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I. Introduction

Fungi may be exposed to a wide variety
of organic and inorganic pollutants in the envi-
ronment. Since fungi play a major role in
carbon, nitrogen, phosphorus and other bio-
geochemical cycles (Wainwright 1988a, b;
Gadd 2006, 2007, 2008a, b, 2011), impairment
of fungal activity could have important conse-
quences for ecosystem function. It is obviously
desirable that more is known about the impact
of pollutants on these organisms. Unfortu-
nately, while it is easy to speculate on the likely
effects of pollutants on fungi, it is often far
more difficult to demonstrate such effects.
Studies on pollutant effects on fungal popula-
tions are difficult, largely because of the inade-
quacy of many of the techniques which are
available to study fungi and the complexity of
mixed microbial communities (Anders and
Domsch 1975; States 1981; Doelman 1985;
Gadd et al. 2007). However, an appreciation of
the effects which pollutants can have on fungi
can be obtained by a combination of the follow-
ing measurements: (1) pollutant concentration,
composition and distribution, (2) pollutant
bioavailability, (3) pollutant concentrations
that cause a toxic or physiological response
in vitro, (4) effects of the pollutant on fungal
population/community size and composition
and (5) secondary changes resulting from pol-
lution effects on fungal populations, e.g. impact
on leaf litter decomposition. While pollutant
concentration and composition may be deter-
mined using standard analytical techniques,
with varying degrees of difficulty depending
on the pollutant and the environmental matrix,

1Geomicrobiology Group, School of Life Sciences, University

of Dundee, Dundee DD1 5EH, UK; e-mail: g.m.gadd@dundee.

ac.uk
2Laboratory of Environmental Pollution and

Bioremediation, Xinjiang Institute of Ecology and Geography,
Chinese Academy of Sciences, Urumqi 830011, People’s

Republic of China

Environmental and Microbial Relationships,
3rd Edition, The Mycota IV
I.S. Druzhinina and C.P. Kubicek (Eds.)
© Springer International Publishing Switzerland 2016

mailto:g.m.gadd@dundee.ac.uk
mailto:g.m.gadd@dundee.ac.uk


the analysis of pollutant speciation and the bio-
availability remain challenging problems.

The effect of pollutants on fungal popula-
tion/community size and composition is par-
ticularly difficult to assess. Many earlier studies
used the dilution plate count or similar
approaches to assess changes in fungal commu-
nity composition. The shortcomings of this
technique have been criticised at length and
are well known. To overcome problems relating
to the use of plate counts, biomarkers such as
phospholipid fatty acid (PLFA) composition
and extraction and analysis of DNA are now
routinely used, though no methods are exempt
from problems (Gadd et al. 2007). Another
problem is that it is unlikely that a meaningful
picture of how fungi respond to pollutants in
the environment can be gained from determin-
ing responses to pollutants added to solid or
liquid growth media in laboratory experiments.
The effects of toxic metals on soil fungi growing
in vitro, for example, are markedly influenced
by the composition of the medium used: metals
are likely to be more toxic to fungi in low-
carbon media than in carbon-rich media
where the production of large amounts of extra-
cellular polysaccharides and chemical interac-
tions with the medium will tend to reduce metal
availability. Medium components may also
complex or precipitate metals out of the solu-
tion, making them unavailable (Gadd and Grif-
fiths 1978; Hughes and Poole 1991; Gadd 1992).
Finally, interactions between different pollu-
tants and their breakdown products may have
a major influence on the toxicity of a pollutant
in the natural environment. This chapter will
outline some of the main effects of organic and
inorganic pollutants on fungi and will include
the discussion of effects at cellular and commu-
nity levels and their applied and environmental
significance.

II. Predicted Effects of Pollutants
on Fungal Populations

Environmental pollution might be expected to
lead to both toxic (destructive) and enrichment
disturbances on fungal populations (Wain-

wright 1988b). Although toxic disturbance is
likely to predominate, instances will occur
where both types of disturbance are found
together. Toxic disturbance of fungal popula-
tions is likely to be particularly damaging to
ecosystem function, while the rarer enrichment
disturbance may occasionally produce beneficial
effects on soil processes. Toxic disturbance is
likely to lead to a reduction in fungal numbers
and species diversity, as well as biomass and
activity changes which may detrimentally influ-
ence fundamentally important processes such as
litter decomposition (Freedman and Hutchin-
son 1980; Hiroki 1992; Fritze and Baath 1993).
The resultant degree of toxic disturbance will
depend upon both toxicant concentration and
its availability to the fungal population, as well
as to the susceptibility of the individuals
involved. Toxicants may be selective and affect
only a few species, or they may have a more
generalised effect. Selective inhibition may have
less of an impact on overall soil fungal activity
than might be imagined, since susceptible spe-
cies can be replaced by more resistant fungi,
some of which may be more active in a given
physiological process than the original popula-
tion. While concentration effects are generally
emphasised, it is surprising how often the ques-
tion of toxicant bioavailability is avoided in
studies on the effects of pollutants on microor-
ganisms. In soils, for example, bioavailability of
a pollutant will generally depend upon factors
such as (1) adsorption to organic and inorganic
matter, (2) chemical speciation, (3) microbial
transformation and/or degradation and (4)
leaching. Another factor of importance in rela-
tion to the effects of toxicants on soil fungi con-
cerns nutrient availability. Fungi are generally
thought to be already stressed by the low levels
of available carbon present in most soils and
other environments (Wainwright 1992). They
will grow slowly, if at all, under these conditions
and may be more susceptible to pollutants than
when growing in high-nutrient conditions.

Fungal populations are unlikely to remain
static when confronted with a toxic agent, and
resistant populations are likely to develop
which will be a major factor in determining
population responses to the pollutant. On the
other hand, a number of studies have shown
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that fungi isolated from metal-contaminated
soils show less adaptation to toxic metals,
such as copper, than might be expected (Yama-
moto et al. 1985; Arnebrant et al. 1987). Mowll
and Gadd (1985) also found no differences in
the sensitivity of Aureobasidium pullulans to
lead when isolates from either contaminated
or uncontaminated phylloplanes were com-
pared.

Enrichment disturbances may also be
either selective or nonselective. Nonselective
enrichment disturbance might theoretically
result from the input into the ecosystem of a
pollutant which is widely used as a nutrient
source. Since such enrichment is rare, most
examples of this form of disturbance will be
selective. Reduced forms of sulphur are, for
example, likely to enrich the soil for S-oxidising
fungi, while phenolics and hydrocarbons may
favour species capable of utilising these com-
pounds.

III. Fungi and Xenobiotics

Some fungi have remarkable degradative prop-
erties, and lignin-degrading white rot fungi,
such as Phanerochaete chrysosporium, can
degrade several xenobiotics including aromatic
hydrocarbons, chlorinated organics, poly-
chlorinated biphenyls, nitrogen-containing
aromatics, and many other pesticides, dyes,
and xenobiotics (Prenafeta-Boldú et al. 2006;
Pinedo-Rilla et al. 2009; Cerniglia and Suther-
land 2010; Harms et al. 2011). Such activities
are of bioremedial potential where ligninolytic
fungi have been used to treat soil contaminated
with pentachlorophenol (PCP) and polynuclear
aromatic hydrocarbons (PAHs). In general,
treatment involves inoculation of the contami-
nated soil followed by nutrient addition, irriga-
tion and aeration and maintenance by general
land farming procedures. Correct preparation
of the fungal inoculum can be crucial: fungi
may be grown on lignocellulosic substrates
prior to introduction into the soil (Singleton
2001; Baldrian 2008). Treatment can take
weeks to months or longer depending on the
level of contamination and environmental fac-

tors. In many cases, xenobiotic-transforming
fungi need additional utilisable carbon sources
because although capable of degradation, they
cannot utilise these substrates as an energy
source for growth. Therefore inexpensive utili-
sable lignocellulosic wastes such as corn cobs,
straw and sawdust can be used as nutrients for
enhanced pollutant degradation (Reddy and
Mathew 2001). Wood rotting and other fungi
are also receiving attention for the decolorisa-
tion of dyes and industrial effluents and various
agricultural wastes such as forestry, pulp and
paper by-products, sugarcane bagasse, coffee
pulp, sugar beet pulp, apple and tomato pulp
and cyanide (Knapp et al. 2001; Barclay and
Knowles 2001; Cohen and Hadar 2001).

