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Preface

This volume contains revised versions of papers presented at the 26th International
Workshop on Combinatorial Algorithms (IWOCA 2015), held October 5–7, 2015, in
Verona, Italy.

IWOCA 2015 continued a long and well-established tradition of encouraging
high-quality research in theoretical computer science and providing an opportunity to
bring together specialists and young researchers working in the area. The IWOCA
conference series grew out of a 17-year history of the Australasian Workshop on
Combinatorial Algorithms (AWOCA). Previous AWOCA and IWOCA meetings have
been held in Australia, Indonesia, South Korea, Japan, Czech Republic, Canada, UK,
India, France, and the USA.

We solicited high-quality papers in the broad area of combinatorial algorithms. Topics
included: algorithms and data structures (including sequential, parallel, distributed,
approximation, probabilistic, randomized, and on-line algorithms); algorithms on strings
and graphs; applications (bioinformatics, music analysis, networking, and others); com-
binatorics on words; combinatorial enumeration; combinatorial optimization; complexity
theory; computational biology; compression and information retrieval; cryptography and
information security; decompositions and combinatorial designs; discrete and computa-
tional geometry; graph drawing and labelling; graph theory.

The Program Committee decided to accept 30 papers, out of a total of 90 sub-
missions. One paper was later withdrawn by the authors. Each submission received at
least three, and at most seven reviews. Papers were submitted and reviewed using the
EasyChair online system. Authors of accepted papers come from 19 countries, on four
continents (Asia, Europe, North America, South America).

The scientific program included three invited lectures, given by:

– Béla Bollobás on “Monotone Cellular Automata”
– Frank Ruskey on “Recent Results about Venn Diagrams”
– Esko Ukkonen on “Identifiability of a String from Its Substrings”

We thank the invited speakers for accepting our invitation and for their excellent
presentations at the conference.

The program also included an open problem session, chaired by Martin Milanič and
Romeo Rizzi, where seven open problems were presented. These can be found at the
open problem collection of IWOCA at http://iwoca.org. This year for the first time, we
had a Best Student Paper Award, sponsored by the European Association for Theo-
retical Computer Science (EATCS). The Program Committee decided to assign this
award to the paper “The k-Leaf Spanning Tree Problem Admits a Klam Value of 39”
by Meirav Zehavi.

We thank all authors who submitted their work for consideration to IWOCA 2015.
We wish to thank the Program Committee and the 153 external reviewers, whose many

http://iwoca.org


thorough reviews helped us select the papers to be presented at IWOCA 2015. The
success of the scientific program is due to their hard work.

We also thank the EATCS (European Association for Theoretical Computer Sci-
ence), the EATCS Italian Chapter, and the AICA (Associazione Italiana per l’Infor-
matica ed il Calcolo Automatico), for their support of the conference.

IWOCA 2015 was organized by the Department of Computer Science of the
University of Verona, whose administrative and financial support we gratefully
acknowledge.

November 2015 Zsuzsanna Lipták
William F. Smyth
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Monotone Cellular Automata

Béla Bollobás

University of Cambridge, UK, and
University of Memphis, TN, USA

Cellular automata, introduced in the 1940s by von Neumann, are interacting particle
systems. In its simple form, we have a set of sites arranged in a grid-like fashion, with
each site in one of finitely many states. Starting with such an ‘initial configuration’, at
each time-step the system updates itself according to some fixed local rule: each site
goes into a state that depends only on the states of a few nearby sites. Examples include
the Ising model of ferromagnetism and simple models of the brain.

A cellular automaton with states 0 and 1, say, is monotone if every site in state 1
remains in state 1 forever. One of the simplest monotone cellular automata is bootstrap
percolation with infection parameter r, introduced in 1979 by Chalupa, Leith and
Reich. This process is an oversimplified model of the spread of an infection on a graph
(with 0 meaning ‘healthy’ and 1 ‘infected’), in which a healthy site gets infected if it
has at least r infected neighbours. By now, there is a huge literature of bootstrap
percolation, with most of the early results due to probabilists, statistical physicists, and
computer scientists, and many recent results proved by combinatorialists. I shall present
some basic facts about bootstrap percolation, and will describe some important theo-
rems due to Aizenman, Lebowitz, Cerf, Manzo, Cirillo and Holroyd, culminating in
some substantial results I have proved with Balogh, Duminil-Copin and Morris.

Recently, with Smith and Uzzell, I introduced a far-reaching generalization of
bootstrap percolation on lattices and lattice-like finite graphs. The only assumptions we
made about such a process is that it is local, homogeneous and monotone. Surprisingly,
much can be proved about these very general processes on Z2; in particular, Smith,
Uzzell, Balister, Przykucki and I classified them into three classes, and proved much
about the critical probability in each class. Very recently, Duminil-Copin, Morris,
Smith and I have proved much more precise results about the most important class in
the classification.

In my lecture, aimed at non-specialists, I shall give a brief introduction to some
aspects of cellular automata. I shall assume very little and will keep my lecture simple.



Recent Results About Venn Diagrams

Frank Ruskey

University of Victoria, Canada

An n-Venn diagram is a collection of n simple closed curves in the plane that divide it
into 2n non-empty regions, one unique region per possible intersection of the
interiors/exteriors of the curves. If the curves lie in general position; i.e., so that at most
2 curves intersect at a point then it is unknown whether rotationally symmetric dia-
grams exist for every prime n (the primality of n being an easily proved necessary
condition). However, if curves can intersect at 3 or more curves, rotationally symmetric
diagrams exist for prime n, and the proof relies on a modification of the classic
symmetric chain decomposition of the Boolean lattice. In this talk this proof and later
developments, such as the enumeration of symmetric Venn diagrams, will be surveyed.
Additional open problems in the area of Venn diagrams will be discussed; e.g., can a
new curve always be added to a Venn diagram to get a new Venn diagram?



Identifiability of a String from Its Substrings

Esko Ukkonen1

University of Helsinki, Finland

A classic algorithmic challenge in biological sequence analysis, the genome assembly
problem asks one to reconstruct the DNA sequence from the short fragments (called
reads) that a DNA sequencing instrument samples from the original sequence. The
reads are produced in massive amounts but with some reading errors.

The talk discusses the exact version of the problem in which the reads are noiseless.
Given a collection F of reads (substrings) sampled from an unknown target string T, the
problem is to reconstruct T from F. If F covers the entire T several times and if the
repeated substrings of T are contiguously covered by the reads in F, the reconstruction
becomes straightforward: Just superpose the reads as suggested by their matching
suffixes and prefixes. If, however, there are repeats that are longer than the reads – as is
often the case for DNA sequences – the reconstruction becomes ambiguous because
there may be several different reconstructions suggested by the reads.

We demonstrate that identifying a unique solution is possible from F, if F is the full
k-mer spectrum of T and T does not contain any 3-repeats of length k–1 and not any
interleaved pair of 2-repeats of length k–1. A finite-state automaton-like representation
of the pairwise overlaps of the reads is introduced such that the unique identifiability of
T reduces to the uniqueness of the Eulerian path in this representation. Generalization
for more realistic F with variable-length reads and non-uniform coverage is considered.

References

1. Bresler, G., Bresler, M., Tse, D.: Optimal assembly for high throughput shotgun sequencing.
BMC Bioinform. 14(Suppl. 5), S18 (2013)

2. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(Suppl. 2), ii79–ii85
(2005)

3. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment
assembly. PNAS 98, 9748–9753 (2001)

4. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches. Theor.
Comput. Sci. 92, 191–211 (1992)

1Supported by European Commission grant SYSCOL (UE7-SYSCOL-258236).
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Speeding Up Cover Time of Sparse Graphs
Using Local Knowledge

Mohammed Amin Abdullah1(B), Colin Cooper2, and Moez Draief1,3

1 Mathematical and Algorithmic Sciences Laboratory,
Huawei Technologies Co., Shenzhen, China

mohammed.abdullah@huawei.com
2 Department of Informatics, King’s College London, London, UK

colin.cooper@kcl.ac.uk
3 Imperial College London, London, UK

m.draief@imperial.ac.uk

Abstract. We analyse the cover time of a random walk on a random
graph of a given degree sequence. Weights are assigned to the edges of
the graph using a certain type of scheme that uses only local degree
knowledge. This biases the transitions of the walk towards lower degree
vertices. We demonstrate that, with high probability, the cover time is
at most (1 + o(1)) d−1

d−2
8n log n, where d is the minimum degree. This is

in contrast to the precise cover time of (1 + o(1)) d−1
d−2

θ
d
n log n (with high

probability) given in [1] for a simple (i.e., unbiased) random walk on the
same graph model. Here θ is the average degree and since the ratio θ/d
can be arbitrarily large, or go to infinity with n, we see that the scheme
can give an unbounded speed up for sparse graphs.

Keywords: Random walks · Random graphs · Network exploration

1 Introduction

A simple random walk Wu = Wu(t), t = 0, 1, . . . on a graph G starting from a
vertex u is a sequence of movements from one vertex to another where at each
step an edge is chosen uniformly at random from the set of edges incident on
the current vertex, and then transitioned to next vertex. Various quantities of
interest related to the behaviour of the walk can be studied. For example, the
hitting time H[u, v] of v is the expected number of steps until Wu visits v for the
first time. That is, H[u, v] = E[min{t ∈ N0 : Wu(t) = v}] (note, by definition,
H[u, u] = 0). The maximum hitting time is maxu,v H[u, v].

Another quantity of interest, and the primary focus of this paper, is the
cover time COV[G]: denoting by COVu[G] the expected time it takes Wu to
visit every vertex, COV[G] = maxu COVu[G].

For simple random walks, asymptotically tight bounds for cover time were
given by [6,7]:

(1 + o(1))n log n ≤ COV[G] ≤ (1 + o(1))
4
27

n3,

c© Springer International Publishing Switzerland 2016
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and these lower and upper bounds are met by the complete graph and the lollipop
graph respectively.

It is also natural to define random walks on a weighted graph G = (V,E,w),
where w is a function mapping edges to strictly positive values w : E → R

+. A
weighted random walk on a vertex u transitions an edge (u, v) with probability
w(u, v)/w(u). Simple random walks are a special case where w is a constant
function, and we may refer to them as unweighted walks.

The study of random walks on general weighted graphs is less developed than
the special case of unweighted graphs, and it is not difficult to formulate many
open questions on their behaviour. In particular, what bounds exist for hitting
times and cover time? This was addressed in part by [8]. The investigation is
framed as follows. For a graph G, let P(G) denote the set of all transition
probability matrices for G, that is, stochastic matrices that respect the graph
structure, i.e. if P ∈ P(G) is a transition matrix on G, we have Pu,v �= 0 if and
only if (u, v) ∈ E.

For P ∈ P(G), let HG(P ) denote the maximum hitting time in G with
transition matrix P , and CG(P ) similarly for cover time. Let

HG = inf
P∈P(G)

HG(P ) and CG = inf
P∈P(G)

CG(P ).

Note that if for a graph G one knows a spanning tree TG, a transition matrix
P can be constructed that gives a simple random walk on TG, and ignores all
other edges of G. By a “twice round the spanning tree” argument of the type
employed in [3], this implies a O(n2) upper bound on HG and CG.

In [8], it is shown that for a path graph Pn, any transition matrix will have
Ω(n2) maximum hitting time (and therefore, cover time). This, in conjunction
with the spanning tree argument, implies Θ(n2) for both HG and CG.

One can also ask the question about the minimum local topological infor-
mation on the graph G that is always sufficient to construct a transition matrix
that ‘achieves’ this upper bound for both HG and CG. Our goal is to devise
a particular weighting scheme that gives O(n2) maximum hitting time for any
graph. In [8], the transition probability of edge e = (u, v) is defined as follows:

Pu,v =

⎧
⎨

⎩

1/
√

d(v)
∑

w∈N(u) 1/
√

d(w)
if v ∈ N(u)

0 otherwise

where d(v) is the degree of v and N(v) is the neighbour set of v.
We will refer to this as the Ikeda scheme. It results in an O(n2 log n) upper

bound on the cover time for any connected n-vertex graph G. The rationale
behind this scheme is that, at a high degree vertex, the biased walk transition
favours low degree neighbours, speeding up their exploration and addressing the
shortcoming of simple random walks for which low degree nodes are hard to
reach.

In the algorithmic context of graph exploration, simple random walks are
generally considered to have the benefit of not requiring information beyond



Speeding up Cover Time of Sparse Graphs Using Local Knowledge 3

what is needed to choose the next edge uar. Generally, this implies that a token
making the walk can be assumed to know the degree of the vertex it is currently
on, but no more information about the structure of the graph. In the Ikeda
scheme, information required in addition to the vertex degree, is the degrees of
neighbouring vertices.

Whilst the speed up given by the Ikeda scheme is clear for graphs such as the
lollipop, which has a cover time of Θ(n3), it is not clear how much of an advantage
it gives over the simple random walk for sparse graphs. Clearly for regular graphs
there can be no difference, but what of graphs that have some variation in vertex
degree but are still sparse and perhaps even fairly homogeneous? The main aim
of this paper is to answer this question for a different local weighting scheme:
for G = (V,E), assign each edge (u, v) weight w(u, v) = 1/min{d(u), d(v)}
(equivalently, each edge is assigned resistance r(u, v) = min{d(u), d(v)}). This
weighting scheme defines the following transition matrix of a weighted random
walk:

Pu,v =

{
w(u,v)∑

w∈N(u) w(u,w) if v ∈ N(u)

0 otherwise
(1)

where w(u, v) = 1/min{d(u), d(v)}.
We may, as a matter of convenience, say that w(u, v) = 0 if (u, v) /∈ E in

calculations of transition probabilities. We call this scheme the minimum degree
(or min-deg) scheme. It uses limited local graph information as the Ikeda scheme
and provides similar general bounds on the hitting time and cover time of O(n2)
and O(n2 log n) respectively. Additionally, however, we show that it can provided
an arbitrarily large or unbounded speed up for sparse graphs.

Notation and Terminology

For a graph G = (V,E), let n = |V | and m = |E|. Asymptotic quantities are
with respect to n. A sequence of events (En)n on probability spaces indexed by
the number of vertices n occurs with high probability (whp) if Pr(En) → 1 as
n → ∞. For a vertex v ∈ V , dv = d(v) is the degree of v and N(v) is the set of
v’s neighbours. For a random walk Wu on a (weighted or unweighted) graph G,
the stationary distribution, should it exist, is denoted by π, and πv = π(v) is the
stationary probability for vertex v. We use the phrases “weighted random walk
on a graph G” and “random walk on a weighted graph G” interchangeably. We
shall introduce further notation as needed.

Due to space constraints, some proofs are omitted.

2 General Bounds for the Minimum Degree Weighting
Scheme

In this section, we prove an upper bound of O(n2) and O(n2 log n) on the hitting
time and cover time, respectively, for the minimum degree scheme with transition
matrix (1).
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The proof of O(n2) hitting time in [8] applies the following, generally useful
lemma (proof omitted).

Lemma 1. For any connected graph G and any pair of vertices u, v ∈ V , let
ρ = (x0, x1, . . . , x�) where x0 = u and x� = v be a shortest path between u and
v. Then

�∑

i=0

d(xi) ≤ 3n

where d(x) is the degree of vertex x.

In addition, we have that

Lemma 2. For the minimum degree scheme, let w(G) =
∑

u∈V

∑
v∈N(u)

w(u, v). Then
n ≤ w(G) ≤ 2n. (2)

Consequently,

Theorem 1. For a graph G = (V,E,w) under the min-deg weighting scheme,
H[u, v] ≤ 6n2 for any pair of vertices u, v ∈ V .

By Matthews’ technique [13], we obtain

Corollary 1. COV[G] = O(n2 log n).

The authors of [8] conjecture that their weighting scheme in fact gives an O(n2)
upper bound on cover time. To our knowledge, no weighting scheme has been
shown to meet an O(n2) bound on all simple, connected and undirected graphs.
We believe that our weighting scheme provides a similar bound and conjecture so:

Conjecture 1. The minimum degree weighting scheme has O(n2) cover time on
all graphs G.

3 Random Graphs of a Given Degree Sequence

From here on we study a sequence of random graphs on n vertices, where n goes
to infinity.

Define G(dn) to be the set of connected simple graphs on the vertex set
V = [n] and with degree sequence dn = (d(n)

1 , d
(n)
2 , . . . , d

(n)
n ) where d

(n)
i = d(i) is

the degree of vertex i ∈ V . Clearly, restrictions on degree sequences are required
in order for the model to make sense. An obvious one is that the sum of the
degrees in the sequence cannot be odd. Even then, not all degree sequences are
graphical and not all graphical sequences can produce simple graphs. Take for
example the two vertices v and w where dv = 3 and dw = 1. In order to study
this model, we restrict the degree sequences to those which are nice and graphs
which have nice degree sequences are termed the same. The precise definition is
given below.
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Let
ω = ωn = log log log n.

For a degree sequence dn, Let d = d(dn) = d
(n)
1 be the minimum, θ = θ(dn)

the average and Δ = Δ(dn) = d
(n)
n the maximum of the entries in dn. Let

nd =
∑n

i=1 1{d(i)=d}, that is, the total number of entries in dn with value d. We
emphasise that d can grow with n – it need not be a fixed integer.

A sequence (dn)n of degree sequences is nice if the following conditions are
satisfied: For each dn, (i) nθ is even, (ii) d ≥ 3, (iii) Δ ≤ ω1/4, and (iv) for
some constant α ∈ (0, 1], nd/n → α as n → ∞.

Condition (ii) ensures the graph is connected (whp), and condition (iii) is
required for our proofs in subsequent lemmas.

To understand condition (iv) consider that without it, the sequence of degree
sequences could result in sequences of random graphs that have wildly different
cover times. As such we may not have convergence. The condition itself is fairly
liberal – we do not require the that the degree sequence as a whole converges to
a fixed distribution, nor even that d converges to some fixed constant.

Examples of nice sequences/graphs are: Any d-regular graph where d ≤ ω1/4;
a graph where a positive fraction of the vertices have bounded degree at least 3
and the rest have unbounded degree at most ω1/4; a truncated power-law graph
with minimal degree at least 3 and maximal degree at most ω1/4.

In [1], the authors prove the following asymptotic result on the cover time of
simple random walks on nice graphs:

Theorem 2 ([1]). Let (dn)n be nice and let G be chosen uar from G(dn). Then
whp,

COV[G] = (1 + o(1))
d − 1
d − 2

θ

d
n log n, (3)

where d is the effective minimum degree and θ is the average degree.

The effective minimum degree is the smallest integer d which satisfies condition
(iv) above. It coincides with the minimum degree in our context.

We prove the following:

Theorem 3. Let (dn)n be nice and let G be chosen uar from G(dn). Weight
the edges of G with the min-deg weighting scheme, that is, for an edge (u, v),
assign it weight w(u, v) = 1/min{d(u), d(v)}. Denote the resulting graph Gw.
Then whp,

COV[Gw] ≤ (1 + o(1))
d − 1
d − 2

8n log n. (4)

where d is the minimum degree.

Note that the assumptions on the degree sequence allow for the ratio θ/d to
be unbounded. As such, the ratio of the min-deg cover time to the simple cover
time, that is, the speed up, can be unbounded.

Typical Graphs. Our analysis requires that graphs G taken from G(dn) have
certain structural properties. The subset of graphs G′(dn) having these properties
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form a large proportion of G(dn), in fact, |G′(dn)|/|G(dn)| = 1 − n−Ω(1) when
(dn)n is nice [1]. We term graphs in G′(dn) for (dn)n nice as typical, so a graph
G drawn uar from G(dn) will be typical whp.

We need not list all the properties of typical graphs, but we shall use their
useful consequences, amongst which are that they are connected, simple, and
non-bipartite.

4 Convergence to the Stationary Distribution

In this section we begin with a brief overview of results on Markov chains and
random walks on (weighted) graphs. For details, we refer the reader to, e.g.,
[2,10,11].

Since a weighted random walk on G = (V,E,w) is a reversible Markov chain,
we can apply standard results for these types of processes. For example, if G
is non-bipartite, then the walk converges to a stationary distribution π, where
πu = π(u) = w(u)/w(G).

Furthermore, the rate of convergence is related to the absolute spectral gap -
the difference between the largest eigenvalue, 1 and second largest (in magnitude)
eigenvalue λ∗ of the probability transition matrix of the walk. Specifically, if
P

(t)
u (v) = Pr(Wu(t) = v) then

|P (t)
u (v) − πv| ≤

√
πv

πu
λt

∗. (5)

If the walk is made lazy, that is, if we append a looping probability of 1/2 and
scale all other transition probabilities accordingly, then the largest eigenvalue
remains 1 and second eigenvalue λ2 is guaranteed to be the second largest in
absolute terms. We can then apply the following result, proved independently in
[9,12]:

Theorem 4 ([9], [12]). Let λ2 be the second largest eigenvalue of a reversible,
aperiodic transition matrix P. Then

Φ2

2
≤ 1 − λ2 ≤ 2Φ (6)

where Φ is the conductance.

Corollary 2.

|P (t)
u (v) − πv| ≤

√
πv

πu

(

1 − Φ2

2

)t

. (7)

Conductance is defined as follows:

Definition 1 (Conductance). Let M be an irreducible, aperiodic Markov
chain on some state space Ω. Let the stationary distribution of M be π with
π(x) denoting the stationary probability of x ∈ Ω. Let P be the transition
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matrix for M. For x, y ∈ Ω let Q(x, y) = π(x)Px,y and for sets A,B ⊆ Ω,
let Q(A,B) =

∑
x∈A,y∈B Q(x, y). The conductance of M is the quantity

Φ = Φ(M) = min
S⊆Ω

π(S)≤1/2

Q(S, S)
π(S)

(8)

where π(S) =
∑

x∈S π(x), and S = Ω \ S.

For a graph G weighted by function w, we write Φ(Gw) for the conductance of
the weighted random walk on G.

Making the walk lazy halves the conductance and doubles the important
quantity Rv, which we shall define and elaborate upon below. It also doubles
the cover time.

In fact, we do not need to maintain a lazy walk all the time, but will do so
only for the duration of the mixing time T which we define as follows:

T = ω2 log n. (9)

Informally, the mixing time is how long it takes for the distribution of a Markov
chain to be close to the stationary distribution. After the mixing time, we can
revert to the non-lazy walk. It will be seen that the lazy steps during the mixing
time will have negligible impact on the asymptotic cover time, since, being poly-
logarithmic, it is short compared to other quantities such as hitting time which
are linear in n and dominate over it.

More precisely, we show below that for most nice graphs, for any t ≥ T

|P (t)
u (x) − πv| ≤ 1

n3
, (10)

for any vertices u and v in G. This is a corollary of the following lemma:

Lemma 3. Let (dn)n be nice and let G be chosen uar from G(dn). Let Gw be
G weighted with the min-deg weighting scheme. Then Φ(Gw) ≥ 1/(100Δ) whp,
where Δ is the maximum degree.

We will consider the condition Φ(Gw) ≥ 1/(100Δ) to be one of the typical
properties.

Corollary 3. For a random walk on a weighted typical graph G, we have for
t ≥ T ,

|P (t)
u (v) − πv| ≤ n−3,

where P
(t)
u (v) is the probability that the minimum degree random walk is at node

v at time t, given that it started at node u.
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5 First Visit Lemma

The hitting time from the stationary distribution, H[π, v] =
∑

u∈V πuH[u, v],
can be expressed as H[π, v] = Zv,v/πv, where

Zv,v =
∞∑

t=0

(P (t)
v (v) − πv), (11)

see e.g. [2]. For a (weighted or unweighted) random walk Wv, starting from v
define

Rv(T ) =
T−1∑

t=0

P (t)
v (v). (12)

Thus Rv is the expected number of returns made by Wv to v during the mixing
time, in the graph G. We note that Rv ≥ 1, as P

(0)
v (v) = 1.

Let D(t) = maxu,x |P (t)
u (x) − πx|. As πx ≥ 1/n2 for any vertex of a simple

graph, (10) implies that D(t) ≤ πx for all x ∈ V if t ≥ T .

Lemma 4. For a random walk Wu on a graph G (weighted or unweighted),
suppose T satisfies (10). Let vertex v ∈ V be such that Tπv = o(1), and πv < 1/2,
then

H[π, v] = (1 + o(1))
Rv(T )

πv
. (13)

Let At(v) denote the event that Wu does not visit v in steps 0, ..., t. We next
derive a crude upper bound for Pr(At(v)) in terms of H[π, v].

Lemma 5. For a random walk Wu on a graph G (weighted or unweighted),
suppose T satisfies (10), then

Pr(At(v)) ≤ exp
(−(1 − o(1))
t/τv�

2

)

,

where τv = T + 2H[π, v].

In order to apply Lemma 5, we shall need to show that the conditions of
Lemma 4 are satisfied, and we will need to bound Rv. We start off by bounding
the stationary distribution:

Lemma 6. For a vertex u,

1
2n

≤ πu ≤ d(u)
n

. (14)

Corollary 4. Tπu = o(1).

We see that for nice degree sequences, the conditions of Lemma 4 are satisfied.
It remains to bound Rv, the expected number of returns in the mixing time.
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5.1 The Number of Returns in the Mixing Time

Let Γv denote the subgraph of G induced by all vertices within distance ω of
v. From [1], and in conjunction with the restriction Δ ≤ ω1/4, we have the
following, which we shall consider to be a typical property:

Proposition 1 ([1]). With high probability, Γv is either a tree or has a unique
cycle.

Let Γ ◦
v be the set of vertices in Γv that are at distance ω from v.

Lemma 7. Suppose Gw is typical and weighted with the min-degree scheme. Let
W∗

v denote the (weighted) walk on Γv starting at v with Γ ◦
v made into absorbing

states. Assume further that there are no cycles in Γ ◦
v . Let R∗

v =
∑∞

t=0 r∗
t where

r∗
t is the probability that W∗

v is at vertex v at time t. Then

Rv = R∗
v + O(

√
ωe−Ω(

√
ω)).

We apply this in the proof of the following lemma:

Lemma 8. Suppose Δ ≤ ω1/4, Gw is typical and weighted with the min-degree
scheme. Let v be a vertex in Gw.

(a) If Γv is a tree, Rv ≤ d−1
d−2 + O(

√
ωe−Ω(

√
ω)).

(b) Rv ≤ d
d−2

d−1
d−2 + O(

√
ωe−Ω(

√
ω)) ≤ 6 + O(

√
ωe−Ω(

√
ω)).

5.2 The Number of Vertices Not Locally Tree-Like

We wish to bound the number of vertices v that are not locally tree-like, i.e., for
which Γv has a cycle.

Lemma 9. Suppose G ∈ G(d) is drawn uar. With probability at least 1−n−Ω(1),
the number of vertices not locally tree-like is at most n1/10.

6 Upper Bound on the Cover Time

Let the random variable cu be the time taken by the (weighted) random walk
Wu starting from vertex u to visit every vertex of a connected (weighted) graph
G. Let Ut be the number of vertices of G which have not been visited by Wu by
step t. We note the following:

COVu[G] = E[cu] =
∑

t>0

Pr(cu ≥ t), (15)

Pr(cu ≥ t) = Pr(cu > t − 1) = Pr(Ut−1 > 0) ≤ min{1,E[Ut−1]}. (16)

Recall that As(v) is the event that vertex v has not been visited by time s. It
follows from (15), (16) that

COVu[G] ≤ t + 1 +
∑

s≥t

E[Us] = t + 1 +
∑

v

∑

s≥t

Pr(As(v)). (17)
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We use Lemmas 4 and 5, which hold for weighted random walks (see Chap. 2,
General Markov Chains, in [2] for justification of (11) and the inequality D(s +
t) ≤ 2D(s)D(t). All other expressions in the proofs hold for weighted random
walks). Thus,

Pr(At(v)) ≤ exp
(−(1 − o(1))
t/τv�

2

)

,

where τv = T + 2H[π, v] and H[π, v] = (1 + o(1))Rv/πv.
Hence, for a given v,

∑

s≥t

Pr(As(v)) ≤
∑

s≥t

exp
(−(1 − o(1))
s/τv�

2

)

≤ τv

∑

s≥�t/τv
exp

(−(1 − o(1))s
2

)

≤ 3τv exp
(−(1 − o(1))

2

⌊
tπv

Tπv + (1 + o(1))2Rv

⌋)

.

Since Tπv = o(1) and πv ≥ 1/2n from (14), we get

∑

s≥t

Pr(As(v)) ≤ 3τv exp
(−(1 − o(1))

2

⌊
t

(1 + o(1))4nRv

⌋)

Let t = t∗ = (1 + ε)8d−1
d−2n log n where ε → 0 sufficiently slowly. Then

∑

s≥t

Pr(As(v)) ≤ 3τv exp
(

−(1 + Θ(ε))
d − 1
d − 2

log n

Rv

)

(18)

We partition the double sum
∑

v

∑
s≥t Pr(As(v)) from (17) into

∑

v∈VA

∑

s≥t

Pr(As(v)) +
∑

v∈VB

∑

s≥t

Pr(As(v))

where VA are locally tree-like and VB are not.
If v is locally tree-like, then using Theorem 8 (a), the RHS of (18) is

bounded by

3τvn−(1+Θ(ε)) = 3(T + 2(1 + o(1))Rv/πv)n−(1+Θ(ε)) = O(1)n−Θ(ε).

Thus, ∑

v∈VA

∑

s≥t

Pr(As(v)) ≤ O(1)n1−Θ(ε) = o(t). (19)

For any v (i.e., including those not locally tree-like), (18) is bounded by

3τvn−(1+Θ(ε)) d−1
6(d−2) ≤ O(1)n1−(1+Θ(ε)) d−1

6(d−2) (20)
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Using Lemma 9 to sum the bound (20) over all non locally tree-like vertices,
we get

∑

v∈VB

∑

s≥t

Pr(As(v)) ≤ O(1)n
1
10+1−(1+Θ(ε)) d−1

6(d−2) = O(n
1
2 ) = o(t). (21)

Hence, combining (17), (19) and (21) for t = t∗, Theorem 3 follows.
Compare this with (3), we see that the speed up,

S =
COV[G]
COV[Gw]

= Ω(θ),

Therefore S → ∞ as n → ∞ if θ → ∞ as n → ∞. That is, we can have an
unbounded speed up.

We conjecture that the following tighter bound holds:

Conjecture 2. Equation (4) can be replaced by

COV[Gw] ≤ (1 + o(1))
d − 1
d − 2

n log n.
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Abstract. In activation network problems we are given a directed or
undirected graph G = (V,E) with a family {fuv : (u, v) ∈ E} of
monotone non-decreasing activation functions from D2 to {0, 1}, where
D is a constant-size subset of the non-negative real numbers, and the
goal is to find activation values xv ∈ D for all v ∈ V of minimum total
cost

∑
v∈V xv such that the activated set of edges satisfies some con-

nectivity requirements. We propose an algorithm that optimally solves
the minimum activation cost of k edge-disjoint st-paths (st-MAEDP)

problem in O(|V ||D|tw+1tw3(k + 1)(tw+3)2(tw+3)
(tw + 3)2(tw+3)+3) time

for graphs with treewidth bounded by a constant tw.

1 Introduction

The activation network setting can be defined as follows. We are given a directed
or undirected graph G = (V,E) together with a family {fuv : (u, v) ∈ E} of
monotone non-decreasing activation functions from D2 to {0, 1}, where D is a
constant-size subset of the non-negative real numbers, such that the activation
of an edge depends on the chosen values from the domain D at its endpoints. An
edge (u, v) ∈ E is activated for chosen values xu and xv if fuv(xu, xv) = 1, and
the activation function fuv is called monotone non-decreasing if fuv (xu, xv) = 1
implies fuv (yu, yv) = 1 for any yu ≥ xu, yv ≥ xv. The objective of activa-
tion network problems is to find activation values xv ∈ D for all v ∈ V such
that the total activation cost

∑
v∈V xv is minimized and the activated set of

edges satisfies some connectivity requirements. Activation problems generalize
several problems studied in the network literature such as power optimization,
minimum broadcast tree and installation cost optimization. Several activation
problems have been studied for arbitrary graphs in the recent research literature.
Unfortunately, many of these problems are computationally hard. Obtaining a
polynomial-time approximation algorithm is a typical approach to deal with an
NP-hard problem. Another important approach is studying the problem on graph
classes with nice decomposition properties such as bounded treewidth graphs to
determine efficient algorithms. Panigrahi [8] shows that the fundamental problem
of finding minimum activation k edge-disjoint st-paths (st-MAEDP) is NP-hard.
It is an interesting area of research to investigate this problem for graphs with
treewidth bounded by a constant tw. In this paper, we focus on developing a
c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 13–24, 2016.
DOI: 10.1007/978-3-319-29516-9 2
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polynomial-time algorithm that optimally solves the st-MAEDP for graphs of
bounded treewidth. (Note that k is not a constant but part of the input.)

Related Work. Activation network problems were first introduced by Panigrahi
in [8] and various of these problems have been investigated in [1,2,6–8]. The
minimum activation st-path (MAP) problem is optimally solvable in polynomial-
time [8]. However, the minimum spanning activation tree (MSpAT) problem is
NP-hard to approximate within a factor of o(log n) and there exists a O(log n)-
approximation algorithm for this problem [8]. Activation network problems gen-
eralize several problems studied in the network literature such as power opti-
mization problems, which are modelled by a graph G = (V,E) where each edge
(u, v) in G is assigned a threshold power requirement θuv. For undirected graphs,
an edge (u, v) is activated for chosen values xu and xv if each of these values
is at least θuv, and it is activated if xu ≥ θuv for the directed case. The mini-
mum power st-path (MPP) problem can be solved in polynomial time for both
directed and undirected graphs [5]. For directed graphs, the minimum power
k node-disjoint st-paths problem is also optimally solvable in polynomial time
[4,11]. However, the minimum power k edge-disjoint st-paths problem is unlikely
to admit even a polylogarithmic approximation algorithm for both the directed
and undirected variants [4].

There is a 2k-approximation algorithm for the st-MAEDP problem and a 2-
approximation algorithm for the minimum activation node-disjoint st-paths (st-
MANDP) problem [6]. In [1], we have studied the st-MAEDP and st-MANDP
problems when k = 2, denoted by st-MA2EDP and st-MA2NDP respectively. We
proved that a ρ-approximation algorithm for the st-MA2NDP problem implies
a ρ-approximation algorithm for the st-MA2EDP problem. In the same paper,
we obtained a 1.5-approximation algorithm for the st-MA2NDP problem and
hence for the st-MA2EDP problem. The problems st-MAEDP and st-MANDP
for the restricted version of activation networks with |D| = 2 and a single acti-
vation function for all edges have also been studied in [1]. Under this restriction,
the st-MANDP problem is optimally solvable in polynomial time for arbitrary k
(except for one case of the activation function, in which we require k = 2). The
st-MAEDP problem, however, remains NP-hard [1,8]. So far these problems for
an arbitrary constant-size D and fixed k ≥ 2 are not known to be NP-hard.
Recently, in [2], we considered the st-MANDP and the problem of finding mini-
mum activation cost node-disjoint paths (MANDP) between k disjoint terminal
pairs, (s1, t1), . . . , (sk, tk), for graphs of bounded treewidth. We proposed algo-
rithms that optimally solve the st-MANDP problem in polynomial-time and the
MANDP problem in linear-time for graphs with bounded treewidth [2]. There
exists a polynomial-time algorithm that optimally solves the st-MA2EDP prob-
lem for graphs of bounded treewidth [1,2]. Other relevant work, applications and
motivations of activation network problems have been addressed in [1,2,6–8].

Our Results. We develop a polynomial-time algorithm for the st-MAEDP prob-
lem for graphs with treewidth bounded by tw. Our algorithm efficiently com-
bines an edge-coloring scheme with dynamic programming over a nice tree-
decomposition (see Sect. 2). The edge-coloring scheme was introduced in [12] to
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develop a polynomial-time algorithm that solves the minimum shared-edge kst-
paths (MSEP) problem (finding k paths between s and t with minimum number
of shared edges among the paths) for graphs of bounded treewidth. The MSEP
is a generalization of the problem of finding k edge disjoint st-paths.

The rest of the paper is organized as follows. In Sect. 2 we recall some defini-
tions and results of the class of graphs with bounded treewidth. Then in Sect. 3,
we present a polynomial-time algorithm that solves the st-MAEDP problem
optimally for graphs with treewidth bounded by tw. We conclude the paper by
stating some open problems in Sect. 4.

2 Preliminaries

In this paper we consider the class of graphs of bounded treewidth. A graph
G = (V,E) has treewidth tw if it has a tree-decomposition of width tw [9]. The
tree-decomposition concept is defined as follows.

Definition 1. Given a graph G = (V,E), a tree T = (I, F ) and a family
X = {Xi}i∈I of subsets of V (called bags). The pair (X , T ) is called a tree-
decomposition of G if it satisfies the following conditions:

– V =
⋃

i∈I Xi.
– For every edge (v, w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi.
– For every vertex v ∈ V , the nodes i ∈ I with v ∈ Xi form a subtree of T .

The width of (X , T ) is the number maxi∈I |Xi| − 1. The treewidth tw of the graph
G is the minimum width among all possible tree-decompositions of the graph.

Theorem 1 ([3]). For any fixed tw, there exists a linear-time algorithm that
checks whether a given graph G = (V,E) has treewidth at most tw, and if so,
outputs a tree-decomposition (X , T ) of G with width at most tw.

Definition 2. A tree-decomposition (X , T ) is called a nice tree-decomposition,
if T is a binary tree rooted at some r ∈ I that satisfies the following:

– Each node is either a leaf, or has exactly one or two children.
– Let i ∈ I be a leaf. Then Xi = {u, v} for some (u, v) ∈ E.
– For every edge (u, v) ∈ E, there is exactly one leaf i ∈ I such that u, v ∈ Xi.

(We say that the edge (u, v) is associated with that leaf i ∈ I).
– Let j ∈ I be the only child of i ∈ I, then either Xi = Xj∪{v} or Xi = Xj\{v}.

The node i is called an introduce node or forget node, respectively.
– Let j, j′ ∈ I be the two child nodes of a node i ∈ I, then Xj = Xj′ = Xi. The

node i is called a join node of T .

Scheffler presented in [10] a special tree-decomposition that follows the struc-
ture of a nice tree-decomposition as defined above but with no restriction on the
size of leaf bags (i.e., it does not require leaf bags to be of size 2). We call that
type of tree-decomposition a Scheffler-type nice tree-decomposition. Any given
tree-decomposition for a graph G = (V,E) with treewidth at most tw can be
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easily converted into a Scheffler-type nice tree-decomposition of width tw and
size O(|V |) in linear time, if tw is a fixed constant [10]. One can also transform a
Scheffler-type nice tree-decomposition to have leaves with bags of size 2 in linear
time. Therefore, a nice tree-decomposition with leaf bags of size 2 and width tw
can be constructed from any given tree-decomposition of the same treewidth.
However, each leaf node of a Scheffler-type nice tree-decomposition may pro-
duce O(tw3) new nodes in the construction of leaves with size 2. The resulting
tree-decomposition, therefore, has O(|V |tw3) nodes.

Throughout this paper, we consider simple undirected graphs G = (V,E)
given as an input with a nice tree-decomposition of width at most tw. We define
X+

i to be the set of all vertices in Xj for all nodes j ∈ I such that j = i or j
is a descendant of i. We denote by G+

i a partial graph of G. For a leaf node i,
G+

i is the subgraph of G with vertex set Xi and the edge of G that is associated
with i. For a non-leaf node i, G+

i is the graph that is the union of G+
j over all

children j of i. Note that the graph G+
r for the root r of the tree-decomposition

is equal to G.

3 Minimum Activation Cost k Edge-Disjoint st-Paths

Given are an activation network G = (V,E) and a pair of source and desti-
nation vertices s, t ∈ V . In this section, we consider the st-MAEDP problem
where the goal is to find activation values {xv : v ∈ V } of minimum total
cost

∑
v∈V xv such that the activated set of edges contains k edge-disjoint st-

paths Pst = P1, . . . ,Pk. We present a polynomial-time algorithm that solves the
st-MAEDP problem optimally in the case of graphs of bounded tree-width using
dynamic programming techniques. The algorithm follows a bottom-up approach
to compute a number of possible sub-solutions per nice tree-decomposition node
i ∈ I. It is easy to compute the sub-solutions for a leaf node i ∈ I because the
partial graph G+

i consists of two vertices that are connected by an edge in G
associated with i. For a non-leaf node, we use the information previously com-
puted for its children. The algorithm also constructs a table tabi to store the
computed information for each node i ∈ I.

We use an edge-coloring scheme to compute the sub-solutions per tree node.
Let C = {0, 1, . . . , k} be a set of colors. We consider a coloring fi : E(G+

i ) → C
for the graph G+

i . For each color c ∈ C, we define G+
i (fi, c) to be the subgraph

of G+
i induced by the edges with color c. Each color c ∈ C \ {0} represents

the edges used by Pc. Denote by P (X) the set of all possible partitions of the
set X. We define C(Xi) = (Y1, . . . ,Yk) to be a color vector on Xi such that
Yc ∈ P (Xi ∪ {s, t}) for all c ∈ C \ {0}. Pst(Xi) denotes the set P (Xi ∪ {s, t}). A
color vector C(Xi) = (Y1, . . . ,Yk) on Xi is called active if G+

i has a coloring fi

such that every element of the partition Yc, for each c ∈ C \{0}, is a set resulting
from the intersection between Xi ∪ {s, t} and the vertex set of a connected
component of G+

i (fi, c) (see Fig. 1 for an example of an active color vector).
Y(Xi, fi, c) denotes the partition Yc of Xi ∪{s, t}. This color vector concept was
introduced in [12] for developing a polynomial-time algorithm that optimally
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G+
i

•
v1

•
v2 •

v3
•
v4

•
v5 •

v6

• • • • •

•
• •

•

• •

• •

•

•

•

C(Xi) = {Y1,Y2,Y3}
Xi = {v1, v2, v3, v4, v5, v6} and s, t ∈ Xi

Y1 = {{v1, v2, v3}, {v4, v5}, {v6}}
Y2 = {{v1}, {v2, v3, v4}, {v5}, {v6}}
Y3 = {{v2}, {v3}, {v1, v4}, {v5, v6}}

G+
i (fi, 0)

G+
i (fi, 1)

G+
i (fi, 2)

G+
i (fi, 3)

Fig. 1. An example of an active color vector

solves the MSEP problem for graphs with bounded treewidth. One simple way
to compute the sub-solutions is by storing a color vector and an activation-
value function per each row of table tabi. However, the number of color vectors
per node i can only be bounded by (tw + 3)k(tw+3) because |Xi| ≤ tw + 1,
|Xi ∪ {s, t}| ≤ tw + 3 and |Pst(Xi)| ≤ (tw + 3)tw+3. Therefore, the number of
color vectors is not always polynomially bounded. Hence the size of the table
tabi is also not always polynomially bounded. Therefore we define a mapping
γi : Pst(Xi) → {0, 1, . . . , k} to be a count on Xi to obtain a polynomial-time
algorithm to optimally solve the st-MAEDP problem. We say that the count γi

on Xi is an active count if G+
i has a coloring fi with a color vector C(Xi) =

(Y1, . . . ,Yk) such that γi(A) = |{c ∈ C \ {0} : A = Yc}| for each A ∈ Pst(Xi).
For any active count γi, it is clear that

∑
A∈Pst(Xi)

γi(A) = k. In Fig. 1, the
counts would be 1 for all partitions A ∈ {Y1,Y2,Y3} ⊆ Pst(Xi) and 0 otherwise.
Consider a solution P = P1, . . . ,Pk for the st-MAEDP problem. Let Pi = P[G+

i ]
be the induced solution in a partial graph G+

i (i.e., the set of vertices and edges
that are both in P and in G+

i ). Since the interaction between Pi in G+
i and the

rest of the graph happens only in vertices of Xi, we can consider an activation-
value function Λi : Xi → D and a count γi : Pst(Xi) → {0, 1, . . . , k} to represent
Pi in G+

i . The idea of using counts instead of color vectors is based on [12].

3.1 Processing the Tree Decomposition

For a tree node i ∈ I, the table tabi has multiple rows and each row represents a
solution of a unique combination of a count γi and a function of activation values
Λi. Let val(γi, Λi) denote the minimum cost value of an assignment of activation
values for G+

i which satisfies the restrictions Λi and activates an edge-colored
subgraph of G+

i that satisfies the count γi. The value val(γi, Λi) is also stored
in tabi. We compute the sub-solution tables starting at the leaves towards the
root.

Leaf. Let i ∈ I be a leaf, Xi = {u, v}. Let (γi, Λi) be any row of tabi. We
distinguish the following cases and define the value val(γi, Λi) for each case.
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Each case corresponds to a possible sub-solution in G+
i . Recall that G+

i is a
single edge. The sub-solution’s cost val(γi, Λi) is set to

∑
v∈Xi

Λi(v) if one of
the following cases applies:

– γi(A′) = k − 1 for A′ = {{u}, {v}, {s}, {t}} and γi(A′′) = 1 for A′′ =
{{u, v}, {s}, {t}} and γi(A) = 0 for all A ∈ Pst(Xi) \ {A′, A′′}, where
fuv(Λi(u), Λi(v)) = 1 and s, t /∈ Xi. Intuitively, this means that the sub-
solution is a path with one edge not containing s or t.

– γi(A′) = k − 1 for A′ = {{u}, {v}} and γi(A′′) = 1 for A′′ = {{u, v}} and
γi(A) = 0 for all A ∈ Pst(Xi) \ {A′, A′′}, where fuv(Λi(u), Λi(v)) = 1 and
s, t ∈ Xi. Intuitively, this means that the sub-solution is a path with one edge
containing s and t.

– γi(A′) = k − 1 for A′ = {{u}, {v}, {s}} and γi(A′′) = 1 for A′′ = {{u, v}, {s}}
and γi(A) = 0 for all A ∈ Pst(Xi)\{A′, A′′}, where fuv(Λi(u), Λi(v)) = 1 and
s /∈ Xi and t ∈ Xi. Intuitively, the sub-solution is a path with one edge and
one endpoint equal to t. (The roles of s and t can be exchanged.)

– γi(A′) = k for A′ = {{u}, {v}, {s}, {t}} and γi(A) = 0 for all A ∈ Pst(Xi) \
{A′}, where s, t /∈ Xi. Intuitively, this means that the sub-solution has no
edges.

– γi(A′) = k for A′ = {{u}, {v}} and γi(A) = 0 for all A ∈ Pst(Xi) \ {A′},
where s, t ∈ Xi. Intuitively, this means that the sub-solution has no edges.

– γi(A′) = k for A′ = {{u}, {v}, {s}} and γi(A) = 0 for all A ∈ Pst(Xi) \ {A′},
where s /∈ Xi and t ∈ Xi. Intuitively, this means that the sub-solution has no
edges. (The roles of s and t can be exchanged.)

In these cases we construct an edge-colored subgraph of G+
i plus activation-

values that may be part of a global solution. If none of the above cases applies,
val(γi, Λi) = +∞.

Introduce. Let i ∈ I be an introduce node, and j ∈ I its only child. We have
Xj ⊂ Xi, |Xi| = |Xj | + 1 and let v be the additional vertex in Xi. The vertex
v is isolated since i does not introduce edges in G+

i . For every row (γj , Λj)
in tabj , there are |D| rows in tabi such that for all A ∈ Pst(Xj) and all u ∈
Xi \ {v}, γi(A ∪ {{v}}) = γj(A) if v /∈ {s, t} and γi(A) = γj(A) if v ∈ {s, t}
and Λi(u) = Λj(u). The sub-solution’s cost val(γi, Λi) for these rows is set to
val(γj , Λj) + Λi(v).

Forget. Let i ∈ I be a forget node, and j ∈ I its only child. We have Xi ⊂ Xj ,
|Xj | = |Xi| + 1 and let v be the discarded vertex. Let A−v be the partition
A ∈ Pst(Xj) after removing the vertex v if v /∈ {s, t} and A−v equals the
partition A if v ∈ {s, t}. Note that A−v ∈ Pst(Xi) for all A ∈ Pst(Xj). For
A ∈ Pst(Xi), we say that W (A) is the set of all partitions B ∈ Pst(Xj) such
that B−v = A (i.e., W (A) = {B ∈ Pst(Xj) : B−v = A}). For each row (γi, Λi),
we consider all (γj , Λj) such that for all u ∈ Xi and A ∈ Pst(Xi), Λi(u) = Λj(u)
and γi(A) =

∑
B∈W (A) γj(B). The sub-solution’s cost val(γi, Λi) is the minimum

of val(γj , Λj) over all these (γj , Λj).
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Join. Let i ∈ I be a join node, and j, j′ ∈ I its two children. We have
Xi = Xj = Xj′ . We call a mapping βi : Pst(Xi) × Pst(Xi) → {0, 1, . . . , k} a
pair-count on Xi. We define βi to be an active pair-count if G+

i has a coloring
fi such that βi(Aj , Aj′) = |{c ∈ C : Aj = Y(Xj , fj , c) and Aj′ = Y(Xj′ , fj′ , c)}|
for each Aj , Aj′ ∈ Pst(Xi) where fj and fj′ are the restriction of fi to E(G+

j )
and E(G+

j′), respectively. Let val(βi, Λi) denote the minimum cost value of an
assignment of activation values for G+

i which satisfies the restrictions Λi and
activates an edge-colored subgraph of G+

i that satisfies the pair-count βi. The
algorithm computes all val(βi, Λi) of all βi on Xi from all pairs of sub-solutions
(γj , Λj) and (γj′ , Λj′) such that both have the same activation-value function
(Λj(u) = Λj′(u) for all u ∈ Xi) and the pair of active counts γj and γj′ satisfy
the following conditions:

C1. γj(Aj) =
∑

A∈Pst(Xi)
βi(Aj , A) for all Aj ∈ Pst(Xi).

C2. γj′(Aj′) =
∑

A∈Pst(Xi)
βi(A,Aj′) for all Aj′ ∈ Pst(Xi).

The value val(βi, Λi) is set to be the summation value of the pair of sub-solutions
(γj , Λj) and (γj′ , Λj′) that satisfy the above conditions minus the activation
cost of Xi. To determine the pair (γi, Λi) that corresponds to the pair (βi, Λi)
of pair-count and an activation-value function, we construct a bipartite graph
for each pair of partitions with a pair-count greater than 0 as follows. For each
pair Aj , Aj′ ∈ Pst(Xi) where βi(Aj , Aj′) ≥ 1, we construct a bipartite graph

H
(Aj ,Aj′ )
βi

= (Aj ∪Aj′ , E
(Aj ,Aj′ )
βi

) with partite sets Aj and Aj′ , where the vertices

aj ∈ Aj and aj′ ∈ Aj′ are joined by an edge in E
(Aj ,Aj′ )
βi

iff aj ∩aj′ �= ∅. Assume

that D1,D2, . . . , Db are the connected components of the graph H
(Aj ,Aj′ )
βi

. We
define U(Aj , Aj′) to be the family of vertex sets {⋃v∈Dl

v : 1 ≤ l ≤ b}. We set
the value val(γi, Λi) to be the minimum val(βi, Λi) over all (βi, Λi) such that
for each Ai ∈ Pst(Xi):

γi(Ai) =
∑

βi(Aj , Aj′)

where the summation above is taken over all pairs Aj , Aj′ ∈ Pst(Xi) such that
Ai = U(Aj , Aj′).

Extracting the Solution at the Root. The algorithm checks all the pairs (γr, Λr) of
the root bag Xr such that for all A ∈ Pst(Xr) where γr(A) ≥ 1, there is a set in
A containing both s and t. In this case (γr, Λr) corresponds to a feasible solution.
The output of the algorithm is the minimum cost value among all the feasible
solutions obtained at the root. For each row (γi, Λi) of bag Xi, we store the
rows of Xi’s children that were used in the calculation of val(γi, Λi). Computing
the optimum solution is possible by traversing top-down in the decomposition
tree to the leaves (traceback) to get the activation values, and then running a
maximum flow algorithm on the unit-capacity graph of the activated edges to
get the k edge-disjoint st-paths.



20 H.M. Alqahtani and T. Erlebach

3.2 Analysis

The following lemmas analyse the running time of the algorithm and show that
we can efficiently compute an optimal solution for the st-MAEDP problem for
graphs with bounded treewidth. Let an instance of the problem be given by
an activation network G = (V,E) with treewidth bounded by tw and terminals
s, t ∈ V . Let POPT represent an optimal solution for this instance. We use C(Pi)
to denote the activation cost of a sub-solution Pi in a partial graph G+

i .

Lemma 1. The st-MAEDP algorithm requires O(|V ||D|tw+1(k+1)(tw+3)2(tw+3)

(tw + 3)2(tw+3)+3tw3) time.

Proof. The running time of the algorithm depends on the size of the tables
and the combination of tables during the bottom-up traversal. For each set of
vertices X, there are at most |X||X| possible partitions. Therefore, for each node
i, |Pst(Xi)| ≤ (|Xi| + 2)(|Xi|+2) ≤ (tw + 3)(tw+3). That means there are at most
(k + 1)(tw+3)(tw+3)

possible active counts γ on Xi. The table tabi in a processed
bag Xi contains no more than (k + 1)(tw+3)(tw+3) |D|tw+1 rows corresponding to
the possible active counts γ and the |D| possible activation values for each vertex
of Xi. Consider all possible row combinations with equal activation functions for
two tables for a join node. Since there are at most (tw + 3)2(tw+3) possible pairs
of partitions, there are at most (k + 1)(tw+3)2(tw+3)

possible active pair-counts
on Xi. For each pair-count βi, there is a pair of active counts γj and γj′ such
that the conditions C1 and C2 are satisfied. Computing γj and γj′ from βi

takes O((tw+3)2(tw+3)) time. Therefore, the computation of the value val(β,Λ)
for each combination of pair-count β and activation function Λ needs O((tw +
3)2(tw+3)) time. Thus we see that all pairs (β,Λ) and val(β,Λ) can be computed
in O((k + 1)(tw+3)2(tw+3)

(tw + 3)2(tw+3)|D|tw+1) time. Since |A| ≤ tw + 3 for
all A ∈ Pst(Xi), the bipartite graph H

(Aj ,Aj′ )
βi

defined in the join node contains
no more than (tw + 3)2 edges and can be constructed in O((tw + 3)3) time.
Therefore, for each βi, one can compute the active count γi that satisfies γi(Ai) =∑

βi(Aj , Aj′) where the summation is taken over all Aj , Aj′ ∈ Pst(Xi) such
that Ai = U(Aj , Aj′) and update the value val(γi, Λi) to be equal to val(βi, Λi)
if val(βi, Λi) ≤ val(γi, Λi) in O((tw + 3)2(tw+3)(tw + 3)3) time. Thus, we can
compute all val(γ, Λ) of all combinations of active count γ and activation-value
function Λ on Xi in time O((k + 1)(tw+3)2(tw+3)

(tw + 3)2(tw+3)+3|D|tw+1). Since
the tree-decomposition T has O(|V |tw3) nodes, one can compute all the tables
for all nodes in O(|V ||D|tw+1tw3(k + 1)(tw+3)2(tw+3)

(tw + 3)2(tw+3)+3) time. �
Lemma 2. For any processed bag Xi, let POPT

i be the induced solution of POPT

in G+
i and (γOPT

i , ΛOPT
i ) be the corresponding count and activation values, then

val(γOPT
i , ΛOPT

i ) ≤ C(POPT
i ) (1)

Proof. We use induction over the tree decomposition to prove that the value of
(γOPT

i , ΛOPT
i ) is at most the activation cost of POPT

i . The base case are the
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leaf nodes where the hypothesis clearly holds. Let us assume that the induction
hypothesis holds for all descendants of bag Xi. We want to prove that the induc-
tion hypothesis holds also for Xi and that can be proven by showing that the
hypothesis holds for all different types of the bag Xi.

Introduce. Let us assume that i is an introduce node and j its only child and let
v be the additional vertex in Xi. The statement (1) holds for Xj because it is
a child of the bag Xi. Let (γOPT

j , ΛOPT
j ) be the corresponding active count and

activation values of POPT
j . The following statement holds:

val(γOPT
j , ΛOPT

j ) ≤ C(POPT
j )

(γOPT
i , ΛOPT

i ) and (γOPT
j , ΛOPT

j ) both agree on the activation values for all
vertices in Xi \ {v}. The additional vertex v is an isolated vertex in the induced
graph G+

i and the one vertex set {v} is in A for all A ∈ Pst(Xi) such that
γOPT

i (A) ≥ 1. Since ΛOPT
i (v) ∈ D is the activation value of the vertex v, then:

val(γOPT
i , ΛOPT

i ) = val(γOPT
j , ΛOPT

j ) + ΛOPT
i (v)

≤ C(POPT
j ) + ΛOPT

i (v)

= C(POPT
i )

The statement (1) holds for an introduce node.

Forget. Assume that i is a forget node and j its only child and let v be the
discarded vertex in Xi. The statement (1) holds for Xj because it is a child of
the bag Xi. Let (γOPT

j , ΛOPT
j ) be the corresponding active count and activation

values of POPT
j . The following statement holds:

val(γOPT
j , ΛOPT

j ) ≤ C(POPT
j )

(γOPT
i , ΛOPT

i ) and (γOPT
j , ΛOPT

j ) both agree on activation values for all vertices
in Xj \ {v}. The discarded vertex v is either an isolated vertex or part of a
connected component in the induced solution POPT

j and that means the value
val(γOPT

j , ΛOPT
j ) is one of the values that has been considered when calculating

val(γOPT
i , ΛOPT

i ). Then:

val(γOPT
i , ΛOPT

i ) ≤ val(γOPT
j , ΛOPT

j ) ≤ C(POPT
j ) = C(POPT

i )

Then the statement (1) holds for a forget node.

Join. Assume that i is a join node and j and j′ its children. Let (γOPT
i , ΛOPT

i )
be the corresponding active count and activation values of the induced solution
POPT

i in G+
i . POPT

i is the union of its children sub-solutions POPT
j and POPT

j′ .
Let (γOPT

j , ΛOPT
j ) and (γOPT

j′ , ΛOPT
j′ ) be the corresponding active count and

activation values of POPT
j and POPT

j′ , respectively. The statement (1) holds for
Xj and Xj′ because they are children of the bag Xi. For all l ∈ {j, j′} the
following statement holds:

val(γOPT
l , ΛOPT

l ) ≤ C(POPT
l )
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Let (βOPT
i , ΛOPT

i ) be the corresponding active pair-count and activation values
of the induced solution POPT

i in G+
i which satisfies conditions C1 and C2 for

(γOPT
j , ΛOPT

j ) and (γOPT
j′ , ΛOPT

j′ ). We know that POPT
i is a sub-solution in G+

i ,
therefore, val(βOPT

i , ΛOPT
i ) is one of the values that has been considered when

computing val(γOPT
i , ΛOPT

i ). Then:

val(γOPT
i , ΛOPT

i ) ≤ val(βOPT
i , ΛOPT

i )

= val(γOPT
j , ΛOPT

j ) + val(γOPT
j , ΛOPT

j ) −
∑

v∈Xi

ΛOPT
i (v)

≤ C(POPT
j ) + C(POPT

j′ ) −
∑

v∈Xi

ΛOPT
i (v)

= C(POPT
i )

Then the induction hypothesis holds for a join node. �
Lemma 3. For any processed bag Xi, any pair (γi, Λi) where val(γi, Λi) = ci <
∞ corresponds to an edge-coloring plus activation-values Pi = (fi, Λ

+
i ) where

fi : E(G+
i ) → {0, . . . , k} and Λ+

i : X+
i → D with the following properties:

– The active count of Pi in Xi is γi.
– The activation values of Pi in Xi are Λi.
– The total activation cost in X+

i is ci.

Proof. We prove by induction that for any bag Xi there exists an edge-coloring
and activation-values Pi with the above properties. The base case are the leaf
nodes where the hypothesis clearly holds. Let us assume that the induction
hypothesis holds for all the descendants of bag Xi. We want to prove that the
induction hypothesis holds also for Xi and that can be proved by showing that
the hypothesis holds for all different types of the bag Xi.

Introduce. Assume that i is an introduce node and j its only child and v the
additional vertex in Xi. Let (γi, Λi) be some entry with val(γi, Λi) = ci < ∞. The
induction hypothesis holds for Xj . Let (γj , Λj) be the corresponding active count
and activation function that have been used for the calculation of val(γi, Λi).
Then (γj , Λj) corresponds to an edge-coloring and activation-values Pj that
satisfies the above properties. From the algorithm, (γi, Λi) and (γj , Λj) both
agree on the activation values for all vertices in Xi\{v}. Moreover, the additional
vertex v is an isolated vertex in the induced graph G+

i and the one vertex set
{v} is in A for all A ∈ Pst(Xi) such that γi(A) ≥ 1. The value of (γi, Λi) is
equal to the value of (γj , Λj) added to the activation value of the vertex v. The
union of the isolated vertex v and Pj is an edge-coloring with activation-values
that satisfies all properties of the induction hypothesis. Thus, the induction
hypothesis holds for an introduce node.

Forget. Assume that i is a forget node and j its only child and v the discarded
vertex. Let (γi, Λi) be some entry with val(γi, Λi) = ci < ∞. The induction
hypothesis holds for Xj . Let (γj , Λj) be the corresponding active count and
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activation function that have been used for the calculation of val(γi, Λi). Then
(γj , Λj) corresponds to an edge-coloring and activation-values Pj that satisfies
the above properties. From the algorithm, (γj , Λj) has the minimum value cost
among all possible rows of Xj that can produce (γi, Λi) and both agree on
activation values for all vertices in Xj \ {v}. The discarded vertex v is part of
the edge-coloring Pj . Therefore (γi, Λi) corresponds to the edge-coloring and
activation-values Pj and we can set Pi = Pj . The induction hypothesis holds
for a forget node.

Join. Assume that i is a join node and j and j′ its children. Let (γi, Λi) be
some entry with val(γi, Λi) = ci < ∞. Since val(γi, Λi) = ci < ∞, then
there is a pair of active pair-count and activation function (βi, Λi) such that
val(γi, Λi) = val(βi, Λi) and for each Ai ∈ Pst(Xi), γi(Ai) =

∑
βi(Aj , Aj′)

where the summation is taken over all pairs Aj , Aj′ ∈ Pst(Xi) satisfying
Ai = U(Aj , Aj′). Let (γj , Λj) and (γj′ , Λj′) be the pairs that have been used
for the calculation of val(βi, Λi) which satisfy the conditions C1 and C2. We
know that val(γj , Λj) < ∞ and val(γj′ , Λj′) < ∞ and the induction hypothesis
holds for Xj and Xj′ . Therefore, (γj , Λj) and (γj′ , Λj′) correspond to edge-
colorings with activation-values Pj = (fj , Λ

+
j ) and Pj′

= (fj′ , Λ+
j′), respectively.

For each pair of partitions Aj and Aj′ where γj(Aj) = rj , γj′(Aj′) = rj′ and
βi(Aj , Aj′) = r > 0, there are rl colors for partition Al in P l = (fl, Λl) for
l ∈ {j, j′}. Therefore, we choose r unused colors zj

1, z
j
2, . . . , z

j
r for Aj in Pj

and r unused colors zj′
1 , zj′

2 , . . . , zj′
r for Aj′ in Pj′

and then recolor both zj
w in

G+
j (fj , z

j
w) and zj′

w in G+
j′(fj′ , zj′

w ) with a new color zjj′
w for all w ∈ {1, . . . , r}.

The colors zj
1, z

j
2, . . . , z

j
r in Pj and colors zj′

1 , zj′
2 , . . . , zj′

r in Pj′
are now marked

as used. Note that there are always enough unused colors because the condi-
tions C1 and C2 are satisfied. After recoloring Pj and Pj′

and since for each
Ai ∈ Pst(Xi), γi(Ai) =

∑
βi(Aj , Aj′) where the summation is taken over all

pairs Aj , Aj′ ∈ Pst(Xi) satisfying Ai = U(Aj , Aj′), it follows that the active
count of the union Pj ∪Pj′

in Xi is γi. Moreover, (γi, Λi), (γj , Λj) and (γj′ , Λj′)
all have the same activation-value function (Λi(u) = Λj(u) = Λj′(u) for all
u ∈ Xi). That means the activation values of the union Pj ∪ Pj′

in Xi are Λi.
The algorithm also computes the cost value of (γi, Λi) as follows:

val(γi, Λi) = val(βi, Λi) = val(γj , Λj) + val(γj′ , Λj′) −
∑

v∈Xi

Λi(v)

Since val(γj , Λj) and val(γj′ , Λj′) are the total activation costs in X+
j and X+

j′ ,
respectively, then the summation of these activation costs minus the activation
values for all u ∈ Xi is the total activation cost in X+

i . We can set Pi to be the
edge-coloring and activation values Pj ∪ Pj′

that satisfies the properties of the
lemma. The induction hypothesis holds for a join node. �
We obtain the following theorem by combining the above lemmas.

Theorem 2. The st-MAEDP problem for graphs with treewidth bounded by tw

can be solved optimally in O(|V ||D|tw+1tw3(k+1)(tw+3)2(tw+3)
(tw+3)2(tw+3)+3)

time.
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Corollary 1. For any fixed k, the st-MAEDP problem for graphs of bounded
treewidth can be solved optimally in linear-time FPT parameterized by the
treewidth tw.

4 Conclusion

To the best of our knowledge, the st-MAEDP problem for graphs with treewidth
bounded by tw considered here has not been addressed before. We estab-
lished an algorithm that solves the problem optimally in O(|V ||D|tw+1tw3(k +
1)(tw+3)2(tw+3)

(tw+3)2(tw+3)+3) time. Our algorithm also solves the st-MAEDP
problem when k = 2 in linear-time and this is an improvement over the cubic
algorithm obtained in [2]. It would be interesting if one can obtain a faster or
even linear-time algorithm for the st-MAEDP problem in graphs with treewidth
bounded by a constant.

References

1. Alqahtani, H.M., Erlebach, T.: Approximation algorithms for disjoint st-paths with
minimum activation cost. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS,
vol. 7878, pp. 1–12. Springer, Heidelberg (2013)

2. Alqahtani, H.M., Erlebach, T.: Minimum activation cost node-disjoint paths in
graphs with bounded treewidth. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J.,
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Abstract. A perfect 2-matching in an undirected graph G = (V, E) is a
function x : E → {0, 1, 2} such that for each node v ∈ V the sum of values
x(e) on all edges e incident to v equals 2. If supp(x) = {e ∈ E | x(e) �= 0}
contains no triangles, then x is called triangle-free. Polyhedrally, triangle-
free 2-matchings are harder than 2-matchings, but easier than usual
1-matchings.

Concerning the weighted case, Cornuéjols and Pulleyblank devised
a combinatorial strongly-polynomial algorithm that finds a perfect
triangle-free 2-matching of minimum cost. A suitable implementation
of their algorithm runs in O(V E log V ) time.

In case of integer edge costs in the range [0, C], for both 1- and
2-matchings some faster scaling algorithms are known that find optimal
solutions within O(

√
V α(E, V ) log V E log(V C)) and O(

√
V E log(V C))

time, respectively, where α denotes the inverse Ackermann function.
So far, no efficient cost-scaling algorithm is known for finding a
minimum-cost perfect triangle-free 2-matching. The present paper fills
this gap by presenting such an algorithm with time complexity of
O(

√
V E log V log(V C)).

1 Introduction

1.1 Basic Notation and Definitions

We shall use some standard graph-theoretic notation throughout the paper. For
an undirected graph G we denote its sets of nodes and edges by V (G) and
E(G), respectively. Unless stated otherwise, we allow parallel edges and loops
in graphs. A subgraph of G induced by a subset U ⊆ V (G) is denoted by G[U ].
For U ⊆ V (G), the set of edges with one end in U and the other in V (G) − U is
denoted by δ(U); for U = {u} the latter notation is shortened to δ(u). Also γ(U)
denotes the set of edges with both endpoints in U . For an arbitrary set W and a
function f : W → R we denote its support set by supp(f) = {w ∈ W | f(w) �= 0}.
For an arbitrary subset W ′ ⊆ W we write f(W ′) to denote

∑

w∈W ′
f(w).

c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 25–37, 2016.
DOI: 10.1007/978-3-319-29516-9 3
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The following objects will be of primary interest throughout the paper:

Definition 1. Given an undirected graph G, a 2-matching in G is a function
x : E(G) → {0, 1, 2} such that x(δ(v)) ≤ 2 for all v ∈ V (G). If x(δ(v)) = 2
for all v ∈ V (G), then x is called perfect. A vertex v is called free from x, if
x(δ(v)) = 0. If supp(x) contains no triangles, then x is called triangle-free.

Consider some non-negative real valued edge costs c : E(G) → R+. Then
a natural combinatorial problem consists in finding a perfect triangle-free
2-matching x with minimum total cost c · x. For this problem Cornuéjols and
Pulleyblank [CP80a] devised a combinatorial polynomial algorithm. While they
did not specifically aim for the best time bound, their algorithm could be imple-
mented to run in O(V E log V ) time pretty easily (hereinafter in complexity
bounds we identify sets with their cardinalities).

1.2 Related Work and Our Contribution

Now let edge costs be integers in the range [0, C]. The problem of finding a
perfect triangle 2-matchings of minimum cost is closely related to some other
problems in matching theory, for which faster cost-scaling algorithms are known.

First, we may allow triangles in supp(x) and start looking for a perfect
2-matching of minimum cost. This problem is trivially reducible to minimum
cost perfect bipartite matching; a classical algorithm [GT89], which employs
cost scaling and blocking augmentations, solves it in O(

√
V E log(V C)) time.

Second, in Definition 1 we may replace x(δ(v)) ≤ 2 by x(δ(v)) ≤ 1 and get
the usual notion of 1-matchings. For general graphs G, a sophisticated algo-
rithm from [GT91] solves the minimum-cost perfect matching problem within
O(

√
V α(E, V ) log V E log(V C)) time.

Apart from the primal-dual algorithm given in [CP80a], there are no known
methods for solving the weighted perfect triangle-free 2-matching problem. For
the case of simple triangle-free 2-matchings (when x(e) ≤ 1 for e ∈ E), Kobayashi
gave a polynomial time algorithm [Kob14]. Also, some relevant prior art exists
for the unweighted case, where the goal is to find a matching with maximum
size x(E(G)).

For unweighted 2-matchings (or, equivalently, 1-matchings in bipartite
graphs) Hopcroft and Karp devised an O(

√
V E) time algorithm [HK73] (by use

of clique compression, the latter bound was improved to O(
√

V E logV (V 2/E))
in [FM95]). Later, a conceptually similar but much more involved O(

√
V E)-time

algorithm [MV80] for matchings in general graphs was devised (and its running
time was similarly improved to O(

√
V E logV (V 2/E)) in [GK04]).

Concerning unweighted triangle-free 2-matchings, Cornuéjols and Pulley-
blank [CP80b] gave a natural augmenting path algorithm; with a suitable imple-
mentation its time complexity is O(V E). To match the latter with the complexity
of 1- and 2-matchings, [BGR10] proposed a method that reduces the problem
to a pair of maximum 1-matching computations. Unfortunately, this approach
does not seem to extend to weighted problems.
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Hence, no efficient cost scaling algorithm for the perfect triangle-free
2-matching problem seems to be known. In this paper we present one with the
time complexity of O(

√
V E log V log(V C)).

At the high level, our approach follows the standard avenue of cost-scaling
matching algorithms. It employs bit scaling, and for any current edge costs runs
an alternating sequence of primal steps (involving blocking augmentations) and
dual steps (adjusting reduced costs and thus enabling primal steps to progress).
Some nontrivial combinatorial ingredients, however, are needed to make it work.

2 Preliminaries

2.1 Basic 2-Matchings

Let x be a 2-matching. It is easy to see that the set {e ∈ E(G)|x(e) = 1} forms a
collection of disjoint paths and cycles. Call a 2-matching x basic if such collection
consists solely of odd cycles. An odd cycle C with x(e) = 1 for every e ∈ E(C)
is called an odd 1-cycle. The following fact is obvious:

Proposition 1. Let x be a perfect triangle-free 2-matching. Then there exists
a basic perfect triangle-free 2-matching x′ of the same or smaller cost.

Hereinafter, if not stated otherwise, all 2-matchings are assumed to be basic.

2.2 Triangle Clusters

A set of three pairwise-adjacent edges {{u, v} , {v, w} , {w, u}} ⊆ E(G) (for some
distinct u, v, w ∈ V (G)) will be called a triangle. By a triangle cluster we mean a
connected graph whose edges partition into disjoint triangles such that any two
triangles have at most one node in common, and if such a node exists, then it is
an articulation point of the cluster. For triangle-free 2-matchings, triangle clus-
ters play the role analogous to that of factor-critical subgraphs for 1-matchings
(cf. [CP80a]).

2.3 LP Formulation

Nice LP descriptions are known for both 1- and 2-matchings. For perfect
2-matchings, Definition 1 provides the needed set of linear constraints capturing
the convex hull of the family of perfect 2-matchings.

For perfect 1-matchings, the equalities

x(δ(v)) = 1 for all v ∈ V (G) (1)

are generally not sufficient; as shown by Edmonds [Edm65], one must add the
following odd-subset conditions:

x(γ(U)) ≤ 1
2

(|U | − 1) for all subsets U ⊆ V (G) of odd size. (2)
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Let T (G) be the set of all triangles in G. For the family of perfect triangle-free
2-matchings, its polyhedral description is proved in [CP80a] to be

x(δ(v)) = 2 for all v ∈ V (G)
x(T ) ≤ 2 for all T ∈ T (G).

(3)

Note that (3) is in some sense simpler than (1) and (2) but is harder than
the description of perfect 2-matchings. Hence, one would expect an algorithm
for perfect triangle 2-matchings to be somewhat simpler than that of Gabow and
Tarjan for perfect 1-matchings. As we show later, this is indeed the case.

Taking (3) into account, we establish the LP formulation of our problem;
namely, for x : E(G) → R+

minimize c · x

subject to x(δ(v)) = 2 for all v ∈ V (G)
x(T ) ≤ 2 for all T ∈ T (G)

(4)

For an edge e = {u, v} ∈ E(G) we denote T (e) := {T ∈ T (G) | e ∈ T} (the
set of triangles intersecting e). To construct the dual problem, we introduce
vertex and triangle potentials πV : V (G) → R and πT : T (G) → R+ (which
are dual to node and triangle constraints in (4)). To simplify the notation, we
typically combine πV and πT into a single mapping π (minding that π(T ) ≥ 0
should hold for all T ∈ T (G), while π(v) is of an arbitrary sign for v ∈ V (G)).
Given π, the reduced costs cπ(e) are defined for all edges e = {u, v} ∈ E(G) by
cπ(e) := c(e)+π(u)+π(v)+π(T (e)). Now the dual problem to (4) is as follows:

maximize − 2 · (π(V (G)) + π(T (G)))
subject to cπ(e) ≥ 0 for all e ∈ E(G)

(5)

Fix arbitrary feasible primal and dual solutions x and π, respectively. Then
x will be called triangle-consistent w.r.t. π if π(T ) > 0 implies x(T ) = 2 for all
T ∈ T (G).

3 Algorithm

3.1 Overview of Cost Scaling

Let G be an undirected graph without loops or parallel edges endowed with
integer edge costs c : E(G) → {0, . . . , C}. We introduce the following relaxation
of the complementary slackness conditions (cf. [GT89]):

Definition 2. Given a 2-matching x and feasible duals π, we call x 1-feasible
if x(e) > 0 implies cπ(e) ∈ {0, 1} for all e ∈ E(G). A 2-matching x is called
1-optimal if it is perfect, 1-feasible and triangle-consistent w.r.t. π.

Lemma 1. Let edge costs c be divisible by k for some integer k > |V |. Then
any 1-optimal triangle-free 2-matching has, in fact, the minimum cost among all
perfect triangle-free 2-matchings.
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Using Lemma 1, we multiply all edge costs by |V | + 1 and search for a
1-optimal triangle-free 2-matching. Now, we initially start with c ≡ 0, and
then perform O(log(V C)) scaling phases. Each phase “opens” one new bit of
edge costs, i.e. sets c(e) := 2c(e) + δ(e) where δ(e) ∈ {0, 1}. Totally there are
O(log(V C)) phases, and the goal of a phase is to compute a 1-optimal solution
and the duals for these updated costs.

3.2 Scaling Phase

Each scaling phase works with some fixed edge costs c, maintains a graph Ĝ
obtained from G by contracting some vertex-disjoint triangle clusters, a feasible
set of duals π, and a 1-feasible 2-matching x in Ĝ (possibly containing triangles
in supp(x)). Here by contracting a triangle cluster C we mean first removing
E(C) and then replacing V (C) with a new vertex vC , such that for every edge e,
all its endpoints that were in V (C) are now replaced with vC . Note that for a
contracted cluster C G[V (C)] may contain some edges outside of C. These edges
turn into loops. Also, we do not merge parallel edges during contractions.

For a vertex v ∈ V (Ĝ) we denote by cl(v) the corresponding triangle cluster
in G that was contracted into v. For v ∈ V (G) not affected by contractions we
assume cl(v) to be the degenerate triangle cluster consisting of just v itself. For
an edge e ∈ E(Ĝ) we denote by ϕ(e) its preimage in G, i.e. the edge e′ in G

corresponding to e in Ĝ. The latter is well-defined since we do not merge parallel
edges.

Also, note that while we do not define π on V (Ĝ), the definition of 1-optimal
2-matchings involves reduced costs, which are well-defined for e ∈ E(Ĝ) by
cπ(e) := cπ(ϕ(e)). Since Ĝ can contain loops, x can also be positive on these
loops. For a loop e at v we assume that e counts twice in δ(v), and if x(e) > 0,
then we ensure that x(e) = 1, and regard e as an odd 1-cycle of length 1.

The following properties of Ĝ, π and x will be maintained:

(INV1) For each contracted triangle cluster C and e ∈ E(C), one has cπ(e) ∈
{0, 1}.

(INV2) Each triangle T in G with π(T ) > 0 belongs to some contracted cluster.
(INV3) For each v ∈ V (G), 2π(v) is integer; for each T ∈ T (G), π(T ) is integer.
(INV4) For each 1-cycle Γ in x, its preimage ϕ(Γ ) = {ϕ(e′) | e′ ∈ E(C)} in G

does not form a triangle.

Note that for a 1-cycle Γ in Ĝ, if ϕ(Γ ) forms a triangle in G, then Γ is a
triangle in Ĝ, while the converse is not true.

A phase finishes when x becomes perfect.

Lemma 2. Let Ĝ, π, and x satisfy conditions (INV1)–(INV4). Suppose addi-
tionally that x is perfect. Then x can be extended in O(E) time into a 1-optimal
triangle-free 2-matching in G.
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Let us explain how a phase starts. We get certain previous edge costs c′,
feasible duals π′, a 1-optimal primal solution x′ and a contracted graph Ĝ′,
obeying (INV1)–(INV4) from the previous phase (for the very first phase one
may assume that Ĝ′ = G, π′ = 0, c′ = 0, x′ = 0).

During scaling we set c := 2c′ + δ, where δ can only have values 0 and 1. We
initially define π := 2π′ (for both vertices and triangles) and Ĝ := Ĝ′. This way
cπ · x′ = O(V ) by 1-feasibility of x′.

Note that c′(e) ∈ {0, 1} holds for edges belonging to the contracted clusters.
Now c(e) ∈ {0, 1, 2, 3} holds for these edges, possibly violating (INV1). To fix
this, a certain Normalize-Triangles routine is run (explained in detail in
Subsect. 3.6) to decrease the reduced costs of edges inside the contracted trian-
gles, where appropriate, and ensure that all of (INV1)–(INV3) are true.

It remains to construct a 1-optimal 2-matching x for the current costs. This
is done by Match procedure described in the upcoming subsection.

3.3 Match Routine

We start with x = 0 (i.e. discard the primal solution from the previous phase),
and then gradually improve x until it becomes perfect. During Match duals π
are updated and some triangles in G are expanded and contracted while pre-
serving (INV1)–(INV3). The goal is to construct a 1-optimal 2-matching x in Ĝ
satisfying (INV4). This is done by a series of blocking augmentations and dual
adjustments similar to [GT89].

Before proceeding further, let us introduce the notion of augmenting paths
as follows. Consider an edge-simple path P = v0e0v1e1 . . . vkekvk+1 in Ĝ viewed
as an alternating sequence of vertices and edges. We assume that v0, . . . , vk are
pairwise-distinct, i.e. P can only contain a single repeated vertex vk+1.

Suppose that v0 is a free vertex and e0, . . . , el is the maximal prefix of P
consisting of edges e with x(e) = 0 and x(e) = 2 (alternatively). Also, suppose
that: (i) l = k and vk+1 is free; or (ii) l < k and x(el+1) = . . . = x(ek) = 1; or
(iii) l = k, x(ek) = 0, and vk+1 = vi for some even i < k + 1. In cases (ii) and
(iii) P consists of a vertex-simple prefix denoted by T (P ) and a vertex-simple
cycle denoted by C(P ).

Given P as above, one can turn x into a 2-matching x′ of greater size in a
usual manner; see Fig. 1 for examples. Moreover, in cases (i) and (ii) the resulting
x′ obeys (INV4). We call P regular in case (i) and cycle-breaking in case (ii).

Case (iii) is more tricky, since x′ may violate (INV4). In particular, if ϕ(C(P ))
is a triangle in G, then one cannot augment along such P but can contract C(P ),
joining triangle clusters cl(v) for v ∈ V (C(P )). On the other hand, if ϕ(C(P ))
does not form a triangle in G, then x′ obeys (INV4); we call such P cycle-forming.

Definition 3. For a 2-matching x and duals π edge e ∈ E(Ĝ) is called eli-
gible if: (i) x(e) = 1 and cπ(e) ∈ {0, 1}; or (ii) x(e) = 2 and cπ(e) = 1; or
(iii) x(e) = 0 and cπ(e) = 0. A path P is called eligible if every edge e ∈ E(P )
is eligible.
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(a) regular

(b) cycle-breaking (c) cycle-forming

Fig. 1. Examples of various types of augmenting paths (shaded) together with augmen-
tation results. Dotted lines correspond to edges e with x(e) = 0, solid lines correspond
to edges e with x(e) = 1, doubled lines correspond to edges e with x(e) = 2.

Note that augmenting along an eligible cycle-forming augmenting path yields
an odd 1-cycle consisting of eligible edges, and such augmentation will be the
only way to produce an odd 1-cycle in the 2-matching we construct, hence edge
e with x(e) = 1 will always be eligible.

During the search we construct a certain rooted forest F . We call a vertex
v ∈ V (F) odd if the path from v to its root has an odd length, and even
otherwise. Then F is called eligible if: (i) the roots of F are exactly all the
vertices in Ĝ that are free from x; (ii) each edge e ∈ E(F) is eligible; (iii) for a
non-root vertex v the edge e to its parent has x(e) = 0 if v is odd, and x(e) = 2
if v is even; (iv) no vertex v ∈ V (F) belongs to an odd 1-cycle of x. We now
describe a routine Grow(F , e) that takes an eligble edge e = {v, u}, where
v ∈ V (F), and performs at most one the following steps:

1. Enlarges F by adding e; or
2. Modifies Ĝ and F by contracting a triangle containing e; or
3. Claims the existence of an eligible x-augmenting path in Ĝ.

Suppose v is odd. If x(e) = 2, then we add e to F ; if x(e) �= 2, then we do noth-
ing. Now let v be even. Since either v is a root or the edge e′ to its parent has
x(e′) = 2, we have x(e) = 0. If u /∈ V (F), then since every free vertex belongs to
F , either u belongs to a 1-cycle of x (and an eligible cycle-breaking augmenting
path is found), or there exists an edge e′ incident to u with x(e′) = 2. In the
latter case e is added to F . Finally, let u ∈ V (F). If u is odd, then we do nothing.
Otherwise, there are two possibilities. If v and u are from distinct trees of F ,
then an eligible regular augmenting path is found. Else, F +e contains a cycle C.
If ϕ(C) is a triangle in G, then C is contracted (see Fig. 2(b)). Otherwise, an eli-
gible cycle-forming augmenting path is found (see Fig. 2(a)). It is straighforward
to see that (INV1) and (INV4) are preserved.
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If for an edge e one of the above steps applies, then e is said to be valid ;
otherwise, e is invalid. An eligible forest F is maximal if there are no valid edges,
and for every odd node v and every triangle T ∈ T (cl(v)) we have π(T ) > 0.

Fig. 2. Some possible cases appearing in Grow. The algorithm only deals with x in Ĝ
but the corresponding extensions of x to G are also shown.

Match consists of a sequence of iterations, each proceeding as follows. It
runs Blocking-Augment routine that, given a graph Ĝ, a 2-matching x in Ĝ,
and duals π satisfying (INV1)–(INV4), performs a series of augmentations along
eligible augmenting paths and contractions of triangles, and returns a maximal
eligible forest F for the resulting x. If x is perfect, then Match stops. Otherwise,
it invokes Dual routine to adjust the duals π while maintaining (INV1)–(INV4)
and the 1-feasibility of x, and obtain at least one eligible x-augmenting path;
then Match starts a new iteration. Both Blocking-Augment and Dual are
described in the upcoming subsections.

3.4 Blocking-Augment Routine

We now show how to perform a series of augmentations and contractions, and to
construct a maximal eligible forest. Since the duals remain unchanged, we only
need to care about eligible edges e with cπ(e) ∈ {0, 1}.

Stage I: First, we uncontract all triangles T with π(T ) = 0 (see [CP80a,
pp.152–153, Sect. 4] for the explanation of uncontractions). Then, we find a
maximal (“blocking”) sequence of eligible regular or cycle-forming x-augmenting
paths. For each such path, we augment x and iterate. This step is carried out
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with the help of a slight modification of the blocking augmentation algorithm
from [GT91, Sect. 8]. This algorithm runs a depth-first search and grows a search
tree starting from free vertices. The only difference is that when we examine an
edge {u, v} from the current vertex u, we claim that an augmenting path is found
not only if v is free, but also if v belongs to an odd 1-cycle of x. In the latter
case we “break” this cycle, making its eligible edges available for the traversal.
Since the DFS is purely local, this change does not affect its correctness.

Stage II: Now we “block” along cycle-forming augmenting paths. We build
an eligible forest F applying Grow operations in a DFS-like manner. Initially F
consists of all free vertices (regarded as roots). We also maintain another dormant
forest F ′, which will be formed by detaching certain subtrees of F rooted at odd
vertices. This F ′ has the same notion of even and odd vertices. Finally, P will
denote a set of vertex-disjoint eligible cycle-forming x-augmenting paths found
so far, and U :=

⋃
P∈P V (P ) (initially both P and U are empty).

For a vertex v ∈ V (F), an edge e = {v, u} is called feasible if it is eligible
and either v even or x(e) = 2. Our DFS at v will scan all such feasible edges e.
Following the usual notation, we call a vertex v active if the DFS has entered v,
and scanned if the DFS has finished examining all feasible edges incident to v.

We maintain the following invariants:

Lemma 3. During the above DFS

(i) there are no eligible regular or cycle-breaking x-augmenting paths in Ĝ;
(ii) there are no eligible edges between an even vertex of F and an even vertex

of F ′;
(iii) there are no eligible edges between scanned even vertices of F .

Let v be the current vertex, r be the root of the tree containing v. If v is
odd then v does not belong to an odd 1-cycle (by eligibility of F). Hence, v has
at most one incident edge e = {v, u} with x(e) = 2, and if e is feasible then we
perform Grow(F , e) and continue our DFS at the newly added even vertex u.

Now let v be even, e = {v, u} be a feasible edge we currently examine. If
u ∈ U , we skip e. Otherwise, let u /∈ U . If u /∈ V (F)∪V (F ′), then we again per-
form Grow(F , e). Note that this Grow cannot find an eligible cycle-breaking
augmenting path by Lemma 3(i), so e is added to F , and we continue the DFS
at the new odd vertex u. If u is an odd vertex of F or F ′, we do nothing; we also
claim that u cannot be an even vertex of F ′ (see Lemma 3(ii)). Finally, if u is an
even vertex of F , we claim that u belongs to the same subtree as v, since other-
wise there have been a regular x-augmenting path (contradicting Lemma 3(i)).
Hence F + e contains a cycle C. If ϕ(C) forms a triangle in G, then Grow
performs a contraction, forming a new vertex v′ and applying the corresponding
change to F . After that, v′ becomes an active even vertex, and the DFS contin-
ues at v′. Note that some feasible edges that are incident to v′ may have already
been examined. More precisely, for a vertex v0 ∈ V (C) which was contracted
into v, if an edge f = {v0, w} was examined from v0, then its image in the new
graph f ′ = {v′, w} is also regarded as examined.
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Now suppose that ϕ(C) is not a triangle in G, then an eligible cycle-forming
augmenting path P is found. We add P to P and halt the DFS from r. Let
Fr be the tree of F rooted at r. We remove the vertices V (P ) from Fr, thus
partitioning Fr into disjoint subtrees rooted at some odd vertices. Then, for each
such tree T rooted at w we add an artificial vertex rT and connect it with w by
an artificial edge. This way T is now rooted at rT , and the parity of vertices is
preserved. Finally, the subtree at rT is moved to the dormant forest F ′.

