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Abstract. Given a graph G = (V, E) of order n and maximum degree
Δ, the NP-complete S-labeling problem consists in finding a labeling
of G, i.e. a bijective mapping φ : V → {1, 2 . . . n}, such that SLφ(G) =∑

{u,v}∈E min{φ(u), φ(v)} is minimized. A preliminary study of the

S-labeling problem has been undertaken in [9]; here, we prolongate this
study, and focus more specifically on algorithmic results concerning the
problem. We first give intrinsic properties of optimal labelings, which will
prove useful for our algorithmic study. We then show that the S-Labeling
problem is polynomial-time solvable for (sets of) caterpillars. We also pro-
vide upper and lower bounds on SLφ(G), that in turn allow us to determine
polynomial-time approximation algorithms for different classes of graphs
such as regular graphs, connected graphs and forests, but also for general
graphs. Concerning exact algorithms, we show that the problem is solvable
in O∗(1.44225nΔ) time, and that deciding whether there exist a labeling

φ of G such that SLφ(G) ≤ |E| + k is solvable in O∗(22
√

k (2
√

k)!).

1 Introduction

A labeling of a graph G is an assignment of distinct integers to its vertices,
in such a way that a certain objective function is optimized. In the literature,
a graph labeling of G is also called a linear arrangement, a linear layout or
a numbering of the vertices of G. A large amount of relevant combinatorial
problems in different areas can be rephrased as graph labeling problems, which
have been widely investigated during the last decades. These include numerical
analysis [17], VLSI circuit design [4], network reliability [15], computational biol-
ogy [16], scheduling [1], parallel processing [18], etc. However, for most objective
functions, the derived graph labeling problem turns out to be NP-complete. Pop-
ular graph labeling problems arising in the above-mentioned applications include
Bandwidth [10], Minimum Linear Arrangement [13], Cutwidth [2] and
Vertex Separation [19]. There exist several surveys that deal with different
aspects of graph labeling problems [3,5,8].

In this paper, we are interested in the S-Labeling problem [9,22], which,
given a graph G = (V,E), asks for a graph labeling φ : V → {1, 2 . . . |V |} such
that the total sum SLφ(G) =

∑
{u,v}∈E min{φ(u), φ(v)} is minimized, and we

write SL(G) for the minimum SLφ(G) over all possible labelings of G. Note
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that, in this problem (and thus, all along this paper), we do not require G to be
connected. However, we can always assume G has no isolated vertices. Indeed,
if this was the case, let VI be the set of isolated vertices in G. Since in any
labeling φ of G, no vertex from VI contributes to SLφ(G), we can always label
the vertices with the highest possible labels from VI , or equivalently, change G
into G′ = (V \VI , E).

The S-Labeling problem has been proved to be NP-complete for planar
at most cubic graphs [22], but its complexity is unknown for trees, forests, and
more generally, for bipartite graphs. The problem has also been studied in [9],
where SL(G) is determined for classical classes of graphs (paths, cycles, complete
(bipartite) graphs). Upper and lower bounds are also given for general graphs,
and approximation ratios are given for trees, regular graphs, and general graphs.
The S-Labeling problem has also been proved to be polynomial-time solvable
for split graphs [9].

This paper can be seen as a (late) follow-up of [9], mainly focused on algorith-
mic aspects of the S-Labeling problem, and is organized as follows. Section 2
introduces terminology used throughout this paper. Section 3 presents essential
properties of optimal labelings. In Sect. 4, we prove that the S-Labeling prob-
lem is polynomial-time solvable for (sets of) caterpillars. In Sect. 5, we investigate
polynomial-time approximation and exponential-time algorithms. Due to space
constraints, most proofs are omitted and deferred to the full version of this paper.

