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Abstract. We study the activation process in undirected graphs known
as bootstrap percolation: a vertex is active either if it belongs to a set
of initially activated vertices or if at some point it had at least r active
neighbors, for a threshold r that is identical for all vertices. A contagious
set is a vertex set whose activation results with the entire graph being
active. Let m(G, r) be the size of a smallest contagious set in a graph G.
We examine density conditions that ensure that a given n-vertex graph
G = (V,E) has a small contagious set. With respect to the minimum
degree, we prove that if G has minimum degree n/2 then m(G, 2) = 2.
We also provide tight upper bounds on the number of rounds until all
nodes are active.

For n ≥ k ≥ r, we denote by M(n, k, r) the maximum number of
edges in an n-vertex graph G satisfying m(G, r) > k. We determine the
precise value of M(n, k, 2) and M(n, k, k) assuming that n is sufficiently
large compared to k.

Keywords: Bootstrap percolation · Target set selection · Extremal
graph theory

Dynamic processes that model the diffusion of information through a social
network have received considerable interest recently: they capture for instance
“word of mouth” effects occurring in viral marketing, where the information is
only revealed to a small group of persons initially, who subsequently share it
with their friends and so. Similarly, we can think of cascading effects in finance,
where an institute might default if a certain number of business partners fail
(cp. [2,9,12,13] and the references therein).

In this article we study the r-neighbor bootstrap percolation process. Here we
are given an undirected graph G = (V,E) and an integer r ≥ 1. Every vertex is
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either active or inactive. We say a set A of vertices is active if all vertices in A
are active. The vertices that are active initially are called seeds, and the set of
seeds is denoted by A0. If vertices become active thereafter we also refer to them
as infected. A contagious process evolves in discrete rounds. The set of active
vertices in round i > 0 is

Ai = Ai−1 ∪ {v : |N(v) ∩ Ai−1| ≥ r},

where N(v) is the set of neighbors of v. That is, a vertex becomes active irrevo-
cably in a given round if it has at least r active neighbors. We refer to r as the
threshold. Let 〈A0〉 be the set of nodes that will eventually become infected if
we activate A0.

Definition 1. Given G = (V,E), a set A0 ⊆ V is called contagious if 〈A0〉 = V .
In words, activating A0 results in the infection of the entire vertex set. The size
of the smallest contagious set is denoted by m(G, r). For a contagious set A0,
the number of rounds until total infection is the smallest integer t with At = V .

The term bootstrap percolation is used sometimes to model the case where
the seeds are chosen independently at random. In this work we use this term
also with respect to the deterministic selection of a contagious set. Bootstrap
percolation was first studied by statistical physicists [8]. Since then, this model
has found applications in many fields. Furthermore, various questions related to
bootstrap percolation have been examined for a large variety of graphs includ-
ing hypercubes [4], grids [5,6], several models of random graphs [3,7,11], and
expanders [10].

A natural question is to determine for a given integer k, what combinatorial
properties of graphs ensure that the minimum size of a contagious set is at
most k. Such a characterization seems difficult even for k = 2 (and r = 2). Indeed
the family of all graphs with a contagious set of size two include, for example,
cliques, bipartite cliques (with both sides larger than one), and binomial random
graphs with edge probability p ≥ n−1/2+ε [11].

Previous works have examined the connection between m(G, k) and the
degree sequence of G [1,16]. Here we continue this line of investigation and
study two basic (and interrelated) graph parameters: the minimum degree and
edge cardinality. More concretely, our goal is to determine what conditions on
these parameters imply that m(G, r) = k where k is small compared to the
number of vertices in G, and r ≤ k. We study the cases that r = k or r = 2.