Stage III: We extend F as follows. Note that U, V (F), V (F ′) are pairwise
disjoint. We examine all eligible edges e = {v, u} ∈ δ(V (F)), where v is an even
vertex of F . If u ∈ U , then we add e to F . If u ∈ V (F ′), then u is odd by
Lemma 3(ii); we add e to F moving u together with its subtree from F ′ to F .
These steps are iterated until there are no such edges from even vertices of F .

At last, we augment x along every path in P.

Lemma 4. The above algorithm constructs a maximum eligible forest F .

3.5 Dual Routine

We now describe how to change π. Let F be the maximal eligible forest obtained
from Blocking-Augment routine. By shifting a vertex v ∈ V (Ĝ) by δ we mean
the following: if v is not contracted, then increase π(v) by δ; if v is contracted,
then increase π(u) by δ for each u ∈ V (cl(v)) and decrease π(T ) by 2δ for each
T ∈ T (cl(v)). We update the duals π by shifting all even vertices by −ε and
shifting all odd vertices by +ε. The maximality of F implies that this update
is possible for some ε > 0; moreover, we choose the maximum possible ε. The
non-negativity of reduced costs and duals corresponding to triangles imply a
certain upper bound for ε.

Lemma 5. If ε = +∞, then there are no triangle-free 2-matchings in G. If ε
is finite, then it is positive and 2ε is integer.

One can see that the dual transformation does not change the values of cπ(e)
for edges e ∈ E(F), keeps π feasible and satisfying (INV3), keeps x 1-feasible,
and keeps F eligible w.r.t. π and x. Moreover, the choice of ε ensures that after
the update at least of the following applies: either there exists a triangle T in
cl(v) for some odd vertex v such that π(T ) = 0 holds after the update, or there
exists a new valid edge, which can be used to grow F further. In the former case
we uncontract T and insert the relevant eligible edges into F (see again [CP80a,
pp.152–153, Sect. 4]) We perform a sequence of Grow steps until F becomes
maximal again or an x-augmenting path is found. In the former case we repeat
the dual adjustments; in the latter case Dual stops.

3.6 Normalize-Triangles Routine

Here we explain how to “fix” duals π in order to ensure that (INV1) holds after
doubling the costs and increasing some of them by 1. The algorithm updates
dual variables and possibly expands some of the contracted triangles as follows.



A Fast Scaling Algorithm 35

Consider a contracted triangle cluster C. For a triangle T and an edge e ∈ T ,
denote by opp-vT (e) the vertex v of this triangle that is not incident to e.
Also let opp-clT (e) be the connected component (again regarded as a triangle
cluster) of C containing opp-vT (e) that arises from deleting the edges of T
from C. Let e be the edge of T with cπ(e) ∈ {2, 3}. Fix a positive integer ε
and update the duals by decreasing π(T ) by ε, increasing π(u) by ε for all
u ∈ V (opp-clT (e)) and decreasing π(T ′) by 2ε for all T ′ ∈ T (opp-clT (e)). Note
that this transformation does not change cπ for e′ ∈ E(C) − {e} and decreases
cπ(e) by ε. It also obviously preserves (INV3). However for some triangle T ′

we may get π(T ′) = 0 or π(T ′) = −1 after the change. In the first case we
uncontract T ′. In the second case we reset π(T ′) := 0 and then uncontract T ′.
This increases cπ(e) on the edges of T ′ by 1 but the edges of T are unaffected
by this operation.

The above transformations are applied to all relevant edges e and lead to
the updated duals π obeying (INV1)–(INV3). With a suitable implementation
using ET-trees [HK95], Normalize-Triangles runs in O(E + V log V ) time.
Also the following fact (employed in Sect. 4) is true:

Lemma 6. Let π be the duals obtained by Normalize-Triangles. There
exists a perfect triangle-free 2-matching x′ in G such that x′ is triangle-consistent
w.r.t. π and obeys cπ · x′ = O(V ).

4 Complexity Analysis

Normalize-Triangles takes O(E + V log V ) time, Blocking-Augment and
Dual run in O((V +E) log V ) time, where the log V factor comes from support-
ing contractions and uncontractions, which can be done using Link/cut trees
[ST83]. Hence, it remains to bound the number of iterations in Match.

Lemma 7. The number of iterations of Match routine is O(
√

V ).

Proof. Consider the duals π0 and the graph Ĝ0 right after Normalize-
Triangles. By Lemma 6 there exists a perfect triangle-free 2-matching x0 in
G such that x0 is triangle-consistent w.r.t. π0 and cπ0 · x0 = O(V ). For each
v ∈ V (Ĝ0) pick a single vertex in cl(v) (arbitrarily) and denote the resulting set
of vertices by F0.

Now let π1 be the duals, Ĝ1 be the current graph, and x′
1 be the current

1-feasible 2-matching in Ĝ1 obtained after the i-th iteration. Then V (cl(v))∩F0 �=
∅ holds for each free w.r.t. x′

1 vertex v. Pick a single one vertex in V (cl(v)) ∩ F0

(again arbitrarily) for all free v and denote the resulting set by F1. Let Δ be
the sum of all ε-s in dual adjustments performed so far; then π(v) was decreased
exactly by Δ for all v ∈ F1. This follows as each v ∈ F1 was appearing in some
(possibly trivial) cl(v′) for a free (and thus even) vertex v′ during all iterations
up to the i-th one, and thus π(v) was receiving decreases by ε in each Dual.

We claim that |F1|·Δ = O(V ). Assuming this is true, the proof follows by the
usual case splitting. Indeed, by Lemmas 5 and 4 each run of the Dual routine
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increases Δ by at least 1/2. Hence, after O(
√

V ) iterations we get |F1| = O(
√

V ),
and it remains to run O(

√
V ) augmentations to finish Match.

Let x1 be the extension of x′
1 into contracted triangle clusters. Consider

Λ := (x1−x0)·(cπ1 −cπ0). Then Λ = x1 ·cπ1 +x0 ·cπ0 −x0 ·cπ1 −x1 ·cπ0 ≤ x1 ·cπ1 +
x0 · cπ0 ≤ O(V ) + O(V ) = O(V ) due to non-negativity of reduced costs and the
1-feasibility of x1. On the other hand, for arbitrary duals π denote ϑπ = cπ − c.
Then Λ = (x1−x0)(ϑπ1−ϑπ0) = x1 ·ϑπ1+x0 ·ϑπ0−x1ϑ·π0−x0 ·ϑπ1. Since x0 is
perfect and triangle-consistent w.r.t. π0, x0 ·ϑπ0 = 2π0(V (G))+2π0(T (G)). Also,
since x1 is basic and is triangle-consistent w.r.t. π1 we similarly get x1 · ϑπ1 =
2π1(V (G) − F1) + 2π1(T (G)).

Now, note that x1 · ϑπ0 =
∑

v∈V (G) x1(δ(v))π0(v) +
∑

T∈T (G) x1(T )π0(T ) =
2π0(V (G)−F1)+

∑
T∈T (G) x1(T )π0(T ) ≤ 2π0(V (G)−F1)+2π0(T (G)). Similarly,

x0 ·ϑπ1 ≤ 2π1(V (G))+2π1(T (G)), and hence Λ ≥ 2π0(F1)−2π1(F1). Since each
dual adjustment decreases π(v) for all v ∈ F1 by ε, 2π0(F ) − 2π1(F ) ≥ 2|F1|Δ.
Combining this with Λ = O(V ) we get the desired bound |F1|Δ = O(V ). ��

We conclude with

Theorem 1. For a graph G and integer edge costs c : E(G) → [0, C],
a minimum-cost perfect triangle-free 2-matching can be found in
O(E

√
V log V log(V C)) time.
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Abstract. A 2-page drawing of a graph is such that the vertices are
drawn as points along a line and each edge is a circular arc in one of
the two half-planes defined by this line. If all edges are in the same
half-plane, the drawing is called a 1-page drawing. We want to compute
1-page and 2-page drawings of planar graphs such that the number of
crossings per edge does not depend on the number of the vertices. We
show that for any constant k, there exist planar graphs that require more
than k crossings per edge in either a 1-page or a 2-page drawing. We then
prove that if the vertex degree is bounded by Δ, every planar 3-tree has
a 2-page drawing with a number of crossings per edge that only depends
on Δ. Finally, we show a similar result for 1-page drawings of partial
2-trees.

1 Introduction

A k-page book embedding (also known as stack layout) of a planar graph G is a
crossing-free drawing of G where the vertices are represented as points along a
line called spine and each edge is a circular arc in one of k half-planes bounded
by the spine; each such half-plane is called a page. The minimum number of
pages to compute a book embedding of a planar graph G is the book thickness
of G. It is known that not all planar graphs have book thickness two; in fact,
Bernhart and Kainen proved that a planar graph has page number two if and
only if it is sub-Hamiltonian [4]. On the other hand, Yannakakis showed that
every planar graph has book thickness at most four [13].

As a consequence, if we want to compute a drawing of a planar graph such
that all vertices are points of a line and each edge is a circular arc inside one of at
most two half-planes, edge crossings are unavoidable. If the edges are restricted in
exactly one half-plane, we talk about 1-page drawings; otherwise, we talk about
2-page drawings. Since testing a graph for sub-Hamiltonicity is an NP-complete
problem [6], the result by Bernhart and Kainen implies that minimizing the

Research supported in part by the MIUR project AMANDA “Algorithmics for MAs-
sive and Networked DAta”, prot. 2012C4E3KT 001.

c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 38–51, 2016.
DOI: 10.1007/978-3-319-29516-9 4



1-Page and 2-Page Drawings with Bounded Number of Crossings per Edge 39

number of edge crossings in a 2-page drawing is also NP-complete. Two recent
papers by Bannister et al. [3] and by Bannister and Eppstein [2] show that the
problem is fixed parameter tractable with respect to various graph parameters,
such as cyclomatic number and treewidth.

In this paper we study the problem of computing 1-page and 2-page drawings
of planar graphs such that the number of crossings per edge is bounded by a
function that does not depend on the size of the graph. We prove the follow-
ing theorems about planar graphs with bounded treewidth and bounded vertex
degree.

Theorem 1. Let G be a planar 3-tree with maximum degree Δ and n vertices.
There exists an O(n)-time algorithm that computes a 2-page drawing of G with
at most 2Δ crossings per edge. Also, for every integer constant k, there exist
infinitely many planar 3-trees that do not admit a 2-page drawing with at most
k crossings per edge.

Theorem 2. Let G be a partial 2-tree with maximum degree Δ and n vertices.
There exists an O(n)-time algorithm that computes a 1-page drawing of G with
at most Δ2 crossings per edge. Also, for every integer constant k, there exist
infinitely many partial 2-trees that do not admit a 1-page drawing with at most
k crossings per edge.

Related Literature and Paper Organization. 1-page and 2-page drawings are
among the oldest and more common graph drawing conventions and they have
received different names during the years. For example, they were studied in
the 60s under the name of network permutations (see, e.g., [11]); they were
called linear embeddings in the 90s (see, e.g., [10]); they were introduced in the
InfoVis community less than fifteen years ago with the name of arc diagrams
(see, e.g., [12]).

Also, the contribution of this paper can be related with a fertile research
stream in graph drawing devoted to computing drawings where some edge cross-
ing configurations are forbidden. In particular, a graph is said to be k-planar if
it has a drawing where each edge is crossed at most k times. Theorems 1 and 2
compute k-planar 1-page and 2-page drawings where k is a function of Δ. Recent
results about k-planar graphs and drawings include [1,8,9].

Preliminary definitions are given in Sect. 2. Theorem 1 is proved in Sect. 3,
while Theorem 2 is proved in Sect. 4. Open problems are discussed in Sect. 5.

2 Preliminaries

A drawing Γ of a graph G = (V,E) is a mapping of the vertices in V to points
of the plane and of the edges in E to Jordan arcs connecting their corresponding
endpoints but not passing through any other vertex. Γ is a planar drawing if no
edge is crossed; it is a k-planar drawing if each edge is crossed at most k times.
A planar drawing of a graph partitions the plane into topologically connected
regions, called faces. The unbounded region is called the outer face. A planar



40 C. Binucci et al.

embedding of a planar graph is an equivalence class of planar drawings that define
the same set of faces. Two drawings with the same planar embedding have the
same circular ordering of the edges around each vertex. A planar graph together
with a planar embedding is called a plane graph. A plane graph is maximal if all
its faces are triangles. Given a plane graph, we denote by Cx,y,z the cycle formed
by three mutually adjacent vertices x, y, and z, and by G(Cx,y,z) the subgraph
of G consisting of Cx,y,z and all the vertices inside it.

The concept of planar embedding can be extended to k-planar drawings
as follows. Given a k-planar drawing Γ we can planarize it by replacing each
crossing with a dummy vertex. A k-planar embedding of a k-planar graph is an
equivalence class of k-planar drawings whose planarized versions have the same
planar embedding. Notice that two drawings with the same k-planar embedding
have the same circular ordering of the edges around each vertex, the same set
of crossings, and the same circular ordering of the edges around each crossing.
An outer k-planar embedding is a k-planar embedding with all vertices on the
outer face. Analogously an outerplanar embedding is a planar embedding with
all vertices on the outer face. An outer k-planar graph (respectively outerplanar
graph) is a graph that admits an outer k-planar embedding (respectively an
outerplanar embedding).

A 2-page drawing of a graph G is a drawing Γ of G such that the vertices
lie on a horizontal line �, called spine, and each edge is drawn as a semicircle
in one of the two half-planes defined by �. Each of these half-planes is called a
page. If all edges of Γ are on a single page, Γ is called a 1-page drawing. If each
edge of Γ has at most k crossings, we call Γ a k-planar2-page ( 1-page) drawing.
Figure 1(a) shows an example of 1-planar 2-page drawing.

A graph is connected if every pair of vertices of G is connected by a path.
A k-connected graph G is such that removing any k − 1 vertices leaves G con-
nected; 2-connected and 1-connected graphs are also called biconnected, and
simply connected graphs, respectively. A vertex whose removal disconnects the
graph is called a cut-vertex. Hence, a connected graph is biconnected if it has
no cutvertices. Given a simply connected graph G, the maximal subgraphs of G
not containing a cutvertex are the biconnected components of G. Notice that a
biconnected component of a connected graph is either a biconnected subgraph
or a single edge.

A graph is Hamiltonian if it has a simple cycle containing all its vertices.
A k-planar Hamiltonian augmentation of a k-planar graph G is a k-planar
Hamiltonian multigraph1 G′ obtained by adding edges to G and possibly chang-
ing the k-planar embedding of G. A k-planar Hamiltonian augmentation such
that no edge of the Hamiltonian cycle has crossings is called an uncrossed
k-planar Hamiltonian augmentation. The following lemma establishes the con-
nection between k-planar 2-page drawings and uncrossed k-planar Hamiltonian
augmentations.

1 A multigraph is a graph that can have multiple edges between the same pair of
vertices.
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Fig. 1. (a) A 1-planar 2-page drawing. (b) A plane 3-tree. The three subgraphs G1, G2

and G3 are highlighted. (c) An example of a graph G used in the proof of Lemma 4.

Lemma 1. Let G be a planar graph. G admits a k-planar 2-page drawing if and
only if G admits an uncrossed k-planar Hamiltonian augmentation.

Proof. Consider a k-planar 2-page drawing Γ of G and let v1, v2, . . . , vn be
the vertices of G in the linear order they appear along the spine � of Γ .
For every i = 1, 2, . . . , n − 1, if the edge (vi, vi+1) does not exist in G, we
add it to G (in either page); analogously, we add the edge (vn, v1) if it does
not exist in G (in either page). Let G′ be the resulting graph. The edges
(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1) form a Hamiltonian cycle H of G′. Since
each edge (vi, vi+1) connects vertices that are consecutive along � and every edge
is either above or below �, the edge (vi, vi+1) is not crossed. Analogously the edge
(vn, v1) is not crossed because it connects the first vertex along � to the last one.
Thus, no edge of H is crossed and G′ is an uncrossed k-planar Hamiltonian
augmentation of G.

Assume now that G admits an uncrossed k-planar Hamiltonian augmentation
G′ and let H be the Hamiltonian cycle of G′. Since no edge of H is crossed,
every edge not in H is either completely inside H or completely outside H
in the k-planar embedding of G′. We compute a k-planar 2-page drawing as
follows. We order the vertices of G′ (and therefore of G) along � according to
the order in which they appear along H (starting from an arbitrary vertex). The
edges of H and the edges inside H are drawn below � and the remaining edges
(i.e., those outside H) are drawn above �. It is easy to see that two edges cross in
the defined 2-page drawing if and only if they cross in the k-planar embedding of
G′. It follows that each edge is crossed at most k times in the computed 2-page
drawing. ��

The following lemma can be proven analogously to the previous one.

Lemma 2. Let G be a planar graph. G admits a k-planar 1-page drawing if and
only if G admits an uncrossed outer k-planar Hamiltonian augmentation.

Let k > 0 be a given integer. A k-tree is a graph recursively defined as follows:
(i) The complete graph with k vertices is a k-tree. (ii) A k-tree with n+1 vertices
(n ≥ k) can be obtained from a k-tree H with n vertices by adding one vertex
and making it adjacent to a clique of size k of H.
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A partial k-tree is a subgraph of a k-tree. In this paper we will consider
2-trees and 3-trees. 2-trees are always planar, while 3-trees can be planar or not.
A plane 3-tree can be constructed starting from a 3-cycle (i.e., the complete
graph with 3 vertices) and by repeatedly adding a vertex inside a face f and
connecting it to the three vertices of f . An example of a plane 3-tree is shown
in Fig. 1(b). Notice that a plane 3-tree G is a maximal planar graph, i.e., all its
faces are triangles. Let a, b, and c be the external vertices of G. There exists
exactly one internal vertex r that is adjacent to a, b, and c. Vertex r is called the
representative vertex of G. Furthermore, the three subgraphs G1 = G(Ca,b,r),
G2 = G(Cc,a,r), and G3 = G(Cb,c,r) are plane 3-trees (see Fig. 1(b)). A partial
plane 3-tree is a subgraph of a plane 3-tree.

3 Plane 3-Trees

In this section, we first prove that, for every constant k > 0, there exist infinitely
many (partial) plane 3-trees that do not admit a k-planar 2-page drawing. Let
G be a graph and let h be a positive integer. We define the h-extension of G as
the graph G∗ constructed by attaching h paths of length 2 to each edge of G. It
is easy to see that the h-extension of a plane 3-tree is a partial plane 3-tree for
every positive integer h. We have the following lemma. The proof is omitted for
space reasons.

Lemma 3. Let h be a positive integer, and let G be a planar graph. In any
h-planar drawing of the 3h-extension G∗ of G, there are no two edges of G that
cross each other.

Using the previous lemma we can prove the following.

Lemma 4. Let k > 0 be any given integer. For every n > 4 there exits a partial
plane 3-tree with 27kn + 3n − 54k − 4 vertices that does not admit a k-planar
2-page drawing.

Proof. Let G′ be a plane 3-tree with n vertices and let G be the plane 3-tree
obtained by adding a vertex inside each face of G′ (and connecting it to the three
vertices of the face). The vertices of G shared with G′ are called white vertices,
the remaining ones are called black vertices (see Fig. 1(c) for an example). Since
G′ has 2n−4 faces, then G has n white vertices and 2n−4 black vertices. Let G∗

be the 3k-extension of G. Notice that G∗ has 27kn + 3n − 54k − 4 vertices. We
prove that G∗ does not admit a k-planar 2-page drawing. Based on Lemma 1 it
is sufficient to show that G∗ does not admit an uncrossed k-planar Hamiltonian
augmentation.

Suppose as a contradiction, that G∗ has an uncrossed k-planar Hamiltonian
augmentation G and let H be the corresponding Hamiltonian cycle. Let u
and v be two vertices of G∗ that are two black vertices of G. By Lemma 3,
the subgraph of G∗ coinciding with G is planarly embedded in the considered
k-planar embedding of G. This means that u is inside a triangle τu of white
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vertices and v is inside another triangle τv of white vertices. If there is no ver-
tex between u and v in H, then H must cross a white edge (i.e. an edge with
two white endvertices) in order to move from τu to τv, but this is not possible
because the edges of H do not have crossings. Thus, in H there must be at least
one white vertex between any two black vertices. This means that the number
of white vertices must be at least the number of black vertices. Since the black
vertices are 2n − 4, the white vertices are n, and n > 4, this is not possible. ��

Since Lemma 4 states that for plane 3-tree it is not always possible to obtain
a 2-page drawing with a constant number of crossings per edge, we investigate
whether such a drawing exists with a number of crossings that, although not
constant, does not depend on the size of the graph. We show that every plane
3-tree G admits a 2Δ-planar 2-page drawing, where Δ is the maximum vertex
degree of G. Based on Lemma 1 it is sufficient to show that G admits an uncrossed
2Δ-planar Hamiltonian augmentation. To this aim, we describe an algorithm,
which we call Plane3TreeEmbedder, that computes an uncrossed 2Δ-planar
Hamiltonian augmentation with some additional properties.

Let G be a plane 3-tree of maximum vertex degree Δ. Let a, b, and c be
the external vertices of G (in counterclockwise order) and, if G has more than
three vertices, let r be the representative vertex of G. Let G1 = G(Ca,b,r),
G2 = G(Cc,a,r), and G3 = G(Cb,c,r) (see Fig. 1(b)). We denote by Δi (i = 1, 2, 3)
the maximum vertex degree in Gi, by δ(v) the degree of vertex v in G, and by
δi(v) the degree of vertex v in Gi. Let e1 = (u, v) and e2 = (v, w) be two external
edges of G arbitrarily chosen (i.e. u, v, w ∈ {a, b, c}). We prove that G admits
an uncrossed k-planar Hamiltonian augmentation with a Hamiltonian cycle H
such that the following properties hold:

P1: k ≤ 2Δ, i.e., each edge is crossed at most 2Δ times. In particular, the edges
of the external face of G have no crossings, while the edges incident to a, b,
and c have at most Δ + δ(a), Δ + δ(b), and Δ + δ(c) crossings, respectively.

P2: e1 and e2 belong to H;
P3: Let H ′ be the path obtained from H by removing the external vertices of

G. If H ′ is not empty, let z1 and z2 be the end-vertices of H ′. Then the
edges (z1, u) and (z2, w) belong to H, and the edges (z1, v) and (z2, v) are
not crossed (see Fig. 2).

If G has 3 vertices, H coincides with G and the three properties P1, P2, and
P3 trivially hold.

If G has more than 3 vertices, then it can be decomposed into the
three graphs G1 = G(Ca,b,r), G2 = G(Cc,a,r), and G3 = G(Cb,c,r) (see
Fig. 1(b)). Without loss of generality assume that e1 is the edge (a, b) and
that e2 is the edge (b, c), i.e., assume that u = a, v = b, and w =
c (the other cases are analogous). The subgraph G1 recursively admits a
k1-planar Hamiltonian augmentation with a Hamiltonian cycle H1 that contains
the edges (a, b) and (a, r) and satisfies the properties P1-P3. Analogously, G2

recursively admits a k2-planar Hamiltonian augmentation with a Hamiltonian
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Fig. 2. Illustration of property P3. The Hamiltonian cycle is shown with bold edges.
The thin edges are not crossed. (a) e1 = (b, a), e2 = (a, c). (b) e1 = (a, b), e2 = (b, c).
(c) e1 = (a, c), e2 = (c, b).

cycle H2 that contains the edges (a, r) and (r, c) and satisfies the properties P1-
P3. Finally, G3 recursively admits a k3-planar Hamiltonian augmentation with
a Hamiltonian cycle H3 that contains the edges (r, c) and (c, b) and satisfies the
properties P1-P3.

We now describe how the algorithm Plane3TreeEmbedder constructs H
starting from H1, H2, and H3. From each cycle Hi (for i = 1, 2, 3) it constructs
a path H ′

i as follows.

Construction of H ′
1. If G1 has three vertices (see Fig. 3(a)), then H1 coincides

with G1 and H ′
1 consists of the only edge (a, b). If G1 has more than three vertices

(see Fig. 3(b)), then by Property P3 (see Fig. 2(a)) there exists a vertex z′
1 such

that the edge (z′
1, b) belongs to H1 and the edge (z′

1, a) has no crossings. Also,
there exists a vertex z′

2 such that (z′
2, r) belongs to H1. H ′

1 is obtained from
H1 by: (i) removing the vertex r (and therefore the edges (z′

2, r) and (a, r));
(ii) removing the edge (z′

1, b); and (iii) adding the edge (z′
1, a). Notice that in

both cases H ′
1 starts at b and contains all vertices of G1 except r. The last vertex

is either a or z′
2.

Construction of H ′
2. If G2 has three vertices (see Fig. 3(c)), then H2 coincides

with G2 and H ′
2 consists of the only vertex r. If G2 has more than three vertices

(see Fig. 3(d)), then by Property P3 (see Fig. 2(b)) there exists a vertex z′′
1 such

that the edge (z′′
1 , c) belongs to H2 and the edge (z′′

1 , r) has no crossings. Also,
there exists a vertex z′′

2 such that (z′′
2 , a) belongs to H2. H ′

2 is obtained from
H2 by: (i) removing the vertices a and c (and therefore the edges (a, z′′

2 ), (a, r),
(c, r), and (z′′

1 , c)); and (ii) adding the edge (z′′
1 , r). Notice that in both cases H ′

2

ends at r and contains all vertices of G2 except a and c. The first vertex is either
r itself or z′′

2 .

Construction of H ′
3. If G3 has three vertices (see Fig. 3(e)), then H3 coincides

with G3 and H ′
3 consists of the two edges (r, c) and (c, b). If G3 has more than

three vertices (see Fig. 3(f)), then by Property P3 (see Fig. 2(c)) there exists a
vertex z′′′

1 such that the edge (z′′′
1 , b) belongs to H3 and the edge (z′′′

1 , c) has no
crossings. Also, there exists a vertex z′′′

2 such that (z′′′
2 , r) belongs to H3. H ′

3 is
obtained from H3 by: (i) removing the edge (c, r); (ii) removing the edge (z′′′

1 , b);
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Fig. 3. Obtaining H ′
i from Hi (i = 1, 2, 3). (a)–(b) G1. (c)–(d) G2. (e)–(f) G3.

and (iii) adding the edge (z′′′
1 , c). Notice that in both cases H ′

3 starts at r, ends
at b, and contains all vertices of G3.

Once H ′
1, H ′

2, and H ′
3 have been constructed, algorithm Plane3Tree

Embedder glues them together to form H. H ′
2 and H ′

3 have the vertex r in
common so they can be glued without any further modification. In order to glue
H ′

1 and H ′
2 the last vertex of H ′

1 is connected to the first vertex of H ′
2 with an

edge e∗. We have the following cases:

The last vertex of H ′
1 is a and the first vertex of H ′

2 is r. (see Fig. 4(a)).
In this case e∗ = (a, r). Since it is not crossed, it can be added to H.

The last vertex of H ′
1 is a and the first vertex of H ′

2 is z′′
2 . (see Fig. 4(b)).

In this case the edge e∗ = (a, z′′
2 ) was an edge of H2 (by property P3) and

therefore it is not crossed. Thus, it can be added to H.
The last vertex of H ′

1 is z′
2 and the first vertex of H ′

2 is r. (see Fig. 4(c)).
In this case the edge e∗ = (z′

2, r) was an edge of H1 (by property P3) and
therefore it is not crossed. Thus, it can be added to H.

The last vertex of H ′
1 is z′

2 and the first vertex of H ′
2 is z′′

2 . (see Fig. 4(d)).
In this case the edge e∗ = (z′

2, z
′′
2 ) does not exist in G. We can add it to G

creating one crossing with the edge (a, r). Notice that this crossing involves
an edge of H, i.e., the edge (z′

2, z
′′
2 ). Since we want no crossings on the edges

of H, we reroute the edge (a, r) (shown bold in Fig. 4(d)) so that it crosses
all the edges of G2 incident to c (except (a, c) and (c, r)) and no other edge
of G2.

In summary the cycle H consists of: (i) the path H ′
1; (ii) the edge e∗;

(iii) the path H ′
2; and (iv) the path H ′

3. The following lemma proves the correct-
ness of the algorithm Plane3TreeEmbedder.

Lemma 5. Let G be a plane 3-tree. Algorithm Plane3TreeEmbedder com-
putes an uncrossed k-planar Hamiltonian augmentation of G with a Hamiltonian
cycle that satisfies properties P1-P3.
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Fig. 4. Gluing together H ′
1 and H ′

2: different cases.

Proof. In order to prove the statement, we must prove that the cycle H computed
by the algorithm Plane3TreeEmbedder is Hamiltonian and that properties
P1-P3 hold. We use the same notation adopted to describe the algorithm.

H contains all vertices of G. All the vertices of G distinct from a, b, c, and r
belong to either H ′

1, or H ′
2, or H ′

3. Vertex a belongs to H ′
1. Vertex b belongs to

H ′
1 and H ′

3 (it has degree one in both paths and therefore it has degree two in
H). Vertex c belongs to H ′

3, Vertex r belongs to H ′
2 and H ′

3 (it has degree one
in both paths and therefore it has degree two in H).

Property P1 holds. We first prove that the edges of H are not crossed. Suppose
first that the edge (a, r) is not rerouted. In this case the edges crossed in G were
already crossed in G1, G2, or G3. The edges of H are either edges of H1, H2,
and H3, in which case they are not crossed by induction, or they are the edges
(z′

1, a), (z′′
1 , r), or (z′′′

1 , c). By property P3 these edges are not crossed. Suppose
now that we reroute the edge (a, r). In this case there can be edges that were not
crossed in G2 and that get crossed in G. These edges are (a, r) and all the edges
incident to c except (a, c) and (r, c). Denote by E∗ the edges that get additional
crossings. The edge (a, r) is not part of H by construction. The edges incident
to c crossed by (a, r) are not part of H, too. Namely, the edges of H2 incident to
c are either (a, c) and (r, c), which are not in H (and are not crossed), or (z′′

1 , c)
and (r, c), which are also not in H.

Consider now the edges not in H. Each edge that is not in E∗ has the
same number of crossings that it had in G1, G2, or G3 and therefore it satisfies
Property P1 by induction. Let χ(a,r) be the number of crossings that are created
on the edge (a, r) by the rerouting. χ(a,r) is less than δ2(c) and therefore we
have χ(a,r) ≤ δ2(c) ≤ Δ ≤ Δ + δ(c) ≤ 2Δ. Consider now an edge e ∈ E∗.
Let χe

2 be the number of crossings that the edge e has in G2. By induction,
χe
2 is at most Δ2 + δ2(c). The number of crossings that the edge e has in G is

χe = χe
2 + 1 ≤ Δ2 + δ2(c) + 1 ≤ Δ + δ2(c) + 1. Since δ(c) ≥ δ2(c) + 1, we have

that χe ≤ Δ + δ(c) ≤ 2Δ.

Property P2 holds. The edge e1 = (b, a) belongs to H ′
1, while the edge

e2 = (b, c) belongs to H ′
3. Thus they both belong to H.

Property P3 holds. The vertex z1 coincides with z′′′
1 and the vertex z2 coin-

cides with z′
1. Since the 2Δ-planar embedding of G1 and G3 is not changed
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(we only changed the 2Δ-planar embedding of G2), property P3 holds because
it held for G1 and G3. ��

Proof of Theorem 1. The existence of a 2-page drawing with 2Δ crossings per
edge follows from Lemmas 1 and 5. The existence of infinitely many planar
3-trees that do not admit a 2-page drawing with a constant number of crossings
per edge follows from Lemma 4 and by the fact that a graph does not admit
a k-planar 2-page drawing if it contains a subgraph that does not admit such
a drawing. The proof of the time complexity of Plane3TreeEmbedder is
omitted for space reasons.

4 Partial 2-Trees

We start by proving that, for every constant k > 0, there exist infinitely many
(partial) 2-trees that do not admit a k-planar 1-page drawing.

Lemma 6. Let k > 0 be any given integer. For every n > 4 there exists a 2-tree
with 6kn + n − 9k vertices that does not admit a k-planar 1-page drawing.

Proof. Let G be a 2-tree with n vertices that is not outerplanar and let G∗ be the
3k-extension of G. Since G has 2n−3 edges, G∗ has 6kn+n−9k vertices. We show
that G∗ does not admit an uncrossed outer k-planar Hamiltonian augmentation.
By Lemma 2, this implies that G∗ does not admit a k-planar 1-page drawing.
If G∗ has an uncrossed outer k-planar Hamiltonian augmentation G�, then, by
Lemma 3, the subgraph of G∗ coinciding with G is planarly embedded in the
outer k-planar embedding of G�. But this means that G is outerplanar, which
is not true by definition. ��

We now prove that every partial 2-tree admits a Δ2-planar 1-page drawing.
It is known that a graph G is a partial 2-tree if and only if every biconnected
component of G is a series-parallel graph [5]. A series-parallel graph G is a
multigraph with two distinguished vertices, called the source s and the sink t
of G, which is recursively defined as follows: (i) A single edge (s, t) is a series-
parallel graph with source s and sink t; (ii) Given two series-parallel graphs G1

and G2 with sources s1 and s2, respectively and sinks t1 and t2, respectively,
then:

– The graph obtained by identifying t1 with s2 is a series-parallel graph with
source s1 and sink t2. This operation is called series composition.

– The graph obtained by identifying the two sources s1 and s2 and identifying
the two sinks t1 and t2 is a series-parallel graph with source s1 = s2 and sink
t1 = t2. This operation is called parallel composition.

The series-parallel graphs as defined above, are often called two-terminal
series-parallel graphs [7]. The source and the sink of a series-parallel graph are
called its poles. We only consider series-parallel graphs without multiple edges.
Let G be a series-parallel graph. In the following we denote by s and t the poles
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of G, by Δ the maximum vertex degree of G, by δ(v) the degree of a vertex v
in G, and by hs (respectively ht) the number of times that s (respectively t) is
a pole of a parallel composition in the construction of G. If G is the series or
parallel composition of two graphs G1 and G2, we denote by si, ti, Δi, δi(v),
hi,si

, and hi,ti the analogous elements for Gi (i = 1, 2). We have the following
technical lemma whose proof is omitted for space reasons.

Lemma 7. Let G be a series-parallel graph. Then hs ≤ Δ and ht ≤ Δ.

We now prove that every series-parallel graph admits an uncrossed outer
Δ2-planar Hamiltonian augmentation. By Lemma 2 this implies that every
biconnected partial 2-tree admits a Δ2-planar 1-page drawing. Let G be a series-
parallel graph. We describe an algorithm, called SPEmbedder, that computes
an uncrossed outer k-planar Hamiltonian augmentation of G with a Hamiltonian
cycle H with the following properties:

PA: k ≤ Δ2, i.e., each edge is crossed at most Δ2 times. In particular, the edges
of H have no crossings and the edges incident to s and t have at most hs ·Δ
and ht · Δ crossings, respectively. Notice that by Lemma 7, hs · Δ ≤ Δ2 and
ht · Δ ≤ Δ2.

PB: (s, t) belongs to H;

If G has a single edge (s, t), then H is obtained by adding a dummy edge
in parallel between s and t and the properties PA–PB trivially hold. If G has
more than one edge, then G is either the series or the parallel composition of
two series-parallel graphs G1 and G2. By induction, each Gi (i = 1, 2) has an
uncrossed outer ki-planar Hamiltonian augmentation with Hamiltonian cycle Hi

such that the properties PA–PB hold. Let si = vi,1, vi,2, . . . , vi,ni
= ti be the

vertices of Gi in the order they appear along Hi.

Series composition. We remove the edge (si, ti) from Hi (i = 1, 2), thus
obtaining a path H ′

i. Notice that the last vertex of H ′
1 is t1 and the first ver-

tex of H ′
2 is s2. In G these two vertices coincide, and therefore H ′

1 and H ′
2

are joined together in G. We add the edge (s1, t2), thus obtaining the cycle
H: s1 = v1,1, v1,2, . . . , v1,n1−1, t1 = s2, v2,2, . . . , v2,n2 = t2. All the other edges of
G are embedded inside H (see Fig. 5(b)).

Parallel composition. Assume that G is obtained as a parallel composition
of G1 and G2. We remove the vertex t1 (and therefore (s1, t1) and (v1,n1−1, t1))
from H1 and the vertex s2 (and therefore (s2, v2,2) and (s2, t2)) from H2. We
then add the edges (v1,n1−1, v2,2) and (s1, t2), and obtain the cycle H: s1 =
v1,1, v1,2, . . . , v1,n1−1, v2,2, . . . , v2,n2 = t2. All the other edges of G are embedded
inside H (see Fig. 5(c)).

Lemma 8. Let G be a series-parallel graph. Algorithm SPEmbedder computes
an uncrossed outer k-planar Hamiltonian augmentation with a Hamiltonian cycle
that satisfies properties PA–PB.
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G2

t2

s2

G1

t1

s1
v1,2

v1,n1−1

v2,2

v2,n2−1

(a)

s = s1

t = t2

s2 = t1

v1,2

v1,n1−1

v2,2

v2,n2−1

(b)

t = t1 = t2

s = s1 = s2
v1,2

v1,n1−1

v2,2

v2,n2−1E1

E2

(c)

Fig. 5. Algorithm SPEmbedder. (a) G1 and G2. (b) Series composition. (c) Parallel
composition. The bold edges represent the Hamiltonian cycles H1, H2, and H. The
dashed edges are (possibly) dummy edges.

Sketch of proof. It is immediate to see that the cycle H computed by the algo-
rithm SPEmbedder is Hamiltonian and that the constructed embedding is
outer k-planar (for some k). We must prove that properties PA–PB hold. Prop-
erty PB holds by construction both for series and parallel composition. Thus we
concentrate on property PA. We use the same notation adopted to describe the
algorithm (see also Fig. 5). Due to space reasons, full details are omitted here.

Series composition. It is easy to see that no crossing has been introduced on
the edges of G1 and of G2 with the series composition and that the only added
edge, i.e., edge (s, t), has no crossing. Using this fact, we can prove property
PA. Let e be an edge of H. If e = (s, t) then it is not crossed as shown above.
If e belongs to G1 (respectively G2), then it belongs to H1 (respectively H2)
and therefore is not crossed. Let e be an edge of G1 (respectively G2) not in H
and that is not incident to s or t. By induction e has Δ2

1 ≤ Δ2 (respectively
Δ2

2 ≤ Δ2) crossings. Consider now an edge e of G1 that is incident to s (the
case when e belongs to G2 and/or is incident to t is analogous). By induction,
e has at most h1,s1 · Δ1 crossings. Since Δ1 ≤ Δ and h1,s1 = hs, the number of
crossings of e is at most hs · Δ.

Parallel composition. It is easy to see that the only edges that get additional
crossings with the parallel composition, are those connecting s to vertices of G2

(denote them as E2) and those connecting t to the vertices of G1 (denote them
as E1), and that the two added edges (v1,n1−1, v2,2) and (s1, t2) do not cross
any other edge. We now prove property PA. Let e be an edge of H. If e = (s, t)
or e = (v1,n1−1, v2,2) then it is not crossed as shown above. If e belongs to G1,
then it belongs to H1 and does not belong to E1. Therefore it is not crossed.
Analogously, if e belongs to G2, then it belongs to H2 and does not belong to E2.
Also in this case it is not crossed. Let e be an edge of G1 (respectively G2) not
belonging to H and that is not incident to s or t. By induction e has Δ2

1 ≤ Δ2

(respectively Δ2
2 ≤ Δ2) crossings. Consider now an edge e of G1 that is incident

to s (the case when e belongs to G2 and is incident to t is analogous). By
induction, e has at most h1,s1 ·Δ1 crossings. Since e belongs to G1 and is incident
to s, then it does not belong to E1 and has the same crossings it had before the
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composition. We have Δ1 ≤ Δ and h1,s1 ≤ hs (because hs = h1,s1 + h2,s2 + 1).
Hence, the number of crossings of e is at most hs · Δ. Consider now an edge e
of G2 that is incident to s (the case when e belongs to G1 and is incident to t
is analogous). By induction, e has at most h2,s2 · Δ2 crossings. Since e belongs
to G2 and is incident to s, it belongs to E2 and has δ1(t1) additional crossings.
Thus, the number of crossings on e in G is at most h2,s2 · Δ2 + δ1(t1). We have
Δ2 ≤ Δ, h2,s2 ≤ hs − 1 (because hs = h1,s1 + h2,s2 + 1), and δ1(t1) ≤ Δ. Hence,
the number of crossings of e is h2,s2 · Δ2 + δ1(t1) ≤ (hs − 1) · Δ + Δ = hs · Δ. ��

Proof of Theorem 2. The existence of graphs that do not admit a k-planar 1-page
drawing, for every constant k, follows from Lemma 6, while Lemma 8 implies
that every biconnected 2-tree has a Δ2-planar 1-page drawing. The proof of
extension to simply connected 2-trees and of the time complexity are omitted
for space reasons.

5 Open Problems

The results of this paper suggest several open problems. For example: (1) Does
the 2Δ bound hold for partial plane 3-trees? And for general (partial) 3-trees?
(2) Can the Δ2 bound for 2-trees be reduced? Notice that a lower bound of
�Δ−3

2 � holds. Namely, consider a 2-tree G consisting of Δ − 1 triangles sharing
an edge. In any 1-page drawing of G, there exists at least one edge with at least
�Δ−3

2 � crossings. (3) Can we prove a bound that only depends on Δ for general
planar graphs?
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Abstract. The Longest Common Extension of a pair of positions (i, j)
in a string, or word, is the longest substring starting at i and j. The LCE
problem considers a word and a set of pairs of positions and computes
for each pair in the set, the longest common extension starting at both
positions in the pair. This problem finds applications in matching with
don’t-care characters, approximate string searching, finding all exact or
approximate tandem repeats, to name a few. From a practical point
of view, Ilie et al. (Journal of Discrete Algorithms, 2010) looked for
simple and efficient algorithms for the LCE problem. In this paper, we
extend their analyses to partial words, strings with don’t-cares or holes.
In this context, we compute the Longest Common Compatible Extension
of each pair of positions (i, j) in a partial word, i.e., the longest substrings
starting at i and j that are compatible. We show that our results match
with those of total words (partial words without holes). We find that one
of the simplest algorithms for implementing the LCE problem is optimal
on average in this case.

1 Introduction

The Longest Common Extension of a pair of positions (i, j) in a string, or word,
is the longest substring starting at both i and j, i.e., the longest common prefix
of the suffixes that start at i and j. Given as input a word and a set of pairs
of positions, the LCE problem outputs for each pair in the set, the longest com-
mon extension starting at both positions in the pair. Variants of this problem
appear in the literature and find important applications in matching with don’t-
care characters [6], approximate string searching [13,14,17], finding all exact or
approximate tandem repeats [7,12,15], to name a few. The LCE problem can be
optimally solved by first preprocessing the input word in linear time in its length
so that the longest common extension of each pair of positions be computed in
constant time. A first approach is based on the constant-time computation of
Lowest Common Ancestors in the suffix tree of the input word [1,2,8,18] while
a second approach is based on Range Minimum Queries in the suffix array of
the input word [1,2,5,16].

c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 52–64, 2016.
DOI: 10.1007/978-3-319-29516-9 5
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From a practical point of view, Ilie, Navarro and Tinta [9] looked for simple
and efficient algorithms for the LCE problem. They observed that the average
of the LCE values is very small; they actually calculated the limit of this aver-
age, over any given alphabet size, when the word’s length goes to infinity. As
an important consequence, they gave algorithms that solve the LCE problem
in constant time without any preprocessing. These algorithms are the best in
practice with respect to both time and space. By computing the longest common
extensions required in Landau and Vishkin’s approximate string searching algo-
rithm [14] with their simplest LCE algorithm, Ilie et al. obtained an algorithm
that runs 13 to 20 times faster.

Blanchet-Sadri and Lazarow [3] extended suffix trees to partial words, strings
with don’t-cares or holes, by introducing a suffix directed acyclic graph, with
compatibility links, that exhibits all the suffixes while preserving the Longest
Common Compatible Extension of each pair of positions (i, j), i.e., the longest
substrings starting at i and j that are compatible. They gave an optimal O(nh+n)
time and space algorithm for constructing the suffix dag of a given partial word
w of length n with an arbitrary number of holes h over a fixed alphabet by mod-
ifying Weiner’s algorithm [19]. With O(nh + n) preprocessing time, finding the
longest common compatible extension of a given pair of positions in w requires
constant time. Later, using ideas from suffix arrays, alignment techniques, and
dynamic programming [10,11], Crochemore et al. [4] provided an algorithm for
the LCCE problem, over any integer alphabet, with a slightly better runtime.
Their simpler data structure can be constructed in O(nμ + n) time and space,
where μ is the number of blocks of consecutive holes in w.

In this paper, we extend the analyses of Ilie et al. [9] to partial words. We
compute the longest common compatible extension of each pair of positions (i, j)
in any given partial word. We show that our results match with those of total
words (partial words without holes). We find that one of the simplest algorithms
for implementing the LCE problem is optimal on average in this case.

The contents of our paper are as follows: In Sect. 2, we recall a few concepts
on partial words such as compatibility and we introduce a few new concepts
related to the LCE problem. In Sect. 3, we estimate the average value of the
longest common compatible extensions over all h-hole partial words of a given
length over an alphabet of a given size. In Sect. 4, we show how to compute the
longest common compatible extensions in the h-hole case. Finally in Sect. 5, we
conclude with some remarks.

2 Preliminaries

Let Σ be an alphabet. We assume, unless otherwise stated, that the cardinality
of Σ, denoted by card(Σ) or |Σ|, is at least two. A partial word over Σ is a
sequence of characters from the extended alphabet Σ� = Σ ∪ {�}, where the
character � represents a don’t-care or a hole. A total word is a partial word with
no holes. We denote by |w| the length of w, or the number of characters in w.
We denote by ε the empty word, i.e., the word of length zero. We denote by Σ∗
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(respectively, Σ∗
�) the set of total words (respectively, partial words) over Σ and

by Σn (respectively, Σn
� ) the set of total words (respectively, partial words) of

length n over Σ.
The character at position i of a partial word w is denoted w[i], with position

numbers starting at 1. A factor of w is a consecutive sequence of characters in
w. We denote by w[i..j] the factor of w starting at position i and ending at
position j. A prefix of w is a factor of the form w[1..j], while a suffix is of the
form w[i..|w|].

We denote by H(w) the set of positions that are holes in w. Two partial words
u and v of equal length over Σ are compatible, denoted by u ↑ v, if u[i] = v[i]
for every i �∈ H(u) ∪ H(v). For example, if w = ab�bba��baab, a partial word
with three holes over the alphabet {a, b}, then w[1..4] = ab�b ↑ w[6..9] = a��b.
A square in a partial word w is a factor of the form uv, with u and v compatible.

A strong period of a partial word w is a positive integer p such that w[i] = w[j]
for all i, j such that i ≡ j mod p and i, j �∈ H(w). A weak period of w is a positive
integer p such that w[i] = w[i + p] for all i such that i, i + p �∈ H(w).

Define the longest common compatible extension of a pair of positions (i, j) in
a partial word w as the longest factor of w starting at i that is compatible with
a factor of w starting at j. When card(H(w)) = h, denote by LCCEw(i, j) the
length of the longest common compatible extension of (i, j) in w. Returning to
our example, when w = ab�bba��baab we have LCCEw(1, 6) = 4. Also denote by
Avg LCCE(n, σ, h) the average length of the longest common compatible exten-
sion in all partial words of length n over an alphabet of cardinality σ with exactly
h holes.

3 Computing the Average LCCE in the h-Hole Case

The total word case was studied in [9]. We study the h-hole partial word case
here, for h ≥ 1. We wish to determine the average value of the LCCE over all
h-hole partial words of a given length n over an arbitrary σ-letter alphabet Σ.

The following hold:

Avg LCCE(n, σ, h)

=
1

(
n
h

)
σn−h

∑

w∈Σn� ,|H(w)|=h

⎛

⎝
1

(
n
2

)
∑

1≤i<j≤n

LCCEw(i, j)

⎞

⎠

=
1

(
n
h

)(
n
2

)
σn−h

n−1∑

k=1

k
∑

1≤i<j≤n−k+1

card({w | |H(w)| = h, LCCEw(i, j) = k}).

(1)

Determining this average value in the partial word case requires much more
combinatorial work than determining the corresponding average in the total
word case. To make things easier, we split our analysis of this average value into
six cases (we do this to emphasize six cases based on the positioning of i and j).
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We denote the set of partial words of length n over the σ-letter alphabet Σ
matching the given k value of the longest common compatible extension starting
at the i and j positions and having exactly h holes by Kc

i,j,k,σ,h(n), where c is
used to denote a specific case (there are six cases numbered from c = 1 to c = 6
covered in Lemmas 1–6 below). We say that the pair (i, j) satisfies c if it satisfies
the conditions stipulated by case c. More precisely,

Kc
i,j,k,σ,h(n) = {w | w ∈ Σn

� , |H(w)| = h, LCCEw(i, j) = k, and (i, j) satisfies c}.

Note that if w ∈ Kc
i,j,k,σ,h(n) then w[i..i+ k − 1] ↑ w[j..j + k − 1]. We also adopt

the notation

N c
k,σ,h(n) = card({(i, j) | (i, j) satisfies c in some w ∈ Kc

i,j,k,σ,h(n)}).

Let us now introduce our cases.

Lemma 1 (c = 1: j ≤ n − k and j − i > k). The following hold:

card(K1
i,j,k,σ,h(n)) =

h∑

m=0

� m
2 �∑

�=0

A

(
n − 2k − 2

h − m

)

(σ − 1)σn−k−1−h+m−�, (2)

where A =
(
k
�

)(
k−�

m−2�

)
2m−2�, and

N1
k,σ,h(n) =

1
2
(n − 2k)(n − 2k − 1). (3)

Proof. We have w[i+k] �↑ w[j +k], so neither is a hole. We have σ(σ −1) choices
of letters for w[i + k] and w[j + k] since they are not equal. Assume there are m
holes in w[i..i + k − 1]w[j..j + k − 1] for some m, 0 ≤ m ≤ h. So there are h − m
holes in u = w[1..i−1]w[i+k+1..j−1]w[j+k+1..n]. We have

(
n−2k−2

h−m

)
possible

position sequences for the h−m holes to be placed and σn−2k−2−h+m choices of
letter sequences for the remaining positions in u. This count totals to

(
n−2k−2

h−m

)

(σ − 1)σn−2k−1−h+m choices for w[1..i − 1]w[i + k..j − 1]w[j + k..n].
Next, let us count the number of choices for v = w[i..i+ k − 1]w[j..j + k − 1].

Align the positions in w[i..i+k−1] and w[j..j+k−1] to create k columns (the top
row representing w[i..i+k −1] and the bottom row representing w[j..j +k −1]).
When we distribute the m holes, some of these columns may end up containing
a pair of holes. Say there are � columns that contain a pair of holes, so m − 2�
of the remaining k − � columns contain only one hole appearing in the top row
or the bottom row. This count totals to

� m
2 �∑

�=0

(
k

�

)(
k − �

m − 2�

)

2m−2�σk−�

for v. Combining these counts gives us Eq. (2). 
�
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Lemma 2 (c = 2: j = n − k + 1 and j − i > k ). The following hold:

card(K2
i,j,k,σ,h(n)) =

h∑

m=0

� m
2 �∑

�=0

A

(
n − 2k

h − m

)

σn−k−h+m−�, (4)

where A =
(
k
�

)(
k−�

m−2�

)
2m−2�, and

N2
k,σ,h(n) = n − 2k. (5)

Let s be a finite sequence of positive integers in some discrete interval of
integers [1..q]. Then gs is defined as the number of non-empty gaps created by
s. For example, if s = 125 in [1..9], then gs = 2 counting the gap 34 and the gap
6789.

Lemma 3 (c = 3: j ≤ n − k and j − i < k). The following hold:

card(K3
i,j,k,σ,h(n)) =

h∑

m=0

C

(
i − 1 + n − j − k

h − m

)

(σ − 1)σi−1+n−j−k−h+m, (6)

where C =
∑

(s1,...,sj−i)∈S(σgs1 · · · σgsj−i ) with S being the set of tuples of the
form (s1, . . . , sj−i) that satisfy the conditions:

– s1, . . . , sr are subsequences of [1..q′] and sr+1, . . . , sj−i of [1..q],
– |s1| = m1, . . . , |sj−i| = mj−i and m1 + · · · + mj−i = m,
– s� does not contain k−�+1

j−i + 1 for � ∈ {1, . . . , j − i} satisfying � ≡ (k + 1)
mod (j − i),

when q = � j+k−i
j−i , q′ = � j+k−i

j−i �, r = (j + k − i) mod (j − i), and

N3
k,σ,h(n) =

1
2
(k − 2)(k − 1) + (k − 1)(n − 2k + 1). (7)

Proof. Note that w[i + k] = w[j + (i + k − j)] nor w[j + k] can be a hole so
that we have σ(σ − 1) choices of letters for w[i + k] and w[j + k]. Assume there
are m holes in w[i..j + k − 1] for some m, 0 ≤ m ≤ h. So there are h − m
holes in u = w[1..i − 1]w[j + k + 1..n]. We have

(
i−1+n−j−k

h−m

)
possible position

sequences for the h−m holes to be placed and σi−1+n−j−k−h+m choices of letter
sequences for the remaining positions in u. This count totals to

(
i−1+n−j−k

h−m

)
(σ−

1)σi−1+n−j−k−h+m choices for w[1..i − 1]w[j + k..n].
Next, let us count the number of choices for v = w[i..j + k − 1]. We have

k − i + j − 1 choices for where to put the m holes since w[i + k] cannot be a
hole. Align the positions in v to create j − i columns. Let j + k − i = q(j − i)+ r
where 0 ≤ r < j − i. So q = � j+k−i

j−i  and r = (j + k − i) mod (j − i). Let
q′ = � j+k−i

j−i �. There are r of the j − i columns that have q′ elements each and
the j − i−r remaining columns have q elements each. When we distribute the m
holes, say there are m1 holes placed in Column 1, m2 in Column 2, and so on.
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So we have the restrictions m1 + · · · + mj−i = m, m1, . . . ,mr ∈ [0..q′], and
mr+1, . . . ,mj−i ∈ [0..q]. Note that w[i..j + k − 1] is weakly (j − i)-periodic or
each of the j − i columns is weakly 1-periodic, i.e., each column can be viewed
as a partial word of length q′ or q with the holes creating gaps (each non-empty
gap is assigned one of the σ letters). In any given column, say s denotes the
subsequence of [1..q′] or [1..q] representing the positions with holes, and let gs

denote the number of non-empty gaps created by the holes in the column. This
column will then be associated with σgs choices of letters for the gaps.

Let � ∈ {1, . . . , j − i} be such that i + k − i + 1 = k + 1 ≡ � mod (j − i),
i.e., � is the column number where position (i + k) falls into. The first entry of
column 1 is i = (i − 1) + 1, so the first entry of column � is (i − 1) + �. Then if
s1, . . . , sr are subsequences of [1..q′] and sr+1, . . . , sj−i are subsequences of [1..q]
with the restriction that s� does not contain (i+k)−(i−1)−�

j−i +1 = k−�+1
j−i +1 (this

is because w[i+k] �= �) and |s1| = m1, . . . , |sj−i| = mj−i, we get that this count
totals to ∑

(s1,...,sj−i)∈S

(σgs1 · · · σgsj−i )

for v. Combining both counts gives us Eq. (6). 
�
Lemma 4 (c = 4: j = n − k + 1 and j − i < k). The following hold:

card(K4
i,j,k,σ,h(n)) =

h∑

m=0

D

(
i − 1
h − m

)

σi−1−h+m, (8)

where D =
∑

(s1,...,sj−i)∈T (σgs1 · · · σgsj−i ) with T being the set of tuples of the
form (s1, . . . , sj−i) that satisfy the conditions:

– s1, . . . , sr are subsequences of [1..q′] and sr+1, . . . , sj−i of [1..q],
– |s1| = m1, . . . , |sj−i| = mj−i and m1 + · · · + mj−i = m,

when q = � j+k−i
j−i , q′ = � j+k−i

j−i �, and r = (j + k − i) mod (j − i), and

N4
k,σ,h(n) = k − 1. (9)

Let us illustrate Lemma 4 with an example. Consider the parameters n = 10,
h = 3, σ = 3, k = 4, and (i, j) = (4, 7). Let us calculate card(K4

i,j,k,σ,h(n)). For
m = 0, the only possibility for (m1,m2,m3) is (0, 0, 0). So s1 = s2 = s3 = ε,
and σgs1 = σgs2 = σgs3 = σ. This totals to σgs1 σgs2 σgs3

(
i−1

h−m

)
σi−1−h+m =

27
(
4−1
3−0

)
σ4−1−3+0 = 27.

For m = 1, we have three possibilities for (m1,m2,m3): (1, 0, 0), (0, 1, 0), and
(0, 0, 1). So the possibilities for s1s2s3 along with their associated σgs1 σgs2 σgs3

are: 1εε with σσσ = 27, 2εε with σ2σσ = 81, 3εε with σσσ = 27, ε1ε with
σσσ = 27, ε2ε with σσσ = 27, εε1 with σσσ = 27, and εε2 with σσσ = 27. This
totals to 243

(
4−1
3−1

)
σ4−1−3+1 = 2187.

For m = 2, we have six possibilities for (m1,m2,m3):

(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1).
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So the possibilities for s1s2s3 along with their associated σgs1 σgs2 σgs3 are: 12εε,
13εε, and 23εε totalling (3σ)σσ = 81, ε12ε with σσ0σ = 9, εε12 with σσσ0 = 9,
11ε, 12ε, 21ε, 22ε, 31ε, and 32ε totalling (σ +σ2 +σ)(2σ)σ = 270, 1ε1, 1ε2, 2ε1,
2ε2, 3ε1, and 3ε2 also totalling 270, ε11, ε12, ε21, and ε22 totalling σ(2σ)(2σ) =
108. This totals to 747

(
4−1
3−2

)
σ4−1−3+2 = 20169.

For m = 3, we have eight possibilities for (m1,m2,m3):

(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2).

This totals to 999
(
4−1
3−3

)
σ4−1−3+3 = 26973. Thus, card(K4

i,j,k,σ,h(n)) = 49356.

Lemma 5 (c = 5: j ≤ n − k and j − i = k). The following hold:

card(K5
i,j,k,σ,h(n)) =

h∑

m=0

� m
2 �∑

�=0

B

(
n − 2k − 1

h − m

)

(σ − 1)σn−k−1−h+m−�, (10)

where B =
[(

k−1
�

)(
k−1−�

m−2�−1

)
2m−2�−1 +

(
k−1

�

)(
k−1−�
m−2�

)
2m−2�

]
, and

N5
k,σ,h(n) = n − 2k. (11)

Proof. This is the case when w[i..j+k−1] is a square. We have w[i+k] �↑ w[j+k],
so there are σ −1 choices for w[j +k]. Note that neither w[i+k] nor w[j +k] is a
hole. Assume there are m holes in the square for some m, 0 ≤ m ≤ h. So there are
h−m holes in u = w[1..i−1]w[j+k+1..n]. We have

(
n−2k−1

h−m

)
choices of placement

for the h − m holes and σn−2k−1−h+m choices for the non-holes in u. This gives
a count of

(
n−2k−1

h−m

)
(σ − 1)σn−2k−1−h+m choices for w[1..i − 1]w[j + k..n].

Next, let us count the number of choices for the square w[i..j + k − 1]. Align
the positions in w[i..i + k − 1] and w[j..j + k − 1] to create k columns (the top
row representing w[i..i+k −1] and the bottom row representing w[j..j +k −1]).
When we distribute the m holes, some of these columns, except for the first, may
end up containing a pair of holes. Say there are � columns that contain a pair
of holes. There are two possibilities for the first column: the position in the top
row is a hole, in which case m−2�−1 of the remaining k−1−� columns contain
only one hole appearing in the top row or the bottom row, or the position in the
top row of the first column is not a hole, in which case m − 2� of the remaining
k − 1 − � columns contain only one hole appearing in the top row or the bottom
row. Thus, the total number of choices for the square is

� m
2 �∑

�=0

[(
k − 1

�

)(
k − 1 − �

m − 2� − 1

)

2m−2�−1 +
(

k − 1
�

)(
k − 1 − �

m − 2�

)

2m−2�

]

σk−�.

Combining both counts gives us Eq. (10). 
�
Lemma 6 (c = 6: j = n − k + 1 and j − i = k). The following hold:

card(K6
i,j,k,σ,h(n)) =

h∑

m=0

� m
2 �∑

�=0

A

(
n − 2k

h − m

)

σn−k−h+m−�, (12)
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where A =
(
k
�

)(
k−�

m−2�

)
2m−2�, and

N6
k,σ,h(n) = 1. (13)

When j ≤ n − k, we can verify that

N1
k,σ,h(n) + N3

k,σ,h(n) + N5
k,σ,h(n) =

(
n − k

2

)

,

and when j = n − k + 1, that

N2
k,σ,h(n) + N4

k,σ,h(n) + N6
k,σ,h(n) = n − k.

Thus we count exactly as many pairs (i, j) there can be. To total all such partial
words and (i, j) pairs, we must sum up the product of the number of partial words
matching the case for fixed i and j with the number of (i, j) pairs matching the
case. With exception to cases 3 and 4, the number of partial words matching the
case for fixed i and j is independent of i and j. Thus if we denote P c

i,j,k,σ,h(n)
as the total number of choices of partial words and pairs (i, j), we get

P c
i,j,k,σ,h(n) = N c

k,σ,h(n) card(Kc
i,j,k,σ,h(n))

for all c except c = 3 or c = 4. For c = 3, we obtain that P 3
i,j,k,σ,h(n) equals

k−1∑

j=2

(
j−1∑

i=1

(
h∑

m=0

C

(
i − 1 + n − j − k

h − m

)

(σ − 1)σi−1+n−j−k−h+m

))

+
n−k∑

j=k

⎛

⎝
j−1∑

i=j−k+1

(
h∑

m=0

C

(
i − 1 + n − j − k

h − m

)

(σ − 1)σi−1+n−j−k−h+m

)⎞

⎠ ,

while for c = 4, we obtain that P 4
i,j,k,σ,h(n) equals

n−k+1∑

j=n−k+1

(
n−k∑

i=n−2k+2

(
h∑

m=0

D

(
i − 1
h − m

)

σi−1−h+m

))

,

where C and D are as in Lemmas 3 and 4. We then have the following theorem
by rewriting (1).

Theorem 7. The following holds:

Avg LCCE(n, σ, h) =
1

(
n
h

)(
n
2

)
σn−h

n−1∑

k=1

k

(
6∑

c=1

P c
i,j,k,σ,h(n)

)

,
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where

P 1
i,j,k,σ,h(n) = 1

2 (n − 2k)(n − 2k − 1)
∑h

m=0

∑� m
2 �

�=0 A
(
n−2k−2

h−m

)
(σ − 1)σn−k−1−h+m−�,

P 2
i,j,k,σ,h(n) = (n − 2k)

∑h
m=0

∑� m
2 �

�=0 A
(
n−2k
h−m

)
σn−k−h+m−�,

P 3
i,j,k,σ,h(n) =

∑k−1
j=2

(∑j−1
i=1

(∑h
m=0 C

(
i−1+n−j−k

h−m

)
(σ − 1)σi−1+n−j−k−h+m

))

+
∑n−k

j=k (
∑j−1

i=j−k+1(∑h
m=0 C

(
i−1+n−j−k

h−m

)
(σ − 1)σi−1+n−j−k−h+m

)
),

P 4
i,j,k,σ,h(n) =

∑n−k+1
j=n−k+1

(∑n−k
i=n−2k+2

(∑h
m=0 D

(
i−1

h−m

)
σi−1−h+m

))
,

P 5
i,j,k,σ,h(n) = (n − 2k)

∑h
m=0

∑� m
2 �

�=0 B
(
n−2k−1

h−m

)
(σ − 1)σn−k−1−h+m−�,

P 6
i,j,k,σ,h(n) =

∑h
m=0

∑� m
2 �

�=0 A
(
n−2k
h−m

)
σn−k−h+m−�,

where A, B, C and D are as in Lemmas 1, 5, 3 and 4, respectively.

We next show that asymptotically, the average length of the longest common
compatible extension between any two positions in a partial word with h holes
over a σ-letter alphabet is 1

σ−1 .

Theorem 8. For fixed σ and h, limn→∞ Avg LCCE(n, σ, h) = 1
σ−1 .

Proof. Let S(n) =
∑

1≤c≤6 P c
i,j,k,σ,h(n). We wish to calculate

lim
n→∞ Avg LCCE(n, σ, h) = lim

n→∞

∑n−1
k=1 kS(n)

(
n
h

)(
n
2

)
σn−h

=
∑

1≤c≤6

lim
n→∞

∑n−1
k=1 kP c

i,j,k,σ,h(n)
(
n
h

)(
n
2

)
σn−h

.

So let us look at the six limits when n goes to infinity, which can be calculated
using Theorem 7. For c = 1, we get

limn→∞
∑n−1

k=1 kP 1
i,j,k,σ,h(n)

(n
h)(n

2)σn−h

= lim
(σ−1)

2σ

∑n−1
k=1

k

σk (n−2k)(n−2k−1)

(
∑h

m=0 (n−2k−2
h−m )(2σ)m

(
∑� m

2 �
�=0

1
(4σ)� (k

�)( k−�
m−2�)

))

(n
h)(n

2)
= 1

(σ−1) .

To see this, the denominator,
(
n
h

)(
n
2

)
, is O(nh+2). As to the numerator, the

third sum,
∑� m

2 �
�=0

1
(4σ)�

(
k
�

)(
k−�

m−2�

)
, is O(km). Each summand in the second sum

is then O((n + k)h−mkm). So the first sum involves expressions that are big-O
of expressions like
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nh−m−p+p1
∑n−1

k=1

km+p+p2+1

σk
,

where m ∈ [0..h], p ∈ [0..h−m], p1, p2 ∈ [0..2], and p1+p2 ∈ [1..2]. So to calculate
the limit, we must calculate the limit of weighted (by constants) expressions like

1
nm+p−p1+2

∑n−1

k=1

km+p+p2+1

σk
,

where m ∈ [0..h], p ∈ [0..h−m], p1, p2 ∈ [0..2], and p1 + p2 ∈ [1..2]. Note that p1
refers to the number of n’s selected from (n − 2k)(n − 2k − 1) and p2 refers to
the number of k’s. Since each such limn→∞

∑n−1
k=1

km+p+p2+1

σk is O(1), we obtain

lim
n→∞

1
nm+p−p1+2

n−1∑

k=1

km+p+p2+1

σk
= 0,

when m + p − p1 + 2 > 0. So we need to consider the expressions where m +
p − p1 + 2 = 0, which occur exactly when m = p = 0, p1 = 2, and p2 = 0. Thus,
since each of limn→∞

∑n−1
k=1

k
σk , . . . , limn→∞

∑n−1
k=1

kh+1

σk is O(1), we obtain

lim
n→∞

∑n−1
k=1 kP 1

i,j,k,σ,h(n)
(
n
h

)(
n
2

)
σn−h

= lim
n→∞

(σ−1)
2σ

∑n−1
k=1

k
σk n2

(
n−2k−2

h

)

(
n
h

)(
n
2

)

= lim
n→∞

(σ−1)
σ

∑n−1
k=1

k
σk n2(n − 2k − 2) · · · (n − 2k − 2 − h + 1)

n(n − 1) · · · (n − h + 1)n(n − 1)

=
(σ − 1)

σ
lim

n→∞

n−1∑

k=1

k

σk
=

(σ − 1)
σ

σ

(σ − 1)2
.

We can show that the limits related to c ∈ {2, . . . , 6} are all 0. Thus, the

only term in
∑n−1

k=1 kS(n)

(n
h)(n

2)σn−h
that does not go to zero is from the c = 1 part, which

goes to 1
σ−1 . Thus, limn→∞ Avg LCCE(n, σ, h) = 1

σ−1 . 
�

4 Computing the LCCE in the h-Hole Case

Theorem 8 shows that, on average, the length of the longest common compat-
ible extension between any two positions in a partial word with h holes over a
σ-letter alphabet will be 1

σ−1 . Thus we will only need to make σ
σ−1 comparisons

on average when computing the longest common compatible extension between
two suffixes. Thus we replace equality with compatibility in the DirectComp
algorithm from [9] to find an optimal algorithm on average.
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Algorithm 1. DirectCompPartial(w, i, j)
k ← 0
while (w[i + k] ↑ w[j + k]) and (j + k ≤ n) do

k ← k + 1
return k

Figure 1 illustrates the average LCCE for some parameters n, σ, and h.

Fig. 1. y-axis represents the average Avg LCCE(n, σ, h) for number of holes h = 50 and
alphabet size σ ∈ {2, 3, 4}; x-axis represents length n ∈ {1, 000, . . . , 100, 000}

5 Conclusion

In this paper, we designed a simple and efficient algorithm for implementing
the LCCE problem in constant time, that requires no preprocessing and that is
optimal on average, for partial words with h holes. We did so by extending the
analyses of Ilie et al. [9] to such partial words. We observed that the average of
the LCCE values is very small; we actually calculated the limit of this average,
over any given alphabet size, when the partial word’s length goes to infinity.
Estimating the average value of the LCCE over all partial words of a given
length, with an arbitrary number of holes over an alphabet of a given size, could
be used to improve the time and space efficiencies of algorithms on partial words.
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Adding Isolated Vertices Makes Some Online
Algorithms Optimal
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Abstract. An unexpected difference between online and offline algo-
rithms is observed. The natural greedy algorithms are shown to be worst
case online optimal for Online Independent Set and Online Ver-
tex Cover on graphs with “enough” isolated vertices, Freckle Graphs.
For Online Dominating Set, the greedy algorithm is shown to be
worst case online optimal on graphs with at least one isolated vertex.
These algorithms are not online optimal in general. The online optimality
results for these greedy algorithms imply optimality according to various
worst case performance measures, such as the competitive ratio. It is also
shown that, despite this worst case optimality, there are Freckle graphs
where the greedy independent set algorithm is objectively less good than
another algorithm.

It is shown that it is NP-hard to determine any of the following for
a given graph: the online independence number, the online vertex cover
number, and the online domination number.

1 Introduction

This paper contributes to the larger goal of better understanding the nature
of online optimality, greedy algorithms, and different performance measures for
online algorithms. The graph problems Online Independent Set, Online
Vertex Cover and Online Dominating Set, which are defined below,
are considered in the vertex-arrival model, where the vertices of a graph, G,
are revealed one by one. When a vertex is revealed (we also say that it is
“requested”), its edges to previously revealed vertices are revealed. At this point,
an algorithm irrevocably either accepts the vertex or rejects it. This model is
well-studied (see for example, [6,8–10,12,13,15]).

We show that, for some graphs, an obvious Greedy algorithm for each of
these problems performs less well than another online algorithm and thus is
not online optimal. However, this Greedy algorithm performs (at least in some
sense) at least as well as any other online algorithm for these problems, as long
as the graph has enough isolated vertices. Thus, in contrast to the case with
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offline algorithms, adding isolated vertices to a graph can improve an algorithm’s
performance, even making it “optimal”.

For an online algorithm for these problems and a particular sequence of
requests, let S denote the set of accepted vertices, which we call a solution.
When all vertices have been revealed (requested and either accepted or rejected
by the algorithm), S must fulfill certain conditions:

– In the Online Independent Set problem, S must form an independent set.
That is, no two vertices in S may have an edge between them. The goal is to
maximize |S|.

– In the Online Vertex Cover problem, S must form a vertex cover. That is,
each edge in G must have at least one endpoint in S. The goal is to minimize
|S|.

– In the Online Dominating Set problem, S must form a dominating set.
That is, each vertex in G must be in S or have a neighbor in S. The goal is
to minimize |S|.

If a solution does not live up to the specified requirement, it is said to be
infeasible. The score of a feasible solution is |S|. The score of an infeasible solution
is ∞ for minimization problems and −∞ for maximization problems. Note that
for Online Dominating Set, it is not required that S form a dominating set
at all times. It just needs to be a dominating set when the whole graph has been
revealed. If, for example, it is known that the graph is connected, the algorithm
might reject the first vertex since it is known that it will be possible to dominate
this vertex later.

In Sect. 2, we define the greedy algorithms for the above problems, along with
concepts analogous to the online chromatic number of Gyárfás et al. [7] for the
above problems, giving a natural definition of optimality for online algorithms.
In Sect. 3, we show that greedy algorithms are not in general online optimal
for these problems. In Sect. 4, we define Freckle Graphs, which are graphs which
have “enough” isolated vertices to make the greedy algorithms online optimal. In
Sect. 5, it is shown that the online optimality results for these greedy algorithms
imply optimality according to various worst case performance measures, such
as the competitive ratio. In Sect. 6, it is shown that, despite this worst case
optimality, there is a family of Freckle graphs where the greedy independent set
algorithm is objectively less good than another algorithm. Various NP-hardness
results concerning optimality are proven in Sect. 7. There are some concluding
remarks in the last section.

2 Algorithms and Preliminaries

For each of the three problems, we define a greedy algorithm.

– In Online Independent Set, GIS accepts a revealed vertex, v, iff no neigh-
bors of v have been accepted.
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– In Online Vertex Cover, GVC accepts a revealed vertex, v, iff a neighbor
of v has previously been revealed but not accepted.

– In Online Dominating Set, GDS accepts a revealed vertex, v, iff no neigh-
bors of v have been accepted.

For an algorithm ALG, we define ALG be the algorithm that simulates ALG and
accepts exactly those vertices that ALG rejects. This defines a bijection between
Online Independent Set and Online Vertex Cover algorithms. Note that
GVC = GIS.

For a graph, G, an ordering of the vertices, φ, and an algorithm, ALG, we let
ALG(φ(G)) denote the score of ALG on G when the vertices are requested in the
order φ. We let |G| denote the number of vertices in G.

For minimization problems, we define:

ALG(G) = max
φ

ALG(φ(G))

That is, ALG(G) is the highest score ALG can achieve over all orderings of the
vertices in G.

For maximization problems, we define:

ALG(G) = min
φ

ALG(φ(G))

That is, ALG(G) is the lowest score ALG can get over all orderings of the vertices
in G.

Observation 1. Let ALG be an algorithm for Online Independent Set. Let
a graph, G, with n vertices be given. Now, ALG is an Online Vertex Cover
algorithm and ALG(G) + ALG(G) = n.

The equality ALG(G) + ALG(G) = n holds, since a worst ordering of G for ALG is
also a worst ordering for ALG.

In considering online algorithms for coloring, [7] defines the online chromatic
number, which intuitively is the best result (minimum number of colors) any
online algorithm can be guaranteed to obtain for a particular graph (even when
the graph, but not the ordering, is known in advance). We define analogous con-
cepts for the problems we consider, defining for every graph a number represent-
ing the best value any online algorithm can achieve. Note that in considering all
algorithms, we include those which know the graph in advance. Of course, when
the graph is known, the order in which the vertices are requested is not known
to an online algorithm, and the label given with a requested vertex does not
necessarily correspond to its label in the known graph: The subgraph revealed
up to this point might be isomorphic to more than one subgraph of the known
graph and it could correspond to any of these subgraphs.

Let IO(G) denote the online independence number of G. This is the largest
number such that there exists an algorithm, ALG, for Online Independent Set
with ALG(G) = IO(G). Similarly, let V O(G), the online vertex cover number,
be the smallest number such that there exists an algorithm, ALG, for Online
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Algorithm 1. IS-STAR, an online optimal algorithm for independent set for Sn

1: for request to vertex v do
2: if v is the first vertex then
3: reject v
4: else if v is the second vertex and it has an edge to the first then
5: reject v
6: else if v has more than one neighbor already then
7: reject v
8: else
9: accept v

Vertex Cover with ALG(G) = V O(G). Also let DO(G), the online domination
number, be the smallest number such that there exists an algorithm, ALG, for
Online Dominating Set with ALG(G) = DO(G).

The same relation between the online independence number and the online
vertex cover number holds as between the independence number and the vertex
cover number.

Observation 2. For a graph, G with n vertices, we have IO(G) + V O(G) = n.

3 Non-optimality of Greedy Algorithms

We start by motivating the other results in this paper by showing that the greedy
algorithms are not optimal in general. In particular, they are not optimal on the
star graphs, Sn, n ≥ 3, which have a center vertex, s, and n other vertices,
adjacent to s, but not to each other.

The algorithm, IS-STAR, does much better than GIS for the independent set
problem on star graphs:

Theorem 1. For a star graph, Sn, IS-STAR(Sn) = n − 1 and GIS(Sn) = 1.

Proof. An intuitive way of thinking of IS-STAR is that it accepts a vertex if it
is not possible that it is the center vertex, s. Since IS-STAR never accepts s, it
produces an independent set. For every ordering of the vertices, IS-STAR will
reject the first vertex. If the first vertex is s, it will reject the second vertex.
Otherwise, it will reject s when it comes. Thus, IS-STAR(Sn) = n − 1. On the
other hand, GIS(G) = 1, since it will accept s if it is requested first. ��

Since n − 1 > 1 for n ≥ 3, we can conclude that GIS is not an optimal online
algorithm for all graph classes.

Corollary 1. For Online Independent Set, there exists an infinite family
of graphs, Sn for n ≥ 3, and an online algorithm, IS-STAR, such that GIS(Sn) <
IS-STAR(Sn).

To show that GVC is not an optimal algorithm for Online Vertex Cover,
we consider IS-STAR.
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Corollary 2. For Online Vertex Cover, there exists an infinite fam-
ily of graphs, Sn for n ≥ 3, and an online algorithm, IS-STAR, such that
IS-STAR(Sn) < GVC(Sn).

Proof. Using Observation 1 and Theorem 1, we have that IS-STAR(Sn) = n +
1 − IS-STAR(Sn) = 2 and GVC(Sn) = n + 1 − GIS(Sn) = n. ��

Finally, for Online Dominating Set, we have a similar result.

Corollary 3. For Online Dominating Set, there exists an infinite fam-
ily of graphs, Sn for n ≥ 3, and an online algorithm, IS-STAR, such that
IS-STAR(Sn) < GDS(Sn).

Proof. Requesting s last ensures that GDS accepts n vertices, It can never accept
all n + 1 vertices, so GDS(Sn) = n. On the other hand, IS-STAR(Sn) = 2 (as in
the proof of Corollary 2). We note that a vertex cover is also a dominating set in
connected graphs. This means that IS-STAR always produces a dominating set
in Sn. ��

4 Optimality of Greedy Algorithms on Freckle Graphs

For a graph, G, we let

– k denote the number of isolated vertices,
– G′ denote the graph induced by the non-isolated vertices,
– n denote the number of vertices in G′,
– b(G′) be a maximum independent set in G′, and
– s(G′) be a minimum inclusion-maximal independent set in G′ (that is, a

smallest independent set such that including any vertex in the set would
cause it to no longer be independent).

Note that |s(G′)| is also known as the independent domination number of G′

(see [1] for more information).
Using this notation, we define the following class of graphs.

Definition 1. A graph, G, is a Freckle Graph if k + |s(G′)| ≥ IO(G′).

Note that all graphs where at least half the vertices are isolated are Freckle
Graphs. If the definition was changed to this (which might be less artificial),
the results presented here would still hold, but our definition gives stronger
results. The name comes from the idea that such a graph in many cases has a
lot of isolated vertices (freckles). Furthermore, any graph can be turned into a
Freckle Graph by adding enough isolated vertices. Note that a complete graph
is a Freckle Graph. To make the star graph, Sn, a freckle graph, we need to
add n − 2 isolated vertices. The results below show that GIS and GVC are online
optimal on all Freckle Graphs.

Theorem 2. For any algorithm, ALG, for Online Independent Set, and for
any Freckle Graph, G, GIS(G) ≥ ALG(G).
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Proof. First, we note that GIS will accept the k isolated vertices. In G′, it will
accept an inclusion-maximal independent set. Since we take the worst ordering,
it accepts |s(G′)| vertices. We get GIS(G) = k + |s(G′)|. Now we describe an
adversary strategy which ensures that an arbitrary algorithm, ALG, accepts at
most k + |s(G′)| vertices.

The adversary starts by presenting k + |s(G′)| isolated vertices. Either ALG
accepts |s(G′)| vertices or it rejects k vertices.

If ALG accepts |s(G′)| vertices, the adversary decides that they are exactly
those in s(G′). This means that ALG will accept no other vertices in G′. Thus, it
accepts at most k + s(G′) vertices.

If ALG rejects k vertices, the adversary decides that they are the k isolated
vertices. The remaining graph is now G′. By definition, ALG cannot accept more
than IO(G′) vertices on the worst vertex ordering.

Since k + |s(G′)| ≥ IO(G′) (because G is a Freckle Graph), ALG accepts no
more than k + |s(G′)| vertices. ��
Corollary 4. For any Freckle Graph, G, GIS(G) = IO(G).

Corollary 5. For any algorithm, ALG, for Online Vertex Cover, and for
any Freckle Graph, G, GVC(G) ≤ ALG(G).

Proof. This follows from Theorem 2, Observation 1, and the fact that GVC =
GIS. ��
Corollary 6. For any Freckle Graph, G, GVC(G) = V O(G).

For Online Dominating Set something similar holds.

Theorem 3. For any algorithm, ALG, for Online Dominating Set and for
any graph, G, with at least one isolated vertex, GDS(G) ≤ ALG(G).

Proof. Recall that k denotes the number of isolated vertices in G, and G′ denotes
the subgraph of G induced by the non-isolated vertices. Note that GDS always
produces an independent set. Thus, GDS accepts at most k + |b(G′)| vertices;
it accepts exactly the k isolated vertices and the vertices in b(G′) if these are
presented first.

Let an algorithm, ALG, be given. The adversary can start by presenting k +
|b(G′)| isolated vertices. If at least one of these vertices is not accepted by ALG,
the adversary can decide that this was in fact an isolated vertex, which can now
no longer be dominated. Thus, ALG(G) = ∞. If ALG accepts all the presented
vertices, it gets a score of at least k + |b(G′)|. ��
Corollary 7. For a any graph, G, with an isolated vertex, GDS(G) = DO(G).

5 Implications for Worst Case Performance Measures

Do the results from the previous section mean that GIS is a good algorithm for
Online Independent Set if the input graph is known to be a Freckle Graph?
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The answer to this depends on how the performance of online algorithms is
measured. In general, the answer is yes, if a measure, that only considers the
worst case, is used.

The most commonly used performance measure for online algorithms is com-
petitive analysis [14]. For maximization problems, an algorithm, ALG, is said to
be c-competitive if there exists a constant, b, such that for any input sequence,
I, OPT(I) ≤ cALG(I) + b where OPT(I) is the score of the optimal offline algo-
rithm. For minimization problems, we require that ALG(I) ≤ cOPT(I) + b. The
competitive ratio of ALG is inf {c : ALG is c-competitive}. For strict competitive
analysis, the definition is the same, except there is no additive constant.

Another measure is on-line competitive analysis [6], which was introduced
for online graph coloring. The definition is the same as for competitive analysis
except that OPT(I) is replaced by OPTON(I), which is score of the best online algo-
rithm that knows the requests in I but not their ordering. For graph problems,
this means the vertex-arrival model is used, as in this paper. The algorithm is
allowed to know the final graph.

Corollary 8. For Online Independent Set on Freckle Graphs, no algorithm
has a smaller competitive ratio, strict competitive ratio, or on-line competitive
ratio than GIS.

Proof. Let ALG be a c-competitive algorithm for some c. Theorem2 implies that
GIS is also c-competitive. This argument also holds for the strict competitive
ratio and the on-line competitive ratio. ��
Corollary 9. For Online Vertex Cover on Freckle Graphs, no algorithm
has a smaller competitive ratio, strict competitive ratio, or on-line competitive
ratio than GVC.

Corollary 10. For Online Dominating Set on the class of graphs with at
least one isolated vertex, no algorithm has a smaller competitive ratio, strict
competitive ratio, or on-line competitive ratio than GDS.

Similar results hold for relative worst order analysis [3]. According to rela-
tive worst order analysis, for minimization problems in this graph model, one
algorithm, A, is at least as good as another algorithm, B, on a graph class, if
for all graphs G in the class, A(G) ≤ B(G). The inequality is reversed for maxi-
mization problems. It follows from the definitions that if an algorithm is optimal
with respect to on-line competitive analysis, it is also optimal with respect to
relative worst-order analysis. This was observed in [4]. Thus, the above results
show that the three greedy algorithm in the corollaries above are also optimal
on Freckle Graphs, under relative worst order analysis.

6 A Subclass of Freckle Graphs Where Greedy
is Not Optimal

Although these greedy algorithms are optimal with respect to some worst case
measures, this does not mean that these greedy algorithms are always the best
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choice for all Freckle Graphs. There is a subclass of Freckle Graphs where another
algorithm is objectively better than GIS, and bijective analysis and average
analysis [2] reflect this.

Theorem 4. There exists an infinite class of Freckle Graphs G̃ = {Gn |n ≥ 2}
and an algorithm Almost-GIS such that for all n ≥ 2 the following holds:

∀φ Almost-GIS(φ(Gn)) ≥ GIS(φ(Gn))
∃φ Almost-GIS(φ(Gn)) > GIS(φ(Gn))

Proof. Consider the graph Gn = (V,E), where

V ={x1, x2, . . . , xn, y1, y2, . . . , yn, z, u1, u2, . . . , un, v1, v2, . . . , vn−1}
E ={(xi, yi), (yi, z), (z, ui) | 1 ≤ i ≤ n}.

Fig. 1 shows the graph G4.

x1 x2 x3 x4

y1 y2 y3 y4

z

u1 u2 u3 u4

v1

v2

v3

Fig. 1. The graph G4.

We start by noting that Gn is a Freckle Graph since:

– The smallest maximal independent set, which does not contain isolated ver-
tices, has size n + 1.

– The maximum independent set, which does not contain isolated vertices, has
size 2n.

– The number of isolated vertices is n − 1.

The algorithm, Almost-GIS, is identical to GIS, except that it rejects a ver-
tex if it already has two neighbors when it is presented. Note that it never
matters when v1, . . . , vn−1 are requested since they will all be accepted by
GIS and Almost-GIS. Consider any ordering of the vertices of G where GIS
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and Almost-GIS do not accept the same independent set. There must exist a
first vertex, w, which is accepted by one of the algorithms and rejected by the
other. By definition of the algorithms, it must be the case that w is rejected by
Almost-GIS and accepted by GIS. It must hold that w has two neighbors, which
have not been accepted by either algorithm. This can only happen if w = z and
the two neighbors are yi and yj where xi and xj have already been presented
and accepted by both algorithms and no uk have been presented yet. In this
case, z is accepted by GIS and rejected by Almost-GIS. However, u1, . . . , un

are accepted by Almost-GIS and rejected by GIS. Since n ≥ 2 and since both
GIS and Almost-GIS accept exactly one of xi and yi, 1 ≤ i ≤ n, we get that on
every ordering, φ, where GIS and Almost-GIS accept a different independent set,
Almost-GIS(φ(G)) < GIS(φ(G)). Such an ordering always exists (the ordering
x1, . . . , xn, y1, . . . , yn, z, u1, . . . , un, v1, . . . , vn−1 achieves this). ��

Competitive analysis, on-line competitive analysis, and relative worst order
ratio do not identify Almost-GIS as a better algorithm than GIS on the class of
graphs G̃ defined in the proof of Theorem4. There are, however, other measures
which do this. Bijective analysis and average analysis [2] are such measures. Let
In be the set of all input sequences of length 4n. Since we are considering the
rather restricted graph class G̃, In denotes all orderings of the vertices in Gn

(since these are the only inputs of length 4n). For an algorithm A to be considered
better than another algorithm B for a maximization problem, it must hold for
sufficiently large n that there exists a bijection f : In → In such that the
following holds:

∀I ∈ In A(I) ≥ B(f(I))
∃I ∈ In A(I) > B(f(I))

Theorem 5. Almost-GIS is better than GIS on the class G̃ according to bijective
analysis.

Proof. We let the bijection f be the identity and the result follows from
Theorem 4. ��
Average analysis is defined such that if one algorithm is better than another
according to bijective analysis, it is also better according to average analysis.
Thus, Almost-GIS is better than GIS on the class G̃ according to average analy-
sis.

Note that Almost-GIS is not an optimal algorithm for all Freckle Graphs.
The class of graphs, Kn,n, for n ≥ 2, consisting of complete bipartite graphs
with n vertices in each side of the partition, is a class where Almost-GIS can
behave very poorly. Note that on these graphs, GIS is optimal and always finds an
independent set of size n, which is optimal, so these graphs are Freckle Graphs,
even though they have no isolated vertices. If the first request to Almost-GIS is
a vertex from one side of the partition and the next two are from the other side
of the partition, Almost-GIS only accepts one vertex, not n.
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7 Complexity of Determining the Online Independence
Number, Vertex Cover Number, and Domination
Number

Given a graph, G, it is easy to check if it has an isolated vertex and apply
Theorem 3. However, Theorem 2 and Corollary 5 might not be as easy to apply,
because it is not obvious how one can check if a graph is a Freckle Graph (k +
|s(G′)| ≥ IO(G′)). In some cases, this is easy. For example, any graph where at
least half the vertices are isolated is a Freckle Graph. We leave the hardness of
recognizing Freckle Graphs as an open problem, but we show a hardness result
for deciding if IO(G) ≤ q.