2 Notations

A graph is an ordered pair G = (V,E) comprising a set V of vertices together
with a set E of edges, which are 2-element subsets of V . The order n (resp. size
m) of G is its number of vertices (resp. edges). The degree of a vertex u ∈ V ,
denoted dG(u) (or d(u) if clear from the context), is the number of edges that are
incident to u. We write Δ(G) (or Δ, if clear from the context) for the maximum
degree of G. A vertex cover of G = (V,E) is a subset of vertices V ′ ⊆ V such that
each edge e ∈ E is incident to at least one vertex of V ′. The size of a minimum
cardinality vertex cover of G is denoted τ(G) (or τ , if clear from the context).
An independent set of G = (V,E) is a subset of vertices V ′ ⊆ V , no two of
which are adjacent. A tree is a graph in which any two vertices are connected
by exactly one simple path, and a caterpillar is a tree in which all the vertices
are within distance 1 of a central path (equivalently, caterpillars are the trees
in which there exists a path that contains every node of degree two or more).
A forest is a collection of trees.

Let G = (V,E) be a graph of order n. A labeling of G is a bijective mapping
φ : V → {1, 2, . . . , n}, and we denote by Φ(G) the set of all labelings of G. The
S-labeling number of G with respect to some labeling φ ∈ Φ(G),
denoted SLφ(G), is defined to be SLφ(G) =

∑
{u,v}∈E min{φ(u), φ(v)}.

To abbreviate notations, we write SL(G) = min{SLφ(G) : φ ∈ Φ(G)} and
we let Φopt(G) ⊆ Φ(G) stand for the set of all optimal labelings (i.e.,
Φopt(G) = {φ ∈ Φ(G) : SLφ(G) = SL(G)}). Let φ ∈ Φ(G) be a labeling of G.
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Fig. 1. A graph G together with a labeling φ. Vertices in V +
φ are in grey. We have

cφ(φ−1(1)) = cφ(φ−1(2)) = cφ(φ−1(3)) = 3, cφ(φ−1(4)) = 2, cφ(φ−1(5)) = 1, and
cφ(φ−1(6)) = cφ(φ−1(7)) = cφ(φ−1(8)) = 0, yielding SLφ(G) = (3 × 1) + (3 × 2) +
(3 × 3) + (2 × 4) + (1 × 5) + (0 × 6) + (0 × 7) + (0 × 8) = 31.

For any vertex u ∈ V , the contribution cφ(u) of u to the S-labeling number SLφ

is the integer defined as cφ(u) = |{v ∈ V : {u, v} ∈ E and φ(u) < φ(v)}|. We will
be mostly interested, in the rest of the paper, in those vertices with non-zero
contribution. To this aim, we define V +

φ = {u ∈ V : cφ(u) > 0}. An example
illustrating these notions is given in Fig. 1.

3 Properties of Optimal Labelings

Towards investigating computational issues, it is critical to support a deeper
understanding of the structure of optimal labelings. This is the purpose of the
current section.

Property 1. For any graph G = (V,E) and any labeling φ ∈ Φ(G): (a) V +
φ is a

vertex cover of G, (b)
∑

u∈V +
φ

cφ(u) = |E|, and (c) SLφ(G) =
∑

u∈V +
φ

cφ(u)φ(u).

Lemma 1. [9] Let G = (V,E) be a graph, and φ ∈ Φopt(G). For any two
vertices u, v ∈ V , if φ(u) < φ(v) then cφ(u) ≥ cφ(v).

Lemma 2. Let G = (V,E) be a graph, and φ ∈ Φopt(G). For any distinct ver-
tices u, v ∈ V , if cφ(u) = cφ(v) then {u, v} �∈ E.

We now turn to proving that, in any optimal labeling φ of G, the vertex
ranked first by φ is a maximum degree vertex.