Most pollutant degraders belong to the
phyla Ascomycota and Basidiomycota, followed
by the subphylum Mucoromycotina (Harms
et al. 2011). Some genera with well-known
degradative properties include species of Cla-
dophialophora, Exophiala, Aspergillus, Penicil-
lium, Cordyceps, Fusarium, Pseudallescheria,
Acremonium, Neurospora, Graphium and
Phoma with degradable substrates including
aliphatic hydrocarbons, chlorophenols, polycy-
clic aromatic hydrocarbons (PAHs), pesticides,
dyes, 2,4,6-trinitrotoluene (TNT), polychlori-
nated dibenzo-p-dioxins (PCDDs), Royal
Demolition Explosive (RDX) and methyl
tert-butyl ether (MTBE) (Chang 2008).
Yeasts include degraders of n-alkanes,
n-alkylbenzenes, crude oil, the endocrine-
disrupting chemical (EDC) nonylphenol,
PAHs and TNT, e.g. Candida, Kluyveromyces,
Pichia, Saccharomyces and Yarrowia spp.
(Harms et al. 2011). In the Mucoromycotina,
Cunninghamella, Mucor and Rhizopus spp.
(Mucorales) include degraders of PAHs, pesti-
cides, textile dyes and TNT (Harms et al. 2011).
Mycorrhizal fungi are also able to degrade vari-
ous organic pollutants, e.g. chloroaromatics,
PAHs, TNT, certain herbicides and atrazine
(Meharg and Cairney 2000a, b; Volante et al.
2005; Harms et al. 2011). The low specificity of
many fungal degradative enzymes means that
producing organisms can co-metabolise many
different compounds. Phanerochaete chrysos-
porium, for example, can degrade benzene,
toluene, ethylbenzene and xylene (BTEX) com-
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pounds, nitroaromatic and N-heterocyclic
explosives (TNT and RDX, respectively), orga-
nochlorines (chloroaliphatics, chlorolignols,
chlorophenols, polychlorinated biphenyls and
PCDDs), PAHs, pesticides, synthetic dyes and
synthetic polymers (Asgher et al. 2008; Baldrian
2008). The range of oxidoreductases that can
degrade organic compounds includes laccases,
tyrosinases and peroxidases (Majeau et al.
2010). Other enzymes include mixed function
cytochrome P450 oxidases, transferases, aro-
matic nitroreductases and quinone reductases
(Harms et al. 2011).

Polycyclic aromatic hydrocarbons (PAHs)
enter the environment via many routes, includ-
ing fossil fuel combustion, vehicle exhaust
emissions, gas and coal tar manufacture, wood
preservation processes and waste incineration
(Harvey 1997; Pozzoli et al. 2004). Many PAHs
are toxic towards microorganisms, plants and
animals, and PAHs of low molecular weight and
high water solubility are the most toxic (Cerni-
glia and Sutherland 2006). PAHs disappear rel-
atively slowly in the environment through
physical, chemical and biological processes,
some of which are mediated by bacteria and
fungi. PAH recalcitrance in soils and sediments
increases with molecular weight, but several
other physicochemical and biological factors
can contribute to this, e.g. lack of PAH-
degrading microorganisms, nutrient deficiency,
low bioavailability, preferential utilisation of
more easily degradable substrates, the presence
of other toxic pollutants or breakdown of pro-
ducts (Cerniglia and Sutherland 2006). Other
related factors that affect PAH biodegradation
in soil include soil type, pH, temperature, oxy-
gen concentration, irradiation as well as the
solubility, volatility, and sorption properties of
the PAHs (Lehto et al. 2003; Huesemann et al.
2003; Rasmussen and Olsen 2004). Bioremedia-
tion by mixed communities may be enhanced
by bacteria that produce degradative enzymes
as well as biosurfactants (Straube et al. 1999;
Cameotra and Bollag 2003). Aerobic biodegra-
dation of PAHs by soil microorganisms uses
monooxygenase, peroxidase and dioxygenase
pathways; the first and third of these pathways
are utilised by bacteria, while the first and sec-
ond are found in fungi. The use of filamentous

fungi may be advantageous when translocation
of the pollutant through the mycelium is
required for detoxification (Harms et al. 2011).
Fungi have also been shown to stimulate
organic pollutant degradation by bacteria in
the soil when the hyphae act as continuous
pathways for motile bacteria, bridging pore
spaces and soil aggregates and thereby facilitat-
ing movement and pollutant degradation by the
bacteria (Kohlmeier et al. 2005; Wick et al.
2007, 2010; Banitz et al. 2011).

Many fungi can metabolise PAHs (Cerniglia
and Sutherland 2001, 2006, 2010; Sutherland
2004; Verdin et al. 2004). Since fungi cannot
generally use PAHs as the sole carbon and
energy source (Cerniglia and Sutherland
2001), they must be supplied with nutrients to
allow co-metabolism. A small number of yeasts
and filamentous fungi have been reported to
use some PAHs, including anthracene, phenan-
threne, pyrene and benzo[a]pyrene, as carbon
and energy sources (Romero et al. 2002; Lahav
et al. 2002; Saraswathy and Hallberg 2002;
Veignie et al. 2004). Some fungi co-metabolise
PAHs to trans-dihydrodiols, phenols, qui-
nones, dihydrodiol epoxides and tetraols, but
seldom degrade them completely to CO2 (Casil-
las et al. 1996; Cajthaml et al. 2002; da Silva et al.
2003).

The transformation of PAHs by ligninoly-
tic, wood-decaying fungi involves several
different enzymes (Asgher et al. 2008). The
enzymes produced by white-rot fungi that are
involved in PAH degradation include lignin
peroxidase, manganese peroxidase, laccase,
cytochrome P450 and epoxide hydrolase
(Haemmerli et al. 1986; Bezalel et al. 1996; Cer-
niglia and Sutherland 2006). Ligninolytic fungi
metabolise PAHs via reactions involving reac-
tive oxygen species to phenols and quinones
(Pickard et al. 1999; Steffen et al. 2003), and
these may be further degraded by ring-fission
enzymes (Cerniglia and Sutherland 2006).

Several wood-decaying fungi, e.g. Bjerkan-
dera, Coriolopsis, Irpex, Phanerochaete, Pleur-
ous and Trametes spp., have been investigated
for bioremediation of PAH-contaminated soils
(Baldrian et al. 2000; Novotný et al. 2000; Cer-
niglia and Sutherland 2006; Baldrian 2008).
Laboratory trials have demonstrated their abil-
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ity to degrade complex mixtures of PAHs, such
as those in creosote and coal tar, but actual
bioremediation of contaminated soils using
these fungi has met with varying success
(Canet et al. 2001; Cerniglia and Sutherland
2001; Pointing 2001; Hestbjerg et al. 2003).
Non-ligninolytic fungi, including Cunningha-
mella, Mucor, Fusarium and Penicillium spp.,
have also been considered for PAH bioremedi-
ation (Colombo et al. 1996; Pinto and Moore
2000; Ravelet et al. 2001; Saraswathy and Hall-
berg 2002).

Biodegradation may require the presence of
mixed bacterial and fungal communities,
although less is known about the pathways of
PAH degradation by co-cultures (Juhasz and
Naidu 2000). The evolution of 14CO2 from

14C-
phenanthrene in soil was enhanced almost two-
fold (from 19.5 % to 37.7 %) when P. chrysos-
porium was added to the indigenous soil
microflora (Brodkorb and Legge 1992).
Boonchan et al. (2000) combined Penicillium
janthinellum with either Stenotrophomonas
maltophilia or an unidentified bacterial consor-
tium. The fungus could partially degrade pyr-
ene and benzo[a]pyrene but could not use
either as a carbon source; S. maltophilia could
use pyrene as a carbon source and co-
metabolise benzo[a]pyrene. The fungal–bacte-
rial combinations grew on pyrene, chrysene,
benz[a]anthracene, benzo[a]pyrene and
dibenz[ah]anthracene, converting 25 % of the
benzo[a]pyrene to CO2 in 49 days. The white-
rot fungus P. ostreatus and the brown-rot fun-
gus Antrodia vaillantii enhanced the degrada-
tion of fluorene, phenanthrene, pyrene and
benz[a]anthracene in artificially contaminated
soils (Andersson et al. 2003). Unlike P. ostrea-
tus, which inhibited the growth of indigenous
soil microorganisms, A. vaillantii stimulated
soil microbial activity.

Ligninolytic fungi partially oxidise PAHs by
reactions involving extracellular free radicals
(Majcherczyk and Johannes 2000), making the
PAHs more water soluble so that they are able
to serve as substrates for bacterial degradation
(Meulenberg et al. 1997). Partial oxidation
increases PAH bioavailability in most contami-
nated sites (Mueller et al. 1996; Meulenberg
et al. 1997), and PAH-contaminated soils may

contain large populations of PAH-transforming
bacteria (Johnsen et al. 2002) and fungi (April
et al. 2000; Saraswathy and Hallberg 2002).
Combinations of several microorganisms are
usually better able to degrade benzo[a]pyrene
and other high-molecular-weight PAHs than
pure cultures (Kanaly et al. 2000).