Theorem 6. Given q ∈ N and a graph, G, deciding if IO(G) ≤ q is NP-hard.

Proof. Note that it is NP-complete to determine if the minimum maximal inde-
pendent set of a graph, G = (V,E), has size at most L, for an integer L [5]. To
reduce from this problem, we create G̃ = (Ṽ , E) which is the same as G, but has
|V | extra isolated vertices, and a bound L̃ = L+ |V |. G̃ is a Freckle Graph, since
|V | ≥ IO(G). By Corollary 4, GIS(G̃) = IO(G̃). Since GIS(G̃) = |s(G)| + |V |,
the original graph, G, has a minimum maximal independent set of size L, if and
only if G̃ has online independence number at most L̃. ��

The hardness of computing the online independence number implies the hard-
ness of computing the online vertex cover number.

Corollary 11. Given q ∈ N and a graph, G, deciding if V O(G) ≥ q is NP-hard.

Proof. This follows from Observation 2 and Theorem 6. ��
Theorem 7. Given q ∈ N and a graph, G, deciding if DO(G) ≥ q is NP-hard.

Proof. We make a reduction from Independent Set. In Independent Set, a
graph, G and an L ∈ N is given. It is a yes-instance if and only if there exists
an independent set of size at least L. We reduce instances of Independent
Set, (G,L), to instances of Online Dominating Set, (G̃,L̃), such that there
exists an independent set in G of size at least L if and only if DO(G̃) ≥ L̃. The
reduction is very simple. We let G̃ be the graph which consists of G with one
additional isolated vertex. We set L̃ = L+1. Assume first that any independent
set in G has size at most L−1. This means that any independent set in G̃ has size
at most L. Since GDS produces an independent set, it will accept at most L < L̃
vertices. Assume now that there is an independent size of at least L in G. Then,
there exists an independent set of size at least L + 1 in G̃. If these vertices are
presented first, GDS will accept them. From Theorem 3, we get that no algorithm
for Online Dominating Set can do better (since G̃ has an isolated vertex),
which means that DO(G̃) ≥ L̃. ��
Theorem 8. Given q ∈ N and a graph, G, the problem of deciding if IO(G) ≤ q
is in PSPACE.
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Proof. Let q ∈ N and a graph, G = (V,E), be given. We sketch an algorithm that
uses only polynomial space which decides if IO(G) ≤ q. We view the problem
as a game between the adversary and the algorithm where the algorithm wins
if it gets an independent set of size at least q. A move for the adversary is
revealing a vertex along with edges to a subset of the previous vertices such
that the resulting graph is an induced subgraph of G. These are possible to
enumerate since induced subgraph can be solved in polynomial space. A move by
the algorithm is accepting or rejecting that vertex. We make two observations:
The game has only polynomial length (each game has length 2|V |), and it is
always possible in polynomial space to enumerate the possible moves from a game
state. Thus, an algorithm can traverse the game tree using depth first search and
recursively compute for each game state if the adversary or the algorithm has a
winning strategy. ��
Similar proofs can be used to show that the problems of deciding if V O(G) ≥ q
and DO(G) ≥ q are in PSPACE as well. It remains open whether these prob-
lems are NP-complete, PSPACE-complete, or neither. In [11] it was shown that
determining the online chromatic number is PSPACE-complete if the graph is
pre-colored.

8 Concluding Remarks

A strange difference between online and offline algorithms is observed: Adding
isolated vertices to a graph can change an algorithm from not being optimal to
being optimal (according to many measures). This is even more surprising for
vertex cover than for independent set, since in the offline case, adding isolated
vertices to a graph can improve its approximation ratio in the case of the inde-
pendent set problem. It is hard to see how adding isolated vertices to a graph
could in any way help an offline algorithms for vertex cover.

Note that GIS = GDS. This means that for Freckle Graphs with at least one
isolated vertex, GIS is an algorithm which solves both online independent set
(a maximization problem) and online dominating set (a minimization problem)
online optimally. This is quite unusual, since the independent sets and dom-
inating sets it will find in the worst case can be quite different for the same
graph.

It is tempting to believe that the greedy algorithms considered here are the
unique optimal algorithms for these problems. Is this true?

As mentioned earlier, the NP-hardness results presented here do not answer
the question as to how hard it is to recognize Freckle Graphs. This is left as an
open problem.

We have shown it to be NP-hard to decide if IO(G) ≤ q, V O(G) ≥ q, and
DO(G) ≥ q, but there is nothing to suggest that these problems are contained
in NP. They are in PSPACE, but it is left as an open problem if they are
NP-complete, PSPACE-complete or somewhere in between.
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Abstract. The AT-free order is a linear order of the vertices of a graph
the existence of which characterizes AT-free graphs. We show that all
AT-free orders of an AT-free graph can be generated in O(1) amortized
time.

1 Convex Geometries and Elimination Orders

Antimatroids are the warp and woof for various algorithms that generate elimi-
nation orders.

Definition 1. A set system is a pair (V,F) where V is a finite set and where
F is a collection of subsets of V . The set system is accessible if each nonempty
X ∈ F has an element x ∈ X such that X − x ∈ F . A set system (V,F) is an
antimatroid if it is accessible and closed under unions.

Definition 2. A convexity space is a pair (V,N ) where V is a finite set and N
a collection of subsets such that

(i) ∅ ∈ N and V ∈ N and
(ii) N is closed under intersections.

The elements of N are called convex. For any subset X ⊆ V one defines the
convex hull σ(X) as the intersection of all the convex sets that contain X.

Definition 3. A convexity space is a convex geometry if it satisfies the

anti-exchange property:

If X ⊆ V , and y and z are two points outside σ(X), then

y ∈ σ(X + z) ⇒ z /∈ σ(X + y).

Proposition 1. A set system (V,F) is an antimatroid if and only if (V,F�) is
a convex geometry, where

F� = { V − X | X ∈ F }.
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Here are some examples of convex geometries. Let G = (V,E) be a graph.

1. Call a subset X ⊆ V convex if all chordless paths between vertices in X
are contained in X. Let M be the collection of convex sets. The set system
(V,M) is a convex geometry if and only if G is chordal.

2. Call X convex if all geodesics between vertices in X are contained in X. Let
G be the collection of convex sets. Then (V, G) is a convex geometry if and
only if G is Ptolemaic.

3. Call a set X convex if every even-chorded path whose endpoints are in X
is contained in X. Let S be the collection of convex sets. Then (V, S) is a
convex geometry if and only if G is strongly chordal.

4. Call X convex when every induced P3 with ends in X is contained in X. Let
P be the collection of convex sets. Then (V,P) is a convex geometry if and
only if G is HHDA-free, that is, weak bipolarizable.

The following theorem serves as an example of Gray codes for some elimi-
nation orders mentioned above, and as an outline of the technique used in this
paper to prove our major result. For a detailed proof we refer to [3,9–11].

Theorem 1. The elimination orders in the list below can be generated in con-
stant amortized time:

(a) Perfect elimination orders for chordal graphs.
(b) Simple elimination orders for strongly chordal graphs.
(c) Semi-perfect elimination orders for HHDA-free graphs.
(d) Linear extensions of any poset.

Proof (Sketch). The generic algorithm for generating these elimination orders
was obtained by Pruesse and Ruskey [9] (see also [11]).

A simple language is a pair (V,L) where V is a finite set, called the alphabet
of letters, and L is a collection of simple words. A word is a finite sequence of
letters. A word is simple if each letter occurs at most once. If α ∈ L then denote
by α̃ the set of letters that occur in α. A language antimatroid is a simple
language (V,L) such that ∅ ∈ L and L satisfies the exchange axiom:

if α, β ∈ L and if α̃ �⊆ β̃ then there is a letter x ∈ α̃\β̃
such that βx ∈ L.

The basic words of a language antimatroid is the set of words of maximal
length. There is a 1-1 correspondence between antimatroids and antimatroid
languages (see, e.g., [1]).

For example, the collection of perfect elimination orders of a chordal graph
G form the basic words of a language antimatroid (see, e.g., [1]).

Let (V,L) be a language antimatroid. A transposition oracle is an algorithm
to decide, for a basic word α ∈ L and a given transposition of two adjacent
letters, whether the new word is a basic word of L. If αxyβ is a basic word, then
a transposition of the (adjacent) letters x and y is the operation that produces
the word αyxβ.
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Pruesse and Ruskey prove in their paper [9, Theorem 5] that, if (V,L) is a
language antimatroid with an O(1) transposition oracle, then the basic words
can be generated in O(1) amortized time, such that each word differs from the
next by no more than two transpositions. ��

Asteroidal Sets. Asteroidal sets were introduced in [7] as follows (see also,
e.g., [8]). (The definition appeared also, earlier, in [12] where it was used to
characterize certain subclasses of chordal graphs.)

Definition 4. Let G be a graph. A set A ⊆ V (G) is an asteroidal set if for each
a ∈ A, the set A − a is contained in one component of G − N [a], where N [a]
denotes the closed neighborhood of a.

Asteroidal sets of cardinality three are asteroidal triples. They were used by
Lekkerkerker and Boland to characterize interval graphs. Many classes of graphs
that one encounters often in practical situations, are AT-free, for example, inter-
val graphs, permutation graphs, and cocomparability graphs. Many NP-complete
problems, e.g., independent set, domination and 3-coloring, become polynomial
when one restricts the graphs to a class with a bounded asteroidal number.

Recently, elimination orders, called AT-free orders, were obtained for graphs
with bounded asteroidal number [6]. We describe the result for AT-free graphs,
which are graphs without an asteroidal triple. An example is given in Fig. 1.
In Sect. 2 we show that these AT-free orders are the basic words of a language
antimatroid. In Sect. 3, We show that all AT-free orders of a graph can be listed
in O(1) amortized time.

2 A Convex Geometry

Throughout this section, let G be a connected AT-free graph.

Definition 5. For two vertices x and y let the interval I(x, y) be defined as the
set of vertices z ∈ V (G) for which there is a chordless x, z-path that avoids N [y]
and a chordless y, z-path that avoids N [x].

Let I be the set of triples (x, z, y) for which z ∈ I(x, y). Notice that

(x, z, y) ∈ I ⇒ (y, z, x) ∈ I and x, y and z are pairwise distinct. (1)

Now I is a strict betweenness, in the sense of Chvátal [5]. According to [2]
(see also [5]), any such ternary relation I defines a convexity space (V,N ) with

N = { K ⊆ V | {a, c} ⊆ K and (a, b, c) ∈ I ⇒ b ∈ K }. (2)

Since there are no triples (a, b, a) ∈ I with b �= a, all singletons {a} ∈ N .

Definition 6. Let X ⊆ V . A vertex b ∈ X is an extreme point of X if there are
no vertices a and c in X such that b ∈ I(a, c).
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Fig. 1. The AT-free graph on the left has twelve triples (x, z, y) ∈ I, that is, ordered
triples (x, y, z) with z ∈ I(x, y); the horizontal P5 entails two such triples and there
are ten triples consisting of the two pendants and one vertex of the horizontal P5.
Notice that the two vertices of degree 6 are not in any triple of I (neither one is in
an independent set of cardinality 3). There are four extreme points, namely the two
pendants and their neighbors. It is not true that for every triple (x1, x2, x3) ∈ I there
is an extreme point x̄3 with (x1, x2, x̄3) ∈ I. For the AT-free graph on the left it is true
that for every triple (x1, x2, x3) ∈ I there exist extreme points x̄1 and x̄3 such that
(x̄1, x2, x̄3) ∈ I. Figure 2 shows an AT-free graph in which this does not hold. Compare
[5, Theorems 1 and 3]. The graph on the right has white vertices as an asteroidal triple.

Fig. 2. The graph on the left is an example of an AT-free graph with a crossing pair.
The strict betweenness does not satisfy Eq. (3). On the left, the extreme points are c3
and its neighbor, c1 and the common neighbor of c2 and c1. Although (a, b, c2) ∈ I,
there are no two extreme vertices that form a triple with b in the middle. In the graph
on the right, (c1, b, c3) ∈ I, that is, b is between two extremes.

The set of extreme points of X ⊆ V is denoted by ex(X). We note that the con-
cept of extreme points is inherited from that in dealing with convex geometries.
For simplicity, we use the same notation when there is no danger of misunder-
standing.
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Remark 1. Chvátal shows in [5, Theorem 1] the equivalence of the following two
statements for any strict betweenness B on a finite ground set V .

(i) For all X ⊆ V and all x1, x2 and x3 ∈ X with (x1, x2, x3) ∈ B, there exist
x̄1 ∈ ex(X) and x̄3 ∈ ex(X) such that (x̄1, x2, x̄3) ∈ B.

(ii)

(a, b, c2) ∈ B and (c1, c2, c3) ∈ B ⇒
(a, b, c1) ∈ B or (a, b, c3) ∈ B or (c1, b, c3) ∈ B. (3)

Figure 2 shows an AT-free graph in which the strict betweenness does not sat-
isfy (3).

Monophonic convexity in chordal graphs and strict order betweenness in
posets satisfy the following condition which is stronger than the Condition (3),
mentioned above.

(a, b, c2) ∈ B and (c1, c2, c3) ∈ B ⇒ (a, b, c1) ∈ B or (a, b, c3) ∈ B.
(4)

Chvátal proves in [5, Theorem 3] that (4) is equivalent with the statement that,
for all X ⊆ V and for all {x1, x2, x3} ⊆ X,

(x1, x2, x3) ∈ B ⇒ ∃x̄3∈ex(X) (x1, x2, x̄3) ∈ B. (5)

Figure 1 shows an AT-free graph in which the strict betweenness I does not
satisfy (4).

Notation. For a subset X of vertices we write N(X) for the set of vertices
in V \X that have a neighbor in X. Similarly, we use N(x) to denote the open
neighborhood of x, consisting of vertices adjacent to x. For nonadjacent vertices
x and y, let Cy(x) denote the component of G − N [y] that contains x.

Definition 7. A pair of triples (a, b, c2) ∈ I and (c1, c2, c3) ∈ I is a crossing if

(i) c3 is in a component D of G − N [b], D �= Cb(a) and D �= Cb(c2);
(ii) c1 ∈ N(b) ∩ N(a);
(iii) N(D) ⊆ N(a) ∩ N(c2).

When a convexity space is defined by a strict betweenness that satisfies
Eq. (3) then it defines a convex geometry [5, Lemma 2]. The Carathéodory num-
ber of such a convex geometry is at most 2.1 However, there are strict between-
ness relations that do not satisfy Eq. (3) and that, nonetheless, define convex
geometries with Carathéodory number 2. In his paper Chvátal gives an exam-
ple with 4 elements of a convex geometry with Carathéodory number 2 which
does not satisfy Eq. (3). The strict betweenness relation for AT-free graphs also
defines a convex geometry. The example in Fig. 2 shows that the Carathéodory
number can be more than 2. The following lemma characterizes the AT-free
graphs that give rise to convex geometries that satisfy Eq. (3).
1 A convexity space has Carathéodory number k if k is the smallest integer satisfying
the following property. If x ∈ σ(X) for a set X then there exists a X ′ ⊆ X with
|X ′| ≤ k and x ∈ σ(X ′).
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Lemma 1. Assume that I does not have a crossing pair of triples. Then I
satisfies (3), that is,

(a, b, c2) ∈ I and (c1, c2, c3) ∈ I ⇒
(a, b, c1) ∈ I or (a, b, c3) ∈ I or (c1, b, c3) ∈ I.

Proof. Assume that c1 and c3 are both in Cb(c2). Notice that there is a path
from c1 to b that avoids N [a]. This follows since (a, b, c2) ∈ I implies that there
is a b, c2-path that avoids N [a] and, since c1 ∈ Cb(c2) and a /∈ Cb(c2), there is
also a c1, c2-path avoiding N [a].

If N(Cb(a)) �⊆ N(c1) then (a, b, c1) ∈ I, since in that case there is an
a, b-path avoiding N [c1]. By symmetry we may also assume that N(Cb(a)) ⊆
N(c3). Thus,

N(Cb(a)) ⊆ N(c1) ∩ N(c3).

On the other hand, N(Cb(a)) �⊆ N(c2), since by assumption (a, b, c2) ∈ I and
so there is an a, b-path avoiding N(c2). This contradicts the assumption that
(c1, c2, c3) ∈ I, since there is a c1, c3-path avoiding N [c2].

Assume that c1 ∈ Cb(a) and c3 ∈ Cb(c2). Since (c1, c2, c3) ∈ I, we have that

N(Cb(a)) �⊆ N(c3).

Thus there exists an a, b-path that avoids N [c3]. Notice

(a, b, c2) ∈ I ⇒ N(Cb(c2)) �⊆ N(a).

So, there is a b, c3-path avoiding N [a]. This proves that (a, b, c3) ∈ I.
Assume that c1 ∈ Cb(a) and c3 ∈ Cb(a). Since (c1, c2, c3) ∈ I there must be

paths from c1 and c3 to vertices in N(Cb(a)) that avoids each other’s neighbor-
hood. This implies that (c1, b, c3) ∈ I.

Assume that c1 ∈ Cb(a) and that c3 is in some component D of G − N [b],
D �= Cb(a) and D �= Cb(c2). Since (c1, c2, c3) ∈ I, we have that

N(Cb(a)) �⊆ N(c3) and N(D) �⊆ N(c1).

This implies that (c1, b, c3) ∈ I.
Assume c1 ∈ Cb(a) and c3 ∈ N(b). There exists an a, b-path that avoids

N(c2). Since c1 ∈ Cb(a), there is a c1, b-path that avoids N(c2). If we extend
this path to c3 we find a c1, c3-path that avoids N(c2). This contradicts the
assumption that (c1, c2, c3) ∈ I.

Assume that c1 and c3 are both neighbors of b. Since (c1, c2, c3) ∈ I, c1 and
c3 must be in different components of G − N [c2]. This is not possible, since c1
and c3 have a common neighbor b /∈ N [c2].

Assume that c1 ∈ Cb(c2) and that c3 ∈ N(b). Since (a, b, c2) ∈ I we have that
N(Cb(a)) �⊆ N(c2). Since (a, b, c2) ∈ I and c1 ∈ Cb(c2), there exists a b, c1-path
that avoids N [a]. This implies that, if N(Cb(a)) �⊆ N(c1) then (a, b, c1) ∈ I. So,
now assume that N(Cb(a)) ⊆ N(c1). This contradicts that (c1, c2, c3) ∈ I, since
there is a c1, c3-path that avoids N [c2].
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Assume that c1 ∈ Cb(c2) and that c3 is in a component D of G − N [b],
D �= Cb(a) and D �= Cb(c2). The fact that (a, b, c2) ∈ I implies that there
is a b, c2-path that avoids N [a]. Then, since c1 ∈ Cb(c2), there is a b, c1-path
that avoids N [a]. Now, if N(Cb(a)) �⊆ N(c1), then there is a, b-path that avoids
N [c1], and with the previous observation this implies that (a, b, c1) ∈ I. So, now
assume that

N(Cb(a)) ⊆ N(c1).

Because (c1, c2, c3) ∈ I, there exists a c2, c3-path that avoids N [c1]. This implies
that N(D) �⊆ N(c1) and so there exists a c3, b-path that avoids N [c1]. If
N(Cb(a)) �⊆ N(c3) then there is a c1, b-path that avoids N [c3], implying that
(c1, b, c3) ∈ I. Henceforth assume that

N(Cb(a)) ⊆ N(c3).

Now, we must also have that N(Cb(a)) ⊆ N [c2], otherwise there would be a
c1, c3-path avoiding N [c2], contradicting (c1, c2, c3) ∈ I. Thus, summarizing, we
have that

N(Cb(a)) ⊆ N(c1) ∩ N(c2) ∩ N(c3).

But then there can be no a, b-path avoiding N [c2], contradicting (a, b, c2) ∈ I.
Assume there is a component D of G−N [b], D �= Cb(a) and D �= Cb(c2), with

{c1, c3} ⊂ D. Since (c1, c2, c3) ∈ I there exist paths from c1 and c3 to vertices
in N(D) avoiding each other’s neighborhood. This implies (c1, b, c3) ∈ I.

A similar argument applies in the case where there are two components
D1 and D3 of G − N [b], both different from Cb(a) and Cb(c2), with c1 ∈ D1

and c3 ∈ D3. Namely, because (c1, c2, c3) ∈ I, there must exist paths from c1
and c3 to N(D1) and N(D3) avoiding each other’s neighborhood, implying that
(c1, b, c3) ∈ I.

For the final case, assume that c1 ∈ N(b) and that c3 is in a component D
of G − N [b], where D �= Cb(a) and D �= Cb(c2). Notice that

N(Cb(a)) �⊆ N(c3) and N(D) �⊆ N(a) ⇒ (a, b, c3) ∈ I.

Assume this is not the case. First assume that N(Cb(a)) ⊆ N(c3). We have that

(a, b, c2) ∈ I ⇒ N(Cb(a)) �⊆ N(c2).

Now there exists a c1, c3-path avoiding N [c2] (via N(Cb(a))\N(c2) and b), con-
tradicting the assumption that (c1, c2, c3) ∈ I. Now assume that N(D) ⊆ N(a).
If N(D) �⊆ N(c2), then there is a c3, c1-path avoiding N [c2], a contradiction.
Finally, assume that

N(D) ⊆ N(a) ∩ N(c2).

Since there is a c2, c3-path that avoids N [c1], N(D) �⊆ N [c1]. This implies an
a, c2-path avoiding N [c1]. Since N(Cb(a)) �⊆ N(c2), there exists a a, c1-path
avoiding N [c2]. There exists a c2, b-path that avoids N [a]. If c1 /∈ N(a), there is
a c2, c1-path avoiding N [a]. Then {c1, c2, a} is an asteroidal triple. So we have
that c1 ∈ N(a). Then the pair of triples (a, b, c2) and (c1, c2, c3) is crossing,
contradicting the assumption that I has no crossing pairs.

This proves the lemma. ��



84 J.-M. Chang et al.

The following corollary follows via some results of [5].

Corollary 1. Let G be a connected AT-free graph. Assume that I contains no
crossing pair of triples. Let (V,N ) be the convexity space as defined in (2). Then
(V,N ) is a convex geometry.

Proof. According to [5, Lemma 2], the claim is implied by Lemma 1. ��
For an AT-free graph, the strict betweenness defined in Definition 5 and

Eq. (1) defines a convex geometry, as shown later in Theorem 2. To prove that,
we need the following lemma, which gives a sufficient condition for a convexity
space being a convex geometry. For X ⊆ V , let σ0(X) = X. For i ≥ 1, let

σi(X) = {x | ∃a,b∈σi−1(X) (a, x, b) ∈ I}\ ∪0≤j<i σj(X).

For x ∈ X, the index of x with respect to X is i if x ∈ σi(X).

Lemma 2. Let (V,N ) be a convexity space. For X ⊆ V , {y, z} ⊆ V , and {y, z}∩
σ(X) = ∅, if

∃a′∈σ(X) (a′, y, z) ∈ I implies z /∈ σ(X + y),

then (V,N ) is a convex geometry.

Proof. The lemma can be proved by induction on the index of y with respect to
σ(X) + z. Details will appear in the full version of this paper. ��
Theorem 2. Let G be a connected AT-free graph. The strict betweenness defined
in Definition 5 and Eq. (1) defines a convex geometry with convex sets defined as
in Eq. (2).

Proof. By Lemma 2, it suffices to show that for X ⊆ V , {y, z} ⊆ V , and {y, z}∩
σ(X) = ∅,

∃x∈σ(X) (x, y, z) ∈ I implies z /∈ σ(X + y),

where V = V (G). First, we show that the assumption that

(x, y, z) ∈ I and (x′, z, y) ∈ I
leads to a contradiction, where x′ ∈ σ(X). Since (x, y, z) ∈ I, x and z lie in
different components of G − N [y]. Furthermore, since (x′, z, y) ∈ I, x′ and z lie
in the same component of G−N [y]. This implies that there is an x′, z-path that
avoids N [x]. Since (x′, z, y) ∈ I, x′ and y are in different components of G−N [z].
Since (x, y, z) ∈ I, x lies in the same component of G − N [z] as y, and so there
exists an x, y-path that avoids N [x′]. Since (x′, z, y) ∈ I, there exists also a
y, z-path that avoids N [x′]. The concatenation of these two paths gives an x, z-
path that avoids N [x′]. These two observations imply that z ∈ I(x, x′) unless x
and x′ are adjacent or the same. But that is not the case, since x′ is in the same
component of G − N [y] as z which is different from the component of G − N [y]
that contains x. Thus z ∈ I(x, x′) which implies z ∈ σ(X); a contradiction.
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Now we prove that z /∈ σ(X + y). By the previous case, we may assume
that z is not between two elements of σ(X) + y. Assume that (p, z, q) ∈ I and
(y, q, r) ∈ I for some p, r ∈ σ(X). Then, by Lemma 1, either

(p, z, y) ∈ I or (p, z, r) ∈ I or (y, z, r) ∈ I (6)

or we have a crossing pair. By assumption none of the cases in (6) occurs so we
have a crossing pair. Since (a′, y, z) ∈ I, y and z are not adjacent, so we have
that p, q and y lie in distinct components of G − N [z]. Since (a′, y, z) ∈ I, there
is a a′, y-path that avoids N [z], that is, a′ lies in the same component of G−N [z]
as y. Since (a′, y, z) ∈ I, a′ and z are in different components of G−N [y]. There
is a z, p-path that avoids N [y], since (p, z, q) ∈ I and N(Cz(y)) ⊆ N(q). This
implies that there is a z, p-path that avoids N [a′]. Also, there is a y, z-path that
avoids N [a′] which implies that there is a y, p-path that avoids N [a′], since p is
adjacent to N(Cz(y)). This proves that

y ∈ I(a′, p) ⇒ y ∈ σ(X)

which is a contradiction. The remaining cases will appear in the full version of
this paper. This proves the theorem. ��

3 The Oracle

Definition 8. A linear order σ of the vertices of a graph G is an AT-free order
if

(x, z, y) ∈ I ⇒ z <σ max { x, y }, (7)

where

max { x, y } =

{
x, if y <σ x,

y, otherwise.

Recently, Corneil and Stacho published the following characterization of
AT-free graphs [6].

Theorem 3. A graph is AT-free if and only if it has an AT-free order.

Definition 9. Let (V,L) be a language antimatroid. Let w = αxyβ be a basic
word in which x and y are adjacent letters. A transposition of w with respect to
x and y is the operation that produces the word w′ = αyxβ.

Definition 10. An O(1) transposition oracle is an oracle that determines in
constant time if a word w′ is a basic word, given that w is a basic word, where
w′ is a word obtained from w by a transposition of two adjacent letters.

Pruesse and Ruskey proved the following theorem [9, Theorem 5].

Theorem 4. Let (V,L) be a language antimatroid with an O(1) transposition
oracle. Then the basic words can be generated in constant amortized time such
that each word differs from the next by at most two transpositions.
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In the previous section we have shown that an AT-free graph G with its
collection of convex sets N as defined in Definition (2) forms a convex geometry.
The basic words of the corresponding language antimatroid are the AT-free
orders. In the following theorem we prove that this language antimatroid has an
O(1) amortized time transposition oracle.

Theorem 5. The AT-free orders of an AT-free graph can be generated in O(1)
amortized time.

Proof (sketch). We show that there is an O(1) transposition oracle.
Let σ be an ordering of the vertices such that

z ∈ I(x, y) ⇒ z <σ max { x, y }.

Assume that p and q are consecutive vertices in this order, say p <σ q, and let
σ′ be the order obtained from σ by transposing p and q, that is,

p <σ q and q <σ′ p.

Then σ′ is not an AT-free order only if there exists a vertex r with

p ∈ I(q, r) and r <σ p.

The algorithm keeps a data structure which maintains for all ordered pairs
x and y the value

fσ(x, y) = |{ z | x ∈ I(y, z) z <σ x <σ y }| (8)

Then, using this data structure, the algorithm can decide in O(1) time whether
transposing x and y yields an AT-free order, namely when fσ(x, y) = 0.

Unfortunately, this oracle has a side effect. Consider x <σ y <σ z. After a
transposition of x and y,

fσ′(x, z) = fσ(x, z) + 1 if y ∈ I(x, z)
fσ′(y, z) = fσ(y, z) − 1 if x ∈ I(y, z).

We now make use of an observation made by Sawada [11, Observation 1].
According to this observation updates need only be made for vertices z in a
limited range. According to [11, Theorem 13] the basic words can be generated
in constant amortized time. We refer to the discussion in [11, Sect. 6.2, after
Theorem 15, pp. 85–86] for further details.

This proves the claim. ��

Acknowledgments. The authors would like to thank the anonymous reviewers for
the comments. Jou-Ming Chang was supported in part by the MOST grant 104-2221-
E-114-002-MY3. Hung-Lung Wang was supported in part by the MOST grant 104-
2221-E-114-003.



Gray Codes for AT-free Orders via Antimatroids 87

References

1. Björner, A., Ziegler, G.: 8 Introduction to greeds. In: White, N. (ed.) Matroid
Applications - Encyclopedia of Mathematics and its Applications, vol. 40, pp. 284–
357. Cambridge University Press, Cambridge (1992)

2. Calder, J.: Some elementary properties of interval convexities. J. Lond. Math. Soc.
3, 422–428 (1971)

3. Chandran, L., Ibarra, L., Ruskey, F., Sawada, J.: Generating and characterizing
the perfect elimination orderings of a chordal graph. Theor. Comput. Sci. 307,
303–317 (2003)

4. Chang, J.-M., Ho, C.-W., Ko, M.-T.: LexBFS-ordering in asteroidal triple-free
graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol.
1741, pp. 163–172. Springer, Heidelberg (1999)
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2 Università di Verona, Verona, Italy

rizzi@di.univr.it

Abstract. Acyclic and cyclic orientations of an undirected graph have
been widely studied for their importance: an orientation is acyclic if it
assigns a direction to each edge so as to obtain a directed acyclic graph
(DAG) with the same vertex set; it is cyclic otherwise. As far as we know,
only the enumeration of acyclic orientations has been addressed in the
literature. In this paper, we pose the problem of efficiently enumerating
all the cyclic orientations of an undirected connected graph with n ver-
tices and m edges, observing that it cannot be solved using algorithmic
techniques previously employed for enumerating acyclic orientations. We
show that the problem is of independent interest from both combinato-
rial and algorithmic points of view, and that each cyclic orientation can
be listed with Õ(m) delay time. Space usage is O(m) with an additional
setup cost of O(n2) time before the enumeration begins, or O(mn) with
a setup cost of Õ(m) time.

1 Introduction

Given an undirected graph G(V,E) with n = |V | vertices and m = |E| edges,
an orientation transforms G into a directed graph

−→
G by assigning a direction

to each edge. That is, an orientation of G is the directed graph
−→
G (V,

−→
E ) such

that the vertex set V is the same as G, and the edge set
−→
E is an orientation

of E: exactly one direction between (u, v) ∈ −→
E and (v, u) ∈ −→

E holds for any
undirected edge {u, v} ∈ E. An orientation

−→
G is acyclic when

−→
G does not contain

any directed cycles, so
−→
G is a directed acyclic graph (DAG); otherwise we say

that the orientation
−→
G is cyclic.

Acyclic orientations of undirected graphs have been studied in depth. Many
results concern the number of such orientations: Stanley [13] shows how the num-
ber of acyclic orientations of a graph can be computed by using the chromatic
polynomial (a special case of Tutte’s polynomial). Other results rely on the so
called acyclic orientation game: Alon et al. [2] inquire about the number of edges
that have to be examined in order to identify an acyclic orientation of a random
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graph G; Pikhurko [11] gives an upper bound on this number of edges in general
graphs. The counting problem is known to be #P-complete [9] and enumeration
algorithms that list all the acyclic orientations of a graph are given in [3,12].

We consider cyclic orientations, which have been also studied from many
points of view. Counting them is #P-complete, as doing so provides the number
of acyclic ones (the total number of orientations is 2m, and they are partitioned
in these two kinds). In Fisher et al. [6], given a graph G and an acyclic orientation
of it, the number of dependent edges, i.e. edges generating a cycle if reversed,
has been studied. This number of edges implicitly gives a hint on the number of
cyclic orientations in a graph.

In this paper we address the problem of enumerating all the cyclic orienta-
tions of an undirected graph G. Without loss of generality, we assume that G is
connected.

Problem 1. Enumerating the set of all the directed graphs
−→
G that are cyclic

orientations of a given undirected connected graph G.

We analyze the cost of an enumeration algorithm for Problem1 in terms of
its setup cost, meant as the initialization time before the algorithm is able to
list the solutions, and its delay cost, which is a well-known performance mea-
sure bounding the worst-case time between any two consecutively enumerated
solutions (e.g. [8]). We are interested in algorithms with guaranteed Õ(m) delay,
where the Õ notation ignores polylogarithmic multiplicative factors.

A naive solution to Problem1 uses the fact that enumeration algorithms
exist for listing acyclic orientations [3,12]. It enumerates the cyclic orientations
by difference, namely, by enumerating all the 2m possible edge orientations and
removing the α acyclic ones. However, this solution does not guarantee any poly-
nomial delay, as the number β = 2m−α of cyclic orientations can be much larger
or much smaller than the number α of acyclic ones. For example, a tree with
m edges has α = 2m and β = 0. On the other extreme of the situation, we
have cliques. An oriented clique is also called a tournament, and a transitive
tournament is a tournament with no cycles. A clique of n nodes can generate
2m different tournaments, out of which exactly α = n! will be transitive tour-
naments [10]. As 2m grows faster than n!, where m = n·(n−1)

2 , we have that the
ratio α/β = n!/(2m − n!) tends to 0 for increasing n.

To the best of our knowledge, an enumeration algorithm for Problem1 with
guaranteed Õ(m) delay is still missing. We provide such an algorithm in this
paper, namely, listing each cyclic orientation with Õ(m) delay time. Space usage
is O(m) memory cells with a setup cost of O(n2) time, or O(mn) memory cells
with a setup cost of Õ(m) time. Although Problem1 could have less applications
than enumerating acyclic orientations [3,12], it is a rich source for enumeration
and a ground-field for new combinatorial and algorithmic techniques.

In the following, for the sake of clarity, we will call edges the elements of
E (undirected graph) and arcs the elements of

−→
E (directed graph). We will

assume that the graph in input G is connected and we will denote as n = |V |
and m = |E| respectively its number of nodes and edges.
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The paper is organized as follows. Section 2 gives an overview of our enumer-
ation algorithm. Section 3 describes the initialization steps, and shows how to
reduce the problem from the input graph to a suitable multi-graph that guaran-
tees to have a chordless cycle (hole) of logarithmic size. The latter is crucial to
obtain the claimed delay, and can be seen as a form of kernelization [1]. Section 4
shows how to enumerate in the multigraph and obtain the cyclic orientations for
the input graph. Section 5 describes how to absorb the setup cost using more
space. Finally, some conclusions are drawn in Sect. 6.

2 Algorithm Overview

The intuition behind our algorithm for an undirected connected graph
G(VG, EG) is the following one. Suppose that G is cyclic, otherwise there are
no cyclic orientations. Consider one cycle1 C(VC , EC) in G: we can orient its
edges in two ways so that the resulting

−→
C is a directed cycle. At this point, any

orientation of the remaining edges, e.g. those in EG\EC , will give a cyclic orien-
tation of G. Thus we generate all possible orientations of the edges in EG\EC ,
and then assign some suitable orientations to the edges in EC . This guarantees
that we have at least two solutions for each orientation of EG\EC , namely, set-
ting the orientation of EC so that

−→
C is one of the two possible directed cycles.

Yet this is not enough as we could have a cyclic orientation even if
−→
C is acyclic.

In general we must consider the following cases. One easy case is that the
orientation of EG\EC already produces a directed cycle: any orientation of EC

will give a cyclic orientation of G. Another easy case, as seen above, is for the two
orientations of EC such that

−→
C is a directed cycle: any orientation of EG\EC

will give a cyclic orientation of G. It remains the case when the orientations of
both EG\EC and EC are individually acyclic: when put together, we might or
might not have a directed cycle in the resulting orientation of G. To deal with
the latter case, we need to “massage” G and transform it into a multigraph as
follows, referring the reader to Algorithm1.

Algorithm setup is performed as described in Sect. 3. We preprocess G
with bridge removal and edge chain compression, recalling that a bridge is an
edge whose deletion increases the number of connected components and that a
chain is a maximal path of degree-2 nodes. The result is an undirected connected
multigraph M(VM , EM ), where the edges are labeled as simple and chain. After
that, we find a chordless cycle of logarithmic size C in M , called log-hole , and
remove EC from EM , obtaining the labeled multigraph M ′(VM , E′

M ), where
E′

M = EM\EC .
Enumerating cyclic orientations, described in Sect. 4, exploits the prop-

erty (which we will show later) that finding cyclic orientations of G corresponds
to finding particular orientations in M ′, called extended cyclic orientations, and
of C, called legal orientations. In the for loop, these orientations of M ′ and C
are enumerated so as to find all the cyclic orientations of G. As we will see for
the latter task, it is important to have C of logarithmic size to guarantee our
claimed delay.
1 This will actually be a chordless cycle of logarithmic size (called log-hole).



Enumerating Cyclic Orientations of a Graph 91

Algorithm 1. Returning all the cyclic orientations of G

Input: An undirected connected graph G(V,E)

Output: All the cyclic orientations
−→
G (V,

−→
E )

Algorithm setup (Section 3):
Remove bridges and isolated nodes from G
M(VM , EM ) ← replace G’s maximal paths of degree-2 nodes with chain edges
C(VC , EC) ← a log-hole of M
M ′(VM , E′

M ) ← delete the edges of C from M , i.e. E′
M = EM\EC

Enumerate cyclic orientations (Section 4):

for each extended orientation
−→
M ′ of multigraph M ′ do

for each legal orientation
−→
C of log-hole C (see Algorithm 2) do−→

M ′′(VM ,
−→
E ′′) ← combine

−→
M ′ and

−→
C , where

−→
E ′′ =

−→
E ′

M ∪ −→
E C

Output each of the cyclic orientations
−→
G of G corresponding to

−→
M ′′

3 Algorithm Setup

3.1 Reducing the Problem to Extended Cyclic Orientations

In the following we show how to reduce Problem1 to an extended version that
allows us to neglect bridges and chains.

Bridge Removal. Given an undirected graph G(V,E), since a bridge cannot
be included in any cycle of G, we remove all bridges. By removing bridges and
computing the cyclic orientations in the cleaned graph, we can still generate
solutions for the original graph by using both orientations of each bridge, as
emphasized by the following lemma, whose proof is straightforward.

Lemma 1. Let G be a graph and {u, v} a bridge. Let G′ be the graph G without
the edge {u, v}. The set of all the cyclic orientations of G is composed by the
orientations

−→
G ′(V,

−→
E ′ ∪ {(u, v)}) and

−→
G ′(V,

−→
E ′ ∪ {(v, u)}), for all the cyclic

orientations
−→
G ′(V,

−→
E ′) of G′.

For the sake of simplicity, after removing the bridges we remove also isolated
nodes (i.e., nodes of degree zero). It is easy to see that all the surviving nodes
have degree 2 or greater.

The bridges of a graph can be found in linear time [14]. Finding and removing
bridges and removing isolated nodes can be done in O(m) time and space.

The rationale for removing bridges is to have shorter cycles: for example,
consider a “necklace” graph with n nodes, for n even, such that n/2 nodes form
a cycle, and the remaining n/2 nodes have degree 1 and are attached to one
of the nodes in the cycle, such that each node in the cycle has degree 3 and
is connected to one node of degree 1. With the removal of bridges and isolated
nodes, the cycle has only nodes of degree 2 and can be compressed as discussed
in the next paragraph.
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Chain Compression. It consists in finding all the maximal paths v1, . . . , vk
where vi has degree 2 (with 2 ≤ i ≤ k − 1), and replacing each of them, called
chain, with just one edge, called chain edge. It is easy to see that this task
can be accomplished in O(m) time by traversing the graph G in a DFS fashion
from a node of degree ≥3. The output is an undirected connected multigraph
M(VM , EM ), where VM ⊆ V are the nodes of V whose degree is ≥3, and EM

are the chain edges plus all the edges in E which are not part of a chain. The
latter ones are called simple edges to distinguish them from the chain edges. In
the rest of the paper, M will be seen as a multigraph where |VM | ≥ 4 and each
of the edges has a label in {simple, chain}, since it might contain parallel edges
or loops.2 For this, we define the concept of extended orientation as follows.

Definition 1 (Extended Orientation). For a multigraph M(VM , EM ) hav-
ing self loops and edges labeled as simple and chain, an extended orientation−→
M (VM ,

−→
EM ) is a directed multigraph whose arc set

−→
EM assigns a direction or

broken to each edge in EM : in particular, for any simple edge {u, v} ∈ EM ,
exactly one direction between (u, v) and (v, u) is assigned; for any chain edge
{u, v} ∈ EM , either the edge is broken, or exactly one direction between (u, v)
and (v, u) is assigned. A directed cycle in

−→
M cannot contain a broken edge.

Broken edges correspond to chain edges that, when expanded as edges of G,
do not have an orientation as a directed path. This means that they cannot be
traversed in either direction. Note that this situation cannot happen for simple
edges. The following lemma holds.

Lemma 2. If we have an algorithm that lists all the extended cyclic orientations
of M(VM , EM ) with delay f(|EM |), for some f : R → R, then we have an
algorithm that lists all the acyclic orientations of the graph G(V,E) with delay
O(f(|EM |) + |E|).
Proof. For each extended cyclic orientations

−→
M we return a set S of cyclic ori-

entations of G: any simple edge e of
−→
M maintains the same direction specified

by
−→
M in all the solutions in S; for each chain c of

−→
M , we consider the edges

corresponding to c in G, say e1, e2, . . . , eh: if c has a direction in
−→
M , the same

direction of c is assigned to all the edges ej in all the solutions in S; if c has
no direction assigned, i.e. broken, we have to consider all the possible 2h − 2
ways of making the path e1, e2, . . . , eh broken (these are all the possible ways of
directing the edges except the only two directing a path). All the solutions in S
differ for the way they replace the chain edges.

Getting extended cyclic orientations in f(|EM |) delay, iterating over all the
chain edges c, and iterating over all the corresponding edges of c assigning the
specified directions as explained above, we return acyclic orientations of the
graph G(V,E) with delay O(f(|EM |) + |E|). �	

Lemma 2 allows us to concentrate on extended cyclic orientations of the
labeled multigraph M rather than on cyclic orientations of G. Conceptually,
2 The degenerate case of M with ≤3 nodes can be easily handled.
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we have to assign binary values (the orientation) to simple edges and ternary
values (the orientation or broken) to chain edges. If we complicate the prob-
lem on one side by introducing these multigraphs with chain edges, we have a
relevant benefit on the other side, as shown next.

3.2 Logarithmically Bounded Hole

A logarithmically bounded hole (hereafter, log-hole) is a chordless cycle whose
length is either the girth of the graph (i.e. the length of its shortest cycle) or
this length plus one.3

Given the labeled multigraph obtained in Sect. 3.1, namely M(VM , EM ), we
perform the following two steps.

1. Finding a log-hole. Find a log-hole C(VC , EC) in M(VM , EM ).4

2. Removing the log-hole. Remove the edges in EC from M , obtaining
M ′(VM , E′

M ), where E′
M = EM − EC .

Properties of the log-hole. Since M is a multigraph with self-loops, a log-
hole C(VC , EC) of M can potentially be a self-loop. In any case, the following
well-known result holds.

Lemma 3 (Logarithmic girth [4,5]). Let G(V,E) be a graph in which every
node has degree at least 3. The girth of G is ≤ 2
log |V |�.

Lemma 3 means that the log-hole C of M has length at most 2
log |VM |�+1,
thus motivating our terminology.

The log-hole C can be found by finding the girth, that is performing a BFS
on each node of the multigraph M to identify the shortest cycle that contains
that node, in time O(|VM | · |EM |). By applying the algorithm in [7], which easily
extends to multigraphs, we compute C in time O(|VM |2): in this case, if chords
are present in the found C, in time O(|C|) = O(log |VM |) we can check whether
C includes a smaller cycle and redefine C accordingly.

4 Enumerating Cyclic Orientations

We now want to list all the cyclic orientations of the input graph G. By Lemma 2
this is equivalent to listing the extended cyclic orientations of the corresponding
labeled multigraph M(VM , EM ) obtained from G by bridge removal and chain
compression. We now show that the latter task can be done by suitably combin-
ing some orientations from the labeled multigraph M ′(VM , E′

M ) and the log-hole
C(VC , EC) using an algorithm that is organized as follows.

3 Minimum cycle means the cycle having minimum number of edges (e.g. a self loop).
Ties are broken arbitrarily.

4 When computing the log-hole of M , chain edges count just one, like simple edges.
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1. Finding extended orientations. Enumerate all extended orientations (not
necessarily cyclic)

−→
M ′ of the multigraph M ′.

2. Putting back the log-hole. For each listed
−→
M ′(VM ,

−→
E ′

M ), consider all the
extended orientations

−→
C (VC ,

−→
E C) of the log-hole C such that

−→
E ′

M ∪ −→
E C

contains a directed cycle, and obtain the extended cyclic orientations for the
multigraph M .

Finding Extended Orientations. This is now an easy task. For each edge
{u, v} in E′

M that is labeled as simple, both the directions (u, v) and (v, u)
can be assigned; if {u, v} is labeled as chain, the directions (u, v) and (v, u),
and broken can be assigned. Each combination of these decisions produces an
extended orientation of M ′(VM , EM ). If there are s simple edges and c chain
edges in M ′, where s + c = |E′

M |, this generates all possible 2s3c extended
orientations. Each of them can be easily listed in O(|E′

M |) delay (actually less,
but this is not the dominant cost).

Putting Back the log-hole. For each listed
−→
M ′ we have to decide how to put

back the edges of the cycle C, namely, how to find the orientations of C that
create directed cycles.

Definition 2. Given the cycle C(VC , EC) and
−→
M ′(VM ,

−→
E ′

M ), we call legal orien-
tation

−→
C (VC ,

−→
E C) any extended orientation of C such that the resulting multi-

graph
−→
M ′′(VM ,

−→
E ′′) is cyclic, where

−→
E ′′ =

−→
E ′

M ∪ −→
E C .

The two following cases are possible.

1.
−→
M ′ is cyclic. In this case each edge in EC can receive any direction, including
broken if the edge is a chain edge: each combination of these assignments will
produce a legal orientation that will be output.

2.
−→
M ′ is acyclic. Since C is a cycle, there are at least two legal orientations
obtained by orienting C as a directed cycle clockwise and counterclockwise.
Moreover, adding just an oriented subset of edges D ⊆ C to

−→
M ′ can create

a cycle in
−→
M ′: in this case, any orientation of the remaining edges of C\D

(including broken for chain edges) will clearly produce a legal orientation.

While the first case is immediate, the second case has to efficiently deal with
the following problem.

Problem 2. Given
−→
M ′ acyclic and cycle C, enumerate all the legal orientations−→

C (VC ,
−→
E C) of C.

In order to solve Problem 2, we exploit the properties of C. In particular, we
compute the reachability matrix R among all the nodes in VC , that is, for each
pair u, v of nodes in VC , R(u, v) is 1 if u can reach v in

−→
M , 0 otherwise. We say

that R is cyclic whether there exists a pair i, j such that R(i, j) = R(j, i) = 1.
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This step can be done by performing a BFS in
−→
M ′ from each node in VC : by

Lemma 3 we have |VC | < 2
log |VM |� + 1, and so the cost is O(|E′
M | · log |VM |)

time. Deciding the orientation of the edges and the chain edges in EC is done
with a ternary partition of the search space. Namely, for each edge {u, v} in EC ,
if {u, v} is simple we try the two possible direction assignments, while if it is a
chain we also try the broken assignment. In order to avoid dead-end recursive
calls, after each assignment we update the reachability matrix R and perform
the recursive call only if this partial direction assignment will produce at least
one solution: both the update of R and the dead-end check can be done in
O(log2 |VM |) (that is, the size of R).

Scheme for Legal Orientations. The steps are shown by Algorithm 2. At the
beginning the reachability matrix R is computed and is passed to the recursive
routine LegalOrientations. At each step,

−→
C ′ is the partial legal orientation to

be completed and I is the set of broken edges declared so far. Also, j is the index
of the next edge {cj , cj+1} of the cycle C, with 1 ≤ j ≤ h (we assume ch+1 = c1
to close the cycle): if j = h + 1 then all the edges of C have been considered
and we output the solution

−→
C ′ together with the list I of broken edges in

−→
C ′.

Each time the procedure is called we guarantee that the reachability matrix R
is updated.

Let {u, v} be the next edge of C to be considered: for each possible direction
assignment (u, v) or (v, u) of this edge, we have to decide whether we will be able
to complete the solution considering this assignment. This is done by trying to
add the arc to the current solution. If there is already a cycle, clearly we can com-
plete the solution. Otherwise, we perform a reachability check on {cj+1, . . . ch+1}:
it is still possible to create a directed cycle if and only if any two of the nodes
in {cj+1, . . . ch+1}, say cf and cg satisfy R(cf , cg) = 1 or R(cg, cf ) = 1. This
condition guarantees that a cycle will be created in the next calls, since we know
there are edges in C between cf and cg that can be oriented suitably. Finally,
when {u, v} is a chain, the broken assignment is also considered: R does not
need to be updated as the broken edge does not change the reachability of

−→
M ′.

The reachability and cyclicity checks are done by updating and checking the
reachability matrix R (and restoring R when needed). Updating R when adding
an arc (u, v) corresponds to making v, and all nodes reachable from v, reachable
from u and nodes that can reach u. This can be done by simply performing an or
between the corresponding rows in time O(log2 |VM |), since R is |C| × |C|. The
reachability check can be done in O(log2 |VM |) time. The cyclicity (checking
whether a cycle has been already created) takes the same amount of time by
looking for a pair of nodes x′,y′ in {c1, . . . cj} such that R(x′, y′) = R(y′, x′) = 1.

Lemma 4. Algorithm2 outputs in O(|E′
M | log |VM |) time the first legal orien-

tation of C, and each of the remaining ones with O(log3 |VM |) delay.

Proof. Before calling the LegalOrientations procedure we have to compute
the reachability matrix from scratch and this costs O(|E′

M | log |VM |) time. In
the following we will bound the delay between two outputs returned by the
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Algorithm 2. Returning all legal orientations of C

Input:
−→
M ′(VM ,

−→
E ′

M ) acyclic, a cycle C(VC , EC) with VC ⊆ VM

Output: All the legal orientations
−→
C (VC ,

−→
E C)

Build the reachability matrix R for the nodes of VC in
−→
M ′

Let VC = {c1, . . . ch}, where ch+1 = c1 by definition

Execute LegalOrientations (
−→
C ′(∅, ∅), 1, R, ∅)

Procedure LegalOrientations(
−→
C ′(V ′

C ,
−→
E ′

C), j, R, I)
if j = h + 1 then

output
−→
C ′ and its set I of broken edges

else
u ← cj , v ← cj+1

R1 ← R updated by adding the arc (u, v);
if R1 is cyclic or has positive reachability test on {cj+1, . . . , ch+1} then

LegalOrientations (
−→
C ′(V ′

C ,
−→
E ′

C ∪ {(u, v)}), j + 1, R1, I)

R2 ← R updated adding the arc (v, u);
if R2 is cyclic or has positive reachability test on {cj+1, . . . , ch+1} then

LegalOrientations (
−→
C ′(V ′

C ,
−→
E ′

C ∪ {(v, u)}), j + 1, R2, I)

if {u, v} is a chain edge then
if R is cyclic or has positive reachability test on {cj+1, . . . , ch+1}
then

LegalOrientations (
−→
C ′, j + 1, R, I ∪ {{u, v}})

LegalOrientations procedure. Firstly, note that each call produces at least
one solution. This is true when j = 1 since we have two possible legal orien-
tations of C. Before performing any call at depth j, the caller function checks
whether this will produce at least one solution. Only calls that will produce at
least one solution are then performed. This means that in the recursion tree,
every internal node has at least one child and each leaf corresponds to a solu-
tion. Hence the delay between any two consecutive solutions is bounded by the
cost of a leaf-to-root path and the cost of a root-to-the-next-leaf path in the
recursion tree induced by LegalOrientations. Since the height of the recursion
tree is O(log |VM |), i.e. the edges of C, and the cost of each recursion node is
O(log2 |VM |), we can conclude that the delay between any two consecutive solu-
tions is bounded by O(log3 |VM |). As it can be seen, it is crucial that the size of
C is (poly)logarithmic. �	

Lemma 5 (Correctness).

1. All the extended cyclic orientations of M are output.
2. Only extended cyclic orientations of M are output.
3. There are no duplicates.
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Proof 1. Any extended cyclic orientation
−→
M can be seen as the union

−→
M ′′ of−→

M ′ and
−→
C , which are two edge disjoint directed subgraphs. Our algorithm

enumerates all the extended orientations of M ′, and, for each of them, all
legal extended orientations

−→
C : if there is a cycle in

−→
M involving only edges in

E′
M all the extended orientations of C are legal; otherwise just the extended

orientations
−→
C of C whose arcs create a cycle in

−→
M ′′ are legal. Hence any

extended cyclic orientation
−→
M is output.

2. Any output solution is an extended orientation: each edge in M ′ and in C has
exactly one direction or is broken. Moreover, any output solution contains at
least one cycle: if there is not a cycle in M ′, a cycle is created involving the
edges in C.

3. All the extended orientations
−→
M =

−→
M ′′ in output differ for at least one arc in−→

E ′
M or an arc in

−→
EC . Hence there are no duplicate solutions. �	

As a result, we obtain delay Õ(|EM |).
Lemma 6. The extended cyclic orientations of M(VM , EM ) can be enumerated
with delay Õ(|EM |) and space O(|EM |).

Proof. Finding extended orientations
−→
M ′ of M ′ can be done with O(|E′

M |) delay.
Every time a new

−→
M ′ has been generated, we apply Algorithm2. By Lemma 4

we output the first cyclic orientation
−→
M of M with delay O(|EM | log |VM |) and

the remaining ones with delay O(log3 |VM |). Hence the maximum delay between
any two consecutive solutions is O(|E′

M | + |EM | log |VM |) = O(|EM | log |VM |) =
Õ(|EM |). The space usage is linear in all the phases: in particular in Algorithm 2
the space is O(log2 |VM |), because of the reachability matrix R, which is smaller
than O(|EM |). �	

Applying Lemmas 2 and 6, and considering the setup cost in Sect. 3 (|VM | ≤
|V | and |EM | ≤ |E|), we can conclude as follows.

Theorem 1. Algorithm1 lists all cyclic orientations of G(V,E) with setup cost
O(|V |2), and delay Õ(|E|). The space usage is O(|E|) memory cells.

5 Absorbing the Setup Cost

In this section, we show how to modify our approach to get a setup time equal
to the delay, requiring space Θ(|V | · |E|).
Theorem 2. All cyclic orientations of G(V,E) can be listed with setup cost
Õ(|E|), delay Õ(|E|), and space usage of Θ(|V | · |E|) memory cells.

We use n = |V | and m = |E| for brevity. Let A1 be the following algorithm
that takes T1 = O(mn) time to generate n solutions, each with Õ(m) delay,
starting from any given cycle of size ≥ log n. This cycle is found by performing a
BFS on an arbitrary node u, and identifying the shortest cycle Cu containing u.
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Now, if |Cu| < log n, since Cu is a log-hole as required, we stop the setup and
run the algorithms in the previous sections setting C = Cu. The case of interest
in this section is when |Cu| ≥ log n. We take a cyclic orientation

−→
Cu of Cu, and

then n arbitrary orientations of the edges in G\Cu. The setup cost is O(m) time
and we can easily output each solution in Õ(m) delay. We denote this set of n
solutions by Z1.

Also, let A2 be the algorithm behind Theorem 1, with a setup cost of O(mn)
and Õ(m) delay (i.e. Algorithm 1). We denote the time taken by A2 to list the
first n solutions, including the O(mn) setup cost, by T2 = Õ(mn), and this set
of n solutions by Z2. Since Z1 and Z2 can have nonempty intersection, we want
to avoid duplicates.

We show how to obtain an algorithm A that lists all the cyclic orientations
without duplicates with Õ(m) setup cost and delay, using O(mn) space. Even
though the delay cost of A is larger than that of A1 and A2 by a constant factor,
the asymptotic complexity is not affected by this constant, and remains Õ(m).

Algorithm A executes simultaneously and independently the two algorithms
A1 and A2. Recall that these two algorithms take T1+T2 time in total to generate
Z1 and Z2 with Õ(m) delay. However those in Z2 are produced after a setup
cost of O(mn). Hence A slows down on purpose by a constant factor c, thus
requiring c(T1 + T2) time: it has time to find the distinct solutions in Z1 ∪ Z2

and build a dictionary D1 on the solutions in Z1. (Since an orientation can be
represented as a binary string of length m, a binary trie can be employed as
dictionary D1, supporting each dictionary operation in O(m) time.) During this
time, A outputs the n solutions from Z1 with a delay of c(T1 + T2)/n = Õ(m)
time each, while storing the rest of solutions of Z2\Z1 in a buffer Q.

After c(T1 +T2) time, the situation is the following: Algorithm A has output
the n solutions in Z1 with Õ(m) setup cost and delay. These solutions are stored
in D1, so we can check for duplicates. We have buffered at most n solutions
of Z2\Z1 in Q. Now the purpose of A is to continue with algorithm A2 alone,
with Õ(m) delay per solution, avoiding duplicates. Thus for each solution given
by A2, algorithm A suspends A2 and waits so that each solution is output in
c(T1+T2)/n time: if the solution is not in D1, A outputs it; otherwise A extracts
one solution from the buffer Q and outputs the latter instead. Note that if there
are still d duplicates to handle in the future, then Q contains exactly d solutions
from Z2\Z1 (and Q is empty when A−2 completes its execution). Thus, A never
has to wait for a non-duplicated solution. The delay is the maximum between
c(T1+T2)/n and the delay of A2, hence Õ(m). The additional space is dominated
by that of Q, namely, O(mn) memory cells to store up to n solutions.

We also have an amortized cost using the lemma below, where f(x) = Õ(x)
and s = |V |.
Lemma 7. Listing all the extended cyclic orientations of M(VM , EM ) with
delay O(f(|EM |)) and setup cost O(s · |VM |) implies that the average cost per
solution is O(f(|EM |) + |EM |).
Proof. We perform a BFS on an arbitrary node u, and identify the shortest cycle
Cu(Vu, Eu) that contains u. This costs O(m) time. Note that Cu(Vu, Eu) is a
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hole (i.e. it has no chords). Note that a minimum cycle in M either is Cu or
contains a node in VM − Vu: hence we perform all the BFSs from each node in
VM − Vu, as explained in [7] with an overall cost of O(|VM | · |VM − Vu|). The
number of extended orientations of M is at least 2|EM−Eu| ≥ 2|VM−Vu|. Our
setup cost is O(s · |VM |), with s ≤ |VM |, and the number of solutions is at least
2s. The overall average cost per solution is at most O(2s ·f(|EM |)+ s · |VM |)/2s,
which is O

(
f(|EM |) + |EM | · s

2s

)
. �	

6 Conclusions

In this paper we considered the problem of efficiently enumerating cyclic orienta-
tions of graphs. The problem is interesting from a combinatorial and algorithmic
point of view, as the fraction of cyclic orientations over all the possible orienta-
tions can be as small as 0 or very close to 1. We provided an efficient algorithm
to enumerate the solutions with delay Õ(m) and overall complexity Õ(α · m),
with α being the number of solutions.
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Abstract. We consider a natural restriction of the List Colouring
problem, k-Regular List Colouring, which corresponds to the List
Colouring problem where every list has size exactly k. We give a com-
plete classification of the complexity of k-Regular List Colouring
restricted to planar graphs, planar bipartite graphs, planar triangle-free
graphs and to planar graphs with no 4-cycles and no 5-cycles. We also
give a complete classification of the complexity of this problem and a
number of related colouring problems for graphs with bounded maxi-
mum degree.

Keywords: List colouring · Choosability · Planar graphs · Maximum
degree

1 Introduction

A colouring of a graph is a labelling of the vertices so that adjacent vertices do not
have the same label. We call these labels colours. Graph colouring problems are
central to the study of combinatorial algorithms and they have many theoretical
and practical applications. A typical problem asks whether a colouring exists
under certain constraints, or how difficult it is to find such a colouring. For
example, in the List Colouring problem, a graph is given where each vertex
has a list of colours and one wants to know if the vertices can be coloured using
only colours in their lists. The Choosability problem asks whether such list
colourings are guaranteed to exist whenever all the lists have a certain size. In
fact, an enormous variety of colouring problems can be defined and there is now
a vast literature on this subject. For longer introductions to the type of problems
we consider we refer to two recent surveys [6,12].
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In this paper, we are concerned with the computational complexity of colour-
ing problems. For many such problems, the complexity is well understood in the
case where we allow every graph as input, so it is natural to consider problems
with restricted inputs. We consider a variant of the List Colouring prob-
lem, closely related to Choosability, and give a complete classification of its
complexity for planar graphs and a number of subclasses of planar graphs by
combining known results with new results. Some of the known results are for
(planar) graphs with bounded degree. We use these results to fill some more
complexity gaps by giving a complete complexity classification of a number of
colouring problems for graphs with bounded maximum degree.

1.1 Terminology

A colouring of a graph G = (V,E) is a function c : V → {1, 2, . . .} such that
c(u) �= c(v) whenever uv ∈ E. We say that c(u) is the colour of u. For a positive
integer k, if 1 ≤ c(u) ≤ k for all u ∈ V , then c is a k-colouring of G. We say
that G is k-colourable if a k-colouring of G exists. The Colouring problem is to
decide whether a graph G is k-colourable for some given integer k. If k is fixed,
that is, not part of the input, we obtain the k-Colouring problem.

A list assignment of a graph G = (V, E) is a function L with domain V such
that for each vertex u ∈ V , L(u) is a subset of {1, 2, . . . }. This set is called the
list of admissible colours for u. If L(u) ⊆ {1, . . . , k} for each u ∈ V , then L is a
k-list assignment. The size of a list assignment L is the maximum list size |L(u)|
over all vertices u ∈ V . A colouring c respects L if c(u) ∈ L(u) for all u ∈ V .
Given a graph G with a k-list assignment L, the List Colouring problem is to
decide whether G has a colouring that respects L. If k is fixed, then we have the
List k-Colouring problem. Fixing the size of L to be at most � gives the �-List
Colouring problem. We say that a list assignment L of a graph G = (V,E)
is �-regular if, for all u ∈ V , L(u) contains exactly � colours. This gives us the
following problem, which is one focus of this paper. It is defined for each integer
� ≥ 1 (note that � is fixed; that is, � is not part of the input).

�-Regular List Colouring
Instance: a graph G with an �-regular list assignment L.
Question: does G have a colouring that respects L?

A k-precolouring of a graph G = (V,E) is a function cW : W → {1, 2, . . . , k} for
some subset W ⊆ V . A k-colouring c of G is an extension of a k-precolouring cW
of G if c(v) = cW (v) for each v ∈ W . Given a graph G with a precolouring cW , the
Precolouring Extensionproblem is todecidewhetherGhas ak-colouring that
extends cW . If k is fixed, we obtain the k-Precolouring Extension problem.

The relationships amongst the problems introduced are shown in Fig. 1.
For an integer � ≥ 1, a graph G = (V,E) is �-choosable if, for every

�-regular list assignment L of G, there exists a colouring that respects L. The
corresponding decision problem is the Choosability problem. If � is fixed, we
obtain the �-Choosability problem.

We emphasize that �-Regular List Colouring and �-Choosability are
two fundamentally different problems. For the former we must decide whether
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k-Regular List Colouring

�-List Colouring

k-List Colouring

List Colouring

List �-Colouring

List k-Colouring

k-Precolouring Extension

k-Colouring

Precolouring Extension

Colouring

Fig. 1. Relationships between Colouring and its variants. An arrow from one problem
to another indicates that the latter is (equivalent to) a special case of the former; k
and � are any two arbitrary integers for which � ≥ k. For instance, k-Colouring
is a special case of k-Regular List Colouring. This can be seen by giving the
list L(u) = {1, . . . , k} to each vertex u in an instance graph of Colouring. We also
observe that �-Regular List Colouring and k-Regular List Colouring are not
comparable for any k �= �.

there exists a colouring that respects a particular �-regular list assignment.
For the latter we must decide whether or not every �-regular list assignment
has a colouring that respects it. As we will see later, this difference also becomes
clear from a complexity point of view: for some graph classes �-Regular List
Colouring is computationally easier than �-Choosability, whereas, perhaps
more surprisingly, for other graph classes, the reverse holds.

For two vertex-disjoint graphs G and H and positive integer k, we let G+H
denote the disjoint union (V (G) ∪ V (H), E(G) ∪ E(H)), and kG denote the
disjoint union of k copies of G. If G is a graph containing an edge e or a vertex v
then G − e and G − v denote the graphs obtained from G by deleting e or v,
respectively. If G′ is a subgraph of G then G−G′ denotes the graph with vertex
set V (G) and edge set E(G) \ E(G′). We let Cn, Kn and Pn denote the cycle,
complete graph and path on n vertices, respectively. A wheel is a cycle with
an extra vertex added that is adjacent to all other vertices. The wheel on n
vertices is denoted Wn; note that W4 = K4. A graph on at least three vertices is
2-connected if it is connected and there is no vertex whose removal disconnects
it. A block of a graph is a maximal subgraph that is connected and cannot be
disconnected by the removal of one vertex (so a block is either 2-connected, a K2

or an isolated vertex). A block graph is a connected graph in which every block
is a complete graph. A Gallai tree is a connected graph in which every block
is a complete graph or a cycle. We say that B is a leaf-block of a connected
graph G if B contains exactly one cut vertex u of G and B \ u is a component
of G − u. For a set of graphs H, a graph G is H-free if G contains no induced
subgraph isomorphic to a graph in H, whereas G is H-subgraph-free if it contains
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no subgraph isomorphic to a graph in H. The girth of a graph is the length of
its shortest cycle.

1.2 Known Results for Planar Graphs

We start with a classical result observed by Erdős et al. [9] and Vizing [22].

Theorem 1 ([9,22]). 2-List Colouring is polynomial-time solvable.

Garey et al. proved the following result, which is in contrast to the fact that
every planar graph is 4-colourable by the Four Colour Theorem [2].

Theorem 2 ([10]). 3-Colouring is NP-complete for planar graphs of maxi-
mum degree 4.

Next we present results found by several authors on the existence of
k-choosable graphs for various graph classes.

Theorem 3. The following statements hold for k-choosability:

(i) Every planar graph is 5-choosable [20].
(ii) There exists a planar graph that is not 4-choosable [24].
(iii) Every planar triangle-free graph is 4-choosable [15].
(iv) Every planar graph with no 4-cycles is 4-choosable [16].
(v) There exists a planar triangle-free graph that is not 3-choosable [25].
(vi) There exists a planar graph with no 4-cycles, no 5-cycles and no intersecting

triangles that is not 3-choosable [19].
(vii) Every planar bipartite graph is 3-choosable [1].

We note that smaller examples of graphs than were used in the original proofs
have been found for Theorems 3.(ii) [13], 3.(v) [18] and 3.(vi) [29] and that
Theorem 3.(vi) strengthens a result of Voigt [26]. We recall that Thomassen [21]
first showed that every planar graph of girth at least 5 is 3-choosable, and that
a number of results have since been obtained on 3-choosability of planar graphs
in which certain cycles are forbidden; see, for example, [4,7,27,28].

We will also use the following result of Chleb́ık and Chleb́ıková.

Theorem 4 ([5]). List Colouring is NP-complete for 3-regular planar bipar-
tite graphs that have a list assignment in which each list is one of {1, 2}, {1, 3},
{2, 3}, {1, 2, 3} and all the neighbours of each vertex with three colours in its list
have two colours in their lists.

1.3 New Results for Planar Graphs

Theorems 1–3 have a number of immediate consequences for the complexity of
�-Regular List Colouring when restricted to planar graphs. For instance,
Theorem 2 implies that 3-Regular List Colouring is NP-complete for pla-
nar graphs, whereas Theorem 3.(i) shows that 5-Regular List Colouring is
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polynomial-time solvable on this graph class. As such, it is a natural question to
determine the complexity for the missing case � = 4. In this section we settle this
missing case and also present a number of new hardness results for �-Regular
List Colouring restricted to various subclasses of planar graphs. At the end
of this section we show how to combine the known results with our new ones
to obtain a number of dichotomies (Corollaries 3–6). We deduce some of our
new results from two more general theorems, namely Theorems 5 and 6, which
we state below; see Sect. 2 for a proof of Theorem 5 (we omitted the proof of
Theorem 6).

Theorem 5. Let H be a finite set of 2-connected planar graphs. Then
4-Regular List Colouring is NP-complete for planar H-subgraph-free graphs
if there exists a planar H-subgraph-free graph that is not 4-choosable.

Note that the class of H-subgraph-free graphs is contained in the class of
H-free graphs. Hence, whenever a problem is NP-complete for H-subgraph-free
graphs, it is also NP-complete for H-free graphs.

Combining Theorem 5 with Theorem 3.(ii) yields the following result which,
as we will see later, was the only case for which the complexity of k-Regular
List Colouring for planar graphs was not settled.

Corollary 1. 4-Regular List Colouring is NP-complete for planar graphs.

Theorem 5 has more applications. For instance, consider the non-4-choosable
planar graph H from the proof of Theorem 1.7 in [13]. It can be observed that H
is Wp-subgraph-free for all p ≥ 8. Wheels are 2-connected and planar. Hence
if H is any finite set of wheels on at least eight vertices then 4-Regular List
Colouring is NP-complete for planar H-subgraph-free graphs.

Our basic idea for proving Theorem 5 is to pick a minimal counterexample H
with list assignment L (which must exist due to Theorem 3.(ii)). We select an
“appropriate” edge e = uv and consider the graph F ′ = F −e. We reduce from an
appropriate colouring problem restricted to planar graphs and use copies of F ′

as a gadget to ensure that we can enforce a regular list assignment. The proof
of the next theorem also uses this idea.

Theorem 6. Let H be a finite set of 2-connected planar graphs. Then
3-Regular List Colouring is NP-complete for planar H-subgraph-free graphs
if there exists a planar H-subgraph-free graph that is not 3-choosable.

Theorem 6 has a number of applications. For instance, if we let H = {K3}
then Theorem 6, combined with Theorem 3.(v), leads to the following result.

Corollary 2. 3-Regular List Colouring is NP-complete for planar
triangle-free graphs.

Theorem 6 can also be used for other classes of graphs. For example, let H
be a finite set of graphs, each of which includes a 2-connected graph on at least
five vertices as a subgraph. Let I be the set of these 2-connected graphs. The
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graph K4 is a planar I-subgraph-free graph that is not 3-choosable (since it is not
3-colourable). Therefore, Theorem 6 implies that 3-Regular List Colouring
is NP-complete for planar H-subgraph-free graphs. We can obtain more hardness
results by taking some other planar graph that is not 3-choosable, such as a
wheel on an even number of vertices. Also, if we let H = {C4, C5} we can use
Theorem 6 by combining it with Theorem 3.(vi) to find that 3-Regular List
Colouring is NP-complete for planar graphs with no 4-cycles and no 5-cycles.
We strengthen this result as follows (proof omitted).

Theorem 7. 3-Regular List Colouring is NP-complete for planar graphs
with no 4-cycles, no 5-cycles and no intersecting triangles.

Corollaries 1 and 2 and Theorem 7 can be seen as strengthenings of Theo-
rems 3.(ii), 3.(v) and 3.(vi), respectively. Moreover, they complement The-
orem 2, which implies that 3-List Colouring is NP-complete for planar
graphs, and a result of Kratochv́ıl [14] that, for planar bipartite graphs, 3-
Precolouring Extension is NP-complete. Corollaries 1 and 2 also com-
plement results of Gutner [13] who showed that 3-Choosability and 4-
Choosability are Π

p
2-complete for planar triangle-free graphs and planar

graphs, respectively. However, we emphasize that, for special graph classes, it is
not necessarily the case that �-Choosability is computationally harder than �-
Regular List Colouring. For instance, contrast the fact that Choosability
is polynomial-time solvable on 3P1-free graphs [11] with our next result (proof
omitted).

Theorem 8. 3-Regular List Colouring is NP-complete for (3P1, P1 +P2)-
free graphs.

Our new results, combined with known results, close a number of complexity
gaps for the �-Regular List Colouring problem. Combining Corollary 1 with
Theorems 1, 2 and 3.(i) gives us Corollary 3. Combining Theorem 7 with Theo-
rems 1 and 3.(iv) gives us Corollary 4. Combining Corollary 2 with Theorems 1
and 3.(iii) gives us Corollary 5, whereas Theorems 1 and 3.(vii) imply Corol-
lary 6.

Corollary 3. Let � be a positive integer. Then �-Regular List Colouring,
restricted to planar graphs, is NP-complete if � ∈ {3, 4} and polynomial-time
solvable otherwise.

Corollary 4. Let � be a positive integer. Then �-Regular List Colouring,
restricted to planar graphs with no 4-cycles and no 5-cycles and no intersecting
triangles, is NP-complete if � = 3 and polynomial-time solvable otherwise (even
if we allow intersecting triangles and 5-cycles).

Corollary 5. Let � be a positive integer. Then �-Regular List Colouring,
restricted to planar triangle-free graphs, is NP-complete if � = 3 and polynomial-
time solvable otherwise.

Corollary 6. Let � be a positive integer. Then �-Regular List Colouring,
restricted to planar bipartite graphs, is polynomial-time solvable.
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1.4 Known Results for Bounded Degree Graphs

First we present a result of Kratochv́ıl and Tuza [15].

Theorem 9 ([15]). List Colouring is polynomial-time solvable on graphs of
maximum degree at most 2.

Brooks’ Theorem [3] states that every graph G with maximum degree d
has a d-colouring unless G is a complete graph or a cycle with an odd number
of vertices. The next result of Vizing [23] generalizes Brooks’ Theorem to list
colourings.

Theorem 10 ([23]). Let d be a positive integer. Let G = (V,E) be a connected
graph of maximum degree at most d and let L be a d-regular list assignment
for G. If G is not a cycle or a complete graph then G has a colouring that
respects L.

And we need another result of Chleb́ık and Chleb́ıková [5].

Theorem 11 ([5]). Precolouring Extension is polynomial-time solvable on
graphs of maximum degree 3.

1.5 New Results for Bounded Degree Graphs

The following result is obtained by making a connection to Gallai trees (proof
omitted).

Theorem 12. Let k be a positive integer. Then k-Precolouring Extension
is polynomial-time solvable for graphs of maximum degree at most k.

We have the following two classifications. The first one is an observation
obtained by combining only previously known results, whereas the second one
also makes use of our new result.

Corollary 7. Let d be a positive integer. The following two statements hold for
graphs of maximum degree at most d.

(i) List Colouring is NP-complete if d ≥ 3 and polynomial-time solvable if
d ≤ 2.

(ii) Precolouring Extension and Colouring are NP-complete if d ≥ 4 and
polynomial-time solvable if d ≤ 3.

Proof. We first consider (i). If d ≥ 3, we use Theorem 4. If d ≤ 2, we use
Theorem 9. We now consider (ii). If d ≥ 4, we use Theorem 2. If d ≤ 3, we use
Theorem 11. 	

Corollary 8. Let d and k be two positive integers. The following two statements
hold for graphs of maximum degree at most d.

(i) k-List Colouring and List k-Colouring are NP-complete if k ≥ 3 and
d ≥ 3 and polynomial-time solvable otherwise.
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(ii) k-Regular List Colouring and k-Precolouring Extension are NP-
complete if k ≥ 3 and d ≥ k + 1 and polynomial-time solvable otherwise.

Proof. We first consider (i). If k ≥ 3 and d ≥ 3, we use Theorem 4. If k ≤ 2 or
d ≤ 2, we use Theorems 1 or 9, respectively.

We now consider (ii). We start with the hardness cases and so let k ≥ 3 and
d ≥ k + 1.

First consider k-Precolouring Extension. Theorem 2 implies that
3-Colouring is NP-complete for graphs of maximum degree at most d for all
d ≥ 4. The k = 3 case follows immediately from this result. Suppose k ≥ 4 and
d ≥ k + 1. Consider a graph G of maximum degree 4. For each vertex v, we add
k−3 new vertices xv

1, . . . , x
v
k−3 and edges vxv

1, . . . , vxv
k−3. Let G′ be the resulting

graph. Note that G′ has maximum degree at most 4 + k − 3 = k + 1 ≤ d. We
define a precolouring c on the newly added vertices by assigning colour i + 3 to
each xv

i . Then G′ has a k-colouring extending c if and only if G has a 3-colouring.
Now consider k-Regular List Colouring. The k = 3 case follows imme-

diately from Theorem 2. Suppose k ≥ 4 and d ≥ k + 1. Consider a graph G
of maximum degree 4. We define the list L(v) = {1, . . . , k} for each vertex
v ∈ V (G). For each vertex v, we add k − 3 new vertices xv

1, . . . , x
v
k−3 and edges

vxv
1, . . . , vxv

k−3. We define the list L(xv
i ) = {i, k+1, k+2, . . . , 2k−1} for each xv

i .
For each vertex xv

i , we also add k new vertices w1(xv
i ), . . . , wk(xv

i ) and edges such
that xv

i , w1(xv
i ), . . . , wk(xv

i ) form a clique (on k + 1 vertices). We define the list
L(wj(xv

i )) = {k + 1, . . . , 2k} for each wj(xv
i ). Let G′ be the resulting graph.

Note that G′ has maximum degree at most k + 1 and that the resulting list
assignment L is a k-regular list assignment of G′. Then G′ has a k-colouring
respecting L if and only if G has a 3-colouring.

We continue with the polynomial-time solvable cases. If k ≤ 2, the result
follows from Theorem 1. Suppose that k ≥ 3 and d ≤ k. Then the result for
k-Regular List Colouring follows from Theorems 9 and 10 and the result
for k-Precolouring Extension follows from Theorem 12. 	


Note that Corollary 8 does not contain a dichotomy for k-Colouring
restricted to graphs of maximum degree at most d. A full classification of this
problem is open, but a number of results are known. Molloy and Reed [17] classi-
fied the complexity for all pairs (k, d) for sufficiently large d. Emden-Weinert et
al. [8] proved that k-Colouring is NP-complete for graphs of maximum degree
at most k + �√k − 1.

2 The Proof of Theorem 5

We need an additional result (proof omitted).

Theorem 13. For every integer p ≥ 3, 3-List Colouring is NP-complete for
planar graphs of girth at least p that have a list assignment in which each list is
one of {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
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We are now ready to prove Theorem 5, which we restate below.

Theorem 5 (Restated). Let H be a finite set of 2-connected planar graphs.
Then 4-Regular List Colouring is NP-complete for planar H-subgraph-free
graphs if there exists a planar H-subgraph-free graph that is not 4-choosable.

Proof. The problem is readily seen to be in NP. Let F be a planar H-subgraph-
free graph with a 4-regular list assignment L such that F has no colouring
respecting L. We may assume that F is minimal (with respect to the subgraph
relation). In particular, this means that F is connected. Let r be the length
of a longest cycle in any graph of H. We reduce from the problem of 3-List
Colouring restricted to planar graphs of girth at least r + 1 in which each
vertex has list {1, 2}, {1, 3}, {2, 3} or {1, 2, 3}. This problem is NP-complete
by Theorem 13. Let a graph G and list assignment LG be an instance of this
problem. We will construct a planar H-subgraph-free graph G′ with a 4-regular
list assignment L′ such that G has a colouring that respects LG if and only if G′

has a colouring that respects L′.
If every pair of adjacent vertices in F has the same list, then the problem of

finding a colouring that respects L is just the problem of finding a 4-colouring
which, by the Four Colour Theorem [2], we know is possible. Thus we may assume
that, on the contrary, there is an edge e = uv such that |L(u) ∩ L(v)| ≤ 3. Let
F ′ = F − e. Then, by minimality, F ′ has at least one colouring respecting L,
and moreover, for any colouring of F ′ that respects L, u and v are coloured alike
(otherwise we would have a colouring of F that respects L). Let T be the set of
possible colours that can be used on u and v in colourings of F ′ that respect L
and let t = |T |. As T ⊆ L(u) ∩ L(v), we have 1 ≤ t ≤ 3. Up to renaming the
colours in L, we can build copies of F ′ with 4-regular list assignments such that

(i) the set T is any given list of colours of size t, and
(ii) the vertex corresponding to u has any given list of 4 colours containing T .

We will implicitly make use of this several times in the remainder of the proof.
We say that a vertex w in G is a bivertex or trivertex if |LG(w)| is 2 or 3,

respectively. We construct a planar H-subgraph-free graph G′ and 4-regular list
assignment L′ as follows.

First suppose that t = 1. For each bivertex w in G, we do as follows. We add
two copies of F ′ to G, which we label F1(w) and F2(w). The vertex in Fi(w)
corresponding to u is labelled uw

i for i ∈ {1, 2} and we set Uw = {uw
1 , uw

2 }. We
add the edges wuw

1 and wuw
2 . We give list assignments to the vertices of F1(w)

and F2(w) such that T = {4} for F1 and T = {5} for F2. We let L′(w) =
LG(w)∪{4, 5}. For each trivertex w in G, we do as follows. We add one copy of F ′

to G, which we label F1(w). The vertex in F1(w) corresponding to u is labelled uw
1

and we set Uw = {uw
1 }. We add the edge wuw

1 . We give list assignments to
vertices of F1(w) such that T = {4} for F1. We let L′(w) = LG(w) ∪ {4}. This
completes the construction of G′ and L′ when t = 1.

Now suppose that t = 2. Let s = r if r is even and s = r + 1 if r is
odd (so s is even in both cases). For each bivertex w in G, we do as follows.
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We add a copy of F ′ to G, which we label F1(w), and identify the vertex in F1(w)
corresponding to u with w. We give list assignments to vertices of F1(w) such
that T = LG(w) and L′(w) = LG(w) ∪ {4, 5}. For each trivertex w in G, we do
as follows. We add s copies of F ′ to G which we label Fi(w), 1 ≤ i ≤ s. The
vertex in Fi(w) corresponding to u is labelled uw

i . Let Uw = {uw
i | 1 ≤ i ≤ s}.

Add edges such that the union of w and Uw induces a cycle on s+1 vertices. For
all 1 ≤ i ≤ s, we give list assignments to vertices of Fi(w) such that T = {4, 5}.
We let L′(w) = {1, 2, 3, 4}. This completes the construction of G′ and L′ when
t = 2.

Now suppose that t = 3. For each bivertex w in G, we do as follows. We
add two copies of F ′ to G which we label F1(w) and F2(w), such that for i ∈
{1, 2}, the vertex in Fi(w) corresponding to u is identified with w. We give list
assignments to vertices of F1(w) and F2(w) such that T = LG(w)∪{4} for F1(w),
T = LG(w)∪{5} for F2(w) and L′(w) = LG(w)∪{4, 5}. For each trivertex w in G,
we do as follows. We add a copy of F ′ to G which we label F1(w), such that the
vertex in F1(w) corresponding to u is identified with w. We give list assignments
to the vertices of F1(w) such that T = {1, 2, 3} and L′(w) = {1, 2, 3, 4}. This
completes the construction of G′ and L′ when t = 3.

Note that G′ is planar. Suppose that there is a subgraph H in G′ that is
isomorphic to a graph of H. Since F is H-subgraph-free, and since F ′ is obtained
from F by removing one edge, F ′ is also H-subgraph-free. Therefore for all w,
H is not fully contained in any Fi(w). Since H is 2-connected and since for all w
only one vertex of any Fi(w) has a neighbour outside of Fi(w), we find that H has
at most one vertex in each Fi(w). In particular, H cannot contain any vertex
of any Fi(w) in which the vertex corresponding to u has been attached to w
(as opposed to being identified with w); this includes the case when the union
of w and Uw induces a cycle on s + 1 vertices. Hence we have found that H
is a subgraph of G, which contradicts the fact that G has girth at least r + 1.
Therefore G′ is H-subgraph-free.

Note that in any colouring of G′ that respects L′, each copy of F ′ must
be coloured such that the vertices corresponding to u and v have the same
colour, which must be one of the colours from the corresponding set T . If t = 1
and w is a trivertex, this means that the unique neighbour of w in Uw must
be coloured with colour 4, so w cannot be coloured with colour 4. Similarly, if
t = 1 and w is a bivertex or t = 2 and w is a trivertex then the two neighbours
of w in Uw must be coloured with colours 4 and 5, so w cannot be coloured
with colours 4 or 5. If t = 2 and w is a bivertex or t = 3 and w is a trivertex
then w belongs to a copy of F ′ with T = LG(w), so w cannot have colour 4
or 5. If t = 3 and w is a bivertex then w belongs to two copies of F ′, one with
T = LG(w)∪{4} and one with T = LG(w)∪{5}. Therefore, w must be coloured
with a colour from the intersection of these two sets, that is it must be coloured
with a colour from LG(w). Therefore none of the vertices of G can be coloured 4
or 5. Thus the problem of finding a colouring of G′ that respects L′ is equivalent
to the problem of finding a colouring of G that respects LG. This completes the
proof. 	
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3 Conclusions

As well as filling the complexity gaps of a number of colouring problems for
graphs with bounded maximum degree, we have given several dichotomies for the
k-Regular List Colouring problem restricted to subclasses of planar graphs.
In particular we showed NP-hardness of the cases k = 3 and k = 4 restricted to
planar H-subgraph-free graphs for several sets H of 2-connected planar graphs.
Our method implies that for such sets H it suffices to find a counterexample to
3-choosability or to 4-choosability, respectively. It is natural to ask whether we
can determine the complexity of 3-Regular List Colouring and 4-Regular
List Colouring for any class of planar H-subgraph-free graphs. However, we
point out that even when restricting H to be a finite set of 2-connected planar
graphs, this would be very hard (and beyond the scope of this paper) as it
would require solving several long-standing conjectures in the literature. For
example, when H = {C4, C5, C6}, Montassier [18] conjectured that every planar
H-subgraph-free graph is 3-choosable.

A drawback of our method is that we need the set of graphs H to be
2-connected. If we forbid a set H of graphs that are not 2-connected, the dis-
tinction between polynomial-time solvable and NP-complete cases is not clear,
and both cases may occur even if we forbid only one graph.

Acknowledgements. We thank Steven Kelk for helpful comments on an earlier ver-
sion of this paper.
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Abstract. The Johnson graphs J(n, k) are a well-known family of com-
binatorial graphs whose applications and generalizations have been stud-
ied extensively in the literature. In this paper, we present a new variant
of the family of Johnson graphs, the Full-Flag Johnson graphs, and dis-
cuss their combinatorial properties. We show that the Full-Flag Johnson
graphs are Cayley graphs on Sn generated by certain well-known classes
of permutations and that they are in fact generalizations of permutahe-
dra. Our main result will be to establish a tight Θ(n2/k2) bound for the
diameter of the Full-Flag Johnson graph FJ (n, k).

Keywords: Johnson graph · Permutahedron · Irreducible permutation ·
Cayley graph · Diameter

1 Introduction

For positive integers n and k with k < n, the Johnson graph J(n, k) is
an undirected graph whose vertex set is given by the collection of all k-
element subsets of {1, 2, . . . , n}. Two vertices are adjacent if and only if
their intersection has size k − 1. For example, two vertices in J(4, 3) are
u = {1, 2, 3} and v = {1, 3, 4}; u and v are adjacent since |u ∩ v| = 2. The
Johnson graphs are known to be Hamiltonian [1] and their spectra are given by
the Eberlein polynomials [14]. Different generalizations of Johnson graphs and
various related families have been studied by several authors (see e.g. [2,6]).

The permutahedra are another well-known family of combinatorial graphs.
For a positive integer n, the permutahedron of order n has vertex set consisting of
all permutations of (1, 2, . . . , n). Two vertices are adjacent if and only if they are
of the form (u1, u2, . . . , ui, ui+1, . . . , un) and (u1, u2, . . . , ui+1, ui, . . . , un), respec-
tively. That is, u and v are adjacent if they differ by a permutation which trans-
poses two consecutive elements. (We call such transpositions “neighboring trans-
positions”). Permutahedra appear frequently in geometric combinatorics and are
Hamiltonian by the Steinhaus-Johnson-Trotter algorithm [10]. Similar combina-
torial families of graphs (in particular, associahedra) and their generalizations
appear widely in algebra and discrete mathematics (see e.g. [5,17]).

In this paper, we present and discuss some combinatorial properties of a new
variant of the set of Johnson graphs, the Full-Flag Johnson graphs. Roughly
c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 112–123, 2016.
DOI: 10.1007/978-3-319-29516-9 10
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speaking, the Full-Flag Johnson graphs are constructed by imposing (an index-
shifted version of) the Johnson graph adjacency condition on the collection of
all full-flags of {1, 2, . . . , n}. We show that Full-Flag Johnson graphs are Cayley
graphs on the symmetric group Sn generated by certain classes of permutations,
and that they are in fact generalizations of permutahedra.