Lemma 3. Let G = (V,E) be a graph, let φ ∈ Φopt(G), and let u ∈ V be the
vertex satisfying φ(u) = 1. Then cφ(u) = Δ(G).
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Proof. Let G = (V,E) be a graph, and φ ∈ Φopt(G) be an optimal labeling of
G. Let k = min{φ(u) : u ∈ V ∧ cφ(u) = Δ(G)}. We show that k = 1 thereby
proving the lemma. Write Δ for Δ(G). For convenience, for 1 ≤ i ≤ n, let ui

and ci stand for φ−1(i) and cφ(φ−1(i)) = cφ(ui), respectively.
Suppose, aiming at a contradiction, that k > 1. Consider the labeling φ′ of

G defined as follows: φ′(uk) = 1, φ′(ui) = φ(ui) + 1 for any 1 ≤ i ≤ k − 1 and
φ′(ui) = φ(ui) for any k + 1 ≤ i ≤ n. For convenience, for 1 ≤ i ≤ n, i �= k,
let c′

i stand for cφ′(ui) (see above figure). We thus have SLφ(G) =
∑n

i=1 ici

and SLφ′(G) = Δ +
∑k−1

i=1 (i + 1)c′
i +

∑n
i=k+1 ici. Now, if we let D stand for

SLφ(G)−SLφ′(G), we obtain D =
∑n

i=1 ici −Δ−∑k−1
i=1 (i+1)c′

i −∑n
i=k+1 ici =

∑k
i=1 ici − Δ − ∑k−1

i=1 (i + 1)c′
i (Eq. 1). We need the following inequality.

Claim 1.
∑k−1

i=1 (i + 1)c′
i ≤ ∑Δ−ck

i=1 (i + 1)(ci − 1) +
∑k−1

i=Δ−ck+1(i + 1)ci.

Proof. By construction, ci − 1 ≤ c′
i ≤ ci for 1 ≤ i ≤ k − 1. Moreover, since

exactly Δ − ck vertices of {u1, u2, . . . , uk−1} are connected with vertex uk, then
there exist S ⊆ {1, 2, . . . , k − 1} of size Δ − ck such that c′

i = ci − 1 if and
only if i ∈ S. If we let S stand for {1, 2, . . . , k − 1}\S, then

∑k−1
i=1 (i + 1)c′

i =
∑

i∈S(i + 1)(ci − 1) +
∑

i∈S(i + 1)ci =
∑k−1

i=1 (i + 1)ci − ∑
i∈S(i + 1). This latter

sum is certainly maximized for S = {1, 2, . . . Δ−ck}, and hence
∑k−1

i=1 (i+1)c′
i ≤

∑Δ−ck

i=1 (i + 1)(ci − 1) +
∑k−1

i=Δ−ck+1(i + 1)ci. 	


Combining Claim 1 with (Eq. 1) yields D ≥ ∑k
i=1 ici − Δ − ∑Δ−ck

i=1 (i + 1)
(ci−1)−∑k−1

i=Δ−ck+1(i+1)ci =
∑k

i=1 ici−Δ−∑k−1
i=1 ici−

∑k−1
i=1 ci+

∑Δ−ck

i=1 (i+1)
= kck − Δ − ∑k−1

i=1 ci +
∑Δ−ck

i=1 (i + 1) = kck − Δ − ∑k−1
i=1 ci + (Δ−ck+3)(Δ−ck)

2 .
But ci ≤ Δ − 1 for 1 ≤ i ≤ k − 1 (this follows from k > 1 and Lemma 1),

and hence
∑k−1

i=1 ci ≤ (k − 1)(Δ − 1). Then it follows that D ≥ kck − Δ −
(k − 1)(Δ − 1) + (Δ−ck+3)(Δ−ck)

2 = (k − 1) − k(Δ − ck) + (Δ−ck+3)(Δ−ck)
2 =

(k − 1) + (Δ−ck)(Δ−ck−2k+3)
2 . Combining the above with Δ − ck ≥ 1 yields

D ≥ (k − 1) + 4−2k
2 ≥ 1, and hence SLφ(G) > SLφ′(G). This is the desired

contradiction since φ is an optimal labeling of G. 	
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Lemma 4. Let G = (V,E) be a graph, φ ∈ Φopt(G), and let φ′ be the labeling
obtained from φ by swapping the labels of any two vertices u, v ∈ V such that
cφ(u) = cφ(v). Then φ′ ∈ Φopt(G).