IV. Effects of Acid Rain and Airborne
Pollutants on Fungal Populations

Although acid rain is generally regarded as a
long-range pollution phenomenon, high con-
centrations of mineral acids will pollute ecosys-
tems close to point source emissions (Helander
et al. 1993). Acid rain effects will also impinge
on the availability and effects of other pollu-
tants such as toxic metals, which may accom-
pany atmospheric dispersal and/or be released
from soil components as a result of increased
acidity (Wainwright et al. 1982; Tabatabai 1985;
Francis 1986; Persson et al. 1989). Baath et al.
(1984) showed that soil biological activity, as
determined by respiration rate, was signifi-
cantly reduced following treatment with
simulated acid rain. Mycelial lengths (FDA
active) were also reduced by the treatment,
while plate counts showed no response. Fritze
(1987), on the other hand, showed that urban
air pollution had no effect on the total length of
fungal hyphae in the surface horizons of soils
supporting Norway spruce (Picea abies). Bew-
ley and Parkinson (1985) showed that the con-
tribution which fungi make to the total
respiration of a soil was reduced by acid rain,
while, in contrast, Roberts et al. (1980) con-
cluded that the addition of acid rain to forest
soils did not affect the normal 9:1 balance of
fungal to bacterial respiration. These studies
clearly illustrate how difficult it is to generalise
about the effects of atmospheric pollutants on
soil microorganisms. Among higher fungi,
simulated acid rain has been shown to increase
the dominance of some ectomycorrhizal fungi,
while decreasing species diversity among sap-
rophytic species (Sastad and Jensenn 1993).
Shaw et al. (1992) also showed that fumigation
with sulphur dioxide or ozone had no effect on
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mycorrhizal populations. Acid treatments have
been shown to impair the decomposition of
both deciduous leaves and conifer needles
(Baath et al. 1984; Prescott and Parkinson
1985). Small-scale inhibitory effects were com-
mon, although stimulatory effects were also
observed. Pollution in the form of alkaline
dust from iron and steel works was shown to
lead to a doubling of the total length of fungal
hyphae (Fritze 1987, 1991).

The measurement of leaf litter and cellulose
decomposition provides a means of assessing
the impact of atmospheric pollutants on soils.
However, in the absence of a means of parti-
tioning the relative impact of the toxicants on
fungi, bacteria and soil animals, such methods
provide only a measure of the effects of the
pollutants on the total soil community. Atmo-
spheric pollutants from coking works can, for
example, reduce populations of soil microar-
thropods, a response which retards the rate of
litter decomposition in deciduous woodland
soils (Killham and Wainwright 1981).

Few examples of the effects of enrichment
disturbance by air pollutants on fungal popula-
tions can be found in the literature. However,
some fungi have been reported to utilise atmo-
spheric pollution deposits from coking works
as a nutrient source, as well as being able to
oxidise the reduced sulphur which these parti-
cles contain (Killham and Wainwright 1982,
1984).

V. Effects of Toxic Metals on Fungi

The ability of fungi to survive in the presence of
potentially toxic metals depends on a number of
biochemical and structural properties, includ-
ing physiological and/or genetical adaptation,
morphological changes and environmental
modification of the metal in relation to the spe-
ciation, availability and toxicity (Fig. 5.1) (Gadd
and Griffiths 1978; Turnau 1991; Gadd 1992,
2007). Terms such as resistance and tolerance
are often used interchangeably in the literature,
and may be arbitrarily based on the ability to
grown on a certain metal concentration in labo-
ratory media (Tatsuyama et al. 1975; Williams

and Pugh 1975; Baath 1991; Gadd 1992). ‘Resis-
tance’ is probably more appropriately defined as
the ability of an organism to survive metal tox-
icity by means of a mechanism produced in
direct response to the metal species concerned,
the synthesis of metallothionein and g-glutamyl
peptides in response to Cu and Cd, respectively,
providing perhaps the best examples (Mehra
and Winge 1991). Metal tolerance may be
defined as the ability of an organism to survive
metal toxicity by means of intrinsic properties
and/or environmental modification of toxicity
(Gadd 1992). Intrinsic properties that can deter-
mine survival include possession of imperme-
able pigmented cell walls, extracellular
polysaccharide and metabolite excretion, espe-
cially where this leads to detoxification of the
metal species by binding or precipitation (Gadd
1993a). However such distinctions are often dif-
ficult to recognise because of the involvement in
fungal survival in response to metal toxicity of
several direct and indirect physicochemical and
biological mechanisms. Biological mechanisms
implicated in fungal survival (as distinct from
environmental modification of toxicity) include
extracellular precipitation; complexation and
crystallisation; the transformation of metal spe-
cies by, for example, oxidation, reduction,
methylation and dealkylation; biosorption to
cell walls, pigments and extracellular polysac-
charide; decreased transport or impermeability
and efflux; intracellular compartmentation;
and finally precipitation and/or sequestration
(Fig. 5.1) (Gadd and Griffiths 1978; Gadd 1990,
1992, 2007; Mehra and Winge 1991).

A. Effects of Metals on Fungal Populations

A range of fungi from all the major groups may
be found in metal-polluted habitats (Gadd
1993a, 2007, 2011). In general terms, toxic
metals may affect fungal populations by reduc-
ing abundance and species diversity and select-
ing for a resistant/tolerant population (Jordan
and Lechevalier 1975; Babich and Stotzky 1985;
Arnebrant et al. 1987). However, the effect of
toxic metals on microbial abundance in natural
habitats varies with the metal species and the
organism present and also depends on a variety
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of environmental factors making generalisa-
tions difficult (Gadd and Griffiths 1978).

General reductions in fungal ‘numbers’ (as
assessed by the dilution plate count in many
earlier studies) have often been noted in soils
polluted with Cu, Cd, Pb, As and Zn (Bewley
and Stotzky 1983; Babich and Stotzky 1985).
However, numerical estimates alone may pro-
vide little meaningful information unless possi-
ble changes in fungal groups and species are
considered, and the problems associated with
plate counting are in any case well known.
Frostegard et al. (1993) analysed the phospho-
lipid fatty acid (PLFA) composition of soil in
order to detect changes in the overall composi-
tion of the microbial community and provide
more reliable information on fungal popula-
tions than can be produced using plate counts.
Two soils were amended with Cd, Cu, Ni, Pb

and Zn and analysed after 6 months. PLFA
18:2o6 is regarded as an indicator of fungal
biomass, and this increased with increasing
metal contamination for all metals except Cu,
possibly reflecting the well-known mycotoxi-
city of Cu. However, in forest soils, such an
increase in PLFA 18:2o6 was not observed
because of masking by identical PLFAs derived
from plant material (Frostegard et al. 1993).

Several studies have shown that microbial
population responses to toxic metals are char-
acterised by shift from bacteria, including
streptomycetes, to fungi (Mineev et al. 1999;
Khan and Scullion 2002; Chander et al. 2001a,
b; Kostov and Van Cleemput 2001; Olayinka
and Babalola 2001). However, other studies
have shown a higher metal sensitivity of the
fungal component of the microbial biomass
(Pennanen et al. 1996). What seems clear is

Plants
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translocation to aerial parts

Industrial activities, deposition, waste, 
effluents

Nuclear discharges and accidents
Natural biogeochemical processes

Microbial leaching and solubilization 

Consumption by humans and other animals

Aerial deposition
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pH, anions, cations, soluble and insoluble 
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Fig. 5.1 Diagrammatic representation of the interac-
tions of toxic metals and radionuclides with fungi in
the terrestrial environment. The dotted line shows
direct effects of metal species on fungi; this may some-
times occur and is more likely for metal species, such as
Cs+, which are highly mobile. The release of metal/
radionuclide species from dead and decomposing ani-