Our main result will be to derive a tight Θ(n2/k2) bound for the diameter of
the Full-Flag Johnson graph FJ (n, k). Several authors have studied bounds for
the diameters of generalized Johnson graphs and associahedra; see for example
Bautista-Santiago et al. on the diameter of generalized Johnson graphs [18] and
Manneville and Pilaud on the graph-theoretic properties of graph associahedra
[15]. In our case, we take a rather different approach to bounding the diameter of
FJ (n, k) by translating the question into the minimum-length generator problem:
given a permutation σ ∈ Sn and fixed subset S of Sn, how many applications of
elements of S suffice to sort σ?

As might be expected, in general this problem is difficult (NP-hard [8]).
Bounds for specific instances of S have been studied widely in the literature;
for example: sorting by reversals, cyclic transpositions [9], block transpositions
[3], bounded-block transpositions [11], and so on. It turns out that for the class
of permutations at hand, utilizing a parallel sorting algorithm of Baudet and
Stevenson [4] allows us to easily obtain an upper bound on the number of gen-
erators needed and thus the diameter of FJ (n, k).

Many of the introductory results and lemmas were proven jointly with
Michael Greenberg, Noah Schoem, and Matt Tanzer at the Program in Math-
ematics for Young Scientists (Boston University, Summer 2010). The author
would like to thank Paul Gunnells for formulating and proposing that project,
out of which this paper eventually grew. The author would also like to thank
Ho-Kwok Dai for various helpful conversations and ideas during the course of
writing this paper.

2 Definitions and Examples

Let n be a positive integer. Denote by [n] and (n) the unordered and ordered
sets {1, 2, . . . , n} and (1, 2, . . . , n), respectively. A full-flag of subsets of [n] is a
sequence of nested subsets U = (U1, U2, . . . , Un) of [n] such that |Ui| = i for all
i ∈ [n] and Ui � Ui+1 for all i ∈ [n − 1]. For example, one full-flag of subsets of
{1, 2, 3, 4} is ({3}, {3, 1}, {3, 1, 2}, {3, 1, 2, 4}). For a non-negative integer k such
that k < n, the Full-Flag Johnson graph FJ (n, k) has vertex set given by the
collection of all possible full-flags of [n]. Two vertices U = (U1, U2, . . . , Un) and
V = (V1, V2, . . . , Vn) are adjacent in FJ (n, k) if and only if Ui �= Vi for exactly k
integers i ∈ [n]. If we view U and V as collections of subsets of [n], then U and
V are adjacent if and only if |U ∩ V | = n − k.

The following equivalent definition of FJ (n, k) simplifies the vertex set at the
expense of complicating the adjacencies. Let U = (U1, U2, . . . , Un) be any vertex
in FJ (n, k). For each 1 < i ≤ n, the difference Ui − Ui−1 is a singleton element
which we denote by ui. Letting u1 be the singleton element of U1, we may identify
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U uniquely with the sequence u = (u1, u2, . . . , un). It is clear that u must be a
permutation of (n) and that Ui = {u1, u2, . . . , ui}. Since every permutation of
(n) corresponds to a full-flag of subsets of [n] in this manner, we may view the
vertex set of FJ (n, k) as the collection of all permutations of (n). Two vertices
u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are adjacent if and only if there exist
exactly k positive integers i ∈ [n] such that {u1, u2, . . . , ui} �= {v1, v2, . . . , vi}.

Example 1. Let u = (1, 2, 3, 4, 5) and v = (2, 1, 3, 5, 4) be two vertices in FJ (5, 2).
Then u and v are adjacent since {u1, u2, . . . , ui} �= {v1, v2, . . . , vi} for exactly
two values of i ∈ [5] (i = 1 and i = 4).

Given any permutation u = (u1, u2, . . . , un) of (n), we use u(i) to denote the
set {u1, u2, . . . , ui}. Occasionally, we will abuse this notation slightly and allow
i to be 0, with the understanding that u(0) is the empty set. Some algebraic
rules for these sets are immediately evident. For instance, since the elements of
the sequence u are distinct, for all x and y such that 0 ≤ x < y ≤ n, we have
u(y) − u(x) = {ux+1, ux+2, . . . , uy−1, uy}. Thus, if u(x) = v(x) and u(y) = v(y),
then clearly u(y) − u(x) = v(y) − v(x).

It is easily seen that the Full-Flag Johnson graph FJ(n, 0) is the isolated
graph, in which each vertex is adjacent only to itself. Less trivially, we have:

Lemma 1. The graph FJ(n, 1) is the permutahedron of order n, in which two
vertices are adjacent if and only if they are related by a neighboring transposition.

Proof. Let n be any positive integer. Two vertices u and v are adjacent in
FJ (n, 1) if and only if u(i) �= v(i) for exactly one i ∈ [n]. In particu-
lar, u(x) = v(x) for each positive integer x < i, which implies u1 = v1,
u2 = v2, . . . , ui−1 = vi−1. Since u(i − 1) = v(i − 1) but u(i) �= v(i), we have
ui �= vi. Hence the first i − 1 elements of the sequence u are equal to the first
i − 1 elements of the sequence v, and the ith elements of u and v differ.

Now, it cannot be that i = n, since u(n) = v(n) = {1, 2, . . . , n}. Thus i < n,
and u(i + 1) = v(i + 1). Since u(i − 1) = v(i − 1), we then have {ui, ui+1} =
{vi, vi+1}. But ui �= vi, so it must be that vi = ui+1 and vi+1 = ui.

Finally, u(x) = v(x) for all x > i, which implies ui+2 = vi+2, ui+3 =
vi+3, . . . , un = vn. Hence u and v are of the form

u = (u1, u2, . . . , ui, ui+1, . . . , un) and
v = (u1, u2, . . . , ui+1, ui, . . . , un),

respectively; that is, they are related by a neighboring transposition. Conversely,
it is evident that two vertices related by a neighboring transposition are adjacent
in FJ (n, 1). ��

We close this section with a rough generalization of Lemma 1 that may help
give some intuition for Full-Flag Johnson graphs in the general case. A much
more precise combinatorial description of FJ (n, k) will be formulated presently,
but the following lemma will prove useful in subsequent sections.
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Let u and v be two permutations of (n). We say that u and v are related by
a k-neighboring permutation if they are of the form:

u = (u1, u2, . . . , ui−1, ui, ui+1, . . . , ui+k−1, ui+k, . . . un) and
v = (u1, u2, . . . , ui−1, u

′
i, u

′
i+1, . . . , u

′
i+k−1, ui+k, . . . un),

where (u′
i, u

′
i+1, . . . , u

′
i+k−1) is any permutation of (ui, ui+1, . . . , ui+k−1). This

generalizes the notion of a neighboring transposition, which (in this terminology)
is a 2-neighboring permutation.

Lemma 2. Let u and v be two permutations of (n) related by a (k + 1)-
neighboring permutation. Then u and v are connected by a path of no more
than two edges in FJ(n, k).

Proof. Let u and v be two permutations of (n) related by a (k + 1)-neighboring
transposition, so that

u = (u1, u2, . . . , ui, ui+1, . . . , ui+k, . . . un) and
v = (u1, u2, . . . , u

′
i, u

′
i+1, . . . , u

′
i+k, . . . un),

where (u′
i, u

′
i+1, . . . , u

′
i+k) is a permutation of (ui, ui+1, . . . , ui+k). If ui = u′

i+k,
we claim that u and v are already adjacent in FJ (n, k). Indeed, suppose that
this is the case. Then it is easily checked that u(x) = v(x) for all x < i and
x ≥ i + k. On the other hand, u(x) �= v(x) for all i ≤ x < i + k, since ui ∈ u(x)
but ui = u′

i+k /∈ v(x) for these x. Hence u(x) �= v(x) for exactly k indices x,
showing that u and v are adjacent in FJ (n, k).

Thus we may assume ui �= u′
i+k. Choose any permutation of (ui, ui+1, . . . ,

ui+k) that begins with u′
i+k and ends with ui. Let this permutation be denoted

by (wi, wi+1, . . . , wi+k). Let w be the vertex constructed by replacing the sub-
sequence (ui, ui+1, . . . , ui+k) in u with the sequence (wi, wi+1, . . . , wi+k); i.e.,

w = (u1, u2, . . . , wi = u′
i+k, wi+1, . . . , wi+k = ui, . . . , un).

Then the argument of the above paragraph shows that u is adjacent to w and
w is adjacent to v. This completes the proof. ��
Lemma 2 immediately allows us to prove:

Lemma 3. All non-trivial Full-Flag Johnson graphs are connected.

Proof. Let FJ (n, k) be a non-trivial Full-Flag Johnson graph. Given two arbi-
trary permutations u and v, we may form a sequence of permutations beginning
with u and ending with v such that each pair of consecutive permutations is
related by a neighboring transposition. Thus, to show that u and v are con-
nected by a path in FJ (n, k), it suffices to show that any two permutations
related by a neighboring transposition are connected. So long as k ≥ 1, every
2-neighboring permutation is also a (k +1)-neighboring permutation (where the
permutation of k+1 elements in question fixes k−1 of them). Applying Lemma 2
completes the proof. ��
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3 Combinatorial Interpretation

Let σ be a permutation in Sn. Recall that σ is said to be reducible if there exists
an index i ∈ [n−1] such that σ([i]) = [i]. If no such index exists, then we say that
σ is irreducible. In general, to every permutation σ we may associate the unique
finest partition [n] = I1 ∪ · · · ∪ Im of [n] such that σ(Ix) = Ix for each x ∈ [m]. If
this partition is of cardinality m, then we call σ an m-reducible permutation. It
is easily seen that the maximality of the partition (with respect to subdivision)
is equivalent to σ acting on each Ix as an irreducible permutation. For further
details, see e.g. [13].

Example 2. The permutation σ = (2, 1, 3) is 2-reducible, since σ({1, 2}) = {2, 1}
and σ({3}) = {3}. The permutation σ = (2, 3, 1) is irreducible. Note that every
irreducible permutation is said to be “1-reducible”.

The class of m-reducible permutations was introduced by Comtet [7], who
gave an enumeration of the number of m-reducible permutations in Sn using gen-
erating functions. Irreducible permutations in particular are well-studied com-
binatorial objects and have appeared extensively in combinatorics as well as
occasionally in ergodic theory [12] and number theory [16]. The appearance of
these permutations is suggestive of further interesting structure in FJ (n, k).

Lemma 4. Two vertices in FJ(n, k) are adjacent if and only if one is an (n−k)-
reducible permutation of the other.

Proof. Let u = (u1, . . . un) and v = (v1, . . . , vn) be two permutations of (n).
Define the set of indices

I = {i ∈ [n] | u(i) = v(i)},

and enumerate the elements of I in ascending order. Consider any two successive
integers in this enumeration, say x and y. Since u(x) = v(x) and u(y) = v(y),
we see that the subsequence (vx+1, vx+2, . . . , vy) of v is a permutation of the
subsequence (ux+1, ux+2, . . . , uy) of u. We claim that these two subsequences
are in fact irreducible permutations of each other. Indeed, it is evident that
otherwise there would be some index z with x < z < y such that u(z) = v(z),
contradicting the fact that x and y are successive elements in our ordering of I.

With this in mind, let our enumeration of I be given by i1, i2, . . . , im. Note
that since u(n) = v(n), we must have im = n. Setting i0 = 0, we partition the
index set {1, 2, . . . , n} into m intervals as follows:

{1, 2, . . . , n} =
m−1⋃

r=0

{ir + 1, ir + 2, . . . , ir+1}.

Then the subsequences of u and v corresponding to any one partition are irre-
ducible permutations of each other. That is, for each r = 0, 1, . . . ,m − 1,
the subsequence (vir+1, vir+2, . . . , vir+1) of v is an irreducible permutation of
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the subsequence (uir+1, uir+2, . . . , uir+1) of u. Hence v is an m-reducible permu-
tation of u, where m is the cardinality of I.

If u and v are adjacent in FJ (n, k) then the cardinality of I is by definition
n − k. Hence v is an (n − k)-reducible permutation of u. Conversely, it is easily
seen that if u and v are (n − k)-reducible permutations of each other, then they
are adjacent in FJ (n, k). This completes the proof. ��

We formalize our work so far in:

Theorem 1. The full-flag Johnson graph FJ(n, k) is the Cayley graph on Sn

generated by the class of (n − k)-reducible permutations.

It is easily checked that the class of n-reducible permutations in Sn consists
precisely of the identity, and the class of (n− 1)-reducible permutations consists
of all neighboring transpositions. Hence both Lemma 1 and the trivial case k = 0
follow immediately from Theorem1.

Example 3. Consider the Full-Flag Johnson graph FJ (4, 2). The 2-reducible per-
mutations of S4 are:

{(123), (213), (13), (234), (324), (24), (12)(34)}.

(Here we are using the standard cycle notation). We thus see that FJ (4, 2) is a
Cayley graph of regularity seven; see Fig. 1 on the following page.

4 Lower Bound for the Diameter

In this section, we investigate the diameter of FJ (n, k) as a function of the input
parameters n and k. We first consider the extremal cases k = 1 and k = n − 1,
for which exact expressions are easily derived. Indeed, it is well-known that the
permutahedron of order n has a diameter of

(
n
2

)
for all n ≥ 2. For k = n − 1, we

have the following result:

Lemma 5. The diameter of FJ(n, n − 1) is 2 for all n ≥ 3.

Proof. Since any two permutations of (n) are clearly related by an n-neighboring
permutation, Lemma 2 shows that every two vertices of FJ (n, n − 1) are con-
nected by a path of at most two edges. Moreover, if n ≥ 3, it is possible to find
two vertices in FJ (n, n − 1) that are not actually adjacent. (Choose for exam-
ple two distinct permutations that both begin with the same element). This
completes the proof. ��

The interesting cases are thus when k is a small (but appreciable) fraction
of n. We begin by bounding the diameter of FJ (n, k) from below. Given a per-
mutation σ ∈ Sn, recall that the disorder f(σ) of σ is defined to be the number
of inversions in σ; that is, the number of index pairs (i, j) such that i < j but
σ(i) > σ(j). The following lemma estimates how much the value of f can change
when traversing an edge in FJ (n, k):
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Fig. 1. FJ (4, 2).

Lemma 6. Let σ ∈ Sn be an m-reducible permutation. Then any application of
σ changes the disorder by no more than

(
n−m+1

2

)
.

Proof. Let σ ∈ Sn be an m-reducible permutation and consider the maximal
partition [n] = I1 ∪ · · · ∪ Im of [n] such that σ(Ix) = Ix for each x ∈ [m]. Since
any permutation of k contiguous elements changes the disorder by at most

(
k
2

)
,

it is easily checked that σ changes the disorder by no more than

|Δf | ≤
(|I1|

2

)

+ · · · +
(|Im|

2

)

.

Here,
(|Ix|

2

)
= |Ix| · (|Ix| − 1)/2 = 0 if |Ix| = 1. We claim that the right-hand

side of this inequality is bounded above by
(
n−m+1

2

)
. Indeed, using the fact that

n = |I1| + · · · + |Im|, we have:

(
n − m + 1

2

)

=
1
2
(n − m + 1)(n − m) =

1
2

(
m∑

x=1

(|Ix| − 1) + 1

) (
m∑

x=1

(|Ix| − 1)

)
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=
1
2

⎡

⎣

(
m∑

x=1

(|Ix| − 1)

)2

+

(
m∑

x=1

(|Ix| − 1)

)⎤

⎦

≥ 1
2

[(
m∑

x=1

(|Ix| − 1)2
)

+

(
m∑

x=1

(|Ix| − 1)

)]

=
1
2

m∑

x=1

|Ix| · (|Ix| − 1) =
m∑

x=1

(|Ix|
2

)

.
��

This immediately yields:

Theorem 2. The diameter of every non-trivial Full-Flag Johnson graph
FJ(n, k) is bounded below by 
(n2

)
/
(
k+1
2

)�.
Proof. Let u = (n, n − 1, . . . , 1) and v = (1, 2, . . . n), so that f(u) =

(
n
2

)
and

f(v) = 0. By Theorem 1, two vertices are adjacent in FJ (n, k) if and only if they
are related by an (n − k)-reducible permutation. But by Lemma6, any (n − k)-
reducible permutation changes the disorder by at most

(
k+1
2

)
. Hence every path

from u to v must have at least 
(n2
)
/
(
k+1
2

)� edges. ��

5 Upper Bound for the Diameter

In this section, we derive an O(n2/k2) upper bound for the diameter of FJ (n, k).
Somewhat surprisingly, we will not need to exploit the full adjacency structure
of FJ (n, k) to establish this result. Instead, recall that according to Lemma2,
any two vertices related by a (k + 1)-neighboring permutation are at most two
edges apart in FJ (n, k). For the purposes of big-O notation, it is thus clear that
at the cost of dropping a factor of two, we may bound the diameter of FJ (n, k)
by studying the following sorting problem:

Let σ be an arbitrary permutation of (1, 2, . . . , n). How many applications
of (k + 1)-neighboring permutations does it take to sort σ?

For instance, in the case k = 1, no more than n(n − 1)/2 neighboring trans-
positions are needed. In general, if we can show that an arbitrary σ ∈ Sn can be
sorted by applying d or fewer (k + 1)-neighboring permutations, then we obtain
an O(d)-bound for on the diameter of FJ (n, k).

As an initial attempt, we begin by considering a selection-sort-like algorithm
that successively moves the elements 1, 2, and so on, to the front of σ via
(k+1)-neighboring permutations. Since each application of a (k+1)-neighboring
permutation allows us to shift the index of a given element by up to k + 1, it
is evident that each element of σ may be moved to its appropriate sorted index
using no more than 
n/(k + 1)� (k + 1)-neighboring permutations. Hence we
obtain a rough upper bound of O(n2/k) for the diameter of FJ (n, k).

In order to obtain a tighter bound, we will utilize an algorithm of Baudet and
Stevenson originally designed for efficient parallel sorting [4]. In what follows,
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we assume for the sake of the exposition that n is a positive integer multiple of
k + 1 and that k + 1 = 2m is even. It will be easily seen that the algorithm may
be adapted to the general case with only minor modifications.

Let σ0 be an arbitrary permutation of Sn. We perform the following sort
on σ0 by proceeding in stages, where at the ith stage (i ≥ 0) we derive a new
permutation σi+1 from the previous permutation σi. Set d = n/m. For 0 ≤ j < d,
denote by bj the jth block of indices {jm + 1, jm + 2, . . . , jm + m}, so that
{1, 2, . . . , n} is partitioned into size-m blocks as b0 ∪ b1 ∪ . . . ∪ bd−1. Then our
sort proceeds as follows:

1. If i is even, individually sort the subsequences of σi of index b0∪b1, b2∪b3, b4∪
b5, . . ., each from least to greatest.

2. If i is odd, individually sort the subsequences of σi of index b1∪b2, b3∪b4, b5∪
b6, . . ., each from least to greatest.

Example 4. We illustrate this process with the following example. Let n = 12
and k = 3, so that m = 2 and d = 6. Suppose that we start with the initial
permutation:

σ0 =
(

5 2 11 8 7 3 12 1 4 10 6 9
)
.

Here, we have boxed the subsequences of σ0 that will be sorted during stage
zero: the three subsequences of index b0 ∪ b1 = {1, 2, 3, 4}, b2 ∪ b3 = {5, 6, 7, 8},
and b4 ∪ b5 = {9, 10, 11, 12}. The successive stages of our sort (displayed at the
beginning of each stage) are then given by:

σ1 =
(

2 5 8 11 1 3 7 12 4 6 9 10
)

σ2 =
(

2 5 1 3 8 11 4 6 7 12 9 10
)

σ3 =
(

1 2 3 5 4 6 8 11 7 9 10 12
)

σ4 =
(

1 2 3 4 5 6 7 8 9 11 10 12
)

σ5 =
(

1 2 3 4 5 6 7 8 9 10 11 12
)
.

Note that our sort has completed by stage i = 5.

Roughly speaking, the idea behind this strategy is to gradually increase the
general order of the entire sequence, rather than concentrating on one particular
element at a time (as in selection sort). The difficulty is then to determine the
running time of the sort. It turns out that using Knuth’s 0–1 sorting principle, it
is not too difficult to show that the sort terminates in at most d stages [4]. Here
we give a straightforward alternative proof of the same linear bound (although
our constant is slightly worse).

Our proof depends on the following technical definition and lemma. Fix any
stage i and element x ∈ {1, 2, . . . , n}. For any index block bs, we say that x
“dominates” bs at stage i if x is greater than every element of σi with index in
bs. We denote this condition by x > σi(bs). Now suppose that the index of x in
σi lies in bj . We say that x is “good” at stage i if it dominates at least one of
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bj−2 or bj−1, with the convention that if one or both of these do not exist, we
automatically say that x is good.

Example 5. In σ0 above, the elements 5, 2, 11, and 8 are automatically good.
The element 7 is good since it dominates b0, and the element 12 is good since
it dominates both b1 and b2. The element 10 is good, since it dominates b2. No
other elements are good.

Example 6. In σ1 above, it can be checked that all the elements of the previous
example are still good, even though some of them now appear in different blocks.
(This is not a coincidence). In addition, the element 9 is now good in σ1, since
it dominates b4. No other elements are good.

Lemma 7. Suppose that x is good at stage i. Then x is good at all subsequent
stages.

Proof. Assume that x is good at stage i. Let the index of x in σi lie in bj ; for
convenience, we will assume that j > 1. We divide into cases based on whether
j is the same parity as the stage number i.

Case 1. Suppose that j is the same parity as i, so that σi+1 is derived from
σi by sorting σi as follows:

σi =
( · · · bj−2 bj−1 bj bj+1 · · · )

.

Since x dominates at least one of bj−2 and bj−1, x is greater than (at least) k
elements of σi(bj−2∪bj−1). Hence x is certainly greater than the least k elements
of σi(bj−2 ∪ bj−1), which implies x > σi+1(bj−2). If the index of x in σi+1 still
lies in bj , then this shows that x is good at stage i + 1. But if the index of x in
σi+1 is in bj+1, then by construction we must have x > σi+1(bj), so again we see
that x is good at stage i + 1.

Case 2. Suppose that j and i are of opposite parity, so that σi+1 is derived
from σi by sorting σi as follows:

σi =
( · · · bj−3 bj−2 bj−1 bj · · · )

.

If x dominates bj−1, then the index of x in σi+1 is in bj and x > σi+1(bj−1). Hence
we may assume that x dominates bj−2. As in the previous case, this implies that
x > σi+1(bj−3). If the index of x in σi+1 is in bj−1, then this shows x is good
at stage i + 1. Otherwise, the index of x in σi+1 is in bj and x > σi+1(bj−1) by
construction.

The above reasoning easily extends to the exceptional cases j = 0 and j = 1,
showing that if x is good at stage i, then x is good at stage i+1. This completes
the proof. ��

The following claim shows why Lemma 7 is of interest.

Lemma 8. Fix any element x ∈ {1, 2, . . . , n}. Then there exists at least one
stage i, 0 ≤ i ≤ d, such that x is good at stage i.
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Proof. Let x ∈ {1, 2, . . . , n} and let the index of x in σ0 lie in bj . Suppose that j
is odd. Then at each stage, x moves to the block immediately to its left until it
reaches the zeroth block or else dominates the block to its left. Since there are
d blocks, this shows that x must be good at stage i for some 0 ≤ i < d. If j is
even, then at the zeroth stage x can either move one block to the right or stay
in the same block. In the former case, x is then good, while in the latter case
the previous reasoning subsequently applies. ��

Combining Lemmas 7 and 8, we see that every element is good by stage d.
We use this to prove the main theorem of the section.

Theorem 3. Let n be a positive integer multiple of k + 1 = 2m and let σ0 be
an arbitrary permutation of Sn. Set d = n/m, as above. Performing a diffusion
sort on σ0 terminates in no more than 3d stages.

Proof. We claim that for each j such that 0 ≤ j < d, the elements bj = {jm +
1, jm + 2, . . . , jm + m} are in correct sorted position by stage d + 2j (and all
stages thereafter). This will show that diffusion sort terminates within 3d stages.
We prove the claim by strong induction on j.

It is clear that the elements b0 = {1, 2, . . . ,m} will be in sorted position by
stage d, since at every stage (except possibly the first) each one of these elements
moves one block to the left until reaching the zeroth block. This establishes the
base case. Thus, assume that at stage d + 2j, the elements of b0 ∪ b1 ∪ · · · ∪ bj
are all in sorted position. Now, each element of bj+1 is good at stage d + 2j.
The inductive hypothesis then implies that the index of each x ∈ bj+1 in σd+2j

must be in either bj+1 or bj+2, since this is the only way for x to be good. It is
then evident that within two more stages, every element of bj+1 will be in sorted
position. This establishes the inductive step and completes the proof. ��

We now formulate the desired diameter bound:

Theorem 4. The diameter of FJ(n, k) is bounded above by O(n2/k2).

Proof. Each stage of diffusion sort consists of the application of either n/(k +1)
or n/(k+1)−1 (k+1)-neighboring permutations. Since d = 2n/(k+1), we thus
see that any permutation σ may be sorted by using no more than 6n2/(k + 1)2

(k+1)-neighboring permutations. Technically, our proof is only valid in the case
that n is divisible by k + 1 and k + 1 is even, but we may easily adapt diffusion
sort to the general case as follows. If k + 1 is odd, then we replace k + 1 by k.
This substitution is valid since every k-neighboring permutation is a (k + 1)-
neighboring permutation and the replacement clearly does not affect the big-O
running time of the sort. If n is not divisible by k + 1, the sort is likewise easily
adapted by replacing n/(k + 1) with 
n/(k + 1)� wherever appropriate. ��
Combining Theorems 2 and 4, we have the main result:

Theorem 5. The diameter of FJ(n, k) is Θ(n2/k2).
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Abstract. In this paper, we investigate the problem of graph list colour-
ing in the on-line setting. We provide several results on paintability of
graphs in the model introduced by Schauz [18] and Zhu [25]. We prove
that the on-line version of Ohba’s conjecture is true for the class of pla-
nar graphs. We show that the conjecture for partial list colouring on-line
holds for several graph classes, namely claw-free graphs, maximal planar
graphs, series-parallel graphs, and chordal graphs.

1 Introduction

We consider the study of graph colouring in an on-line streaming manner. This
is both an approach of practical interest when dealing with large graphs such
as social networks as well as the subject of independent theoretical study. As
we know, storing and analysing a large social graph in main memory of a sin-
gle computer is not always possible. If the graph exceeds the capacity of the
main memory, it has to be swapped to external memory, which is an expensive
overhead. Additionally social networks commonly make their graphs accessible
only via a streaming API. If an external application aims to analyse the entire
graph, it has to employ a local neighbourhood discovery protocol similar to web
crawlers. In such a case, the application incurs costs associated with accessing
a vertex of the graph in the form of the network communication necessary for
issuing the API call. Both of the aforementioned problems make the traditional
off-line analysis of social network graphs challenging and sometimes even infea-
sible. Thus, there is renewed interest in analysing graphs on-line.

Aside from their practical application, on-line graph algorithms have also
been a rich source of theoretical problems with, for example, the celebrated
theoretical results of Schauz [18] and Zhu [25].

In this paper, we investigate the graph list colouring problem in the on-line
setting. In list colouring, the vertices of a graph are pre-assigned lists of colours,
and the task is to properly colour the graph so that every vertex receives a colour
from its list. In what follows, we study the problem from a theoretical point of
view and resolve several open questions on this subject.
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We also study the partial list colouring on-line which is a “best-effort” variant
of graph list colouring. In this setting, we are given a limited universe of colours
which does not suffice to colour the entire graph, and the aim is to colour as
many vertices as possible.

2 Definitions and Previous Work

The graphs considered in this paper are simple and undirected. We follow the
standard terminology of graph theory (cf. for instance [4]).

Let G be a graph. A list assignment is a function L : V (G) → 2N which
assigns every vertex of G a list of admissible colours. A proper colouring c :
V (G) → N is called an L-colouring of G if it assigns every vertex v a colour
c(v) from its list L(v). The choosability number of G, denoted by ch(G), is the
minimum number k such that G has an L-colouring whenever L assigns every
vertex a list of size at least k. For any k ≥ ch(G), graph G is called k-choosable.
The choosability number of a graph is also called the list-chromatic number.

The (off-line) list colouring problem—to decide whether a graph has an
L-colouring—was introduced by Vizing in 1976 [22]. The choosability of graphs
was investigated by Erdös, Rubin and Taylor [8] and later by many others. If L
assigns every vertex the same list of colours, the instance of the list colouring
problem becomes an instance of the “standard” vertex colouring problem. Thus,

χ(G) ≤ ch(G)

and the problem is NP-complete. Voigt [23] showed in 1993 that the choosability
number ch(G) can be strictly larger than the chromatic number χ(G) even for
planar graphs.

The list colouring problem was brought to the on-line setting independently
by Schauz [18] and Zhu [25] in 2009. Both the authors formulated the problem
as a game of two players. In this paper, we follow the terminology of Schauz [18].

The game is played by two players called Mr. Paint and Mrs. Correct on a
known graph G. In each round, the first player, Mr. Paint, takes a new colour c
and colours some (at least one) uncoloured vertices. The colour c cannot be used
again. There are no restrictions on the colouring of Mr. Paint—he can colour two
adjacent vertices with the same colour. The other player, Mrs. Correct, attempts
to correct Mr. Paint’s mistakes. For this purpose, she has a finite number of so-
called erasers assigned to every vertex. She can use an eraser to remove the
colour c from any subset of vertices which were coloured by Mr. Paint in this
round. An eraser can be used only once. By doing so, the number of erasers
available for the given vertex decreases. The game ends when the entire graph is
properly coloured in which case Mrs. Correct wins, or when Mrs. Correct cannot
correct the colouring because she ran out of erasers for some vertex. In such a
case, Mr. Paint wins.

If L is an assignment of number of erasers to the vertices of G (for brevity, we
call it just an assignment of erasers) and Mrs. Correct has a winning strategy
leading to a proper colouring of G, the graph is called L-paintable. If � ∈ N is a
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number of erasers that need to be assigned to every vertex of G for Mrs. Correct
to always have a winning strategy, the graph is called (� + 1)-paintable. The
minimum such number (� + 1) is the paintability number of a graph, and with
respect to a graph G, it is denoted by chOL(G).

Note that if Mr. Paint writes down all the colours suggested for each vertex
into a list and we ask who has the winning strategy, we get an instance of off-line
list colouring. Both Schauz [18] and Zhu [25] noted that if G is not k-choosable,
it cannot be k-paintable. So, the choosability number provides a lower bound on
the paintability number. We get that

χ(G) ≤ ch(G) ≤ chOL(G).

Schauz [18] provided an example of a graph and an assignment of erasers L where
Mr. Paint has a winning strategy, i.e., the graph is not L-paintable, however it
has an (off-line) list colouring for any list assignment with lists of the respective
sizes (see [5, Appendix A]). Zhu [25] proved that the complete bipartite graphs
K6,q for q ≥ 9 are not 3-paintable, however both K6,9 and K6,10 are 3-choosable.
Thus, there are graphs with choosability strictly smaller than paintability.

In 1994, Thomassen [21] showed that all planar graphs are 5-choosable.
Schauz [18] adapted this technique to the on-line list colouring model to show
that every planar graph G is 5-paintable. In the same paper, Schauz also noted
that “ �-paintability is stronger than the �-list-colourability ( �-choosability), but
not by much. Although [. . . ] there is a gap between these two notions, most the-
orems about list colourability hold for paintability as well.”

In [17], Ohba investigated the classes of graphs where the choosability number
equals the chromatic number. He showed that if a graph is sufficiently dense,
namely, if |V (G)| ≤ χ(G) +

√
2χ(G), then χ(G) = ch(G). As a strengthening of

the result, he conjectured1 that if G is a graph with |V (G)| ≤ 2χ(G) + 1 then
χ(G) = ch(G).

Kim et al. [13] studied Ohba’s conjecture for multipartite graphs in the on-
line setting. They pointed out that, unlike the off-line case, graphs K2�(k−1),3

(the complete multipartite graphs with k − 1 parts of size 2 and one part of size
3) are not chromatic choosable on-line and thus adjusted the inequality:

Conjecture 1 (Ohba’s On-line Conjecture [13]). Let G be a graph with |V (G)| ≤
2χ(G). Then, χ(G) = chOL(G).

A step towards proving Conjecture 1 was made by Kozik, Micek and Zhu [15],
who showed that it holds for the graphs with independence number of at most 3.
Furthermore, they proved that the conjecture holds for graphs with |V (G)| ≤
χ(G) +

√
χ(G).

Lemma 2 (Kozik, Micek, Zhu [15]). Conjecture 1 is true for any graph G
with independence number α(G) ≤ 3.

1 Ohba’s conjecture was proved by Noel, Reed and Wu [16] in 2014.
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Additionally, there are various other results concerning the choosability and
paintability of specific graph classes, see e.g. [11,13–15].

Our Contribution. The main result of this paper is a proof of Conjecture 1 for
the class of planar graphs (Sect. 4). We also prove several results about paintabil-
ity of classes of sparse graphs (cf. Sect. 3). In Sect. 5, we provide an introduction
to and investigate the partial list colouring problem in the on-line setting. We
show that the conjecture for on-line partial list colouring of graphs holds for
several graph classes, namely claw-free graphs, maximal planar graphs, series-
parallel graphs, and chordal graphs.

3 Classical Model

In this section, we focus on the “classical” game-theoretic model of list colouring
introduced by Schauz [18]. We investigate and extend results about paintability
of graphs with a small number of edges. In order to do so, we work with the
recursive definition of the on-line list colouring problem: The game starts on
a graph G with assignment of erasers �. Once the players finish a round, i.e.,
Mr. Paint colours a set of vertices VP and Mrs. Correct erases the colours from
some of them, denote her move by VC ⊆ VP , the vertices in VP \VC that remain
coloured can be removed from the graph—those vertices are properly coloured
and Mr. Paint will never use the same colour again. So, the game proceeds on a
graph G′ = G[(V (G) \ VP ) ∪ VC ] with one less eraser for the vertices in VC . See
[5, Appendix B] for a formal definition.

Let us begin with the following observation of [2] (proof is provided in [5,
Appendix B]):

Proposition 3 (Carraher et al. [2]). If G is a graph and � an assignment
of erasers to its vertices, the following holds for the game model of on-line list
colouring: (a) If G is �-paintable, every subgraph H of G is �-paintable; (b) If �
assigns every vertex v of degree k at least k erasers, G is �-paintable if and only
if G − v is �-paintable.

The following theorem is an easy consequence of Proposition 3 (see [5, Appen-
dix B] for the proof).

Theorem 4. Graphs with degeneracy k ≥ 0 are (k + 1)-paintable.

Series-parallel graphs are graphs with two distinguished vertices s and t called
source and sink. The class itself is defined inductively as follows: (1) an edge (s, t)
is a series-parallel graph; and (2) any graph G that can be obtained from two
series-parallel graphs by a series or parallel composition on theirs sources and
sinks is a series-parallel graph. An Apollonian network is either a triangle or a
planar graph which can be obtained from a triangle by repeatedly inserting a
vertex of degree 3 into an interior triangular face.

Theorem 4 states upper bounds for paintability of some graph classes (includ-
ing series-parallel graphs and Apollonian networks) summarized by the following
corollary:
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Corollary 5. (a) Forests are 2-paintable. (b) Outer planar graphs are 3-
paintable. (c) Series-parallel graphs are 3-paintable. (d) Apollonian networks
are 4-paintable. (e) k-regular graphs are (k + 1)-paintable. (f) Planar graphs
are 5-paintable by inductive argument in [18]. By degeneracy, they are trivially
6-paintable.

It is easy to see that the class of series parallel graphs is a subclass of pla-
nar graphs and thus, they are 5-paintable. It is well-known that series-parallel
graphs are 2-degenerate, so they are even 3-paintable. We wish to offer an alter-
nate inductive argument which implies this statement, but works with the direct
definition of series-parallel graphs. The significance of this result is given by the
following: while most of the techniques for list colouring off-line can be trans-
ferred to the on-line setting, it is not always possible to do so for inductive
arguments. As pointed out by an anonymous referee, it is not clear whether
this strategy of Mrs. Correct for series-parallel graphs differs from the strat-
egy implied by degeneracy. This is an intriguing point which, in our opinion,
further increases the interest in this result. Inspired by Thomassen’s proof of
5-choosability of planar graphs [21], and also by the proof of their 5-paintability
by Schauz [18], we prove a slightly stronger claim (the proof is provided in [5,
Appendix B]):

Theorem 6. Let G = (V,E) be a series-parallel graph with source s and sink t,
and � an assignment of erasers such that �(s) = 0, �(t) = 1 and �(v) = 2 for any
other vertex. Graph G is �-paintable.

4 Ohba’s On-line Conjecture

In this section, we prove the on-line version of Ohba’s conjecture (cf. Conjec-
ture 1) for planar graphs (see Theorem 8). We begin with the following prelim-
inary lemma:

Lemma 7. Let G be a graph and � be an assignment of erasers such that
Mr. Paint has a winning strategy. The winning strategy can be pursued by always
selecting a set P such that G[P ] is connected.

Proof. Let P1, P2 be two subsequent moves of Mr. Paint such that there are no
edges between the vertices in P1 and P2, and let C1, C2 be arbitrary respective
moves of Mrs. Correct. Denote the graph obtained by playing the moves by H.
Observe that the graph obtained by playing moves P1 ∪ P2 and C1 ∪ C2 by
Mr. Paint and Mrs. Correct is equal to H.

So, let P ′ be a move in Mr. Paint’s winning strategy such that G[P ′] is
disconnected. Let H be a maximal connected component of G[P ′]. Select P1 :=
V (H) and P2 := P ′ \ P1, and replace the move P ′ with two subsequent moves
P1, P2 (in this order). Assume that Mrs. Correct has a winning strategy by moves
C1, C2 after this modification. By the observation above, Mrs. Correct’s response
C1 ∪ C2 is a winning response to Mr. Paint’s move P ′. This is a contradiction.
Repeat this argument to produce a winning strategy of Mr. Paint such that he
always colours a connected induced subgraph of G. �	
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Before diving into the proof of Theorem 8, we encourage the reader to recall
Proposition 3 from Sect. 3 which we frequently utilize.

Theorem 8. Let G be a planar graph with |V (G)| ≤ 2χ(G). Then, χ(G) =
chOL(G).

Proof. Let G be a connected planar graph with |V (G)| ≤ 2χ(G). Recall that if
G has independence number of at most 3, the statement holds by Lemma 2. By
the Four Colour Theorem, χ(G) ≤ 4, so we proceed in four cases based on χ(G).
Case 1: χ(G) = 1. If the chromatic number is 1, the graph has no edges. Thus,
Mrs. Correct does not need any erasers, and the graph is 1-paintable.
Case 2: χ(G) = 2. If the chromatic number is 2, the graph is bipartite. One
should consider planar graphs of size up to 4 vertices. In fact, using Proposition 3,
it is sufficient to prove the claim for the complete bipartite graphs on 4 vertices.
There are two2 possible distributions of vertices into the two partitions, so there
are precisely two such graphs: K1,3 and K2,2 = C4. Graph K1,3 is a tree, so it is
2-paintable (cf. Corollary 5).

For C4 = (v1, v2, v3, v4), Zhu [25] proved that even cycles are 2-paintable. We
include the argument for this special case for the sake of completeness of our
proof. We consider three cases of Mr. Paint’s first move. If he colours one vertex
only, no erasers are used up and the game continues on a tree. So, Mrs. Correct
has a winning strategy. If Mr. Paint colours three or more vertices, it follows
that two of them are not adjacent to each other. Let v1 and v3 be these two
vertices. Mrs. Correct leaves v1 and v3 coloured and uses erasers for the rest.
Then the game continues on a graph with two isolated vertices where no erasers
are needed. So, the only option of Mr. Paint is to initially colour two adjacent
vertices, say v1 and v2. Mrs. Correct uses an eraser for one of them, say v2. The
game continues on a path (v2, v3, v4) where v2 has no erasers, and the remaining
vertices have each one eraser available. One can easily see that Mrs. Correct wins
the game here too.
Case 3: χ(G) = 3. Applying Proposition 3, it is sufficient to show that only
graphs with 6 vertices and chromatic number 3 need to be considered. Graphs
with no odd cycles are bipartite, and are thus 2-chromatic. We divide the case
into two subcases: when G contains a cycle of length 3 and 5.

If G contains a cycle of length 5, any independent set contains at most two
vertices of this cycle. Together with the last vertex, the independence number
of G is at most 3 and thus, the claim holds by Lemma 2.

If G contains a cycle C of length 3, any independent set contains at most
one vertex of this cycle. As |V (G)| = 6, the independence number is at most
4, in which case the vertices not in C, call them u, v, w, must be part of the
independent set. Assume that this is the case (otherwise the claim again holds).
Observe that u, v, w are connected to at most two vertices of C otherwise they
cannot be all members of the independent set. Hence, their degrees are at most
two, and G is 2-degenerate. Hence, G is 3-paintable by Theorem 4.

2 Note that K0,4 is not connected, so it is both 1-chromatic and 1-paintable.
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Case 4: χ(G) = 4. As χ(G) cannot be more than 4, if one can prove the claim for
triangulated graphs on 8 vertices, it holds for all the 4-chromatic planar graphs
on 8 vertices by Proposition 3.

Let v be a vertex in G. As G is triangulated, the neighbours N(v) of v form
a cycle C. The subgraph C together with v and its attachments to the vertices
in C is called a wheel. Vertex v is called a hub of this wheel and C is its rim. In
order to show that the independence number of G is at most 3, we analyse G
based on its wheels.

Observe that G, being a planar triangulation on 8 vertices, contains precisely
12 triangular faces and 18 edges. The maximum size of an independent set is at
most 4 as every triangular face can contribute at most one vertex. A wheel of
size k contains 2(k−1) edges. Furthermore, the maximum independence number
of such a wheel is 
k−1

2 � and it cannot include the hub (the only independent
set which includes the hub has size 1 as it cannot include any other vertex).

The sum of vertex degrees in G is 18 ·2 = 36. Hence, G must contain a vertex
of degree at least 5. If G contains a vertex of degree 5, the wheel around this
vertex has size 6, the rim is a 5-cycle and the wheel has 10 edges. Also, G has two
vertices u, v that do not belong to this wheel. In order to obtain an independent
set of size 4, both u and v have to be added into an independent set S of size 2
found in the wheel. To fill the remaining 8 edges into G, at least one of u, v must
have degree at least 4. Thus, it has to be attached to one of the vertices that are
already in S. Hence, the independence number of G is at most 3.

If G contains a vertex v of degree 6, in order to construct an independent set
of size 4, one has to find an independent set S of size 3 in the wheel around v
and fill in the additional vertex u that is not part of the wheel. Refer to Fig. 1.
Without loss of generality, one can select vertices a, c, e into S. As u needs
to belong to S as well, it cannot be connected to either of a, c or e. As G is
triangulated, it must contain edges (f, b), (b, d), (d, f) that enclose the wheels
around a, c, e respectively. Then u must be connected to b, d, f . One can notice
that u, a, c, e, v, b, d, f is a 3-degenerate ordering, which immediately implies
4-paintability by Theorem 4.

If G contains a vertex of degree 7, all the vertices in the graph form a wheel
of size 8 around this vertex. Hence, the maximum independent set has size 3.
So, in all subcases of Case 4, graph G has independence at most 3 and the claim
holds by Lemma 2, or it is the graph depicted in Fig. 1, which is 4-paintable by
degeneracy. �	

5 Partial List Colouring On-line

Let G be a graph with n vertices and with chromatic number χ(G) = s. We know
that G can be properly coloured with s colours. However, we can still attempt
to colour such a graph with less than s colours. A natural question in such a
situation is what portion of the graph can be properly coloured. We know that if
the number of available colours is t ≤ s, then one can properly colour at least tn

s
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Fig. 1. An illustration for case 4 of the proof of Theorem 8. The graph has independent
set of size 4, but it is 3-degenerate, so 4-paintable.

of vertices in G—we can use t colours to colour the t largest classes of a proper
s-colouring of G.

A similar question was asked for list colouring by Albertson, Grossman and
Hass in [1]: Given a graph G with choosability s and an arbitrary list assignment
�t which assigns every vertex a list of least t colours, is it possible to colour at
least tn

s vertices in G? They conjectured [1, Conjecture 1] that the answer to this
question is positive. Their conjecture is still open, although, it has been verified
for some special classes of graphs.

This concept was brought to the on-line setting by Wong and Zhu in [24].
Formally, let G be an s-paintable graph, and let �t be an assignment of erasers to
the vertices of G such that every vertex receives t < s erasers. Let Mr. Paint and
Mrs. Correct play the partial list colouring game as follows: In round i, Mr. Paint
chooses a nonempty subset Vi of vertices in V (G)\⋃i−1

j=1 Cj . Mrs. Correct chooses
an independent set Ci ⊆ Vi of vertices that will retain the colour i, and uses an
eraser (if available) for each vertex in the rest of Vi. If Mrs. Correct chose to erase
a colour from a vertex, but an eraser is not available, the vertex is marked as
finished. The game proceeds on a subgraph of G obtained by removing vertices
in Ci and the finished vertices. A vertex v is called coloured if it belongs to Cj

for some j, and it is called uncoloured otherwise. The game ends when every
uncoloured vertex in G is finished. The goal of Mrs. Correct is to maximize the
number of coloured vertices at the end of the game. This number is denoted by
λOL

t , where t − 1 is the number of erasers available. The goal of Mr. Paint is to
minimize this number.

Wong and Zhu in [24] stated an on-line version of the aforementioned partial
list colouring conjecture:

Conjecture 9 (Wong, Zhu [24]). If G is an s-paintable graph and t < s, then
λOL

t (G) ≥ tn
s .

In this section, we build on the work of [12] and prove Conjecture 9 for several
graph classes, namely claw-free graphs, maximal planar graphs, series-parallel
graphs and chordal graphs. We also investigate the relationship between on-line
partial list colouring and the treewidth of a graph.
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Claw-free graphs are graphs that do not have K1,3 as an induced subgraph.
This class of graphs includes line graphs, complements of triangle-free graphs or
comparability graphs. See [9] for a comprehensive survey on claw-free graphs.

Theorem 10. Let G be a claw-free graph that has online list colouring with s
colours, and let t < s. If �t is an assignment of t erasers to every vertex and the
players play a partial list colouring game, then at least tn

s vertices in the graph
can be properly coloured.

Proof. Let �t be an assignment of t erasers to vertices of G. Let Mrs. Correct play
according to a strategy which maximizes the number of vertices coloured in each
round. Recall that Vi is the set of vertices that Mr. Paint colours in round i, and
Ci is the set of vertices that Mrs. Correct leaves coloured in round i (i.e., she does
not use an eraser for those vertices). Let p be the number of rounds played in the
game. Denote the set of vertices that are finished but uncoloured at the end of the
game by Q. Since G is s-paintable, Q can be partitioned into s − t independent
sets, call them Q1, . . . , Qs−t, such that the sets C1, . . . , Cp, Q1, . . . , Qs−t are the
colour classes of a proper colouring of G.

If |Q1 ∪ . . . ∪ Qs−t| ≤ (s−t)n
s , then the theorem is proved. So, assume for

contradiction that |Q1 ∪ . . . ∪ Qs−t| > (s−t)n
s . From here, we get that

p∑

i=1

|Ci| ≤ tn

s
.

Furthermore, there must be a set of vertices Qσ with σ ∈ {1, . . . , s − t} with
size above average, i.e., |Qσ| > n

s . Since Mrs. Correct had t erasers available for
every vertex in Qσ and used them all up, we know that

p∑

i=1

|Qσ ∩ Vi| >
tn

s
.

Putting the inequalities together, we conclude that there is some j with
|Cj | < |Qσ ∩ Vj |. For brevity, we will denote such a Qσ ∩ Vj by Z.

We now claim that there is a vertex in Cj which has at least two neighbours
in Z. First, notice that Z cannot contain vertices that have no neighbours in
Cj . Such vertices could have been included in Cj already — Mrs. Correct plays
optimally. So, every vertex in Z has a neighbour in Cj . But Z is strictly bigger
than Cj . Hence, at least two vertices in Z, call them z1, z2, must have a common
neighbour in Cj . Observe that vertices in Z cannot have more than two neigh-
bours in Cj , because Cj is an independent set and G would have a claw. The
same holds vice versa for the vertices in Cj .

Now, find a minimal set X ⊆ Z such that the neighbourhood of X in Cj ,
denoted by N(X) ∩ Cj , is smaller than X. We know that such a set X exists,
because at the very least, it contains z1, z2 which we found previously.

So, Mrs. Correct could have chosen to keep X coloured with colour j and
leave the vertices from N(X) ∩ Cj uncoloured instead. This would increase the
size of the properly coloured portion of the graph in that round, which is a
contradiction with the assumed strategy. �	
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5.1 Treewidth and Partial List Colouring On-line

In this section, we investigate the relationship between treewidth and partial list
colouring on-line. From this relationship, we derive that Conjecture 9 is true for
the class of series-parallel graphs.

Lemma 11. Let G be a hereditary graph family. If for every graph G ∈ G we
have chOL(G) = χ(G) = s, then for every 0 < t < s, λOL

t (G) ≥ tn
s .

Proof. Let G be a graph in G and s = chOL(G) = χ(G). Fix an arbitrary
0 < t < s. Mrs. Correct will be using a proper (off-line) s-colouring of G to
guide her strategy. So, let Cs be such a colouring. Find subgraph G′ ⊆ G formed
by the vertices in the t largest colour classes in Cs. The size of G′ is ≥ tn

s . Graph
G′ has a t-colouring (we constructed it using such a colouring) and since it is
in G, we also have that t = chOL(G′) = χ(G′). Hence, Mrs. Correct can play so
that G′ is painted using her t − 1 available erasers, and this is sufficient. �	

We say that a graph is chordal if every cycle of length more than 3 has a
chord. In other words, the graph does not contain any induced cycle greater than
3. It is well-known that for a chordal graph G, we have χ(G) = ch(G) = ω(G),
where ω(G) is the size of the largest clique in G. In order to proceed, we need
to show that for chordal graphs, χ(G) = chOL(G) = ω(G). We will do so using
so-called perfect elimination order—a special ordering of vertices in a chordal
graph. Let us define this concept first.

Definition 12. A perfect elimination order of a graph G is a vertex ordering
v1, . . . , vn such that for every vertex vi, the set of neighbours of vi with index
smaller than i, that is {vj ∈ N(vi) | j < i}, induces a clique in G.

Lemma 13 (Fulkerson, Gross [10]). Graph G is chordal if and only if it has
a perfect elimination order.

It is easy to see that a perfect elimination ordering of a graph G is a certifi-
cate that G is (ω(G) − 1)-degenerate. Hence, by Theorem 4, G must be ω(G)-
paintable:

Theorem 14. If G is a chordal graph, then chOL(G) = ω(G).

Proof. Let G be a chordal graph and � an assignment of erasers which gives
every vertex ω(G)−1 erasers. Mrs. Correct will precompute a perfect elimination
order v1, . . . , vn of G and pursue the following strategy: if Mr. Paint suggests
a set which contains vertices vi, vj , i < j connected by an edge, Mrs. Correct
uses an eraser for vj (the vertex with bigger index). Let vi∗ be the vertex which
uses the most erasers. For sure, it uses at most deg−(vi∗) which is the number of
neighbours of vi∗ preceding vi∗ in the perfect elimination order. Thus, chOL(G) ≤
deg−(vi∗) + 1. Since all such neighbours of vi∗ form a clique, and vi∗ is attached
to all of them, we know that ω(G) ≥ deg−(vi∗) + 1. However, it is well-known
that χ(G) ≥ ω(G) and hence, also chOL(G) ≥ ω(G). Putting the inequalities
together, we get that chOL(G) = ω(G). �	
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Corollary 15. Let G be a chordal graph with chOL(G) = s. Then for every
positive t less than s, we have λOL

t (G) ≥ tn
s .

Proof. Follows from Theorem 14, Lemma 11 and ω(G) = χ(G) for chordal
graphs. �	

Let G be a graph and H be a chordal graph that contains G as a subgraph
(such a graph can be obtained by inserting edges into G) such that the clique
number of H is minimal among all such graphs. It is well known that treewidth
of G, denoted by tw(G), is tw(G) = ω(H) − 1 and the degeneracy of G is at
most tw(G).

Theorem 16. Let G be a graph and chOL(G) = s. Then for every positive t < s,
we have λOL

t (G) ≥ tn
tw(G)+1 .

Proof. Let G′ be a chordal graph obtained by adding edges to G such that
the size of a largest clique in G′ is tw(G) + 1. Since G′ is chordal, we know
that tw(G) + 1 = ω(G′) = χ(G′) = chOL(G′). From Corollary 15, we get that
λOL

t (G′) ≥ tn
tw(G)+1 . As G is a subgraph of G′, the strategy of Mrs. Correct for

G′ is valid on G as well, so we get that λOL
t (G) ≥ tn

tw(G)+1 . �	
Note that this also implies that Conjecture 9 is true for the series-parallel

graphs (Corollary 17) as their treewidth is at most 2 and paintability at most 3.

Corollary 17. Let G be a series-parallel graph with chOL(G) = s. Then for
every positive t less than s, we have λOL

t (G) ≥ tn
s .

6 Conclusions

We extended the previous results about paintability of planar graphs to some
specific graph classes. We provided an inductive argument for 3-paintability of
series-parallel graphs, and proved the on-line version of Ohba’s conjecture for
planar graphs. For future work, we would like to suggest extending the following
two theorems to the on-line setting:

Any planar triangle-free graph without 4-cycles adjacent to 4- and 5-cycles
is 3-choosable. Any graph that can be drawn with at most two crossings is
5-choosable. The proofs of both the theorems are inductive and we believe that
extension to the on-line setting is possible.

Finally, while we advanced the set of graphs in which Conjecture 9 is known
to hold, it remains to be fully resolved for arbitrary graphs.
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Abstract. We investigate on gathering of identical, memoryless, and
mobile robots placed on the nodes of anonymous graphs. According to
the well-known Look-Compute-Move model, robots operate in asynchro-
nous cycles. In one cycle, a robot takes a snapshot of the current con-
figuration (Look), decides whether to stay idle or to move to one of its
neighbors (Compute), and in the latter case makes the computed move
(Move). Cycles are performed asynchronously for each robot. The gath-
ering problem asks for a strategy that brings all robots to a common node.

Several papers have been investigating the problem for various settings
on ring graphs due its combinatorial relevance. However, none of the pro-
vided solutions can copewith the case of four robots, the only case still open
on ring graphs, even though it is conjectured that the gathering is possi-
ble. We consider the specific cases of four robots placed on a ring of seven
and nine nodes. We present an exhaustive proof about the impossibility
of designing a strategy that solves the gathering in the considered setting.
Theproofmakes use of both theoretical and computer-assisted approaches.
Despite the specific cases considered, the relevance of the provided proof
is twofold. On the one hand, it disproves the conjecture posed by previous
works. On the other hand, it provides a new approach and new insights to
the gathering problem on rings.

1 Introduction

We study one of the basic problems concerning self-organization of mobile enti-
ties, known in the literature as the gathering problem. In particular, we consider
oblivious (memoryless) robots initially located on different nodes of an anony-
mous ring that have to gather at a common node (not determined in advance)
and there remain. Neither nodes nor edges are labeled. Initially, some of the
nodes of the ring are occupied by the robots and there is at most one robot in
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each node. Robots operate in Look-Compute-Move cycles. In each cycle, a robot
takes a snapshot of the current global configuration (Look), then, based on the
perceived configuration, takes a decision to stay idle or to move to one of its adja-
cent nodes (Compute), and in the latter case it makes an instantaneous move
to this neighbor (Move). Cycles are performed asynchronously for each robot.
This means that the time between Look, Compute, and Move operations is finite
but unbounded, and it is decided by the adversary for each robot. Hence, robots
may move based on significantly outdated perceptions. The only constraint is
that moves are instantaneous, and hence any robot performing a Look opera-
tion sees all other robots at nodes of the ring and not on edges. Robots are all
identical, anonymous, and execute the same deterministic algorithm. They can-
not leave any marks at visited nodes, nor send messages to other robots. This
model is referred in the literature also as the CORDA model [9,16]. However, it
is assumed that a robot has the ability to perceive during the Look operation
whether there is one or more robots located at a given node of the ring, but
not the exact number. This capability of robots is important and well-studied
in the literature under the name of multiplicity detection (see e.g. [11] for a dis-
cussion), as a node with more than one robot located on it is called multiplicity.
By definition, initial configurations do not contain multiplicities.

1.1 Related Works

The problem of let mobile entities meet on graphs or open spaces has been
extensively studied in the last decades. When only two robots are involved,
the problem is usually referred to as the rendezvous problem [3,4,7,15]. Under
the Look-Compute-Move model, the rendezvous problem has been proved to be
unsolvable on rings [13], hence instances with more than two robots have been
investigated. The relevance of the ring topology is motivated by its completely
symmetric structure. It means that algorithms for rings are more difficult to
devise as they cannot exploit any topological structure, assuming that all nodes
look the same. In the literature, different types of configurations have required
different approaches. In particular periodicity and symmetry arguments have
been investigated for rings. A configuration is called periodic if it is invariable
under non-trivial (i.e., non-complete) rotation. A configuration is called symmet-
ric if the ring admits a geometrical axis of symmetry that reflects single robots
into single robots, multiplicities into multiplicities, and empty nodes into empty
nodes. A symmetric configuration admits a node-edge symmetry if the axis passes
through one node and one edge (see, e.g. configurations (i)–(iii) in Fig. 1); an
edge-edge symmetry if the axis passes through (the middles of) two edges; a node-
node symmetry if the axis passes through two nodes; a robot-on-axis symmetry
if there is at least one node on the axis occupied by a robot.

In [13], it is proved that the gathering is not feasible if the configuration is
periodic, or symmetric of type edge-edge, or contains only two multiplicities, or
if the multiplicity detection capability is removed. Then all configurations with
an odd number of robots, and all the asymmetric configurations with an even
number of robots have been solved by different algorithms. In [12], the problem
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was solved in the symmetric cases with an even number of robots greater than
18. This left open the cases of symmetric configurations of types node-node
or node-edge with even number of robots between 4 and 18. The case of 4
robots has been addressed in [10,14]. In [10], symmetric configurations of type
robot-on-axis with 2k robots, k ≥ 2, have been addressed. Moreover, in [12]
it has been observed that configurations of 4 robots on a five node ring are
ungatherable. The case of 6 robots has been solved in [6]. Finally, in [5], a unified
approach dealing with all the gatherable cases has been designed. Besides the new
techniques, the algorithm also exploits some of the previous results. In particular,
the resolution of symmetric configurations with only 4 and 6 robots is delegated
to the previous algorithms from [6,14], respectively. However, as we will show,
the algorithm proposed in [14] cannot cope with all the symmetric cases of
4 robots.

1.2 Our Results

Although all the configurations with 4 robots on rings with more than five nodes
have been claimed to be gatherable as long as the initial configurations are
asymmetric and aperiodic (from [13]), or symmetric of type node-edge, node-
node, or robot-on-axis (from [14]), we revise the very special case of 4 robots
on a seven and nine nodes ring. We then show there cannot exist any strategy
allowing the gathering in such cases. The obtained result points out a twofold
aspect. On the one hand, the obtained result disproves some claimed conjectures
of previous works concerning gatherable configurations of 4 robots. In particular,
the algorithm proposed in [14] cannot cope with all the symmetric cases of 4
robots on odd rings. On the other hand, the new approach exploited to prove
the impossibility result provides useful advances in the study of the gathering
task. It is worth remarking that configurations with few robots imply more
difficulties in designing suitable gathering strategies as the movement of a robot
easily incurs in making the current configuration symmetric or even periodic.
Our main result is constituted by the following theorem:

Theorem 1. Four robots on a seven or nine nodes ring are ungatherable.

Indeed, the above theorem proved by means of theoretical and computer-assisted
analysis reveals sufficient hints for a more general claim. Consider the intervals of
free nodes between two nodes occupied by robots (an interval could be empty if
the robots are adjacent). Let SP4 be the set of symmetric initial configurations
with four robots on odd rings where the maximal odd interval of free nodes cut
by the axis is bigger than the even one (see, e.g., configurations (i) and (ii) of
Fig. 1, and configurations (i)–(iv) of Fig. 7).

The initial configuration of four robots on a five nodes ring belongs to SP4
and it can be proved to be ungatherable by an exhaustive proof on the possible
moves that can be performed. Indeed, specific configurations in SP4 could be
gatherable but requiring suitable strategies difficult to be generalized. The main
difficulty faced when dealing with configurations in SP4 comes from the fact
that among the two intervals cut by the axis, the odd one is bigger than the
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even one. In [8], it has been proved that the middle node of the odd interval is
the only possible candidate to finalize the gathering. Hence, when robots move
towards such a node , it may happen that only one of the two symmetric robots
allowed to move makes the movement. The subsequent configuration contains
now two intervals of even size corresponding to those intervals originally cut by
the axis of symmetry. Possibly, they can be of the same size, hence inducing a
different symmetry with respect to the original one.

Proving that initial configurations with four robots on a seven nodes ring
are ungatherable is challenging as exploring exhaustively all the possible moves
becomes computationally intractable. In fact, we exploit both theoretical and
computer-assisted analysis to obtain the proof of Theorem1.

2 Definitions and Notation

We consider anonymous rings without orientation consisting of either seven or
nine nodes. Initially, four nodes of the ring are occupied by single robots. For
instance, all possible initial configurations for a ring of seven nodes are shown
in Fig. 1. During a Look operation, a robot perceives the relative locations on
the ring of multiplicities and single robots. We remind that a multiplicity occurs
when more than one robot occupy the same node.

The current configuration of the system can be described in terms of the
view of a robot r that is performing the Look operation at the current moment.
It is the sequence of robots, multiplicities and empty nodes seen by r starting
from its position and proceeding towards an arbitrary direction. It follows that,
given a configuration, a robot recognizes its own position in the ring if the
configuration is asymmetric. In case of symmetry, the robot has two possible
choices for its position. For instance, referring to Fig. 1, robots denoted x and x′

are indistinguishable. In initial symmetric configuration we will denote x and x′

the two robots closest to the node on the axis, whereas the other two nodes will
be denoted y and y′.

In a symmetric configuration, the axis of symmetry passes through one node.
A move of a robot r towards such a node is denoted by r↑, while r↓ denotes
the move towards the opposite direction. In the asymmetric configuration (iv)
in Fig. 1, the robots are referred to as a, b, c, and d. The move of a robot r in
the direction of a robot r′ is denoted by r → r′.

The strategy of a gathering algorithm specifies for each configuration which is
the robot that has to move and the direction of the movement. Note that in case
of symmetric configuration or multiplicities a single robot can not be identified
as well as a single direction can not be defined.

3 Four Robots on a Seven Nodes Ring

Consider four robots on a seven nodes ring, the only possible initial configura-
tions are shown in Fig. 1. The first three configurations are symmetric, while the
last one is asymmetric.
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x

y y′

x′

(i)

x

y y′

x′

(ii)

x

y y′

x′

(iii) a

b

c

d

(iv)

Fig. 1. The four possible initial configurations of four robots over a seven nodes ring.
Edges between consecutive nodes are not drawn.

Being in an asynchronous system, it is clearly impossible to design a gathering
algorithm that forces more than one robot to move from the same configuration.
In fact, this would rely on the assumption that such robots have started their
Look-Compute-Move cycles from the same configuration. Moreover, if an algo-
rithm relies on the movement of more than one robot from a same configuration,
the adversary can always force a robot to wake up after the movement of another
robot, i.e. form different configurations.

By the above discussion, the next two lemmata show that for each initial
configuration there exists only one possible move that any gathering strategy
can allow.

Lemma 1. Let C be a symmetric initial configuration among (i), (ii), and (iii),
a strategy to solve the gathering task can allow only the x↑ move.

Proof. Considering Fig. 1, let C coincide with (i). The move x↓ may produce
two multiplicities as well as y↑, and from [13] it follows that such configurations
are ungatherable. In fact, in a configuration composed of just two multiplicities,
robots might behave exactly like in a configuration where there are only two
single robots. By allowing y↓, configuration (i) can be obtained infinitely many
times as y and y′ may move simultaneously and exchange their positions. Hence,
only x↑ remains. If C coincides with (ii), then x↓ would output configuration
(i) from which we have shown that only x↑ is allowed, hence the configuration
would cycle between (i) and (ii), infinitely many times. Move y↑ could generate
configuration (ii) itself if only one robot moves. Move y↓ again generates (ii)
infinitely many times. Again, only x↑ remains. If C coincides with (iii), then
x↓ may produce two multiplicities as well as y↑. Move y↓ would outputs con-
figuration (ii) from which we have shown that only x↑ is allowed, hence the
configuration would cycle between (ii) and (iii) if a single robot moves, infinitely
times. It follows that x↑ is the only possible move from each symmetric initial
configuration. ��
Lemma 2. Let C be the asymmetric initial configuration (iv), a strategy to solve
the gathering task can allow only the move d → c.

Proof. Let C be the asymmetric configuration (iv) shown in Fig. 1. If a → b
is allowed, then configuration (i) is created, from which again configuration C
can occur, by Lemma 1. If a → d is allowed, then again configuration (iv) is
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obtained with node a that should move backwards to the original position. If
b → a is allowed, then configuration (iii) is created, from which again configura-
tion (iv) can occur by applying the move of Lemma1. If b → c is allowed, then
the sequence of configurations shown below might occur. By the arrow on top of
some robots we denote the decision made by the corresponding robot during its
Compute operation to move towards the indicated direction. We refer to such
a move as a pending move that will be performed during the Move operation,
eventually.

The above sequence of configurations shows that starting from (i), by
Lemma 1, both x and x′ can start their Look-Compte-Move cycle and move
the configuration to (iv) with a pending move. Then, by hypothesis, b → c is
applied. While b → c remains pending, the previous pending move is performed,
leading the configuration to (iii) but with a pending move. Finally, again x↑ is
applied leading the configuration to have one multiplicity (represented by the
full-black node) and a pending move. Since the last configuration might lead to
two multiplicities, the considered move b → c cannot be allowed.

If c → b is allowed, then the sequence of configurations shown below might
occur, leading to a configuration with two multiplicities.

If c → d is allowed, then the cycling sequence of configurations shown below
might occur.

If d → a is allowed, then the cycling sequence of configurations shown below
might occur.
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x x′
(v)

x x′

(vi)

x x′

(vii)

Fig. 2. The three possible symmetric configurations with one multiplicity.

Then the only move left is d → c, and the claim follows. ��

Lemma 3. Let C be a symmetric configuration with one multiplicity, a strategy
to solve the gathering task can allow only the x↑ move.

Proof. Let C be configuration (v) shown in Fig. 2. If x and x′ move toward
each other, the same configuration might be obtained. If robots composing the
multiplicity are allowed to move, then configuration (ii) might be obtained it the
two robots move simultaneously in opposite directions (note that no algorithm
can move the two robots in the same direction due to the symmetry of the
configuration). From (ii), by Lemma2, again configuration (v) can be obtained.

From configuration (vi), if single robots are allowed to move toward each
other, then configuration (v) can be obtained. By the above discussion, the two
single robots should move back, and configuration (vi) would be again obtained.
If robots composing the multiplicity are allowed to move, then configuration
(iii) might be obtained. From (iii), by Lemma2, again configuration (vi) can be
obtained.

From configuration (vii), if single robots are allowed to move away from the
multiplicity, then configuration (vi) can be obtained. By the above discussion,
the two single robots should move back, and configuration (vii) would be again
obtained. If robots composing the multiplicity are allowed to move, then a con-
figuration with two multiplicity can be obtained.

In any case, the only move left concerns single robots to move toward the
multiplicity. ��

3.1 Further Simplifications

All configurations with two multiplicities must not be reached since they are
ungatherable, hence any strategy does not need to specify a move for such con-
figurations. Similarly, any configuration with a multiplicity made of four robots
is final, hence no moves must be specified. All remaining configurations are
reported in Fig. 3, and for each one, a strategy should specify one move. From
(viii) to (xiii) there are six possible moves for each configuration to be tested,
while the other configurations induce four moves each. Overall, there are still
66 ∗ 43 = 2985984 possible strategies to check. Testing all such strategies might
be computationally prohibitive, so we need to eliminate some possibilities.
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(viii) (ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi)

Fig. 3. All the remaining configurations that must be managed by a strategy.

For instance, from (viii), we cannot move the multiplicity toward left since
if only one robot composing the multiplicity moves, then configuration (iv) is
created and by Lemma2 again configuration (viii) is obtained. From (ix) (from
(xii), resp.), the move of the single robot closest to the multiplicity toward right
would generate configuration (vi) (configuration (v), resp.) and by Lemma3
again configuration (ix) (configuration (xii), resp.) can be obtained. From (x),
moving the multiplicity to the right may generate the same configuration if only
one robot moves. From (xi) and (xiii), we can avoid moving one single robot
toward the other one as it would generate two multiplicities. From (xii), if the
multiplicity is moved to the left, the same configuration is obtained. From (xiv),
moving the multiplicity toward the single robot may produce two multiplicities,
while the opposite move may generate (vii), and by Lemma 3, again configuration
(xiv) can be obtained. From (xvi), moving the single robot or the multiplicity
toward left may generate the same configuration.

Finally, since configuration (i) can generate any other initial configuration
by applying the move of Lemma 1, when testing a strategy it can be discarded if
it generates (i) since this implies a cyclic sequence of configurations. Then from
(ix) and from (xiii), the move of the multiplicity toward left can be avoided.
Similarly, the move of the multiplicity toward right in (xi) can be eliminated.

By removing all such moves, there remain 57600 possible strategies. In the
next section, we make use of an automatic generator to check whether there is
at least one strategy that allows gathering.

3.2 Computer-Assisted Results

We made use of the functional language OCaml [1]. Each strategy is represented
by a string of 9 digits, corresponding to the nine configurations from (viii) to
(xvi). The i-th digit j represents the j-th move associated with the i-th config-
uration. For instance, the moves associated with (xiv) are in order: the single
robot moves away from the multiplicity or it moves toward the multiplicity. As
shown in the previous section no further moves can be associated with config-
uration (xiv). It follows that in each string representing a strategy, the 7-th
digit (corresponding to configuration (xiv)) ranges from 1 to 2. So the maximum
string is 545343242 since there are 5 moves for (viii), 4 for (ix), and so forth.
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1

2

3
4

5

6

7

Fig. 4. The order of representation for each configuration and the representation of
configuration [(1, 9); (0, 0); (1, 0); (2, 14); (0, 0); (0, 0); (0, 0)].

Each configuration is represented by a string of 7 pairs of integers. The first
integer of each pair represents the number of robots lying in the corresponding
node. The second integer represents the possible pending moves that correspond-
ing robots might implement. As shown in Fig. 4, the correspondence of pairs with
nodes is given by the clockwise order, starting from the bottom left node. For
implementing pending moves, a robot is associated with 9 if its pending move
is clockwise with respect to the current representation, with 5 if the pending
move is anti-clockwise. Combinations of such numbers determine different pend-
ing moves provided by robots lying at the same node. The configuration shown
in the figure admits a multiplicity with two robots that implement two opposite
pending moves, and in fact, they are represented by the pair (2, 14).

For each strategy we explore the graph of configurations that can be obtained
by starting from (i). A strategy is successful if all the branches lead to the final
configuration, that is the generated graph is a tree, and each leaf is the final
configuration. Contrary, we stop a test if a cycle is found or if a configuration
with two multiplicities (and without pending moves) is generated. We then report
in an output file the sequence of configurations that makes the tested strategy
fail. For instance, strategy 422232221 corresponds to set of moves depicted in
Fig. 5. This may induce the sequence of configurations depicted in Fig. 6 that
ends up in a cycle given by configurations (7)–(9).

By exhaustively exploring all the 57600 strategies left, our computations
show that there exists no successful strategy, that is, the first part of Theorem1

(viii) (ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi)

Fig. 5. Strategy 422232221. Arrows represent the defined moves.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9)

Fig. 6. Cyclic sequence of configurations generated by strategy 422232221.

is proven. Interested readers can found the implementation as well as the output
of our computations in [2].

4 Four Robots on a Nine Nodes Ring

When considering four robots on a nine nodes ring, it can be easily verified there
are 10 possible initial configurations out of which 6 are symmetric. Among those
6 configurations, 4 belong to SP4, see the first four configurations of Fig. 7.
Recall from [8] that the only node where gathering can be potentially finalized
in configurations belonging to SP4 is the middle one of the odd interval of
free nodes cut by the axis. Moreover, it is worth noting that in order to gather
a configuration belonging to SP4 it is necessary to reach a configuration not
belonging to SP4 (like configuration (v) in Fig. 7). We now prove the second
part of Theorem 1 by defining a specific behavior of the adversary. Starting from
one configuration in SP4, whatever a gathering algorithm specifies to move,
the adversary allows synchronous moves as long as the configuration remains in
SP4, otherwise the adversary allows only one robot to move.

Similarly to the case shown for the seven nodes ring, from (i) only x↑ can
be allowed, hence reaching (ii). From (ii) only two moves can be allowed by any

x

y y′
x′

(i)

x

y y′

x′

(ii)

x

y y′

x′

(iii)

x

y y′

x′

(iv)

x

y y′

x′

(v) (v.1) (v.2)

Fig. 7. The four possible initial configurations belonging to SP4 of four robots over a
nine nodes ring and a configuration not in SP4 with two possible pending moves
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gathering algorithm, that is x↑ and y↑ that lead to (iii) and (iv), respectively.
From (iv), the only way to exit class SP4 is by x↑, in which case the adversary
makes only one robot move, hence leading to (iii). From (iii), the only ways to
exit SP4 are by x↑ or y↑. By making move only one robot, in the former case
(iv) is again obtained while in the latter case (v) is obtained with a possible
pending move, as shown in (v.1).

From (v), by considering x↑, the adversary can bring the configuration to (iii)
starting from (v.1) and performing both the move of the pending robot and x↑.
Moves x↓ and y↓ bring to (iv) and (iii), respectively. So, it remains only y↑. The
adversary brings the configuration to (v.2) by starting from (v.1), performing
the pending move and leaving pending y↑ which now corresponds to x↑. From
(v.2), by performing both the pending moves x↑ and y↑, again (ii) is obtained.

We conclude there exists no strategy to exit class SP4.

5 Concluding Remarks

We have shown that the gathering of four robots on a seven or nine nodes ring is
not feasible. Apart from its own interest as combinatorial problem, the obtained
results disprove some previous works. It is worth nothing that some initial con-
figurations are gatherable according to [13] if considered alone within the set of
aperiodic and asymmetric configurations. Indeed, our results state the impos-
sibility for gathering in general, i.e., when no assumptions are made on initial
configurations. Moreover, configurations belonging to the set SP4 do not allow
any gathering strategy even when considered the only possible initial configura-
tions. Unfortunately, similar arguments applied for the case of nine nodes ring do
not extend for rings of different size (including seven). Gathering configurations
in SP4 with more than nine nodes still constitute an open problem. Actually,
we have tried some strategies by extending the simulator described in Sect. 3.2
to gather configurations with eleven nodes but without succeeding so far. In
fact, the conducted computer-assisted approaches seem to reveal the following
statement:

Conjecture 1. Configurations in SP4 are ungatherable.

The intuition comes by observing that when starting from configurations
where the four robots lay one after the other (like in configuration (i) of Fig. 1
and configuration (i) of Fig. 7), we know that by [8] the only node ν where
gathering can be potentially finalized is the one opposite to the middle robots.
To reach such a node, robots should be moved toward the other pole of the ring
where ν lies. If they all move then it is possible to create a configuration similar
to the initial one near to ν. If only two symmetric robots move, then orthogonal
symmetries can easily occur.
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Abstract. In the dynamic tree problem the goal is the maintenance of
an arbitrary n-vertex forest, where the trees are subject to joining and
splitting by, respectively, adding and removing edges. Depending on the
application, information can be associated to nodes or edges (or both),
and queries might require to combine values in path or (sub)trees. In this
paper we present a novel data structure, called the Depth First Tour Tree,
based on a linearization of a DFS visit of the tree. Despite the simplicity of
the approach, similar to the ET-Trees (based on a Euler Tour), our data
structure is able to answer queries related to both paths and (sub)trees. In
particular, focusing on subtree computations, we show how to customize
the data structure in order to answer queries for a concrete application:
keeping track of the biconnectivity measures, including the impact of the
removal of articulation points, of a dynamic undirected graph.

1 Introduction

In the dynamic tree problem the goal is the maintenance of an arbitrary n-
vertex forest, where the trees are subject to joining and splitting by, respectively,
adding and removing edges. Depending on the application, information can be
associated to nodes or edges (or both), and queries might require to combine
values in path or (sub)trees.

The dynamic tree problem has several applications, ranging from net-
work flows [12,21,22], one of the original motivations, to other graph algo-
rithms including connectivity [13], biconnectivity [8], and minimum spanning
trees [8,13], and other combinatorial problems [15,16]. With such a wealth of
applications, it is not surprising the fact that there are several approaches to
solve (at least partially) the dynamic tree problem using O(log n) time per oper-
ation: ST-trees [20,21], ET-trees [13,22], topology trees [8–10], top trees [3,4,23],
RC-trees [1,2], and Mergeable Trees [11] that build up on the ST-tree and, as
the name suggests, support also the merge operation. All these approaches map
a generic tree into a balanced one, and can be divided into three main categories:
path decomposition (ST-trees, Mergeable Trees), tree contraction (topology trees,
top trees, RC-trees), and linearization (ET-trees); refer to the dissertation of

c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 148–160, 2016.
DOI: 10.1007/978-3-319-29516-9 13
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Werneck [25] and the experimental comparison of Tarjan and Werneck [24] for
a more complete picture about techniques and applications.

Approach. In this paper we present a novel data structure, called the Depth First
Tour Tree (DFT-Tree), to solve the dynamic tree problem; the DFT-Tree, as
the ET-Tree, is based on a linearization: as the name suggests, we linearize the tree
following a DFS visit of it (see Fig. 1, where is shown for comparison also the Euler
Tour). The main consequence of this approach is that the whole subtree of a node
is stored contiguously, thus allowing us fast operations on the subtree, as we will
detail in the rest of the paper. As we can see from Fig. 1, for example, the subtree
of node 4 is contiguous in the DFT-Tree, whilst node 4 itself appears twice in
its own subtree in the corresponding ET-Tree. DFT-Tree data structure can be
easily implemented on top of any Balanced Binary Search Tree (BBST), such as
Splay Trees [21] and Red-Black Trees [6].

The idea of linearizing the tree according to its DFS visit and maintaining the
linearization in an efficient data structure is not new in the literature. Indeed, the
very idea was exploited in other works, most notably [14,17,18], in the context
of succinct trees. However, given the additional constraint of succinctness, the
focus of these works is inherently different, and the set of supported queries is
weaker and less oriented to data-processing operations.

The DFT-Tree supports all the operations shown in Table 1, that are
divided in three groups: (i) structural operations, i.e. the ones that alter the
structure of the tree, (ii) structural queries, and (iii) operations related to the
values stored in the vertices; as we can see, it supports all the traditional dynamic
tree operations together with others, such as lca and condense, that are not
completely standard and, thus, not supported by all the data structures; con-
dense, in particular, allows to use the DFT-Tree to implement the Block
Forest structure, following the exact algorithm of Westbrook and Tarjan [27].

Furthermore, the DFT-Tree supports three non standard generic opera-
tions, to be customized depending on the applications, that are:

– combine(v), that aggregates values in the path between vertex v and the root
of the tree;

– reduce-children(v), that aggregates values of the children of v;
– reduce-child-subtrees(v), that aggregates values in the subtrees rooted in

the children of v.

These generic functions are, probably, the most interesting aspect of DFT-
Trees.

Contribution. We propose a novel data structure, combining the simplicity of
the Euler Tour trees with the expressiveness of the Depth First visit of a tree.
We believe that the contribution of our approach is twofold:

– the resulting data structure is simple, using only elementary concepts, and
thus is easy to understand, analyze and implement;

– we give a unified framework for treating a vast class of data aggregation tasks
on subtrees.
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While our data structure is able to support basic operations on paths, it is
primarily designed to aggregate data on subtrees, an operation which is usually
non-trivial with other data structures.

Unlike ST-trees, topology trees and RC-trees, DFT-Trees do not require
the underlying forest to have vertices with bounded (constant) degree in order
to efficiently cope with subtree queries. Degree restrictions can be avoided by
ternarizing the input forest but, as observed in [26], “this introduces a host of
special cases” and complicates the data structure. In the special case of ST-trees,
some work has been done [19] to support queries on subtrees for a restricted set
of operations (for example, giving the minimum element of a given subtree)
without the need for ternarization, but the resulting data structure is still very
complicated, both to analyze and implement. The same task can be performed
extremely easily with DFT-Trees.

Furthermore, DFT-Trees can naturally aggregate on all the children sub-
trees of a node v in parallel without having to pay a cost proportional to the
degree of v itself: for example, as we will see, given a node v it takes O(log n),
independently from the degree of v, to answer the child of v whose subtree is the
largest. This is an interesting feature that distinguishes our data structure, and
can be useful for practical problems, as we will demonstrate in the final sections
of this paper.

The extreme flexibility of use of the structure comes at the cost of its struc-
tural rigidity. In particular, while all other structural operations require logarith-
mic time in the forest size, the evert operation requires a cost proportional to
the depth of the node being everted. However, when either the number of ever-
sions is small compared to the total number of queries performed, or the costs of
the eversion is amortized, the cost of evert can be regarded as being O(log n)
like all the other structural operations. This is the case in all the applications
we present here and in the extended paper1.

Applications. In order to explain the versatility of the approach, we show how
to customize the above functions for a concrete application:

– Given a streaming graph, for which we maintain all the biconnected proper-
ties using the mentioned approach of Westbrook and Tarjan, we can also com-
pute the impact of an articulation point u, introduced in the context of the
Autonomous Systems (AS) graph, as a measure of the resiliency of the network.
The impact of u is defined as the number of vertices that gets disconnected
from the main connected components after the removal of u. This application
requires the determination of the subtree of a node having maximum size.

Refer to the extended paper for further applications:

– The betweenness centrality of a vertex v in a tree. This requires to count the
sum of the squares of the sizes inside subtrees.

– The closeness centrality of a vertex v in a tree. This requires the sum of the
distances to every node in the subtree and in the tree above v.

1 The extended paper can be found at http://arxiv.org/abs/1502.05292.

http://arxiv.org/abs/1502.05292


Dynamic Subtrees Queries Revisited: The Depth First Tour Tree 151

1

2 3

4 5 6 7

8 9 10

Euler tour:
1 2 4 8 4 9 4 10 4 2 5 2 1 3 6 3 7 3 1

Depth first tour and parenthetical sequence:
1
(

2
(

4
(

8
(

8
)

9
(

9
)

10
(

10
)

4
)

5
(

5
)

2
)

3
(

6
(

6
)

7
(

7
)

3
)

1
)

Fig. 1. An example of Euler Tour, Depth First Tour and parenthetical sequence of a
tree (introduced in Sect. 3).

Table 1. DFT-Tree operations on an n vertex forest. The complexity values reported
are amortized complexity if we implement the DFT-Tree with Splay Trees [21] and
worst-case complexity if we use Red-Black Trees [6].

Operation Complexity Description

link(u, v) O(log n) Makes the root of the tree containing vertex v a
child of vertex u

cut(v) O(log n) Deletes the edge connecting v to its parent, splitting
the tree. If v is the root of the tree, nothing
happens

condense(v) O(log n) Deletes vertex v; its children become children of the
parent of v. If vertex v is the root, the number of
connected components of the forest increases by
d − 1, with d being the degree of v

erase(v) O(log n) Deletes vertex v and all its adjacent edges

evert(v) O(d logn)a Re-roots the tree containing vertex v at vertex v

root(v) O(log n) Returns the root of the tree containing node v

same-tree(u, v) O(log n) Tests if nodes u and v belong to the same tree

is-descendant(u, v) O(log n) Answers whether node u is a descendant of v

parent(v) O(log n) Returns the parent of node v

ancestor(v, k) O(log n) Returns the ancestor of node v at depth dv − k,
where dv represents the depth of v, if existent

lca(u, v) O(log n) Returns the lowest common ancestor of nodes u and
v (if they belong to the same tree)

degree(v) O(log n) Returns the degree of node v

list-children(v) O(δ logn)b Returns a list containing the children of vertex v

change-val(v, x) O(log n) Assigns val(v) = x

reduce-children O(log n)c See description in the text, Sect. 4

reduce-child-subtrees O(log n)c See description in the text, Sect. 4

combine O(log n)c See description in the text, Sect. 4
aWhere d is the depth of the node involved. We note that the evert operation is slow in
the worst case, but it is possible to amortize it by always everting the smallest tree.
bWhere δ is the degree of the node passed as argument to degree.
c Assuming that the operations (denoted with ⊕ and ⊗) in reduce-children, reduce-
child-subtrees and combine take constant time when called with two nodes.



152 G. Farina and L. Laura

u

v u u
( ( ) ( ( ) ( ) ) )

vv
( ( ( ) ( ) ( ) ) )

u v v u
( ( ) ( ( ( ( ) ( ) ( ) ) ) ( ) ( ) ) )

link(u, v) cut(v)

u

v

u

condense(v)

uu vv

( ( ( ( ) ) ( ( ) ( ( ) ) ( ) ) ) ( ) )

uu

( ( ( ( ) ) ( ) ( ( ) ) ( ) ) ( ) )

condense(v)

Fig. 2. Effect of the link, cut and condense operations.

2 Preliminaries

We assume the reader is familiar with basic concepts of graph theory (see, e.g.,
[7]). We recall that, in an undirected graph G, a connected component is a max-
imal set of vertices V ′ ⊆ V such that, given u, v ∈ V ′, there is at least one
path between u and v in G; an articulation point is a vertex v ∈ V such that
its removal from the graph G increases the number of connected components of
G; similarly a bridge is an edge e ∈ E such that its removal from the graph G
increases the number of connected components of G. A biconnected component is
a maximal set of vertices V ′′ ⊆ V such that after the removal of any v ∈ V ′′, the
remaining graph V ′′/v is connected. Following [5], the impact of an articulation
point is the number of vertices that get disconnected from the largest connected
component when v is removed from the graph.

3 Depth First Tour Trees

In this section we describe the main idea of the DFT-Trees, which builds up
on the Depth First Visit of the tree and its linearization into an array; for the
sake of the exposition we will populate this array with (opening and closing)
parentheses that will be denoted as the parenthetical sequence of the tree. The
other key ingredient of the DFT-Trees is a summary defined over the paren-
thetical sequence: in the underlying BBST the node corresponding to vertex v
is augmented with both the information about v and the summary of its sub-
tree (in the BBST). The depth first visit of a tree is constructed by recursively
visiting nodes in a depth-first fashion. When a node is entered for the first time,
it is appended to the back of depth first tour, along with a tag indicating it
was a newly-opened node (called an open-node); when all its children have been
visited, we push back the node again before returning the call, this time with tag
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Fig. 3. Depth of a sequence of parentheses. In this case, the summary of the sequence
is the pair (−1, 3). The summary of the first four parentheses is (0, 2).

indicating this is a fully explored node (called a close-node). Since every node
is appended to the list exactly twice, the size of the depth first tour of a tree of
size n is 2n.

Figure 1 shows the depth first tour of an example tree of size 10, together
with its linearization: an array that contains its parenthetical sequence; the Euler
Tour of the same tree is shown for comparison: note that in an Euler Tour a
node can appear several time; the size of an Euler Tour is 1 + 2m = 2n − 1,
since an Euler Tour begins with a node and then, for each edge of the tree, both
its endpoints are added exactly once, when entering the node. In Fig. 2 we can
see the effects of the link, cut and condense operations on the tree and the
corresponding parenthetical sequence.

Definition 1 (depth of a parenthesis). We define the depth of a parenthesis
in a sequence of parentheses as the difference between the number of open paren-
theses and the number of closed parentheses in the prefix of the given sequence
ending in that parenthesis.

The sequence of the depths of the parentheses coincides with the prefix sums of
the sequence obtained by replacing every open parenthesis with a 1 and every
closed parenthesis with a −1.

Definition 2 (summary of a sequence of parentheses). We define the
summary of a sequence of parentheses as the pair of integers (a, b), where a is the
minimum between 0 and the minimum depth of the parentheses of the sequence,
and b is equal to the difference between the depth of the last parenthesis and a.

In the following, we refer to the first value of the summary as to the down-
value, and to the second as to the up-value. Note that the down-value of a
summary is always non-positive, while the up-value is always non-negative. In
Fig. 3 we show a graphical representation of the depth of the parentheses in the
sequence: for example, the summary of the whole sequence is the pair (−1, 3),
whilst the summary of the first four parentheses is (0, 2). It should be clear that
the summary of the sequence made of just one open parenthesis is (0, 1), while
the summary of the sequence made of just one closed parenthesis is (−1, 0).

The following lemmas hold for any sequence of parentheses:

Lemma 1. The down-values of the prefixes, taken in order, of any sequence of
parentheses form a monotonically decreasing sequence of integers.
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Fig. 4. Characterization of the parent of node v, as stated in Lemma 5. The values
under the small dots represent the down-values of the prefixes.

Lemma 2. A sequence of parentheses is balanced if, and only if, its summary is
equal to (0, 0). Any prefix of a balanced parenthetical sequence has down-value 0.