Lemma 5. Let G = (V,E) be a graph, φ ∈ Φopt(G), and let u, v ∈ V such
that {u, v} ∈ E and cφ(u) = cφ(v)− 1. Then an optimal labeling φ′ with φ′(u) =
φ′(v)−1 may be obtained from φ by a series of label swaps involving only vertices
z ∈ V with cφ(z) ∈ {cφ(u), cφ(v)} and φ(v) < φ(z) < φ(u).

Coming back to V +
φ , and as discussed in [9], in the light of Property 1(a), it

would be tempting to claim that τ(G) = |V +
φ | for any –or at least one– optimal

labeling φ ∈ Φopt(G). Unfortunately, this is not true: there exist a graph G for

which any optimal labeling φ satisfies
|V +

φ |
τ(G) = 5

4 [9]. This raises the following
question: for any graph G, does there exist a labeling φ ∈ Φopt(G) such that
|V +

φ |
τ(G) = O(1)? This question remains open. However, we have the following result,

which improves Lemma 1.3 from [9] by a factor
√

2.

Lemma 6. For any graph G of maximum degree Δ, there exist an optimal label-

ing φ ∈ Φopt(G) for which
|V +

φ |
τ(G) <

√
Δ.

4 A Polynomial-Time Algorithm for Sets of Caterpillars

In this section, we prove that the S-labeling problem is in P when the input
instance is a (set of) caterpillar(s) (see Proposition 1). This result can be seen as
a step towards understanding the complexity of the problem in trees and forests,
which remains unknown. Recall that a caterpillar is a tree G = (V,E) for which
all the vertices are within distance 1 of a dominating path. It is easy to see that
every longest path P of G has the property that, for all v ∈ V , either v belongs
to P or v is a leaf adjacent to a vertex of P , which is not an endpoint of P .
We call linear representation of G, denoted LR(G), any drawing of G in which
the vertices of some longest path P of G lie along an horizontal line according
to their order on the path. We call set of caterpillars any vertex-disjoint set of
caterpillars. A set of caterpillars is seen as a graph G = (V,E) whose connected
components C1, C2 . . . Cp are caterpillars. The linear representation of G, still
denoted LR(G), is in this case the sequence LR(C1),LR(C2) . . . LR(Cp) of the
linear representations of its connected components, successively on the same
horizontal line. Recall that G being a set of caterpillars on n vertices, G contains
O(n) edges.

Lemma 7. Let G be a set of caterpillars, and u be its leftmost vertex in
LR(G) such that dG(u) = Δ. There is an optimal labeling φopt of G such that
φopt(u)=1.
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Algorithm 1. Greedy computation of a labeling of a set of caterpillars.
Algorithm: GreedyCat

Data: A set of caterpillars G = (V,E)
Result: A labeling φ of G
i ← 1
while G �= ∅ do

Compute LR(G)
Let u be the leftmost vertex in LR(G) with dG(u) = Δ(G)
φ(u) ← i
i ← i + 1
G ← G − u

return (φ)

Proof. Notice that if we prove the existence of an optimal labeling φ ∈ Φopt(G)
such that cφ(u) = Δ, then we are done. Indeed, by Lemma 3, we know that the
vertex z with label 1 has contribution Δ, and by Lemma 4, we know that swap-
ping the labels of u and z yields an optimal labeling φopt such that φopt(u) = 1.

We now show that there is an optimal labeling φ of G such that cφ(u) = Δ.
Let φ′ be an optimal labeling of G such that every leaf v of G that is adjacent to
u (if any) satisfies φ′(v) > φ′(u) (say this is a regular leaf). To prove that such
a labeling exists, assume by contradiction that this is not the case, and let φ′ be
chosen so as to minimize the number of leaves with φ′(v) < φ′(u). Denote v0 the
leaf with this property and such that φ′(v0) is maximum. By Lemma 1, we know
that cφ′(u) ≤ cφ′(v0), with cφ′(v0) = 1. We thus necessarily have cφ′(u) = 0
and cφ′(v0) = 1 by Lemma 2, {u, v0} being an edge in G. In this case, Lemma 5
ensures that some labels of φ′ may be swapped to ensure φ′(v0) > φ′(u), and that
these swaps do not affect regular leaves. But this contradicts the initial choice of
φ′. As a consequence, all the leaves adjacent to u are regular, and cφ′(u) ≥ Δ−2
since at most two neighbors of u are not leaves.