mal and plant and microbial biomass is not shown but
will be an important part of metal cycling. Fungal roles
in metal solubilisation from naturally occurring sub-
strates and/or industrial materials are indicated (see
Burgstaller and Schinner 1993; Gadd 2007). For more
detailed information regarding physiological and cellu-
lar interactions, see Gadd (1993a, 2007, 2010)
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that all nutritional groups of fungi (sapro-
trophs, biotrophs and necrotrophs) can be
affected by toxic metals. Ruhling et al. (1984)
found that the soil respiration rate, fluorescein
diacetate (FDA) active mycelium and mycelial
standing crop were all reduced with increasing
copper concentration in soils proximal to a
brass mill. Nordgren et al. (1983, 1985) also
showed that fungal biomass and soil respiration
decreased by ~75 % along an increasing con-
centration gradient of metal pollution. A rela-
tive decrease in an indicator fatty acid for
arbuscular mycorrhizal fungi and an increase
for other fungi have been reported for zinc-
polluted soil (Kelly et al. 1999). Toxic metals
(Cd, Cr, Cu, Ni, Pb and Zn) led to a decrease in
the number of arbuscular mycorrhizal fungi
and low colonisation of plant roots and, as a
result, changes in mycorrhizal species diversity
(Del Val et al. 1999; Mozafar et al. 2002; Moy-
nahan et al. 2002). Toxic metals also reduce
plant root colonisation by ectomycorrhizal
fungi and ectomycorrhizal species composition
(Hartley et al. 1999; Markkola et al. 2002). The
most frequent soil saprotrophic microfungi
isolated from heavily metal-polluted habitats
in Argentina, the Czech Republic and Ukraine
were reported to be species of Penicillium,
Aspergillus, Trichoderma, Fusarium, Rhizopus
and Mucor, as well as Paecilomyces lilacinus,
Nectria invertum, Cladosporium cladospor-
ioides, Alternaria alternata and Phoma fimeti
(Kubatova et al. 2002; Massaccesi et al. 2002;
Fomina, Manichev, Kadoshnikov and Nako-
nechnaya, unpublished). Melanised fungi,
such as Cladosporium sp., Alternaria alternata
and Aureobasidium pullulans, were often
isolated from soil containing high concentra-
tions of copper and mercury (Zhdanova et al.
1986) and can be dominant members of the
mycoflora of metal-contaminated phylloplanes
(Mowll and Gadd 1985). Dark septate endo-
phytes were found to be dominant fungi
among isolates from roots of Erica herbacea L.
in Pb-, Cd-, and Zn-polluted soil (Cevnik et al.
2000).

Metal pollution of plant surfaces is wide-
spread, but many filamentous and polymorphic
fungi appear to be little affected (Smith 1977;
Bewley 1979, 1980; Bewley and Campbell 1980;
Mowll and Gadd 1985). On polluted oak leaves,

Aureobasidium pullulans and Cladosporium
species were the most numerous organisms
(Bewley 1980). In fact, numbers of A. pullulans
showed a good positive correlation with lead,
whether derived from industrial or vehicular
sources, and this fungus was frequently the
dominant microorganism present (Bewley and
Campbell 1980; Mowll and Gadd 1985).

In conclusion, elevated concentrations of
toxic metals can affect both the qualitative and
quantitative compositions of fungal popula-
tions although it is often extremely difficult to
separate their effects from those of other envi-
ronmental pollutants. It is apparent that certain
fungi can exhibit considerable tolerance
towards toxic metals and can become dominant
microorganisms in some polluted habitats.
However, while species diversity may be
reduced in certain cases, resistance/tolerance
can be exhibited by fungi from both polluted
and nonpolluted habitats. Physicochemical
properties of the environment, including
changes associated with the metal pollution,
may also influence metal toxicity and thereby
affect species composition (Gadd 1984, 1992,
1993a; Baath 1989).

B. Morphological and Growth Responses
to Toxic Metals

Effects of toxic metals on fungal growth have
shown intra- and interspecific variability and
dependence on the metal species present (Gadd
1993a; Plaza et al. 1998). For T. virens and
Clonostachys rosea colonising spatially discrete
toxic metal-containing domains, colonisation
distance, hyphal extension rates and the effi-
cacy of carbon substrate utilisation decreased
with increasing concentrations of copper and
cadmium (Fomina et al. 2003). A decrease in
metal toxicity may be correlated with an
increase in available carbon source (Ramsay
et al. 1999; Fomina et al. 2003).

Several toxic metals can induce or acceler-
ate melanin production in fungi, leading to
blackening of colonies and chlamydospore
development (Gadd and Griffiths 1980). Chla-
mydospores and other melanised forms have
high biosorption capacities for metals, the
majority of metal remaining within the wall
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(Gadd 1984, 2009; Gadd and Mowll 1985; Gadd
et al. 1987; Gadd and de Rome 1988). In rhizo-
morphs of an Armillaria sp., the highest con-
centrations of metals were located on the
melanised outer surface (Rizzo et al. 1992).

Fungal morphology can be altered by toxic
metals, and changes in mycelial density and
morphology can occur (Darlington and Rauser
1988; Lilly et al. 1992; Jones and Muehlchen
1994; Gabriel et al. 1996; Baldrian and Gabriel
1997; Gardea-Torresdey et al. 1997; Ramsay
et al. 1999; Fomina et al. 2000, 2005b). Biomass
distribution within Trichoderma viride colonies
was altered by toxic metals, with biomass con-
centrated in the periphery of the colonies in the
presence of Cu and towards the interior of the
colonies in the presence of Cd (Ramsay et al.
1999; Gadd et al. 2001).

During growth of fungi in metal-containing
agar tiles simulating a spatially heterogeneous
distribution of metal concentrations and avail-
able nutritional resources, a range of morpho-
logical changes and growth responses occurred
including negative chemotropism, cessation of
growth, swelling and lysis of hyphal tips
(Fomina et al. 2003). Penetration of hyphae
into metal-containing domains was often fol-
lowed by the formation of very dense mycelia
or mycelial ‘bushes’ (Fomina et al. 2003). Such
hyphal aggregation could facilitate substrate
colonisation and the production of high local
concentrations of extracellularmetabolites such
as complexing agents (e.g. organic acids, side-
rophores, polyphenolic compounds), metal
precipitating agents (e.g. oxalate) and polysac-
charides and pigments with metal-binding abil-
ities (Gadd 1993a; Dutton and Evans 1996;
Baldrian 2003). Under poor nutritional condi-
tions, fungi often produced long sparsely
branched or branchless hyphae in toxic metal-
containing domains representing an explorative
growth strategy (Fomina et al. 2003). Some
fungi also exhibited multiple repeated ‘phase
shifts’ with a mixture of mycelial ‘bushes’ and
long branchless explorative hyphae (Fomina
et al. 2003). Further, microfungi-penetrating
metal-contaminated domains may form myce-
lial cords and synnema which may be atypical
for these fungi under normal conditions. The
production of synnema results in a wider sepa-

ration between the conidia and the substrate
than in non-synnematal colonies, and this may
aid dispersal as well as ensuring conidia forma-
tion away from the substrate toxicants (Newby
and Gadd 1987).

C. Mycorrhizal Responses Towards
Toxic Metals

Mycorrhizal fungi are involved in phosphate
solubilisation, proton-promoted and ligand-
promoted metal mobilisation from mineral
sources, metal immobilisation within biomass
and extracellular precipitation of mycogenic
metal oxalates (Fomina et al. 2004, 2005a; Fin-
lay et al. 2009; Gadd 2007, 2010, 2011). Plant
symbiotic mycorrhizal fungi can therefore
accumulate metals from soil components, and
this may have consequences for metal nutrition
of the symbiosis as well as increased or
decreased toxicity (Brown and Wilkins 1985a,
b; Jones and Hutchinson 1986, 1988a, b). Since
plants growing on metalliferous soils are gener-
ally mycorrhizal, an important ecological role
for the fungus has frequently been postulated
although such a role, e.g. phytoprotection, is
often difficult to confirm (Meharg and Cairney
2000a, b). Ericaceous plants appear to be
entirely dependent on the presence of ericoid
mycorrhizas for protection against copper, the
fungus preventing metal translocation to plant
shoots (Bradley et al. 1981, 1982). Arbuscular
mycorrhizas (AMs) from metal-contaminated
sites are often more metal tolerant to, for exam-
ple, Cd and Zn, than other isolates, suggesting a
benefit to the plant via increased metal resis-
tance, nutrient uptake, etc., though in some
instances, AM plants do not necessarily require
fungal colonisation for survival (Griffioen
1994). It is often postulated that mycorrhizas
provide a barrier to the uptake of potentially
toxic metals (Bradley et al. 1981, 1982; Wilkins
1991; Hetrick et al. 1994; Wilkinson and Dick-
inson 1995; Leyval et al. 1997; Meharg and
Cairney 2000a, b) though this has not been
confirmed in every case. Further, in some
instances, AM may mediate enhanced accumu-
lation of essential metals, which, unless regu-
lated, may lead to phytotoxicity (Killham and
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Firestone 1983). It is generally concluded that
local conditions in metal-contaminated sites
may determine the nature of the relationship
between the plant and the AM fungus, since
detrimental, neutral or beneficial interactions
have all been documented (Meharg and Cairney
2000a, b). For ericaceous mycorrhizas, clear
host protection is observed for host plants,
e.g. Calluna sp., Erica sp. and Vaccinium sp.,
growing on polluted and/or naturally metallif-
erous soils (Bradley et al. 1981, 1982). Further,
ericaceous plants are generally found on
nutrient-deficient soils, and it is likely the
mycorrhiza additionally benefits the plants by
enhanced nutrient uptake (Smith and Read
1997). A protective metal-binding effect of ecto-
mycorrhizal fungi (EcM) has been postulated
frequently (Denny and Wilkins 1987; Leyval
et al. 1997; Dixon and Buschena 1988; Colpaert
and Van Assche 1987, 1993). During growth,
mycorrhizal fungi often excrete low-molecu-
lar-weight carboxylic acids and siderophores
(Martino et al. 2003; Fomina et al. 2004). Eri-
coid mycorrhizal and ectomycorrhizal fungi
can dissolve a variety of cadmium, copper,
zinc and lead-bearing minerals including
metal phosphates (Leyval and Joner 2001; Mar-
tino et al. 2003; Fomina et al. 2004, 2005b).