How large does the minimum degree have to be in order to guarantee a con-
tagious set of size two, if all thresholds are two? We prove that n/2 suffices,
where n is the number of vertices. A graph with this property is called Dirac
graph. Note that this condition on the minimum degree is the best possible: if
the minimum degree is n/2 − 1, then G might be disconnected implying that
m(G, 2) > 2 (provided that G has at least three vertices). We also prove the
existence of a contagious set of size two for Ore graphs. Ore graphs are a gen-
eralization of Dirac graphs, where each pair of nonadjacent vertices u, v obeys
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deg(u) + deg(v) ≥ n. Similarly to Dirac graphs, they have been studied in the
context of Hamiltonicity.

Contagious sets may vary in the number of rounds they require in order to
infect the whole graph (e.g., [15]). For Dirac graphs which are not isomorphic
to two cliques of equal size connected by a perfect matching, we are able to
derive upper bounds on the number of rounds required to infect the whole of G.
More specifically, we show that for such graphs, all subsets of three nodes are
contagious, and that any such subset will infect the whole graph in at most three
rounds. Observe that it is easy to determine the family of all contagious sets in
the Dirac graph consisting of two cliques connected by a perfect matching (as
well as the number of rounds until all nodes are infected).

A classic question in graph theory is to determine the minimum number of
edges in an n-vertex graph G that ensures that G possesses a monotone graph
property. Here, we examine extremal questions related to the existence of small
contagious sets.

Definition 2. Given integers n ≥ k ≥ r, we denote by M(n, k, r) the maximum
number of edges in an n vertex graph G, where G satisfies m(G, r) > k.

First we study M(n, k, k): a necessary condition for a graph G = (V,E) of
n > k vertices to satisfy m(G, k) = k is that G is connected. Here we show that
the minimum number of edges that guarantees connectivity is also sufficient
to ensure m(G, k) = k for n ≥ 2k + 2, i.e. we have M(n, k, k) =

(
n−1
2

)
. Next

we consider the case where r = 2. For k 	 n, we prove that M(n, k, 2) =(
n−k+1

2

)
+ 
k+1

2 � − 1 holds.

Preliminaries. All graphs are undirected. Given a graph G = (V,E), we will
always assume it has n vertices. The degree of a node v ∈ V is denoted by deg(v).
The set of all neighbors of a vertex v are denoted by N(v). For a set S ⊆ V we
shorthand S := V \S. Given two disjoint sets A,B of vertices, E(A,B) is the
number of edges with one endpoint in A and one endpoint in B, and E(A) is
the number of edges with both endpoints in A.

1 Contagious Sets in Dirac and Ore Graphs

We focus in this section exclusively on the case r = 2. Recall that an n-vertex
graph is a Dirac graph if every vertex in the graph is of degree at least n/2. For
an Ore graph G = (V,E) we have that u, v ∈ V with (u, v) /∈ E implies deg(u)+
deg(v) ≥ n.

1.1 The Existence of Small Contagious Sets

The upper bound in [1,16] shows that in a Dirac graph there exists a contagious
set of size three. Here we prove that in Dirac graphs there is in fact a contagious
set of size two.
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The following family of Dirac graphs will be of particular interest: for n even,
let DCn be the undirected graph composed of two disjoint cliques of size n

2
connected by a perfect matching. Note that a set of two nodes is not contagious
in DCn only if both nodes are either in the same clique or connected by the
perfect matching.

We begin with the following simple lemma.

Lemma 1. Let G = (V,E) be a Dirac graph and assume that every node has
threshold two. If more than n

2 nodes are active, then in the next round all remain-
ing nodes become infected.

Proof. Let A ⊂ V with |A| > n
2 denote a set of active, resp. infected nodes.

Then every node in A can have at most |A| − 1 ≤ ⌈
n
2

⌉ − 2 neighbors outside A.
Thus, it must have two neighbors in A, since its degree is at least

⌈
n
2

⌉
. ��

Lemma 2. Let G = (V,E) be a Dirac graph that is not DCn for some n ≥ 2.
Then every set of vertices of size three is contagious.