Now, let v (respectively w) be the right (respectively left) neighbor of u, if
it exists. Then, since u is the leftmost vertex in LR(G) with degree Δ, we have
dG(w) < Δ and dG(v) ≤ Δ. We transform φ′ into an optimal labeling φ such
that φ(u) < φ(w) and φ(u) < φ(v), in two steps. First, if φ′(u) < φ′(w), then we
define φ′′ = φ′. Otherwise, we have φ′(u) > φ′(w), and since u and w are adjacent,
we deduce that cφ′(u) < cφ′(w) by Lemmas 1 and 2. The remarks that cφ′(u) ≥
Δ − 2 and cφ′(w) ≤ Δ − 1 further imply that we necessarily have cφ′(u) = Δ − 2
and cφ′(w) = Δ − 1, thus allowing us to apply Lemma5 in order to deduce the
existence of an optimal labeling φ′′ with φ′′(u) < φ′′(w). Second, if φ′′(u) < φ′′(v),
then we define φ = φ′′. Otherwise, since u and v are adjacent, we deduce that
cφ′′(u) < cφ′′(v) by Lemmas 1 and 2. The remarks that cφ′′(u) ≥ Δ − 1 (we know
that φ′′(w) > φ′′(u)) and cφ′′(v) ≤ Δ further imply that we necessarily have
cφ′′(u) = Δ − 1 and cφ′′(v) = Δ, thus allowing us to apply Lemma5 in order to
deduce the existence of an optimal labeling φ with φ(u) < φ(v). Notice that the
label changes performed according to Lemma 5 do not affect the label of w. Then,
φ(u) < φ(x) for all the neighbors x of u, and thus cφ(u) = Δ. 	
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Proposition 1. Algorithm GreedyCat optimally solves the S-Labeling prob-
lem for any set of caterpillars of order n, in O(n log n) time.

Proof. By contradiction, assume the labeling φ obtained by GreedyCat is not an
optimal labeling. Let v1, v2 . . . vn be the vertices of G ordered such that φ(vi) = i.
Now, consider an optimal labeling φopt which maximizes the value k with the
property that φopt(vi) = φ(vi) (= i) for all i, 1 ≤ i ≤ k. Let Gk+1 be the
subgraph induced by {vk+1 . . . vn} in G.

According to GreedyCat, v1 . . . vn are labeled successively in this order, and
when vk+1 is labeled, it has maximum degree in Gk+1 and is the leftmost in
LR(G) with this property. It is easy to note that a labeling φ0 of G with φ0(vi) = i
for all i, 1 ≤ i ≤ k, is optimal for G if and only if the labeling φ1 of Gk+1, defined
by φ1(vi) = φ0(vi) − k for k + 1 ≤ i ≤ n, is optimal for Gk+1. This is due to
the constant cost of the edges {vi, vj} with i ≤ k or j ≤ k within SL(G). By
Lemma 7, there is an optimal labeling φ1 of Gk+1 such that φ1(vk+1) = 1. The
resulting labeling φ0(vi) = φ1(vi) + k for k + 1 ≤ i ≤ n, extended to G by
φ0(vi) = i for 1 ≤ i ≤ k, is then optimal and satisfies φ0(vi) = φ(vi) (= i) for all
i, 1 ≤ i ≤ k + 1. This contradicts the choice of φopt.