D. Metal and Metalloid Transformations
by Fungi

Fungi can transform metals, metalloids (ele-
ments with properties intermediate between
those of metals and non-metals: the group
includes arsenic, selenium and tellurium) and
organometallic compounds by reduction,
methylation and dealkylation (Gadd 1993b,
2007). These are all processes of environmental
importance since the transformation of a metal
or metalloid may modify its mobility and toxic-
ity. For example, methylated selenium deriva-
tives are volatile and less toxic than inorganic
forms, while the reduction of metalloid oxya-
nions, such as selenite or tellurite to amorphous
elemental selenium or tellurium, respectively,
results in immobilisation and detoxification
(Thompson-Eagle and Frankenberger 1992;
Morley et al. 1996). The mechanisms by which
fungi (and other microorganisms) effect

changes in metal speciation and mobility are
important survival determinants as well as
components of biogeochemical cycles for
metals and many other elements including car-
bon, nitrogen, sulphur and phosphorus (Gadd
1999, 2004b, 2007, 2008c).

Metals and their compounds interact with
fungi in various ways depending on the metal
species, organism and environment, while fun-
gal metabolism also influences metal speciation
and mobility. Many metals are essential, e.g.
Na, K, Cu, Zn, Co, Ca, Mg, Mn and Fe, but all
can exert toxicity when present above certain
threshold concentrations (Gadd 1993a, b).
Other metals, e.g. Cs, Al, Cd, Hg and Pb, have
no known biological function, but all can be
accumulated by fungi (Gadd 1993b, 2001a, b).
Metal toxicity is greatly affected by environ-
mental conditions and the chemical behaviour
of the particular metal species in question.
Despite apparent toxicity, many fungi survive,
grow and flourish in apparently metal-polluted
locations, and a variety of mechanisms, both
active and incidental, contribute to tolerance.
Fungi have many properties which influence
metal toxicity including the production of
metal-binding peptides, organic and inorganic
precipitation, active transport and intracellular
compartmentalisation, while fungal cell walls
have significant metal-binding abilities (Gadd
and Griffiths 1978; Gadd 1993b, 2007; Fomina
and Gadd 2002). All the mechanisms by which
fungi (and other microorganisms) effect
changes in metal speciation and mobility are
survival determinants but also components of
biogeochemical cycles for metals and many
other associated elements including carbon,
nitrogen, sulphur and phosphorus (Gadd
2004a, b, 2006, 2007, 2008a; Gadd et al. 2005,
2007). These may be simply considered in
terms of metal mobilisation or immobilisation
mechanisms.

1. Metal Mobilisation

Metal mobilisation from solids, e.g. rocks,
minerals, soil, ash, mine spoil and other sub-
strates, can be achieved by chelation by
excreted metabolites and siderophores and
methylation which can result in volatilisation.
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Fungi can solubilise minerals by means of pro-
ton efflux and the production of Fe(III)-binding
siderophores and as a result of respiratory car-
bon dioxide accumulation. In addition, other
excreted metabolites with metal-complexing
properties, e.g. amino acids, phenolic com-
pounds and organic acids, may also be
involved. Fungal-derived carboxylic acids pro-
vide a source of protons for solubilisation and
metal-complexing anions (Gadd 1999, 2001a,
2010; Burgstaller and Schinner 1993; Gadd and
Sayer 2000). Many metal citrates are highly
mobile and not readily degraded. Oxalic acid
can act as a leaching agent for those metals that
form soluble oxalate complexes, including Al
and Fe (Strasser et al. 1994). Solubilisation phe-
nomena can have consequences for mobilisa-
tion of metals from toxic metal-containing
minerals, e.g. pyromorphite (Pb5(PO4)3Cl),
contaminated soil and other solid wastes
(Sayer et al. 1999). Fungi can also mobilise
metals and attack mineral surfaces by redox
processes. Fe(III) and Mn(IV) solubility is
increased by reduction to Fe(II) and Mn(II),
respectively. Reduction of Hg(II) to volatile ele-
mental Hg(0) can also be mediated by fungi
(Gadd 1993a, b).

The removal of metals from industrial
wastes and by-products, contaminated soil,
low-grade ores and metal-bearing minerals by
fungal ‘heterotrophic leaching’ is relevant to
metal recovery and recycling and/or bioreme-
diation of contaminated solid wastes and per-
haps the removal of unwanted phosphates
(Gadd 2007, 2010). The ability of fungi, along
with bacteria, to transform metalloids has also
been utilised successfully in the bioremediation
of contaminated land and water. Selenium
methylation results in volatilisation, a process
which has been used to remove selenium from
the San Joaquin Valley and Kesterson Reser-
voir, California, using evaporation pond
management and primary pond operation
(Thompson-Eagle et al. 1989; Thompson-Eagle
and Frankenberger 1992).

2. Metal Immobilisation

Fungal biomass provides a metal sink, either by
sorption to biomass (cell walls, pigments and

extracellular polysaccharides), intracellular
accumulation and sequestration, or precipita-
tion of metal compounds onto and/or around
hyphae. Fungi are effective biosorbents for a
variety of metals including Ni, Zn, Ag, Cu, Cd
and Pb (Gadd 1990, 1993b, 2009), and this can
be an important passive process in both living
and dead biomass (Gadd 1990, 1993b; Sterflin-
ger 2000). The presence of chitin, and pigments
like melanin, strongly influences the ability of
fungi to act as biosorbents (Gadd and Mowll
1985; Manoli et al. 1997; Fomina and Gadd
2002; Gadd 2009). In a biotechnological con-
text, fungi and their by-products have received
considerable attention as biosorbents for
metals and radionuclides (Gadd and White
1992; Gadd 2002). However, attempts to com-
mercialise biosorption have been limited, pri-
marily due to competition with commercially
produced ion exchange media of high specific-
ity (Gadd 2009).

Fungi can precipitate a number of inor-
ganic and organic compounds, e.g. oxalates,
oxides, phosphates and carbonates (Grote and
Krumbein 1992; Arnott 1995; Verrecchia 2000;
Gadd 1999; Gharieb and Gadd 1999), and this
can lead to the formation of biogenic minerals
(mycogenic precipitates). Precipitation, includ-
ing crystallisation, will immobilise metals but
also leads to the release of nutrients like sul-
phate and phosphate (Gadd 1999). Fungi can
produce a variety of metal oxalates with a vari-
ety of different metals and metal-bearing
minerals, e.g. Cd, Co, Cu, Mn, Sr, Zn and Ni
(Gadd 1999), which may provide a mechanism
whereby fungi can tolerate toxic metal-
containing environments. Fungi produce other
metal oxalates besides calcium on interacting
with a variety of different metals and metal-
bearing minerals, including those of Ca, Cd,
Co, Cu, Mg, Mn, Sr, Zn, Ni and Pb (Sayer and
Gadd 1997; Gadd 1999, 2007; Sayer et al. 1999;
Adeyemi and Gadd 2005; Fomina et al. 2007a, b;
Wei et al. 2013). The formation of toxic metal
oxalates may contribute to fungal metal toler-
ance (Gadd 1993a; Clausen et al. 2000; Jarosz-
Wilkołazka and Gadd 2003; Green and Clausen
2003). Mycogenic oxalate minerals produced
by free-living fungi include glushinskite
(MgC2O4·2H2O) (Burford et al. 2003a, b; Kolo
and Claeys 2005; Kolo et al. 2007; Gadd 2007),
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moolooite (Cu(C2O4)·0.4H2O) (Fomina et al.
2005a, 2007b) and lindbergite (MnC2O4·2H2O)
(Wei et al. 2012). A similar mechanism occurs
in lichens growing on copper–sulphide-bearing
rocks, where precipitation of copper oxalate
occurs within the thallus (Purvis 1996). Oxalate
production by Aspergillus niger and Serpula
himantioides has been shown to induce the
dissolution and conversion of both rhodochro-
site and Mn oxides to Mn oxalate minerals
(Sayer et al. 1997; Wei et al. 2012). Oxalate can
act as a reductant ofMn(IV) oxides, and this can
result in mobilisation of Mn(II), which can then
precipitate. Both A. niger and S. himantioides
were capable of solubilising the insoluble man-
ganese oxides MnO2 and Mn2O3, mycogenic
manganese oxide (MnOx) and birnessite
[(Na0.3Ca0.1K0.1)(Mn4+,Mn3+)2O4·1.5H2O]. Pre-
cipitation of insoluble manganese oxalate
occurred and manganese oxalate trihydrate
was detected after growth of S. himantioides
with birnessite which subsequently was trans-
formed to manganese oxalate dihydrate (Wei
et al. 2012). Several free-living and mycorrhizal
fungi can attack and transform pyromorphite
(Pb5(PO4)3Cl) to lead oxalate (Sayer et al. 1999;
Fomina et al. 2004, 2005b). It has also been
shown that certain fungi (e.g. Paecilomyces
javanicus, Metarhizium anisopliae) were able
to mediate transformation of metallic lead into
pyromorphite, representing biomineralisation
of mobile lead species into a very stable form
(Rhee et al. 2012, 2014a, b). This might be an
important process occurring in lead-containing
environments and of relevance to proposed
bioremedial treatments (Rhee et al. 2012). It is
likely that acidolysis and complexation involv-
ing excreted organic acids play an important
role in mediating precipitation of pyromorphite
(Rhee et al. 2012, 2014a, b) and other metal
phosphates (Fomina et al. 2007c, 2008). Fungal
activity can also play an important role in the
biocorrosion and transformation of lead metal
into pyromorphite in the aquatic environment.
The ability of fungi to immobilise mobile lead
species in an insoluble form provides a further
approach for the removal and detoxification of
lead from aqueous solution by bioprecipitation.
The principles of such a process could also be