Proof. Let A be a set of active vertices of size k, where 2 < k < n/2 holds, and
note that then every vertex in A has at least n/2 − k + 1 neighbors in A. Thus,
A has at least k · (n/2 − k + 1) edges with one endpoint in A and the other one
in A.

On the other hand, there are only n − k nodes outside A; in particular, if
k · (n/2 − k + 1) > n − k holds, then there must be a node in A that has
two neighbors in A and hence will be infected in the next round. The equation
k · (n/2 − k + 1) = n − k has exactly two roots: k = 2 and k = n

2 . Hence every
set A satisfying 3 ≤ |A| < n/2 necessarily infects a vertex in A. In addition, if
a set B has more than n/2 nodes, then by Lemma 1 it will infect every vertex
in B.

Hence if a set C of size at least 3 does not infect the whole of G, then it will
necessarily infect a set D of size n/2 eventually: as long as |C| < n/2, one node
in C is infected in the subsequent round. The only way D does not infect an
additional vertex is that it is connected by a perfect matching to D. In this case
by the degree condition both D and D are cliques. This proves the lemma. ��
Theorem 1. Every Dirac graph has a contagious set of size two.

Proof. If the graph is a clique, we can activate two arbitrary vertices. Otherwise,
the degree constraints guarantee that any two non-adjacent, activated vertices
will infect a third vertex. Unless the graph is DCn, with n ≥ 2, Lemma 2 then
applies. In case of DCn with n ≥ 2, in the first round the two nodes that are
adjacent to the seeds will be infected, and in the second round all remaining
nodes. ��

We wish to generalize Theorem 1 to Ore graphs. However, some new ideas
are required, as Ore graphs may not share properties of Dirac graphs used in the
proof of Theorem1. For example, Lemma 2 does not extend to Ore graphs. In
fact, there exist n-vertex Ore graphs such that there is a selection of up to 
n

2 �
nodes that do not form a contagious set.
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Example 1. We construct the graph as follows: the set S = {v1, v2, . . . , vc} forms
a clique. The remaining n−c nodes also form a clique, and are partitioned into c
disjoint groups G1, G2, . . . , Gc. We let c ≤ 
n

2 �, thus every Gi is non-empty.
Every node in Gi is adjacent to vi but not to any other node in S. Hence S is
not a contagious set. Moreover, note that for any pair (u, v) ∈ S × S we have

deg(u) + deg(v) = (c − 1 + 1) + (n − c − 1 + 1) = n,

hence we have constructed an Ore graph. Here it is crucial to note that pairs
of nodes within S (and in S resp.) are adjacent and hence their degrees are
not required to sum up to n in a pairwise manner. Notice that for c = n

2 , the
constructed graph is DCn. ��
Now we show the following.

Theorem 2. Every Ore graph G = (V,E) has a contagious set of size two.

Proof. For Dirac graphs any three nodes form a contagious set, but we have
seen that this statement is not valid for Ore graphs. However, activating three
arbitrarily selected nodes with degree n

2 each will infect at least half of the nodes,
as we show in Lemma 4.

Interestingly, such an active set of size three can be obtained by activating
two nodes only: according to Lemma 3 there are two nodes u, v with degree at
least n

2 , such that both are adjacent to a third node w of degree at least n
2 as

well. Then activating u and v will infect w and subsequently at least half of the
nodes.

Thereafter, the infection will reach all nodes unless the graph is isomorphic to
DCn. This is proven in Lemma 5. On the other hand, if the graph is isomorphic
to DCn, Theorem 1 implies that m(G, 2) ≤ 2.

Lemma 3. In an Ore graph there exists a vertex w of degree at least n
2 that is

adjacent to at least two vertices u, v with deg(u),deg(v) ≥ n/2.