Concerning the complexity, the initial computation of LR(G) is done in O(n)
time by using traversals starting with a 1-degree vertex. The vertices occurring on
the horizontal line of the representation are then renumbered in increasing order
from left to right, whereas the leaves receive the remaining numbers. Then, for
each d = 0, 1, 2 . . . Δ, we store all vertices of degree d in a balanced BST denoted
B[d]. We furthermore need another balanced BST to store all the degrees d for
which B[d] is non-empty. It is easy to see that initializing all the BSTs is done
in global time of O(n log n) by n + Δ insertions taking O(log n) time each. The
update of the data structures we use involves, at each step, only the neighbors
of the vertex u removed from G. There are O(dG(u)) such neighbors, and the
operations take no more than O(log n) time for each neighbor, which yields the
required complexity. 	


5 Algorithmic Issues

This section contains two parts: the first one is devoted to approximating the
S-labeling problem, whereas the second part focuses on exact (i.e. exponential-
time algorithms.

Approximating the S-labeling Problem. We begin by giving accurate lower and
upper bounds of optimal labelings. For completeness, in Lemma8, we recall the
lower bound given in [9].

Lemma 8 [9]. For any graph G of order n, size m and maximum degree Δ,
SL(G) ≥ (m − Δ

2

⌊
m
Δ

⌋
)
(⌊

m
Δ

⌋
+ 1

)
.

Another general lower bound is given in Lemma9 below.
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Lemma 9. For any graph G of size m, let φ be any labeling of G, and |V +
φ | = k.

Then SLφ(G) ≥ k2−k+2m
2 .

Proof. Let φ be any labeling of G, and let |V +
φ | = k. Since every vertex in V +

φ

has a strictly positive contribution (by definition), summing these over the k

vertices in V +
φ adds up to k(k+1)

2 , and covers k edges. For the remaining m − k
edges in G, the best scenario is that they all are incident to the vertex having
label 1, which adds up to m − k. Hence the result. 	


We now turn to giving upper bounds for optimal labelings. The first two
upper bounds are achieved by the following generic greedy algorithm, that we
call GreedyGen: while G has edges, take a vertex u of maximum degree in G,
assign the smallest available label to u (starting from 1), and remove u and
its incident edges from G. Notice that a randomized algorithm achieving the
same general upper bound as in Lemma 10 was given in [9]. Here, we improve
this previous result by providing a deterministic algorithm, achieving the same
performances for general graphs, and improving them for acyclic graphs.

Lemma 10. For any graph G of order n and size m, Algorithm GreedyGen

computes, in O(m log n) time, a labeling φ such that SLφ(G) ≤ m(n+1)
3 . Further-

more, if G is acyclic with Δ ≥ 3, φ satisfies SLφ(G) ≤ m(n+1)
4 .

As a side remark, we observe that there exist classes of graphs for which
each of the previously given upper and lower bounds are reached. Indeed, for
any even n, SL(Cn) = n2+2n

4 = Δ� m
Δ �(� m

Δ �+1)

2 ; for any k ≤ m, SL(K1,m−k+1 ∪
(k−1)K2) = k2−k+2m

2 ; SL(Kn) = 1
6n(n2−1) = m(n+1)

3 ; and, finally, for any odd
n, SL(Pn) = m(n+1)

4 . Another general upper bound can be obtained by starting
from a vertex cover V ′ of G, and applying a greedy strategy, similar to the one
of Algorithm GreedyGen, but only taking into account vertices in V ′. Since all
vertices in V \V ′ have a zero contribution, they can be arbitrarily labeled from
|V ′| + 1 to n.

Lemma 11. For any graph G of order n and size m, let V ′ be a vertex cover
of G, with |V ′| = p. A labeling φV ′ satisfying SLφV ′ (G) ≤ 1

2m(p + 1) can be
computed in O(m log p) time.

We are now ready to state our results concerning approximation algorithms,
which essentially rely on using the proper upper and lower bounds among the
ones presented above. Some of these results improve or generalize the ones
from [9], others are new, and all are deterministic (as opposed to some results
from [9]). If G is a graph of size m and order n, we denote by d = 2m

n its average
degree. The first general result we have is the following.