Lemma 3. Let S1, S2 be two sequences of parenthesis having summary (a1, b1)
and (a2, b2) respectively. The summary of the sequence S1 + S2 obtained by con-
catenating S1 and S2 is the pair (a1, b1) � (a2, b2), where the sum between sum-
maries is defined as:

(a1, b1) � (a2, b2) =
{

(a1, b1 + a2 + b2) if b1 + a2 ≥ 0

(a1 + b1 + a2, b2) otherwise.

Lemma 4. The sum of two summaries defined above is an associative operation.

As a consequence of Lemma 4, as we mentioned before, we can store in each
vertex of the BBST the sum of the summaries of all the vertices in its subtree.
We proceed with the following lemma:

Lemma 5. Let close-v be the close-node associated with the non-root node v.
The close-node associated with the parent of v is the first (leftmost) node u after
close-v reaching depth −1 relative to close-v.

Lemma 5, together with the associativity of � and the monotonicity of the
down values of the prefixes of any (sub)sequence of parentheses (Lemma 1), gives
us an efficient way to locate the parent of any non-root node: we simply binary
search the smallest prefix having a negative down-value, inside the suffix of the
parenthetical sequence starting after close-v. Refer to Fig. 4 for a visual insight.
Similar properties hold for lca and ancestor: for example, for the k-th ancestor
we can (binary) search the first node reaching relative depth −k with respect to
close-v, after close-v.

4 Subtree (and Path) Operations

In this section we detail the subtree and path operations. As we mentioned
before, we assume that each node v has an associated value (note that values can
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Fig. 5. Visual insight for Lemma 6. The numbers written in the nodes of the tree on
the left represent the values assigned to the vertices.

be generic objects, not only numbers), denoted by val(v). We have the following
three generic operations on a node that operate, respectively, on its children, on
its subtree, and on the path from the node to the root:

– reduce-children(v,⊕): Computes the value of val(c1)⊕· · ·⊕val(cd), where
c1, . . . , cd are the children of node v, and ⊕ is an associative operation (not
necessarily invertible).

– reduce-child-subtrees(v,⊕,⊗): Computes the value of Σ(c1) ⊗ Σ(c2) ⊗
Σ(c3) ⊗ · · · ⊗ Σ(cd) where c1, . . . , cd are the children of node v, ⊕ and ⊗ are
associative operations (not necessarily invertible), and Σ(x) = val(x1)⊕ · · ·⊕
val(xm) is some information about the subtree rooted at x and containing
nodes x1, . . . , xm.

– combine(v,�): Computes the value of val(v1) � · · · � val(vm), where v =
v1, v2, . . . , vm are the nodes in the path from v to the root of the tree, and �
is an associative and invertible operation.

Differently from all other arguments, the operations denoted with ⊕, ⊗ and �
used in the three operations above have to be known in advance, so that the
DFT-Tree knows what partial evaluations it should memoize in the nodes.

Among the three operations, combine is the most straightforward,
implementation-wise. The idea is to assign a value to both the open-nodes and
close-nodes of the DFT-Tree: we assign the value of the vertex val(v) to the
open-node of v, and the opposite value −val(v), i.e. the inverse of val(v) with
respect to operation �, to the corresponding close-node. We can thus state the
following lemma, depicted in Fig. 5 for the case � is the traditional sum operator
‘+’:

Lemma 6. Let open-v be the open node associated with the tree node v. The
value of combine(v,�) is equal to the �-combination of the values of the nodes
in the prefix of the DFT-Treeending in open-v.

In order to implement reduce-children and reduce-child-subtree, we
need to extend the summary of a sequence of parentheses.



156 G. Farina and L. Laura

Let us note that it is possible to uniquely decompose any sequence of paren-
theses in three contiguous (possibly empty) pieces, namely a prefix, a body and
a suffix. If the down-value of the sequence is (strictly) negative, then the prefix
ends in leftmost minimal-depth parenthesis of the sequence, and the body ends
in the rightmost minimal-depth parenthesis. If, on the contrary, the down-value
of the sequence is 0, we can distinguish two separate cases: if the up-value is 0,
then both the prefix and the suffix are empty, and the body coincides with the
whole sequence; else, both the prefix and the body are empty, and the suffix coin-
cides with the whole sequence. In any case, notice that the body of a sequence is
a balanced subsequence, made of zero or more subtrees. As an example, consider
these five sequences:

– )()((): the prefix is ), the body is () and the suffix is (()
– )()): the prefix is )()), both body and suffix are empty
– ))(: the prefix is )), the body is empty and the suffix is (
– ((): both the prefix and the body are empty, and the suffix is (()
– (()()): both the prefix and the suffix are empty, while the body is (()())

We use this property, i.e. the unique decomposition of a sequence of parentheses,
in the two summaries, used respectively by reduce-children and reduce-
child-subtree to incrementally aggregate information about subtrees. Below
we report the simpler one, used in reduce-children:

Definition 3 (rc-summary). An rc-summary of a sequence of parentheses is
a tuple having these fields:

– prefix-depth, the depth of the minimal-depth parenthesis
– body-combination, the ⊕-combination of the values of the nodes associated

with the subtrees of the body of the sequence.
– suffix-depth, the difference between the depth of the last parenthesis and

the depth of any minimal-depth parenthesis.
– suffix-info, the value associated with the first node of the suffix, if any.

The similar rcs-summary, used in reduce-child-subtree, is reported in
the extended paper. These two summaries, to be stored as usual in the nodes
of the underlying BBST, and the three generic functions above can be used to
implement several functions, and below we report few examples.

Functions implemented using reduce-children. We can use reduce-
children to implement:

– children-sum(v): Finds the sum of the values of the children of node v. This
is equivalent to reduce-children(v,+).

– children-max(v): Finds the maximal value among those of the children of
node v. This is equivalent to reduce-children(v,max).

Note that, if we set val(x) = 1 for every vertex in the forest, degree(v) can be
derived as well from reduce-children(v,+).

Functions implemented using reduce-child-subtrees. In the case of
reduce-child-subtrees we can implement:
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Fig. 6. A graph (left) and its Block Forest [27] (right).

– subtree-sum(v): Finds the sum of the values of the nodes in the subtree of
node v, and is equivalent to val(v) + reduce-child-subtrees(v,+,+).

– subtree-size(v): Finds how many nodes are there in the subtree of node v,
and is equivalent to subtree-sum(v) when val(x) = 1 for every node x of the
forest.

– subtree-max(v):
Finds the maximal value among those of the nodes in the subtree of node
v, and is equivalent to max(val(v),reduce-child-subtrees(v,max,max).

– maxsum-child(v): Finds the maximal value of subtree-sum among the chil-
dren of node v. This is equivalent to reduce-child-subtrees(v,+,max)).

Functions implemented using combine. A simple example of combine is
depth(v), which finds the depth of node v, i.e. the distance from v to the root
of the tree v belongs to. Indeed, this is equivalent to combine(v,+), assuming
val(x) = 1 for every node x of the forest. We can implement distance(u, v), i.e.
the distance in the tree between u and v, by computing depth(u)+depth(v)−
2 · depth(lca(u, v)). If we want to compute the distances in a weighted tree
(i.e., we have weights on the edges), the same idea holds; since we store the
information in the nodes, we store the weight of an edge connecting a child node
to the parent node inside the child node.

5 Application: Biconnectivity Properties and Impact
of Articulation Points

The DFT-Tree can be used to maintain all the (bi)connectivity properties of
a streaming graph, following the same approach proposed by Westbrook and
Tarjan [27]: as we mentioned before, it is sufficient to observe that the DFT-
Tree supports all the operations needed by the algorithm of Westbrook and
Tarjan to maintain the Block Forest (shown in Fig. 6), including condense
that, as we mentioned before, is not a standard operation in the case of the
dynamic tree problem. Indeed, it is possible to maintain connected and bicon-
nected components, and bridges and articulation points of a streaming graph.

We now show how to answer queries on the impact of an articulation point.
We recall, from [5], that the impact of an articulation point v is the number
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of nodes that get disconnected from the main connected component when v is
removed from the graph. Looking at the the Block Forest, Fig. 6 (right), it is easy
to see that the articulation points are exactly the square nodes that connect two
or more round nodes (the biconnected components). When an articulation point
is removed, its Block Tree splits into pieces: in order to compute the impact, we
need to know the size of each of them: the impact is, by definition, the sum of
all the size of the trees except the largest one (the main connected component).
If we refer the subtree operations seen in the previous section, we can use the
DFT-Tree in the following way:

– The value in each round node in the tree is 0 (they corresponds to biconnected
components), and 1 in each square node (corresponding to real nodes in the
graph).

– The size of the Block Tree can be computed by finding the root of the tree,
using root and then computing its subtree-size.

– The size of the maximum subtree of v can be computed using maxsum-child.

It is easy to see that, with the operations described above, we can compute the
impact of a node, and thus we can state the following result.

Lemma 7. Using a DFT-Tree, it is possible to answer impact queries of a
vertex in time O(log n).

6 Conclusion and Future Works

In this paper we presented a novel data structure, the Depth First Tour Tree.
This structure is based on a linearization of a DFS visit of the tree, similarly
to the ET-Trees (based on a Euler Tour). The structure is simple and easy
to implement; it provides a framework for a large class of data aggregation
tasks – especially on subtrees, a task that is usually non-trivial with other data
structures. Furthermore, DFT-Trees can naturally aggregate on all the children
subtrees of a node v in parallel without having to pay a cost proportional to the
degree of v itself: as we already mentioned, given a node v it takes O(log n),
independently from the degree of v, to answer the child of v whose subtree is
the largest. This flexibility, related to subtree queries, is paid by the evert
operation, that requires a cost proportional to the depth of the node being
everted. However, as discussed, when either the number of eversions is small
compared to the total number of queries performed, or the costs of the eversion
is amortized, the cost of evert can be regarded as being O(log n) like all the
other structural operations. This is the case in the illustrated application.

In the future, we plan to experimentally assess the performance of our data
structure, and compare it with the existing alternatives, following the approach
of [24]. We believe that the simplicity of our approach, when compared e.g. to
the work of [19] in the context of the subtree-max operation, is likely to deliver
faster and more readable code in practice.
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Abstract. We introduce the notions of Schröder shape and of Schröder
tableau, which provide some kind of analogs of the classical notions of
Young shape and Young tableau. We investigate some properties of the
partial order given by containment of Schröder shapes. Then we propose
an algorithm which is the natural analog of the well known RS corre-
spondence for Young tableaux, and we characterize those permutations
whose insertion tableaux have some special shapes. We end our paper
with a few suggestions for possible further work.

1 Introduction

Given a positive integer n, a partition of n is a finite sequence of positive integers
λ = (λ1, λ2, . . . , λr) such that λ1 ≥ λ2 ≥ · · · ≥ λr and n = λ1 + λ2 + · · · + λr.
When λ is a partition of n we also write λ � n. A graphical way of representing
partitions is given by Young shapes. The Young shape of the above partition
λ � n consists of r left-justified rows having λ1, . . . , λr boxes (also called cells)
stacked in decreasing order of length. The set of all Young shapes can be endowed
with a poset structure by containment (of top-left justified shapes). Such a poset
turns out to be in fact a lattice, called the Young lattice. A standard Young
tableau with n cells is a Young shape whose cells are filled in with positive
integers from 1 to n in such a way that entries in each row and each column are
(strictly) increasing.

Young tableaux are among the most investigated combinatorial objects. The
widespread interest in Young tableaux is certainly due both to their intrinsic
combinatorial beauty (which is witnessed by several surprising facts concerning,
for instance, their enumeration, such as the hook length formula and the RSK
algorithm) and to their usefulness in several algebraic contexts, typically in the
representation theory of groups and related matters (such as Schur functions
and the Littlewood-Richardson rule).

Apart from their classical definition, there are several alternative ways to
introduce Young tableaux. In the present paper we are interested in the possi-
bility of defining standard Young tableaux in terms of a certain lattice structure
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on Dyck paths. The main advantage of this point of view lies in the possibility
of giving an analogous definition in a modified setting, in which Dyck paths are
replaced by some other class of lattice paths. Here we will try to see what hap-
pens if we replace Dyck paths with Schröder paths, just scratching the surface
of a theory that, in our opinion, deserves to be better studied.

Given a Cartesian coordinate system, a Dyck path is a lattice path starting
from the origin, ending on the x-axis, never falling below the x-axis and using
only two kinds of steps, u(p) = (1, 1) and d(own) = (1,−1). A Dyck path can be
encoded by a word w on the alphabet {u, d} such that in every prefix of w the
number of u’s is greater than or equal to the number of d’s and the total number
of u and d in w is the same (the resulting language is called Dyck language and
its words Dyck words). The length of a Dyck path is the length of the associated
Dyck word (which is necessarily an even number).

Consider the set Dn of all Dyck paths of length 2n; it can be endowed with a
very natural poset structure, by declaring P ≤ Q whenever P lies weakly below
Q in the usual two-dimensional drawing of Dyck paths (for any P,Q ∈ Dn).
This partial order actually induces a distributive lattice structure on Dn, to be
denoted Dn and called Dyck lattice of order n. This can be shown both in a direct
way, using the combinatorics of lattice paths (see [FP]), and as a consequence
of the fact that Dn is order-isomorphic to (the dual of) the Young lattice of
the staircase partition (n − 1, n − 2, . . . , 2, 1) (that is the principal down-set
generated by such a staircase partition in the Young lattice). Referring to the
latter approach, any P ∈ Dn uniquely determines a Young shape, which can be
obtained by taking the region included between P and the maximum path of
Dn, then slicing it into square cells using diagonal lines of slope 1 and −1 passing
through all points having integer coordinates, and finally rotating the sheet of
paper by 45◦ anticlockwise (see Fig. 1).

Fig. 1. A Dyck path and the associated Young shape.

It is well known that there is a bijection between standard Young tableaux of
a given shape and saturated chains in the Young lattice starting from the empty
shape and ending with that shape. Translating this fact on Dyck lattices, we can
thus state that standard Young tableaux of a given shape are in bijection with
saturated chains (inside a Dyck lattice of suitable order) starting from the Dyck
path associated with that shape and ending with the maximum of the lattice.
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This suggests us to try to find an analog of this fact in which Dyck paths are
replaced by other types of paths. As already mentioned, the case treated in the
present paper is that of Schröder paths.

In Sect. 2 we introduce the notion of Schröder shape and study some prop-
erties of the poset of Schröder shapes (in some sense analogous to those of the
Young lattice). In Sect. 3 we introduce the notion of Schröder tableau and we
define an algorithm which, given a permutation, produces a pair of Schröder
tableaux having the same Schröder shape; this is made in analogy with the clas-
sical RS algorithm. In particular, we will address the problem of determining
which permutations are mapped into the same Schröder insertion tableau, and
we solve it for a few special shapes. Finally, we devote Sect. 4 to the presentation
of some directions of further research.

2 The Poset of Schröder Partitions

A Schröder shape is a set of triangular cells in the plane obtained from a Young
shape by drawing the NE-SW diagonal of each of its (square) cells, and possibly
adding at the end of some rows one more triangular cell, provided that, in a
group of rows having equal length, only the first (topmost) one can have an
added triangle. The number of cells of a Schröder shape is called the order of
that shape. An example of a Schröder shape is illustrated in Fig. 2.

Fig. 2. A Schröder shape of order 25.

A Schröder shape has triangular cells of two distinct types, which will be
referred to as lower triangular cells and upper triangular cells. In particular, rows
having an odd number of cells necessarily terminate with an upper triangular
cell. A Schröder shape determines a unique integer partition, whose parts are the
number of cells in the rows of the shape. For instance, the partition associated
with the shape in Fig. 2 is (9, 6, 6, 3, 1). As a consequence of the definition of
a Schröder shape, it is clear that not every partition can be represented using
a Schröder shape. More precisely, we have the following result, whose proof is
completely trivial and so it is left to the reader.

Proposition 1. An integer partition can be represented with a Schröder shape
if and only if its odd parts are simple (i.e. have multiplicity 1).
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Those integer partitions which can be represented with a suitable Schröder
shape will be called Schröder partitions. The set of all Schröder partitions will
be denoted Sch, and the set of Schröder partitions of order n with Schn. From
now on we will frequently refer to Schröder shapes and to Schröder partitions
interchangeably, when no confusion is likely to arise.

From the enumerative point of view, the number of Schröder partitions is
known, and is recorded in [Sl] as sequence A006950. In particular, the generating
function of Schröder partitions is given by

∏

k>0

1 + x2k−1

1 − x2k
.

There are several combinatorial interpretations for the resulting sequence,
however an appropriate reference for the present one (in terms of Schröder par-
titions) appears to be [D]. In that paper the author proves a far more general
result, concerning partitions such that the multiplicity of each odd part is in a
prescribed set and the multiplicity of each even part is unrestricted.

It is interesting to notice that this sequence is also relevant from an algebraic
point of view. Indeed it coincides with the sequence of numbers of nilpotent
conjugacy classes in the Lie algebras o(n) of skew-symmetric n × n matrices.
This suggests that Schröder partitions have a role in representation theory that
certainly deserves to be better investigated.

Here we propose a refined enumerative result, namely we describe a simple
recurrence for the number of Schröder partitions of n into k parts.

Proposition 2. Denote with sn,k the number of Schröder partitions of n into
k parts and with s′

n,k the number of Schröder partitions of n into k parts having
smallest part different from 1. Then, for all n ≥ k ≥ 1:

(i) sn,k = s′
n,k + s′

n−1,k−1;
(ii) s′

n,k = s′
n−2,k−1 + s′

n−2k−1,k−1 + s′
n−2k,k.

Proof. We immediately observe that the set of Schröder partitions of n into k
parts whose smallest part is equal to 1 is in bijection with the set of Schröder
partitions of n into k−1 parts whose smallest part is different from 1. This gives
at once the formula in (i).

Concerning (ii), given a Schröder partition λ of n into k parts with no part
equal to 1, we distinguish two cases. If λ has at least one part equal to 2, then
removing it leaves us with a Schröder partition of n − 2 into k − 1 parts, still
having no part equal to 1. Otherwise, removing the first two columns of λ returns
a Schröder partition of n − 2k into k parts, possibly having one part equal to 1.
From here, using (i), we immediately obtain (ii). �

Though the formalism of Schröder shapes seems not to add relevant informa-
tion on the enumerative combinatorics of Schröder partitions, it suggests at least
an interesting family of maps on integer partitions, which turns out to define a
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family of involutions if suitably restricted. Consider the family of maps (cn)n∈N

defined on the set of all integer partitions as follows: given a partition λ and a
positive integer n, cn(λ) is the integer partition μ = (μ1, μ2, . . . , μk) (of the same
size as λ) whose i-th part μi is given by the sum of the n columns of (the Young
shape of) λ from the ((i − 1)n + 1)-th one to the (in)-th one. So, for instance,
c3((7, 6, 6, 6, 4, 3, 3, 1)) = (22, 13, 1). Since each of the above maps preserves the
size of a partition, it is clearly an endofunction when restricted to the set of all
integer partitions of size n. Notice that c1 is the well-known conjugation map
(which exchanges rows with columns in a Young shape). In spite of the fact that
c1 is an involution (on the set of all partitions), it is easy to see that all the other
cn’s are not involutions. However, it is possible to characterize the set of those
partitions for which c2n acts as the identity map.

Proposition 3. Given n ∈ N and an integer partition λ (whose i-th part will
be denoted λi, as usual), we have that c2n(λ) = λ if and only if the following two
conditions hold:

– if λi �≡ 0 (mod n), then λi is simple;
– there is at most one part λi of λ such that λi < n.

Proof. For any given λ, suppose that there exists one part of cn(λ) which is
�≡ 0 (mod n); denoting with μ′ the first of them, this means that λ has a set of n
consecutive columns whose sum is equal to μ′. Since μ′ �≡ 0 (mod n), this implies
that such n columns are not all equal. Now, since in a Young shape columns are
in decreasing order of length, it is impossible that the successive n columns of
λ sum up to μ′, hence μ′ is simple. We have thus proved that the first of the
two conditions in the above statement holds for every partition in the image
of cn. This is enough to conclude that, if c2n(λ) = λ, then necessarily the same
condition holds for λ (which lies indeed in the image of cn). Moreover, if λ has
at least two parts < n, then certainly c2n(λ) �= λ, since each part of a partition
in the image of cn has length at least n, except at most for its smallest part.

Conversely, observe that we can represent every partition λ by means of
a Young-like shape, which is obtained from the usual Young shape of λ by
simply grouping together the cells of each row n by n. In this way we obtain
a shape (call it λ̃) in which each cell is a horizontal rectangle made of n cells
of the original Young shape, except at most the last cell of each row, which is
a horizontal rectangle having at most n cells. Now observe that cn(λ) can be
obtained by exchanging the rows and the columns of λ̃ and then breaking the
horizontal rectangles of the resulting shape into n square cells. This construction
is illustrated below for the partition λ = (9, 7, 6, 6, 6, 4, 3, 3, 2) and n = 3: cells
with the same label have to be grouped together, and the resulting partition
c3(λ) = (26, 16, 4) is depicted on the right.

It is now obvious that, performing twice this operation, one gets back to the
original partition λ, that is c2n(λ) = λ, as desired. �
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As already mentioned, as a special case of the above proposition we have that
the set of all integer partitions is the set of fixed points of the map c21 (where c1 is
the conjugation map). Another consequence is recorded in the following corollary,
which shows the role of Schröder partitions in this context.

Corollary 1. The set of Schröder partitions is the set of fixed points of the
map c22.

Proof. Just observe that, setting n = 2 in the previous proposition, the first
condition tells that odd parts have to be simple, whereas the second condition
becomes a special case of the first. �

The set Sch of all Schröder shapes can be naturally endowed with a poset
structure, by declaring λ ≤ μ whenever the set of cells of the shape λ is a subset
of the set of cells of the shape μ, provided that we draw the two shapes in
such a way that their top left cells coincide. This is equivalently (and perhaps
more formally) expressed in terms of Schröder partitions: if λ = (λ1, . . . , λh)
and μ = (μ1, . . . , μk), then λ ≤ μ when h ≤ k and, for all i ≤ h, λi ≤ μi.
Therefore the poset S of Schröder shapes is actually a subposet of the Young
lattice. However, it seems not at all a trivial one; notice, in particular, that an
interval of the Young lattice whose endpoints are Schröder partitions does not
contain only Schröder partitions (apart from very simple cases). In general, it
appears to be very hard (if not impossible) to infer nontrivial properties of the
Schröder poset from properties of the Young lattice.

One of the most fundamental properties the Schröder poset shares with the
Young lattice is recorded in the next theorem.

Theorem 1. The Schröder poset S is a distributive lattice.

Proof. Since every sublattice of a distributive lattice is distributive, it will be
enough to show that S is a sublattice of the Young lattice.

Given two Schröder partitions λ and μ, their join in the Young lattice is the
partition λ ∨ μ whose i-th part is the maximum between λi and μi, for all i. We
will now show that λ ∨ μ is a Schröder partition.

Suppose that (λ∨μ)i is an odd part of λ∨μ. Moreover, suppose w.l.o.g. that
(λ∨μ)i = λi (which means that λi ≥ μi). Now λi > λi+1 (since we are supposing
that λi is odd). Moreover, if μi is even, then λi > μi ≥ μi+1 (once again since λi is
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odd), whereas if μi is odd, then λi ≥ μi > μi+1 (since μ is a Schröder partition).
Thus, in all cases (λ ∨ μ)i = λi > λi+1, μi+1, hence (λ ∨ μ)i > (λ ∨ μ)i+1. Using
a similar argument it is possible to show that (λ ∨ μ)i < (λ ∨ μ)i−1. We have
thus shown that (λ ∨ μ) has simple odd parts, i.e. it is a Schröder partition.

Using a completely similar argument one can also show that the meet of
two Schröder partitions in the Young lattice is again a Schröder partition, thus
completing the proof. �

Remark. Notice that the above theorem can be generalized as follows. For a
given function f : N → N∪ {∞}, consider the set of integer partitions in which
part i appears at most f(i) times. Such set is a sublattice of Young lattice (with
partwise join and meet). This generalization, though interesting, will play no
role in the present paper.

3 An RSK-like Algorithm for Schröder Tableaux

From the algorithmic point of view, the main application of Young tableaux
is in the context of the RSK algorithm. This algorithm, named after Robinson,
Schensted and Knuth, takes as input a word (on the alphabet of positive integers)
of length n and produces in output two semistandard Young tableaux with n cells
having the same shape. For what concerns us, we will deal with a special case
of the RSK algorithm, often referred to as Robinson-Schensted correspondence
(briefly, RS correspondence), in which the input is a permutation of length n and
the output is given by a pair of standard Young tablueaux. A brief description
of such an algorithm is given below (Algorithm 1, where π = π1π2 · · · πn is a
generic permutation of length n).

The RSK algorithm is extensively described in the literature. For instance,
the interested reader can find a modern and elegant presentation of it in [Be].
Among other things, one of the most beautiful properties of the RS correspon-
dence is that it establishes a bijection between permutations of length n and
pairs of standard Young tableaux with n cells having the same shape. This fact
bears important enumerative consequences, as well as strictly algebraic ones.
For a given permutation π, the tableaux of the pair(P,Q) returned by the RS
algorithm are usually referred to as the insertion tableau (the tableau P ) and
the recording tableau (the tableau Q). As a consequence, we have the following
nice result, which can again be found in [Be].

Theorem 2. Denote with fλ the number of standard Young tableaux of shape
λ. Then we have:

n! =
∑

λ�n

(fλ)2.

A standard Schröder tableau (from now on, simply Schröder tableau) with
n cells is a Schröder shape whose cells are filled in with positive integers from
1 to n in such a way that entries in each row and each column are (strictly)
increasing.
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Algorithm 1. RS(π)

P := π1 ;

Q := 1 ;
for k from 2 to n do

α := πk;
for i ≥ 1 do

if α is bigger than all elements in the i-th row of P then
append a cell with πk inside at the end of the i-th row of P ;
append the cell k at the end of the i-th row of Q;
break;

else
write α in the cell of the i-th row containing the smallest element β
bigger than α;
α := β;

end

end

end

We propose here a natural analog of the RS algorithm for Schröder tableaux.
The main difference (which is due to the specific underlying shape of a Schröder
tableaux) lies in the fact that there are two distinct ways of managing the inser-
tion of a new element in the tableau, depending on whether the cell it should be
inserted in is an upper triangle or a lower triangle. As a consequence, our algo-
rithm does not establish a bijection between permutations and pairs of Schröder
tabealux; nevertheless, due to the strict analogy with the RS correspondence,
we believe that it is very likely to have interesting combinatorial properties.
A description of our algorithm is given below (Algorithm 2, where π is as in
Algorithm 1).

Example. Consider the permutation π = 465193287. The pair (P,Q) of
Schröder tableaux produced by applying the algorithm Sch to π is:

In this section we aim at starting the investigation of the combinatorial prop-
erties of this RS-analog. More specifically, we will address the following prob-
lem: given a Schröder shape P , can we characterize those permutations having a
Schröder tableau of shape P as their insertion tableau? How many of them are
there? This problem seems to be quite difficult in its full generality; here we will
deal with very few simple cases, for which we can provide complete answers.
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Algorithm 2. Sch(π)

P := the 1-cell Schröder tableau with π1 written in the cell;
Q := the 1-cell Schröder tableau with 1 written in the cell;
for k from 2 to n do

α := πk;
for i ≥ 1 do

if α is bigger than all elements in the i-th row of P then
append a cell (either an upper or a lower triangle) with πk inside at
the end of the i-th row of P ;
append a cell (either an upper or a lower triangle) with k inside at
the end of the i-th row of Q;
break;

else
let A be the cell of the i-th row containing the smallest element
bigger than α;
if A is an upper triangle then

β := content of the lower triangle immediately below A;
move the content of A to the lower triangle immediately below
A;
write α in A;
α := β;

else
β := content of A;
write α in A;
α := β;

end

end

end

end

3.1 Permutations with Given Schröder Insertion Shape:
Some Cases

The first case we investigate is that of a Schröder shape consisting of a single
row (which can terminate either with an upper or a lower triangle). To state our
result we first need to recall a classical definition.

Given a permutation π = π1 · · · πn, we say that πi is a left-to-right maximum
(or, briefly, LR maximum) whenever πi = max(π1, . . . , πi).

Proposition 4. Let π = π1 · · · πn be a permutation of length n. The Schröder
insertion tableau of π has a single row if and only if, for all i ≥ n:

1. if i is odd, then πi is a LR maximum of π;
2. if i is even, then πi is a LR maximum of the permutation obtained from π by

removing πi−1 (and suitably renaming the remaining elements).

Proof. Suppose we are inserting πi in the insertion tableau P , which is assumed
to consist of a single row. If i is odd, then the last cell of P is a lower triangle;
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in order not to create new rows, πi has necessarily to be a LR maximum. On
the other hand, if i is even, then the last cell of P is an upper triangle; in this
case, πi can be inserted in P in two ways: either πi is a LR maximum, and so it
is simply appended at the end of the unique row of P , or πi is greater than all
previous elements of π but πi−1, hence πi is inserted in the cell containing πi−1

(which is the last cell of the unique row of P , and so it is an upper triangle) and
a new cell (a lower triangle) containing πi−1 is added at the end of the unique
row of P .

Conversely, it is easy (and so left to the reader) to check that a permutation
satisfying conditions 1 and 2 in the statement of the present proposition must
have a Schröder insertion tableau consisting of a single row. �

The permutations π of length n whose Schröder insertion tableau have a sin-
gle row can therefore be simply characterized as follows: for all i, {π2i+1, π2i+2} =
{2i + 1, 2i + 2}. As a consequence of this fact, a formula for the number of such
permutations follows immediately.

Proposition 5. The set of permutations of length n whose Schröder insertion
tableau consists of a single row has cardinality 2�n

2 �.

The second case we consider is the natural counterpart of the previous one,
that is Schröder shapes having a single column. Despite the similarities with the
previous case, it turns out that the set of permutations having Schröder insertion
tableau of this form can be nicely described in terms of pattern avoidance.

Given two permutations σ and τ = τ1 · · · τn (of length k and n respectively,
with k ≤ n), we say that there is an occurrence of σ in τ when there exists indices
i1 < i2 < · · · < ik such that τi1τi2 · · · τik is order isomorphic to σ. When there is
an occurrence of σ in τ , we also say that τ contains the pattern σ. When τ does
not contain σ, we say that τ avoids the pattern σ. The set of all permutations
of length n avoiding a given pattern σ is denoted with Avn(σ). Some useful
references for the combinatorics of patterns in permutations are [Bo,K], whereas
similar notions of patterns in set partitions and in compositions and words are
studied in [M,HM], respectively.

Proposition 6. Let π = π1 · · · πn be a permutation of length n. The Schröder
insertion tableau of π has a single column if and only if π ∈ Avn(123, 213).

Proof. An argument similar to that of the preceding proposition shows that
the Schröder insertion tableau of π has a single column if and only if, for all
i ≤ n, πi < min({π1, . . . , πi−1}\ min{π1, . . . , πi−1}) (i.e., πi is smaller than the
second minimum of set of all previous elements). Thus π can be factored into
subpermutations (made of consecutive elements of π), say π = π̃1 · · · π̃r, in such a
way that each factor π̃i is isomorphic to a permutation of the form 1t(t−1) · · · 32
(for some t) and each element of π̃i is greater than each element of ˜πi+1 (for all
i). In the language of permutation patterns, this is usually expressed by saying
that π is a skew sum of permutations of the form 1t(t − 1) · · · 32. It is now a
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known fact (see, for instance, [AA]) that such permutations are precisely those
avoiding the two patterns 123 and 213. �

Many classes of permutations avoiding a given set of patterns have been
enumerated. The above one is among them, see [SiSc].

Proposition 7. The set of permutations of length n whose Schröder insertion
tableau consists of a single column has cardinality 2n−1.

We close this section by simply stating (without proof) one more case, which
is, in some sense, a generalization of both the cases described above. Namely, we
consider the case of what can be called Schröder hooks, that is Schröder shapes
having at most one row and one column with more than one cell.

Again, we need to recall a classical definition, and also to give a new one.
A shuffle of two permutations σ and τ (having length n and m, respectively) is a
permutation of length n + m having two disjoint subpermutations (not made in
general by adjacent elements of π) isomorphic to σ and τ . Moreover, if the sub-
permutations of σ and τ formed by the first k elements are isomorphic, a k-rooted
shuffle of σ and τ is a permutation obtained by concatenating the permutation
formed by the first k elements of σ (or τ) (with elements suitably renamed) with
a shuffle of the subpermutations formed by the remaining elements of σ and τ .
For instance, a shuffle of 25143 and 4132 is given by 479218536, and a 3-rooted
shuffle of 253461 and 25413 is given by 37561824.

Proposition 8. Let π = π1 · · · πn be a permutation of length n. The Schröder
insertion tableau of π is a Schröder hook if and only if π is a 2-rooted shuffle
of two permutations having a single row Schröder insertion tableau and a single
column Schröder insertion tableau, respectively.

4 Further Work

The algebraic and combinatorial properties of the distributive lattice S of
Schröder shapes needs to be further investigated. In particular, the analogies
with differential posets should be much deepened.

We have just started the characterization and enumeration of permutations
having a given Schröder insertion tableau. Many more shapes should be investi-
gated. Moreover, we still have to understand the role of the recording tableau.

Can we find a nice closed formula for the number of Schröder tableaux of
a given shape? In the case of Young tableaux there is a famous hook formula,
which however seems to be unlikely in our case, since we have numerical evidence
that, for certain shapes, this number has large prime factors.

An alternative presentation of Schröder tableaux is as Young shapes whose
cells are filled in with pairs of distinct integers. This description shows that
Schröder tableaux could be somehow related to interval orders.

The analogies between Young tableaux and Schröder tableaux should be
investigated more, especially from a purely algebraic point of view. Combi-
natorial objects related to Young tableaux, such as Schur functions and the



172 L. Ferrari

plactic monoid, as well as algorithmic and algebraic constructions, such as
Schützenberger’s jeu de taquin, the Littlewood-Richardson rule and the Schu-
bert calculus on Grassmannians and flag varieties, could have some interesting
counterparts in the context of Schröder tableaux.

Acknowledgement. We are very grateful to the anonymous referees for an extremely
careful reading and many useful suggestions, which led to a significant improvement of
the presentation.
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Abstract. Given a graph G = (V, E) of order n and maximum degree
Δ, the NP-complete S-labeling problem consists in finding a labeling
of G, i.e. a bijective mapping φ : V → {1, 2 . . . n}, such that SLφ(G) =∑

{u,v}∈E min{φ(u), φ(v)} is minimized. A preliminary study of the

S-labeling problem has been undertaken in [9]; here, we prolongate this
study, and focus more specifically on algorithmic results concerning the
problem. We first give intrinsic properties of optimal labelings, which will
prove useful for our algorithmic study. We then show that the S-Labeling
problem is polynomial-time solvable for (sets of) caterpillars. We also pro-
vide upper and lower bounds on SLφ(G), that in turn allow us to determine
polynomial-time approximation algorithms for different classes of graphs
such as regular graphs, connected graphs and forests, but also for general
graphs. Concerning exact algorithms, we show that the problem is solvable
in O∗(1.44225nΔ) time, and that deciding whether there exist a labeling

φ of G such that SLφ(G) ≤ |E| + k is solvable in O∗(22
√

k (2
√

k)!).

1 Introduction

A labeling of a graph G is an assignment of distinct integers to its vertices,
in such a way that a certain objective function is optimized. In the literature,
a graph labeling of G is also called a linear arrangement, a linear layout or
a numbering of the vertices of G. A large amount of relevant combinatorial
problems in different areas can be rephrased as graph labeling problems, which
have been widely investigated during the last decades. These include numerical
analysis [17], VLSI circuit design [4], network reliability [15], computational biol-
ogy [16], scheduling [1], parallel processing [18], etc. However, for most objective
functions, the derived graph labeling problem turns out to be NP-complete. Pop-
ular graph labeling problems arising in the above-mentioned applications include
Bandwidth [10], Minimum Linear Arrangement [13], Cutwidth [2] and
Vertex Separation [19]. There exist several surveys that deal with different
aspects of graph labeling problems [3,5,8].

In this paper, we are interested in the S-Labeling problem [9,22], which,
given a graph G = (V,E), asks for a graph labeling φ : V → {1, 2 . . . |V |} such
that the total sum SLφ(G) =

∑
{u,v}∈E min{φ(u), φ(v)} is minimized, and we

write SL(G) for the minimum SLφ(G) over all possible labelings of G. Note
c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 173–184, 2016.
DOI: 10.1007/978-3-319-29516-9 15
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that, in this problem (and thus, all along this paper), we do not require G to be
connected. However, we can always assume G has no isolated vertices. Indeed,
if this was the case, let VI be the set of isolated vertices in G. Since in any
labeling φ of G, no vertex from VI contributes to SLφ(G), we can always label
the vertices with the highest possible labels from VI , or equivalently, change G
into G′ = (V \VI , E).

The S-Labeling problem has been proved to be NP-complete for planar
at most cubic graphs [22], but its complexity is unknown for trees, forests, and
more generally, for bipartite graphs. The problem has also been studied in [9],
where SL(G) is determined for classical classes of graphs (paths, cycles, complete
(bipartite) graphs). Upper and lower bounds are also given for general graphs,
and approximation ratios are given for trees, regular graphs, and general graphs.
The S-Labeling problem has also been proved to be polynomial-time solvable
for split graphs [9].

This paper can be seen as a (late) follow-up of [9], mainly focused on algorith-
mic aspects of the S-Labeling problem, and is organized as follows. Section 2
introduces terminology used throughout this paper. Section 3 presents essential
properties of optimal labelings. In Sect. 4, we prove that the S-Labeling prob-
lem is polynomial-time solvable for (sets of) caterpillars. In Sect. 5, we investigate
polynomial-time approximation and exponential-time algorithms. Due to space
constraints, most proofs are omitted and deferred to the full version of this paper.

2 Notations

A graph is an ordered pair G = (V,E) comprising a set V of vertices together
with a set E of edges, which are 2-element subsets of V . The order n (resp. size
m) of G is its number of vertices (resp. edges). The degree of a vertex u ∈ V ,
denoted dG(u) (or d(u) if clear from the context), is the number of edges that are
incident to u. We write Δ(G) (or Δ, if clear from the context) for the maximum
degree of G. A vertex cover of G = (V,E) is a subset of vertices V ′ ⊆ V such that
each edge e ∈ E is incident to at least one vertex of V ′. The size of a minimum
cardinality vertex cover of G is denoted τ(G) (or τ , if clear from the context).
An independent set of G = (V,E) is a subset of vertices V ′ ⊆ V , no two of
which are adjacent. A tree is a graph in which any two vertices are connected
by exactly one simple path, and a caterpillar is a tree in which all the vertices
are within distance 1 of a central path (equivalently, caterpillars are the trees
in which there exists a path that contains every node of degree two or more).
A forest is a collection of trees.

Let G = (V,E) be a graph of order n. A labeling of G is a bijective mapping
φ : V → {1, 2, . . . , n}, and we denote by Φ(G) the set of all labelings of G. The
S-labeling number of G with respect to some labeling φ ∈ Φ(G),
denoted SLφ(G), is defined to be SLφ(G) =

∑
{u,v}∈E min{φ(u), φ(v)}.

To abbreviate notations, we write SL(G) = min{SLφ(G) : φ ∈ Φ(G)} and
we let Φopt(G) ⊆ Φ(G) stand for the set of all optimal labelings (i.e.,
Φopt(G) = {φ ∈ Φ(G) : SLφ(G) = SL(G)}). Let φ ∈ Φ(G) be a labeling of G.
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Fig. 1. A graph G together with a labeling φ. Vertices in V +
φ are in grey. We have

cφ(φ−1(1)) = cφ(φ−1(2)) = cφ(φ−1(3)) = 3, cφ(φ−1(4)) = 2, cφ(φ−1(5)) = 1, and
cφ(φ−1(6)) = cφ(φ−1(7)) = cφ(φ−1(8)) = 0, yielding SLφ(G) = (3 × 1) + (3 × 2) +
(3 × 3) + (2 × 4) + (1 × 5) + (0 × 6) + (0 × 7) + (0 × 8) = 31.

For any vertex u ∈ V , the contribution cφ(u) of u to the S-labeling number SLφ

is the integer defined as cφ(u) = |{v ∈ V : {u, v} ∈ E and φ(u) < φ(v)}|. We will
be mostly interested, in the rest of the paper, in those vertices with non-zero
contribution. To this aim, we define V +

φ = {u ∈ V : cφ(u) > 0}. An example
illustrating these notions is given in Fig. 1.

3 Properties of Optimal Labelings

Towards investigating computational issues, it is critical to support a deeper
understanding of the structure of optimal labelings. This is the purpose of the
current section.

Property 1. For any graph G = (V,E) and any labeling φ ∈ Φ(G): (a) V +
φ is a

vertex cover of G, (b)
∑

u∈V +
φ

cφ(u) = |E|, and (c) SLφ(G) =
∑

u∈V +
φ

cφ(u)φ(u).

Lemma 1. [9] Let G = (V,E) be a graph, and φ ∈ Φopt(G). For any two
vertices u, v ∈ V , if φ(u) < φ(v) then cφ(u) ≥ cφ(v).

Lemma 2. Let G = (V,E) be a graph, and φ ∈ Φopt(G). For any distinct ver-
tices u, v ∈ V , if cφ(u) = cφ(v) then {u, v} �∈ E.

We now turn to proving that, in any optimal labeling φ of G, the vertex
ranked first by φ is a maximum degree vertex.

Lemma 3. Let G = (V,E) be a graph, let φ ∈ Φopt(G), and let u ∈ V be the
vertex satisfying φ(u) = 1. Then cφ(u) = Δ(G).
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Proof. Let G = (V,E) be a graph, and φ ∈ Φopt(G) be an optimal labeling of
G. Let k = min{φ(u) : u ∈ V ∧ cφ(u) = Δ(G)}. We show that k = 1 thereby
proving the lemma. Write Δ for Δ(G). For convenience, for 1 ≤ i ≤ n, let ui

and ci stand for φ−1(i) and cφ(φ−1(i)) = cφ(ui), respectively.
Suppose, aiming at a contradiction, that k > 1. Consider the labeling φ′ of

G defined as follows: φ′(uk) = 1, φ′(ui) = φ(ui) + 1 for any 1 ≤ i ≤ k − 1 and
φ′(ui) = φ(ui) for any k + 1 ≤ i ≤ n. For convenience, for 1 ≤ i ≤ n, i �= k,
let c′

i stand for cφ′(ui) (see above figure). We thus have SLφ(G) =
∑n

i=1 ici

and SLφ′(G) = Δ +
∑k−1

i=1 (i + 1)c′
i +

∑n
i=k+1 ici. Now, if we let D stand for

SLφ(G)−SLφ′(G), we obtain D =
∑n

i=1 ici −Δ−∑k−1
i=1 (i+1)c′

i −∑n
i=k+1 ici =

∑k
i=1 ici − Δ − ∑k−1

i=1 (i + 1)c′
i (Eq. 1). We need the following inequality.

Claim 1.
∑k−1

i=1 (i + 1)c′
i ≤ ∑Δ−ck

i=1 (i + 1)(ci − 1) +
∑k−1

i=Δ−ck+1(i + 1)ci.

Proof. By construction, ci − 1 ≤ c′
i ≤ ci for 1 ≤ i ≤ k − 1. Moreover, since

exactly Δ − ck vertices of {u1, u2, . . . , uk−1} are connected with vertex uk, then
there exist S ⊆ {1, 2, . . . , k − 1} of size Δ − ck such that c′

i = ci − 1 if and
only if i ∈ S. If we let S stand for {1, 2, . . . , k − 1}\S, then

∑k−1
i=1 (i + 1)c′

i =
∑

i∈S(i + 1)(ci − 1) +
∑

i∈S(i + 1)ci =
∑k−1

i=1 (i + 1)ci − ∑
i∈S(i + 1). This latter

sum is certainly maximized for S = {1, 2, . . . Δ−ck}, and hence
∑k−1

i=1 (i+1)c′
i ≤

∑Δ−ck

i=1 (i + 1)(ci − 1) +
∑k−1

i=Δ−ck+1(i + 1)ci. 	


Combining Claim 1 with (Eq. 1) yields D ≥ ∑k
i=1 ici − Δ − ∑Δ−ck

i=1 (i + 1)
(ci−1)−∑k−1

i=Δ−ck+1(i+1)ci =
∑k

i=1 ici−Δ−∑k−1
i=1 ici−

∑k−1
i=1 ci+

∑Δ−ck

i=1 (i+1)
= kck − Δ − ∑k−1

i=1 ci +
∑Δ−ck

i=1 (i + 1) = kck − Δ − ∑k−1
i=1 ci + (Δ−ck+3)(Δ−ck)

2 .
But ci ≤ Δ − 1 for 1 ≤ i ≤ k − 1 (this follows from k > 1 and Lemma 1),

and hence
∑k−1

i=1 ci ≤ (k − 1)(Δ − 1). Then it follows that D ≥ kck − Δ −
(k − 1)(Δ − 1) + (Δ−ck+3)(Δ−ck)

2 = (k − 1) − k(Δ − ck) + (Δ−ck+3)(Δ−ck)
2 =

(k − 1) + (Δ−ck)(Δ−ck−2k+3)
2 . Combining the above with Δ − ck ≥ 1 yields

D ≥ (k − 1) + 4−2k
2 ≥ 1, and hence SLφ(G) > SLφ′(G). This is the desired

contradiction since φ is an optimal labeling of G. 	
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Lemma 4. Let G = (V,E) be a graph, φ ∈ Φopt(G), and let φ′ be the labeling
obtained from φ by swapping the labels of any two vertices u, v ∈ V such that
cφ(u) = cφ(v). Then φ′ ∈ Φopt(G).

Lemma 5. Let G = (V,E) be a graph, φ ∈ Φopt(G), and let u, v ∈ V such
that {u, v} ∈ E and cφ(u) = cφ(v)− 1. Then an optimal labeling φ′ with φ′(u) =
φ′(v)−1 may be obtained from φ by a series of label swaps involving only vertices
z ∈ V with cφ(z) ∈ {cφ(u), cφ(v)} and φ(v) < φ(z) < φ(u).

Coming back to V +
φ , and as discussed in [9], in the light of Property 1(a), it

would be tempting to claim that τ(G) = |V +
φ | for any –or at least one– optimal

labeling φ ∈ Φopt(G). Unfortunately, this is not true: there exist a graph G for

which any optimal labeling φ satisfies
|V +

φ |
τ(G) = 5

4 [9]. This raises the following
question: for any graph G, does there exist a labeling φ ∈ Φopt(G) such that
|V +

φ |
τ(G) = O(1)? This question remains open. However, we have the following result,

which improves Lemma 1.3 from [9] by a factor
√

2.

Lemma 6. For any graph G of maximum degree Δ, there exist an optimal label-

ing φ ∈ Φopt(G) for which
|V +

φ |
τ(G) <

√
Δ.

4 A Polynomial-Time Algorithm for Sets of Caterpillars

In this section, we prove that the S-labeling problem is in P when the input
instance is a (set of) caterpillar(s) (see Proposition 1). This result can be seen as
a step towards understanding the complexity of the problem in trees and forests,
which remains unknown. Recall that a caterpillar is a tree G = (V,E) for which
all the vertices are within distance 1 of a dominating path. It is easy to see that
every longest path P of G has the property that, for all v ∈ V , either v belongs
to P or v is a leaf adjacent to a vertex of P , which is not an endpoint of P .
We call linear representation of G, denoted LR(G), any drawing of G in which
the vertices of some longest path P of G lie along an horizontal line according
to their order on the path. We call set of caterpillars any vertex-disjoint set of
caterpillars. A set of caterpillars is seen as a graph G = (V,E) whose connected
components C1, C2 . . . Cp are caterpillars. The linear representation of G, still
denoted LR(G), is in this case the sequence LR(C1),LR(C2) . . . LR(Cp) of the
linear representations of its connected components, successively on the same
horizontal line. Recall that G being a set of caterpillars on n vertices, G contains
O(n) edges.

Lemma 7. Let G be a set of caterpillars, and u be its leftmost vertex in
LR(G) such that dG(u) = Δ. There is an optimal labeling φopt of G such that
φopt(u)=1.
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Algorithm 1. Greedy computation of a labeling of a set of caterpillars.
Algorithm: GreedyCat

Data: A set of caterpillars G = (V,E)
Result: A labeling φ of G
i ← 1
while G �= ∅ do

Compute LR(G)
Let u be the leftmost vertex in LR(G) with dG(u) = Δ(G)
φ(u) ← i
i ← i + 1
G ← G − u

return (φ)

Proof. Notice that if we prove the existence of an optimal labeling φ ∈ Φopt(G)
such that cφ(u) = Δ, then we are done. Indeed, by Lemma 3, we know that the
vertex z with label 1 has contribution Δ, and by Lemma4, we know that swap-
ping the labels of u and z yields an optimal labeling φopt such that φopt(u) = 1.

We now show that there is an optimal labeling φ of G such that cφ(u) = Δ.
Let φ′ be an optimal labeling of G such that every leaf v of G that is adjacent to
u (if any) satisfies φ′(v) > φ′(u) (say this is a regular leaf). To prove that such
a labeling exists, assume by contradiction that this is not the case, and let φ′ be
chosen so as to minimize the number of leaves with φ′(v) < φ′(u). Denote v0 the
leaf with this property and such that φ′(v0) is maximum. By Lemma 1, we know
that cφ′(u) ≤ cφ′(v0), with cφ′(v0) = 1. We thus necessarily have cφ′(u) = 0
and cφ′(v0) = 1 by Lemma 2, {u, v0} being an edge in G. In this case, Lemma 5
ensures that some labels of φ′ may be swapped to ensure φ′(v0) > φ′(u), and that
these swaps do not affect regular leaves. But this contradicts the initial choice of
φ′. As a consequence, all the leaves adjacent to u are regular, and cφ′(u) ≥ Δ−2
since at most two neighbors of u are not leaves.

Now, let v (respectively w) be the right (respectively left) neighbor of u, if
it exists. Then, since u is the leftmost vertex in LR(G) with degree Δ, we have
dG(w) < Δ and dG(v) ≤ Δ. We transform φ′ into an optimal labeling φ such
that φ(u) < φ(w) and φ(u) < φ(v), in two steps. First, if φ′(u) < φ′(w), then we
define φ′′ = φ′. Otherwise, we have φ′(u) > φ′(w), and since u and w are adjacent,
we deduce that cφ′(u) < cφ′(w) by Lemmas 1 and 2. The remarks that cφ′(u) ≥
Δ − 2 and cφ′(w) ≤ Δ − 1 further imply that we necessarily have cφ′(u) = Δ − 2
and cφ′(w) = Δ − 1, thus allowing us to apply Lemma 5 in order to deduce the
existence of an optimal labeling φ′′ with φ′′(u) < φ′′(w). Second, if φ′′(u) < φ′′(v),
then we define φ = φ′′. Otherwise, since u and v are adjacent, we deduce that
cφ′′(u) < cφ′′(v) by Lemmas 1 and 2. The remarks that cφ′′(u) ≥ Δ − 1 (we know
that φ′′(w) > φ′′(u)) and cφ′′(v) ≤ Δ further imply that we necessarily have
cφ′′(u) = Δ − 1 and cφ′′(v) = Δ, thus allowing us to apply Lemma 5 in order to
deduce the existence of an optimal labeling φ with φ(u) < φ(v). Notice that the
label changes performed according to Lemma 5 do not affect the label of w. Then,
φ(u) < φ(x) for all the neighbors x of u, and thus cφ(u) = Δ. 	
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Proposition 1. Algorithm GreedyCat optimally solves the S-Labeling prob-
lem for any set of caterpillars of order n, in O(n log n) time.

Proof. By contradiction, assume the labeling φ obtained by GreedyCat is not an
optimal labeling. Let v1, v2 . . . vn be the vertices of G ordered such that φ(vi) = i.
Now, consider an optimal labeling φopt which maximizes the value k with the
property that φopt(vi) = φ(vi) (= i) for all i, 1 ≤ i ≤ k. Let Gk+1 be the
subgraph induced by {vk+1 . . . vn} in G.

According to GreedyCat, v1 . . . vn are labeled successively in this order, and
when vk+1 is labeled, it has maximum degree in Gk+1 and is the leftmost in
LR(G) with this property. It is easy to note that a labeling φ0 of G with φ0(vi) = i
for all i, 1 ≤ i ≤ k, is optimal for G if and only if the labeling φ1 of Gk+1, defined
by φ1(vi) = φ0(vi) − k for k + 1 ≤ i ≤ n, is optimal for Gk+1. This is due to
the constant cost of the edges {vi, vj} with i ≤ k or j ≤ k within SL(G). By
Lemma 7, there is an optimal labeling φ1 of Gk+1 such that φ1(vk+1) = 1. The
resulting labeling φ0(vi) = φ1(vi) + k for k + 1 ≤ i ≤ n, extended to G by
φ0(vi) = i for 1 ≤ i ≤ k, is then optimal and satisfies φ0(vi) = φ(vi) (= i) for all
i, 1 ≤ i ≤ k + 1. This contradicts the choice of φopt.

Concerning the complexity, the initial computation of LR(G) is done in O(n)
time by using traversals starting with a 1-degree vertex. The vertices occurring on
the horizontal line of the representation are then renumbered in increasing order
from left to right, whereas the leaves receive the remaining numbers. Then, for
each d = 0, 1, 2 . . . Δ, we store all vertices of degree d in a balanced BST denoted
B[d]. We furthermore need another balanced BST to store all the degrees d for
which B[d] is non-empty. It is easy to see that initializing all the BSTs is done
in global time of O(n log n) by n + Δ insertions taking O(log n) time each. The
update of the data structures we use involves, at each step, only the neighbors
of the vertex u removed from G. There are O(dG(u)) such neighbors, and the
operations take no more than O(log n) time for each neighbor, which yields the
required complexity. 	


5 Algorithmic Issues

This section contains two parts: the first one is devoted to approximating the
S-labeling problem, whereas the second part focuses on exact (i.e. exponential-
time algorithms.

Approximating the S-labeling Problem. We begin by giving accurate lower and
upper bounds of optimal labelings. For completeness, in Lemma 8, we recall the
lower bound given in [9].

Lemma 8 [9]. For any graph G of order n, size m and maximum degree Δ,
SL(G) ≥ (m − Δ

2

⌊
m
Δ

⌋
)
(⌊

m
Δ

⌋
+ 1

)
.

Another general lower bound is given in Lemma9 below.
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Lemma 9. For any graph G of size m, let φ be any labeling of G, and |V +
φ | = k.

Then SLφ(G) ≥ k2−k+2m
2 .

Proof. Let φ be any labeling of G, and let |V +
φ | = k. Since every vertex in V +

φ

has a strictly positive contribution (by definition), summing these over the k

vertices in V +
φ adds up to k(k+1)

2 , and covers k edges. For the remaining m − k
edges in G, the best scenario is that they all are incident to the vertex having
label 1, which adds up to m − k. Hence the result. 	


We now turn to giving upper bounds for optimal labelings. The first two
upper bounds are achieved by the following generic greedy algorithm, that we
call GreedyGen: while G has edges, take a vertex u of maximum degree in G,
assign the smallest available label to u (starting from 1), and remove u and
its incident edges from G. Notice that a randomized algorithm achieving the
same general upper bound as in Lemma 10 was given in [9]. Here, we improve
this previous result by providing a deterministic algorithm, achieving the same
performances for general graphs, and improving them for acyclic graphs.

Lemma 10. For any graph G of order n and size m, Algorithm GreedyGen

computes, in O(m log n) time, a labeling φ such that SLφ(G) ≤ m(n+1)
3 . Further-

more, if G is acyclic with Δ ≥ 3, φ satisfies SLφ(G) ≤ m(n+1)
4 .

As a side remark, we observe that there exist classes of graphs for which
each of the previously given upper and lower bounds are reached. Indeed, for
any even n, SL(Cn) = n2+2n

4 = Δ� m
Δ �(� m

Δ �+1)

2 ; for any k ≤ m, SL(K1,m−k+1 ∪
(k−1)K2) = k2−k+2m

2 ; SL(Kn) = 1
6n(n2−1) = m(n+1)

3 ; and, finally, for any odd
n, SL(Pn) = m(n+1)

4 . Another general upper bound can be obtained by starting
from a vertex cover V ′ of G, and applying a greedy strategy, similar to the one
of Algorithm GreedyGen, but only taking into account vertices in V ′. Since all
vertices in V \V ′ have a zero contribution, they can be arbitrarily labeled from
|V ′| + 1 to n.

Lemma 11. For any graph G of order n and size m, let V ′ be a vertex cover
of G, with |V ′| = p. A labeling φV ′ satisfying SLφV ′ (G) ≤ 1

2m(p + 1) can be
computed in O(m log p) time.

We are now ready to state our results concerning approximation algorithms,
which essentially rely on using the proper upper and lower bounds among the
ones presented above. Some of these results improve or generalize the ones
from [9], others are new, and all are deterministic (as opposed to some results
from [9]). If G is a graph of size m and order n, we denote by d = 2m

n its average
degree. The first general result we have is the following.

Proposition 2. For any graph, GreedyGen is a 4Δ
3d -approximation algorithm

for the S-Labeling problem.
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Since we can always assume that G has no isolated vertices, we always have
d ≥ 1, and thus for any graph, we now that a 4Δ

3 approximation algorithm exists.
Concerning regular graphs, setting d = Δ in Proposition 2 yields the following
corollary.

Corollary 1. For any regular graph, GreedyGen is a 4
3 -approximation algo-

rithm for the S-Labeling problem.

Now, if we restrict ourselves to specific classes of graphs, we are able to obtain
better approximation ratios. Let F≤C (resp. F≥C) be the set of forests having
at most (resp. at least) C connected components.

Proposition 3. For any graph G, GreedyGen is an approximation algorithm
having the following ratios: (a) Δ

2 if G ∈ F≤Δ−1, provided Δ ≥ 3; (b) Δ if
G ∈ F≥Δ; (c) 2Δ

3 if G is connected.

We now give one more approximation algorithm, in relation to the Minimum
Vertex Cover problem. Let Gα

VC denote the class of graphs for which the
cardinality of a minimum vertex cover can be approximated within ratio α. The
following result concerns graphs belonging to that class.

Proposition 4. For any graph G in Gα
VC, there exist an αΔ-approximation algo-

rithm for the S-Labeling problem.

In particular, for all graphs for which a minimum vertex cover can be com-
puted in polynomial-time, the S-Labeling problem can be approximated within
ratio Δ.

Exact Algorithms. After having discussed approximation algorithms, we now
turn to exact algorithms. We first concentrate on exponential-time algorithms.

Proposition 5. For any graph G of order n and maximum degree Δ,
the S-Labeling problem is solvable in time O∗(1.44225nΔ), and in time
O∗(1.41422nΔ) if G is a tree.

Let G be a graph and φ ∈ Φopt(G) be an optimal labeling of G. For every
positive integer c �= 0, let V c

φ = {u : u ∈ V ∧ cφ(u) = c}, and, for any non-empty
V c

φ , let lcmin = min{φ(u) : u ∈ V c
φ } be the smallest label given by φ among the

vertices in G having contribution equal to c by φ. Because of Lemma 2, we have
the following corollary.

Corollary 2. For any graph G, let φ ∈ Φopt(G) be an optimal labeling of G.
Then V c

φ is a maximal independent set on the vertices of maximum degree in the
induced graph G[{v : φ(v) ≥ lcmin}].

Proof (of Proposition 5). We use a Δ-bounded search tree based algorithm. The
root of the search tree is labeled by (G, 0, ∅). We explore the tree as follows.
For a node (H, i, L), we consider all maximal independent sets on the maximum
degree vertices of H. For each maximal independent set V ′ = {u1, u2, . . . , uk},
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we get a child labeled (H ′, i+k, L′), where H ′ = H\V ′ and L′ = L∪{(uj , i+j) :
1 ≤ j ≤ k}. A leaf in the search tree is labeled (H, i, L) for some edgeless graph
H and it evaluates to

∑
{u,v}∈E min{φ(u), φ(v)}, where φ ∈ Φ(G) is obtained

from L in the natural way, i.e., for every u ∈ V , φ(u) = i if (u, i) ∈ L. The
optimal labeling is the minimum evaluation of a leaf of the search tree.

Correctness of the algorithm follows from Corollary 2. What is left is to prove
that the search tree has depth bounded by Δ(G). This is again a consequence of
Corollary 2, since the maximum degree of the graphs strictly decreases during the
exploration of the tree. The time complexity now follows from the following result
from [14]: any graph of order n contains at most 1.44225n maximal independent
sets, and these maximal independent sets can be enumerated in O∗(1.44225n)
time. Besides, if G is a tree, we know by [23] that the number of maximal
independent sets G is upper bounded by O((

√
2)n) (more precisely, the number

is 2n/2−1 + 1 if n is even, and 2(n−1)/2 is n is odd). 	

As a side remark concerning Corollary 2, note that it would be tempting

to push ahead and replace maximal by maximum in this corollary. However,
that is pushing the argument too far, even for trees. Indeed, consider the tree
given Fig. 2 with 3 maximum degree vertices. For one, starting from the unique
maximum independent set {u,w} on degree Δ = 3 vertices yields a labeling with
total sum 34. For another, starting from the other maximal independent set on
degree Δ = 3 vertices {v} yields a labeling with total sum 31.

5

1

u

6

3

v

4

2

w

7

3

u

4

1

v

2

w

5

Fig. 2. A graph G with three maximum degree vertices u, v and w, each of degree
Δ = 3. (Left) An S-labeling φ1 of G that starts with the unique maximum independent
set on maximum degree vertices of cardinality 2 (namely, {u, w}), optimally completed
with labels 3 to 8, yielding SLφ1(G) = 34. (Right) An S-labeling φ2 of G that starts
with the unique maximal independent set on maximum degree vertices of cardinality
1 (namely, {v}), optimally completed with labels 3 to 8, yielding SLφ2(G) = 31 <
SLφ1(G).

Now, note that for any graph G of order n and size m, SL(G) = Ω(m). But
since we can always assume G has no isolated vertices, n ≤ 2m and thus SL(G) =
Ω(n). Therefore, the S-labeling problem is fixed-parameter tractable [21] for
any graph G, when the parameter is the size of the solution SL(G). However,
the above result relies on a parameter whose value can be considered as too
high. Thus, we focus on the following problem: Given a graph G = (V,E) of
size |E| = m and a positive integer k, is there a labeling φ ∈ Φ(G) such that
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SLφ(G) ≤ m + k? We need the following result that gives a lower bound for
SLφ(G) in terms of |V +

φ |.
Lemma 12. For any graph G of size m, let φ ∈ Φ(G) be a labeling of G such
that SLφ(G) ≤ m + k for some positive integer k. Then |V +

φ | ≤ 2
√

k.

Proof. Let G = (V,E) be a graph and φ ∈ Φ(G) be a labeling of G such that
SLφ(G) ≤ |E| + k for some positive integer k. By Lemma 9, we know that

SLφ(G) ≥ |V +
φ |2−|V +

φ |+2m

2 , which yields |V +
φ |2 − |V +

φ | ≤ 2k. Solving this second

degree inequality leads to |V +
φ | ≤ x, where x = 1+

√
8k+1
2 . A simple computation

then shows that x ≤ 2
√

k for any positive integer k, which proves the result. 	

Proposition 6. For any graph G of size m and any positive integer k, it can
be decided in O∗(22

√
k (2

√
k)!) time whether SL(G) ≤ m + k.

In the above proposition, it is worth noticing that k ≥ m(n−4)
4 for regular

graphs (see Lemma 8), and hence Proposition 6 does not give fixed-parameter
tractability for the above-guarantee parameterization variant [11,20]. However,
supposing G is of order n, we now determine how Proposition 6 compares to
the brute-force O∗(n!) time algorithm. First, we have SL(G) ≤ mn, therefore
SL(G) ≤ m+k implies k ≤ mn−m = m(n−1) ≤ n(n−1)2

2 , and hence k = O(n3).
We now need the following lemma.

Lemma 13. For positive x and n, if 2xx! = n! then x = Θ(n).

Substituting x by 2
√

k in Lemma 13 yields k = Θ(n2). Since 2xx! is an
increasing function, we conclude that Proposition 6 improves on the brute-force
O∗(n!) time algorithm for any k, up to Θ(n2).

6 Conclusion

We would like to end this paper with several open problems. First, what is
the complexity of the S-labeling problem for trees, forests, or more generally
bipartite graphs? Second, does there exist a PTAS for the S-labeling problem,
for any graph G, or at least for specific classes of graphs? The same question
holds for constant approximation ratios.
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Abstract. We study the activation process in undirected graphs known
as bootstrap percolation: a vertex is active either if it belongs to a set
of initially activated vertices or if at some point it had at least r active
neighbors, for a threshold r that is identical for all vertices. A contagious
set is a vertex set whose activation results with the entire graph being
active. Let m(G, r) be the size of a smallest contagious set in a graph G.
We examine density conditions that ensure that a given n-vertex graph
G = (V,E) has a small contagious set. With respect to the minimum
degree, we prove that if G has minimum degree n/2 then m(G, 2) = 2.
We also provide tight upper bounds on the number of rounds until all
nodes are active.

For n ≥ k ≥ r, we denote by M(n, k, r) the maximum number of
edges in an n-vertex graph G satisfying m(G, r) > k. We determine the
precise value of M(n, k, 2) and M(n, k, k) assuming that n is sufficiently
large compared to k.
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Dynamic processes that model the diffusion of information through a social
network have received considerable interest recently: they capture for instance
“word of mouth” effects occurring in viral marketing, where the information is
only revealed to a small group of persons initially, who subsequently share it
with their friends and so. Similarly, we can think of cascading effects in finance,
where an institute might default if a certain number of business partners fail
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either active or inactive. We say a set A of vertices is active if all vertices in A
are active. The vertices that are active initially are called seeds, and the set of
seeds is denoted by A0. If vertices become active thereafter we also refer to them
as infected. A contagious process evolves in discrete rounds. The set of active
vertices in round i > 0 is

Ai = Ai−1 ∪ {v : |N(v) ∩ Ai−1| ≥ r},

where N(v) is the set of neighbors of v. That is, a vertex becomes active irrevo-
cably in a given round if it has at least r active neighbors. We refer to r as the
threshold. Let 〈A0〉 be the set of nodes that will eventually become infected if
we activate A0.

Definition 1. Given G = (V,E), a set A0 ⊆ V is called contagious if 〈A0〉 = V .
In words, activating A0 results in the infection of the entire vertex set. The size
of the smallest contagious set is denoted by m(G, r). For a contagious set A0,
the number of rounds until total infection is the smallest integer t with At = V .

The term bootstrap percolation is used sometimes to model the case where
the seeds are chosen independently at random. In this work we use this term
also with respect to the deterministic selection of a contagious set. Bootstrap
percolation was first studied by statistical physicists [8]. Since then, this model
has found applications in many fields. Furthermore, various questions related to
bootstrap percolation have been examined for a large variety of graphs includ-
ing hypercubes [4], grids [5,6], several models of random graphs [3,7,11], and
expanders [10].

A natural question is to determine for a given integer k, what combinatorial
properties of graphs ensure that the minimum size of a contagious set is at
most k. Such a characterization seems difficult even for k = 2 (and r = 2). Indeed
the family of all graphs with a contagious set of size two include, for example,
cliques, bipartite cliques (with both sides larger than one), and binomial random
graphs with edge probability p ≥ n−1/2+ε [11].

Previous works have examined the connection between m(G, k) and the
degree sequence of G [1,16]. Here we continue this line of investigation and
study two basic (and interrelated) graph parameters: the minimum degree and
edge cardinality. More concretely, our goal is to determine what conditions on
these parameters imply that m(G, r) = k where k is small compared to the
number of vertices in G, and r ≤ k. We study the cases that r = k or r = 2.

How large does the minimum degree have to be in order to guarantee a con-
tagious set of size two, if all thresholds are two? We prove that n/2 suffices,
where n is the number of vertices. A graph with this property is called Dirac
graph. Note that this condition on the minimum degree is the best possible: if
the minimum degree is n/2 − 1, then G might be disconnected implying that
m(G, 2) > 2 (provided that G has at least three vertices). We also prove the
existence of a contagious set of size two for Ore graphs. Ore graphs are a gen-
eralization of Dirac graphs, where each pair of nonadjacent vertices u, v obeys
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deg(u) + deg(v) ≥ n. Similarly to Dirac graphs, they have been studied in the
context of Hamiltonicity.

Contagious sets may vary in the number of rounds they require in order to
infect the whole graph (e.g., [15]). For Dirac graphs which are not isomorphic
to two cliques of equal size connected by a perfect matching, we are able to
derive upper bounds on the number of rounds required to infect the whole of G.
More specifically, we show that for such graphs, all subsets of three nodes are
contagious, and that any such subset will infect the whole graph in at most three
rounds. Observe that it is easy to determine the family of all contagious sets in
the Dirac graph consisting of two cliques connected by a perfect matching (as
well as the number of rounds until all nodes are infected).

A classic question in graph theory is to determine the minimum number of
edges in an n-vertex graph G that ensures that G possesses a monotone graph
property. Here, we examine extremal questions related to the existence of small
contagious sets.

Definition 2. Given integers n ≥ k ≥ r, we denote by M(n, k, r) the maximum
number of edges in an n vertex graph G, where G satisfies m(G, r) > k.

First we study M(n, k, k): a necessary condition for a graph G = (V,E) of
n > k vertices to satisfy m(G, k) = k is that G is connected. Here we show that
the minimum number of edges that guarantees connectivity is also sufficient
to ensure m(G, k) = k for n ≥ 2k + 2, i.e. we have M(n, k, k) =

(
n−1
2

)
. Next

we consider the case where r = 2. For k 	 n, we prove that M(n, k, 2) =(
n−k+1

2

)
+ 
k+1

2 � − 1 holds.

Preliminaries. All graphs are undirected. Given a graph G = (V,E), we will
always assume it has n vertices. The degree of a node v ∈ V is denoted by deg(v).
The set of all neighbors of a vertex v are denoted by N(v). For a set S ⊆ V we
shorthand S := V \S. Given two disjoint sets A,B of vertices, E(A,B) is the
number of edges with one endpoint in A and one endpoint in B, and E(A) is
the number of edges with both endpoints in A.

1 Contagious Sets in Dirac and Ore Graphs

We focus in this section exclusively on the case r = 2. Recall that an n-vertex
graph is a Dirac graph if every vertex in the graph is of degree at least n/2. For
an Ore graph G = (V,E) we have that u, v ∈ V with (u, v) /∈ E implies deg(u)+
deg(v) ≥ n.

1.1 The Existence of Small Contagious Sets

The upper bound in [1,16] shows that in a Dirac graph there exists a contagious
set of size three. Here we prove that in Dirac graphs there is in fact a contagious
set of size two.
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The following family of Dirac graphs will be of particular interest: for n even,
let DCn be the undirected graph composed of two disjoint cliques of size n

2
connected by a perfect matching. Note that a set of two nodes is not contagious
in DCn only if both nodes are either in the same clique or connected by the
perfect matching.

We begin with the following simple lemma.

Lemma 1. Let G = (V,E) be a Dirac graph and assume that every node has
threshold two. If more than n

2 nodes are active, then in the next round all remain-
ing nodes become infected.

Proof. Let A ⊂ V with |A| > n
2 denote a set of active, resp. infected nodes.

Then every node in A can have at most |A| − 1 ≤ ⌈
n
2

⌉ − 2 neighbors outside A.
Thus, it must have two neighbors in A, since its degree is at least

⌈
n
2

⌉
. ��

Lemma 2. Let G = (V,E) be a Dirac graph that is not DCn for some n ≥ 2.
Then every set of vertices of size three is contagious.

Proof. Let A be a set of active vertices of size k, where 2 < k < n/2 holds, and
note that then every vertex in A has at least n/2 − k + 1 neighbors in A. Thus,
A has at least k · (n/2 − k + 1) edges with one endpoint in A and the other one
in A.

On the other hand, there are only n − k nodes outside A; in particular, if
k · (n/2 − k + 1) > n − k holds, then there must be a node in A that has
two neighbors in A and hence will be infected in the next round. The equation
k · (n/2 − k + 1) = n − k has exactly two roots: k = 2 and k = n

2 . Hence every
set A satisfying 3 ≤ |A| < n/2 necessarily infects a vertex in A. In addition, if
a set B has more than n/2 nodes, then by Lemma 1 it will infect every vertex
in B.

Hence if a set C of size at least 3 does not infect the whole of G, then it will
necessarily infect a set D of size n/2 eventually: as long as |C| < n/2, one node
in C is infected in the subsequent round. The only way D does not infect an
additional vertex is that it is connected by a perfect matching to D. In this case
by the degree condition both D and D are cliques. This proves the lemma. ��
Theorem 1. Every Dirac graph has a contagious set of size two.

Proof. If the graph is a clique, we can activate two arbitrary vertices. Otherwise,
the degree constraints guarantee that any two non-adjacent, activated vertices
will infect a third vertex. Unless the graph is DCn, with n ≥ 2, Lemma 2 then
applies. In case of DCn with n ≥ 2, in the first round the two nodes that are
adjacent to the seeds will be infected, and in the second round all remaining
nodes. ��

We wish to generalize Theorem 1 to Ore graphs. However, some new ideas
are required, as Ore graphs may not share properties of Dirac graphs used in the
proof of Theorem 1. For example, Lemma 2 does not extend to Ore graphs. In
fact, there exist n-vertex Ore graphs such that there is a selection of up to 
n

2 �
nodes that do not form a contagious set.
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Example 1. We construct the graph as follows: the set S = {v1, v2, . . . , vc} forms
a clique. The remaining n−c nodes also form a clique, and are partitioned into c
disjoint groups G1, G2, . . . , Gc. We let c ≤ 
n

2 �, thus every Gi is non-empty.
Every node in Gi is adjacent to vi but not to any other node in S. Hence S is
not a contagious set. Moreover, note that for any pair (u, v) ∈ S × S we have

deg(u) + deg(v) = (c − 1 + 1) + (n − c − 1 + 1) = n,

hence we have constructed an Ore graph. Here it is crucial to note that pairs
of nodes within S (and in S resp.) are adjacent and hence their degrees are
not required to sum up to n in a pairwise manner. Notice that for c = n

2 , the
constructed graph is DCn. ��
Now we show the following.

Theorem 2. Every Ore graph G = (V,E) has a contagious set of size two.

Proof. For Dirac graphs any three nodes form a contagious set, but we have
seen that this statement is not valid for Ore graphs. However, activating three
arbitrarily selected nodes with degree n

2 each will infect at least half of the nodes,
as we show in Lemma 4.

Interestingly, such an active set of size three can be obtained by activating
two nodes only: according to Lemma3 there are two nodes u, v with degree at
least n

2 , such that both are adjacent to a third node w of degree at least n
2 as

well. Then activating u and v will infect w and subsequently at least half of the
nodes.

Thereafter, the infection will reach all nodes unless the graph is isomorphic to
DCn. This is proven in Lemma 5. On the other hand, if the graph is isomorphic
to DCn, Theorem 1 implies that m(G, 2) ≤ 2.

Lemma 3. In an Ore graph there exists a vertex w of degree at least n
2 that is

adjacent to at least two vertices u, v with deg(u),deg(v) ≥ n/2.

Proof. Let S be the set of vertices with degree at least
⌈

n
2

⌉
. We want to show

that there exists a vertex in S with two neighbors in S.
First we show that S must have size at least

⌊
n
2

⌋
: if there is a vertex x /∈ S,

then x has at most
⌈

n
2

⌉−1 neighbors, denoted by N(x). All vertices that do not
belong to x ∪ N(x) must belong to S (in order to satisfy the degree constraint
for non-adjacent nodes); note that there are at least

⌊
n
2

⌋
such nodes outside

{x} ∪ N(x).
If there is no vertex in S with two neighbors in S, then E(S, S) ≥ (

⌈
n
2

⌉− 1) ·
⌊

n
2

⌋
as |S| ≥ ⌊

n
2

⌋
and every vertex in S has at least

⌈
n
2

⌉ − 1 neighbors outside
S. Observe that ∑

v∈S

deg(v) ≤ |S| ·
(⌈n

2

⌉
− 1

)
.
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Thus, |E(S)| is bounded above by the difference of this product on the RHS and
the lower bound on |E(S, S)|:

|S| ·
(⌈n

2

⌉
− 1

)
−

(⌈n

2

⌉
− 1

)
·
⌊n

2

⌋
=

(⌈n

2

⌉
− 1

)
·
(
|S| −

⌊n

2

⌋)
. (1)

Recall that we showed |S| ≤ ⌈
n
2

⌉
. Thus, the bound given in Eq. (1) is nonnegative

only if |S| ∈ {⌊
n
2

⌋
,
⌈

n
2

⌉}
, and hence the upper bound equals

⌈
n
2

⌉ − 1 or 0. But
S has to be a clique by choice of S and the degree requirement of Ore graphs.
Therefore, the number of edges inside S must be

(|S|
2

)
=

(�n
2 �
2

)
, which contradicts

the upper bound of
⌈

n
2

⌉ − 1 or 0 on the number of edges inside S if n > 4 holds.
For n ∈ {3, 4} we recall that every Ore graph has a Hamiltonian cycle [14];

observe that the statement of the lemma follows immediately in this case ��
Thus, once we activate u, v, the node w will become infected and then eventually
half of the nodes.

Lemma 4. The activation of three vertices with degrees at least n
2 each will

infect at least half of the nodes in an Ore graph.

Proof. Let A0 consist of three vertices of degree at least n
2 . Let A := 〈A0〉,

i.e. the set of nodes that will eventually be active if we activate A0. Observe
that A0 ⊆ A holds by definition.

Assume for the sake of contradiction that |A| < n
2 and recall that A := V \A

is the set of nodes that do not become active. We claim that each of the vertices
in A\A0 must have at least one neighbor in A: vertices in A have at most one
neighbor in A and thus degree at most |A| each. If a ∈ A and b ∈ A are non-
adjacent, we have that

deg(a) + deg(b) ≤ |A| + |A| − 1 + |N(a) ∩ A|.

As this quantity has to be at least n in an Ore graph and |A| + |A| = n holds,
N(a) ∩ A must be non-empty.

Each of the nodes in A0 has degree at least n
2 by assumption of the lemma,

and hence each of them has at least (n
2 − (|A| − 1)) neighbors in A. Recall that

the other |A| − 3 vertices in A must have at least one neighbor in A each. But
since each node in A can have at most one neighbor in A, otherwise it would be
infected, we get

|A| ≥ 3 ·
(n

2
− (|A| − 1)

)
+ (|A| − 3)

= 3 · n
2

− 3 · |A| + 3 + |A| − 3

=
n

2
+ n − 2 · |A|.

Thus, we have |A| + 2 · |A| = n + |A| ≥ n + n
2 and the desired contradiction

|A| ≥ n
2 follows. ��
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Next, we show

Lemma 5. Consider an n-vertex Ore graph that is not equal to DCn. Then any
set of three vertices with degree at least n

2 each is a contagious set.

Proof. Pick any three vertices with degree at least n
2 as seed and let A be the set

of eventually infected vertices. By Lemma 4 we have |A| ≤ |A|. Again every b ∈ A
is adjacent to at most one node in A, otherwise b would be infected, and hence
we have deg(b) ≤ |A|. Then every node in A that is non-adjacent to some b ∈ A
must have degree at least n− |A| to meet the degree requirement of Ore graphs.

It follows that every vertex a ∈ A must have at least one neighbor in A: if a
is adjacent to all vertices in A, the claim holds. If a is non-adjacent to at least
one, then we have already shown that a has degree at least n− |A| = |A|. Since
node a can have only |A| − 1 neighbors in A, a must have at least one within A.

No vertex in A can have more than one neighbor in A, since this would
imply the existence of a vertex in A with two active neighbors, as |A| ≤ |A|;
but this would contradict the choice of A. Thus, each vertex in A has exactly
one neighbor in A and we have that |A| = |A| = n/2. Notice that A and A
must both be cliques as otherwise two non-adjacent vertices in A (resp., A)
would have degree less than n

2 each and thus their degrees add up to less than n
contradicting the property of an Ore graph. But then the graph is isomorphic
to DCn. ��
This concludes the proof of Theorem2. ��

1.2 The Speed of Spreading in Dirac Graphs

In the case of DCn, it is easy to see that any contagious set actually infects the
entire graph in just two rounds. We will now prove a tight bound on the speed
of spreading in arbitrary Dirac graphs.

Theorem 3. Let G be a Dirac graph that does not coincide with DCn for
any n ≥ 2, and let A0 be an arbitrary selection of three vertices. Then the
activation of A0 will infect the whole vertex set within three rounds.

Proof. Recall from Lemma 1 that all nodes will be infected at the end of the
subsequent round if |Ai|>n

2 holds for any round i. Moreover, if |A1| = n
2 holds,

then the whole graph will be active after the third round, since the graph is
not DCn. In particular, any contagious set will infect one new vertex in the
first round, hence |A1| ≥ 4 because of |A0| = 3; thus, we may assume n

2>4, or
equivalently n≥9, and

|A1| ≤
⌈n

2

⌉
− 1 (2)

from now on.
Since each node in A1 has at most |A1| − 1 neighbors in A1, it has at

least
⌈

n
2

⌉ −|A1|+1 edges to nodes outside A1. Moreover, since each node out-
side A1 is adjacent to at most one node in A0, we observe that the neighbor-
hood of A0 in A1, denoted by N , has size |N | ≥ |A0| · (⌈

n
2

⌉ − |A1| + 1
)

=



192 D. Freund et al.

3 · (⌈n
2

⌉ − |A1| + 1
)
. Finally, consider the |A1|− 3 nodes of A1\A0 and note that

there are at least (|A1| − 3) · (⌈
n
2

⌉ −|A1|+1
)

edges between A1\A0 and A1; we
denote the set of these edges by F .

There are n−|A1| nodes outside A1. For the sake of contradiction, let us
assume now that there are at most

⌊
n
2

⌋ −|A1| nodes in A1 that have more than
one neighbor in A1. Then the number of edges between A1 and A1\A0 is at most

(n − |A1| − |N |) + (|A1| − 3) ·
(⌊n

2

⌋
−|A1|

)
. (3)

To see this upper bound, first observe that at most n−|A1|− |N | edges of F can
be placed so that every node in A1 is adjacent to exactly one node in A1. The
second summand follows from the observation that each node in A1 is incident
with at most |A1|−3 edges of F .

But this yields the desired contradiction, since we know that there are at
least (|A1| − 3) · (⌈

n
2

⌉ − |A1| + 1
)

edges in F . Subtracting the upper bound on
number of edges given by Eq. (3), that was implied by the assumption that there
are at most

⌊
n
2

⌋ −|A1| nodes in A1 with more than one neighbor in A1, we obtain

(|A1| − 3) ·
(⌈n

2

⌉
− |A1| + 1

)
− (n − |A1| − |N |) − (|A1| − 3) ·

(⌊n

2

⌋
−|A1|

)

≥ |A1| − 3 + |N | − n + |A1|
≥ 2 · |A1| − 3 + 3 ·

(⌈n

2

⌉
− |A1| + 1

)
− n

≥ 3 ·
⌈n

2

⌉
− |A1| − n ≥

⌈n

2

⌉
− |A1| ≥ 1,

where the last inequality is implied by Eq. (2). Thus, in A1 there are at least⌊
n
2

⌋
+1−|A1| nodes with at least two neighbors in A1, and all remaining nodes

will be infected in the third round according to Lemma1. ��
Corollary 1. Any contagious set of size two in a Dirac graph infects the entire
graph within at most four rounds.

Proof. Any contagious set satisfies |A1| > |A0| = 2 after the first round; then
Theorem 3 gives that the whole vertex set will be infected after three additional
rounds. ��
We show that the bounds given in Theorem 3 and Corollary 1 are tight.

Example 2. Consider the following graph on the vertex set V = {v1, . . . , v8}: let
v1, v2, v3 be a clique, v4 and v5 be adjacent to v1, while v7 and v8 are adjacent
to v2. Moreover, let v3 be adjacent to v4 and v6. v4 and v5 are adjacent to each
other as well as to v7 and v8. v7 and v8 are adjacent to each other and to v6. v6
is also adjacent to v5. Every vertex has degree at least four. Thus, if v1 and v2
are activated, it takes four rounds for the entire graph to be infected. Moreover,
if we activate v1, v2, and v3 then it takes three rounds for the entire graph to be
infected. ��
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2 Extremal Number of Edges

What is the maximum number of edges in a graph with n nodes such that there
is no contagious set of size k assuming that all nodes have threshold k? We
provide the following tight bound for the case n ≥ 2k + 2.

Theorem 4. Let k ≥ 1. For n ≥ 2k + 2 we have M(n, k, k) =
(
n−1
2

)
.

Proof. To see M(n, k, k) ≥ (
n−1
2

)
, note that a clique of n − 1 nodes plus an

isolated node is a disconnected graph with n nodes and
(
n−1
2

)
edges. However, no

disconnected graph can have a contagious set of size k < n when the thresholds
are k. In the sequel we show M(n, k, k) ≤ (

n−1
2

)
, i.e. every graph on n nodes

with at least
(
n−1
2

)
+1 edges has a contagious set of size k if all thresholds are k.

If a set S ⊆ V with |S| = k is not contagious for all thresholds equal to k,
then there is a set T with S ⊆ T such that each node in T has at most k − 1
neighbors in T ; only then the infection does not spread outside of T .

The gist is that there are at least

|T | · (|T | − (k − 1)) = (n − |T |) · (|T | − (k − 1))

pairs of nodes in T × T that are not adjacent. In particular, we claim that
if |T | ∈ {k+1, k+2, ..., n−3, n−2} then the number of non-adjacent node pairs
is larger than n− 2. However, at most n− 2 pairs of nodes are not adjacent in a
graph with n nodes and at least

(
n−1
2

)
+1 edges, since

(
n−1
2

)
+1 =

(
n
2

)− (n− 2)
holds. Thus, if the number of active vertices is at least k + 1 and at most n− 2,
then in the subsequent round at least one more node is infected newly, and
therefore the infection does not stop until at least n − 1 nodes are active.

Now we prove the claim. First observe that f(|T |) = (n − |T |)·(|T | − (k − 1))
is a quadratic function in |T | and has roots |T | = n and |T | = k − 1. In the
former case, the process has already infected all nodes, and the latter case cannot
occur, since S ⊆ T and |S| = k. Next we show that f(|T |) is larger than n − 2
for values of |T | ∈ {k + 1, . . . , n − 2}. Recall that we assumed n ≥ 2k + 2,
and observe that the number of non-adjacent pairs in T × T is minimized for
any fixed k by setting n = 2k + 2. Therefore the number of such pairs is at
least (2k + 2 − |T |) · (|T | − k + 1). On the one hand, if |T | = k + 1 holds, then
their number is (k+1) · 2 = 2k+2 = n. On the other hand, for |T | = n− 2 = 2k
their number is 2 · (k + 1) = n again. Thus, the claim holds for both values
of |T |, and furthermore for all choices of |T | in between, since f ′′(|T |) = −2 and
hence f is concave.

Thus, we focus on |T | ∈ {k, n − 1} in the sequel. First we show how to
select A0 with |A0| = k such that |A1| ≥ k + 1 holds. If the graph does not
contain any node of degree less than k, we pick any node v and choose A0 to
contain k neighbors of v. Then v ∈ A1 holds and hence |A1| ≥ k + 1.

Now assume there is a node u with degree d < k. Note that any node of
degree smaller k is non-adjacent to at least n − 1 − n−2

2 = n
2 nodes, where we

use n−2
2 ≥ k. Hence there can be at most one such node because there are at

most n − 2 non-adjacent pairs of nodes in the graph.
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Let G′ be the graph after removing u and its d incident edges. Note that the
degree of each node in G′ was reduced by at most one due to the removal of u,
therefore all degrees in G′ are at least k−1. Hence we pick any node w that was
adjacent to u (recall that the graph is connected) and choose A0 to contain u
and k − 1 neighbors of w. Then in the first round w will be infected, thus we
have |A1| ≥ k + 1.

We have already shown that if there are at least k + 1 active nodes, then
the process does not stop until there are n − 1 active nodes. Assume that the
process does not infect the last node w. Then w has degree less than k; but in
this case w was selected for A0. Thus, the process cannot stop at n− 1 nodes. ��
Example 3. Note that the statement of Theorem 4 does not hold for arbitrary k ∈
{1, . . . , n−1} if n is fixed. For a clique on n vertices we pick a perfect matching M
and delete the edges of M . Let k = n−1. Each vertex has degree n−2, hence
there is no contagious set of size n−1. ��

For the case that all nodes have threshold two we give in Theorem5 a tight
bound on the number of edges that guarantees the existence of a contagious set
of size k 	 n.

Theorem 5. For all k ≥ 2 there exists nk ∈ N, such that for all n ≥ nk,

M(n, k, 2) =
(
n − k + 1

2

)

+
⌊
k − 1

2

⌋

.

Due to space restrictions the proof is deferred to the full version of the paper.
We did not attempt to find the exact k(n) for which Theorem 5 holds. It

should be noted that certain restrictions on k have to be imposed, as is shown
the following example.