Proof. Let S be the set of vertices with degree at least
⌈

n
2

⌉
. We want to show

that there exists a vertex in S with two neighbors in S.
First we show that S must have size at least

⌊
n
2

⌋
: if there is a vertex x /∈ S,

then x has at most
⌈

n
2

⌉−1 neighbors, denoted by N(x). All vertices that do not
belong to x ∪ N(x) must belong to S (in order to satisfy the degree constraint
for non-adjacent nodes); note that there are at least

⌊
n
2

⌋
such nodes outside

{x} ∪ N(x).
If there is no vertex in S with two neighbors in S, then E(S, S) ≥ (

⌈
n
2

⌉− 1) ·⌊
n
2

⌋
as |S| ≥ ⌊

n
2

⌋
and every vertex in S has at least

⌈
n
2

⌉ − 1 neighbors outside
S. Observe that ∑

v∈S

deg(v) ≤ |S| ·
(⌈n

2

⌉
− 1

)
.
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Thus, |E(S)| is bounded above by the difference of this product on the RHS and
the lower bound on |E(S, S)|:

|S| ·
(⌈n

2

⌉
− 1

)
−

(⌈n
2

⌉
− 1

)
·
⌊n

2

⌋
=

(⌈n
2

⌉
− 1

)
·
(
|S| −

⌊n
2

⌋)
. (1)

Recall that we showed |S| ≤ ⌈
n
2

⌉
. Thus, the bound given in Eq. (1) is nonnegative

only if |S| ∈ {⌊
n
2

⌋
,
⌈

n
2

⌉}
, and hence the upper bound equals

⌈
n
2

⌉ − 1 or 0. But
S has to be a clique by choice of S and the degree requirement of Ore graphs.
Therefore, the number of edges inside S must be

(|S|
2

)
=

(�n
2 �
2

)
, which contradicts

the upper bound of
⌈

n
2

⌉ − 1 or 0 on the number of edges inside S if n > 4 holds.
For n ∈ {3, 4} we recall that every Ore graph has a Hamiltonian cycle [14];

observe that the statement of the lemma follows immediately in this case ��
Thus, once we activate u, v, the node w will become infected and then eventually
half of the nodes.

Lemma 4. The activation of three vertices with degrees at least n
2 each will

infect at least half of the nodes in an Ore graph.

Proof. Let A0 consist of three vertices of degree at least n
2 . Let A := 〈A0〉,

i.e. the set of nodes that will eventually be active if we activate A0. Observe
that A0 ⊆ A holds by definition.

Assume for the sake of contradiction that |A| < n
2 and recall that A := V \A

is the set of nodes that do not become active. We claim that each of the vertices
in A\A0 must have at least one neighbor in A: vertices in A have at most one
neighbor in A and thus degree at most |A| each. If a ∈ A and b ∈ A are non-
adjacent, we have that

deg(a) + deg(b) ≤ |A| + |A| − 1 + |N(a) ∩ A|.

As this quantity has to be at least n in an Ore graph and |A| + |A| = n holds,
N(a) ∩ A must be non-empty.

Each of the nodes in A0 has degree at least n
2 by assumption of the lemma,

and hence each of them has at least (n
2 − (|A| − 1)) neighbors in A. Recall that

the other |A| − 3 vertices in A must have at least one neighbor in A each. But
since each node in A can have at most one neighbor in A, otherwise it would be
infected, we get

|A| ≥ 3 ·
(n

2
− (|A| − 1)

)
+ (|A| − 3)

= 3 · n
2

− 3 · |A| + 3 + |A| − 3

=
n

2
+ n − 2 · |A|.

Thus, we have |A| + 2 · |A| = n + |A| ≥ n + n
2 and the desired contradiction

|A| ≥ n
2 follows. ��
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Next, we show

Lemma 5. Consider an n-vertex Ore graph that is not equal to DCn. Then any
set of three vertices with degree at least n

2 each is a contagious set.

Proof. Pick any three vertices with degree at least n
2 as seed and let A be the set

of eventually infected vertices. By Lemma 4 we have |A| ≤ |A|. Again every b ∈ A
is adjacent to at most one node in A, otherwise b would be infected, and hence
we have deg(b) ≤ |A|. Then every node in A that is non-adjacent to some b ∈ A
must have degree at least n− |A| to meet the degree requirement of Ore graphs.