Proposition 2. For any graph, GreedyGen is a 4Δ
3d -approximation algorithm

for the S-Labeling problem.
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Since we can always assume that G has no isolated vertices, we always have
d ≥ 1, and thus for any graph, we now that a 4Δ

3 approximation algorithm exists.
Concerning regular graphs, setting d = Δ in Proposition 2 yields the following
corollary.

Corollary 1. For any regular graph, GreedyGen is a 4
3 -approximation algo-

rithm for the S-Labeling problem.

Now, if we restrict ourselves to specific classes of graphs, we are able to obtain
better approximation ratios. Let F≤C (resp. F≥C) be the set of forests having
at most (resp. at least) C connected components.

Proposition 3. For any graph G, GreedyGen is an approximation algorithm
having the following ratios: (a) Δ

2 if G ∈ F≤Δ−1, provided Δ ≥ 3; (b) Δ if
G ∈ F≥Δ; (c) 2Δ

3 if G is connected.

We now give one more approximation algorithm, in relation to the Minimum
Vertex Cover problem. Let Gα

VC denote the class of graphs for which the
cardinality of a minimum vertex cover can be approximated within ratio α. The
following result concerns graphs belonging to that class.

Proposition 4. For any graph G in Gα
VC, there exist an αΔ-approximation algo-

rithm for the S-Labeling problem.

In particular, for all graphs for which a minimum vertex cover can be com-
puted in polynomial-time, the S-Labeling problem can be approximated within
ratio Δ.

Exact Algorithms. After having discussed approximation algorithms, we now
turn to exact algorithms. We first concentrate on exponential-time algorithms.

Proposition 5. For any graph G of order n and maximum degree Δ,
the S-Labeling problem is solvable in time O∗(1.44225nΔ), and in time
O∗(1.41422nΔ) if G is a tree.

Let G be a graph and φ ∈ Φopt(G) be an optimal labeling of G. For every
positive integer c �= 0, let V c

φ = {u : u ∈ V ∧ cφ(u) = c}, and, for any non-empty
V c

φ , let lcmin = min{φ(u) : u ∈ V c
φ } be the smallest label given by φ among the

vertices in G having contribution equal to c by φ. Because of Lemma 2, we have
the following corollary.

Corollary 2. For any graph G, let φ ∈ Φopt(G) be an optimal labeling of G.
Then V c

φ is a maximal independent set on the vertices of maximum degree in the
induced graph G[{v : φ(v) ≥ lcmin}].

Proof (of Proposition 5). We use a Δ-bounded search tree based algorithm. The
root of the search tree is labeled by (G, 0, ∅). We explore the tree as follows.
For a node (H, i, L), we consider all maximal independent sets on the maximum
degree vertices of H. For each maximal independent set V ′ = {u1, u2, . . . , uk},
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we get a child labeled (H ′, i+k, L′), where H ′ = H\V ′ and L′ = L∪{(uj , i+j) :
1 ≤ j ≤ k}. A leaf in the search tree is labeled (H, i, L) for some edgeless graph
H and it evaluates to

∑
{u,v}∈E min{φ(u), φ(v)}, where φ ∈ Φ(G) is obtained

from L in the natural way, i.e., for every u ∈ V , φ(u) = i if (u, i) ∈ L. The
optimal labeling is the minimum evaluation of a leaf of the search tree.

Correctness of the algorithm follows from Corollary 2. What is left is to prove
that the search tree has depth bounded by Δ(G). This is again a consequence of
Corollary 2, since the maximum degree of the graphs strictly decreases during the
exploration of the tree. The time complexity now follows from the following result
from [14]: any graph of order n contains at most 1.44225n maximal independent
sets, and these maximal independent sets can be enumerated in O∗(1.44225n)
time. Besides, if G is a tree, we know by [23] that the number of maximal
independent sets G is upper bounded by O((

√
2)n) (more precisely, the number

is 2n/2−1 + 1 if n is even, and 2(n−1)/2 is n is odd). 	