Example 4. We construct a family of graphs to demonstrate that

M(n, k, 2) =
(
n − k + 1

2

)

+
⌊
k − 1

2

⌋

does not hold for arbitrary k and n. Consider for k ≥ 2n+2
3 a clique on n − k

vertices together with a star on k vertices. All k − 1 leaves of the star must be
contained in a contagious set and so do two vertices from the clique, so there is
no contagious set of size k. However, the number of edges is

(
n − k

2

)

+ (k − 1) =
(
n − k + 1

2

)

+
k

2
+

3k
2

− (n + 1)

≥
(
n − k + 1

2

)

+
k

2
>

(
n − k + 1

2

)

+
⌊
k − 1

2

⌋

.

��
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3 Conclusion

We have examined conditions on the minimum degree and the average degree of
undirected graphs ensuring the existence of contagious sets of size k ≥ 2.

We focused primarily on the case where all thresholds equal two and showed
tight bounds on the number of rounds it takes to infect all vertices for graphs
whose minimum degree guarantees the existence of a contagious set of size two.

There are several questions that arise from this work. One is to determine
the value of M(n, k, r) for all n ≥ k ≥ r. Another question is to find how large
the minimum degree of G needs to be in order to ensure that m(G, r) = k, where
k ≥ r > 2. Finally, it might be of interest to discover additional graph properties
implying m(G, 2) = 2.

Acknowledgments. The authors would like to thank the reviewers for their valuable
comments that helped improving the presentation of the paper significantly.
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Abstract. A phylogenetic network is a rooted acyclic digraph whose
leaves are labeled with a set of taxa. The tree containment problem is a
fundamental problem arising from model validation in the study of phy-
logenetic networks. It asks to determine whether or not a given network
displays a given phylogenetic tree over the same leaf set. It is known to
be NP-complete in general. Whether or not it remains NP-complete for
stable networks is an open problem. We make progress towards answer-
ing that question by presenting a quadratic time algorithm to solve the
tree containment problem for a new class of networks that we call genet-
ically stable networks, which include tree-child networks and comprise a
subclass of stable networks.

1 Introduction

With thousands of genomes being fully sequenced, phylogenetic networks have
been adopted to study “horizontal” processes that transfer genetic material from
a living organism to another without descendant relation. These processes are a
driving force in evolution which shapes the genome of a species [1,9].

A rooted (phylogenetic) network over a set X of taxa is a rooted acyclic
digraph with a set of leaves (i.e., vertices of outdegree 0) that are each labeled
with a distinct taxon. Such a network represents the evolutionary history of the
taxa in X, where the tree nodes (i.e., nodes of indegree 1) represent speciation
events. The nodes of indegree at least two are called reticulations and represent
genetic material flow from several ancestral species into an “unrelated” species.
A plethora of methods for reconstructing networks and related algorithmic issues
have been extensively studied over the past two decades [4,5,8,10].

One of the ways of assessing the quality of a given phylogenetic network is to
verify that it is consistent with previous biological knowledge about the species.
Biologists therefore demand that the network display existing gene trees, and
the corresponding algorithmic problem is known as the tree containment problem
c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 197–208, 2016.
DOI: 10.1007/978-3-319-29516-9 17
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(or TC problem for short) [5], which is well-known to be NP-complete [6,7]. Great
efforts have been devoted to identifying tractable subclasses of networks, such
as binary galled trees [7], normal networks, binary tree-child networks, level-k
networks [6], or nearly-stable networks [3]. One of the major open questions in
this setting is the complexity of the TC problem on the so-called stable networks.

A node v in a network is stable if there exists a leaf such that every path
from the root to the leaf passes through v. A network is stable (or reticulation
visible) [5] if every reticulation is stable. Motivated by the study in [2], we make
progress in this work towards determining the complexity of the TC problem on
stable networks by presenting a quadratic-time algorithm for a new class that
we call genetically stable networks. As we shall show, these networks comprise a
subclass of stable, tree-sibling networks, including tree-child networks.

2 Concepts and Notions

2.1 Binary Networks

We focus in this paper on binary networks, i.e. networks whose root has in-
degree 0 and outdegree 2, whose internal nodes all have degree 3, and whose
leaves all have indegree 1 and outdegree 0. An internal node in a network N is
called a tree node if its indegree and outdegree are 1 and 2, respectively. It is
called a reticulation (node) if its indegree and outdegree are 2 and 1, respectively.
A node v is said to be below a node u if u is an ancestor of v, i.e. there is a
directed path from u to v in N .

We also assume that in a binary network, there is a path from its root to every
leaf and that a node can be of indegree 1 and outdegree 1. We also draw an open
edge entering the root so that the root becomes a tree node with degree 3, as
shown in Fig. 1. For a network or a subnetwork N , we use the following notation:
ρ(N) for its root, L(N) for its leaf set, R(N) for the set of reticulations, T (N) for
the set of tree nodes, V(N) for its vertex set (i.e., R(N)∪T (N)∪L(N)∪{ρ(N)}),
E(N) for its edge set, p(u) for the set of parents of u ∈ R(N) or the unique parent
of u otherwise, children(u) for the set of children of u ∈ T (N) or the unique child
of u ∈ R(N), and PN (u, v) for the set of all paths from a node u to a node v
in N .

A path P from u to v in a network is a tree path if every internal node of P ,
that is every node in V(P ) \ {u, v}, is a tree node. For a network N and an edge
subset E ⊆ E(N), N −E denotes the subnetwork with vertex set V(N) and edge
set E(N)−E. For a node subset S ⊂ V(N), N −S denotes the subnetwork with
vertex set V(N) − S and edge set {(u, v) ∈ E(N) | u �∈ S, v �∈ S}. When E or S
has only one element x, we simply write N − x. A leaf in the resulting network
is a dummy leaf if it is not a leaf in the original network N .

2.2 The Tree Containment (TC) Problem

Let N be a binary network and T a binary tree over the same set of taxa. We say
that N displays T if N contains a subtree T ′, obtained by removing an incoming
edge for each reticulation in N , such that T can be obtained from T ′ by:
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Fig. 1. (A) A nearly tree-child network. (B) A non-nearly tree-child network, in which
the parents of r are not connected to any leaf by a tree path. (C) A subtree T ′ obtained
by removing an incoming edge from each reticulation in the network in B. (D) A tree
obtained from T ′ by contraction.

1. recursively removing dummy leaves (such as d in Fig. 1.C), and
2. contracting every path containing only nodes of degree 2 into a single edge

(Fig. 1.B-D).

T ′ is then referred to as a subdivision of T in N . Given a binary network and a
binary tree, the tree containment (TC) problem is to determine whether or not
the network displays the tree [5]. This problem is known to be NP-complete [6,7],
and a large part of the current research therefore focuses on finding tractable
classes of binary networks that are as general as possible.

3 Genetically Stable Networks

Let N be a binary network and u, v ∈ V(N). Node u is stable on node v if
every path from ρ(N) to v passes through u. We denote by PDLN (u) the set of
leaves on which u is stable, and say that u is stable (or visible) if PDLN (u) �= ∅.
Network N is itself stable if every r ∈ R(N) is stable. The network in Fig. 1.A
is stable, whereas the one in Fig. 1.B is not. The following result will be useful.

Proposition 1. Let N be a binary network and r ∈ R(N) with p(r) = {u, v}.
(a) If s ∈ V(N) is a stable node, then children(s) contains a tree node.
(b) If N is stable, then both parents of each reticulation are tree nodes.
(c) For any descendant x of r, either u or v is not stable on x.
(d) If r and u are stable on the same leaf, then u is stable on v.
(e) If r is stable on � ∈ L(N) and v is stable on �′ ∈ L(N) but not on �, then u

is not in a path from v to �′. Additionally, there is no z in a path from v to
�′ that is connected to u by a tree path.

If a tree node is stable on a leaf �, then its unique parent is also stable on
�, but the stability of a reticulation does not imply that of its parents. Cordue,
Linz and Semple [2] recently introduced a class of stable networks that we call
nearly tree-child networks and which satisfy the property that every reticulation
has a parent connected to some leaf by a tree path (see Fig. 1.A for an example).
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In this paper, we are interested in stable networks in which every reticulation
has a stable parent. We coin the concept genetic stability (GS) to describe such
networks, which conveys the idea that each reticulation inherits its stability
from one of its parents. Note that in a nearly tree-child network, there is a tree
path from one of the parents of every reticulation to a leaf, so that parent must
be stable. On the other hand, a GS network may not be a nearly tree-child
network1. Therefore, GS networks comprise a proper superclass of the nearly
tree-child networks.

A network is tree-sibling if every reticulation has at least one sibling that is
a tree node [5]. Interestingly, we also have the following fact.

Proposition 2. Every GS network is tree-sibling.

Our result on the complexity of the TC problem for binary GS networks
therefore refines the complexity gap of the TC problem between the classes of
binary tree-child networks, where it can be solved in polynomial time, and tree-
sibling networks where it is NP-complete [6]. Furthermore, a study of the proper-
ties of networks simulated using the coalescent model with recombination shows
that the percentage of simulated networks which are GS is significantly larger
than that of tree-child networks (see http://phylnet.info/recophync/), thus mak-
ing that new class significant in practice.

4 Solving the TC Problem for GS Networks

In this section, T denotes a binary tree and N is a genetically stable network on
the same leaf set as T unless noted otherwise.

4.1 Overview of the Algorithm

A cherry is a subtree induced by two sibling leaves �′ and �′′ and their parent
α�′,�′′ , which we denote {α�′,�′′ , �′, �′′}. It is easy to see that any tree can be
transformed into a single node by repeatedly deleting the leaves of a cherry and
their incident edges, since this operation turns their parent into a new leaf.

Our algorithm relies on the fact that for any cherry {α�′,�′′ , �′, �′′} in T ,
N displays T if and only if there exists a tree node p ∈ T (N) and two dis-
joint specific paths (defined later) P ′ ∈ PN (p, �′) and P ′′ ∈ PN (p, �′′) such that
the modified network N − [(V(P ′) ∪ V(P ′′)) \ {p}] displays the modified tree
T − {�′, �′′}, if we identify leaf p in the modified network with leaf α�′,�′′ (the
parent node of the cherry in T ) in the modified tree. Therefore, our algorithm is
a recursive procedure which executes the following tasks at each recursive step:

S1: Select a cherry {α�′,�′′ , �′, �′′} in T , and determine the corresponding node
p and paths P ′ and P ′′.

S2: If we fail to find such a node and such paths, N does not display T . Other-
wise, recurse on N − [(V(P ′) ∪ V(P ′′)) \ {p}] and T − {�′, �′′}.

1 See e.g. the network given at http://phylnet.info/isiphync/network.php?id=4.

http://phylnet.info/recophync/
http://phylnet.info/isiphync/network.php?id=4
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4.2 Three Lemmas

The difficulty in implementing the proposed approach is that a network can
display a tree through different subdivisions of the tree and the parent node and
edges of a cherry may correspond to different tree nodes and paths in different
subdivisions. Therefore, we first prove that the two paths corresponding to the
edges of a cherry have special properties.

Lemma 1 (Cherry path). Let N display T and {α�′,�′′ , �′, �′′} be a cherry in
T . Then α�′,�′′ corresponds to a tree node p in each subdivision T ′ of T in N .
Moreover, assume that P ′ and P ′′ are the paths in T ′ that correspond to edges
(α�′,�′′ , �′) and (α�′,�′′ , �′′), respectively. Then the following properties hold:

(1) The node p is not stable on any leaf � �∈ {�′, �′′}.
(2) No vertex in P ′ \ {p} is stable on a leaf other than �′.
(3) No vertex in P ′′ \ {p} is stable on a leaf other than �′′.

In the following discussion, we focus on paths P from an internal node x to
a leaf � having the following property:

(�) Each u ∈ V(P ) \ {x} is either stable only on � or not stable at all.

A path satisfying condition (�) is called a specific path (with respect to �). We
use SPN (x, �) to denote the set of specific paths from x to � ∈ L(N). A path P
from u to v is said to be unstable specific if no x ∈ V(P ) \ {u, v} is stable, where
u and v are non-leaf nodes. Note that in a GS network, an unstable specific
path is a tree path, since every reticulation is stable. Finally, for a path P and
a, b ∈ V(P ), we use P [a, b] to denote the subpath of P from a to b.

Lemma 2 (Cherry path uniqueness). Let N be a GS network, �1, �2 ∈
L(N), and a′, a′′ ∈ T (N). If there exist two paths P ′

1 ∈ SPN (a′, �1) and P ′
2 ∈

SPN (a′, �2) such that V(P ′
1) ∩ V(P ′

2) = {a′} and two paths P ′′
1 ∈ SPN (a′′, �1)

and P ′′
2 ∈ SPN (a′′, �2) such that V(P ′′

1 ) ∩ V(P ′′
2 ) = {a′′}, then:

(1) Either a′′ is a descendant of a′ in P ′
1 ∪ P ′

2 or vice versa.
(2) If a′′ is a descendant of a′ in P ′

2 and u1 is the highest common node in P ′
1

and P ′′
1 (Fig. 2.A), then one of the following facts holds:

(a) P ′
1[a

′, u1] = (a′, u1) ∈ E(N), and P ′′
1 [a′′, u1] is unstable specific.

(b) P ′′
1 [a′′, u1] = (a′′, u1) ∈ E(N) and a′′ is stable on �2.

Proof. (1) Assume the statement is false. Since both P ′
i and P ′′

i end at �i, they
must intersect for i = 1, 2. Let ui be the highest common node in P ′

i and P ′′
i ,

i = 1, 2. Clearly, u1 and u2 are reticulations stable on �1 and �2, respectively;
for each i, the only node common to P ′

i [a
′, ui] and P ′′

i [a′′, ui] is ui (Fig. 2.B-D).
If P ′

1[a
′, u1], P ′′

1 [a′′, u1], P ′
2[a

′, u2], and P ′′
2 [a′′, u2] are all edges (Fig. 2.B), then

a′ and a′′ are the parents of both u1 and u2. Since N is GS, either a′ or a′′ is
stable. Clearly a′ and a′′ are not stable on �1 and �2, so stability should involve
another leaf � below u1 or u2; but this is not possible because there is always a
path from a′ (resp. a′′) to � avoiding a′′ (resp. a′). Therefore, one of these four
subpaths contains more than one edge. We assume without loss of generality
that P ′

1[a
′, u1] has more than one edge and v and w are the parents of u1 in P ′

1

and P ′′
1 , respectively, where v �= a′. We consider two subcases.
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1. If w = a′′ (Fig. 2.C), a′′ is clearly not stable on both �1 and �2. If a′′ is stable
on a leaf � �∈ {�1, �2}, then � cannot be a descendant of u1, otherwise the
path from a′ to � through u1 would avoid a′′, a contradiction. If � is not a
descendant of u1 but is a descendant of the child z of a′′ in P ′′

2 , then every
path from ρ(N) to � must contain the edge (a′′, z) and z. This implies that z
is stable on �, contradicting that z is in the specific path P ′′

2 . Therefore, a′′

is not stable on any leaf. Since N is GS, v must be stable on a leaf �3. Since
P ′
1 is a specific path and v �= a′, �3 = �1. This implies that v is an ancestor of

a′′ and so is a′, which contradicts the assumption.
2. If w �= a′′ (Fig. 2.D), either v or w is stable, because N is GS and they are the

parents of u1. Without loss of generality, we may assume w is stable. Since
P ′′
1 is a specific path, w must be stable on �1. By Proposition 1.(d), w is stable

on v, so w either is in P ′
1[a

′, v] or is an ancestor of a′. The former contradicts
the fact that u1 is the highest common node in P ′

1 and P ′′
1 , whereas the latter

implies that a′ is a descendant of a′′, which contradicts the assumption.

(2) Using the same notation as in (1) (Fig. 2.A), since N is GS, either v or w
is stable. If v is stable on �1, by Proposition 1.(d), v is stable on w. So v = a′ and
P ′
1[a

′, u1] is just (v, u1). Let x be in P ′′
1 [a′′, u1] − {a′′}. If x is stable, it must be

stable on �1, since it is in P ′′
1 . This contradicts the fact that there is a path from

ρ(N) to �1 through u1 avoiding x. Therefore, P ′′
1 [a′′, u1] is unstable specific.

If v is stable on � �= �1, then v = a′. Otherwise, v would be an internal node
of P ′

1, contradicting the fact that P ′
1 is in SPN (a′, �1). If v is not stable, then

w must be stable, there are two possible cases. If w �= a′′, it must be stable on
�1, as it is in P ′′

1 . Therefore, either w is in P ′
1[a

′, u1], contradicting that u1 is the
highest common node in P ′

1 and P ′′
1 , or w is an ancestor of a′, contradicting that

a′ is an ancestor of a′′. If w = a′′, then it is stable on �2 and P ′′
1 [a′′, u1] is simply

(w, u1). 	


Fig. 2. Illustration of the different cases in the proof of Lemma 2.

Let α�1,�2 be the parent of �1 and �2 in T . Lemma 2.(1) implies that the set
of nodes {a | ∃ P1 ∈ SPN (a, �1), P2 ∈ SPN (a, �2) s.t. V(P1) ∩ V(P2) = {a}} is
totally ordered by the descendant relation, i.e. all its elements appear in a path
from ρ(N) to �1. So there is a unique tree node, say p, that is the lowest among
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all such nodes. Moreover, for any node a in the set, from which there are specific
paths P1 and P2 going to �1 and �2 respectively, Lemma 2.(2) states that if p is
a node in P2, then the path from p to P1 is an unstable specific path (and vice
versa). The next lemma will utilize this property to show that there is a subtree
T ′ of N that is a subdivision of T , in which p corresponds to α�1,�2 .

Let t ∈ T (N). For �1, �2 ∈ L(N) and two specific paths whose only com-
mon vertex is t, P1 ∈ SPN (t, �1) and P2 ∈ SPN (t, �2), we set N(P1, P2) to be
the subnetwork with vertex set V(N) and edge set E(N) − {(x, y), (y, x) | x ∈
V (Q) and y �∈ V (Q)} − {(x, y), (y, x) |x ∈ V (P1)\{t} and y ∈ V (P2)\{t}}
where Q = (P1 ∪P2)\{t}. Note that N(P1, P2) is the subnetwork obtained after
removing all the edges not in the paths, but incident at some node in Q.

Lemma 3. (Choice of the lower path). Let N be a GS network and �1 and
�2 be two sibling leaves in T . Assume that t ∈ T (N) and P1 ∈ SPN (t, �1) and
P2 ∈ SPN (t, �2) are two specific paths whose only common vertex is t such that
N(P1, P2) displays T . For any path P from u to v in which every x ∈ V(P )\{u, v}
is not stable:
(1) If V(P ) ∩ V(Pj) = {u} and V(P ) ∩ V(Pj′) = {v}, where {j′, j} = {1, 2}, T

is also displayed in N(Pj [u, �j ], P [u, v] ∪ Pj′ [v, �j′ ]).
(2) If V(P ) ∩ V(Pj′) = ∅ and V(P ) ∩ V(Pj) = {u, v}, where {j, j′} = {1, 2}, T

is also displayed in N(Pj′ , Pj − Pj [u, v] + P [u, v]).

Lemma 3.(1) implies that if N displays T , there is a subtree T ′ that is a
subdivision of T , such that p corresponds to α�1,�2 . The next section includes an
algorithm to find the node p.

4.3 The Algorithm

We use two lists at each node u to represent the input network N and the input
tree T : the list parent(u) comprises the nodes from which u has an edge, and
the list children(u) consists of nodes to which u has an edge.

We say that a node u is reachable from the network root if there is a path
from the root to u. Using a breadth-first search, we can determine the sets
of descendants for each vertex in O(|E(N)| + |V(N)|) time. To determine the
stability of a node u, one can compute the set Rnot(u) of leaves that are reachable
from the root in N −u. Obviously, the set PDLN (u) of nodes on which u is stable
is L(N)−Rnot(u), so u is stable if and only if Rnot(u) �= L(N). Therefore, we can
determine whether or not a node is stable on a leaf in time O(|E(N)| + |V(N)|).

We first find two sibling leaves l1 and l2 with parent αl1,l2 , which takes
O(|L(T )|) time. We then extend a specific path starting at l1 by moving a node
up each time to find a p ∈ T (N) such that if N displays T , there is a subdivision
of T in which p corresponds to αl1,l2 . Assume we arrive at a node w. If w is
stable on a leaf z �∈ {l1, l2}, then we conclude that N does not display T . If w
is stable on l2, or if there is a specific path from w to l2, then w must be p if N
displays T and we are done, so we continue our analysis by assuming otherwise.

If w is a tree node, we simply move up to its unique parent p(w). If w is a
reticulation, it is stable on l1. Let p(w) = {u, v}. We have to chose either u or v
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to move up using the stability property that w is only stable on l1 and at least
one of u and v is stable. By Proposition 1.(c), u and v cannot both be stable on
l1. If u is stable on l1 and v is stable on l2, by Proposition 1.(d), u must also
be stable on l2. Therefore, we just need to consider eight different conditions
(Table 1) to choose u or v to move up.

Table 1. When w is stable on l1, there are six combinations of its parents u and v for
consideration. Here, l(u, v) = u if u is a descendant of v, or v otherwise

Cond. S/N Stability of u Stability of v Selection

C1 PDLN (u)\{l1, l2} �= ∅ PDLN (v)\{l1, l2} �= ∅ Neither

C2 PDLN (u)\{l1, l2} �= ∅ PDLN (v) ⊆ {l1, l2} v

C3 u is stable on l1 (and
eventually on l2)

v is not stable v

C4 u is not stable v is stable only on l2 v

C5 PDLN (u) ⊆ {l1, l2} PDLN (v)\{l1, l2} �= ∅ u

C6 u is not stable v is stable on l1 (and
eventually on l2)

u

C7 u is stable only on l2 v is not stable u

C8 u is stable on l2 v is stable on l2 l(u, v)

If condition C1 holds, w cannot be a node in the path corresponding to
the edge (αl1,l2 , l1) in any subdivision T ′ of T . This is because a leaf in either
PDLN (u) \ {l1, l2} or PDLN (v) \ {l1, l2} will not appear in any T ′ that can be
contracted into a tree in which l1 and l2 are siblings. Similarly, if C2 holds, u
cannot be a node in the path corresponding to the edge (αl1,l2 , l1) in a subdivision
T ′ of T . Therefore, we select v. If C3 holds, since u and w are stable on l1, by
Proposition 1.(d), u is stable on v and we move to v if v is not stable. If C4 holds,
by Proposition 1.(e), if u is below v, there is a reticulation r′ such that there is a
tree path from r′ to u, r′ is not above l2, and r′ is below v. This implies that r′

is stable on a leaf other than l1 and l2, so we choose v. If u is not below v, then
we also choose v because we need to choose the lower one. Conditions C5–C7 are
symmetric to C2–C4 and so we select u to move up if they are true. If C8 holds,
then, u is a descendant of v or vice versa. Clearly, we have to choose whichever
is lower than the other. Algorithm 1 summarizes the whole procedure.

As we have seen, the property that each reticulation has a stable parent is
crucial in enabling a correct choice at a reticulation stable on a leaf under con-
sideration. A simple condition allows us to determine whether we have reached
p while moving up from x: there is a unstable specific tree path from p to l2 or
to a reticulation stable on l2, because there is a specific path from p to l2. Thus,
we obtain Algorithm 2 to solve the TC problem.
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Algorithm 1. Move up one node to find p

Procedure MoveUpInSpecificPath(w, l1, l2, P , N)
Input: node w, leaves l1 and l2 and path P in network N
Output: false if N does not display T , true if no final decision can yet be

made
1 if w is a tree node then
2 P ← P ∪ {w}; N ← N − (parent(w), w); w ← parent(w);

// Select a parent at a reticulation

3 if w is a reticulation stable on l1 with parents {u, v} then
4 if C1 then
5 return false;

6 if C2 or C3 or C4 or (C8 and v is lower) then
7 P ← P ∪ {w}; N ← N − (u, w); w ← v;

8 if C5 or C6 or C7 or (C8 and u is lower) then
9 P ← P ∪ {w}; N ← N − (v, w); w ← u;

10 return true;

11 else
12 return false;

Theorem 1. Algorithm 2 solves the TC problem for GS networks in quadratic
time.

Proof. Assume the input network N displays the input tree T , and let SDN (T )
be the set of subdivisions of T in N . Let α�1,�2 be the parent of the sibling leaves
�1 and �2 in T selected in line 4 of Algorithm 2. Recall that by Lemma 2, the
set {a | ∃P1 ∈ SP(a, �1), P2 ∈ SP(a, �2) s.t. V(P1) ∩ V(P2) = {a}} has a lowest
element p. If N displays T , by Lemma 3, p must correspond to α�1,�2 in some
subdivision of T in N . We now show that Algorithm 2 correctly finds p.

Let Pi be the path from p to �i in a subdivision T ′ ∈ SDN (T ) corresponding
to the edge ({α�1,�2 , �1, �2}, �i) in the cherry in T for i = 1, 2. By Lemma 1, P1

and P2 are specific paths. Let us prove that the first while-loop exits at w1 = p .
Assume t is the last vertex in P1 at which the algorithm has moved off during the
first while-loop before stopping at w1 = w �= p (Fig. 3.A). So t is a reticulation
with a parent v in P1 and the other parent u to which the algorithm moved from
t. Let P be the path consisting of all vertices visited by the algorithm after t.

Since t is a reticulation in P1, it is stable on �1. By the definition of the
moving up procedure MoveUpInSpecificPath, moving from t to u implies that
C5, C6, C7 or C8 holds. C5 cannot be true, as v is in P1 and cannot be stable
on a leaf not equal to �1. If C8 holds, then v = p. u is not in P2, otherwise u is
lower than p and there are specific paths from u to �1, �2. If u is not in P2, then
it is above p since it is stable on �2, but then it is also above v, contradicting
that we choose u. If C7 is valid, then the algorithm should stop at u, as u is
stable on �2, implying w = u. This is impossible as w is not in P2. If C6 is valid,



206 P. Gambette et al.

then v is stable on �1 and u is not stable. By Proposition 1.(d), v is stable on u,
which implies that v is an ancestor of w or vice versa.

1. If node v is an ancestor of w (Fig. 3.B), then P can be extended into a path
P from v to u. Since v is stable on �1, there are no reticulations in P [v, w].
Furthermore, no node in P [v, w] is stable on a leaf, since the first edge of P is
not in T ′. Otherwise, if a node y in P [v, w] is stable on �, y is not in T ′, and
then � is not in T ′, contradiction. That the algorithm stopped at w implies
that (i) w is a reticulation with both parents being stable on a leaf not in
{�1, �2}, or (ii) there is an unstable specific path P ′ from w to a node s that
is stable on �2.
Case (i) is not true, because we have observed that the parent of w in P is not
stable. If case (ii) is true, s must be in P2. We have another pair of specific
paths P [w, t]∪P1[t, �1] and P ′[w, s]∪P2[s, �2], which is impossible because w
is not in P1 ∪ P2 (Lemma 2.(1)).

2. If node w is an ancestor of v (Fig. 3.C), then since v is stable on �1, the path
P taken by the algorithm from u to w must go through v, contradicting the
choice of t. Using an argument similar to the one presented above, we can
show that the second while-loop stops at p correctly. After the execution of
the two while loops, we have that w1 = w2 = p. By Lemma 3, the recursive
call in Step 3 is correct.

This shows that if N displays T , our algorithm finds the lowest image of the
parent of �1 and �2 together with specific paths P1 and P2 in a subdivision of T .
By Lemma 3, N displays T if and only if T − �1 − �2 is displayed in N −P1 −P2.
This concludes the proof of correctness of the algorithm.

Regarding the time complexity of the algorithm: note that each recursive
step removes two sibling leaves from the input tree and that N has at most
|E(N)| = O(|L(N)|) nodes (see [3]). In different recursive steps, the nodes whose
stability is examined are different, and the time spent on checking stability is
at most |V(N)| × O(|E(N)| + |V(N)|) = O(|L(N)|2). Before entering the next
recursive step, the nodes that have been visited in the current step are removed.
Therefore, the algorithm has quadratic time complexity. 	


Fig. 3. Illustration for the proof of Theorem 1.
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Algorithm 2. Deciding whether a given GS network displays a given tree.
Procedure Tree-Display(N , T )

Input: a GS network N with information on stability, a tree T
Output: true if N displays T , false otherwise

1 if T is a single node then
2 return true;

3 Compute a cherry
4 {α�1,�2 , �1, �2} in T ;
5 w1 ← parent(�1); P1 ← {�1, w1}; // Initialize to start with �1

/* Move up to reach the lowest p corresponding to α�1,�2 in a

subdivision of T */

6 while no unstable specific path from w1 to �2 or a node stable on �2 do
7 if MoveUpInSpecificPath(w1, �1, �2, P1, N) = false then
8 return false;

9 w2 ← parent(�2); P2 ← {�2, w2}; // Initialize to move up at �2
10 while w2 �= w1 and w2 is below w1 do
11 if MoveUpInSpecificPath(w2, �2, �1, P2, N) = false then
12 return false;

13 if w2 �= w1 then
14 return false;

15 return Tree-Display(N − P1 − P2, T − �1 − �2);

Fig. 4. Inclusion relationships between GS networks and other classes, represented by
rectangles. A class that is drawn within another one is a subclass of the latter; an arrow
points from a nested class cluster to another if classes in the former are all a superclass
of the classes in the latter. A network is tree-child if every node in it has a child that
is a tree node.

5 Conclusion

In the present work, we introduced the class of GS networks to study the TC
problem. In [3], we developed a quadratic-time algorithm for nearly stable net-
works by iteratively selecting an edge entering a reticulation to delete in the end
of a longest path in a nearly stable network. Here, using a different approach,
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we have proved that the TC problem can also be solved in quadratic time for
GS networks.

A trivial 2|R(N)| · poly(|L(N)|) algorithm solves the TC problem as follows:
for each reticulation, simply guess which entering edge to delete. However, the
number of reticulations can be quite large e.g. in the case of bacterial genomes [9],
and many gene families need to be examined. Therefore, our proposed algorithm
with low time complexity is definitely valuable for model verification in compar-
ative genomics.

Several problems remain open for future study. First, Fig. 4 summarizes the
inclusion relationships between the network classes defined in this paper and
other well-studied classes defined in [5]. Galled networks are a generalization
of level-1 networks (also called galled trees), comprising a subclass of stable
networks [5]. The complexity of the TC problem for galled networks is open.

Second, a natural generalisation of the TC problem is to decide whether
a given network displays another given network. Is it possible to determine in
polynomial time whether a given GS network displays another given one?
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Abstract. An edge-colored graph G is said to be rainbow connected if
between each pair of vertices there exists a path which uses each color
at most once. The rainbow connection number, denoted by rc(G), is the
minimum number of colors needed to make G rainbow connected. Along
with its variants, which consider vertex colorings and/or so-called strong
colorings, the rainbow connection number has been studied from both
the algorithmic and graph-theoretic points of view.

In this paper we present a range of new results on the computational
complexity of computing the four major variants of the rainbow connec-
tion number. In particular, we prove that the Strong Rainbow Vertex
Coloring problem is NP-complete even on graphs of diameter 3. We
show that when the number of colors is fixed, then all of the considered
problems can be solved in linear time on graphs of bounded treewidth.
Moreover, we provide a linear-time algorithm which decides whether it is
possible to obtain a rainbow coloring by saving a fixed number of colors
from a trivial upper bound. Finally, we give a linear-time algorithm for
computing the exact rainbow connection numbers for three variants of
the problem on graphs of bounded vertex cover number.

1 Introduction

The concept of rainbow connectivity was introduced by Chartrand, Johns,
McKeon, and Zhang in 2008 [7] as an interesting connectivity measure moti-
vated by recent developments in the area of secure data transfer. Over the past
years, this strengthened notion of connectivity has received a significant amount
of attention in the research community. The applications of rainbow connectivity
are discussed in detail for instance in the recent survey [21], and various bounds
are also available in [8,22].

An edge-colored graph G is said to be rainbow connected if between each
pair of vertices a, b there exists an a − b path which uses each color at most
once; such a path is called rainbow. The minimum number of colors needed to
make G rainbow connected is called the rainbow connection number (rc), and the
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Rainbow Coloring problem asks to decide if the rainbow connection number
is upper-bounded by a number specified in the input. Precise definitions are
given in Sect. 2.

The rainbow connection number and Rainbow Coloring have been studied
from both the algorithmic and graph-theoretic points of view. On one hand,
the exact rainbow connection numbers are known for a variety of simple graph
classes, such as wheel graphs [7], complete multipartite graphs [7], unit interval
graphs [24], and threshold graphs [5]. On the other hand, Rainbow Coloring
is a notoriously hard problem. It was shown by Chakraborty et al. [4] that
already deciding if rc(G) ≤ 2 is NP-complete, and Ananth et al. [1] showed
that for any k > 2 deciding rc(G) ≤ k is NP-complete. In fact, Chandran and
Rajendraprasad [5] strengthened this result to hold for chordal graphs. In the
same paper, the authors gave a linear time algorithm for rainbow coloring split
graphs which form a subclass of chordal graphs with at most one more color
than the optimum.

Later on, the inapproximability of the problem was investigated by Chandran
and Rajendraprasad [6]. They proved that there is no polynomial time algorithm
to rainbow color graphs with less than twice the minimum number of colors,
unless P = NP.

Several variants of the notion of rainbow connectivity have also been con-
sidered. Indeed, a similar concept was introduced for vertex-colored graphs by
Krivelevich and Yuster [18]. A vertex-colored graph H is rainbow vertex con-
nected if there is a path whose internal vertices have distinct colors between
every pair of vertices, and this gives rise to the rainbow vertex connection number
(rvc). The strong rainbow connection number (src) was introduced and investi-
gated also by Chartrand et al. [8]; an edge-colored graph G is said to be strong
rainbow connected if between each pair of vertices a, b there exists a shortest
a − b path which is rainbow. The combination of these two notions, strong rain-
bow vertex connectivity (srvc), was studied in a graph theoretic setting by Li et
al. [20].

Not surprisingly, the problems arising from the strong and vertex variants of
rainbow connectivity are also hard. Chartrand et al. showed that rc(G) = 2 if
and only if src(G) = 2 [7], and hence deciding if src(G) ≤ k is NP-complete for
k = 2. The problem remains NP-complete for k > 2 for bipartite graphs [1], and
also for split graphs [17]. Furthermore, the strong rainbow connection number of
an n-vertex bipartite graph cannot be approximated within a factor of n1/2−ε,
where ε > 0 unless NP = ZPP [1], and the same holds for split graphs [17]. The
computational aspects of the rainbow vertex connection numbers have received
less attention in the literature. Through the work of Chen et al. [10] and Chen
et al. [9], it is known that deciding if rvc(G) ≤ k is NP-complete for every
k ≥ 2. However, to the best of our knowledge, the complexity of deciding whether
srvc(G) ≤ k (the k-SRVC problem) has not been previously considered.

In this paper, we present new positive and negative results for all four variants
of the rainbow coloring problems discussed above.
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– In Sect. 3, we prove that k-SRVC is NP-complete for every k ≥ 3 even on graphs
of diameter 3. Our reduction relies on an intermediate step which proves the
NP-hardness of a more general problem, the k-Subset Strong Rainbow
Vertex Coloring problem. We also provide bounds for approximation algo-
rithms (under established complexity assumptions), see Corollary 6.

– In Sect. 4, we show that all of the considered problems can be formulated in
monadic second order (MSO) logic. In particular, this implies that for every
fixed k, all of the considered problems can be solved in linear time on graphs
of bounded treewidth, and the vertex variants can be solved in cubic time on
graphs of bounded clique-width.

– In Sect. 5, we investigate the problem from a different perspective: we ask
whether, given an n-vertex graph G and an integer k, it is possible to color G
using k colors less than the known upper bound. Here we employ a win-win
approach and show that this problem can be solved in time O(n) for any
fixed k.

– In the final Sect. 6, we show that in the general case when k is not fixed, three
of the considered problems admit linear-time algorithms on graphs of bounded
vertex cover number. This is also achieved by exploiting a win-win approach,
where we show that either k is bounded by a function of the vertex cover
number and hence we can apply the result of Sect. 4, or k is sufficiently large
which allows us to exploit the structure of the graph to precisely compute the
connectivity number.

2 Preliminaries

2.1 Graphs and Rainbow Connectivity

We refer to [13] for standard graph-theoretic notions. We use [i] to denote the set
{1, 2, . . . , i}. All graphs considered in this paper are simple and undirected. The
degree of a vertex is the number of its incident edges, and a vertex is a pendant
if it has degree 1. We will often use the shorthand ab for the edge {a, b}. For a
vertex set X, we use G[X] to denote the subgraph of G induced on X.

A vertex coloring of a graph G = (V,E) is a mapping from V to N, and
similarly an edge coloring of G is a mapping from E to N; in this context, we
will often refer to the elements of N as colors. An a − b path P of length p is a
finite sequence of the form (a = v0, e0, v1, e1, . . . b = vp), where v0, v1, . . . vp are
distinct vertices and e0, . . . ep−1 are distinct edges and each edge ej is incident
to vj and vj+1. An a − b path of length p is a shortest path if every a − b path
has length at least p. The diameter of a graph G is the length of its longest
shortest path, denoted by diam(G). Given an edge (vertex) coloring α of G, a
color x ∈ N occurs on a path P if there exists an edge (an internal vertex) z on
P such that α(z) = x.

A vertex or edge coloring of G is rainbow if between each pair of vertices a, b
there exists an a − b path P such that each color occurs at most once on P ;
in this case we say that G is rainbow connected or rainbow colored. We denote
by rc(G) the minimum i ∈ N such that there exists a rainbow edge coloring
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α : E → [i]. Similarly, rvc(G) denotes the minimum i ∈ N such that there exists
a rainbow vertex coloring α : V → [i]. Furthermore, an edge or vertex coloring of
G is a strong rainbow coloring if between each pair of vertices a, b there exists a
shortest a− b path P such that each color occurs at most once on P . We denote
by src(G) (srvc(G)) the minimum i ∈ N such that there exists a strong rainbow
edge (vertex) coloring α : E → [i] (α : V → [i]).

Let G and H be two graphs with n and n′ vertices, respectively. The corona
of G and H, denoted by G ◦ H, is the disjoint union of G and n copies of H
where the i-th vertex of G is connected by an edge to every vertex of the i-th
copy of H. Clearly, the corona G ◦ H has n(1 + n′) vertices.

2.2 Problem Statements

Here we formally state the problems studied in this work.

Rainbow k-Coloring (k-RC)
Instance: A connected undirected graph G = (V,E).
Question: Is rc(G) ≤ k?

Strong Rainbow k-Coloring (k-SRC), Rainbow Vertex k-Coloring
(k-RVC) and Strong Rainbow Vertex k-Coloring (k-SRVC) are then
defined analogously for src(G), rvc(G) and srvc(G), respectively. We also con-
sider generalized versions of these problems, where k is given as part of the
input.

Rainbow Coloring (RC)
Instance: A connected undirected graph G = (V,E), and a positive inte-
ger k.
Question: Is rc(G) ≤ k?

The problems SRC, RVC, and SRVC are also defined analogously. In Sect. 5
we consider the “saving” versions of the problem, which ask whether it is possible
to improve upon the trivial upper bound for the number of colors.

Saving k Rainbow Colors (k-SavingRC)
Instance: A connected undirected graph G = (V,E).
Question: Is rc(G) ≤ |E| − k?
Saving k Rainbow Vertex Colors (k-SavingRVC)
Instance: A connected undirected graph G = (V,E).
Question: Is rvc(G) ≤ |V | − k?
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2.3 Structural Measures

Several of our results utilize certain structural measures of graphs. We will mostly
be concerned with the treewidth and the vertex cover number of the input graph.
Section 4 also mentions certain implications of our results for graphs of bounded
clique-width, the definition of which can be found for instance in [12].

A tree decomposition of G is a pair (T, {Xi : i ∈ I}) where Xi ⊆ V , i ∈ I,
and T is a tree with elements of I as nodes such that:

1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and
2. for each vertex v ∈ V , T [{ i ∈ I | v ∈ Xi }] is a (connected) tree with at least

one node.

The width of a tree decomposition is maxi∈I |Xi|−1. The treewidth [23] of G
is the minimum width taken over all tree decompositions of G and it is denoted
by tw(G).

Fact 1 ([3]). There exists an algorithm which, given a graph G and an integer
p, runs in time 2pO(1) ·(|V (G)|+ |E(G)|), and either outputs a tree decomposition
of G of width at most p or correctly determines that tw(G) > p.

A vertex cover of a graph G = (V,E) is a set X ⊆ V such that each edge in
G has at least one endvertex in X. The cardinality of a minimum vertex cover
in G is denoted as vcn(G). Given a vertex cover X, a type T is a subset of V \X
such that any two vertices in T have the same neighborhood; observe that any
graph contains at most 2|X| many distinct types.

2.4 Monadic Second Order Logic

We assume that we have an infinite supply of individual variables, denoted by
lowercase letters x, y, z, and an infinite supply of set variables, denoted by upper-
case letters X,Y,Z. Formulas of MSO2 logic are constructed from atomic formu-
las I(x, y), x ∈ X, and x = y using the connectives ¬ (negation), ∧ (conjunction)
and existential quantification ∃x over individual variables as well as existential
quantification ∃X over set variables. Individual variables range over vertices and
edges, and set variables range either over sets of vertices or over sets of edges.
The atomic formula I(x, y) expresses that vertex x is incident to edge y, x = y
expresses equality, and x ∈ X expresses that x is in the set X.

MSO1 logic is defined similarly as MSO2 logic, with the following distinc-
tions. Individual variables range only over vertices, and set variables only range
over sets of vertices. The atomic formula I(x, y) is replaced by E(x, y), which
expresses that vertex x is adjacent to vertex y.

Free and bound variables of a formula are defined in the usual way. A sentence
is a formula without free variables. It is known that MSO2 formulas can be
checked efficiently as long as the graph has bounded tree-width.
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Fact 2 ([11]). Let φ be a fixed MSO2 sentence and p ∈ N be a constant. Given
an n-vertex graph G of treewidth at most p, it is possible to decide whether G |= φ
in time O(n).

Similarly, MSO1 formulas can be checked efficiently as long as the graph
has bounded clique-width [12] (or, equivalently, rank-width [15]). In particular,
while the formula can be checked in linear time if a suitable rank- or clique-
decomposition is provided, current algorithms for finding (or approximating)
such a decomposition require cubic time.

Fact 3 ([12,15]). Let φ be a fixed MSO1 sentence and p ∈ N be a constant.
Given an n-vertex graph G of clique-width at most p, it is possible to decide
whether G |= φ in time O(n3).

3 Hardness of Strong Rainbow Vertex k-Coloring

It is easy to see that srvc(G) = 1 if and only if diam(G) = 2. We will prove that
deciding if srvc(G) ≤ k is NP-complete for every k ≥ 3 already for graphs of
diameter 3. This is done by first showing hardness of an intermediate problem,
described below.

In the k-Subset Strong Rainbow Vertex Coloring problem (k-SSRVC)
we are given a graph G which is a corona of a complete graph and K1, and a
set P of pairs of pendants in G. The goal is to decide if the vertices of G can be
colored with k colors such that each pair in P is connected by a vertex rainbow
shortest path. We will first show this intermediate problem is NP-complete by
reducing from the classical k-vertex coloring problem: given a graph G, decide
if there is an assignment of k colors to the vertices of G such that adjacent
vertices receive a different color. The k-vertex coloring problem is well-known to
be NP-complete for every k ≥ 3.

Lemma 4. The k-SSRVC problem is NP-complete for every k ≥ 3.

Proof (Sketch). Let G = (V,E) be an instance of the k-vertex coloring problem,
where k ≥ 3. We will construct an instance 〈G′, P 〉 of the k-SSRVC problem such
that 〈G′, P 〉 is a YES-instance if and only if G is k-vertex colorable.

The graph G′ = (V ′, E′) along with the set of pairs P are constructed as
follows:

– V ′ = V ∪ {pv | v ∈ V },
– E′ = {uv | u, v ∈ V ∧ u = v} ∪ {vpv | v ∈ V }, and
– P = {{pu, pv} | uv ∈ E}.

Clearly, G′ = K|V | ◦ K1. This completes the construction of G′. Satisfying color
assignments for V in G are necessarily satisfying color assignments for V in G′,
and vice versa. ��

We are now ready to prove the following.
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Fig. 1. The graph K3 ◦ K1 transformed to a graph of diameter 3 with P =
{{4, 5}, {4, 6}}. The color c1 is represented with grey, and the color c2 with black.
White vertices represent an unknown vertex coloring under which the pairs in P are
strong rainbow vertex connected.

Theorem 5. The problem k-SRVC is NP-complete for every integer k ≥ 3, even
when the input is restricted to graphs of diameter 3.

Proof (Sketch). Let k ≥ 3 and 〈G = (V,E), P 〉 be an instance of the k-SSRVC
problem. We will construct a graph G′ = (V ′, E′) that is strong rainbow vertex
colorable with k colors if and only if 〈G = (V,E), P 〉 is a YES-instance of k-
SSRVC.

Let V1 denote the set of pendant vertices in G. For every vertex v ∈ V1 we
introduce a new vertex xv. For every pair of pendant vertices {u, v} ∈ P , we add
two vertices x1

uv and x2
uv. We also add two new vertices s and t. In the following,

we denote by kv, where v ∈ V1, the unique vertex that v is adjacent to in G.
Formally, we construct a graph G′ = (V ′, E′) such that:

– V ′ = V ∪ {xv | v ∈ V1} ∪ {x1
uv, x2

uv | {u, v} ∈ (
V1
2

)\P} ∪ {s, t},
– E′ = E ∪ E1 ∪ E2 ∪ E3 ∪ E4,
– E1 = {vxv, sxv, txv | v ∈ V1},
– E2 = {ux1

uv, x1
uvx2

uv, x2
uvv | {u, v} ∈ (

V1
2

)\P},
– E3 = {sx1

uv, tx2
uv, kux1

uv, kvx2
uv | {u, v} ∈ (

V1
2

)\P}, and
– E4 = {sy, ty | y ∈ V \V1}.

This completes the construction of G′ (see also Fig. 1). It is easy to verify
diam(G′) = 3. ��

It can be observed that the size of the above reduction does not depend on
k, the number of colors. In fact, if the instance of the k-vertex coloring problem
has n vertices, then the graph G′ we build in Theorem 5 has no more than
O(n2) vertices. Furthermore, a strong rainbow vertex coloring of G′ gives us a
solution to the k-vertex coloring problem. Since the vertex coloring number of
an n-vertex graph cannot be approximated within a factor of n1−ε for any ε > 0
unless P = NP [26], we obtain the following corollary.

Corollary 6. There is no polynomial time algorithm for approximating the
strong rainbow vertex connection number of an n-vertex graph of bounded diam-
eter within a factor of n1/2−ε for any ε > 0, unless P=NP.
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4 MSO Formulations

This section will present formulations of the k-coloring variants of rainbow con-
nectivity in MSO logic, along with their algorithmic implications.

Lemma 7. For every k ∈ N there exists a MSO1 formula φk such that for every
graph G, it holds that G |= φ iff G is a YES-instance of k-RVC. Similarly, for
every k ∈ N there exists a MSO2 formula ψk such that for every graph G, it
holds that G |= ψ iff G is a YES-instance of k-RC.

Proof. In the case of k-RC, we wish to partition the edges of the graph G = (V,E)
into k color classes C1, . . . , Ck such that each pair of vertices is connected by a
rainbow path. Let us consider the following MSO2 formula ψk.

ψk := ∃C1, . . . , Ck ⊆ E
(
∀e ∈ E

(
e ∈ C1 ∨ · · · ∨ e ∈ Ck

))

∧
(
∀i, j ∈ [k], i = j : (Ci ∩ Cj = ∅)

)

∧
(
∀u, v ∈ V

(
(u = v) =⇒

∨

1≤i≤k

(
∃e1, . . . , ei ∈ E

(
Path(u, v, e1, . . . , ei)

∧ Rainbow(e1, . . . , ei)
))))

,

Here, Path(u, v, e1, . . . , e�) expresses that the edges e1, . . . , e� form a path
between the vertices u and v. The predicate Rainbow(e1, . . . , e�) expresses that
the edges e1, . . . , e� are each in precisely one color class.

In the case of k-RVC, the MSO1 formula φk is defined analogously, with the
following distinctions:

1. instead of edges, we partition the vertices of G into color classes;
2. the predicate Pathspeaks of vertices instead of edges and uses the adjacency

relation instead of the incidence relation; and
3. the predicate Rainbow tests the coloring of vertices instead of edges. ��

Using a similar approach, we obtain an analogous result for the strong vari-
ants of these problems.

Lemma 8. For every k ∈ N there exists a MSO1 formula φk such that for every
graph G, it holds that G |= φ iff G is a YES-instance of k-SRVC. Similarly, for
every k ∈ N there exists a MSO2 formula ψk such that for every graph G, it
holds that G |= ψ iff G is a YES-instance of k-SRC.

Theorem 9. Let p ∈ N be fixed. Then the problems k-RC, k-SRC, k-RVC,
k-SRVC can be solved in time O(n) on n-vertex graphs of treewidth at most p.
Furthermore, k-RVC, k-SRVC can be solved in time O(n3) on n-vertex graphs
of clique-width at most p.

Proof. The proof follows from Lemmas 7 and 8 in conjunction with Facts 2
and 3. ��
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In the language of parameterized complexity [14], Theorem 9 implies that
these problems are fixed-parameter tractable (FPT) parameterized by treewidth,
and their vertex variants are FPT parameterized by clique-width.

5 The Complexity of Saving Colors

This section focuses on the saving versions of the rainbow coloring problems
introduced in Subsect. 2.2, and specifically gives linear-time algorithms for k-
SavingRC and k-SavingRVC. Our results make use of the following facts.

Fact 10 ([16]). There is a MSO1 predicate VertexConnects such that on a graph
G = (V,E) VertexConnects(S, u, v) is true iff S ⊆ V is a set of vertices of G
such that there is a path from u to v that lies entirely in S.

The above is easily modified to give us the following.

Fact 11. There is a MSO2 predicate EdgeConnects such that on a graph G =
(V,E) EdgeConnects(X,u, v) is true iff X ⊆ E is a set of edges of G such that
there is path from u to v that lies entirely in X.

Theorem 12. For each k ∈ N, the problem k-SavingRC can be solved in time
O(n) on n-vertex graphs.

Proof. Observe that by coloring each edge of a spanning tree of G with a distinct
color we have that rc(G) ≤ n − 1. Thus, if m ≥ n + k, we have a YES-instance
of k-SavingRC. Otherwise, suppose m < n + k. Then G has a feedback edge set
of size at most k, and hence G has treewidth at most k. We construct a MSO2

formula ψk such that it holds that G |= ψk is true iff G is a YES-instance of
k-SavingRC. Using Fact 11, we construct ψk as follows:

ψk := ∃R1, . . . , Rk ⊆ E
(
∀i, j ∈ [k], i = j : (Ri ∩ Rj = ∅)

)

∧
(
∀i ∈ [k] :

(∃e ∈ E(e ∈ Ri)
)) ∧ |R1 ∪ R2 ∪ · · · ∪ Rk| ≥ 2k

∧
(
∀u, v ∈ V

(
(u = v) =⇒

(
∃X ⊆ E

(
EdgeConnects(X,u, v)

∧ ∀e1, e2 ∈ X
(
∀i ∈ [k] : (e1 ∈ Ri ∧ e2 ∈ Ri) =⇒ (e1 = e2)

)))))
.

In the above, the expression |A| ≥ 2k is shorthand for the existence of 2k
pairwise-distinct edges in A, which can be expressed by a simple but lengthy
MSO2 expression. The formula ψk expresses that there exist k disjoint sets
R1, . . . , Rk of edges (each corresponding to a different color set with at least
1 edge) such that their union contains at least 2k edges, with the following prop-
erty: there is a path using at most one edge from each set R1, . . . , Rk between
every pair of vertices. Formally, this property is stated as the existence of an
edge-set X for each pair of vertices u, v such that the graph (V,X) contains an
u − v path that cannot repeat edges from any Ri.

The proof then follows by Fact 2. ��
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To prove a similar result for k-SavingRVC, we will use the following result.

Fact 13 ([2]). If the treewidth of a connected graph G is at least 2k3, then G
has a spanning tree with at least k vertices with degree 1.

Theorem 14. For each k ∈ N, the problem k-SavingRVC can be solved in time
O(n) on n-vertex graphs.

Proof. Using Fact 1, we will test if the treewidth of G is at least 2k3. If it is, then
by Fact 13 the graph G has a spanning tree with at least k vertices of degree 1.
Each of these k vertices can receive the same color, and we conclude we have a
YES-instance. Otherwise, suppose the treewidth of G is less than 2k3, and we
construct a MSO1 formula φk such that it holds that G |= φk is true iff G is a
YES-instance of k-SavingRVC. The construction is analogous to Theorem 12, but
instead of EdgeConnects we use VertexConnects from Fact 10. The proof then
follows by Fact 2. ��

6 Rainbow Coloring Graphs with Small Vertex Covers

In this section we turn our attention to the more general problem of determining
whether the rainbow connection number is below a number specified in the input.
Specifically, we show that RC, RVC, and SRVC admit linear time algorithms on
graphs of bounded vertex cover number. In particular, this implies that RC,
RVC, SRVC are FPT parameterized by vcn(G).

Lemma 15. Let G = (V,E) be a connected graph and p = vcn(G). Then
rvc(G) ≤ 2p and srvc(G) ≤ p2.

The following lemma will be useful in the proof of Lemma17, a key com-
ponent of our approach for dealing with RC on the considered graph classes.
An edge separator is an edge e such that deleting e separates the connected
component containing e into two connected components.

Lemma 16. Let G = (V,E) be a graph and X be a minimum vertex cover of
G. Then there exist at most 2|X| − 2 edge separators which are not incident to
a pendant outside of X.

For ease of presentation, we define the function β as β(p) = 2p− 2+ p · (p2 +
2p · 2p). The next Lemma 17 will represent one part of our win-win strategy, as
it allows us to precisely compute rc(G) when the number of edge separators is
sufficiently large. We remark that an analogous claim does not hold for src(G)
(regardless of the choice of β).

Lemma 17. Let G = (V,E) be a connected graph and p = vcn(G). Let z be the
number of edge separators in G. If z ≥ β(p), then rc(G) = z.

Lemma 18. Let G = (V,E) be a graph with a vertex cover X ⊆ V of cardinality
p. Let z be the number of edge separators in G. If z < β(p), then rc(G) ≤
β(p) + p2 + 2p · 2p.
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Theorem 19. Let p ∈ N be fixed. Then the problems RC, RVC, SRVC can be
solved in time O(n) on n-vertex graphs of vertex cover number at most p.

Proof. For RVC and SRVC, we first observe that if k (the queried upper bound
on the number of colors) is greater than 2p and p2, respectively, then the algo-
rithm can immediately output YES by Lemma15. Otherwise we use Theorem 9
and the fact that the vertex cover number is an upper bound on the treewidth
to compute a solution in O(n) time.

For RC, it is well known that the total number of edge separators in G, say
z, can be computed in linear time on graphs of bounded treewidth. If z ≥ β(p),
then by Lemma 17 we can correctly output YES when z ≤ k and NO when
z > k. On the other hand, if z < β(p), then by Lemma 18 the value rc(G) is
upper-bounded by a function of p. We compare k and this upper bound on rc(G);
if k exceeds the upper bound on rc(G), then we output YES, and otherwise we
can use Theorem 9 along with the fact that the vertex cover number is an upper
bound on the treewidth to compute a solution in O(n) time. ��

7 Concluding Notes

We presented new positive and negative results for the most prominent variants
of rainbow coloring. We believe that the techniques presented above, and in
particular the win-win approaches used in Sects. 5 and 6, can be of use also for
other challenging connectivity problems.

It is worth noting that our results in Sect. 4 leave open the question of whether
Rainbow Coloring or its variants can be solved in (uniformly) polynomial
time on graphs of bounded treewidth. Hardness results for related problems [19,
25] do not imply that finding an optimal coloring of a bounded-treewidth graph
is hard, and it seems that new insights are needed to determine the complexity
of these problems on graphs of bounded treewidth.
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Abstract. The (edge) forwarding index of a graph is the minimum, over
all possible routings of all the demands, of the maximum load of an edge.
This metric is of a great interest since it captures the notion of global
congestion in a precise way: the lesser the forwarding-index, the lesser the
congestion. In this paper, we study the following design question: Given
a number e of edges and a number n of vertices, what is the least con-
gested graph that we can construct? and what forwarding-index can we
achieve? Our problem has some distant similarities with the well-known
(Δ, D) problem, and we sometimes build upon results obtained on it. The
goal of this paper is to study how to build graphs with low forwarding
indices and to understand how the number of edges impacts the forward-
ing index. We answer here these questions for different families of graphs:
general graphs, graphs with bounded degree, sparse graphs with a small
number of edges by providing constructions, most of them asymptotically
optimal. For instance, we provide an asymptotically optimal construc-

tion for (n, n + k) cubic graphs - its forwarding index is ∼ n2

3k
log2(k).

Our results allow to understand how the forwarding-index drops when
edges are added to a graph and also to determine what is the best (i.e.
least congested) structure with e edges. Doing so, we partially answer
the practical problem that initially motivated our work: If an operator
wants to power only e links of its network, in order to reduce the energy
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1 Introduction

Given a graph G = (V,E) with n = |V | vertices, a routing R is a collection
of paths connecting all the ordered pairs of vertices of G. A routing R induces
on every edge e a load that is the number of paths going through e. The edge-
forwarding index (or simply the forwarding index) π(G,R) of G with respect to
R is then the maximum number of paths in R passing through any edge of G. In
other words, it corresponds to the maximum load of an edge of G when R is used.
So π(G,R) measures how congested is the routing R, hence-fore it is important to
design routings minimizing this index. The forwarding index π(G) of a connected
graph G is the minimum π(G,R) over all splittable (fractional) routings R’s of
G (We will also sometimes consider non-splittable (integral) routing and denote
the minimum load πI(G) in this case). By definition the forwarding index of
a graph measures its intrinsic congestion, so it is a parameter as essential, and
arguably more important than simpler parameters such as the diameter or the
average distance.

Problem. In this paper, our goal is to provide for a given number of vertices n
and for a given number of edges k graphs with the minimum forwarding indices,
or at least graphs with low forwarding indices. For a given n, we will study how
the number of edges of a graph impacts its forwarding index. Formally, we define
the following design problem:

Min congested (n, e)-graph: Given n, e ∈ IN , find a graph (G = V,E) with
|V | = n vertices and |E| = e edges such that π(G = V,E) is minimum. We will
denote this number π∗(n, e) (when e < n − 1, note that π∗(n, e) = ∞).

Here is an example. When restricted to the class of cubic graphs, the min
congested (8, 12)-graph is the cube. Its forwarding index is equal to 8. The rout-
ing that achieves this load is the following: for each ordered pair of nodes (u, v),
we connect u to v using all shortest paths from u to v. For instance there are
6 paths that connect the node (0, 0, 0) to the node (1, 1, 1). Each of those paths
will hold a load of 1/6 for this ordered pair. Since the cube is edge-transit if, this
routing ensures that all edges will get the same load. Every node a is of distance
1 from 3 nodes, distance 2 from 3 nodes, and distance 3 from 1 node. Hence, the
total load induced by order pairs that start with a is 1 · 3 + 2 · 3 + 3 · 1 = 12.
Since there are 8 nodes in the cube, The total load on the graph is 12 · 8 = 96.
Therefore the load on each edge is 96/12 = 8. The optimality of this graph is
proven in Sect. 5. For more examples, check Table 2.

Motivation. Our problem can be viewed as: for a given bound U on the for-
warding index, find a spanner F of G with minimum number of edges such that
π(F ) ≤ U or reciprocally given a bound on the number of edges minimize π(F ).

First, to the best of our knowledge the problem of designing a (sub) graph
with minimum forwarding index has not been studied when the main other
constraint is the number of edges. Indeed, most of the results have been derived
either for classical graphs and graphs families or have been considering other
constraints, as example the bounded degree one. So even if a constraint such
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as the number of edges is both natural and of importance it has not been well
studied so far. As example, one of our initial goal was to understand how the
forwarding index drops from order n2 for tree like graphs to order n log n for
cubic graphs, and also to understand how adding a single edge can decrease
significantly (or not) the forwarding index.

Second, the recent trend of “Energy Saving” has made our problem even
more relevant in practice, especially for network operators willing to reduce the
energy consumed by their networks. In fact, most of the network links consume a
constant energy independently of the amount of traffic they are flowing. There-
fore the only way to reduce the energy used by the network links is to turn some
of them off, or more conveniently, put them on an idle mode. Outside the rush
hours, several studies [1,2,4,5,7] show that a good choice of the links to turn off
can lead to significant energy savings, while keeping the same communication
quality. In the case where the throughputs from every node to every other node
are of the same order, and where the capacities also lie in same small range, a
good choice of those links amount to solve the problem of finding spanners of
the network with low forwarding indices.

Related Work. The forwarding-index was introduced by Chung and Al in 87
[6], due to its importance this parameter has been studied quite extensively:
on one side results have been given for different graph classes (e.g. random
graphs [24], transitive and Cayley graphs [10,21] graphs with small numbers of
vertices [3] and well-connected graphs [23]). On the other side deep relations
with other expansion-related graph invariants have been established: Laplacian,
Cheeger constant (see the survey [17]), Sparsest cut [12] and the “geometry
of graphs” [13]. This notion has also been used to prove that some Markov
chains mix fast using either canonical paths (routings) or “resistance” [20]. See
the recent survey [25] for a global view on the known results. The problem is
also known as the maximum concurrent flow problem and its dual was probably
first introduced in [19] in which the authors also discussed the relation with the
network throughput, in [22] a simple oblivous packet routing algorithm achieving
network stability for any rate λ with λπ < 1 was provided. Some variants: load
on arcs for digraphs ([14]) load on the vertices have also been studied.

The edge forwarding index is strongly related to distance properties of the
graph. Indeed a usual naive lower bound on π (Average distance Bound) is:

π(G = V,E) ≥
∑

(u,v)∈V 2 D(u, v)

|E| =
DG|V |2

|E| = 2|V |DG

dG

,

where D(u, v), d(v),DG and dG denote respectively the distance function, the
degree function, the average distance in G and the average degree in G. This
indicates that solving our design problem is strongly related to finding graphs
with small average distance. The Degree-Diameter problem or (Δ,D)-Design
Problem is about finding the graph with degree Δ and diameter D with the
maximum number of vertices (or reciprocally it is about minimizing the diame-
ter of a Δ-regular graph). It is quite a complex problem and it has been studied
extensively (see [16] for a recent survey). Even after 30 years of steady efforts,
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generic constructions are still very far from being optimal. So, since good (n, e)-
graphs should resemble (Δ,D) graphs, we may expect our problem to be com-
plex. But we can also hope to be able to use results about the (Δ,D)-problem
in our context.

Contributions and Plan of the Paper

– In Sect. 2, we consider our design problem for general graphs, that is when the
only design constraint is the number of edges. We characterize the graphs with
minimum forwarding index. When the number of edges is k(n − k), k ∈ IN,
optimum graphs happen to have a simple structure since they are the complete
bipartite graphs Kk,n−k. In between these values, the function π∗(n, e) follows,
rather surprisingly, a stepwise function (see Propositions 4 and 5).

– In Sect. 3, motivated by telecommunication networks, we study the case of
bounded degree graphs. We provide almost optimal graphs for the different
values of maximum degree Δ. We then focus on graphs with a small number
of edges (Δ = 3) as they correspond to the range of values for which the
forwarding index greatly changes. We determine quite sharply how the min-
imum forwarding index behaves and evolves from Θ(n2) to Θ(n log n) when
the number edges grows from n − 1 to n + n

2 . We also develop a method that
allow us simplify the design problem by considering the graph skeleton.

– We then examine the case e = n + k with a fixed small k ∈ {1, 2, 3} in
Sect. 4. We determine the minimum forwarding index exactly for any n. This
is possible because the main structure of the graph, that we called skeleton
is finite, so we can explore all of them and use weight arguments in order to
deal with a finite problem. Some of the results, as example Proposition 11, are
strikingly counter intuitive.

– Last, in Sect. 5, we provide optimal cubic-graphs with small number of ver-
tices, that is for n ∈ [4, 22]. Those graphs are not only interesting per se (and
some structures again are surprising), but also because, as we shall see, their
structure may be used as a skeleton to build good graphs with a few edges
and arbitrarly size.

Due to the lack of space, all the proofs are omitted and can be found in a research
report [9].

2 Minimally Congested Graphs

In this section, we study the design of minimally congested graphs for given
numbers of vertices n and edges e. We first give a trivial lower bound of
π∗(n, e), the minimum forwarding index of a (n, e)-graph. We then provide fam-
ilies of minimally congested graphs reaching this bound for some couples of
values (n, e), e.g. complete bipartite graphs Ki,n−i, complete k-partite graphs,
or Kneser graphs, see Fig. 1. These graphs are edge-transitive and of diameter 2.
In particular, we show that Ki,n−i (i ∈ IN, i ≤ �n/2�) are minimally congested
(n, i(n − i))-graphs with forwarding index π∗(n, e) = 2(n(n−1)

e − 1). Last, we
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Fig. 1. Forwarding indices of minimally congested graphs with n vertices as a function
of their number of edges.

study the behavior of π∗(n, e) when e varies between two “perfect” cases, from
i(n − i) to (i + 1)(n − (i + 1)). Surprisingly, π∗ follows a step-wise function in
the sense of Propositions 4 and 5 and jumps suddenly from π∗(n, i(n − i)) to
π∗(n, (i + 1)(n − (i + 1)).

Proposition 1 (Lower bound on π∗(n, e)). The forwarding index of an
(n, e)-graph is lower bounded by:

π∗(n, e) ≥ 2n(n − 1)
e

− 2.

Proposition 2 (Optimal (n, e)-graph). An (n, e)-graph that is edge-transitive
and of diameter 2 is optimal. Its forwarding index is

2n(n − 1)
e

− 2.

Corollary 1 (Families of optimal graphs). The following families of graphs
are optimal:

– Complete bipartite graphs, giving:

π∗(n, i(n − i)) =
2n(n − 1)

e
− 2, i ∈ IN, i ≤ �n/2�.

– Turán graphs T (n, r), for which r divides n (that is, complete multipartite
regular graphs with r independent subsets of equal sizes), giving:

π∗(n,
n

2
(n − n

r
)) =

2n(n − 1)
e

− 2, r ∈ IN, r ≤ n.

– Kneser graphs KNν,κ for which κ ≥ ν/3 (Kneser graphs of diameter 2),
giving:

π∗
((

ν

κ

)

,
1
2

(
ν

κ

)(
ν − k

κ

))

=
2n(n − 1)

e
− 2, ν ∈ IN, ν/3 ≤ κ ≤ ν.
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Proposition 3 (Integral Forwarding Index).

– Complete bipartite graphs are (almost) optimal, in the sense that, for i ∈
{1, 2, . . . , �n/2�}, we have:

πI∗(n, i(n − i)) ∈ �π∗(n, i(n − i))	 + {0, 1, 2, 3, 4}.

– Turán graphs T (n, r), for which r divides n are (almost) optimal, in the sense
that, for i ∈ {1, 2, . . . , �n/2�}, we have:

πI∗(n,
n

2
(n − n

r
)) = π∗(n,

n

2
(n − n

r
)) + {0, 1, 2, 3, 4}.

Since π∗(n, e) decreases with e the above results implies that π∗(n, e) evolves
like Θ(2n2

e ), but we don’t know yet the precise behavior of π∗(n, e) between two
perfect cases (i.e. e = i(i − k)). As we shall prove this behavior is not a smooth
linear decrease since it indeed proceeds with jumps occurring at values close to
those perfect ones. First, we start studying the intermediary cases when e starts
at n − 1 (π∗(n, e) = 2(n − 1), optimal graph is a star) and grows to e = 2(n − 2)
(π∗(n, e) = n − 2. optimal graph is K2,n−2). The next proposition shows that
when e get larger than n − 1, first π∗ does not decrease significantly and stays
around 2(n−1) then it jumps abruptly down to n−1 when e get close to 2(n−2).

Proposition 4.

∀e ∈ [n − 1, 2(n − 2) − o(n)] π∗(n, e) = 2(n − 1) + o(n)
e = 2(n − 2) π∗(n, e) = (n − 1) + o(n)

The result can be extended to larger values of e (e = n + k with k = o(n)),
see Proposition 5.

Proposition 5. For any fixed k ∈ IN :

∀e ∈ [kn, (k + 1)n − o(n)] π∗(n, e) = 2n
k + o(n).

3 Bounded Degree Graphs with Low Edge
Forwarding Index

In the preceding section, we provided somewhat optimal families of graphs. This
solves the question of minimally congested graphs in the general case. We now
study graphs with a constraint on the degree (Δ will denote the maximum
degree). The motivation comes from telecommunication & real interconnection
networks for which the node degree is often small, see for example [8,18]. In this
section, we consider first the general case for Δ ≥ 3 (Δ = 2 is trivial) and we
succeed in determining how the forwarding index drops from π(n, e) = n2/4 to
2
3n log2 n when the average degree raises from 2 to 3 So, we focus on graphs with
a small number of edges, namely graphs with average degree Δ ∈ [2, 3[, that is
when e ∈ [n, 3

2n], and we study the transition of π(n, e) from n2

4 to Θ(n log n)
when the number of edges e raises from n − 1 to 3

2n.
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Fig. 2. Forwarding indices of minimaly congested graphs with n vertices as a function
of their number of edges.

3.1 Graphs with Bounded Degree Δ: Some Remarks

For Δ = 3, when e = 3n
2 , graphs such like the shuffle exchange provide deter-

ministic generic constructions for which π(G) ≤ n log2 n (this is a folk result for
people studying network throughput, one may see [25]). Since using the Moore
bound (that bound claims by direct counting that the average distance in a Δ
bounded degree graph is of order logΔ−1(n), see as example [16]) one can prove
that π∗(n, 3n

2 ) ≥ 2
3n log2 n(1 + o(1)) the lower and upper bounds matche up to

factor of 2
3 . Moreover we shall prove that random cubic graphs are almost opti-

mal since with high probability they are such that π(G) = 2
3n log2 n(1 + o(1)).

Moreover for larger values of Δ de Bruijn graphs and their variants provide
Δ-regular graphs whose forwarding index is of the right order (see Fig. 2). So
when the degree is bounded by Δ, the value of π(n, Δ

2 n) is relatively well under-
stood (see [6,11]), and structures close to the optimal are obtained using de
Bruijn graphs or slight variants of it. Indeed, on the one hand, the Moore bound
implies that:

π∗(n,
Δ

2
n) ≥ 2

Δ
n logΔ−1 n(1 − o(1)).

On the other hand, for de Bruijn graphs, one has (see [6,11])

π(n,
Δ

2
n) ≤ 2

Δ
n log� Δ

2 � n.

The argument that provides the above bound for the de Bruijn graph with degree
Δ = 2d and dn vertices, is quite simple since it exists in this graph an integral
routing that is uniform on the edges and that connects each couple of vertices
with a path of length exactly n. This length is only a constant factor larger than
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the minimum average distance predicted by the Moore bound, hence the ratio
between the above upper and lower bound is at most 3 and decreases with Δ.

So our purpose is to understand what is happening between two well under-
stood situations: e = n − 1, π∗(n, e) = n2

4 and e = 3
2n, π∗(n, e) = Θ(n log n)

that is when e evolves in [n, 3
2n], in other words we shall study the evolution of

π∗(n, e) when the number of edges e raises from n − 1 to 3
2n.

3.2 A Lower Bound for the Case e ∈ [n, 3
2
n] for Δ ≤ 3

In this section, we provide a lower bound on the forwarding indices of graphs
with e ∈ [n, 3

2n] and Δ ≤ 3.

Proposition 6. If G is a (n, n + k) graph with Δ = 3 then π(G) ≥
(n−2k)2

3k (log(3k/2) − O(log log(k)).

3.3 Construction of Minimaly-Congested Graph with Degree ≤ Δ

Our construction simply reverts the previous operation and builds graphs with
few extra edges from good skeletons.

Definition 1. Given a graph, we construct Sub(G,W) as follows: we subdivide
each edge ab by adding one node xab and we then attach a binary tree with
weight W on xab.

Lemma 1. Let G be a Δ-regular graph with x vertices, and let H = sub(G,W)
then π(H) ≤ Max

{
π(G)(Δ

2 W + 1)2 + W(ΔW
2 + 1)x,W((ΔW

2 + 1)x − W)
}
.

To our surprise, we could not find the following result in the literature, more-
over in the recent survey [11] the best bounds for cubic graphs were provided by
shuffle exchange graphs, and more generally, for bounded degree graphs the best
bounds known are derived using de Bruijn graphs. Those bounds are rather good
since they differ from the lower bound only by a relatively small (always lesser
than 2) constant factor. But indeed random regular graph are asymptotically
optimal.

Proposition 7. There exist cubic regular graphs such that π(G) =
2
3n log2(n)(1+o(1)), and Δ-regular graphs with π(G) = 2

Δn logΔ−1(n)(1+o(1)).

Remark 1. Note that the fair shortest path routing (in which each shortest path
carries the same flow) is probably better and for small values of n it may even
be significantly better, but we don’t have currently a good method to evaluate
its load and proving that so doing we get a better load. Probably the forwarding
index of random cubic graph is 2

3n log2 n + Θ(n), but we proved only a weaker
result. Moreover the value of n for which our (1 + o(1)) becomes smaller than
the 3

2 are relatively high (order of 1000).

Proposition 8. There exist (n, e = n + k) cubic graphs such that π(G) ≤
n2

3k log2(k)(1 + o(1)).



How to Design Graphs with Low Forwarding Index 229

4 Edge Forwarding Index of Cubic (Δ = 3) Graphs
with Few Extra Edges: e = n + k

When k is large, we provided in Sect. 3 asymptotically matching upper and lower
bounds on the minimum congestion. This implies that π∗(n, n + k) behaves like
Θ(n2

k log n
k ) when both k and n are large. So, in order to get a complete pic-

ture of the situation, we still need to understand the case of (n, n + k) graphs
when k is fixed. In this section, we answer this question, that is we solve the min-
congestion design problem, for graphs with arbitrary n, but small values of k.

4.1 Method: The Skeleton Approach

From the results of Sect. 3, we know that (n, n+ k) graphs are constructed from
a cubic skeleton on which are attached trees with size u. So, when k is small,
we may enumerate all the possible skeletons (like we enumerated all the cubic
graphs) and determine for each the best way to attach trees. Attaching trees
means determining for each edge e ∈ E the size α(e) of the tree that we attach
in the edge. Hence, we want to find the best weight repartition α : E → N that
satisfies

∑
e∈E α(e) = n and ∀e ∈ E,α(e) ≤ wmax, where by best we mean with

the smallest forwarding index. So, finding the best way to subdivide edges means
solving a problem of the following flavor:

Definition 2. (Best Mass Repartition). Given a graph G and a maximum
weight w0 find a weight function w : V → IR+ with ∀v ∈ V,w(V ) = 1, w(v) ≤ w0

such that π(G,w) is minimum.

4.2 Optimal (n, n − 1 + k) Cubic Graph for k = 0, 1, 2, 3

Results are listed below and corresponding constructions are given in Table 1.
When k = 0 and e = n − 1, the network is a tree with max degree Δ = 3.

The case of degree Δ trees is trivial since for such trees, considering the most
balanced cut, we get: π(T ) ≥ 2Δ(Δ − 1)

(
n
Δ

)2 and this value is attained using
a balanced Δ-ary tree or a subdivided Δ-star with branches with equal size n

Δ .
So, for Δ = 3. we have:

π∗(n, n − 1) = 2Δ(Δ − 1)
( n

Δ

)2

= 2
(Δ − 1)

Δ
n2 =

4
3
n2.

In this case, the first intuition is that the cycle Cn should be the optimal
structure. Recall that π(Cn) = n2

4 when n is even, and π(Cn) = n−1
2

n+1
2 when n

is odd (indeed π(Cn) = �n−1
2 	�n+1

2 �). The cycle is the only 2 connected structure
but it is not the min-congested one since some graphs with bridges do have lesser
congestion.
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Table 1. Constructions of optimal graphs with n vertices and n − 1 + k edges for
different numbers of extra edges k.

Proposition 9. π∗(n, n) = 12
49n2.

We provide a graph G7 with π(G) = Opt = 12
49n2: we simply take the cycle C7

and on each vertex we attach a tree (any tree can will do it) with n
7 nodes.

Proposition 10. π∗(n, n + 1) = 2
9n2.

A possible construction is then to use ∀i ∈ {1, 2, 3} a path Pi of length n/3 for
ei, then one can cover all the request using 3 cycles of size 2n

3 (Pi ∪ Pj , i = j).
The next result is rather surprising since intuitively a uniform (or at least

symmetric) subdivision of the K4 should provide an optimal solution. But a
phenomena similar to the one we already met in the case k = 1 (the C7) happens
again in a slightly more complex way.

Proposition 11. π∗(n, n + 2) = 20
112 n2.

A graph reaching this bound is obtained by subdividing 5 edges of K4 twice and
one edge once, thus we add 11 new nodes. Then, we attach a tree with weight
n
11 on each new node.
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5 Graphs with a Small Number of Vertices (Δ = 3)

We have seen in Sects. 3 and 4 the importance of having good skeletons to build
graphs with low forwarding indices. In Table 2 on page 10, we present graphs
with a small number of vertices which have the minimum possible forwarding
indices. These graphs can serve as skeletons to build families of graphs with an
arbitrary number of vertices. In some cases, optimality is easy to prove using:

– the Moore bound. In a cubic graph, and for a given vertex, the number of ver-
tices that are at distance 0, 1, 2, 3, . . . , are respectively, at most 1, 3, 6, 12, . . . .
When those bounds are reached for all the vertices of a cubic graph, the lat-
ter minimizes L = 2|V |D(G)

d(G)
among all the graphs with the same size and

Table 2. Small cubic graphs with minimum edge forwarding index
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with degree 3. When the graph is optimal for the Moore bound and is edge-
transitive, its forwarding index is minimum. This is the case for n = 6, 14;

– cut arguments, for n = 4, 8, 10.

In other cases, (n = 12, 16, 18), the generic arguments fail to provide matching
upper and lower bounds. We had to check all the possible cubic graphs [15].

5.1 Consequences for Unbounded n but a Few Edges

All those graphs can be used as skeletons, as example if one wishes to get a
good (n, 6) graph with e = n + 6 edges one can simply pick the Petersen graph
as skeleton and apply Lemma 1. We use the uniform weight function W = n

15

and using the generic routing of the lemma we get: π(n, 5) ≤ π(G) ≤ 10
(

n
10

)2 +
2 n
30 × 14n

15 = n2

10 + 14n2

225 . This may be potentially improved by computing the exact
forwarding index of the so defined weighted graph (that has only 15 vertices).

Solving the best mass repartition problem would allow us to go quite further,
but currently we have no clue about what is the best repartition even for a small
structure. It is certainly possible to repeat what we did for 0, 1, 2, 3 extra edges,
but the difficulty shall increase considerably each time we add one edge, finding
a method that would scale more than considering cases by “hand” is certainly
interesting.

6 Conclusion

In this paper, we provided a basic understanding of the interplay between the
forwarding-index of a graph and its number of extra-edges. Our bounds are
mostly asymptotically tight and explain as example how the transition happens
between highly congested graphs (Trees, Paths, . . . ) to cubic regular graphs
which have much lower congestion.

Some results, like the step-like behavior in Proposition 4 or irregular optimal
structures, are also fun, since they are unexpected. Last, we believe that our
work opens many questions:

– Small cases: In the case of a few extra-edges, we stopped at 3 extra edges (and
even in those cases the proofs are not immediate). So, it may be interesting to
go further and to understand if optimal graphs with k extra-edges are built
using an optimal cubic graph with k

2 vertices (we determined such graphs till
k = 22). As example: is the family of optimal graphs with 5 extra edges built
using the Petersen and subdivising it properly? And, if so, how do we find the
best subdivision (we saw the uniform subdivision is not always optimal).

– Construction from skeletons: Given a skeleton, we do not know how to
affect weights in order to minimize the forwarding-index of the resulting graph.
That problem can be expressed as a quadratic non convex problem and we
conjecture that it is NP-Complete.



How to Design Graphs with Low Forwarding Index 233

References

1. Araujo, J., Giroire, F., Liu, Y., Modrzejewski, R., Moulierac, J.: Energy efficient
content distribution. In: IEEE International Conference on Communications (ICC
2013), pp. 4233–4238. IEEE (2013)

2. Baliga, J., Tucker, R., Ayre, R., Hinton, K.W., Sorin, W.: Energy consumption
in IP networks. In: 34th European Conference on Optical Communication, ECOC
2008, p. 1 (2008)

3. Bouabdallah, A., Sotteau, D.: On the edge forwarding index problem for small
graphs. Networks 23(4), 249–255 (1993)

4. Restrepo, J. C. C., Gruber, C. G., Machuca, C. M.: Energy profile aware routing. In:
Communications Workshops of IEEE International Conference on Communications
(ICC), pp. 1–5 (2009)

5. Chiaraviglio, L., Mellia, M., Neri, F.: Energy-aware umts core network design. In:
The 11th International Symposium on Wireless Personal Multimedia Communica-
tions (2008)

6. Chung, F.R.K., Coffman Jr., E.G., Reiman, M.I., Simon, B.: The forwarding index
of communication networks. IEEE Trans. Inf. Theory 33(2), 224–232 (1987)

7. Giroire, F., Mazauric, D., Moulierac, J., Onfroy, B.: Minimizing routing energy con-
sumption: from theoretical to practical results. In: IEEE/ACM International Con-
ference on Green Computing and Communications (GreenCom 2010), Hangzhou,
China, p. 8 (2010)

8. Giroire, F., Perennes, S., Tahiri, I.: Grid spanners with low forwarding index
for energy efficient networks. In: International Network Optimization Conference
(INOC), Warsaw, Poland, May 2015
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Abstract. Connected Vertex Cover is one of the classical problems
of computer science, already mentioned in the monograph of Garey and
Johnson [15]. Although the optimization and decision variants of finding
connected vertex covers of minimum size or weight are well studied,
surprisingly there is no work on the enumeration or maximum number
of minimal connected vertex covers of a graph. In this paper we show that
the maximum number of minimal connected vertex covers of a graph is
O(1.8668n), and these can be enumerated in time O(1.8668n). For graphs
of chordality at most 5, we are able to give a better upper bound, and for
chordal graphs and distance-hereditary graphs we are able to give tight
bounds on the maximum number of minimal connected vertex covers.

1 Introduction

The maximum number of minimal vertex covers that a graph on n vertices can
have is equal to the maximum number of maximal independent sets, which is
known to be 3n/3 by a celebrated result of Moon and Moser [23]. This result is
easily extended to an algorithm that enumerates all the minimal vertex covers
of a graph within a polynomial factor of the given bound. The bound is tight as
a disjoint union of n/3 triangles has exactly 3n/3 minimal vertex covers. These
results have been extremely useful in many algorithms, e.g., they were used
by Lawler [21] to give an algorithm for graph coloring, which was the fastest
algorithm for this purpose for decades. For special graph classes, better bounds
have been obtained, e.g., the tight bound for triangle-free graphs is 2n/2, given
by Hujtera and Tuza [19] with combinatorial arguments, and by Byskov [4]
algorithmically. Also these results have been useful in several algorithms, e.g.,
for graph homomorphism [11]. Although connected vertex covers were defined
and studied as early as vertex covers [15], interestingly the maximum number of
minimal connected vertex covers in graphs or the enumeration of these have not
been given attention.
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In this paper, we study exactly these questions, and we give an algorithm for
enumerating all minimal connected vertex covers of a graph in time O(1.8668n).
This also gives an upper bound on the number of such covers a graph can
have. We provide a lower bound example, which is a graph that has 3(n−1)/3

minimal connected vertex covers, leaving a gap between these bounds on general
graphs. We are able to narrow this gap for graphs of chordality at most 5,
and almost close the gap for chordal graphs and distance-hereditary graphs.
In particular, we show that the maximum number of minimal connected vertex
covers in chordal graphs, graphs of chordality at most 5, and distance-hereditary
graphs, respectively, is at most 3n/3, 1.6181n, and 2 · 3n/3. All our bounds are
obtained by enumeration algorithms whose running times correspond to the
given bounds up to polynomial factors.

We would like to emphasize that our motivation for the given bounds and
enumeration algorithms is not for fast computation of connected vertex covers
of minimum size. In fact, as we will see in the next section, such sets can be
computed in time O(1.7088n) on general graphs. Furthermore, Escoffier et al. [9]
have shown that this problem can be solved in polynomial time on chordal
graphs. The problem of computing minimum connected vertex covers is indeed
well studied with a large number of published results. These are nicely surveyed
in the introduction given by Escoffier et al. [9].

Our motivation comes from the background given in the first paragraph, as
well as the fact that the study of the maximum number of vertex subsets with
given properties is a well established area in combinatorics and graph theory.
More recently, exponential time enumeration algorithms for listing such vertex
subsets in graphs have become increasingly popular and found many applications
[13]. For most of these algorithms, an upper bound on the number of enumerated
subsets follows from the running time of the algorithm. Examples of such recent
results, both on general graphs and on some graph classes, concern the enu-
meration and maximum number of minimal dominating sets, minimal feedback
vertex sets, minimal subset feedback vertex sets, minimal separators, maximal
induced matchings, and potential maximal cliques [2,5,6,10,12,14,16,17].

2 Preliminaries

We consider finite undirected graphs without loops or multiple edges. For each
of the graph problems considered in this paper, we let n denote the number
of vertices and m the number of edges of the input graph. For a graph G and
a subset U ⊆ V (G) of vertices, we write G[U ] to denote the subgraph of G
induced by U . We write G − U to denote G[V (G)\U ], and G − u if U = {u}.
A set U ⊆ V (G) is connected if G[U ] is a connected graph. For a vertex v, we
denote by NG(v) the (open) neighborhood of v, i.e., the set of vertices that are
adjacent to v in G. The closed neighborhood is NG[v] = NG(v) ∪ {v}. For a
set of vertices U ⊆ V (G), NG[U ] = ∪v∈UNG[v] and NG(U) = NG[U ]\U . Two
distinct u, v ∈ V (G) are false twins if NG(u) = NG(v). The distance distG(u, v)
between vertices u and v of G is the number of edges on a shortest (u, v)-path.
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A path or cycle P is induced if it has no chord, i.e., there is no edge of G that
joins any two vertices of P that are not adjacent in P . The chordality, chord(G),
of a graph G is the length of a longest induced cycle in G; if G has no cycles,
then chord(G) = 0. A set of vertices is an independent set if there is no edge
between any pair of these vertices, and it is a clique if all possible edges are
present between pairs of these vertices. An independent set (clique) is maximal
if no set properly containing it is an independent set (clique). A set of vertices
S ⊂ V (G) of a connected graph G is a separator if G − S is disconnected. A
vertex v is a cut vertex of a connected graph G if {v} is a separator. For an edge
uv ∈ E(G), the contraction of uv is the operation that replaces u and v by a
new vertex adjacent to (NG(u)∪NG(v))\{u, v}. G/e denotes the graph obtained
from G by contracting edge e. A graph G′ is an induced minor of G if G′ can be
obtained from G by deleting vertices and contracting edges.

For a non-negative integer k, a graph G is k-chordal if chord(G) ≤ k. A
graph is chordal if it is 3-chordal. A graph is a split graph if its vertex set can be
partitioned in an independent set and a clique. A graph is cobipartite if its vertex
set can be partitioned into two cliques. A graph G is a chordal bipartite graph
if G is a bipartite graph and chord(G) ≤ 4. A graph G is distance-hereditary
if for every connected induced subgraph H of G, distH(u, v) = distG(u, v) for
u, v ∈ V (H). Each of the above mentioned graph classes can be recognized in
polynomial (in most cases linear) time, and they are closed under taking induced
subgraphs [3,18]. See the monographs by Brandstädt et al. [3] and Golumbic [18]
for more properties and characterizations of these classes and their inclusion
relationships.

A set of vertices U ⊆ V (G) is a vertex cover of G if for every uv ∈ E(G),
u ∈ U or v ∈ U . A vertex cover U is connected if U is a connected set. A
(connected) vertex cover U is minimal if no proper subset of U is a (connected)
vertex cover. Observe that U is a minimal connected vertex cover of G if and
only if for every vertex u ∈ U , either u is a cut vertex of G[U ] or there is an edge
ux of G such that x /∈ U . Hence given a vertex set U ⊆ V (G), it can be decided
in time O(nm) whether U is a minimal connected vertex cover of G.

It is easy to see that U is a (minimal) vertex cover of G if and only if V (G)\U
is a (maximal) independent set. The following upper bound for the number of
maximal independent sets was obtained by Miller and Muller [22] and Moon and
Moser [23].

Theorem 1 ([22,23]). The number of minimal vertex covers (maximal inde-
pendent sets) of a graph is at most

⎧
⎪⎨

⎪⎩

3n/3 if n ≡ 0 (mod3),
4 · 3(n−4)/3 if n ≡ 1 (mod3),
2 · 3(n−2)/3 if n ≡ 2 (mod3).