It follows that every vertex a ∈ A must have at least one neighbor in A: if a
is adjacent to all vertices in A, the claim holds. If a is non-adjacent to at least
one, then we have already shown that a has degree at least n− |A| = |A|. Since
node a can have only |A| − 1 neighbors in A, a must have at least one within A.

No vertex in A can have more than one neighbor in A, since this would
imply the existence of a vertex in A with two active neighbors, as |A| ≤ |A|;
but this would contradict the choice of A. Thus, each vertex in A has exactly
one neighbor in A and we have that |A| = |A| = n/2. Notice that A and A
must both be cliques as otherwise two non-adjacent vertices in A (resp., A)
would have degree less than n

2 each and thus their degrees add up to less than n
contradicting the property of an Ore graph. But then the graph is isomorphic
to DCn. ��
This concludes the proof of Theorem 2. ��

1.2 The Speed of Spreading in Dirac Graphs

In the case of DCn, it is easy to see that any contagious set actually infects the
entire graph in just two rounds. We will now prove a tight bound on the speed
of spreading in arbitrary Dirac graphs.

Theorem 3. Let G be a Dirac graph that does not coincide with DCn for
any n ≥ 2, and let A0 be an arbitrary selection of three vertices. Then the
activation of A0 will infect the whole vertex set within three rounds.

Proof. Recall from Lemma 1 that all nodes will be infected at the end of the
subsequent round if |Ai|>n

2 holds for any round i. Moreover, if |A1| = n
2 holds,

then the whole graph will be active after the third round, since the graph is
not DCn. In particular, any contagious set will infect one new vertex in the
first round, hence |A1| ≥ 4 because of |A0| = 3; thus, we may assume n

2>4, or
equivalently n≥9, and

|A1| ≤
⌈n

2

⌉
− 1 (2)

from now on.
Since each node in A1 has at most |A1| − 1 neighbors in A1, it has at

least
⌈

n
2

⌉ −|A1|+1 edges to nodes outside A1. Moreover, since each node out-
side A1 is adjacent to at most one node in A0, we observe that the neighbor-
hood of A0 in A1, denoted by N , has size |N | ≥ |A0| · (⌈

n
2

⌉ − |A1| + 1
)

=
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3 · (⌈n
2

⌉ − |A1| + 1
)
. Finally, consider the |A1|− 3 nodes of A1\A0 and note that

there are at least (|A1| − 3) · (⌈
n
2

⌉ −|A1|+1
)

edges between A1\A0 and A1; we
denote the set of these edges by F .

There are n−|A1| nodes outside A1. For the sake of contradiction, let us
assume now that there are at most

⌊
n
2

⌋ −|A1| nodes in A1 that have more than
one neighbor in A1. Then the number of edges between A1 and A1\A0 is at most

(n − |A1| − |N |) + (|A1| − 3) ·
(⌊n

2

⌋
−|A1|

)
. (3)

To see this upper bound, first observe that at most n−|A1|− |N | edges of F can
be placed so that every node in A1 is adjacent to exactly one node in A1. The
second summand follows from the observation that each node in A1 is incident
with at most |A1|−3 edges of F .

But this yields the desired contradiction, since we know that there are at
least (|A1| − 3) · (⌈

n
2

⌉ − |A1| + 1
)

edges in F . Subtracting the upper bound on
number of edges given by Eq. (3), that was implied by the assumption that there
are at most

⌊
n
2

⌋ −|A1| nodes in A1 with more than one neighbor in A1, we obtain

(|A1| − 3) ·
(⌈n

2

⌉
− |A1| + 1

)
− (n − |A1| − |N |) − (|A1| − 3) ·

(⌊n
2

⌋
−|A1|

)

≥ |A1| − 3 + |N | − n + |A1|
≥ 2 · |A1| − 3 + 3 ·

(⌈n
2

⌉
− |A1| + 1

)
− n

≥ 3 ·
⌈n

2

⌉
− |A1| − n ≥

⌈n
2

⌉
− |A1| ≥ 1,

where the last inequality is implied by Eq. (2). Thus, in A1 there are at least⌊
n
2

⌋
+1−|A1| nodes with at least two neighbors in A1, and all remaining nodes

will be infected in the third round according to Lemma1. ��
Corollary 1. Any contagious set of size two in a Dirac graph infects the entire
graph within at most four rounds.