As a side remark concerning Corollary 2, note that it would be tempting

to push ahead and replace maximal by maximum in this corollary. However,
that is pushing the argument too far, even for trees. Indeed, consider the tree
given Fig. 2 with 3 maximum degree vertices. For one, starting from the unique
maximum independent set {u,w} on degree Δ = 3 vertices yields a labeling with
total sum 34. For another, starting from the other maximal independent set on
degree Δ = 3 vertices {v} yields a labeling with total sum 31.

5

1

u

6

3

v

4

2

w

7

3

u

4

1

v

2

w

5

Fig. 2. A graph G with three maximum degree vertices u, v and w, each of degree
Δ = 3. (Left) An S-labeling φ1 of G that starts with the unique maximum independent
set on maximum degree vertices of cardinality 2 (namely, {u, w}), optimally completed
with labels 3 to 8, yielding SLφ1(G) = 34. (Right) An S-labeling φ2 of G that starts
with the unique maximal independent set on maximum degree vertices of cardinality
1 (namely, {v}), optimally completed with labels 3 to 8, yielding SLφ2(G) = 31 <
SLφ1(G).

Now, note that for any graph G of order n and size m, SL(G) = Ω(m). But
since we can always assume G has no isolated vertices, n ≤ 2m and thus SL(G) =
Ω(n). Therefore, the S-labeling problem is fixed-parameter tractable [21] for
any graph G, when the parameter is the size of the solution SL(G). However,
the above result relies on a parameter whose value can be considered as too
high. Thus, we focus on the following problem: Given a graph G = (V,E) of
size |E| = m and a positive integer k, is there a labeling φ ∈ Φ(G) such that
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SLφ(G) ≤ m + k? We need the following result that gives a lower bound for
SLφ(G) in terms of |V +

φ |.
Lemma 12. For any graph G of size m, let φ ∈ Φ(G) be a labeling of G such
that SLφ(G) ≤ m + k for some positive integer k. Then |V +

φ | ≤ 2
√

k.

Proof. Let G = (V,E) be a graph and φ ∈ Φ(G) be a labeling of G such that
SLφ(G) ≤ |E| + k for some positive integer k. By Lemma 9, we know that

SLφ(G) ≥ |V +
φ |2−|V +

φ |+2m

2 , which yields |V +
φ |2 − |V +

φ | ≤ 2k. Solving this second

degree inequality leads to |V +
φ | ≤ x, where x = 1+

√
8k+1
2 . A simple computation

then shows that x ≤ 2
√

k for any positive integer k, which proves the result. 	

Proposition 6. For any graph G of size m and any positive integer k, it can
be decided in O∗(22

√
k (2

√
k)!) time whether SL(G) ≤ m + k.

In the above proposition, it is worth noticing that k ≥ m(n−4)
4 for regular

graphs (see Lemma 8), and hence Proposition 6 does not give fixed-parameter
tractability for the above-guarantee parameterization variant [11,20]. However,
supposing G is of order n, we now determine how Proposition 6 compares to
the brute-force O∗(n!) time algorithm. First, we have SL(G) ≤ mn, therefore
SL(G) ≤ m+k implies k ≤ mn−m = m(n−1) ≤ n(n−1)2

2 , and hence k = O(n3).
We now need the following lemma.

Lemma 13. For positive x and n, if 2xx! = n! then x = Θ(n).

Substituting x by 2
√

k in Lemma 13 yields k = Θ(n2). Since 2xx! is an
increasing function, we conclude that Proposition 6 improves on the brute-force
O∗(n!) time algorithm for any k, up to Θ(n2).

6 Conclusion

We would like to end this paper with several open problems. First, what is
the complexity of the S-labeling problem for trees, forests, or more generally
bipartite graphs? Second, does there exist a PTAS for the S-labeling problem,
for any graph G, or at least for specific classes of graphs? The same question
holds for constant approximation ratios.
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