Together with the fact that all maximal independent sets can be enumerated
with polynomial delay (see, e.g., [20,25]), this implies that all minimal vertex
covers of a graph can be enumerated in time O∗(3n/3), where the O∗-notation
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suppresses polynomial factors. Note that the same result can also be obtained
by a branching algorithm (see, e.g. [13]).

The bounds of Theorem 1 are tight; a well known lower bound example is a
graph consisting of n/3 disjoint triangles, which is a chordal distance-hereditary
graph. By adding a vertex which is adjacent to every vertex of this graph, we
can obtain a lower bound for the maximum number of minimal connected vertex
covers of a graph.

Proposition 1. There are chordal distance-hereditary graphs with at least
3(n−1)/3 minimal connected vertex covers.

We do not know of any better lower bounds for the maximum number of
minimal connected vertex covers on graphs in general. We will use the following
simple observation to give upper bounds on the number of minimal connected
vertex covers.

Observation 1. Let S be a separator of a connected graph G. Then for every
connected vertex cover U of G, S ∩ U 	= ∅. In particular, if v is a cut vertex,
then v belongs to every connected vertex cover.

Recall that our motivation for enumerating the minimal connected vertex
covers of a graph is not for the computation of a connected vertex cover of
minimum size. In fact such a set can be computed in time O(1.7088n), using the
following result of Cygan [7] about the parameterized complexity of the problem.

Theorem 2 ([7]). It can be decided in time O(2k · nO(1)) and in polynomial
space, whether a graph has a connected vertex cover of size at most k.

Combining the algorithm of Cygan [7] with brute force checking of all vertex
subsets of size at most k, we obtain the following corollary.

Corollary 1. It can be decided in time O(1.7088n) and in polynomial space,
whether a graph has a connected vertex cover of size at most k.

Our upper bounds will be given via enumeration algorithms that are recursive
branching algorithms. For the analysis of the running time T (n) of such an
algorithm, we use standard terminology [13]. If at a step, the algorithm branches
into t new subproblems, where the problem size decreases by c1, c2, . . . , ct in
each subproblem, respectively, we get the branching vector (c1, c2, . . . , ct). In
particular, a branching vector (c1, c2, . . . , ct) results from the recurrence T (n) ≤
T (n−c1)+T (n−c2)+ . . .+T (n−ct). In this case T (n) = O∗(αn), where α is the
unique positive real root of xn − xn−c1 − . . . − xn−ct = 0 [13]. The number α is
called the branching number of this branching vector. When different branching
vectors are involved at different steps of an algorithm, the branching vector with
the highest branching number gives an upper bound on T (n). In the analysis of
the running time of our branching algorithms the problem size is |F |, i.e. the
number of free vertices of the instance.
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3 General Graphs

Theorem 3. The maximum number of minimal connected vertex covers of an
arbitrary graphs is O(1.8668n), and these can be enumerated in time O(1.8668n).

Proof. We give a branching algorithm that we call EnumCVC(S, F ), which
takes as the input two disjoint sets S, F ⊆ V (G) and outputs minimal connected
vertex covers U of G such that S ⊆ U ⊆ S ∪ F . We call EnumCVC(∅, V (G))
to enumerate the minimal connected vertex covers of G. We say that v ∈ V (G)
is free if v ∈ F and v is selected if v ∈ S. The algorithm branches on a subset
of free vertices and either selects some of them to be included in a (potential)
minimal connected vertex cover or discards some of them by forbidding them to
be selected.

EnumCVC(S, F )

1. If S is a minimal connected vertex cover then return S and stop.
2. If F = ∅, then stop.
3. If there are two adjacent free vertices u, v ∈ F , then branch as follows:

– select u, i.e., set S′ = S ∪ {u}, F ′ = F\{u}, and call EnumCVC(S′, F ′),
– discard u and select its neighbors, i.e., set S′ = S∪NG(u), F ′ = F\NG[u],

and call EnumCVC(S′, F ′).
4. If F is an independent set, then let s be the number of components of G[S].

Consider every non-empty set X ⊆ F of size at most s − 1 and output S ∪ X
if S ∪ X is a minimal connected vertex cover of G.

To argue that the algorithm is correct, consider a minimal connected vertex
cover U of G such that S ⊆ U ⊆ S ∪ F and for every v ∈ V (G)\(S ∪ F ),
NG(v) ⊆ S. If F = ∅, then U = S and the algorithm outputs U on Step 1.
Assume inductively that EnumCVC(S′, F ′) outputs U for every pair of disjoint
sets S′, F ′ such that S′ ⊆ U ⊆ S′ ∪ F ′ and |F ′| < |F |. Clearly, if S is a
connected vertex cover of G, then U = S by minimality and U is returned
by the algorithm on Step 1. If S is not a connected vertex cover, then F ∩U 	= ∅
and the algorithm does not stop at Step 2. If there are two adjacent free vertices
u, v ∈ F , then u ∈ U , or u /∈ U and NG(u) ⊆ U , because at least one endpoint
of every edge is in U . In the first case we have that S′ ⊆ U ⊆ S′ ∪ F ′, where
S′ = S ∪ {u} and F ′ = F\{u}. In the second case, S′ ⊆ U ⊆ S′ ∪ F ′, where
S′ = S ∪ NG(u) and F ′ = F\NG[u]. By induction, the algorithm outputs U
when we call EnumCVC(S′, F ′). Finally, if F is an independent set and S is
not a connected vertex cover of G, then U = S ∪ X for X ⊆ F . Because F is
independent and NG(v) ⊆ S for v ∈ V (G)\(S ∪F ), S is a vertex cover of G, i.e.,
the vertices of X are included in U only to ensure the connectivity of G[U ]. We
have that each vertex of X is a cut vertex of G[U ]. Since G[S] has s components,
|X| ≤ s − 1. Therefore, the algorithm outputs U . To complete the correctness
proof, it remains to notice that if S = ∅ and F = V (G), then S ⊆ U ⊆ S∪F and
V (G)\(S ∪F ) = ∅. Hence, EnumCVC(∅, V (G)) outputs U . As U is an arbitrary
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minimal connected vertex cover, the algorithm outputs all minimal connected
vertex covers.

We have that EnumCVC(∅, V (G)) lists all minimal connected vertex covers
of G. To obtain the upper bound on the number of minimal connected vertex
covers of G, we upper bound the number of leaves of the search tree produced
by the algorithm.

Observe that by executing Steps 1–3, the algorithm either produces a leaf of
the search tree or a node of the tree corresponding to a pair of sets S and F such
that F is independent. We call a node corresponding to such S and F a sub-leaf
or (S, F )-sub-leaf. Note that the children of a sub-leaf are leaves of the search
tree produced by Step 4. The only branching rule (Step 3) has branching vector
(1, 2) since we remove at least one free vertex in the first branch and at least two,
i.e., u and v, in the second one. This branching vector has branching number
α ≈ 1.61803 [13]. Moreover, by executing Steps 1–3 the algorithm produces
O∗(αh) (S, F )-sub-leaves such that h = n − |F |.

Now we consider the (S, F )-sub-leaves of the search tree and Step 4. We have
the following two cases.

Case 1. h = n − |F | ≥ n/3. Then |F | ≤ 2n/3. Clearly, there are at most 2n−h

sets X ⊆ F of size at most s − 1 and such an (S, F )-sub-leaf has at most 2n−h

children. Since there are O∗(αh) (S, F )-sub-leaves with h = n − |F |, the total
number of children of these nodes is O∗(αh · 2n−h). Since, h ≥ n/3 and α < 2,
the number of these children is O∗(αn/3 · 22n/3).

Case 2. h = n − |F | < n/3. Let s ≥ 2 be the number of components of G[S].
We have that s − 1 ≤ h. Let β = h/n. Then h = βn, n − h = (1 − β)n and
h/(n − h) = β/(1 − β) ≤ 1/2. The number of non-empty sets X ⊆ F such that
|X| ≤ s − 1 is
(

n − h

1

)

+. . .+
(

n − h

s − 1

)

≤
(

(1 − β)n
1

)

+. . .+
(

(1 − β)n
βn

)

≤ 2H(β/(1−β))(1−β)n,

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the entropy function (see,
e.g., [13]). Let

f(β) = αβ · 2H(β/(1−β))(1−β) =
(1 +

√
5

2

)β

·
(1 − β

β

)β( 1 − β

1 − 2β

)1−2β

.

The function f(β) on the interval (0, 1/3) has the maximum value1 for β∗ =
1
2 − 1

2
√

3+2
√
5

and f(β∗) ≈ 1.86676. Since the number of (S, F )-sub-leaves with

n − |F | = h is O∗(αh), we obtain that the total number of children of these
sub-leaves is O∗(f(β∗)n). ��

4 Graphs of Chordality at Most 5

The upper bound that we proved in the previous section leaves a gap between
that bound and the best known lower bound given in Proposition 1. In this
1 The computations have been done by computer.
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section, we will narrow this gap for graphs of chordality at most 5. We will also
close the gap for chordal graphs, i.e., graphs of chordality at most 3. We start
with this latter class.

Theorem 4. The maximum number of minimal connected vertex covers of a
chordal graph is at most 3n/3, and these can be enumerated in time O∗(3n/3).

Proof. Let G be a chordal graph. If G has no edges, then the claim is trivial.
Notice also that the removal of an isolated vertex does not influence connected
vertex covers, and if G has two components with at least one edge each, G has
no connected vertex cover. Hence, without loss of generality we can assume that
G is a connected graph and n ≥ 2.

Let S be the set of cut vertices of G and G′ = G−S. We claim that U ⊆ V (G)
is a minimal connected vertex cover of G if and only if S ⊆ U and X = U ∩V (G′)
is a minimal vertex cover of G′.

Let X be a vertex cover of G′. We show that U = S ∪ X is a connected
vertex cover of G. Because X is a vertex cover of G′ and S covers the edges
of E(G)\E(G′), U is a vertex cover of G. To show that G[U ] is connected,
assume for the sake of contradiction that it is not so. Let H1 and H2 be distinct
components of G[U ] at minimum distance from each other. Let P = v0 . . . vk

be a shortest path in G that joins a vertex of H1 with a vertex of H2. For
i ∈ {1, . . . , k}, vi−1 ∈ U or vi ∈ U , because U is a vertex cover of G. Since
H1 and H2 are chosen to be components at minimum distance, k = 2. Since
v1 /∈ U , v1 is not a cut vertex of G. Therefore, G−v1 has a shortest (v0, v2)-path
P ′ = u0 . . . us. Because P ′ is an induced path and v0v2 /∈ E(G), v1ui ∈ E(G)
for i ∈ {1, . . . , s − 1} by chordality. As v1 /∈ U , ui ∈ U for i ∈ {1, . . . , us−1}.
Therefore, V (P ′) ⊆ U contradicting that H1 and H2 are distinct components of
G[U ]. Since U is a vertex cover and G[U ] is connected, U is a connected vertex
cover of G.

Let U be a connected vertex cover of G. By Observation 1, S ⊆ U . As the
vertices of S cover only the edges of E(G)\E(G′), X = U\S is a vertex cover
of G′.

We proved that U ⊆ V (G) is a connected vertex cover of G if and only if
S ⊆ U and X = U ∩ V (G′) is a vertex cover of G′. This implies that U is a
minimal connected vertex cover of G if and only if S ⊆ U and X = U ∩ V (G′)
is a minimal vertex cover of G′.

Since G′ has at most 3n/3 minimal vertex covers by Theorem 1, G has at
most 3n/3 minimal connected vertex covers. Because S can be found and G′

can be constructed in polynomial time, the minimal connected vertex covers of
G can be enumerated in time O∗(3n/3) using the algorithms of e.g., [20,25] as
mentioned in the preliminaries. ��

Proposition 1 shows that the upper bound is tight. Now we consider graphs
of chordality at most 5. First a definition: a vertex in a graph is weakly simplicial
if its neighborhood is an independent set and the neighborhoods of its neighbors
form a chain under inclusion.
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Lemma 1 ([24]). A graph is chordal bipartite if and only if every induced sub-
graph of it has a weakly simplicial vertex. Furthermore, a nontrivial chordal
bipartite graph has a weakly simplicial vertex in each partite set.

Observation 2. If e is an edge of a graph G, then chord(G/e) ≤ chord(G).

Theorem 5. The maximum number of minimal connected vertex covers of a
graph of chordality at most 5 is at most 1.6181n, and these can be enumerated
in time O(1.6181n).

Proof. We give a branching algorithm that we call EnumCVC-chord(H,S, F ),
which takes as input an induced minor H of G and two disjoint sets S, F ⊆ V (G)
and outputs minimal connected vertex covers U of G such that S ⊆ U ⊆ S ∪ F .
We call EnumCVC-chord(G, ∅, V (G)) to enumerate minimal connected vertex
covers of G. As before, we say that v ∈ V (G) is free if v ∈ F and v is selected if
v ∈ S. The algorithm branches on a set of free vertices and either selects some of
them to be included in a (potential) minimal connected vertex cover or discards
some of them by forbidding them to be selected.

EnumCVC-chord(H,S, F )

1. If S is a minimal connected vertex cover then return S and stop. If S is a
connected vertex cover but not minimal then stop.

2. If at least two distinct components of G[S ∪ F ] contain vertices of S, then
stop.

3. If there are two adjacent free vertices u, v ∈ F , then branch as follows:
– select u, i.e., set S′ = S ∪ {u}, F ′ = F\{u}, and call
EnumCVC-chord(H,S′, F ′),

– discard u and select its neighbors, i.e., set S′ = S∪NG(u), F ′ = F\NG[u],
H ′ = H − u, and call EnumCVC-chord(H ′, S′, F ′).

4. If F is an independent set, then contract consecutively every edge uv ∈ E(H)
such that u, v /∈ F and denote by H ′ the obtained graph. Find a weakly
simplicial vertex u ∈ V (H ′)\F . For each v ∈ NH′(u), select v and discard
NH′(u)\{v}, i.e., set S′ = S ∪{v}, F = F\NH′(u), H ′′ = H ′ − (NH′(u)\{v}),
and call EnumCVC-chord(H ′′, S′, F ′).

To show that the algorithm is correct, consider a minimal connected vertex
cover U of G. Suppose that S and F are disjoint subsets of V (G), and H is an
induced minor of G such that

(i) S ⊆ U ⊆ S ∪ F ,
(ii) for every v ∈ V (G)\(S ∪ F ), NG(v) ⊆ S, and
(iii) H is obtained from G by deleting vertices of V (G)\(S ∪ F ) and by con-

tracting some edges uv such that u, v ∈ S.

If F = ∅, then U = S and the algorithm outputs U on Step 1. Assume inductively
that EnumCVC-chord(H ′, S′, F ′) outputs U for any disjoint S′, F ′ and H ′

satisfying (i)–(iii) if |F ′| < |F |.
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Clearly, if S is a connected vertex cover of G, then U = S by minimality,
and U is returned by the algorithm on Step 1. Since U ⊆ S ∪ F , and U is a
connected set in G, all the vertices of S are in the same component of G[S ∪ F ]
and the algorithm does not stop at Step 2.

To argue the correctness of Step 3, suppose that there are two adjacent
free vertices u, v ∈ F . Then u ∈ U , or u /∈ U and NG(u) ⊆ U , because
at least one endpoint of every edge is in U . In the first case we have that
S′ ⊆ U ⊆ S′ ∪ F ′, where S′ = S ∪ {u} and F ′ = F\{u}, and then we call
EnumCVC-chord(H,S′, F ′). By induction, the algorithm outputs U . In the
second case, S′ ⊆ U ⊆ S′ ∪ F ′, where S′ = S ∪ NG(u) and F ′ = F\NG[u].
Also H ′ = H − u; notice that H ′ is obtained from H by the deletion of a
vertex of V (G)\(S′ ∪ F ′) and that all neighbors of u are in S′. Then we call
EnumCVC-chord(H ′, S′, F ′). Again, by induction, the algorithm outputs U .

To consider Step 4, suppose that F is an independent set and S is not a
connected vertex cover of G. Observe that because of (ii), S is a vertex cover
of G, and the vertices of U\S ⊆ F are used to ensure connectivity. Recall that
the graph H ′ is obtained by contracting edges uv ∈ E(H) such that u, v /∈ F .
This means that V (H ′)\F is an independent set, and we have that each vertex
of X = V (H ′)\F is obtained by contracting a component of G[S]. For each
x ∈ X, denote by Wx ⊆ S the set of vertices of the component of G[S] that
is contracted to x. Because the algorithm did not stop at Step 1, S is not a
connected vertex cover of G and U\S 	= ∅. Hence, F 	= ∅. We have that H ′ is
a bipartite graph such that X,F is the bipartition of V (H ′). By Observation 2,
chord(H ′) ≤ chord(G) ≤ 5. As H ′ is bipartite, chord(H ′) ≤ 4, i.e., H ′ is a
chordal bipartite graph. Notice that because G[S] is disconnected, |X| ≥ 2.
Because the algorithm did not stop at Step 2, all the vertices of S are in the
same component of G[S ∪ F ]. Therefore, dH′(x) ≥ 1 for x ∈ X. By Lemma 1,
there is a weakly simplicial vertex u ∈ X, and we have that NH′(u) 	= ∅.

We show that |NH′(u)∩U | = 1. Because U is a connected set of G and G[S]
is disconnected, F has a vertex that is adjacent to a vertex of the component
G[Wu] of G[S]. Hence, NH′(u) ∩ U 	= ∅. Since u is a weakly simplicial vertex of
H ′, the neighborhoods of the vertices of NH′(u) form a chain under inclusion.
Let v ∈ NH′(u) ∩ U be a vertex with the inclusion maximal neighborhood.
Suppose that (NH′(u) ∩ U)\{v} 	= ∅ and w ∈ (NH′(u) ∩ U)\{v}. By the choice
of v, NH′(w) ⊆ NH′(v). Hence, if w is adjacent in G to a vertex of Wx for some
x ∈ F , then v is also adjacent to a vertex of Wx. Because U is a connected set
of G, we obtain that U ′ = U\{w} is also a connected set. Since S ⊆ U ′, U ′ is a
vertex cover of G, i.e., U ′ is a connected vertex cover of G, but this contradicts
the minimality of U . Therefore, NH′(u) ∩ U = {v}.

Let v be the unique vertex of NH′(u) ∩ U . On Step 4 we branch on v. We
set S′ = S ∪ {v}, F = F\NH′(u), and H ′′ = H ′ − (NH′(u)\{v}), and we
call EnumCVC-chord(H ′′, S′, F ′). It remains to observe that the algorithm
outputs U for this call by induction.

To complete the correctness proof, it remains to notice that if S = ∅ and F =
V (G), then S ⊆ U ⊆ S ∪ F and also H = G is an induced minor of G. Clearly,
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(i)–(iii) are fulfilled for these S, F and H. Hence, EnumCVC-chord(G, ∅, V (G))
outputs U . As U is an arbitrary minimal connected vertex cover, the algorithm
outputs all minimal connected vertex covers.

To obtain the upper bound on the number of minimal connected vertex covers
of G, it is sufficient to upper bound the number of leaves of the search tree pro-
duced by the algorithm. The algorithm EnumCVC-chord(H,S, F ) branches
on Steps 3 and 4. Let k = |F |. In Step 3 the algorithm is called recursively for
|F ′| = k − 1 on the first branch and for |F ′| ≤ k − 2 on the second one. Due
to the decrease of the number of free vertices, the branching vector is (1, 2),
whose branching number is α ≈ 1.6181. To analyze the branching in Step 4 let
t = dH′(u). Then the algorithm has t branches and in each the new instance has
|F ′| = k − t free vertices. Hence the branching vector is (t, t, . . . , t) with t ≥ 1
entries, which is known to have the maximum branching number 31/3 < 1.6181
when t = 3. Hence the number L(n) of the leaves of the search tree is bounded
by the recurrence L(n) ≤ L(n − 1) + L(n − 2) with L(1) = 1. It can be easily
shown by induction that L(n) ≤ 1.6181n.

Because each step of EnumCVC-chord can be done in polynomial time,
the bound on the number of leaves of the search tree immediately implies that
the algorithm runs in time O(1.6181n). ��

5 Distance-Hereditary Graphs

Another graph class for which we are able to give a tight upper bound on the
maximum number of minimal connected vertex covers, is the class of distance-
hereditary graphs. First, we need some additional notations. Let G be a con-
nected graph and u ∈ V (G). We denote the levels of the breadth-first search
(BFS) of G starting at u by L0(u), . . . , Ls(u)(u). Hence for all i ∈ {0, . . . , s(u)},
Li(u) = {v ∈ V (G) | distG(u, v) = i}. Clearly, the number of levels in this
decomposition is s(u) + 1. For i ∈ {1, . . . , s(u)}, we denote by Gi(u) the set of
components of G[Li(u) ∪ . . . ∪ Ls(u)(u)], and G(u) = ∪s(u)

i=1 Gi(u). Let H ∈ Gi(u)
and B = NG(V (H)). Clearly, B ⊆ Li−1(u). We say that B is the boundary of
H (in Li−1(u)). We also say that I = Li(u) ∩ V (H) is the interface of H (in
Li(u)). For i ∈ {0, . . . , s(u) − 1}, Bi(u) is the set of boundaries in Li(u) of the
graphs of Gi+1(u) and B(u) = ∪s(u)−1

i=0 Bi(u). We will use the following result due
to Bandelt and Mulder [1], and D’Atri and Moscarini [8].

Lemma 2 ([1,8]). A connected graph G is distance-hereditary if and only if
for every vertex u ∈ V (G) and every H ∈ G(u) with boundary B, the following
holds: NG(u) ∩ V (H) = NG(v) ∩ V (H) for u, v ∈ B.

For the main result of this section, we need the following structural properties
of distance-hereditary graphs. All proofs of this section have been removed due
to space restrictions.

Lemma 3. Let G be a connected distance-hereditary graph and u ∈ V (G). Then
for any B1, B2 ∈ B(u), either B1 ∩ B2 = ∅ or B1 ⊆ B2 or B2 ⊆ B1.
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Lemma 4. Let G be a connected distance-hereditary graph, u ∈ V (G) and let
B be an inclusion minimal set of B(u). If B is an independent set of G, then
the vertices of B are false twins.

Observation 3. Let G be a graph, and let X,Y ⊆ V (G) be disjoint sets such
that every vertex of X is adjacent to every vertex of Y . Then for every vertex
cover U of G, X ⊆ U or Y ⊆ U .

Theorem 6. The maximum number of minimal connected vertex covers of a
distance-hereditary graph is at most 2 · 3n/3, and these can be enumerated in
time O∗(3n/3).

Proof outline. Let G be a distance-hereditary graph. If G has no edges, then
the claim is trivial. Notice also that the removal of an isolated vertex does not
influence connected vertex covers, and if G has two components with at least one
edge each, G has no connected vertex cover. Hence, without loss of generality
we can assume that G is a connected graph and n ≥ 2.

Let u ∈ V (G). We give an algorithm for enumerating all minimal connected
vertex covers of G that contain u and upper bound the number of such covers.
First we perform breadth-first search of G starting at u and construct G(u)
and B(u). We construct the set G′(u) ⊆ ∪s(u)

i=2 Gi(u) that contains all H ∈ G(u)
such that the boundary B of H is an inclusion minimal set of B(u). Then we
give a branching algorithm that we call EnumCVC-d-h(R,S, F ), which takes
as input an induced subgraph R of G and two disjoint sets S, F ⊆ V (G) such
that u ∈ S, and outputs minimal connected vertex covers U of G such that
S ⊆ U ⊆ S ∪ F . To enumerate all minimal connected vertex covers U of G
such that u ∈ U , we call EnumCVC-d-h(G, {u}, V (G)\{u}). The algorithm,
its correctness proof and the upper bound arguments for the running time and
number of minimal connected vertex covers will be given in a full version. These
arguments show that the search tree of the algorithm has at most 3n/3 leaves.
This gives an upper bound on the number minimal connected vertex covers of
G that contain u. It remains to observe that if u1u2 ∈ E(G), then every vertex
cover of G contains u1 or u2. Hence, the number of minimal connected vertex
covers of G is upper bounded by the sum of the numbers of minimal connected
vertex covers that contain u1 and u2 respectively. Observing that every step of
the algorithm takes polynomial time, this immediately implies that the algorithm
runs in time O∗(3n/3). ��

Proposition 1 shows that the upper bound is tight up to a constant factor.

6 Conclusions

The bounds that we have given for chordal graphs and distance-hereditary graphs
are tight. While we can hope to improve the other upper bounds of this paper,
we conjecture that they exceed 3n/3. It can be observed that for some classes of
graphs of bounded chordality, the number of minimal connected vertex covers
becomes polynomial.
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Proposition 2. The number of minimal connected vertex covers of a split graph
G is at most n, and these can be enumerated in time O(n + m). The number of
minimal connected vertex covers of a cobipartite graph G is at most n2/4 + n,
and these can be enumerated in time O(n2).

Proof. Notice that if X is a clique of a graph G, then for every vertex cover U of
G, either X ⊆ U or |X\U | = 1. Let G be a split graph. Without loss of generality
we can assume that G is a connected graph with at least two vertices. Let K, I
be a partition of V (G) in a clique K and an independent set I and assume that
K is an inclusion maximal clique of G. If V (G) = K, then G has n minimal
connected vertex covers K\{v} for v ∈ V (G). Assume that I 	= ∅. Then K is a
connected vertex cover of G. For v ∈ K, if U is a minimal connected vertex cover
of G with v /∈ U , U = (K\{v}) ∪ NG(v). It immediately implies that G has at
most n connected vertex covers. Taking into account that a partition K, I can
be found in time O(n + m), it follows that the minimal connected vertex covers
can be enumerated in time O(n + m).

Let now G be a cobipartite graph. Again, we can assume without loss of
generality that G is a connected graph with at least two vertices. If G is a
complete graph, then G has n connected vertex covers. Assume that G is not
a complete graph, and let K1,K2 be a partition of V (G) into two cliques. Let
U be a minimal connected vertex cover of G. If K1 ⊆ U , then U = V (G)\{v}
for v ∈ K2, and there are at most |K2| sets of this type. Symmetrically, there
are at most |K1| minimal connected vertex covers U with K2 ⊆ U . If K1\U 	= ∅
and K2\U 	= ∅, then U = V (G)\{u, v} for u ∈ K1 and v ∈ K2, and G has at
most |K1||K2| such minimal connected vertex covers. We conclude that G has at
most |K1|+|K2|+|K1||K2| ≤ n2/4+n minimal connected vertex covers. Clearly,
these arguments can be applied to obtain an enumeration algorithm that runs
in time O(n2). ��
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Abstract. Given a text T and a pattern P , the order-preserving match-
ing problem is to find all substrings in T which have the same relative
orders as P . Order-preserving matching has been an active research area
since it was introduced by Kubica et al. [13] and Kim et al. [11]. In
this paper we present two algorithms for the multiple order-preserving
matching problem, one of which runs in sublinear time on average and
the other in linear time on average. Both algorithms run much faster
than the previous algorithms.

1 Introduction

Given a text T and a pattern P , the order-preserving matching problem is to
find all substrings in T which have the same relative orders as P . For example,
given T = (10, 15, 20, 25, 15, 30, 20, 25, 30, 35) and P = (35, 40, 30, 45, 35), P has
the same relative orders as the substring T ′ = (20, 25, 15, 30, 20) of T . In T ′

(resp. P ), the first character 20 (resp. 35) is the second smallest number, the
second character 25 (resp. 40) is the third smallest number, the third character 15
(resp. 30) is the smallest number, and so on. This problem has many practical
applications such as stock price analysis and musical melody matching. It is
naturally generalized to the problem of finding multiple patterns. The order-
preserving matching for a single pattern will be called the single order-preserving
matching, and one for multiple patterns the multiple order-preserving matching.
In this paper we are concerned with the multiple order-preserving matching
problem.
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Order-preserving matching was introduced by Kubica et al. [13] and Kim
et al. [11], where Kubica et al. [13] defined order relations by order isomorphism
of two strings, while Kim et al. [11] defined them explicitly by the sequence of
rank values, which they called the natural representation. They both proposed
O(n+m log m) time solutions for the single order-preserving matching based on
the Knuth-Morris-Pratt algorithm, where n is the length of the text and m is the
length of the pattern. Kim et al. [11] also proposed an O(n log M) time algorithm
for the multiple order-preserving matching based on the Aho-Corasick algo-
rithm, where M is the sum of lengths of all the patterns. Henceforth, there has
been considerable research on the single and multiple order-preserving match-
ing problems. For the single order-preserving matching, Cho et al. [4] proposed a
method to apply the Boyer-Moore bad character rule to order-preserving match-
ing by using the notion of q-grams. Chhabra and Tarhio [3] presented a more
practical solution based on filtering. They first encoded input sequences into
binary sequences and then applied standard string matching algorithms as a
filtering method. Faro and Külekci [7] improved Chhabra and Tarhio’s solution
by using new encoding techniques which reduced the false positive rate of the
filtering step. For the multiple order-preserving matching, Belazzougui et al. [2]
theoretically improved the solution of Kim et al. [11] by replacing the under-
lying data structure by the van-Emde-Boas tree. They achieved randomized
O(n ·min(log log n,

√
log r

log log r , k)) time for the search, where r is the length of the
longest pattern and k is the number of patterns.

Order-preserving matching has been an active research area and many related
problems have been studied such as order-preserving suffix trees [6] and order-
preserving matching with k mismatches [8]. Kim et al. [10] extended the repre-
sentations of order relations from binary relations to ternary relations. With their
representations, one can modify earlier order-preserving matching algorithms to
accommodate strings with duplicate characters, i.e., a number can appear more
than once in a string.

In this paper, we present two new algorithms for the multiple order-preserving
matching problem which are more efficient on average than the previously pro-
posed algorithms. The algorithms are based on modifications of some conven-
tional pattern matching algorithms such as Wu-Manber [14] and Karp-Rabin
[9]. The first algorithm, called Algorithm I, uses the ideas of the Wu-Manber
algorithm, and the second algorithm, called Algorithm II, uses the ideas of the
Karp-Rabin algorithm and the encoding techniques of Chhabra and Tarhio [3]
and Faro and Külekci [7] for fingerprinting. Algorithm I runs in O( n

m log M) time
on average, where n is the length of the text, m is the length of the shortest
pattern, and M is the sum of lengths of all the patterns. It is sublinear on aver-
age when m > log M . Algorithm II runs in O(n) time on average, assuming that
M is polynomial with respect to m. In order to verify practical behaviors of our
algorithms, we conducted experiments where the two algorithms were compared
with the algorithms of Kim et al. [11] and Belazzougui et al. [2]. Experiments
show that our algorithms run much faster in practice.
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2 Problem Formulation

Let Σ denote a set of numbers such that a comparison of two numbers can be
done in constant time, and let Σ∗ denote the set of strings over the alphabet Σ.
For a string x ∈ Σ∗, let |x| denote the length of x. A string x is described by a
sequence of characters (x[1], x[2], ..., x[|x|]). Let a substring x[i..j] be (x[i], x[i +
1], ..., x[j]) and a prefix xi be x[1..i]. For a character c ∈ Σ, let rankx(c) =
1 + |{i : x[i] < c for 1 ≤ i ≤ |x|}|.

We use the natural representation defined by Kim et al. [11] to compare
order relations of two strings. The natural representation is equivalent to order-
isomorphism defined by Kubica et al. [13], because the natural representation
of two strings are identical if and only if they are order-isomorphic.

Definition 1 (Natural Representation [11]). For a string x of length n, the
natural representation is defined as

Nat(x) = (rankx(x[1]), rankx(x[2]), ..., rankx(x[n])).

For example, for x = (30, 40, 30, 45, 35), the natural representation is
Nat(x) = (1, 4, 1, 5, 3). We will simply say that x matches y if |x| = |y| and
Nat(x) = Nat(y).

Order-preserving matching can be defined in terms of the natural represen-
tation.

Definition 2 (Single Order-Preserving Matching [11]). Given a text
T [1..n] ∈ Σ∗ and a pattern P [1..m] ∈ Σ∗, P matches T at position i if
Nat(P ) = Nat(T [i − m + 1..i]). The single order-preserving matching is the
problem of finding all the positions of T matched with P .

Definition 2 is naturally generalized to the multiple order-preserving matching,
formally defined in Definition 3.

Definition 3 (Multiple Order-Preserving Matching [11]). Given a text
T [1..n] ∈ Σ∗ and a set of patterns P = {P1, P2, ..., Pk} where Pi ∈ Σ∗ for
1 ≤ i ≤ k, the multiple order-preserving matching is the problem of finding all
the positions of T matched with any pattern in P.

There are two other representations in addition to the natural representation
for comparing order relations of two strings: prefix representation and nearest
neighbor representation. The prefix representation can be defined as a sequence
of rank values of characters in prefixes.

Definition 4 (Prefix Representation [11]). For a string x, the prefix repre-
sentation is defined as

Pre(x) = (rankx1(x[1]), rankx2(x[2]), ..., rankx|x|(x[|x|])).
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For example, for x = (30, 40, 30, 45, 35), the prefix representation is Pre(x) =
(1, 2, 1, 4, 3). We can compute Pre(x) in time O(|x| log |x|) for general alphabet
using the order-statistic tree [11], which is an augmented version of the red-black
tree that supports general order-statistic operations on a dynamic set [5]. The
time complexity can be reduced to O(|x|) if the characters can be sorted in
O(|x|) time.

Lemma 1. [4] For two strings x and y where |x| = |y|, if x matches y, then
Pre(x) = Pre(y).

The prefix representation has an ambiguity between different strings if
they include duplicate characters. For example, when x = (10, 30, 20), and
y = (10, 20, 20), the prefix representations of both x and y are (1, 2, 2), whereas
their natural representations are different. Kim et al. defined a new represen-
tation called the extended prefix representation [10] for strings with duplicate
characters. We omit the details here.

For the nearest neighbor representation, we define LMaxx[i] and LMinx[i]
as follows.

LMaxx[i] =
{

j if x[j] = max{x[k] : x[k] ≤ x[i] for 1 ≤ k ≤ i − 1}
−∞ if no such j,

LMinx[i] =
{

j if x[j] = min{x[k] : x[k] ≥ x[i] for 1 ≤ k ≤ i − 1}
∞ if no such j.

If there are multiple j’s for LMaxx[i] or LMinx[i], we choose the rightmost one.

Definition 5 (Nearest Neighbor Representation [10,11]). For a string x,
the nearest neighbor representation is defined as

NN(x) =
((

LMaxx[1]
LMinx[1]

)

,

(
LMaxx[2]
LMinx[2]

)

, · · · ,

(
LMaxx[|x|]
LMinx[|x|]

))

.

For example, for x = (30, 40, 30, 45, 30), the nearest neighbor representation is
as follows.

NN(x) =
((−∞

∞
)

,

(
1
∞

)

,

(
1
1

)

,

(
2
∞

)

,

(
3
3

))

.

For convenience, let x[−∞] = −∞, x[∞] = ∞, Nat(x)[−∞] = 0 and
Nat(x)[∞] = |x| + 1 for any string x. Then, Nat(x)[LMaxx[i]] ≤ Nat(x)[i] ≤
Nat(x)[LMinx[i]] holds for 1 ≤ i ≤ |x|.

The time complexity for computing NN(x) is O(|x| log |x|) [11]. Using this
representation, we can check if two strings match in time linear to the size of
the input, even when the strings have duplicate characters.

Lemma 2. [4,10,11,13] Given two strings x and y where |x| = |y|, assume
NN(x) is computed. Then we can determine whether x matches y in O(|x|)
time.
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3 Algorithm I

In this section, we present our first algorithm for the multiple order-preserving
matching. Algorithm I is based on the Wu-Manber algorithm, which is widely
used for multiple pattern matching. Algorithm I is divided into two steps: the
preprocessing step and the searching step.

3.1 Preprocessing Step of Algorithm I

Let m be the length of the shortest pattern, and M be the sum of lengths of all
the patterns. We consider only the first m characters of each pattern. Let P ′ =
{P ′

1, P
′
2, · · · , P ′

k} where P ′
i = Pi[1..m] (this notation is provided only for clarity

of exposition). In the preprocessing step, we build a SHIFT table and a HASH
table based on P ′, which are analogous to those of the Wu-Manber algorithm.
However, since we are looking for strings matched with patterns in terms of order-
preserving matching, we have to consider the order representations of strings
rather than strings themselves for comparison. Consider a block of length b on
the text, where b ≤ m. The SHIFT table determines the shift value based on the
prefix representation of the given block. Given a block x, we define

lx = max{j : Pre(P ′
i [j − b + 1..j]) = Pre(x) for 1 ≤ i ≤ k, b ≤ j ≤ m} .

That is, lx means the position of the rightmost block in any P ′
i ∈ P ′ which is

likely to match x. Here, the term “is likely to” is used because Pre(x) = Pre(y)
does not necessarily mean that x matches y. For convenience, let lx = −∞ if
there is no such block. Then, the SHIFT table is defined as

SHIFT[f(x)] = min(m − lx,m − b + 1) ,

where f(x) is a fingerprint mapping a block x to an integer used as an index to
the SHIFT table. Using the factorial number system [12], we define f(x) as

f(x) =
b∑

i=1

(Pre(x)[i] − 1) · (i − 1)! .

Note that f(x) maps a block x into a unique integer within the range [0..b! − 1]
according to its prefix representation.

Figure 1(a) shows the SHIFT table when there are three patterns. Assume
that b = 3. Consider the block T [3..5]. The rightmost block in P ′ whose prefix
representation equals that of T [3..5] is P1[2..4]. The fingerprint f(T [3..5]) is 3.
Thus, SHIFT[3] is m − 4 = 1. Note that in the figure, we can safely shift the
patterns by 1.

The fingerprint is also used to index the HASH table. HASH[i] contains a
pointer to the list of the patterns whose last block in P ′ is mapped to the
fingerprint i. Figure 1(b) shows the HASH table with the same patterns.

To compute the values of the SHIFT table, we consider each pattern P ′
i

separately. For each pattern P ′
i , we compute the fingerprint of each block
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Fig. 1. SHIFT and HASH tables

P ′
i [j − b + 1..j] consecutively, and set the corresponding value of the SHIFT

table to the minimum between its current value (initially set to m − b + 1) and
m−j. In order to obtain the fingerprint of a block, we have to compute its prefix
representation. Once we compute the fingerprint of the first block Pre(P ′

i [1..b])
using the order-statistic tree, the tree contains the first b characters of P ′

i . To
compute the prefix representations of the subsequent blocks, we observe that
we can compute Pre(P ′

i [j + 1..j + b]) by taking advantage of the order-statistic
tree containing characters of the previous block P ′

i [j..j + b − 1]. Specifically, we
erase P ′

i [j] from the tree and insert the new character P ′
i [j + b] into the tree.

Inserting and deleting an element into the order-statistic tree is accomplished in
O(log b) time since the tree contains O(b) elements. Then we traverse the tree
in O(b) time to retrieve the prefix representation of the new block. We repeat
this until we reach the last block. When we reach the last block, we map into
the HASH table and add Pi into the corresponding list. The whole process is
performed for all the patterns. Since there are O(km) blocks, it takes O(kmb)
time to construct the SHIFT and HASH tables.

We also precompute the nearest neighbor representations of all the patterns,
namely, NN(Pi) for 1 ≤ i ≤ k. They are used in the searching step for verifying
whether patterns actually match the text. Using the order-statistic tree, they are
computed in O(M log r) time, where r denotes the length of the longest pattern.
As a result, the time complexity for the preprocessing step is O(kmb+M log r).

3.2 Searching Step of Algorithm I

In the searching step, we find all the positions of T matched with any pattern in
P. Figure 2 shows the pseudocode of Algorithm I. For the search, we slide a posi-
tion pos along the text, reading a block of length b, T [pos− b+1..pos], and com-
puting the corresponding fingerprint i. If SHIFT(i) > 0, then we shift the search
window to pos + SHIFT(i) and continue the search. Otherwise, SHIFT(i) = 0
and there may be a match. Thus we select the list of patterns in HASH[i], and
compare each pattern in the list with the text via the nearest neighbor represen-
tation. We call this process the verification step. We repeat this until we reach
the end of the text.
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Algorithm I(P = {P1, P2, · · · , Pk}, T [1..n])
1: m ← min1≤i≤k(|Pi|)
2: Preprocess P and compute SHIFT, HASH, NN
3: pos ← m
4: while pos ≤ n do
5: i ← f(T [pos − b + 1..pos])
6: if SHIFT[i] = 0 then
7: Verify each pattern in HASH[i] via NN
8: pos ← pos + 1
9: else

10: pos ← pos + SHIFT[i]
11: end if
12: end while

Fig. 2. The pseudocode of Algorithm I

3.3 Average Time for the Search of Algorithm I

We present a simplified analysis of the average running time for the searching
step. For the analysis, we assume that there is no duplicate character in any b-
length block in strings, i.e., any consecutive b characters in the text and patterns
are distinct. Although this assumption restricts the generality of our problem,
it is insignificant because: (1) a fairly large alphabet makes the case against
the assumption very unlikely to happen; (2) even if it happens, the algorithm
still works correctly without a significant impact on the performance in practice.
We leave it as an open problem whether the average O( n

m log M) time can be
derived when the strings are totally random, which is more complicated. Now,
we assume that each distinct block appears randomly at a given position (i.e.,
with the same probability). Let us denote σ = |Σ|, then there are σPb different
possible blocks and the probability of a block to appear is 1/σPb.

Lemma 3. For two random blocks x and y, where x, y ∈ Σb and each has no
duplicate character, the probability that Pre(x) = Pre(y) is 1

b! .

Recall that Algorithm I determines a shift value according to the prefix repre-
sentation of a current block on the text.

Lemma 4. The probability that a random block x leads to a shift value of j,
0 ≤ j ≤ m − b, is at most k

b! .

Proof. The necessary condition for the case that x leads to a shift value j is that
there exists a pattern P ′

i whose block ending at the position m − j belongs to
the prefix representation of x. Since there are k patterns, the probability of the
necessary condition is k

b! . ��
Lemma 5. The expected value of a shift during the search is at least (m − b +
1){1 − k(m−b+2)

2b! }.
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Proof. Since all the entries of SHIFT were initialized to m − b + 1, the expected
value of a shift is ≥ ∑m−b

j=0 j · k
b! + (m − b + 1){1 − (m − b + 1) k

b!} = (m − b +

1){1 − k(m−b+2)
2b! }. ��

We set b = 1.5 log M/ log log M . Then, by Stirling’s approximation [1], we
can easily prove that b! = 2b log b+b log e+O(log b) = Ω(M), and thus the expected
value of a shift is at least Θ(m). Consequently, the average number of iterations
of the while loop during the search is bounded by O( n

m ). At each iteration, we
compute a fingerprint and the computation takes O(b log b) = O(log M) time.
Lemma 6 shows that the verification step at each iteration is accomplished in
constant time on average.

Lemma 6. The average cost of the verification step at each iteration is O(1).

Proof. At each iteration, the probability that a pattern Pi leads to the verifica-
tion step is 1

b! and the cost for the verification for Pi is O(|Pi|) by Lemma 2. Since
there are k patterns, the expected cost of the verification step at each iteration
is

∑k
i=1

O(|Pi|)
b! = O(M)

b! = O(1). ��
Hence, the average time complexity of the searching step is roughly O( n

m log M).

4 Algorithm II

In this section, we present a simple algorithm that achieves average linear time
for search. Algorithm II exploits the ideas of the Karp-Rabin algorithm and the
encoding techniques of Chhabra and Tarhio [3] and Faro and Külekci [7] for
fingerprinting.

4.1 Fingerprinting in Algorithm II

The Karp-Rabin algorithm is a practical string matching algorithm that makes
use of fingerprints to find patterns, and it is important to choose a fingerprint
function such that a fingerprint should be efficiently computed and efficiently
compared with other fingerprints. Furthermore, the fingerprint function should
be suitable for identifying strings in terms of order-preserving matching.

Given an m-length pattern P , Chhabra and Tarhio [3] encode the pattern
into a binary sequence β(P ) of length m − 1, where

β(P )[i] =
{

1 if P [i] < P [i + 1]
0 otherwise.

We consider the fingerprint β(P ) as an (m − 1)-bit binary number. We can
compute β(P ) in time O(m).

As m increases, the fingerprint β(P ) may be too large to work with; we need
at least (m−1) bits to represent a fingerprint. To address this issue, we compute
the fingerprints as residues modulo a prime number p. According to [9], we choose
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the prime p pseudorandomly in the range [1..mn2]. With this choice, it is proved
that the probability of a single false positive due to the modulo operation while
searching is bounded by 2.53/n, which is negligibly small for sufficiently large
n [9].

Faro and Külekci [7] proposed more advanced encoding techniques such as
q-NR and q-NO. Instead of comparing between only a pair of neighboring char-
acters, they compared between a set of q characters for computing the relative
position of a character. We can compute fingerprints using those techniques sim-
ilarly to above. We implemented Algorithm II using three encoding techniques,
including Chhabra and Tarhio’s binary encoding [3], q-NR, and q-NO [7], for
fingerprinting. In the following sections, we will describe the algorithm assuming
the binary encoding.

4.2 Preprocessing Step of Algorithm II

Again, let P ′ = {P ′
1, P

′
2, · · · , P ′

k} be the set of m-length prefixes of the patterns.
In the preprocessing step, we first compute β(P ′

i ) for 1 ≤ i ≤ k and build a HASH
table. HASH[i] contains a pointer to the list of the patterns whose fingerprints
equal i. We also compute NN(Pi) for 1 ≤ i ≤ k. In total, the preprocessing step
takes O(M log r) time, where r is the length of the longest pattern. Figure 3(a)
shows the HASH table when there are three patterns. We use a prime p = 7 in
the example.

Fig. 3. (a) The HASH table (b) An example of the search. For the window T [2..6], the
corresponding fingerprint is 5. We check HASH[5], which has P1, P2 as elements, and
thus verify them via NN.

4.3 Searching Step of Algorithm II

In the searching step, we scan the text T while iteratively computing fingerprints
of the successive windows of size m. Figure 4 shows the pseudocode of Algorithm
II. We slide a search window T [i..i+m−1] along the text, computing the corre-
sponding fingerprint β. If the list pointed by HASH[β] is not empty, we compare
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Algorithm II(P = {P1, P2, · · · , Pk}, T [1..n])
1: m ← min1≤i≤k(|Pi|)
2: Preprocess P and compute HASH, NN
3: pos ← m
4: for i = 1 for n − m + 1 do
5: β = β(T [i..i + m − 1]) mod p
6: Verify each pattern in HASH[β] via NN
7: end for

Fig. 4. The pseudocode of Algorithm II

each pattern in the list with the text via its nearest neighbor representation. We
call this process the verification step. We repeat this until we reach the end of
the text. Figure 3(b) shows an example of the searching step.

4.4 Average Time for the Search of Algorithm II

At each iteration of the for loop, we compute the fingerprint β of the search
window. Let us denote βi = β(T [i..i + m − 1]) mod p, which is the fingerprint
of the i-th search window. We can compute β1 in time O(m). To compute the
fingerprints for the subsequent windows, we observe that we can compute βi+1

from βi using Horner’s rule [5], since

βi+1 = (2(βi − H · β(T )[i]) + β(T )[i + m]) mod p ,

where H = 2m−2 (mod p) is a precomputed value. It is clear that this calculation
is done in constant time.

Now, we analyze the time spent to perform the verification step. We assume
that the numbers in the text and patterns are statistically independent and uni-
formly at random. The verification is performed when there is a match between
encoded binary strings of the text and patterns. The probability that a 1 appears
at a position of an encoded string is q = (σ2/2 − σ/2)/σ2 = (σ − 1)/2σ. So the
probability of a character match [3] is

s = q2 + (1 − q)2 =
1
2

+
1

2σ2
.

Since the odd positions of an encoded string are mutually independent, we
can (upper) bound the probability of a match between two encoded strings by
s(m−1)/2. Note that s ≤ 5/8 for σ ≥ 2.

Lemma 7. When M is polynomial with respect to m, the average cost of the
verification step during the search is O(1).

Hence, the average time complexity of the searching step is O(n), when M is
polynomial with respect to m.
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5 Experiments

In order to verify the practical behaviors of our algorithms, we tested them
against the previous algorithms based on the Aho-Corasick algorithm: Kim
et al.’s [11], and Belazzougui et al.’s [2].1 Kim et al.’s algorithm is denoted
by KEF, Belazzougui et al.’s by BPR, and Algorithm I by Alg1. Algorithm II is
denoted by Alg2, followed by a notation of the encoding technique adopted for
fingerprinting. Specifically, Alg2 Bin refers to Algorithm II with Chhabra and
Tarhio’s binary encoding [3], and Alg2 NR2 (resp. Alg2 NO2 ) refers to Algo-
rithm II with the q-NR (resp. q-NO) encoding of Faro and Külekci [7] where
we set q = 2. All algorithms were implemented in C++ and run on a Debian
Linux 7(64bit) with Intel Xeon X5672 processor and 32 GB RAM. During the
compilation, we used the O3 optimization option.

We tested for a random text T of length n = 106 searched for k = 10, 50, 100
random patterns of length m = 5, 10, 20, 50, 100, respectively. All the texts and
patterns were selected randomly from an integer alphabet Σ = {1, 2, · · · , 1000}
(we tested for varying alphabet sizes, but we didn’t observe sensible differences
in the results). For each combination of k and m, we randomly selected a text
and patterns, and then ran each algorithm. We performed this 10 times and
measured the average time for the searching step. Table 1 shows the results.

Table 1. Average search times with different values for k and m

k m KEF BPR Alg1 Alg2 Bin Alg2 NR2 Alg2 NO2

10 5 527.3 1215.1 274.8 107.6 164.8 186.5

10 544.3 1258.2 216.9 91.5 148.8 197.6

20 557.1 1254.8 286.5 88.4 155.4 194.8

50 556.2 1213 51.1 65.4 116.7 203

100 561.7 1244.8 56.2 70.4 123.9 206.9

50 5 598 1227.2 647.8 234.1 215.3 310

10 573.8 1238.6 269.6 100.5 152.3 194.6

20 562.9 1244.2 308.6 114.8 187.1 216.4

50 570.7 1239.8 313.5 113.8 184.5 226.2

100 587.6 1271.8 55.4 86.1 150.6 227.6

100 5 569 1291.1 674.4 395.6 386.3 307.3

10 629 1304.3 522.4 81.9 100.3 150.5

20 589 1250.2 498.4 102.6 164 205.1

50 605.3 1259.9 103.3 86 184.8 225.7

100 588.9 1247.2 73.2 53.8 182 227.5

1 For the implementation of the van-Emde-Boas tree used in [2], we used the source
code publicly available at https://code.google.com/p/libveb/.

https://code.google.com/p/libveb/
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When m is relatively small, Alg2 family are the best among the algorithms.
As m increases, however, Alg1 outperforms them. This is due to the increase of
the average shift value during the search. The reason that the average shift value
increases is that since we set b = 1.5 log M/ log log M , the block size increases
as m increases, and thus the probability that a block appears in the patterns
decreases. One thing to note is that as k increases, the point of m where Alg1
becomes for the first time faster than the Alg2 family increases. We attribute
this to the fact that as k increases, a block appears more often in the patterns,
which leads to lower shift values.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover,
New York (1972)

2. Belazzougui, D., Pierrot, A., Raffinot, M., Vialette, S.: Single and multiple con-
secutive permutation motif search. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
Algorithms and Computation. LNCS, vol. 8283, pp. 66–77. Springer, Heidelberg
(2013)

3. Chhabra, T., Tarhio, J.: Order-preserving matching with filtration. In: Gudmunds-
son, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 307–314. Springer,
Heidelberg (2014)

4. Cho, S., Na, J.C., Park, K., Sim, J.S.: A fast algorithm for order-preserving pattern
matching. Inf. Process. Lett. 115(2), 397–402 (2015)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

6. Crochemore, M., et al.: Order-preserving incomplete suffix trees and order-
preserving indexes. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013.
LNCS, vol. 8214, pp. 84–95. Springer, Heidelberg (2013)
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Abstract. Completely independent spanning trees T1, T2, . . . , Tk in a
graph G are spanning trees in G such that for any pair of distinct vertices
u and v, the k paths in the spanning trees between u and v mutually
have no common edge and no common vertex except for u and v. The
concept finds applications in fault-tolerant communication problems in
a network. Recently, it was shown that Dirac’s condition for a graph
to be hamiltonian is also a sufficient condition for a graph to have two
completely independent spanning trees. In this paper, we generalize this
result to three or more completely independent spanning trees. Namely,
we show that for any graph G with n ≥ 7 vertices, if the minimum degree
of a vertex in G is at least n − k, where 3 ≤ k ≤ n

2
, then there are �n

k
�

completely independent spanning trees in G. Besides, we improve the
lower bound of n

2
on the Dirac’s condition for completely independent

spanning trees to n−1
2

except for some specific graph. Our results are
theoretical ones, since these minimum degree conditions can be applied
only to a very dense graph. We then present constructions of symmetric
regular graphs which include optimal graphs with respect to the number
of completely independent spanning trees.

1 Introduction

Independent spanning trees rooted at a vertex r of a graph G are spanning
trees of G such that for any vertex v different from r, the paths from r to v
in the spanning trees are pairwise openly disjoint, i.e., the paths mutually have
no common edge and no common vertex except for r and v. There is a famous
conjecture on independent spanning trees: There are k independent spanning
trees rooted at any vertex of any k-connected graph. This conjecture was proved
for k ≤ 4 (e.g., see [3]) and also for planar graphs [10] but it still remains open
for k ≥ 5. Besides, independent spanning trees find applications in fault-tolerant
broadcasting problems in communication networks. Motivated by this applica-
tion, independent spanning trees have been studied not only from a theoretical
point of view but also from a practical point of view. That is, constructions of

This work was supported by JSPS KAKENHI 25330015.

c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 260–273, 2016.
DOI: 10.1007/978-3-319-29516-9 22



Minimum Degree Conditions and Optimal Graphs 261

independent spanning trees have been studied for many graph classes related to
interconnection networks (e.g., see [14]). There are three variations for indepen-
dent spanning trees: edge version, directed graph version, and directed edge ver-
sion (e.g., see [9]). Another variation of independent spanning trees is a stronger
version. The notion of completely independent spanning trees strengthens the
notion of independent spanning trees [5]; completely independent spanning trees
are spanning trees of G such that for any pair of distinct vertices u and v, the
paths from u to v in the spanning trees are pairwise openly disjoint. From a
practical point of view, completely independent spanning trees have an advan-
tage that we do not need to reconstruct them even if the root vertex which has
the data to be broadcasted is changed another vertex, since completely indepen-
dent spanning trees are independent spanning trees rooted at every vertex of
G. From a theoretical point of view, unlike independent spanning trees, it was
shown that there is no direct relationship between connectivity and the num-
ber of completely independent spanning trees: for any given k ≥ 2, there exists
a k-connected graph which has no two completely independent spanning trees
[13]. On the other hand, it is known that there are two completely independent
spanning trees in any maximal 4-connected planar graph. It remains unknown
whether such a result can be generalized to (non-maximal) 4-connected planar
graphs. From a computational point of view, it has been proved that the problem
of finding two completely independent spanning trees in a general graph is NP-
hard [6]. For interconnection networks such as de Bruijn and Kautz networks,
torus networks, chordal rings and WK-recursive networks, the existence of com-
pletely independent spanning trees have been investigated [5,7,8,12]. Recently,
a sufficient condition for a graph to have two completely independent spanning
trees was given in [1]. The statement of the sufficient condition is the same as the
famous Dirac’s condition, i.e., δ(G) ≥ n

2 , for a graph with n vertices to be hamil-
tonian, where δ(G) denotes the minimum degree of a vertex in G. Afterwards,
the result was strengthened; the Ore’s condition for a graph to be hamiltonian
was also shown to be a sufficient condition for a graph to have two completely
independent spanning trees [4].

Motivated by Dirac’s condition for a graph to have two completely indepen-
dent spanning trees, in this paper, we generalize the result for three or more
completely independent spanning trees, and also improve the lower bound of n

2
on the Dirac’s condition. Namely, we show that for any graph G with n ≥ 7
vertices, if δ(G) ≥ n − k, where 3 ≤ k ≤ n

2 , then there are �n
k � completely

independent spanning trees in G, and also show that for any graph G with
n ≥ 8 vertices, if δ(G) ≥ n−1

2 , then there are two completely independent span-
ning trees in G, except for a specific graph (which will be defined in Sect. 4).
Besides, our first result for the case that k = 3 improves a recent result [2]
on the minimum degree condition for completely independent spanning trees
except for the case that n = 6. Our results are theoretical ones, since the results
can be applied only to a very dense graph which seems to be impractical for
communication networks. We then present constructions of symmetric regular
graphs which include optimal graphs with respect to the number of completely
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independent spanning trees. Our proposed graphs have several nice properties
such as regularity, symmetry, and fault-tolerance. Thus, it might be useful for a
model of a communication network.

This paper is organized as follows. Section 2 presents definitions, notation,
and characterizations used in the paper. We generalize and improve the Dirac’s
condition for completely independent spanning trees in Sects. 3 and 4, respec-
tively. Constructions of symmetric regular graphs which include optimal graphs
for completely independent spanning trees are presented in Sect. 5. Section 6
finally concludes the paper.

2 Preliminaries

Let G = (V,E) be a graph. Throughout the paper, a graph means a simple
undirected graph unless stated otherwise. The complement Ḡ is the graph with
V (G) and in which two distinct vertices u and v are adjacent if and only if
they are not adjacent in G. For a bipartite graph B(V1, V2) with partite sets
V1, V2, the bipartite complement B̄(V1, V2) is the bipartite graph with partite
sets V1, V2 such that two vertices u ∈ V1 and v ∈ V2 are adjacent if and only
if they are not adjacent in B(V1, V2). The disjoint union of graphs G1 and G2

where V (G1) ∩ V (G2) = ∅ is denoted by G1 ∪ G2. If two graphs G1 and G2 are
isomorphic, then we write G1

∼= G2. A component of G is a maximal connected
subgraph of G. In particular, a tree-component of G is a component which has
no cycle. A component of G which is isomorphic to a graph H is called an H-
component of G. The degree of a vertex in G is denoted by degG(v) and the
minimum (respectively, maximum) degree of a vertex in G is denoted by δ(G)
(respectively, Δ(G)). We denote by NG(v) the neighborhood of a vertex v in G.
For S ⊆ V (G), we denote by 〈S〉G (or simply 〈S〉 if there is no confusion) the
subgraph of G induced by S. For S1, S2 ⊂ V (G) such that S1∩S2 = ∅, BG(S1, S2)
(or simply B(S1, S2)) is the bipartite subgraph of G with partite sets S1 and S2,
i.e., V (BG(S1, S2)) = S1 ∪ S2 and E(BG(S1, S2)) = {uv ∈ E(G) | u ∈ S1, v ∈
S2}. Two edges in G are independent if they have no common end-vertex. An
isolated vertex of G is a vertex with degree zero in G, while a leaf of G is a
vertex with degree one in G. An internal vertex of a tree T is a vertex which is
not a leaf. A unicyclic graph is a connected graph which has exactly one cycle.
A path, a cycle, and a complete graph with n vertices are denoted by Pn, Cn,
and Kn, respectively. Besides, a complete bipartite graph with m vertices in one
partite set and n vertices in the other partite set is denoted by Km,n. A tree T
is called a caterpillar if the graph obtained from T by deleting every leaf is a
path. For a directed graph D, an arc (u, v) of D is said to be incident from u
to v. The outdegree of a vertex u in D is the number of arcs incident from u.
A cycle-rooted directed tree is a weakly connected directed graph whose every
vertex has outdegree one. Given a cycle-rooted directed tree, by replacing each
arc with a corresponding edge, we have a unicyclic graph. Conversely, given a
unicyclic graph, by replacing each edge with an appropriate arc, a cycle-rooted
directed tree can be obtained.
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In this paper, we show the existence of completely independent spanning trees
but we do not directly use the definition since it is a tedious matter to check the
openly disjointness for each pair of distinct vertices. Instead, we rely on char-
acterizations for completely independent spanning trees and a graph which has
completely independent spanning trees. We briefly explain such characterizations
with the essence for their proofs. Let T1, T2, . . . , Tk be spanning trees of a graph
G. A characterization of completely independent spanning tree was given in [5]:
T1, T2, . . . , Tk are completely independent spanning trees if and only if they are
pairwise edge-disjoint and for any vertex v of G, there is at most one spanning
tree Ti such that degTi

(v) ≥ 2. The sufficiency part is almost clear, while the
necessity part can be shown by contradiction. From this characterization, we can
see that the sets S1, S2, . . . , Sk of internal vertices of T1, T2, . . . , Tk, respectively,
are pairwise disjoint. Besides, 〈Si〉 is connected since it is obtained from Ti by
deleting all the leaves. Let R be the set of vertices which are leaves in every
Ti. If R is not an empty set, then we add every element of R to S1. Note that
〈S1〉 is still connected. In this way, V (G) is partitioned into S1, S2, . . . , Sk each
of which induces a connected subgraph of G. Consider two sets Si and Sj where
1 ≤ i < j ≤ k. Since every vertex of Si is a leaf of Tj , any vertex of Si is adjacent
to at least one vertex of Sj in B(Si, Sj). Similarly, since every vertex of Sj is a
leaf of Ti, any vertex of Sj is adjacent to at least one vertex of Si in B(Si, Sj).
By directing each edge e = uv of B(Si, Sj) where u ∈ Si and v ∈ Sj from u to
v (respectively, from v to u) if e ∈ E(Tj) (respectively, e ∈ E(Ti)), a directed
graph D(Si, Sj) is obtained. Since every vertex of D(Si, Sj) has outdegree one,
every (weakly connected) component of D(Si, Sj) is a cycle-rooted directed tree.
This means that every component of B(Si, Sj) is not a tree. Conversely, sup-
pose that V (G) is partitioned into subsets S1, S2, . . . , Sk such that every 〈Si〉 is
connected and for any 1 ≤ i < j ≤ k, B(Si, Sj) contains no tree-component.
Then, every component of B(Si, Sj) has a cycle and thus contains a unicyclic
graph. A cycle-rooted directed tree is obtained from a unicyclic graph by appro-
priately directing each edge. Consequently, we can obtain a directed bipartite
subgraph D′(Si, Sj) in which every vertex has outdegree one. Combining all the
edges corresponding arcs incident to a vertex of Si in D′(Si, Sj) for j �= i and
a spanning tree of 〈Si〉, we have a spanning tree Ti of G. It is not difficult to
see that T1, T2, . . . , Tk are completely independent spanning trees. From these
observation, a characterization of graphs with k completely independent span-
ning trees was given in [1]: G has k completely independent spanning trees if
and only if V (G) can be partitioned into subsets S1, S2, . . . , Sk such that 〈Si〉 is
connected for all 1 ≤ i ≤ k and for any 1 ≤ i < j ≤ k, B(Si, Sj) contains no
tree-component.

3 Minimum Degree Conditions

Lemma 1. Let G be a graph with n ≥ 7 vertices. If δ(G) ≥ n − 3, then there
are �n

3 � completely independent spanning trees in G.
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Proof: First consider the case that n ≥ 9. Since Δ(Ḡ) ≤ 2, Ḡ consists of a dis-
joint union of cycles and paths. Let Ḡ = (∪1≤i≤pC�i) ∪ (∪p<i≤p+qP�i) such that
�i ≥ �j for 1 ≤ i < j ≤ p. Also, let C�i = (vi,1, vi,2, . . . , vi,�i , vi,1) for 1 ≤ i ≤ p
and P�i = (vi,1, vi,2, . . . , vi,�i) for p < i ≤ p + q. Order lexicographically the ver-
tices of G: v1,1, v1,2, . . . , v1,�1 , v2,1, v2,2, . . . , v2,�2 , . . . , vp+q,1, vp+q,2, . . . , vp+q,�p+q

.
We call an edge of Ḡ joining consecutive (respectively, non-consecutive) vertices
in this ordering a forward (respectively, backward) edge. Based on the ordering,
we define σ : V (G) �→ {0, 1, . . . , n − 1} as σ(vi,j) =

∑
1≤t<i �t + j − 1. Partition

V (G) into �n
3 � parts V0, V1, . . . , V�n

3 �−1 where Vt = {v ∈ V (G) | σ(v) mod �n
3 � =

t} for 0 ≤ t < �n
3 �. For each t, the induced subgraph 〈Vt〉Ḡ of Ḡ has no forward

edge. Besides, any two backward edges are independent. Thus, each induced
subgraph 〈Vt〉G of G is connected. Let s, t ∈ {0, 1, . . . , �n

3 � − 1}. If s − t �≡ 1
(mod �n

3 �), then the bipartite complement B̄(Vs, Vt) has no forward edge and
it holds that δ(B(Vs, Vt)) ≥ 2, i.e., B(Vs, Vt) has no tree-component. Suppose
that s− t ≡ 1 (mod �n

3 �). If Δ(B̄(Vs, Vt)) ≤ 1, B(Vs, Vt) has no tree-component.
Consider the case that Δ(B̄(Vs, Vt)) = 2. In this case, B̄(Vs, Vt) has a backward
edge xy and two forward edges wx, yz where x, z ∈ Vs and w, y ∈ Vt. Replace
Vs and Vt with V ′

s = (Vs − {x}) ∪ {y} and V ′
t = (Vt − {y}) ∪ {x}, respectively.

Then, Δ(B̄(V ′
s , V ′

t )) = 1, i.e., B(V ′
s , V ′

t ) has no tree-component. Although 〈V ′
s 〉Ḡ

has the edge yz, 〈V ′
s 〉G is still connected since there is no edge adjacent to yz

in 〈V ′
s 〉Ḡ. Similarly, 〈V ′

t 〉G is connected. For any Vr (r �= s, t), this manipula-
tion does not essentially change the structures of B(Vs, Vr) and B(Vt, Vr), i.e.,
B(Vs, Vr) ∼= B(V ′

s , Vr) and B(Vt, Vr) ∼= B(V ′
t , Vr). Thus, both B(V ′

s , Vr) and
B(V ′

t , Vr) have no tree-component. There may exist another pair of consecutive
parts Vp, Vq with Δ(B̄(Vp, Vq)) = 2. In such a case, by doing the similar manipu-
lation for Vs, Vt, we can obtain a partition of V (G) which induces �n

3 � completely
independent spanning trees.

Let 7 ≤ n ≤ 8. Since δ(G) ≥ n − 3 > n
2 , G has a Hamiltonian cycle C =

(v1, v2, . . . , vn). Let V1 = {v1, v2, v3, v4} and V2 = V (G) − V1. Note that there is
no isolated vertex in B(V1, V2). If n = 8, then δ(B(V1, V2)) ≥ 2 and there is no
tree-component in B(V1, V2). Suppose that n = 7. Then, any vertex in V2 is not a
leaf of B(V1, V2). Assume that there exists a tree-component in B(V1, V2). Let x
and y be leaves of B(V1, V2) in V1. Since deg〈V1〉(x) = deg〈V1〉(y) = 3, x and y are
not cut-vertices of 〈V1〉. Thus, 〈V1 −{x}〉 is connected. Clearly, 〈V2 ∪{x}〉 is also
connected. Besides, B(V1 − {x}, V2 ∪ {x}) contains at most one leaf, since every
vertex except for the neighbor of x in V2 cannot be a leaf of B(V1−{x}, V2∪{x}).
Therefore, there is no tree-component in B(V1 −{x}, V2 ∪{x}). Hence, there are
two completely independent spanning trees in G. ��
Theorem 1. Let G be a graph with n ≥ 7 vertices. Let 3 ≤ k ≤ n

2 . If δ(G) ≥
n − k, then there are �n

k � completely independent spanning trees in G.

Proof: The case that k = 3 follows from Lemma 1. Suppose that k ≥ 4. Let
C = (v0, v1, . . . , vn−1) be a Hamiltonian cycle of G. Let r = n − k�n

k �, p =
� r

�n
k ��, and r′ = r − p�n

k �. Based on C, we partition V (G) into �n
k � parts each

of which has at least k + p vertices as follows. Let Vi = {v(k+p)i, v(k+p)i+1, . . . ,
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v(k+p)(i+1)−1} for i = 0, 1, . . . , �n
k � − r′ − 1 and V�n

k �−r′+j = {v(k+p)(�n
k �−r′+j)+j ,

v(k+p)(�n
k �−r′+j)+j+1, . . . , v(k+p)(�n

k �−r′+j)+j+k+p} for j = 0, 1, . . . , r′ − 1. That
is, each Vi consists of vertices with consecutive labels such that |Vi| = k + p for
0 ≤ i < �n

k � − r′ and |Vi+1| = k + p + 1 for �n
k � − r′ ≤ i < �n

k �. Thus, each
〈Vi〉 is connected. Note that δ(B(Vi, Vj)) ≥ p + 1 for any two parts Vi and Vj since
δ(G) ≥ n − k. Thus, if p ≥ 1, then B(Vi, Vj) has no tree-component. Therefore,
it is sufficient to consider the case that p = 0, and in what follows, we assume
that p = 0. Besides, notice that if a vertex x in Vi is a leaf of B(Vi, Vj) with the
neighbor x′ in Vj , then x is adjacent to every vertex of G except for the vertices
in Vj − {x′}. Suppose that B(Vi, Vj) contains a tree-component. In what follows,
we present manipulations for exchanging a vertex in Vi and a vertex in Vj so that
for the resultant parts V ′

i and V ′
j , both 〈V ′

i 〉 and 〈V ′
j 〉 are connected, B(V ′

i , V ′
j ) has

no tree-component, and B(V ′
i , Vt) and B(V ′

j , Vt) have no tree-component for any
t ∈ {0, 1, . . . , �n

k � − 1} − {i, j}. Applying iteratively the manipulations for each
B(Vi, Vj) which has a tree-component, we finally obtain a partition of G which
induces �n

k � completely independent spanning trees.
Let a and b be the numbers of leaves of B(Vi, Vj) in Vi and Vj , respectively.

Without loss of generality, we may assume that a ≥ b.
Case 1: a ≥ 2 and b ≥ 2. Let x1 and x2 be leaves of B(Vi, Vj) in Vi. Also, let y1
and y2 be leaves of B(Vi, Vj) in Vj . We may assume without loss of generality
that x1 and y1 are not adjacent. Let x′ and y′ be the neighbors of x1 and y1
in B(Vi, Vj), respectively. Then, we exchange x1 and y1. Namely, we consider
V ′

i = (Vi − {x1}) ∪ {y1} and V ′
j = (Vj − {y1}) ∪ {x1}. Since there are two

leaves of B(Vi, Vj) in Vi, x1 is not a cut-vertex of 〈Vi〉. Similarly, y1 is not a cut-
vertex of 〈Vj〉. Thus, both 〈V ′

i 〉 and 〈V ′
j 〉 are connected. Besides, x1 is adjacent

to every vertex in V ′
i − {y1} and y1 is adjacent to every vertex in V ′

j − {x1}.
Every vertex in V ′

j − {x1, x
′} is adjacent to a vertex in V ′

i − {y1} such that
|V ′

j − {x1, x
′}| ≥ 2. Therefore, B(V ′

i , V ′
j ) consists of one component which has a

cycle. Consider B(V ′
i , Vt) where t �= i, j. The fact that both y1 and x2 are leaves

of B(Vi, Vj) implies that y1 and x2 are adjacent to every vertex in Vt. This means
that B(V ′

i , Vt) consists of one component which is not a tree. It can be similarly
checked that B(V ′

j , Vt) also has no tree-component.
Case 2: a ≥ 2 and b ≤ 1. Let x1 and x2 be leaves of B(Vi, Vj) in Vi. Let x′

1

(respectively, x′
2) be the neighbor of x1 (respectively, x2) in Vj . Note that x′

1

and x′
2 may be identical. Without loss of generality, we may assume that x′

1 is
not a leaf of B(Vi, Vj) since b ≤ 1. Let w be a non-cut-vertex of 〈Vj〉 such that
w �= x′

1. We then exchange x1 and w. Let V ′
i = (Vi −{x1})∪{w} and V ′

j = (Vj −
{w})∪{x1}. Both 〈V ′

i 〉 and 〈V ′
j 〉 are connected. Here, NB(V ′

i ,V ′
j )

(x1) = V ′
i −{w},

degB(V ′
i ,V ′

j )
(u) ≥ 1 for any vertex u in V ′

j , and degB(V ′
i ,V ′

j )
(v) ≥ 2 for any vertex

v in NB(V ′
i ,V ′

j )
(w) ⊂ V ′

j . Thus, B(V ′
i , V ′

j ) consists of one component. Besides,
there exists a vertex z in V ′

j −{x1, x
′
1} with degB(Vi,Vj)(z) ≥ 2 since b ≤ 1. Such

a vertex z is adjacent to at least two vertices in V ′
i −{w} in B(V ′

i , V ′
j ). Therefore,

the component of B(V ′
i , V ′

j ) has a cycle. Hence, there is no tree-component in
B(V ′

i , V ′
j ). Consider B(V ′

i , Vt) where t �= i, j. Since V ′
i has the leaf x2 of B(Vi, Vj),

if there is a vertex u �= x2 in V ′
i with degB(V ′

i ,Vt)(u) ≥ 2, then B(V ′
i , Vt) consists
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of one component with a cycle. If every vertex in V ′
i −{x2} is a leaf of B(V ′

i , Vt).
Then, there are at least two vertices in Vi such that they are adjacent to every
vertex of Vj in B(Vi, Vj), which contradicts the assumption that B(Vi, Vj) has
a tree-component. Thus, B(V ′

i , Vt) has no tree-component. Similarly, B(V ′
j , Vt)

has no tree-component, since V ′
j has another leaf x1 of B(Vi, Vj).

Case 3: a = b = 1. In this case, B(Vi, Vj) contains one tree-component which is
a path-component and all the other components in B(Vi, Vj) have no leaf. Let
x ∈ Vi and y ∈ Vj such that they are leaves of B(Vi, Vj).
Case 3.1: x and y are not adjacent. Let x′ ∈ Vj and y′ ∈ Vi such that x′ and y′

are the neighbors of x and y, respectively. Now assume that x is a cut-vertex of
〈Vi〉. Since y′ is in the path-component, degB(Vi,Vj)(y

′) = 2. Thus, y′ is adjacent
to every vertex of Vi except for a vertex z ∈ Vi. From the assumption that
x is a cut-vertex of 〈Vi〉, it follows that z is adjacent to x but not adjacent
to any other vertex in Vi. This means that degB(Vi,Vj)(z) ≥ |Vj | − 1, i.e., z is
adjacent to every vertex of Vj except for y. However, this fact contradicts the
assumption that B(Vi, Vj) has a path-component. Thus, x is not a cut-vertex
of 〈Vi〉. Similarly, we can check that y is not a cut-vertex of 〈Vj〉. Therefore,
by exchanging x and y, we have a desirable consequence similar to Case 1 for
B(V ′

i , V ′
j ) and Case 2 for B(V ′

i , Vt) and B(V ′
j , Vt) where t �= i, j.

Case 3.2: x and y are adjacent. Suppose that any vertex in Vi − {x} is adjacent
to every vertex in Vj − {y}. Namely, B(Vi − {x}, Vj − {y}) is isomorphic to
a complete bipartite graph. Let x′ ∈ Vi − {x} and y′ ∈ Vj − {y}. Note that
x′ and y′ are not cut-vertices of 〈Vi〉 and 〈Vj〉, respectively. It can be easily
checked that δ(B((Vi − {x′}) ∪ {y′}, (Vj − {y′}) ∪ {x′})) ≥ 2. Besides, both
B((Vi − {x′}) ∪ {y′}, Vt) and B((Vj − {y′}) ∪ {x′}, Vt) have no tree-component
for t �= i, j. Suppose that B(Vi − {x}, Vj − {y}) is not isomorphic to a complete
bipartite graph. Select nonadjacent vertices u ∈ Vi − {x} and v ∈ Vj − {y}.
Let V ′

i = (Vi − {u}) ∪ {v} and V ′
j = (Vj − {v}) ∪ {u}. Suppose that B(V ′

i , V ′
j )

has a tree-component. Except for the case that B(V ′
i , V ′

j ) has a K2-component
and all the other components have no leaf, we can apply Cases 1, 2, or 3.1 to
B(V ′

i , V ′
j ). Consider the exceptional case. Suppose that the K2-component of

B(V ′
i , V ′

j ) consists of adjacent vertices w ∈ V ′
i and z ∈ V ′

j . Then w (respectively,
z) is adjacent to v (respectively, u), and w (respectively, z) is not adjacent to
u (respectively, v) such that degB(Vi,Vj)(w) = degB(Vi,Vj)(z) = 2. Let V ′′

i =
(Vi − {w}) ∪ {v} and V ′′

j = (Vj − {v}) ∪ {w}. Then, z is a leaf of B(V ′′
i , V ′′

j )
but the neighbor u is not a leaf of B(V ′′

i , V ′′
j ). Hence, either B(V ′′

i , V ′′
j ) has no

tree-component or the manipulations of the other cases can be applied to obtain
a desirable consequence. When B(V ′′

i , V ′′
j ) has no tree-component, it also holds

B(V ′′
i , Vt) and B(V ′′

i , Vt) have no tree-component since V ′′
i and V ′′

j have x and
y, respectively. ��

Note that the lower bound on k in Theorem 1 cannot be improved to 2.
For k = 2, the same statement holds only if n = 5. For any fixed k which is
independent of n, the condition δ(G) ≥ n − k itself is preserved while deleting
any number of vertices (but not all) from G. Thus, the following corollary holds.
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Corollary 1. Let G be a graph with n ≥ 7 vertices with δ(G) ≥ n − k. Let
k be a fixed integer such that 3 ≤ k ≤ n

2 . For any S ⊂ V (G) where |S| ≤
min{n − 7, n − 2k}, G − S has �n−|S|

k � completely independent spanning trees.

By strengthen the minimum degree condition in Theorem 1, we can easily
show the following propositions. Propositions 1 and 2 follow from the facts that
δ(B(Vi, Vj)) ≥ 2 and δ(〈Vi〉) ≥ |Vi|−1

2 for a partition (V1, V2, . . . , Vt) of V (G)
satisfying the assumptions, respectively. These results are obviously weaker than
Theorem 1, but they have additional properties that might be useful to obtain
other theoretical results.

Proposition 1. Let G be a graph with n vertices. Let 2 ≤ k ≤ n
2 . If δ(G) ≥

n−k+1, then every consecutive partition of a Hamiltonian cycle in G which has
�n

k � parts with at least k vertices induces �n
k � completely independent spanning

trees in G.

Proposition 2. Let G be a graph with n vertices. Let 3 ≤ k ≤ n
2 . If δ(G) ≥

n− k+1
2 , then every partition of V (G) which has �n

k � parts with at least k vertices
induces �n

k � completely independent spanning trees in G.

4 An Improved Degree Condition

Let Wn be the graph obtained from two complete graphs K�n+1
2 � and K	n+1

2 

by identifying one vertex of K�n+1

2 � and one vertex of K	n+1
2 
.

Theorem 2. Let G be a graph with n ≥ 8 vertices such that G �∼= Wn. If δ(G) ≥
n−1
2 , then there are two completely independent spanning trees in G.

Proof: When n is even, the proposition follows from Theorem 1. Thus, it is
sufficient to consider the case that n = 2k − 1 where k ≥ 5. Suppose that
G �∼= Wn and δ(G) ≥ n−1

2 = k − 1. From the assumption of the minimum
degree of a vertex in G, G has a Hamiltonian path. Let P = (v1, v2, . . . , vn) be a
Hamiltonian path of G. Based on P , we divide V (G) into V1 = {v1, v2, . . . , vk−1}
and V2 = {vk, vk+1, . . . , v2k−1}. Then, 〈V1〉 and 〈V2〉 are both connected. Note
that degB(V1,V2)(u) ≥ 1 for any vertex u ∈ V1, but in V2, there may exist
an isolated vertex of B(V1, V2). Note that an isolated vertex v of B(V1, V2) is
adjacent to every vertex in V2 − {v}. Thus, if there is an isolated vertex v of
B(V1, V2), then every vertex in V2 − {v} is not a cut-vertex of 〈V2〉.

We first show that the case that an isolated vertex exists can be reduced to
the case that no isolated vertex exists. Suppose that there is an isolated vertex
of B(V1, V2) in V2. If there exists a non-isolated vertex w of B(V1, V2) in V2 such
that w is not adjacent to a leaf of B(V1, V2) in V1, then by moving w to V1,
we have a desirable bipartition. Namely, both 〈V1 ∪ {w}〉 and 〈V2 − {w}〉 are
connected and B(V1 ∪{w}, V2 −{w}) has no isolated vertex. Suppose that every
non-isolated vertex of B(V1, V2) in V2 is adjacent to a leaf of B(V1, V2) in V1.
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Since G �∼= Wn, there are at least two non-isolated vertices of B(V1, V2) in V2.
Let u and v be non-isolated vertices in V2. Also let x and y be the leaves in V1

adjacent to u and v, respectively. If u is not a leaf, then by exchanging x and
v, a desirable bipartition is obtained. Note that x is not a cut-vertex of 〈V1〉
and xy ∈ E(G). Thus, 〈(V1 − {x}) ∪ {v}〉 and 〈(V2 − {v}) ∪ {x}〉 are connected
such that the corresponding bipartite graph has no isolated vertex. Similarly, if
v is not a leaf, then we can obtain a desirable bipartition. Suppose that every
non-isolated vertex of B(V1, V2) in V2 is a leaf of B(V1, V2). We can select two
independent edges x1u1, x2u2 ∈ E(G) where x1, x2 ∈ V1 and u1, u2 ∈ V2 such
that u1u2 ∈ E(G). We then exchange x1 and u2. Since u2 is adjacent to u1,
in the resultant bipartite graph, u1 is not an isolated vertex. Hence, we have a
desirable bipartition.

In what follows, we suppose that |V1| = k − 1, |V2| = k, both 〈V1〉 and 〈V2〉
are connected, B(V1, V2) has a tree-component, and there is no isolated vertex
of B(V1, V2). We show that the bipartition (V1, V2) can be modified so that the
resultant bipartition induces two completely independent spanning trees. Let a
and b be the numbers of leaves of B(V1, V2) in V1 and V2, respectively.
Case 1: b ≥ 2. Let u1 and u2 be leaves of B(V1, V2) in V2. Then, deg〈V2〉(u1) ≥
k − 2 and deg〈V2〉(u2) ≥ k − 2. Assume that both u1 and u2 are cut-vertices
of 〈V2〉. Then, there exist two vertices v1 and v2 such that v1 (respectively,
v2) is adjacent only to u1 (respectively, u2) in 〈V2〉. If there is another leaf
u3(�= u1, u2), then such vertices v1 and v2 cannot exist. Thus, b = 2. Besides, it
holds that degB(V1,V2)(v1) ≥ k−2 and degB(V1,V2)(v2) ≥ k−2. If NB(V1,V2)(v1)∪
NB(V1,V2)(v2) = V1, then there is no tree-component of B(V1, V2). Therefore,
NB(V1,V2)(v1) = NB(V1,V2)(v2) = V1 − {w} for some vertex w such that either
w and one of u1 and u2 induce a K2-component, or w, u1, and u2 induce a P3-
component. In each case, by moving a vertex y ∈ V2 − {u1, u2, v1, v2} to V1, the
resultant bipartition induces two completely independent spanning trees. Hence,
we can suppose that one of the leaves of B(V1, V2) in V2 is not a cut-vertex of
〈V2〉.
Case 1.1: a ≥ 2. Let x and y be leaves of B(V1, V2) in V1 and V2 respectively,
such that y is not a cut-vertex of 〈V2〉 and xy �∈ E(G). Let V ′

1 = (V1 −{x})∪{y}
and V ′

2 = (V2 − {y}) ∪ {x}. If there is no isolated vertex of B(V ′
1 , V

′
2), then this

bipartition is a desirable one. Suppose that there exists an isolated vertex z of
B(V ′

1 , V
′
2) in V2. Note that xz ∈ E(G) and yz �∈ E(G) such that z is a leaf of

B(V1, V2). If there exists a vertex v in V ′
2 − {x, z} with deg〈V ′

2 〉(v) ≥ 2, then, by
moving v to V ′

1 , we have a desirable bipartition. Assume that every vertex in
V ′
2 − {x, z} has degree one in 〈V ′

2〉. This means every vertex in V ′
2 − {x, z} has

degree at least k − 3 in B(V1, V2). Let w be the neighbor of y in V1. If w is a
leaf of B(V1, V2), then it can be checked that the bipartition ({x, z, w, y}, V (G)−
{x, z, w, y}) induces two completely independent spanning trees. If w is not a leaf
of B(V1, V2), then by selecting a leaf x∗(�= x) of B(V1, V2) in V1 and exchanging
x∗ and y, we have a desirable bipartition, i.e., ((V1−{x∗})∪{y}, (V2−{y})∪{x∗})
induces completely independent spanning trees.
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Case 1.2: a ≤ 1. Let y be a leaf of B(V1, V2) in V2 such that y is not a cut-vertex
of 〈V2〉. Also, let w be the neighbor of y in V1. Move y to V1, i.e., let V ′

1 = V1∪{y}
and V ′

2 = V2 − {y}. Since degB(V ′
1 ,V ′

2 )
(y) ≥ k − 2, the resultant bipartition is a

desirable one except for the following four cases:

– Case A: w is an isolated vertex of B(V ′
1 , V

′
2).

– Case B: w and y′ ∈ V ′
2 − NB(V ′

1 ,V ′
2 )

(y) induce a K2-component of B(V ′
1 , V

′
2).

– Case C: a leaf z of B(V1, V2) in V1 and y′ induce a K2-component of B(V ′
1 , V

′
2).

– Case D: w, y′, and z induce a P3-component of B(V ′
1 , V

′
2).

Note that Cases B, C, and D do not occur if NB(V ′
1 ,V ′

2 )
(y) = V ′

2 and Cases C
and D do not occur if a = 0. In Case A, it is sufficient for obtaining a desirable
bipartition to move a vertex v(�= w, y) with degree at least two in 〈V ′

1〉 which
is not adjacent to y′ if y′ exists and y′ is a leaf of B(V ′

1 , V
′
2), to V ′

2 . In Case B
(respectively, Cases C and D), it is sufficient to move a non-cut-vertex v of 〈V ′

1〉
where v �= w, y (respectively, v �= w, y, z) with degree at least two in 〈V ′

1〉 which
is adjacent to w (respectively, z), to V ′

2 . In each case, there are at least k−4 ≥ 1
such vertices if we ignore the restriction on the degree. More precisely, in Cases
A and B, w has at least k − 3 neighbors and at least k − 4 neighbors in V1,
respectively, which satisfy the above conditions except for the degree condition
in 〈V ′

1〉, while in both Cases C and D, z has at least k − 3 such neighbors in V1.
Now, assume that all such vertices have degree one in 〈V ′

1〉. Then, all such vertices
have degree at least k − 2 in B(V ′

1 , V
′
2) and also in B(V1, V2). In particular, for

Case B, if the number of non-cut-vertices adjacent to w except for y is equal to
k −4, then there exists a leaf of 〈V ′

1〉 which is not adjacent to w. Thus, there are
at least k − 3 leaves of 〈V ′

1〉 for Case B. Therefore, the structure of B(V1, V2) in
each case can be stated as follows:

– Case A: B(V1, V2) has exactly two components such that one contains
Kk−3,k−2 and the other is a K2-component consisting of w and y.

– Case B: B(V1, V2) has exactly two components such that one contains
Kk−3,k−2 and the other is a P3-component consisting of w,y, and y′.

– Case C: B(V1, V2) has exactly two components such that one contains
Kk−3,k−2 and the other is a K2-component consisting of z and y′.

– Case D: B(V1, V2) has exactly two components such that one is Kk−3,k−2-
component and the other is a P4-component consisting of w, y, y′, and z.