Proof. Any contagious set satisfies |A1| > |A0| = 2 after the first round; then
Theorem 3 gives that the whole vertex set will be infected after three additional
rounds. ��
We show that the bounds given in Theorem3 and Corollary 1 are tight.

Example 2. Consider the following graph on the vertex set V = {v1, . . . , v8}: let
v1, v2, v3 be a clique, v4 and v5 be adjacent to v1, while v7 and v8 are adjacent
to v2. Moreover, let v3 be adjacent to v4 and v6. v4 and v5 are adjacent to each
other as well as to v7 and v8. v7 and v8 are adjacent to each other and to v6. v6
is also adjacent to v5. Every vertex has degree at least four. Thus, if v1 and v2
are activated, it takes four rounds for the entire graph to be infected. Moreover,
if we activate v1, v2, and v3 then it takes three rounds for the entire graph to be
infected. ��
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2 Extremal Number of Edges

What is the maximum number of edges in a graph with n nodes such that there
is no contagious set of size k assuming that all nodes have threshold k? We
provide the following tight bound for the case n ≥ 2k + 2.

Theorem 4. Let k ≥ 1. For n ≥ 2k + 2 we have M(n, k, k) =
(
n−1
2

)
.

Proof. To see M(n, k, k) ≥ (
n−1
2

)
, note that a clique of n − 1 nodes plus an

isolated node is a disconnected graph with n nodes and
(
n−1
2

)
edges. However, no

disconnected graph can have a contagious set of size k < n when the thresholds
are k. In the sequel we show M(n, k, k) ≤ (

n−1
2

)
, i.e. every graph on n nodes

with at least
(
n−1
2

)
+1 edges has a contagious set of size k if all thresholds are k.

If a set S ⊆ V with |S| = k is not contagious for all thresholds equal to k,
then there is a set T with S ⊆ T such that each node in T has at most k − 1
neighbors in T ; only then the infection does not spread outside of T .

The gist is that there are at least

|T | · (|T | − (k − 1)) = (n − |T |) · (|T | − (k − 1))

pairs of nodes in T × T that are not adjacent. In particular, we claim that
if |T | ∈ {k+1, k+2, ..., n−3, n−2} then the number of non-adjacent node pairs
is larger than n− 2. However, at most n− 2 pairs of nodes are not adjacent in a
graph with n nodes and at least

(
n−1
2

)
+1 edges, since

(
n−1
2

)
+1 =

(
n
2

)− (n− 2)
holds. Thus, if the number of active vertices is at least k + 1 and at most n− 2,
then in the subsequent round at least one more node is infected newly, and
therefore the infection does not stop until at least n − 1 nodes are active.

Now we prove the claim. First observe that f(|T |) = (n − |T |)·(|T | − (k − 1))
is a quadratic function in |T | and has roots |T | = n and |T | = k − 1. In the
former case, the process has already infected all nodes, and the latter case cannot
occur, since S ⊆ T and |S| = k. Next we show that f(|T |) is larger than n − 2
for values of |T | ∈ {k + 1, . . . , n − 2}. Recall that we assumed n ≥ 2k + 2,
and observe that the number of non-adjacent pairs in T × T is minimized for
any fixed k by setting n = 2k + 2. Therefore the number of such pairs is at
least (2k + 2 − |T |) · (|T | − k + 1). On the one hand, if |T | = k + 1 holds, then
their number is (k+1) · 2 = 2k+2 = n. On the other hand, for |T | = n− 2 = 2k
their number is 2 · (k + 1) = n again. Thus, the claim holds for both values
of |T |, and furthermore for all choices of |T | in between, since f ′′(|T |) = −2 and
hence f is concave.