applied to other metals and insoluble biomin-
erals for bioremediation or biorecovery of valu-
able elements (Rhee et al. 2014a, b). Another
research has demonstrated that fungi can solu-
bilise uranium oxides and depleted uranium
and reprecipitate secondary uranium phos-
phate minerals of the meta-autunite group,
uramphite and/or chernikovite, which can
encrust fungal hyphae to high accumulation
values of 300–400 mg U g dry wt�1 (Fomina
et al. 2007c, 2008). Such minerals appear
capable of long-term U retention (Fomina
et al. 2008). The phosphate may arise from inor-
ganic sources in the environment or from
phosphatase-mediated hydrolysis of organic P
sources, with the hyphal matrix serving to local-
ise the resultant uranium minerals (Liang et al.
2015).

Many fungi precipitate reduced forms of
metals and metalloids in and around fungal
hyphae, e.g. Ag(I) can be reduced to elemental
silver Ag(0), selenate [Se(VI)] and selenite [Se
(IV)] to elemental selenium and tellurite [Te
(IV)] to elemental tellurium [Te(0)] (Gharieb
et al. 1995, 1999).

3. Organometal(loid)s

Organometals (compounds with at least one
metal–carbon bond) can be attacked by fungi
with the organic moieties being degraded and
the metal compound undergoing changes in
speciation. Degradation of organometallic com-
pounds can be carried out by fungi, either by
direct biotic action (enzymes) or by facilitating
abiotic degradation, for instance, by alteration
of pH and excretion of metabolites. Organotins,
such as tributyltin oxide and tributyltin
naphthenate, may be degraded to mono- and
dibutyltins by fungal action, inorganic Sn(II)
being the final degradation product. Organo-
mercury compounds may be detoxified by con-
version to Hg(II) by fungal organomercury
lyase, the Hg(II) being subsequently reduced
to Hg(0) by mercuric reductase, a system anal-
ogous to that found in mercury-resistant bacte-
ria (Gadd 1993b).
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E. Accumulation of Metals and Radionuclides
by Macrofungi

Elevated concentrations of toxic metals and
radionuclides can occur in the fruiting bodies
of higher fungi sampled from polluted environ-
ments. This phenomenon is of significance in
relation to the use of macrofungi as bioindica-
tors of metal pollution and because of human
toxicity resulting from the consumption of wild
fungi. In general, levels of Pb, Cd, Zn and Hg
found in macrofungi from urban or industrial
areas are higher than from corresponding rural
areas, although there are wide differences in
uptake abilities between different species and
different metals (Tyler 1980; Bressa et al. 1988;
Lepsova and Mejstrik 1989). Cadmium is accu-
mulated to quite high levels in macrofungi,
averaging around 5 mg (kg dry wt)�1 although
levels of up to 40 mg (kg dry wt)�1 have also
been recorded (Byrne et al. 1976). Laccaria
amethystina caps exhibited total As concentra-
tions of 100–200 mg (kg dry wt)�1 (Stijve and
Porette 1990; Byrne et al. 1991). Accumulation
of 110Ag and 203Hg was studied in Agaricus
bisporus, and concentration factors (metal con-
centration in mushroom, metal concentration
in substrate) were found to be up to 40 and 3.7,
respectively, with the highest Ag and Hg con-
tents recorded being 167 and 75 mg (kg dry
wt)�1, respectively (Byrne and Tusek-Znidaric
1990). As well as fruiting bodies, rhizomorphs
(e.g. of Armillaria species) can concentrate
metals up to 100 times the level found in soil.
Concentrations of Al, Zn, Cu and Pb in rhizo-
morphs were 3440, 1930, 15 and 680 mg (kg dry
wt)�1, respectively, with the metals primarily
located in extracellular portions (Rizzo et al.
1992).

F. Accumulation of Radiocaesium
by Macrofungi

Following the Chernobyl accident in 1986, there
were several studies on radiocaesium (mainly
137Cs) accumulation by fungi. Free-living and
mycorrhizal basidiomycetes can accumulate
radiocaesium (Haselwandter 1978; Elstener

et al. 1987; Byrne 1988; Dighton and Horrill
1988; Haselwandter et al. 1988; Clint et al.
1991; Dighton et al. 1991; Muramatsu et al.
1991; Heinrich 1992); these organisms appear
to have a slow turnover rate for Cs and com-
prise a major pool of radiocaesium in soil (Clint
et al. 1991). Mean activities of 25 Ukrainian, 6
Swedish and 10 North American collections
were 4660, 9750 and 205 Bq (kg dry wt)�1,
respectively (Smith et al. 1993). Deviations in
the 137Cs:134Cs ratios attributable to Chernobyl
have revealed considerable accumulation of
pre-Chernobyl Cs in macrofungi, probably as
the result of weapon testing (Byrne 1988;
Dighton and Horrill 1988). It appeared that
about 20 % of the 137Cs in Eastern Europe
(Moscow area, Belarus, Ukraine) was of non-
Chernobyl origin (Smith et al. 1993). Radiocae-
sium accumulation in basidiomycetes appears
to be species dependent, with influences
exerted by soil properties. Significantly higher
activities may be found in mycorrhizal species
compared to saprotrophic and parasitic fungi
(Smith et al. 1993). Smith et al. (1993) found
that many prized edible mycorrhizal fungi may
contain unacceptably high levels of 137Cs, that
is, at levels of greater than 1000 Bq (kg dry
wt)�1. It has also been demonstrated that the
fungal component of soil can immobilise the
total Chernobyl radiocaesium fallout received
in upland grasslands (Dighton et al. 1991)
although grazing of fruiting bodies by animals
may lead to radiocaesium transfer along the
food chain (Baaken and Olson 1990).

G. Fungi as Bioindicators of Metal and
Radionuclide Contamination

As mentioned above, higher fungi growing on
contaminated sites can show significantly ele-
vated concentrations of metals in their fruiting
bodies, and some experiments have demon-
strated a correlation between the quantities of
metals in a growth substrate and the amounts
subsequently found in the fruiting bodies
(Wondratschek and Roder 1993). The concept
of bioindicators has been usually discussed in
terms of reaction indicators and accumulation
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indicators. Reaction indicators may comprise
individual organisms and/or communities
which may decline or disappear (sensitive spe-
cies) or show increases (tolerant species). For
accumulation indicators, the indicator organ-
ism is analysed for the pollutant. Some organ-
isms, in theory, can therefore serve as both
reaction and accumulation indicators. As
described previously, alteration of macrofungal
communities by metal pollution has frequently
been recorded. Ruhling et al. (1984) noted a
decline from about 40 species per 100 m2 to
about 15 species near the source of metal con-
tamination (smelter emissions), with only Lac-
caria laccata increasing in frequency at more
polluted locations. Other higher fungi which
are apparently tolerant of high metal pollution
include Amanita muscaria and several species
of Boletus; some Russula species, on the other
hand, appear metal sensitive (Wondratschek
and Roder 1993).