The structure of B(V1, V2) in Case D contradicts the assumption that b ≥ 2.
Consider Case A in which y′ is not a leaf of 〈V2〉. Let y′′ be a leaf of 〈V2〉 such
that y′′ �= y. Since deg〈V2〉(y) ≥ k − 2 and deg〈V2〉(y′′) ≥ k − 2, there are at least
k−4 ≥ 1 vertices adjacent to both y and y′′ such that they are not cut-vertices of
〈V2〉. By moving one of such k−4 vertices to V1, we have a desirable bipartition.
Next, consider Case A in which y′ is a leaf of 〈V2〉. Since yy′ �∈ E(G), there are
k−2 non-cut-vertices which are adjacent to both y and y′. Then, by moving one
of such k − 2 vertices except for a vertex which is adjacent to the neighbor v of
y′ in B(V1, V2) if degB(V1,V2)(v) = 2, a desirable bipartition is obtained. In Case
B, by moving a vertex in V2 − {y, y′} which is not a cut-vertex of 〈V2〉, and is
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adjacent to both y and y′ but not adjacent to a leaf of B(V1, V2) in V1, we have
a desirable bipartition. Similarly, in Case C, by moving a vertex in V2 − {y, y′}
which is not a cut-vertex of 〈V2〉, and is adjacent to both y and y′ but not
adjacent to w, a desirable bipartition is obtained. In both Case B and Case C,
y′ is a leaf of 〈V2〉. Thus, there are at least k − 2 non-cut-vertices of 〈V2〉 which
is adjacent to both y and y′. Hence, there are least k − 3 vertices for producing
a desirable bipartition.
Case 2: a ≥ 2 and b ≤ 1. We can select a leaf x of B(V1, V2) in V1 whose
neighbor in V2 is not a leaf of B(V1, V2). By moving x to V2, we have a desirable
bipartition.
Case 3: a = b = 1. Let x ∈ V1 and y ∈ V2 be the leaves of B(V1, V2).
Case 3.1: B(V1, V2) has a Pt-component where t ≥ 6. Similar to Case 3.1 in the
proof of Theorem 1, it is shown that x is not a cut-vertex of 〈V1〉. Thus, we can
move x to V2 and obtain a desirable bipartition.
Case 3.2: B(V1, V2) has a P4-component. Let x′ ∈ V1 and y′ ∈ V2 be internal
vertices of the path-component. Namely, xy′, y′x′, x′y ∈ E(G). If x is not a cut-
vertex of 〈V1〉, then we can move it to V2. Suppose that x is a cut-vertex of 〈V1〉.
Then, there exists a vertex z ∈ V1−{x, x′} such that deg〈V1〉(z) = 1. This means
that NB(V1,V2)(z) = V2 − {y, y′}. Let w ∈ V1 − {x, x′, z}. Then, w is adjacent
to x and x′. If k ≥ 6, then by moving w to V2, we have a desirable bipartition.
Consider the case that k = 5. Since any vertex in V2 except for y has degree
at least two in B(V1, V2), we can see that B(V1, V2) has two components such
that one is P4-component and the other is K2,3-component. Then, by selecting a
non-cut-vertex of 〈V2〉 in V2 −{y, y′} which is adjacent to y and moving it to V1,
we have a desirable bipartition. Note that any vertex in V2 − {y, y′} has degree
at least two in 〈V2〉.
Case 3.3: B(V1, V2) has a K2-component. If there exists a vertex u(�= x) in
V1 and a non-cut-vertex v(�= y) of 〈V2〉 such that uv �∈ E(G), then similar to
Case 3.2 in the proof of Theorem 1, by exchanging u and v, either we have a
desirable bipartition or we can apply the manipulations in other cases. Suppose
that every non-cut-vertex of 〈V2〉 is adjacent to every vertex in V1 − {x}. Since
deg〈V2〉(y) ≥ k − 2, there are at least k − 3 non-cut-vertices of 〈V2〉 which are
adjacent to y. Let u′ ∈ V1−{x} and v′ ∈ V2−{y} such that v′ is a non-cut-vertex
adjacent to y. By exchanging u′ and v′, a desirable bipartition is obtained. ��

5 Optimal Graphs for Completely Independent
Spanning Trees

Definition 1. For n ≥ k ≥ 2, H(n, k) is defined to be the graph with the vertex
set {0, 1, 2, . . . , n − 1} and in which two distinct vertices x and y are adjacent
if and only if y ∈ {(x + k�) mod n, (x + k� + 1) mod n} for 0 ≤ � ≤ 1

2�n
k �, or

y = (x + k
2 �n

k �) mod n when �n
k � is odd and k does not divide n.

Theorem 3. There are �n
k � completely independent spanning trees in H(n, k).

In particular, if k divides n, then H(n, k) has n
k isomorphic completely indepen-

dent spanning trees.
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Proof: Let I be an interval on V (H(n, k)), i.e., I consists of consecutive numbers
modulo n. Let v be a vertex in H(n, k). By definition, it can be checked that if
v �∈ I and |I| ≥ k, then v is adjacent to at least two vertices in I. This means that
for any two disjoint intervals S and T on V (H(n, k)) with |S| ≥ k and |T | ≥ k,
δ(BH(n,k)(S, T )) ≥ 2. Therefore, BH(n,k)(S, T ) has no tree-component. Besides,
both 〈S〉H(n,k) and 〈T 〉H(n,k) are clearly connected from the definition. Hence,
H(n, k) has �n

k � completely independent spanning trees. To prove the second
statement, we show that for any two intervals S = {p, p + 1, . . . , p + k − 1} and
T = {q, q + 1, . . . , q + k − 1} such that S ∩ T = ∅ and min{q − p mod n, p −
q mod n} ≤ k� 1

2�n
k ��, BH(n,k)(S, T ) is hamiltonian. Without loss of generality,

we may assume that S = {0, 1, . . . , k −1} and T = {i, i+1, . . . , i+k −1}, where
k ≤ i ≤ k� 1

2�n
k ��. Let i+ t ≡ 0 mod k such that 0 ≤ t < k. By definition, we can

see that 0(i+t), 0(i+t+1), 1(i+t+1), 1(i+t+2), . . . , (k−1)(i+t+k−1), (k−1)(i+
t+k) ∈ E(H(n, k)). Since k−1 is also adjacent to i+t, there exists a Hamiltonian
cycle (i+ t, 0, i+ t+1, 1, . . . , i+k −1, k − t−1, i+k, k − t, i+k +1, . . . , k −2, i+
t + k − 1, k − 1, i + t) in H(n, k). Here, for each 0 ≤ j < t, both k − t − 1 + j and
k − t + j are adjacent to i + j, since they are adjacent to i + k + j. This means
that there exists a Hamilton cycle in BH(n,k)(S, T ). Suppose that k divides n.
Then, for 0 ≤ i < n

k , by setting Vi = {ki, ki+1, . . . , k(i+1)−1}, BH(n,k)(Vi, Vj)
has a Hamiltonian cycle for any 0 ≤ i < j < n

k . Based on each Hamiltonian cycle
C(i, j) in BH(n,k)(Vi, Vj), we can construct n

k completely independent spanning
trees each of which is isomorphic to the caterpillar obtained from a path Pk by
adding n

k − 1 leaves to each vertex of Pk. ��
Lemma 2. Suppose that k ≥ 3. If �n

k � is even, then H(n, k) is 2�n
k �-regular

(respectively, (2�n
k �+1)-regular, (2�n

k �+2)-regular) if n mod k = 1 (respectively,
n mod k ∈ {0, 2}, n mod k �∈ {0, 1, 2}. If �n

k � is odd, then H(n, k) is 2�n
k �-regular

(respectively, (2�n
k � + 2)-regular) if n mod k ∈ {0, 1} (respectively, n mod k �∈

{0, 1}).
By definition, we can show the above lemma. If H(n, k) is 2�n

k �-regular or
(2�n

k � + 1)-regular, then the number of completely independent spanning trees
in H(n, k) is optimal in the sense that any r-regular graph cannot have � r

2� + 1
completely independent spanning trees except for the complete graph with an
even number of vertices. Therefore, from Lemma 2 and Theorem 3, we have the
following corollaries.

Corollary 2. Suppose that k ≥ 3. If �n
k � is even and n mod k ∈ {0, 1, 2}, or

�n
k � is odd and n mod k ∈ {0, 1}, then H(n, k) is optimal with respect to the

number of completely independent spanning trees.

Corollary 3. For any n ≥ 7, H(n, �n
2 �) is optimal for two completely indepen-

dent spanning trees. For any n ≥ 9 where n �≡ 2 (mod 3), H(n, �n
3 �) is optimal

for three completely independent spanning trees. For any n ≥ 12 where n �≡ 3
(mod 4), H(n, �n

4 �) is optimal for four completely independent spanning trees.

In some special cases, we can modify H(n, k) while keeping the same number
of completely independent spanning trees. For the case that �n

k � is odd and k
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does not divide n, let H ′(n, k) be the graph obtained from H(n, k) by deleting the
edges x(x+k

2 �n
k � mod n) for 0 ≤ x < n and adding the edges x(x+�n

2 �−1 mod n)
for 0 ≤ x < n. For n = 2tk where k ≥ 3 and t ≥ 1, let H∗(n, k) be the graph
obtained from H(n, k) by deleting the edges x(x + n

2 mod n) for 0 ≤ x < n. For
n = (2t + 1)k + 2 where k is even, k ≥ 3, and t ≥ 1, let H�(n, k) be the graph
obtained from H(n, k) by deleting the edges x(x + k

2 �n
k � mod n) for 0 ≤ x < n

and adding the edges x(x + �n
2 � mod n) for 0 ≤ x < n.

Proposition 3. The graphs H ′(n, k), H∗(n, k), and H�(n, k) have �n
k � com-

pletely independent spanning trees.

Note that H∗(n, k) and H�(n, k) are 2�n
k �-regular and (2�n

k � + 1)-regular,
respectively. Thus, H∗(n, k) and H�(n, k) are optimal graphs with respect to the
number of completely independent spanning trees.

6 Concluding Remarks

In this paper, we have generalized and improved the Dirac’s condition for com-
pletely independent spanning trees. We have also presented constructions of
optimal graphs for completely independent spanning trees. In order to decrease
our lower bound on the minimum degree, it would be helpful to assume some
additional properties. For example, by assuming regularity and 2-connectedness,
the lower bound on the minimum degree for the existence of a Hamiltonian cycle
can be improved from n

2 to n
3 [11].
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Abstract. The Unbounded Knapsack Problem (UKP) is a well-known
variant of the famous 0-1 Knapsack Problem (0-1 KP). In contrast to 0-1
KP, an arbitrary number of copies of every item can be taken in UKP.
Since UKP is NP-hard, fully polynomial time approximation schemes
(FPTAS) are of great interest. Such algorithms find a solution arbitrarily
close to the optimum OPT(I), i.e. of value at least (1 − ε)OPT(I) for
ε > 0, and have a running time polynomial in the input length and 1

ε
. For

over thirty years, the best FPTAS was due to Lawler with a running time
in O(n+ 1

ε3
) and a space complexity in O(n+ 1

ε2
), where n is the number

of knapsack items. We present an improved FPTAS with a running time
in O(n + 1

ε2
log3 1

ε
) and a space bound in O(n + 1

ε
log2 1

ε
). This directly

improves the running time of the fastest known approximation schemes
for Bin Packing and Strip Packing, which have to approximately solve
UKP instances as subproblems.

1 Introduction

An instance I of the Knapsack Problem (KP) consists of a list of n items
a1, . . . , an, n ∈ IN, where every item has a profit pj ∈ (0, 1] and a size sj ∈ (0, 1].
Moreover, we have the knapsack size c = 1. In the 0-1 Knapsack Problem (0-1
KP), a subset V ⊂ {a1, . . . , an} has to be chosen such that the total profit of V is
maximized and the total size of the items in V is at most c. Mathematically, the
problem is defined by max{∑n

j=1 pjxj | ∑n
j=1 sjxj ≤ c;xj ∈ {0, 1} ∀j}. In this

paper, we focus on the unbounded variant (UKP) where an arbitrary number of
copies of every item is allowed, i.e. max{∑n

j=1 pjxj | ∑n
j=1 sjxj ≤ c;xj ∈ IN ∀j}.

1.1 Known Results

The 0-1 Knapsack Problem and other variants of KP are well-known
NP-hard problems [5]. They can be optimally solved in pseudo-polynomial time
by dynamic programming [1,17]. Furthermore, fully polynomial time approxi-
mation schemes (FPTAS) are known for different variants of KP. An FPTAS is
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effizienten polynomiellen Approximationsschemata für Scheduling- und verwandte
Optimierungsprobleme”.
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a family of algorithms (Aε)ε>0, where for every ε > 0 the algorithm Aε finds for
a given instance I a solution of profit Aε(I) ≥ (1−ε)OPT(I). The value OPT(I)
denotes the optimal value for I. FPTAS have a running time polynomial in 1

ε
and the input length.

The first FPTAS for 0-1 KP was presented by Ibarra and Kim [7]. Lawler
improved the running time in his seminal paper [20]. In 1981, Magazine and
Oguz [22] presented a method to decrease the space complexity of the dynamic
program. The currently fastest known algorithm is due to Kellerer and Pferschy
[15–17, pp. 166–183] with a space complexity in O(n + 1

ε2 ) and a running time
in O(nmin{log n, log 1

ε} + 1
ε2 log( 1

ε ) · min{n, 1
ε log( 1

ε )}). For n ∈ Ω(1
ε log 1

ε ), this
is in O(n log(1

ε ) + 1
ε3 log2( 1

ε )).
For UKP, Ibarra and Kim [7] presented the first FPTAS by extending their

0-1 KP algorithm. This UKP algorithm has a running time in O(n+ 1
ε4 log 1

ε ) and
a space complexity in O(n + 1

ε3 ). Kellerer et al. [17, pp. 232–234] have moreover
described an FPTAS with a time complexity in O(n log(n) + 1

ε2 (n + log 1
ε )) and

a space bound in O(n + 1
ε2 ). In 1979, Lawler [20] presented his FPTAS with a

running time in O(n + 1
ε3 ) and a space complexity in O(n + 1

ε2 ). For n ∈ Ω(1
ε ),

this is still the best known FPTAS.
The study of KP is not only interesting in itself, but also motivated by column

generation for optimization problems like the famous Bin Packing Problem (BP)
and Strip Packing Problem (SP). In the former problem, a set J of n items
of size in (0, 1] has to be packed in as few unit-sized bins as possible. In the
latter problem, a set J of n rectangles of width (0, 1] and height (0, 1] has to be
packed in a strip of unit width such that the height of the packing is minimized.
Many algorithms for optimization problems like Bin Packing have to solve linear
programs (LPs), but enumerating all columns of the linear programs would take
too much time. One way to avoid this is the consideration of the dual of the LP
and to (approximately or exactly) solve a separation problem, which can e.g. be
KP, to find violated inequalities of the dual. Examples can be found in [6,13].

Since Bin Packing and Strip Packing are NP-complete [5], several approx-
imation algorithms have been found for both problems. However, no efficient
(i.e. polynomal-time) algorithm A for BP or SP can achieve A(J) ≤ c · OPT(J)
for c < 3

2 and all problem instances J unless P = NP [5]. So-called asymptotic
fully polynomial-time approximation schemes (AFPTAS) (Aε)ε>0 are therefore
especially interesting. They find for every ε > 0 and instance J a solution of
value at most (1 + ε)OPT(J) + f( 1

ε ), and have a running time polynomial in
the input length and 1

ε . Roughly speaking, AFPTAS achieve an approximation
ratio of c = (1 + ε) for large problem instances.

For Bin Packing, the first AFPTAS was presented by Karmarkar and Karp
[13] with f( 1

ε ) = O( 1
ε2 ). In 1991, Plotkin et al. [23] described an improved algo-

rithm with a smaller additive term f(1
ε ) = O( 1

ε log( 1
ε )) and a time complexity

in O( 1
ε6 log6( 1

ε ) + log( 1
ε )n). The AFPTAS by Shachnai and Yehezkely [24] has

the same additive term and a running time in O( 1
ε6 log3( 1

ε ) + log(1
ε )n) for gen-

eral instances. Currently, the AFPTAS in [9] has the smallest additive term
f(1

ε ) = O(log2 1
ε ) and the fastest running time in O( 1

ε6 log 1
ε + log(1

ε )n).
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The first AFPTAS for Strip Packing was presented by Kenyon and Rémila
[18] with f( 1

ε ) = O( 1
ε2 ). Bougeret et al. [2] and Sviridenko [25] independently

improved the additive term to f(1
ε ) = O(1

ε log 1
ε ). The algorithm in [2] needs

time in O( 1
ε6 log( 1

ε ) + n log n), which is the currently fastest known AFPTAS.
Both algorithms in [2,9] solve UKP instances for column generation. A faster

FPTAS for UKP therefore directly yields faster AFPTAS for Bin Packing and
Strip Packing.

1.2 Our Result

We have derived an improved FPTAS for UKP that is faster and needs less space
than previously known algorithms.

Theorem 1. There is an FPTAS for UKP with a running time in O(n +
1
ε2 log3( 1

ε )) and a space complexity in O(n + 1
ε log2( 1

ε )).

Not only the improved running time, but also the improved space complexity
is interesting because “for higher values of 1

ε the space requirement is usually
considered to be a more serious bottleneck for practical applications than the
running time” [17, p. 168]. Nevertheless, the improved time complexity has direct
practical consequences. Let KP (d, ε) be the running time to find a (1−ε) approx-
imate solution to a UKP instance with d items. The Bin Packing algorithm in
[9] has the running time O(KP (d, ε̄

6 ) · 1
ε3 log 1

ε + log(1
ε )n) if we assume that

KP (d, ε̄
6 ) ∈ Ω( 1

ε2 ) (where ε̄ ∈ θ(ε) and d ∈ O(1
ε log 1

ε )). By using the new
FPTAS for UKP, we get a faster AFPTAS:

Corollary 2. There is an AFPTAS (Aε)ε>0 for Bin Packing that finds for ε ∈
(0, 1

2 ] a packing of J in Aε(J) ≤ (1 + ε)OPT(J) + O(log2( 1
ε )) bins. Its running

time is in O( 1
ε5 log4 1

ε + log(1
ε )n).

Similarly, the Strip Packing algorithm in [2] (see also [8]) has a running time
in O(d( 1

ε2 +ln d)max{KP (d, ε̄
6 ), d ln ln(d

ε )}+n log n) where again d ∈ O(1
ε log 1

ε )
and ε̄ ∈ θ(ε). The new FPTAS yields the following improved AFPTAS:

Corollary 3. There is an AFPTAS (Aε)ε>0 for Strip Packing that finds a pack-
ing for J of total height Aε(J) ≤ (1+ ε)OPT(J)+O( 1

ε log( 1
ε )). Its running time

is in O( 1
ε5 log4 1

ε + n log n).

Note that the full version of this paper is available on arXiv [11].

1.3 Techniques

Most algorithms for UKP [7,17,20] rely on 0-1 KP algorithms. The 0-1 KP
algorithms determine a first lower bound P0 for OPT(I). Based on a threshold T
depending on P0, the items are partitioned into large(-profit) items with pj ≥ T
and small(-profit) items with pj < T . A subset of the large items is taken, which
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is sufficient for an approximate solution. Its profits are then scaled and the well-
known dynamic programming by profits applied to the subset. All combinations
of large items (packed by the dynamic program) and small items (which are
greedily added) are checked and the best one returned. For UKP, copies of the
items in the reduced large item set are taken to transform the UKP instance
into a 0-1 KP instance.

Our algorithm also first reduces the number of large items. However, we fur-
ther preprocess the remaining large items by taking advantage of the unbounded-
ness: large items of similar profit [2kT, 2k+1T ) are iteratively combined (“glued”)
together to larger items. Apart from two special cases that can be easily solved,
we prove for this new set G a structure property: there are approximate solutions
where at most one large item from every interval [2kT, 2k+1T ) is used, i.e. only
O(log 1

ε ) items in total. As a next step, a large item aeff−c that consists of several
copies of the most efficient small item aeff is introduced. We prove that there are
now approximate solutions to the large items G∪{aeff−c} of cardinality O(log 1

ε )
and that additionally use at least one item of profit at least 1

4P0. Instead of exact
dynamic programming, we use approximate dynamic programming: the profits in
[14P0, 2P0] are divided into intervals of equal length. During the execution of the
dynamic program, we eliminate dominated solutions and store for each interval
at most one solution of smallest size. The combination of approximate dynamic
programming with the structure properties yields the considerable improvement
in the running time and the space complexity. The algorithm then returns the
best combination of large items (packed by the dynamic program) and copies of
the small item aeff (added greedily).

2 Preliminaries

We introduce some useful notation. The profit of an item a is denoted by p(a)
and its size by s(a). If a = aj , we also write p(aj) = pj and s(aj) = sj . Let
V = {xa : a | a ∈ I, xa ∈ IN} be a multiset of items, i.e. a subset of items in I with
their multiplicities. We naturally define the total profit p(V ) :=

∑
xa>0 p(a)xa

and the total size s(V ) :=
∑

xa>0 s(a)xa.
Let v ≤ c = 1 be a part of the knapsack. The corresponding optimum profit

is denoted by OPT (I, v) = max{∑a p(a)xa | ∑
a s(a)xa ≤ v; a ∈ I; xa ∈ IN}.

Obviously, OPT(I) = OPT (I, c) holds.
Finally, we assume throughout the paper that basic arithmetic operations as

well as computing the logarithm can be performed in O(1).

2.1 A First Approximation

We present a simple approximation algorithm for OPT(I). Take the most effi-
cient item ameff := arg maxa∈I

p(a)
s(a) . Fill the knapsack with as many copies of

ameff as possible, i.e. take � c
s(ameff )

	 c=1= � 1
s(ameff )

	 copies of ameff . [17, p. 232, 20]:
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Theorem 4. We have P0 := p(ameff) · � c
s(ameff )

	 ≥ 1
2OPT(I). The value P0 can

be found in time O(n) and space O(1).

From now on, we assume without loss of generality that ε ≤ 1
4 and ε = 1

2κ−1

for κ ∈ IN. Otherwise, we replace ε by the corresponding 1
2κ−1 such that 1

2κ−1 ≤
ε < 1

2κ−2 . Note that log2(
2
ε ) = κ holds. Similar to Lawler [20], we introduce the

threshold T and a constant K:

T :=
1
2
εP0 =

1
2

1
2κ−1

P0 and K :=
ε

4
1

log2(
2
ε ) + 1

T =
1
4

1
κ + 1

1
2κ−1

T . (1)

3 Reducing the Items

We first partition the items into large(-profit) and small(-profit) items, and only
keep the most efficient small item: IL := {a ∈ I | p(a) ≥ T}, IS := I \ IL, and
aeff := arg max{p(a)

s(a) | p(a) < T}. The construction of these sets is trivial.

Theorem 5. The sets IL, IS and the item aeff can be found in time O(n) and
space O(n). This is also the space needed to save IL.

Similar to Lawler, we now reduce the item set IL. First, we partition the interval
of large item profits [T, 2P0] into L(k) := [2kT, 2k+1T ) for k ∈ {0, . . . , κ + 1}.
Note that L(κ) =

[
2κT, 2κ+1T

)
=

[
2κ 1

2
1

2κ−1 P0, 2κ+1 1
2

1
2κ−1 P0

)
= [P0, 2P0). For

convenience, we set L(κ+1) := {2P0}. We further split the L(k) into disjoint sub-
intervals, each of length 2kK: L

(k)
γ :=

[
2kT + γ · 2kK, 2kT + (γ + 1)2kK

)
for

γ ∈ {0, . . . , 2κ+1(κ + 1) − 1}. Note that indeed L(k) =
⋃

γ L
(k)
γ holds. Similar to

above, we set L
(κ+1)
0 := {2P0}.

We only keep the smallest item a for every profit interval L
(k)
γ , again similar

to Lawler [20]. We will see that these items are sufficient for an approximation.

Definition 6. For an item a with p(a) ≥ T , let k(a) ∈ IN be the interval such
that p(a) ∈ L(k(a)) and γ(a) ∈ IN be the sub-interval such that p(a) ∈ L

(k(a))
γ(a) .

Let a
(k)
γ be the smallest item for the profit interval L

(k)
γ , i.e. we set a

(k)
γ :=

arg min{s(a) | a ∈ IL and p(a) ∈ L
(k)
γ } for all k and γ.

Let IL,red :=
⋃

k

⋃
γ{a

(k)
γ } be the reduced set of large items. As in [20], we can

prove that IL,red is sufficient for an approximation.

Lemma 7. Let 0 ≤ v ≤ c = 1. Then OPT ({aeff}, c − v) ≥ OPT (IS , c − v) − T
and OPT (IL,red, v) ≥ (1 − ε

4
1

log2(
2
ε )+1

)OPT (IL, v).

Theorem 8. The set IL,red has O( 1
ε log2 1

ε ) items. It can be constructed in time
O(n + 1

ε log2 1
ε ) and space O( 1

ε log2 1
ε ), including the space to save IL,red.
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Remark 9. If there is one item a with the profit p(a) = 2P0, i.e. whose profit
attains the upper bound, one optimum solution obviously consists of this single
item. During the partition of I into IL and IS , it can easily be checked whether
such an item is contained in I. Since the algorithm can directly stop if this is the
case, we will from now on assume without loss of generality that such an item
does not exist and that a

(κ+1)
0 = ∅.

4 A Simplified Solution Structure

In this section, we will transform IL,red into a new instance G whose opti-
mum OPT(G, v) is only slightly smaller than OPT(IL,red, v) and where the
corresponding solution has a special structure. This new transformation will
allow us later to faster construct the approximate solution. First, we define
I(k) := {a ∈ IL,red

∣
∣ p(a) ∈ L(k)} = {a ∈ IL,red

∣
∣ p(a) ∈ [

2kT, 2k+1T
)}. Note

that the items are already partitioned into the sets I(k) because of the way IL,red

has been constructed.
Definition 10. Let a1, a2 be two knapsack items with s(a1) + s(a2) ≤ c. The
gluing operation ⊕ combines them into a new item a1 ⊕ a2 with p(a1 ⊕ a2) =
p(a1) + p(a2) and s(a1 ⊕ a2) = s(a1) + s(a2).

Thus, the gluing operation is only defined on pairs of items whose combined
size does not exceed c.

The basic idea for the new instance G is as follows: we first set G(0) := I(0).
Then, we construct a1 ⊕ a2 for all a1, a2 ∈ G(0) (including the case a1 = a2),
which yields the item set H(1) := {a1 ⊕ a2 | a1, a2 ∈ G(0)}. Note that we have
p(a1⊕a2) ∈ [2T, 4T ) = L(1). For every profit interval L

(1)
γ , we keep only the item

of smallest size in I(1) ∪ H(1), which yields the item set G(1). This procedure
is iterated for k = 1, . . . , κ − 1: the set G(k) contains the items with a profit in
[2kT, 2k+1T ) = L(k). Gluing like above yields the item set H(k+1) with profits in
[2k+1T, 2k+2T ) = L(k+1). By taking again the smallest item in H(k+1) ∪ I(k+1)

for every L
(k+1)
γ , the set G(k+1) is derived. The item in G(k) with a profit in L

(k)
γ

is denoted by ã
(k)
γ for every k and γ.

We finish when G(κ) has been constructed. We are in the case where
I(κ+1) = ∅, i.e. a

(κ+1)
0 = ∅, and we will see at the beginning of Sect. 5 that

it is not necessary to construct G(κ+1) from the items in G(κ). Hence, we also
have ã

(κ+1)
0 = ∅.

Note that we may glue items together that already consist of glued items.
For backtracking, we save for every ã

(k)
γ which two items in G(k−1) have formed

it or whether ã
(k)
γ has already been an item in I(k).

Remark 11. One item ã
(k)
γ is in fact the combination of several items in IL,red.

The profit and size of ã
(k)
γ is equal to the total profit and size of these items.

The ã
(k)
γ represent feasible item combinations because an arbitrary number of

item copies can be taken in UKP.
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We define the item set G :=
⋃κ

k=0 G(k).

Definition 12. Let I ′ be a set of knapsack items with p(a) ≥ T for every a ∈ I ′.
For a knapsack volume v ≤ c and k0 ∈ {0, . . . , κ}, a solution is structured for
k = k0 if it fits into v and uses for every k ∈ {0, . . . , k0} at most one item with
a profit in L(k). We denote by OPT≤k0 (I ′, v) the corresponding optimum profit.

The solution for OPT≤k0

(
G(0) ∪ . . . ∪ G(k0) ∪ G(k0+1) ∪ I(k0+2) ∪ . . . ∪ I(κ), v

)

fits into the volume v, and it uses only one item from every G(k) for k ∈
{0, . . . , k0}.

Theorem 13. For v ≤ c and k0 ∈ {0, . . . , κ − 1}, we have the following bound:
OPT≤k0(

⋃k0+1
k=0 G(k) ∪ ⋃κ

k=k0+2 I(k), v) ≥ (1 − ε
4

1
log2(

2
ε )+1

)k0+1OPT (IL,red, v).

Lemma 14. We have OPT(G ∪ {aeff}) ≤ OPT(IL,red ∪ IS) ≤ OPT(IL ∪ IS) =
OPT(I) ≤ 2P0.

Up to now, we have (only) reduced the original item set I to G ∪ {aeff}.

Lemma 15. Assume as mentioned in Remark 9 that a
(κ+1)
0 = ∅. Consider the

optimum structured solutions to G ∪ {aeff} for k0 = κ − 1 (see Definition 12).
This means that at most one item is used from every G(k) for k ∈ {0, . . . , κ−1}.
(The item aeff has a profit p(aeff) < T such that it does not have to satisfy any
structural conditions.) Then there are two possible cases:

– One solution uses (at least) two items in G(κ). This is the case if and only
if the optimum for G ∪ {aeff} is 2P0, and the solution consists of two item
copies of the item ã

(κ)
0 with p(ã(κ)

0 ) = P0.
– Every solution uses at most one item in G(κ). Then, OPT≤κ−1(G, v′) =

OPT≤κ(G, v′) holds for all values 0 ≤ v′ ≤ c, and there is a value 0 ≤
v ≤ c such that OPT≤κ(G, v) + OPT({aeff} , c − v) = OPT≤κ−1(G, v) +
OPT({aeff} , c − v) ≥ (1 − ε

4
1

log2(
2
ε )+1

)κ+1OPT(I) − T .

Moreover, OPT≤κ(G, v) uses at least one item in G(κ−2) ∪ G(κ−1) ∪ G(κ),
and/or we have OPT ({aeff} , c − v) ≥ 1

4P0.

Definition 16. Take � P0/4
p(aeff )

 items aeff . If their total size is at most c, they are
glued together to aeff−c.

Obviously, aeff−c consists of the smallest number of items aeff whose total
profit is at least P0

4 . Moreover, aeff−c is a large item.

Definition 17. Take a knapsack volume v ≤ c. Consider the following solutions
to G ∪ {aeff−c} of size at most v: they are structured for k = κ, i.e. they use
for every k ∈ {0, . . . , κ} at most one item in G(k). Moreover, they use the item
aeff−c at most once and at least one item ã ∈ G(κ−2) ∪ G(κ−1) ∪ G(κ) ∪ {aeff−c}.
Hence, these solutions have a profit of at least p(ã) ≥ 2κ−2T = 1

4P0.
These special solutions are called structured solutions with a lower bound

(on the profit). The optimal profit for such solutions of total size at most v is
denoted by OPTSt(G ∪ {aeff−c}, v). If v is too small such that such a solution
does not exist, we set OPTSt(G ∪ {aeff−c}, v) = 0.
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Theorem 18. In the second case of Lemma 15, there is one 0 ≤ v ≤ c such that
OPTSt(G∪{aeff−c} , v)+OPT({aeff} , c− v) ≥ (1− ε

4
1

log2(
2
ε )+1

)κ+1OPT(I)−T .

So far, we have not constructed an actual solution. We have only shown in
Theorem 18 that there is a solution to G ∪ {aeff−c} ∪ {aeff} that is close to
OPT(I) and that is a structured solution with a lower bound.

Theorem 19. The cardinality of G(k) is in O( 1
ε log 1

ε ), i.e. G has O(1
ε log2 1

ε )
items. The set G can be constructed in time O( 1

ε2 log3( 1
ε )) and space O( 1

ε log2 1
ε ),

which also includes the space to store G and the backtracking information. The
item aeff−c can be constructed in time O(1).

5 Finding an Approximate Structured Solution
by Dynamic Programming

The previous section has shown that there are three cases: the instance I has
one item of profit 2P0 (Remark 9), G has one item of profit P0 and size at most
c
2 , or there is an approximate structured solution to G ∪ {aeff−c} ∪ {aeff} with a
lower bound (see Theorem 18). As the first two cases can be easily checked, we
will from now on assume that we are in the third case: a solution uses at most
one item from every G(k) for k ∈ {0, . . . , κ} as well as aeff−c at most once. At
the same time, at least one item ã ∈ G(κ−2) ∪G(κ−1) ∪ G(κ) ∪ {aeff−c} is chosen.

We use dynamic programming to find for all 0 ≤ v ≤ c the corresponding set
of large items V ⊆ G ∪ {aeff−c} with s(V ) ≤ v. For convenience, let G(κ+1) :=
{aeff−c}. We introduce tuples (p, s, k) similar to Lawler [20]. For profit p with
0 ≤ p ≤ 2P0 and size 0 ≤ s ≤ c, the tuple (p, s, k) states that there is an
item set of size s whose total profit is p. Moreover, the set has only items in
G(k) ∪ · · · ∪ G(κ+1) and respects the structure above.

The dynamic program is quite simple: start with the tuple set F (κ+2) :=
{(0, 0, κ + 2)}. For k = κ + 1, . . . , κ − 2, the tuples in F (k) are recursively
constructed by F (k) := {(p, s, k) | (p, s, k + 1) ∈ F (k+1)} ∪{(p + p(ã), s +
s(ã), k) | (p, s, k + 1) ∈ F (k+1), ã ∈ G(k), s + s(ã) ≤ c}. As (0, 0, k + 1) ∈
F (k+1), the set F (k) also contains the entries (p(ã), s(ã), k) for ã ∈ G(k) if
k ∈ {κ + 1, . . . , κ − 2}. For k ∈ {κ − 3, . . . , 0}, this tuple (0, 0, k + 1) is no
longer considered to form the new tuples, which guarantees that tuples of the
form (p + p(ã), s + s(ã), k) for ã ∈ G(k) have p, s �= 0. The recursion becomes
F (k) := {(p, s, k) | (p, s, k + 1) ∈ F (k+1)} ∪ {(p + p(ã), s + s(ã), k) | (p, s, k + 1) ∈
F (k+1)\{(0, 0, k + 1)} , ã ∈ G(k), s+s(ã) ≤ c}. The actual item set corresponding
to (p, s, k) can be reconstructed by saving backtracking information.

Definition 20. A tuple (p2, s2, k) is dominated by (p1, s1, k) if p2 ≤ p1 and
s2 ≥ s1.

As in [20], dominated tuples (p, s, k + 1) are now removed from F (k+1) before
F (k) is constructed. It is not difficult to see that a non-dominated tuple (p, s, k)
is optimal, i.e. the profit p can only be obtained with items of size at least s if
items in G(k), . . . , G(κ+1) are considered.
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Lemma 21. A tuple (p, s, k) ∈ F (k) stands for a structured solution with a
lower bound (see Definition 17). Therefore, we have p ≥ 2κ−2T if p > 0. For
every v ≤ c, there is a tuple (p, s, 0) ∈ F (0) with p = OPTSt(G∪{aeff−c}, v) and
s ≤ v.

While the dynamic program above constructs the desired tuples, their number
may increase dramatically until F (0) is obtained. We therefore use approximate
dynamic programming for the tuples with profits in [14P0, 2P0]. This method is
inspired by the dynamic programming used in [14] (see also [17, pp. 97–112]).

Definition 17 and Lemma 21 state that a tuple (p, s, k) with p > 0
satisfies p ≥ 2κ−2T . Apart from (0, 0, k), all tuples have therefore profits

in the interval [2κ−2T, 2P0]
(1)
= [14P0, 2P0] = [2κ−2T, . . . , 2κ+1T ]. We parti-

tion this interval into sub-intervals of length 2κ−2K. We get the partitioning
[2κ−2T, 2P0] =

⋃ξ0
ξ=0[2

κ−2T + ξ · 2κ−2K, 2κ−2T + (ξ + 1)2κ−2K) ∪ {2P0} =:
⋃ξ0

ξ=0 L̃
(κ−2)
ξ ∪ L̃

(κ−2)
ξ0+1 for ξ0 := 7(κ+1)2κ+1 − 1. (A short calculation shows that

2κ−2T + (ξ0 + 1)2κ−2K = 2P0.) The approximate dynamic program keeps for
every ξ ∈ {0, . . . , ξ0 + 1} only the tuple (p, s, k) with p ∈ L̃

(κ−2)
ξ that has the

smallest size s. The dominated tuples are removed when all tuples for k have
been constructed. The sets of these non-dominated tuples are denoted by D(k).
For convenience, (p(ξ), s(ξ), k) ∈ D(k) denotes the smallest tuple with a profit
in L̃

(κ−2)
ξ . We again save the backtracking information during the execution of

the dynamic program.

Lemma 22. Let D̃(k) be the set D(k) before the dominated entries are removed.
A tuple (p, s, k) ∈ D̃(k) for k = κ + 1, . . . , 0 stands for a structured solution with
a lower bound. Therefore, we have p ≥ 2κ−2T if p > 0. This is also true for
(p, s, k) ∈ D(k).

Theorem 23. Let k ∈ {0, . . . , κ + 1}. For every (non-dominated) entry
(p̄, s̄, k) ∈ F (k), there is a tuple (p, s, k) ∈ D(k) such that p ≥ (1 −
ε
4

1
log2(

2
ε )+1

)κ−k+1p̄ and s ≤ s̄.

Proof (Sketch). The theorem is proved by induction for k = κ + 1, . . . , 0. For
(0, 0, k) �= (p̄, s̄, k) ∈ F (k), there are the two cases (p̄, s̄, k + 1) ∈ F (k+1) and
(p̄, s̄, k + 1) /∈ F (k+1). We only show the first case. There is by the induc-
tion hypothesis a tuple (p1, s1, k + 1) ∈ D(k+1) such that p1 ≥ p̄ · (1 −
ε
4

1
log2(

2
ε )+1

)κ−(k+1)+1 and s1 ≤ s̄. Note that this implies (p1, s1, k + 1) �=
(0, 0, k+1) and therefore p1 ≥ 2κ−2T by Lemma 22. Let ξ1 be the index such that
p1 ∈ L̃

(κ−2)
ξ1

. In the dynamic program, (p1, s1, k + 1) yields the tuple (p1, s1, k),
which may only be replaced in D̃(k) by a tuple of smaller size, but with a profit
still in L̃

(κ−2)
ξ1

. Thus, there must be a tuple (p2, s2, k) ∈ D̃(k) with s2 ≤ s1 and

p2 ∈ L̃
(κ−2)
ξ1

. Let now (p, s, k) ∈ D(k) be the tuple that dominates (p2, s2, k)
(which can of course be (p2, s2, k) itself), i.e. p ≥ p2 and s ≤ s2. For the profit,

we have p ≥ p2 ≥ p1 − 2κ−2K
p1 �=0
= p1 · (1 − 2κ−2K

p1
)

Lem. 22≥ p1 · (1 − 2κ−2K
2κ−2T )

(1)
=
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p1 · (1 − ε
4

1
log2(

2
ε )+1

) ≥ p̄ · (1 − ε
4

1
log2(

2
ε )+1

)κ−k+1. The lower bound on the profit
is therefore true for (p, s, k). We have s ≤ s2 ≤ s1 ≤ s̄ for the size. Note that the
glued item set G with its structured solution (Theorem 13) allows for the proof
of Lemma 15, the introduction of aeff−c, and the proof of Theorem18. This guar-
antees that p ≥ 2κ−2T (see Lemmas 21 and 22), which is essential to the proof of
this theorem. Otherwise, the approximate dynamic programming would need for
the same approximation ratio profit sub-intervals like L̃

(κ−2)
ξ of length smaller

than 2κ−2K, and it would have to save more tuples. Both would increase the
time and space complexity. This is also true for the second case, where Lemma
22 is also essential.

Corollary 24. For every v ≤ c, there is a tuple (p, s, 0) ∈ D(0) such that s ≤ v
and p ≥ (1 − ε

4
1

log2(
2
ε )+1

)κ+1OPTSt(G ∪ {aeff−c} , v).

Theorem 25. All tuple sets D(k) for k = κ+1, . . . , 0 can be constructed in time
O( 1

ε2 log3 1
ε ). The space needed for the dynamic program and for saving the D(k)

as well as the backtracking information is in O( 1
ε log2 1

ε ).

6 The Algorithm

We can now put together the entire approximation algorithm.

Input: Item set I
Output: Profit P , solution set J
Determine P0 and define T, K;
Partition the items into IL and IS and find aeff ;
if Item a with p(a) = 2P0 found during the partitioning then

return 2P0, {a};

Reduce IL to IL,red as shown in Sect. 3;
Construct G and the item aeff−c like in Sect. 4;

if p(ã
(κ)
0 ) = P0 and s(ã

(κ)
0 ) ≤ c

2
then

Recursively undo the gluing of ã
(κ)
0 to get the item set J ′. Let J be the set

consisting of two copies of every item in J ′;
return 2P0, J ;

Construct the tuple sets D(κ+1), . . . , D(0) as described in Sect. 5;

Find (p, s, 0) ∈ D(0) such that
P := p + OPT ({aeff}, c − s) = max(p′,s′,0)∈D(0) p′ + OPT ({aeff}, c − s′);
Backtrack the tuple (p, s, 0) to find the corresponding structured solution with a
lower bound J ′ ⊂ G ∪ {aeff−c};
Recursively undo the gluing of all ã ∈ J ′ and add these items to the solution set
J ;
Add the items of OPT({aeff}, c − s) to J ;
return P , J ;

Algorithm 1. The complete algorithm
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Theorem 26. Algorithm 1 finds a solution of value at least (1 − ε)OPT(I).

Theorem 27. The algorithm has a running time in O(n + 1
ε2 log3 1

ε ) and needs
space in O(n + 1

ε log2 1
ε ).

7 Concluding Remarks

The most important steps in this algorithm are the creation of the item set G
by gluing and the introduction of aeff−c. This guarantees the existence of an
approximate structured solution with a lower bound (see Definition 17). There-
fore, the approximate dynamic program has to store less tuples (p, s, k) than in
the case without the structure.

We [19] have extended our algorithm to the Unbounded Knapsack Problem
with Inversely Proportional Profits (UKPIP) introduced in [10]. Here, several
knapsack sizes 0 < c1 < . . . < cM = 1 are given, and the profit of an item
counts as pj/cl if packed in cl. The goal is to find the best knapsack size and the
corresponding solution of maximum profit. UKPIP is used for column generation
in our AFPTAS for Variable-Sized Bin Packing [9] where several bin sizes are
given and the goal is to minimize the total volume of the bins used. The faster
FPTAS for UKPIP yields a faster AFPTAS for Variable-Sized Bin Packing.

There are interesting open questions. As stated in Subsect. 1.2, the space
complexity is a more serious bottleneck than the running time. Recently,
Lokshtanov and Nederlof [21] showed that the 0-1 KP and the Subset Sum
Problem have a pseudo-polynomial time and only polynomial space algorithm.
Subset Sum is a special case of Knapsack where the profit of an item is equal
to its size, i.e. pj = sj . Moreover, it was shown that Unary Subset Sum is in
Logspace [3,12]. Gál et al. [4] described an FPTAS for Subset Sum whose space
complexity is in O(1

ε ), i.e. which does not depend on the actual input size, and
whose running time is in O( 1

εn(n + log n + log 1
ε )). Can any of these results be

further extended to improve the space complexity of an UKP FPTAS? Finally,
it is open whether the ideas presented in this paper can be extended to the nor-
mal 0-1 KP or other KP variants as well as used for column generation of other
optimization problems. The currently fastest known algorithm for 0-1 KP is due
to Kellerer and Pferschy [15–17]. We mention in closing that by using the same
approach similar improved approximation algorithms can be expected for various
Packing and Scheduling Problems, e.g. for Bin Covering, Bin Packing with Car-
dinality Constraints, Scheduling Multiprocessor Tasks and Resource-constrained
Scheduling.
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Abstract. The problem of Distance Edge Labeling is a variant of
Distance Vertex Labeling (also known as L2,1 labeling) that has been
studied for more than twenty years and has many applications, such as
frequency assignment.

The Distance Edge Labeling problem asks whether the edges of
a given graph can be labeled such that the labels of adjacent edges differ
by at least two and the labels of edges at distance two differ by at least
one. Labels are chosen from the set {0, 1, . . . , λ} for λ fixed.

We present a full classification of its computational complexity—a
dichotomy between the polynomially solvable cases and the remaining
cases which are NP-complete. We characterise graphs with λ ≤ 4 which
leads to a polynomial-time algorithm recognizing the class and we show
NP-completeness for λ ≥ 5 by several reductions from Monotone Not
All Equal 3-SAT.

Keywords: Computational complexity · Distance labeling · Line-
graphs

1 Introduction

We study the computational complexity of the distance edge-labeling problem.
This problem belongs to a wider class of problems that generalize the graph
coloring problem. The task is to assign a set of colors to each vertex, such that
whenever two vertices are adjacent, their colors differ from each other. For a
survey about this famous graph problem and related algorithms, see [1].

We are interested in the so-called distance labeling. In this generalization of
the former problem the condition enforcing different colors is extended and takes
into account also the second neighborhood of a vertex (or an edge). The second
neighborhood is the set of vertices (or edges) at distance at most 2. For a survey
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about distance labelings, we refer to the article by Tiziana Calamoneri [2], as
well as her online survey [3].

Graph distance labeling has been first studied by Griggs and Yeh [4,5] in
1992. The problem has many applications, the most important one being fre-
quency assignment [6]. The complexity of L2,1 labeling for a fixed parameter λ
has been established in [7]. They show a dichotomy between polynomial cases
for λ ≤ 3 and NP-complete cases for λ ≥ 4.

Moreover, for the usual graph coloring problem there is a theorem of Viz-
ing [8], which states that for the edge-coloring number χ′(G) it holds that
Δ ≤ χ′ ≤ Δ+1, where Δ is the maximum degree of the graph. For L2,1 labeling
there is a general bound due to Havet et al. [9], namely λ ≤ Δ2, for Δ ≥ 79.

Before we proceed to the formal definition of the corresponding decision
problem, we give several definitions of a labeling mapping of a graph and of the
minimal distance edge-labeling number. Note that the distance edge-labeling is
equivalent to the distance vertex-labeling of the associated line-graphs. A line-
graph L(G) is a graph derived from another graph G such that vertices of L(G)
are edges of G and two vertices a, b of L(G) are connected by an edge whenever
a, b (as edges of G) are adjacent. We define the distance between edges of a graph
as their distance in the corresponding line-graph.

Definition 1 (Edge-labeling mapping). Let G(V,E) be a graph. A mapping
f ′
2,1 : E → N is an edge-labeling, if it satisfies:

• |f ′
2,1(e) − f ′

2,1(e
′)| ≥ 2 for neighboring edges (i.e. those in the distance one),

• |f ′
2,1(e) − f ′

2,1(e
′)| ≥ 1 for edges at distance two.

As usual, we are interested in a labeling that minimizes the number of labels
used by a feasible labeling.

Definition 2 (Minimum distance edge-labeling). Let G be a graph and
f ′
2,1 an edge-labeling mapping, we define the graph parameter λ′

2,1 as:

λ′
2,1(G) := min

f ′
2,1

max
e∈E

f ′
2,1(e).

The size of the range of a (not necessarily optimal) edge-labeling mapping
f ′
2,1 is called the span.

Definition 3 (Distance Edge Labeling problem (also known as L′
2,1)).

Input: A graph G.
Parameter: λ ∈ N.
Question: Is λ′

2,1(G) ≤ λ?
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1.1 Our Results

Our main result is the following theorem about the dichotomy of the Distance
Edge Labeling problem.

Theorem 1 (Dichotomy of distance edge-labeling). The problem L′
2,1 is

polynomial-time solvable if and only if λ ≤ 4. Otherwise it is NP-complete.

We derive Theorem 1 as a combination of Theorem 4 that describes all graphs
with λ′

2,1 ≤ 4 and Theorem 6 presenting the NP-completeness result. Note that
our Theorem 6 also extends to the following inapproximability result:

Corollary 1. The Distance Edge Labeling problem cannot be approximated
within a factor of 6/5 − ε, unless P = NP.

Moreover, according to [10], the proof implies that the Distance Edge
Labeling is paraNP-hard while parameterized by its span.

1.2 Preliminaries

We state several basic and well-known observations with the connection to Def-
inition 3, as well as some notation used in this paper.

For further standard notation in graph theory, we refer to the monograph [11].
The first observation gives a trivial lower-bound on λ′

2,1(G).

Observation 2 (Max-degree lower-bound). Let G be a graph and let Δ be
its maximum degree. Then λ′

2,1(G) ≥ 2(Δ − 1).

Note that this observation gives also an upper bound on the max-degree of
a graph G with λ′

2,1(G) ≤ λ for a given λ ∈ N.

Observation 3 (The symmetry of distance labeling). Let G be a graph,
a mapping f : E → N be a (not necessarily optimal) labeling with span λ. Then
also the mapping f ′(e) := λ − f(e) is a valid labeling with the same span.

We call such a derived labeling of the edges of a graph a λ-inversion.

2 Polynomial Cases

In this section we give a full description of graphs admitting a labeling with
small number of labels, in particular graphs G with λ′

2,1(G) ≤ 4. Moreover,
these graphs can be recognized in polynomial time. This leads to Theorem 4,
which is the main result of this section.

For the ease of presentation we split the proof and statement of the Theorem 4
into several lemmas, each for a particular value of λ′

2,1(G).

Theorem 4 (Polynomial cases of distance edge-labeling). For any graph
G and for λ = 0, 1, 2, 3, 4 the Distance Edge Labeling problem λ′

2,1(G) = λ
(or λ′

2,1(G) ≤ λ) can be solved in polynomial time. Moreover, it is possible to
compute such a labeling in polynomial time.
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Without loss of generality we deal with connected simple undirected graphs.
First observe, that for λ < 4 the graph cannot contain a vertex of degree 3.

We use Pi as a symbol for the path on i vertices.

Lemma 1 (Graphs with λ′
2,1(G) ≤ 3).

• The only graphs with λ′
2,1(G) = 0 are P1 or P2.

• There is no graph with λ′
2,1(G) = 1.

• The only graph with λ′
2,1(G) = 2 is P3.

• Finally, graphs with λ′
2,1(G) = 3 are P4 and P5.

When λ = 4, the graph may contain vertices with degree 3. We call a vertex
hairy if it is of degree 3 and at least one of its neighbors is of degree 1. We call
this degree one vertex, together with the connecting edge, pendant. Note that
any vertex of degree 3 in a graph G satisfying λ(G) = 4 cannot have all its
neighbors of degree 2 or greater. It is easy to see that there is no labeling of span
4 of such a graph. We say that two hairy vertices are consecutive, if there is no
other hairy vertex on a path between them or if there is the only hairy vertex
on a cycle. In this particular case the vertex is consecutive to itself.

For the purpose of the following lemmas, we say that a graph is a generalized
cycle if it is a cycle with several (possibly 0) pendant edges. We say that a graph
is a generalized path if it is a path with several (possibly 0) pendant edges. All
observations made in the last paragraphs imply the following lemma:

Lemma 2. Let G be a graph satisfying λ′
2,1(G) ≤ 4, then G is either a general-

ized path or a generalized cycle.

On the contrary not every generalized cycle or path has λ′
2,1 ≤ 4. The fol-

lowing lemmas state all the conditions for a generalized cycle or path to satisfy
λ′
2,1 ≤ 4.

Notation in the proofs. Both proofs are done by a case analysis. For generalized
cycles and paths the idea is to label path or cycle while there is the possibility to
label all the pendant edges. To do so, we use sequences of numbers representing
labels on edges. Note that it follows from Observation 2 that only numbers 0, 2, 4
can occur around a hairy vertex and any pendant vertex must get label 2. For
labelings we use sequences of numbers describing labels of consecutive edges and
a symbol “|” for a hairy vertex—so there is a pendant edge on a vertex with
label 2. This gives us immediately the following observation.

v
4

2

0

There could not be
any other

consecutive edge

31

The only way how to label these edges

3 1 40

This is the
first time we
can make a
choice. Use

4 or 2.

This is the
first time we
can make a
choice. Use

0 or 2.

e

Observation 5 (The labeling of a hairy vertex and its neighborhood).
The neighborhood of a hairy vertex can be labeled only by a sequence 0314|0314
or its λ-inversion 4130|4130.
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Lemma 3. Let G = (V,E) be a generalized path. Let W be the set of all hairy
vertices. Then λ′

2,1(G) ≤ 4 if and only if for every consecutive pair u, v ∈ W
their distance d = dG(u, v) is either 4, or at least 8.

Proof. We need to show that each sequence can be correctly labeled or that it
is impossible to label it at all.

The easier fact is the existence of correct labelings. Sequences |0314|(d = 4),
|031420314|(d = 9), |0314204130|(d = 10), |03140240314|(d = 11) can be
extended by a sequence 0314 at the beginning to get sequences of length at least 8.

Now we have to show that there are no valid sequences of length 1, 2, 3, 5, 6, 7.
Observation 5 banns immediately sequences of length 1, 2, 3. Furthermore, the
same observation also implies that there is no chance to overlap two sequences
which is necessary to get lengths 5, 6 or 7. ��
Lemma 4. Let G = (V,E) be a generalized cycle. Let W be the set of all hairy
vertices. Then λ′

2,1(G) ≤ 4 if and only if for every consecutive pair u, v ∈ W
their distance d = dG(u, v) fulfills one of the following:

• d = 4, 8, 9 or d ≥ 11,
• if there exists a consecutive pair with d = 10, then there is even number of
such consecutive pairs, or there exists a consecutive pair with d = 13, 14, 16
or greater.

Firstly it is easy to observe that cycles of any length without a hairy vertex
can be labeled correctly.

The proof of the first part is similar to Lemma 3, except for the sequences
of length 10. Because such a sequence cannot be connected via hairy vertex to
any sequence presented in the proof of Lemma 3, unless we use a λ-inversion of
some of them. So in the proof of the second part we need to show two things:

• The only labeling of a sequence of length 10 is the one already presented.
• The sequences of length less than or equal to 12 and 15 do not have a labeling

that starts and ends by the label 0, while sequences of all other possible lengths
admit such a labeling.

These arguments can be proved by a case analysis which we ommit due to
space limitations.

3 NP-complete Cases

Theorem 6. The problem Distance Edge Labeling is NP-complete for every
fixed λ ≥ 5.

The proof of the hardness result is done for every λ ≥ 5. However as there is
a natural difference between odd and even λ, the proof is divided according to
the parity of λ to two basic general cases. The proof of the even (odd) part is
contained in Subsects. 3.2 and 3.3 respectively.
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Furthermore, as the gadgets developed to carry the labeling does not work for
small cases, we have to exclude the borderline values λ = 5, 6, 7 from the general
proof. Due to space limitations, we ommit these proofs here. Furthermore, we
also omit the full correctness of gadgets depicted in figures.

Our basic reduction tool is the Monotone Not All Equal 3-SAT prob-
lem which all cases are reduced from. We say a formula ϕ is a 3-MCNF
(monotone conjunctive normal form) if it is a conjunction of clauses with exactly
3 logical variables without negations.

Definition 4 (Monotone Not All Equal 3-SAT problem (also known
as MNAE-3-SAT)).

Input: A 3-MCNF formula ϕ.
Question: Is it possible to find an assignment such that each clause has

at least one literal set to true and at least one literal set to
false?

This problem is a specialized version of NAE-3-SAT, which was shown to
be NP-complete by Schaefer [12] by a more general argument about CSP’s. We
can find MNAE-3-SAT in the list of NP-complete problems in the monograph
of Garey and Johnson [13].

The reduction procedure. For a 3-MCNF formula ϕ and positive integer λ ≥ 5
we show how to build a graph Gλ

ϕ. We will ensure that λ′
2,1(G

λ
ϕ) ≤ λ if and only

if the answer to the question of MNAE-3-SAT problem is “YES”. In our proofs
the main focus is to prove the correspondence between a satisfying assignment to
the variables of ϕ and the λ-labeling of the graph Gλ

ϕ. We call this the correctness
of a gadget.

Definition 5 (Odd and Even sets). For any λ ∈ N we define two subsets of
the set {0, . . . , λ}. The odd subset O = {l ∈ N : l ≤ λ, l odd} and the even subset
E = {l ∈ N : l ≤ λ, l even}.

Example 1 Take λ = 10 (even). Now according to Observation 2, the maximum
possible degree of a vertex in a graph admitting a distance labeling with λ labels
is 6. Moreover, only labels from the set E can appear on edges incident with such
a vertex.

3.1 Basic Lemmas

We state here some auxiliary lemmas that are used in our reductions.

Lemma 5 (Labeling of edges incident to a maximum degree vertex).
Let λ ∈ N, let G be a graph with λ′

2,1(G) ≤ λ and its maximum degree vertex v.
Then:

even λ: If deg(v) = λ
2 + 1 then vertex v has its incident edges labeled by labels

from the set E.
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odd λ: If deg(v) = λ+1
2 then a vertex v has its incident edges labeled by labels

from the one of the sets: O, O\{1} ∪ {0}, E or E\{λ − 1} ∪ {λ}.
Lemma 6 (Adjacent vertices with maximum degree, even span
version). Let λ ∈ N, λ even and let G = (V,E) be a graph with λ′

2,1(G) ≤ λ.
Take two neighboring vertices u, v ∈ V such that deg(u) = λ

2 + 1, deg(v) = λ
2

and {u, v} ∈ E.
Then there are only two possibilities:

• The edge {u, v} is labeled by 0, all the edges incident to u are labeled by the
elements from the set E\{0} and finally all the edges incident to v are labeled
by the elements from the set O\{1}.

• The edge {u, v} is labeled by λ, all the edges incident to u are labeled by the
elements from the set E\{λ} and finally all the edges incident to v are labeled
by the elements from the set O\{λ − 1}.

0 or λ

max max-1

max = λ
2 + 1

E \ {0} or E \ {λ} O \ {1} or O \ {λ − 1}
Even λ

0 or λ

max max

max = λ+1
2

E \ {0} or E \ {λ − 1} O \ {1} or O \ {λ}
Odd λ max = λ+1

2

u v uu

Lemma 7 (Adjacent vertices with maximum degree, odd span ver-
sion). Let λ ∈ N, λ odd and let G = (V,E) be a graph with λ′

2,1(G) ≤ λ. Take
two neighboring vertices u, v ∈ V such that deg(u) = deg(v) = λ+1

2 .
Then there are only two possibilities:

• The edge {u, v} is labeled by 0, all the edges incident to u are labeled by the
elements from the set E\{0} and finally all the edges incident to v are labeled
by the elements from the set O\{1}.

• The edge {u, v} is labeled by λ, all the edges incident to u are labeled by the
elements from the set E\{λ − 1} and finally all the edges incident to v are
labeled by the elements from the set O\{λ}.
Proof of both lemmas above is an easy application of Lemma 5.

Notation in gadgets. We further use max as the number for the maximum degree
in graph G with λ′

2,1(G) ≤ λ. We also use directed edges in gadget graphs. An
outgoing edge represents an output, while an ingoing edge represents an input to
the gadget. We build all the gadgets so that the labels on output edges can take
only several values.
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u v

Rest of G
Rest of G

Subgraph H

If this edge exist it gets la-
bel 1.

In one case this edge gets
some even label = 0

⊆ O ⊆ E

w

0, 2, 4
e1 e2

0, 3, 5

Lemma 8 (A correct labeling of joint even and odd part). Let λ ∈ N,
let G be a graph with λ′

2,1(G) ≤ λ and H be its subgraph represented by complete
bipartite graph K2,max−1 such that:

• The only two edges connecting G\H to H are e1 and e2, where u ∈ e1 and
v ∈ e2.

• The graph H contains vertices u 
= v, degG(u) = degG(v) ≥ 4 and their
common neighbors, call them N . Vertices from N are not adjacent, but exactly
one of them w may have zero, one or two other neighbors outside H.

• Moreover, each edge {u, z}, z ∈ N can be labeled only by odd labels (O) and
each edge {v, z}, z ∈ N can be labeled only by even labels (E) and has no other
condition on them from the rest of G. (It’s essential that they can be labeled
by arbitrary label of appropriate set except the labels of edges e1 and e2.)

We have four cases which depends on labels of e1 and e2, on the degree of u and
v and on the number of neighbors of w. If one of the following cases happen:

I. Both e1, e2 have label 0, degG(u) = degG(v) = max and the vertex w has
one output edge. (for λ odd)

II. Both e1, e2 have label 0, degG(u) = degG(v) = max −1 and vertex w has
two output edges. (for λ even)

III. The edge e1 has label 2 and edge e2 has label 3 and degG(v) = degG(u) =
max −1. (for λ odd)

IV. The edge e1 has label 4 and edge e2 has label 5 and degG(v) = degG(u) =
max −1. (for λ odd)

Then all edges incident to vertices of N can be labeled correctly.

I. The output edge incident to w has to have a label 1.
II. The output edges incident to w has to have 1 and some s 
= 0 even.

Due to space limitations we have to omit the full proof of this technical
lemma here. The idea of the proof is to construct an auxiliary bipartite graph.
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Each edge of H is labeled by some label from the correct set and it is represented
by a vertex. Two vertices are connected whenever they be incident in graph H
without breaking condition of a correct labeling. It can be shown that such graph
is almost k-regular for some k. Moreover we can delete some edges from that
graph and then it becomes k-regular. Then we can found perfect matching using
Hall marriage theorem [14].

The Labeling of the output edge is then easy to show because label 1 is the
only unused label and it cannot be placed anywhere else. The other edge incident
to the vertex w has an arbitrary nonzero even label and we have exactly one
left.

The main reductions proof idea. We would like to give a reader the general idea
used in proofs of all cases. We will develop some gadgets to model the two parts
of the input of MNAE-3-SAT. Namely the logical variables and the formula
itself, which we model clause by clause. Moreover, in general-case reductions we
need some middle-pieces to glue them together.

To prove that the gadget for a variable works correctly we need to check
that there is no any other labeling of output edges in the variable gadget than
the one described in the image, or its λ-inversion. Note that the only possible
labels on an output edge are 0 (or 1) and λ (or λ − 1)—these will represent the
logical value of the variable. For now on, we omit the λ-inversion case in the
proof. Every variable gadget contains a part with an output edge such that it is
possible to repeat it arbitrarily—we call this part repeatable.

For a clause, we use a gadget for a given span with exactly 3 input edges.
This clause gadget has to admit a labeling whenever at most two input edges
represents the same logical value. On the other hand it does not admit a labeling
when all input edges represents the same logical value.

3.2 Even λ ≥ 8

We divide the variable gadget into three parts. The initial part and the ending
part are only technical support for starting and ending process correctly. The
main work is done in the repeatable part.

0 e1 0 e2λ l λ e3 0 e4

Initial part Ending part

E \ {0, λ}

E \ {0, λ}

O \ {(λ − 1), l}

O \ {1}
E \ {0, s}

O \ {1}

1s

Repeatable part

max
max-1

max-1

max-1
max max-1

v

Variable gadget

w

ew2ew1
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By Lemma 6 the label of e1 is 0. Now we have two possibilities (sets) how
to label all the edges incident to the vertex v: E ∪ {1}\{0, 2} and E\{s ∈ E}.
If we label edges incident to v from the set E ∪ {1}\{0, 2} it is impossible to
label both edges ew1 , ew2 incident to the vertex w, because we need to use both
0, 2 labels on them. But the label 0 is already used for the edge e1 which is at
distance two. While if we label these edges from the set E\{s ∈ E}, in this case
it is possible to label the output edge by s or by 1.

Later the middle-piece gadget further restricts the output, so that the only
possible label is 1.

To prove that it is correct we use Lemma 8 part II.
Edges e3 and e4 need to have labels 0 or λ by Lemma 6. As e3 is in distance

two to e2 and e2 is labeled by 0 implies that e3 cannot have label 0.
The middle-piece gadget gives us only two possible outputs: 2 or 0. This is

because Lemma 5. Moreover, this implies that the only possible labeling of input
edges is by the label 1.

The output of the middle-piece gadget is plugged into the clause gadget.

Variable 2

0 e1 2 e27

3 5

λ

02

λ − 2
Variable 3

Variable 1

E \ {0, 2}
0 or 2

2 or 0

E \ {0, 2}

E \ {0, 2}

max

max

max

e3

E \ {0, 2}

0 or 22 or 0

max

1 1 1 1 1 1 1 1 1

Clause gadgetMiddle-piece gadget

conected by middle-piece

conected by middle-piece

conected by middle-piece

��

3.3 Odd λ ≥ 9

This case is more complicated than the previous one. A reason for this is in the
difference between Lemmas 7 and 6. In either case there are only two possible
labelings, but in Lemma 7 the degree of the vertex u equals to the degree of the
vertex v, while this is not true in Lemma 6 and so we can distinguish them in
the even case shown before.

We start with correctness of the variable gadget. We prove that neighboring
edges of vertex v are labeled by labels from O\{1} ∪ {0}. We proceed by con-
tradiction. Suppose that these edges are labeled by E (according to Lemma 5
this is the only other option) then edges incident to the vertex u has labels
from O\{1} ∪ {0}. Then exists the edge e = {v, z} that is labeled by some
odd l 
= λ. So the neighborhood of the vertex z can be labeled either by a set
E\{0, 2, l − 1, l + 1} ∪ {1} or by a set E\{0, l − 1, l + 1}. Neither of them is
sufficiently large to label all the edges.
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Repeatable part

0 λλ

max-1

max-1 max-1

max-1 1-xam1-xam1-xam1-xam1-xam1-xam1-xam

max-1max-1max-1max-1

max

xamxam

max max

max

O \ {1} E \ {λ − 1}E \ {λ − 1}

E \ {l1 − 1, l1 + 1}

l1 l2 l3

5 3

E \ {l2 − 1, l2 + 1}
E \ {l3 − 1, l3 + 1}O \ {s1 − 1, s1 + 1}

O \ {s2 − 1, s2 + 1}
O \ {s3 − 1, s3 + 1}

E \ {l1 − 1, l1 + 1}
E \ {l2 − 1, l2 + 1}

E \ {l3 − 1, l3 + 1}

3542

E \ {4, 6}
E \ {2, 4} O \ {1, 3} O \ {3, 5} E \ {4, 6}

E \ {2, 4}

z

e

Variable gadget

v

u

The correctness of the other labeling is shown in the image.
Lemma 8 parts III. and IV. ensures that it is possible to repeat the repeatable

part of the gadget. Note that the repeatable part consists of two identical parts,
but it is possible to use only one of them as an output, because these parts are
labeled λ-symmetrically.

E \ {0, 2}

0 or 2

max-1

max max max max

1 1 1 1

0 0 0 0

O \ {1, li} O \ {1, lk} O \ {1, ll}O \ {1, lj}

li lj lk ll

On each of bottom inputs is label 1 coming
from variable through auxiliary gadget. Each
of left inputs is derectly from variable gadget.
All inputs must be from the same variable.

Auxiliary

Variable

v

max

max

0

0

1

O \ {1}

E \ {0}

Middle-piece

Variable

Auxiliary gadgetMiddle-piece gadget

of the same variable

The correctness of the auxiliary gadget is described in Lemma 8 part I. The
purpose of this gadget is to create an edge with label 1.

The middle-piece gadget has two kinds of inputs. Both kinds of inputs corre-
spond to the variable gadget, but one of them is connected to the middle-piece
through the auxiliary gadget.

The edges incident to the vertex v can by labeled only by labels from the
set {E}. This is ensured by the variable inputs, because they contains each label
from the set O\{1} and also by auxiliary inputs containing label 1. Note, that
we can create as many such inputs as it is needed. Moreover, the label 1 forbids
labels 0 and 2 anywhere besides the output edge.

Each output from the middle-piece gadget is plugged into the clause gadget
in the following way, which completes the proof.
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Variable 2

0 2

λ

Variable 3

Variable 1

E \ {0, 2}

0 or 2

E \ {0, 2}

E \ {0, 2}

max-1

max-1

max-1

O \ {λ, λ − 2}

Clause gadget

connected by middle-piece connected by middle-piece

connected by middle-piece

��
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Abstract. Given a graph G = (V, E), a coloring function χ : V → C,
assigning each vertex a color, is called convex if, for every color c ∈ C,
the set of vertices with color c induces a connected subgraph of G. In
the Convex Recoloring problem a colored graph Gχ is given, and the
goal is to find a convex coloring χ′ of G that recolors a minimum number
of vertices. The 2-Convex Recoloring problem (2-CR) is the special
case, where the given coloring χ assigns the same color to at most two
vertices. 2-CR is known to be NP-hard even if G is a path.

We show that weighted 2-CR problem cannot be approximated within
any ratio, unless P =NP. On the other hand, we provide an alternative
definition of (unweighted) 2-CR in terms of maximum independent set
of paths, which leads to a natural greedy algorithm. We prove that its
approximation ratio is 3

2
and show that this analysis is tight. This is the

first constant factor approximation algorithm for a variant of CR in gen-
eral graphs. For the special case, where G is a path, the algorithm obtains
a ratio of 5

4
, an improvement over the previous best known approxima-

tion. We also consider the problem of determining whether a given graph
has a convex recoloring of size k. We use the above mentioned character-
ization of 2-CR to show that a problem kernel of size 4k can be obtained
in linear time and to design a O(|E|) + 2O(k log k) time algorithm for
parametrized 2-CR.

1 Introduction

Let G = (V,E) be a graph and let χ : V → C be a coloring function, assigning
each vertex in V a color in C. We say that χ is a convex coloring of G, if for
every color c ∈ C, the vertices with color c induce a connected sub-graph of G.
In the Convex Recoloring problem (abbreviated CR), we are given a colored
graph Gχ, and we wish to find a recoloring of a minimum number of vertices
of G, such that the resulting coloring is convex. That is, the goal is to find a
convex coloring χ′, that minimizes the size of the set {v : χ(v) �= χ′(v)}. The
t-Convex Recoloring problem (t-CR) is the special case, in which the given
coloring assigns the same color to at most t vertices in G.

D. Rawitz—Supported in part by the Israel Science Foundation (grant no. 497/14).
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The Convex Recoloring problem (CR) in trees was introduced by Moran
and Snir [10] and was motivated by its relation with the concept of perfect
phylogeny. They proved that the problem is NP-hard [6], even when the given
graph is a simple path. Later, Kanj et al. [6] showed that 2-CR is also NP-hard on
paths. Applications of CR in general graphs, such as multicast communication,
were described by Kammer and Tholey [5]. Many variants of the problem have
been intensively investigated. The differences between one variant to another
can be related to

– The structure of the given graph G. The given graph can be a simple path, a
tree, a bounded treewidth graph, a general graph, and others.

– Constraints on the coloring function χ. In a t-coloring at most t colors are
used to color a graph, while in a t-CR instance at most t vertices are colored
using the same color.

– Type of weight function. In the weighted case, each vertex is associated with a
weight, and the weight of a recoloring is the total weight of recolored vertices.
In the unweighted case the weight of the solution is the number of recolored
vertices. In a third variant, referred to as block recoloring [5], a cost is incurred
for a color c if at least one vertex of color c was recolored.

Since CR was shown to be NP-hard it was natural to try to design both approx-
imation algorithms and parameterized algorithms.

Moran and Snir [9] presented a 2-approximation algorithm for CR in paths
and a 3-approximation algorithm for CR in trees. Both algorithms work for the
problem with costs. Bar-Yehuda et al. [2] improved the latter by providing a
(2 + ε)-approximation algorithm for CR in trees. This result was later extended
to bounded treewidth graphs by Kammer and Tholey [5]. Recently, Lima and
Wakabayashi [8] gave a 3

2 -approximation algorithm for unweighted 2-CR in sim-
ple paths.

On the negative side, Kammer and Tholey [5] proved that if vertex weights
are either 0 or 1, then 2-CR has no polynomial time approximation algorithm
with a ratio of size (1−o(1)) ln lnn unless NP ⊆ DTIME(nO(log log n)). In Sect. 2
we show that this variant of the problem can not be approximated at all. Campêlo
et al. [4] showed that, for t ≥ 2, CR is NP-hard on t-colored grids. They also
proved that there is no polynomial time approximation algorithm within a factor
of c ln n for some constant c > 0, unless P = NP , for unweighted CR in bipartite
graphs with 2-colorings.

Moran and Snir [10] presented an algorithm for CR whose running time
is O(n4 · k( k

log k )k), where k is the number of recoloring in an optimal solu-
tion. Razgon [12] gave a 2O(k)poly(n) time algorithm for CR in trees. Ponta
et al. [11] designed several algorithms for different variants of CR in trees. For
the unweighted case, they gave a O(3b · b · n) time algorithm, where b is the
number of colors that do not induce a connected subtree, and it is bounded from
above by 2k. Bar-Yehuda et al. [2] provided an algorithm with an upper bound
of O(n2 + n · k2k) on the running time, but it is not hard to verify that this
bound can be improved to O(n · k2k). Bodlaender et al. [3] showed that CR
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admits a kernel of size O(k2) in trees. Bachoore and Bodlaender [1] presented
an algorithm for leaf-colored trees with a running time of O(4k · n). Campêlo
et al. [4] proved that, for t ≥ 2, CR is W [2]-hard in t-colored graphs.

Our Results. Sect. 2 contains our hardness result for the weighted version
of 2-CR. In Sect. 3 we provide an alternative definition of 2-CR in terms of
maximal independent set of paths. We first show that we can focus on a spe-
cific type of recoloring, called a path recoloring, in which each color induces a
path. Then we show that finding a path recoloring can be translated into find-
ing an independent set of paths. In Sect. 4 we present a greedy algorithm for
(unweighted) 2-CR in general graphs that is based on iteratively adding a short-
est path to the current independent set of paths. We provide a tight analysis for
the algorithm and show that its approximation ratio is 3

2 . This is the first time
a constant-ratio approximation algorithm is given for a variant of CR in general
graphs. We also show that when G is a simple path, the same algorithm yields
a 5

4 -approximation, improving the previous best known approximation ratio by
Lima and Wakabayashi [8]. In Sect. 5 we use the above mentioned characteriza-
tion of 2-CR to show that a problem kernel of size 4k can be obtained in linear
time. This leads to a O(|E|) + 2O(k log k) time algorithm for 2-CR parameterized
by the number of color changes k.

2 Hardness Result

In this section we prove that the weighted version of 2-CR cannot be approxi-
mated within any multiplicative ratio, unless P = NP. We do so using a simple
reduction from the disjoint connecting paths problem.

In the disjoint connecting paths problem the input consists of an undi-
rected graph G = (V,E) and a set of pairs {(s1, t1), . . . , (sk, tk)}, and the ques-
tion is whether there are k vertex-disjoint paths that connect si to ti. This
problem is known to be NP-hard [7].

Theorem 1. The weighted version of 2-CR cannot be approximated within any
multiplicative ratio, unless P = NP.

Proof. Let G and {(s1, t1), . . . , (sk, tk)} be an instance of disjoint connecting
paths. We constructed a weighted 2-CR instance as follows. First, we use the
same graph G. Let χ(v) = c0, if v �∈ {s1, . . . , sk} ∪ {t1, . . . , tk}, and let χ(si) =
χ(ti) = ci, for every i, where c0, . . . , ck are distinct colors. Define a weight
function w as follows: w(v) = 1, if u ∈ {s1, . . . , sk} ∪ {t1, . . . , tk}, and w(v) = 0,
otherwise. It is not hard to verify that k disjoint paths exist in G if and only
if the minimum convex recoloring costs zero. Hence, it is NP-hard to decide
whether a zero cost solution exists. �	
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3 Properties of Optimal Recolorings

In this section we introduce a special type of convex recoloring, called path-
recoloring. Path-recolorings are more constrained than general recolorings and
thus are simpler to understand and analyze. Nevertheless, we show that there
is always an optimal convex recoloring that is a path-recoloring. Based on the
above, we give an alternative definition to 2-CR in terms of independent set of
paths. From now on, we only consider the 2-CR problem, in particular, whenever
we mention a colored graph, we refer to a 2-CR instance.

1 23

4 5

Fig. 1. In this colored graph, ver-
tex 5 is a singleton, vertices 1 and
2 are a connected pair, and vertices
3 and 4 are a disconnected pair
(Color figure online).

Given a colored graph Gχ, if two vertices
in the colored graph have the same color we
call them a pair, if they are connected with
an edge then they are a connected pair, oth-
erwise they are a disconnected pair. Any ver-
tex with a unique color c is a singleton, we
call c a singleton color. We denote by Gχ[c]
the subgraph induced by the set of vertices
{v : χ(v) = c}. Figure 1 depicts these con-
cepts.

3.1 Path-Recoloring

As a first step we show that it may be assumed that all colors retain at least one
representative. In other words, we show that there is always an optimal convex
recoloring χ′ that does not recolor singletons and recolors at most one vertex of
every pair.

Given a colored graph Gχ and a recoloring χ′, a vertex v retains its color if
χ(v) = χ′(v). We say that χ′ retains a pair p, if both vertices of p retains their
color. The recoloring χ′ retains a color c ∈ C, if there exists a vertex v ∈ G such
that χ′(v) = χ(v) = c1. If a recoloring retains all the colors of a graph, we refer
to it as a retains-all recoloring. Observe that a retains-all recoloring does not
recolor singletons. We show that there exists a retains-all optimal recoloring.

Lemma 1. For every colored graph Gχ, there exists a retains-all optimal convex
recoloring.

Proof. Consider an optimal convex recoloring χ′ that retains a maximum number
of colors over all optimal, convex recolorings of G. Assume for contradiction that
χ′ does not retain a color c, and let v be a vertex such that χ(v) = c and χ′(v) =
c′ �= c. Without loss of generality we assume that c is not used by χ′ (otherwise,
we can recolor each vertex in Gχ′ [c] using a new unique color2). We define a
recoloring χ′′ by considering Gχ′ [c′]. First, define χ′′(v) = c. Next, if Gχ′ [c′]

1 Note that this definition is a different than the one given in [6].
2 Unique colors are used for simplicity. The new colors can be replaced by original

colors, by iteratively recoloring a vertex with unique color using the color of an
adjacent vertex which is colored by an original color.
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contains a vertex u such that χ(u) = c′, then define χ′′(u) = c′. Each vertex
of the remaining vertices in Gχ′ [c′] is colored by χ′′ using a unique new color.
Observe that if there exists a second vertex u′ �= u such that χ′(u′) = χ(u′) = c′,
then χ” recolors it. Finally, χ′′(x) = χ′(x) for any vertex x not in Gχ′ [c′].

χ′′ is convex, since all vertices in Gχ′ [c′] are colored by different colors. χ′′

recolors at most as many vertices as χ′, since it may recolor u’s mate (if it exists),
but it avoids the recoloring of v. Finally, χ′′ retains more colors than χ′, since it
retains c. Thus, we obtained an optimal recoloring that retains more colors than
χ′. A contradiction. �	

Next we show that we need not recolor connected pairs.

Lemma 2. For every colored graph Gχ there exists a retains-all, optimal, convex
recoloring that does not recolor any connected pair.

Proof. Consider an optimal retains-all convex recoloring χ′ that retains the max-
imum number of connected pairs, over all optimal, retains-all recolorings of G.
Assume for contradiction that χ′ recolors one of the vertices of a connected pair
{u, v}, that is, w.l.o.g., χ(u) = c and χ′(v) = c′ �= c. We can use a similar argu-
ment to the one used in the proof of Lemma 1. The difference is in the definition
of χ′′. If Gχ′ [c′] contains a connected pair u1, u2 such that χ(u1) = χ(u2) = c′,
then we define χ′′(u1) = χ′′(u2) = c′. Observe that χ′′ is convex since all vertices
in Gχ′ [c′] are colored using different colors, with the exception of u and v which
are colored by c, and u1 and u2 which are colored by c′ if they exist. Observe
also that χ′′ recolors at most as many vertices as χ′, and retains more connected
pairs than χ′. A contradiction. �	

We are now ready to define path-recolorings. Given a colored graph Gχ and
a convex recoloring χ′, we say that χ′ path-recolors G with respect to c ∈ C if
the vertices of Gχ′ [c] form a simple path: u, . . . , v such that χ(u) = χ(v) = c. A
special case of this definition is when Gχ′ [c] is a single vertex v and χ(v) = c.
We say that χ′ is a path-recoloring if:

1. χ′ does not recolor any connected pair, and
2. χ′ path-recolors G with respect to every c ∈ C.

Clearly, every path recoloring, also retains all colors.

Lemma 3. For every colored graph Gχ there exists an optimal recoloring that
is a path recoloring.

Proof. Let χ′ be an optimal, retains-all recoloring that does not recolor any
connected pair (whose existence was shown in Lemma 2) that path-recolors G
with the maximum possible number of colors in C. Assume for contradiction
that χ′ is not a path-recoloring. Hence there is a color c such that χ′ does not
path-recolor G with c. Consider Gχ′ [c], and assume for now that there are two
vertices u and v in Gχ′ [c] such that χ(u) = χ(v) = c. Fix a simple path from u
to v in Gχ′ [c], and let χ′′ be identical to χ′ with the following modification: χ′′
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assigns a unique color for every vertex in Gχ′ [c] that is not on the simple path
from u to v. Clearly, χ′′ is an optimal recoloring that path-recolors G with more
colors than χ′. A contradiction.

Now, if there is at most one vertex v in Gχ′ [c] such that χ(v) = c then
consider a recoloring χ′′ that is identical to χ′ except it assigns a unique color
to every vertex in Gχ′ [c] that is not v. This time, again, we found an optimal
recoloring that path-recolors G with more colors than χ′. A contradiction. �	

Henceforth, whenever we refer to a recoloring, we assume that it is a path-
recoloring, in particular, we assume that for every disconnected pair in G with
color c, a recoloring either: (i) colors a path between the disconnected pair with
a color c, (ii) colors exactly one of its vertices.

3.2 Path Independence

When a recoloring colors a path between disconnected pair, we refer to the path
as a colored path. Let D be the set of all disconnected pairs in G, and denote by
I the set of colored paths in Gχ′ , then the following lemma holds:

Lemma 4. Given a colored graph Gχ, a path-recoloring χ′ recolors exactly |D|−
|I| vertices.
Proof. By definition, χ′ does not recolor any of the pairs that form the endpoints
of paths in I. χ′ must recolor exactly one vertex of every other disconnected pair:
if it recolors both vertices then the color of this pair is not retained, and if it
recolors none of them then convexity does not hold. �	

1

2

3

4

5 67

Fig. 2. In this colored graph, the
paths (4, 6, 3) and (1, 5, 2) are col-
orable, while the path (6, 7, 5) is
not. Path (4, 6, 3) is in indirect con-
flict with path (1, 5, 2) and in direct
conflict with path (6, 7, 5) (Color
figure online)

Given a colored graph Gχ and a path
p, let V (p) be the set of vertices on the
path and let χ(p) be the set of colors
assigned to vertices on this path, i.e. χ(p) =
{χ(v) : v ∈ V (p)}. Given two paths p1 and p2
in Gχ:

– p1 and p2 are in direct conflict if V (p1) ∩
V (p2) �= ∅,

– p1 and p2 are in indirect conflict if χ(p1)∩
χ(p2) �= ∅.

p1 and p2 are in conflict if they are either in
a direct or indirect conflict (observe that two
paths can be both in direct and indirect con-
flicts). If two paths are not in conflict, then
they are independent. Given a set of paths I,
we say that this set is independent if it is pairwise independent, that is, if every
two paths p1, p2 ∈ I are independent. A path u, . . . , v in G is called colorable if
u and v form a disconnected pair and the path does not contain singletons nor
vertices of connected pairs. Figure 2 depicts these concepts.
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In the next lemma we show that the set of colored paths that is induced by
a path-recoloring is an independent set of colorable paths.

Lemma 5. Let Gχ be a colored graph. Also, let χ′ be a path-recoloring, and let
I denote the set of colored paths (w.r.t. χ′). Then I is an independent set of
colorable paths with respect to χ.

Proof. Obviously, two colored paths in I cannot be in direct conflict. Assume for
contradiction that there are two paths p1, p2 ∈ I that are in indirect conflict, that
is, there is a color c ∈ χ(p1)∩χ(p2). It follows that χ′ recolors two vertices of the
same color, and we get a contradiction since χ′ does not retain all colors. Finally,
it follows that all colored paths are colorable with respect to χ, or otherwise χ′

must recolor a singleton or a connected pair. �	
We say that a set of paths, I, covers a pair if at least one of the vertices of

the pair belongs to one of the paths in I.

Lemma 6. For any independent set of colorable paths I in Gχ, there exists a
convex path-recoloring χ′ of G, where I is the set of colored path.

Proof. Consider a recoloring χ′ that colors every colorable path in I using the
color of its endpoints and assigns a unique new color for every disconnected pair
that is not covered by I. We first show that χ′ is a path recoloring. Since I is
independent, no two paths in I contain the same color, moreover, every path in
I is colorable, thus it does not contain singletons, and it follows that χ′ retains
all colors. Also, every path in I does not contain any vertices of connected pairs,
thus I does not recolor vertices of connected pairs. Finally, by the construction
of χ′, it is not hard to verify that for every color c ∈ C, the subgraph Gχ′ [c]
is either a simple path or a single vertex. Further observe that for every color
c ∈ Image(χ′), Gχ′ [c] is either a simple path or a single vertex, and it follows that
χ′ is a convex recoloring. Finally, by the construction of χ′, it is straightforward
to verify that I is the set of colored paths induced by χ′. �	

The following is obtained due to Lemmas 4, 5 and 6.

Theorem 2. Given a colored graph Gχ the cost of an optimal (path-)recoloring
is |D| − s if and only if the size of the maximum independent set of colorable
paths is s.

Theorem 2 suggests an alternative definition to 2-CR: given a colored graph
Gχ, find a maximum independent set of colorable paths in Gχ.

4 Greedy Algorithm

In this section we describe a natural greedy algorithm to construct a maximal
independent set of colorable paths, we discuss how this algorithm can be imple-
mented, and define the corresponding path-recoloring it computes.
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While we are not attempting to achieve an approximation to the size of the
maximum independent set of colorable paths, the alternative definition given at
the end of the previous section leads us to a natural greedy algorithm: choose the
shortest colorable path that is not in conflict with colorable paths already been
chosen and add it to an independent set of colorable paths. A formal description
of this algorithm is given in Algorithm1.

Algorithm 1. Greedy algorithm for 2-CR
I ← ∅
while there is a colorable path, not in conflict with I do

add to I a shortest colorable path, not in conflict with I
end while
return the path-recoloring corresponding to I

We now describe how a shortest colorable path can be found. To do that, at
the initialization of the algorithm, all singletons and connected pairs should be
removed from the graph. Every colorable path that is added to I should be also
removed from the graph. In addition, after each path removal, one should also
remove all vertices with a unique color in the remaining graph. On the remaining
graph, a shortest path, between two vertices of the same color, is guaranteed to
be colorable and independent of I. In particular, it cannot contain two vertices
that are colored by the same color, since such a path is not a shortest path.

Analysis. We now analyze the greedy algorithm and prove that it recolors at
most 3

2 · k vertices, where k is the minimum number of vertices that must be
recolored to achieve a convex coloring. We also show that the analysis is tight
even in trees. For the special case when G is a simple path, we show that the
greedy algorithm achieves a 5

4 approximation ratio. We show that the analysis
is tight for this special case as well.

Recall that D is the set of disconnected pairs in G, I ⊆ D is the set of inde-
pendent paths colored by the greedy algorithm, and let I∗ ⊆ D be the set of
independent paths colored by an arbitrary, but fixed, optimal path-recoloring.
Define α := |I∗|

|I| , then by Lemma 4 the ratio between the number of vertices
recolored by the greedy algorithm and the number of vertices recolored by an
optimal path-recoloring is: r := |D|−|I|

|D|−|I∗| = |D|−|I|
|D|−α|I| . We now analyze the rela-

tionship between |I|, |D| and α.
Let �p be the number of vertices on a path p, and observe that:

Lemma 7. If p′ ∈ I∗\I then there is a path p ∈ I that is in conflict with p′,
and �p ≤ �p′ .

Proof. Consider the running of the greedy algorithm at the most recent point,
where I contains no path with a distance greater than �p′ . If, at this point,
there is no path in I that is in conflict with p′ then nothing prevents the greedy
algorithm from adding p′ to I. �	
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Next, we assign each optimal path to a greedy path. Given a path p′ ∈ I∗,
the conflict source of p′ is p′ itself if p′ ∈ I, otherwise it is an arbitrary shortest
path in I that is in conflict with p′. Notice that this is a many-to-one assignment,
that is, several optimal paths can be assigned to a single greedy path. For a path
p ∈ I, the set of paths in I∗ such that p is their conflict source is denoted as
N(p). The members of N(p) are called the neighbours of p.

Due to Lemma 7 we have that:

Observation 1. For every path p ∈ I, if p′ ∈ N(p), then �p ≤ �p′ .

Denote dp := |N(p)| and refer to dp as the degree of p. Our next goal is to
find an upper bound to dp, for p ∈ I.

Lemma 8. dp ≤ �p − 1.

Proof. Given a path p ∈ I, we show that the number of paths in I∗ that are
in conflict with p is at most �p − 1. Associate a vertex in p to every path that
is in conflict with p. For a path that is in direct conflict with p associate a
common vertex of these paths, for a path that is in indirect conflict due to color
c, associate the vertex that has color c in p. Recall that no two paths in I∗ are
in conflict, and observe that associating the same vertex to more than one path
implies the existence of such conflict. Finally, only one end point of p can be
associated with a path in I∗, or otherwise, I∗ is not independent. �	

In what follows we obtain two lower bounds on |D|, which translate into two
upper bounds on the approximation ratio r.

Lemma 9. |D| ≥ 2|I∗|.
Proof. Every path in I∗ has length of at least 3, or otherwise it is a connected
pair and the considered recoloring is not a path-recoloring. Thus, we can observe
the existence of at least 2 disconnected pairs for every path in I∗. We do not
count the same disconnected pair twice, or otherwise, I∗ is not independent. �	
Observation 2.

∑
p∈I dp = |I∗| = α · |I|

Proof. By definition every path p′ ∈ I∗ has one, and only one, conflict source in
I, thus, there exists exactly one path p ∈ I such that p′ ∈ N(p). �	

Lemma 10.
∑

p∈I d2
p

|I| ≥ α2.

Proof. Due to Observation 2 we have that the average degree of paths in I is α,
i.e.

∑
p∈I dp

|I| = α. The lemma follows from the generalized mean inequality. �	

Lemma 11. |D| ