 ). Microbial community in soil is closely 
related to highly diverse plant communities, but their connecting link is still unclear 
and it is believed that their close relationship occurs due to widely occurring habi-
tat heterogeneity or enhanced plant biomass. It may be also due to different carbon 
substrates which act as signaling compounds as they are secreted by the plant 
roots. These compounds belong to a class called fl avonoids which are responsible 
for specifi c microbe-host interactions. These fl avonoids act as signaling molecules 
and are highly present in symbiotic and pathogenic microbes; there occur a large 
number of fl avonoids in the plants and a greater number of fl avonoids are identifi ed 
in legumes. More than 4000 different fl avonoids occur which mediate host speci-
fi city (Perret et al.  2000 ). In several  Fusarium  plant interactions, fl avonoids help in 
micro- and macroconidia germination but have no effect on hyphal growth during 
infection. Certain isofl avonoid compounds are also present in legume crops. Soya 
bean ( Glycine max ) produces genistein, daidzein, and, isofl avonoids which effec-
tively stimulate  Bradyrhizobiumjaponicum  nod genes but have negative effect on 
the  Sinorhizobium meliloti  nod gene expression.  S. meliloti  nod gene expression 
gets stimulated by luteolin (Juan et al.  2007 ). This phenomenon helps rhizobia to 
differentiate between hosts and other legumes. The specifi c fl avonoid produced by 
the legumes not only stimulates nod gene expression but also has its effect on rhi-
zobial chemotaxis (Bais et al.  2006 ). Strigolactones recently have been identifi ed 
as important signaling molecules in the AMF-plant interaction and thus are “hot 
issues” in the mycorrhizal study. Ectomycorrhizal fungi are also stimulated by 
Brassicaceae (Zeng et al.  2003 ). There occurs a specifi c interaction between rhizo-
bia and legume allowing only few rhizobial strains to nodulate with specifi c host 
legumes.  Medicago ,  Melilotus , and  Trigonella  genera are nodulated with  S. meli-
loti , whereas  Rhizobium leguminosarum  bv. viciae stimulates nodulation in  Pisum , 
 Vicia ,  Lens , and  Lathyrus  genera (Bais et al.  2006 ). Scientists demonstrated that 
plant roots secrete L-MA (malic acid) which acts as effective signaling molecule to 
establish benefi cial rhizobial communities (Thimmaraju et al.  2008 ).  Arabidopsis 
thaliana  and  Medicago truncatula  are the two model plant species which are 
unable to maintain nonresident soil fungal populations, but maintain resident soil 
fungal populations. These phenomena occur largely due to root exudates. In vitro-
generated root exudates applied to the soil fungi show similar results to that of 
plants growing in same soil (Yanhong et al.  2009 ).    
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2.2     Rhizosphere Soil Microbes 

 Someone has rightly said that rhizosphere microorganisms have two faces like 
Janus, the Roman god of doors and gates who symbolizes changes and transi-
tions from one condition to another (one part of the face looks at the plant roots 
and the other at the soil; the ears and nose sense other gods, and the mouth is 
wide open for swallowing). It is also well established that soil is a good medium 
for plants and microbes, but the plants and their associated microbes help in 
genesis and weathering of soil (Pate et al.  2001 ; Pate and Verboom  2009 ; Taylor 
et al.  2009 ; Pausch et al.  2013 ). Soil formation occurs due to weathering process 
which primarily occurs due to soil microbes (Raven and Edwards  2001 ; Beerling 
and Berner  2005 ; Taylor et al.  2009 ). The soil microfl ora includes bacteria, 
fungi, actinomycetes, protozoa, and algae (Raaijmakers and Weller  2001 ; Singh 
et al.  2007 ; Grayston et al.  1998 ; Broeckling et al.  2008 ). Recently the nucleic 
acid analysis revealed enormous diversity in the soil (Nannipieri et al.  2003 a, b; 
Suzuki et al.  2006 ). 

2.2.1     Microorganisms and Their Mode of Action 

 The soil microbes can generally be divided into benefi cial, harmful, and neutral 
microbes. The benefi cial soil microbes can further be divided into three categories. 
The fi rst  category helps in nutrient supply (Ma et al.  2003 ; Robin et al.  2008 ; 
Michaud et al.  2008 ). The second group includes those that stimulate plant growth 
by suppressing activity of phytopathogens. The third group of microbes directly 
promotes growth of plants by secreting phytohormones (Welbaum et al.  2004 ; 
Brimecombe et al.  2007 ) (Fig.  3 ).

2.2.2        Nutrient Availability and Plant Growth Promotion 

 The most population in the rhizosphere is occupied by the bacteria. Those rhizosphere 
bacteria which enhance plant growth are called plant growth-promoting rhizobacteria 
(PGPR) (Kloepper JW Schroth  1978 ; Lucy et al.  2004 ). The most dynamic function of 
PGPR is secretion of phytohormones. A diverse group of PGPR are inoculated on the 
crops which include  Azospirillum  (Cassan and Garcia  2008 ),  Bacillus  (Jacobsen et al. 
 2004 ),  Pseudomonas  (Loper and Gross  2007 ),  Rhizobium  (Long  2001 ),  Serretia  (De 
Vleeschauwer and Hofte  2007 ),  Stenotrophomonas  (Ryan et al.  2009 ), and  Streptomyces  
(Schrey and Tarkka  2008 ). Some fungi belonging to genera  Ampelomyces ,  Coniothyrium , 
and  Trichoderma  have also benefi cial effects (Harman et al.  2004 ). The mode of action 
of PGPR involves complex mechanism which promotes plant growth, development, and 
protection. The most versatile functions of PGPR are biofertilization, phytostimulation, 
and biocontrol (Morgan et al.  2005 ; Muller et al.  2009 ; Chet and Chernin  2002 ). The 
success of plant-microbe interaction depends on colonization (Lugtenberg et al.  2002 ; 
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Kamilova et al.  2005 ). The steps of colonization include attraction, recognition, adher-
ence, invasion, colonization, and growth (Pinton et al.  2007 ; Berg  2009 ). 

 Plant growth in the agriculture is enhanced by certain abiotic and biotic fac-
tors. The abiotic factors comprise light, temperature, water, and air. The biotic 
factors include PGPR which help in plant growth by secreting enzymes (Lynch 
 1990 ; Marilley and Aragno  1999 ; Garcia et al.  2001 ). Interestingly the inocula-
tion of PGPR increases the crop yield and plant growth (Farzana et al.  2009 ). 
Some plant growth-promoting rhizobacteria have more than one trait (Joseph 
et al.  2007 ; Yasmin et al.  2007 ; Egamberdiyeva  2007 ). These PGPR release 
volatile compounds like 2,3-butanediol and acetoin that help in growth and 
development of Arabidopsis thaliana (Ryu et al.  2003 ). There have also been 
reports that diazotrophical bacterial application in the soil increases crop yield, 
plant height, and microbial population in the soil (Anjum et al.  2007 ). Due to 
certain combination of PGPR, carbohydrates, and IBA (double and triple com-
binations), there occurs increased rooting capacity of apple (Karakurt et al. 
 2009 ). PGPR are the most effective model organism that can replace pesticides 
and other harmful supplements which cause soil and environmental pollutions. 
These PGPR also act as biofertilizers and bioenhancers and reduce use of 
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  Fig. 3    Shows role of rhizosphere microbial community and its harmful and benefi cial effects       
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chemical fertilizers (Ashrafuzzaman et al.  2009 ). Utilization of PGPR with 
alternative use of chemical fertilizers reduces pollution, preserves environ-
ment, and increases agricultural productivity (Ştefa et al.  2008 ). Combination 
of PGPR and arbuscular mycorrhizal fungi enhances nutrient use efficiency of 
plants and allows low rate of application of fertilizers (Adesemoye et al.  2009 ; 
Tanvir et al.  2015 ). The bacteria and archaea are responsible for biological 
nitrogen fixation. These include symbiotic nitrogen fixers like rhizobium, 
which are obligate symbionts in legume plants and  Frankia  in nonleguminous 
plants and certain free- living forms like cyanobacteria, azospirillum, azoto-
bacter, and diazotroph.  

2.2.3     Pathogen Inhibition 

 Soil microbes live around plant roots and feed on root secretions and dead 
root cells. Root colonization not only results in high plant growth-promoting 
rhizobacterial population densities but also functions as antagonistic metabo-
lites (Shoda  2000 ; Raaijmakers et al.  2002 ). The different mechanisms 
involved are antibiosis, parasitism, and induced systemic resistance. 
Antibiosis is the phenomenon where microbial growth gets inhibited by dif-
ferent compounds like antibiotics, toxins, biosurfactants, and volatile organic 
compounds. Parasitism is the phenomenon where cell wall-degrading 
enzymes such as chitinase and β-1,3-glucanase are secreted which degrade 
cell wall (Compant et al.  2005 ; Haas and Defago  2005 ). A wide range of 
antifungal metabolites such as zwittermicin-A, kanosamine, and lipopeptides 
are secreted by  Bacillus subtilis.  These antifungal metabolites include surfac-
tin, iturin, and fengycin families (Emmert and Handelsman  1999 ; Ongena 
and Thonart  2006 ). Competition for the carbon source of energy is responsi-
ble for fungi inhibition by reducing fungal spore germination (Chin et al. 
 2003 ; Alabouvette et al.  2006 ). Another mechanism of pathogen inhibition is 
induced resistance. The induced resistance involves the use of beneficial bac-
teria that not only reduces the activity of pathogenic microorganisms through 
antagonism but also stimulates plant defense mechanism (Shoda  2000 ; 
VanLoon  2007 ). In some instances, the mechanism of induced systemic resis-
tance coincides with systemic acquired resistance. Both induced systemic 
resistance and systemic acquired resistance enhance the resistance of plant 
which depends on signaling compounds like ethylene, jasmonic acid, and 
salicylic acid (VanLoon  2007 ).  

2.2.4     Rhizosphere Effect 

 The rhizosphere effect is determined by dividing the number of microorganisms per gram 
of rhizosphere soil by the number of microorganisms in a gram of control soil (Wasaki 
et al.  2005 ; Herman et al.  2006 ). The rhizosphere effect greatly reduces as we move away 
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from roots. For bacteria and fungi, R:S value ranges from 5 to 20. Actinomycetes is a less 
effected group of soil microorganisms having R:S effect of 2–12 (Curl and Truelove 
 1986 ; Foster  1986 ; Lynch  1990 ; Rovira  1991 ; Pinton et al.  2001a ,  b ; Whipps  2001 ).    