Fungi possess several advantages over
plants as metal accumulation indicators. The
fruiting bodies may accumulate greater
amounts of metals than plants, while the large
area of mycelium ensures contact with and
translocation from a large area of soil. Further-
more, fruiting bodies may project above the
ground for only a short period, thereby mini-
mising contamination from aerial or wet depo-
sition of metal pollutants. Sporophores are also
easily harvested and amenable to rapid chemi-
cal analysis (Mejstrik and Lepsova 1993). How-
ever, it is debatable whether a sufficiently clear
relationship exists between indicator species
and the metal pollution under consideration.
For mercury, wide variations in metal content
of fruiting bodies occur in different species
sampled at the same site, ranging over as
much as three orders of magnitude, with some
species showing extremely high Hg accumula-
tion values. Mercury concentrations in fungi
generally occur in the range 0.03–21.6 mg (kg
dry wt)�1 although concentrations greater than
100 mg (kg dry wt)�1 have been recorded from
polluted sites. Despite this, several macrofungi
have been suggested as being suitable bioindi-
cators of mercury pollution (see Mejstrik and
Lepsova 1993; Wondratschek and Roder 1993)
(Table 5.1).

A wide variation in Cd content has also
been recorded in macrofungi with ranges of
reported values from <0.1–229 mg (kg dry
wt)�1 (Tyler 1980). However, there is frequently
a lack of correlation between the fungal Cd
content and the Cd content of the soil (Won-
dratschek and Roder 1993). Compared to other
common metal pollutants, lower concentra-
tions of Pb tend to be found in macrofungi,
with much of the Pb content being derived
from aerial sources. Levels of Pb around 0.4–
36 mg (kg dry wt)�1 have been reported in
sporophores, with higher levels occurring in
urban areas (Tyler 1980). Zinc, an essential
metal for fungal growth and metabolism,
occurs at high concentrations within fungi,
50–300 mg (kg dry wt)�1 (Tyler 1980), with a
few genera apparently showing high affinities
for the metal (Table 5.1). Copper may also be
found at high levels (20–450 mg (kg dry wt)�1)
in higher fungi (Tyler 1980). However, with
both Cu and Zn, there is a tendency for metal
concentrations in fruiting bodies to be inde-
pendent of soil concentrations which reduces
their value as bioindicators (Gast et al. 1988).

It is clear that many factors contribute to
the wide variations in recorded metal contents
of macrofungal fruiting bodies, even in the
same species sampled at the same site. Despite
numerous studies, most investigations tend to
be contradictory and provide little useful infor-

Table 5.1 Higher fungi proposed as bioindicators for
metal pollution based on metal analyses of fruiting
bodies (see Mejstrik and Lepsova 1993; Wondratschek
and Roder 1993)

Species Metal(s)

Agaricus arvensis Hg, Cd
Agaricus campestris Hg, Cd
Agaricus edulis Hg, Cd
Agaricus haemorrhoidarius Hg
Agaricus xanthodermus Hg
Agaricus sp. Pb, Zn, Cu
Amanita rubescens Hg
Amanita strobiliformis Hg
Coprinus comatus Hg
Lycoperdon perlatum Hg
Lycoperdon sp. Pb, Zn, Cu
Marasmius oreades Hg
Mycena pura Hg, Cd
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mation (Wondratschek and Roder 1993). Apart
from organism-related factors, environmental
factors are of paramount importance in relation
to metal accumulation by higher fungi and
include physicochemical soil properties like
moisture and temperature, all of which influ-
ence metal availability as well as the physiolog-
ical activity of the fungus. It can be concluded,
therefore, that a perfect fungal bioindicator
does not exist, although macrofungi may be
useful in determining the extent of a polluted
or unpolluted area.

H. Bioremediation, Biotechnology and
Bioprocessing

Several fungal metal and mineral transforma-
tions have potential for the treatment of envi-
ronmental pollution (Gadd 2004a, 2005;
Pumpel and Paknikar 2001). While several
fungal-based systems have received interest in
the context of bioremediation of organic pollu-
tants, there has not been so much attention
given to metals. However, it should be stressed
that fungi will be components of the microbiota
in anymetal-polluted sites where their activities
may contribute to natural attenuation of the
pollutants and will also be involved in many
soil and waste treatment processes, revegeta-
tion strategies and effluent treatments. Fungi
were clearly important in remediation of
selenium-contaminated soils (Thompson-
Eagle and Frankenberger 1992). In addition,
fungal mineral-solubilising properties are
important in plant nutrition and soil fertility
especially regarding phosphates. In addition
to bioremediation, metal and mineral transfor-
mations have applications in other areas of
biotechnology and bioprocessing, including
biosensors, biocatalysis, electricity generation
and nanotechnology.

1. Bioleaching

Fungal solubilisation of metals from solid
minerals and metal and mineral wastes, includ-
ing contaminated soil, for metal recovery, recy-
cling and bioremediation purposes have all
been investigated, although fungal systems can-

not compare with the established bacterial bio-
leaching processes and may be more suited to
bioreactor applications. Metals can be solubi-
lised from fly ash (originating from municipal
solid waste incineration), contaminated soil,
electronic scrap and other waste materials by
fungal activity (Brandl 2001; Brandl and Fara-
marzi 2006).

2. Biosorption and Bioaccumulation

Biosorption is a physicochemical process,
simply defined as ‘the removal of substances
from solution by biological material’. It is a
property of both living and dead organisms
(and their components) and has been proposed
as a promising biotechnology for the removal
(and/or recovery) of metals, radionuclides
and organic pollutants for many years because
of its simplicity, analogous operation to con-
ventional ion exchange technology and appar-
ent efficiency (Gadd 1986, 2001a, b, 2009;
Volesky 1990; Garnham et al. 1992; Gadd and
White 1990, 1993; Wang and Chen 2006, 2009).
Modification of biomass has been attempted to
improve efficiency or selectivity of microbial
biosorbents. Fungal–clay biomineral sorbents
combined the sorptive advantages of the
individual counterparts, i.e. the high density
of metal-binding sites per unit area and
high sorption capacity of fungal biomass, high
sorption affinity and the high surface area per
unit weight mechanical strength and efficient
sorption at high metal concentrations of the
clay minerals (Fomina and Gadd 2002). S. cer-
evisiae mutants (pmr1D) hypersensitive to
heavy metals due to increased metal uptake
have been investigated for the ability to remove
Mn2+, Cu2+, Co2+ or Cd2+ from synthetic
effluents by a combination of biosorption
and intracellular uptake (Ruta et al. 2010).
Phytochelatins (PCs) are metal-binding
cysteine-rich peptides, enzymatically synthe-
sised in plants and certain fungi from glutathi-
one in response to heavy metal stress.
Overexpression of PC synthase in bacteria
could be a means of improving the metal con-
tent of organisms for bioremediation (Valls
et al. 2000).
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3. Metalloid Bioremediation

Microbial responses to arsenic of bioremedial
potential include chelation, compartmentalisa-
tion, exclusion and immobilisation. Attempts
to engineer an arsenic accumulating microbe
have involved modification of natural resis-
tance mechanisms and development of novel
or hybrid pathways into an easily manipulated
organism. Thus, PC synthase from S. pombe
(SpPCS) has been expressed in E. coli, resulting
in higher As accumulation, these steps being
combined in an arsenic efflux deletion E. coli
strain to achieve the highest reported arsenic
accumulation in E. coli of 16.8 mmol/g cells
(Tsai et al. 2009). A yeast strain coexpressing
AtPCS and cysteine desulphhydrase, an amino-
transferase that converts cysteine into hydro-
gen sulphide under aerobic conditions, was
used to elevate As accumulation by formation
of PC–metal–sulphide complexes (Tsai et al.
2009). The ability of fungi, along with bacteria,
to transform metalloids has been utilised suc-
cessfully in the bioremediation of contaminated
land and water. Seleniummethylation results in
volatilisation, a process which has been used
to remove selenium from contaminated sites
(Thompson-Eagle and Frankenberger 1992).