Thus, we focus on |T | ∈ {k, n − 1} in the sequel. First we show how to
select A0 with |A0| = k such that |A1| ≥ k + 1 holds. If the graph does not
contain any node of degree less than k, we pick any node v and choose A0 to
contain k neighbors of v. Then v ∈ A1 holds and hence |A1| ≥ k + 1.

Now assume there is a node u with degree d < k. Note that any node of
degree smaller k is non-adjacent to at least n − 1 − n−2

2 = n
2 nodes, where we

use n−2
2 ≥ k. Hence there can be at most one such node because there are at

most n − 2 non-adjacent pairs of nodes in the graph.
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Let G′ be the graph after removing u and its d incident edges. Note that the
degree of each node in G′ was reduced by at most one due to the removal of u,
therefore all degrees in G′ are at least k−1. Hence we pick any node w that was
adjacent to u (recall that the graph is connected) and choose A0 to contain u
and k − 1 neighbors of w. Then in the first round w will be infected, thus we
have |A1| ≥ k + 1.

We have already shown that if there are at least k + 1 active nodes, then
the process does not stop until there are n − 1 active nodes. Assume that the
process does not infect the last node w. Then w has degree less than k; but in
this case w was selected for A0. Thus, the process cannot stop at n− 1 nodes. ��
Example 3. Note that the statement of Theorem 4 does not hold for arbitrary k ∈
{1, . . . , n−1} if n is fixed. For a clique on n vertices we pick a perfect matching M
and delete the edges of M . Let k = n−1. Each vertex has degree n−2, hence
there is no contagious set of size n−1. ��

For the case that all nodes have threshold two we give in Theorem5 a tight
bound on the number of edges that guarantees the existence of a contagious set
of size k 	 n.

Theorem 5. For all k ≥ 2 there exists nk ∈ N, such that for all n ≥ nk,

M(n, k, 2) =
(
n − k + 1

2

)
+

⌊
k − 1

2

⌋
.

Due to space restrictions the proof is deferred to the full version of the paper.
We did not attempt to find the exact k(n) for which Theorem 5 holds. It

should be noted that certain restrictions on k have to be imposed, as is shown
the following example.

Example 4. We construct a family of graphs to demonstrate that

M(n, k, 2) =
(
n − k + 1

2

)
+

⌊
k − 1

2

⌋

does not hold for arbitrary k and n. Consider for k ≥ 2n+2
3 a clique on n − k

vertices together with a star on k vertices. All k − 1 leaves of the star must be
contained in a contagious set and so do two vertices from the clique, so there is
no contagious set of size k. However, the number of edges is

(
n − k

2

)
+ (k − 1) =

(
n − k + 1

2

)
+

k

2
+

3k
2

− (n + 1)

≥
(
n − k + 1

2

)
+

k

2
>

(
n − k + 1

2

)
+

⌊
k − 1

2

⌋
.

��
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3 Conclusion

We have examined conditions on the minimum degree and the average degree of
undirected graphs ensuring the existence of contagious sets of size k ≥ 2.

We focused primarily on the case where all thresholds equal two and showed
tight bounds on the number of rounds it takes to infect all vertices for graphs
whose minimum degree guarantees the existence of a contagious set of size two.

There are several questions that arise from this work. One is to determine
the value of M(n, k, r) for all n ≥ k ≥ r. Another question is to find how large
the minimum degree of G needs to be in order to ensure that m(G, r) = k, where
k ≥ r > 2. Finally, it might be of interest to discover additional graph properties
implying m(G, 2) = 2.

Acknowledgments. The authors would like to thank the reviewers for their valuable
comments that helped improving the presentation of the paper significantly.
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