3     Quorum Sensing: The Bacterial Communication 

 “Quorum sensing” (QS) is the communication of bacteria which includes cell density. 
It is cell-to-cell communication. The bacterial quorum sensing occurs by the binding 
of signals with their receptor proteins. When binding occurs, it regulates gene expres-
sion in response to cell density (Gonzalez and Marketon  2003 ; Hong et al.  2012 ). The 
signaling molecules involved in quorum sensing are called autoinducers. These auto-
inducers are synthesized at particular stage of life cycle or may be synthesized for 
stimulating response, once the signaling molecule has reached at a particular concen-
tration (Gonzalez and Marketon  2003 ). The quorum sensing is a cell density level: 
once a particular cell density is achieved, the concentration of quorum-sensing signals 
becomes enough to induce gene expression, either directly through transcriptional 
regulator or indirectly by signaling cascade activation (Fuqua et al.  2001 ).  N -acyl 
homoserine lactone (AHL) is the most studied quorum- sensing signal molecule 
(Williams et al.  2007 ). AHL signals are highly preserved in nature having same homo-
serine lactone moiety, but differ in length and structure of acyl side chain. The 
 N -acylated side chains have fatty acids. These chains have varying degrees of satura-
tion, different chain lengths (4–18 carbons), and presence of different groups (hydroxy, 
oxo-, or no substituent at the C3 position) (Swift et al.  1997 ; Schuster et al.  2013 ). 
LuxI synthase gene using intermediate of fatty acid biosynthesis and  S -adenosyl 
methionine synthesizes AHL molecules. The AHL molecules will incorporate LuxR 
protein and regulate downstream gene expression. Each LuxR protein is specifi c for 
its AHL signal molecules (Parsek and Greenberg  2000 ). AHL regulates many target 
genes, but basic mechanism of gene regulation and AHL biosynthesis seem to be 
specifi c in quorum-sensing bacterial species (Dong et al.  2002 ). QS mechanism with 
LuxI/LuxR signal molecules in  Agrobacterium tumefaciens  causes crown gall disease 
of plants.  Agrobacterium tumefaciens  with tumor-derived opines and transcriptional 
factor OccR or AccR regulate gene expression of LuxR homologue TraR (Oger et al. 
 1998 ; Zhu and Winans  1988 ).  Pseudomonas aeruginosa  uses LasI/R and RhlI/R to 
promote regulation and expression of virulence factors and biofi lm formation 
(Glessner et al.  1999 ). Another class of homoserine lactone known as  p -coumaroyl-
homoserine lactone (pC-HSL) has been discovered to be produced by the bacteria 
 Rhodopseudomonas palustris . The intracellular fatty acid is not used as precursor in 
the synthesis of pC-HSL molecules, and synthesis occurs due to RpaI and LuxI by 
using environmental  p -coumaric acid (Schaefer et al.  2008 ). Many bacteria use QS to 
gain maximal competition advantages, and to measure the advantages of QS some 
organisms use quorum quenching (QQ) (Lin et al.  2003 ; Rodolfo et al.  2015 ). This QS 
widely occurs in prokaryotes and eukaryotes and plays an important role in pathogen-
host and microbial interactions (Dong et al.  2002 ).  
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4     Conclusion 

 In this chapter, we discussed an overview of ecology of various organisms and the root 
exudates. Various microorganisms are present in the rhizosphere, and they form a com-
plex community which is connected with each other and with the external environment. 
The genetic and functional diversity of soil microbes is very important for both plant and 
soil health. The major challenge ahead of rhizosphere is the discovery of new signaling 
molecules that occur between different organisms; these discoveries are very important 
to enhance our knowledge to deal with the new pest and disease problems in the sustain-
able manner. There also occurs challenges to adopt new crops and cropping systems 
which absorb most of the nutrients from soil particularly nitrogen and phosphorus 
because our phosphorus sources are getting diminished. Today rhizosphere is consid-
ered a new research fi eld with many exciting challenges. These challenges can be both 
fundamental and applied. There are some major developments in biogeochemistry and 
ecology of rhizosphere which need a global consideration. In symbiotic association, a 
great achievement has been made, but there still occurs a great lacuna of knowledge in 
other biological interactions. Rhizodeposition is considered the central concept in rhizo-
sphere ecosystem and beyond rhizosphere ecology. Rhizodeposition is very important 
for terrestrial ecosystem biodiversity and functioning. In rhizosphere studying of gene 
expression is used for understanding certain processes like inducing microbial activity, 
biological control, nutrient competition, and certain molecular interactions between 
roots and roots and roots and microorganisms. Some techniques have been developed to 
characterize m-RNA (Nannipieri et al.  2003 a, b), but soil proteomics is still not so devel-
oped (Nannipieri  2006 ; Ogunseitan  2006 ). Stable isotope probe (SIP) has also been used 
in understanding functional activity and community structure in soil (Radajewski et al. 
 2000 ; Manefi eld et al.  2006 ). Labeled root exudate compounds and monitoring micro-
organisms of rhizosphere also involve the use of stable isotope compounds (Manefi eld 
et al.  2006 ). At single cell level, reporter technology is to be used to assess functions of 
rhizosphere soil including gene expression (Sorensen and Nybroe  2006 ). The increasing 
knowledge of the promoter, regulator, and reporter gene insertion techniques shall allow 
use of reporter gene technology for regulation, expression, and induction of any gene in 
rhizosphere. The methodological improvement of new technology will allow designing 
of new reporter bacteria to respond to specifi c root exudates.     
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