4. Mycoremediation and the Mycorrhizosphere

Mycorrhizal associations may have application
in the general area of phytoremediation (Rosen
et al. 2005; Gohre and Paszkowski 2006): phy-
toremediation is the use of plants to remove or
detoxify environmental pollutants (Salt et al.
1998). Mycorrhizas may enhance phytoextrac-
tion by increasing plant biomass, and some
studies have shown increased plant accumula-
tion of metals, especially when inoculated with
mycorrhizal fungi isolated from metalliferous
environments. However, the potential impact
of mycorrhizal fungi on bioremediation may
be dependent on many factors including their
metal tolerance and the nutritional status of
contaminated soils (Meharg 2003). In addition,
some studies have shown mycorrhizas can
reduce plant metal uptake (Tullio et al. 2003).
Arbuscular mycorrhizas (AMs) depressed
translocation of zinc to shoots of host plants

by binding of metals in mycorrhizal structures
and immobilisation of metals in the mycorrhi-
zosphere (Christie et al. 2004). Local conditions
in metal-contaminated sites may determine the
relationship between the plant and the AM fun-
gus, and detrimental, neutral and beneficial
interactions have all been documented (Meharg
and Cairney 2000a, b). A protective metal-
binding effect of ectomycorrhizal fungi (EcM)
has been postulated (e.g. Leyval et al. 1997). A
Cu-adapted Suillus luteus isolate provided pro-
tection against Cu toxicity in pine seedlings
exposed to elevated Cu. Such a metal-adapted
Suillus–Pinus combination might be suitable
for large-scale land reclamation at phytotoxic
metalliferous and industrial sites (Adriaensen
et al. 2005). Ectomycorrhizal fungi persistently
fixed Cd(II) and Pb(II) and formed an efficient
biological barrier that reduced the movement
of these metals in birch tissues (Krupa and
Kozdroj 2004). Such mycorrhizal metal immo-
bilisation around plant roots, including bio-
mineral formation, may also assist soil
remediation and revegetation. Naturally occur-
ring soil organic compounds can stabilise
potentially toxic metals like Cu, Cd, Pb and
Mn. The insoluble glycoprotein, glomalin, pro-
duced in copious amounts on hyphae of arbus-
cular mycorrhizal fungi can sequester such
metals and could be considered a useful stabi-
lisation phenomenon (Gonzalez-Chavez et al.
2004). Phytostabilisation strategies may reduce
the dispersion of uranium (U) and the environ-
mental risks of U-contaminated soils. Glomus
intraradices increased root U concentration
and content, but decreased shoot U concentra-
tions. AM fungi and root hairs improved not
only P acquisition but also root uptake of U,
and the mycorrhiza generally decreased U
translocation from plant root to shoot (Rufyi-
kiri et al. 2004; Chen et al. 2005a, b).

For ericaceous mycorrhizas, host protec-
tion has been observed in, for example, Cal-
luna, Erica and Vaccinium spp. growing on
Cu- and Zn-polluted and/or naturally metallif-
erous soils, the fungus preventing metal trans-
location to plant shoots (Bradley et al. 1981,
1982). Further, ericaceous plants are generally
found on nutrient-deficient soils, and it is likely
the mycorrhiza could additionally benefit the
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plants by enhanced nutrient uptake (Smith and
Read 1997). The development of stress-tolerant
plant–mycorrhizal associations may therefore
be a promising strategy for phytoremediation
and soil amelioration (Schutzendubel and Polle
2002). Ericoid mycorrhizal fungal endophytes,
and sometimes their plant hosts, can evolve
toxic metal resistance which enables ericoid
mycorrhizal plants to colonise polluted soil
(Perotto et al. 2002; Martino et al. 2003). This
seems to be a major factor in the success of
ericoid mycorrhizal taxa in a range of harsh
environments (Cairney and Meharg 2003).

The importance of mycorrhizas in plant
phosphorus nutrition has been appreciated for
a long time, and their ability to dissolve and
transform calcium-containing insoluble com-
pounds and minerals (calcium phosphates, car-
bonate and sulphate) has been widely studied
(Callot et al. 1985a, b; Lapeyrie et al. 1990, 1991;
Gharieb and Gadd 1999). However, toxic metal
mineral solubilisation has received little atten-
tion, though this should be considered in any
revegetation, natural attenuation or phytore-
mediation strategies. The ectomycorrhizal
fungi Suillus granulatus and Pisolithus tinctor-
ius can promote the release of cadmium and
phosphorus from rock phosphate (Leyval and
Joner 2001), while the ericoid mycorrhizal fun-
gus Oidiodendron maius can solubilise zinc
oxide and phosphate (Martino et al. 2003).
Many ericoid mycorrhizal and ectomycorrhizal
fungi are able to solubilise zinc, cadmium,
copper phosphates and lead chlorophosphate
(pyromorphite) releasing phosphate and metals
(Fomina et al. 2004). Both non-mycorrhizal
Pinus sylvestris and pines infected with the
ectomycorrhizal Paxillus involutus could
enhance zinc phosphate dissolution, withstand
metal toxicity and acquire the mobilised phos-
phorus (Fomina et al. 2006).

5. Nanoparticle Formation and
Nanobiotechnology

Metal-containing micro-/nanoparticles have
applications as new ceramic–metal (cermet)
or organic–metal (orgmet) composites or
structured materials for a variety of applications

(Hennebel et al. 2009). The use of metal-
accumulating microbes for the production of
nanoparticles, and their assembly, may allow
control over size, morphology, composition
and crystallographic orientation. The produc-
tion of such biomimetic materials is relevant to
the production of new advanced materials, with
applications in metal and radionuclide bioreme-
diation, antimicrobial treatments (e.g. nano-
silver), solar energy and electrical battery appli-
cations and microelectronics (Dameron et al.
1989; Klaus-Joerger et al. 2001). Because of their
high specific surface area and high catalytic
properties, biogenic metal products also offer
potential for sorption anddegradation of organic
contaminants, as well as a variety of other appli-
cations, e.g. electricity generation in fuel cells,
novel catalysts and sensors. Biogenic Mn oxides
can sequester metals like Pb, Zn, Co, Ni, As and
Cr and also oxidise certain organic pollutants
(Hennebel et al. 2009). In contrast to bacteria,
rather less attention has been given to fungal
systems in this context although fungal reductive
transformations of metalloids and Ag and Au
species to nano- or colloidal forms are well
known, as well asmetal-containing reactive crys-
tallites (Dameron et al. 1989) and Mn oxides
(Miyata et al. 2004, 2007).

6. Soil Treatment Processes

The application to soils of certain amendments
that immobilise metals, e.g., lime or phosphate
treatment, has demonstrated enhanced natural
remediation resulting in improved vegetation
growth, increased microbial activity and diver-
sity and reduced off-site metal transport. How-
ever, while long-term stability of certain metal
complexes and compounds has been shown in
model systems (Adriano et al. 2004), the influ-
ence of plant roots and its microbial and
mycorrhizal associations on such stability has
often been neglected. For example, pyromor-
phite (Pb5(PO4)3Cl), which can form in urban
and industrially contaminated soils, can be
solubilised by phosphate-solubilising fungi,
with concomitant production of lead oxalate
(Sayer et al. 1999; Fomina et al. 2004). The
ability of free-living and mycorrhizal fungi to

Fungi and Industrial Pollutants 115



transform pyromorphite (and other toxic
metal-containing minerals) should be taken
into account in risk assessments of the long-
term environmental consequences of in situ
chemical remediation techniques, revegetation
strategies or natural attenuation of contami-
nated sites. The bioweathering potential of
fungi has been envisaged as a possible means
for the bioremediation of asbestos-rich soils.
Several fungi could extract iron from asbestos
mineral fibres (e.g. 7.3 % from crocidolite and
33.6 % from chrysotile by a Verticillium sp.),
thereby removing the reactive iron ions respon-
sible for DNA damage (Daghino et al. 2006).

VI. Conclusions

It is clear from the above that fungi are of
importance in the transformation of both
organic and inorganic pollutants in the natural
environment. While pollutants may exhibit tox-
icity and cause changes in fungal community
composition, fungi possess a range of mechan-
isms that confer resistance or tolerance, many
of these resulting in pollutant transformation to
less toxic forms. Such activities are part of nat-
ural biogeochemical cycles for major elements
such as C, N, O, P and S but also metals, metal-
loids and radionuclides, as well as having appli-
cations in the bioremediation and natural
attenuation of polluted habitats. However, pol-
lutant interactions are complex and greatly
influenced by environmental factors. While
the theoretical response of fungi to pollutants
can readily be speculated upon, some effects are
difficult to demonstrate and quantify because of
the inadequacy of several common techniques
used to study fungal populations and their
activities. Despite this, newly developed
approaches using molecular biology and bio-
markers are allowing a better understanding of
community structure and responses to envi-
ronmental factors, including pollutants.
Growth media containing low and therefore
more realistic concentrations of available car-
bon should also be used if in vitro techniques
are employed to help determine the effects of
pollutants on fungal growth. However, it is

clear that because of the complexity of the fun-
gal growth form and their multiplicity of
biological responses and interactions with pol-
lutants, coupled with the complexity of the
terrestrial (and other) environments, a wealth
of knowledge still awaits discovery.
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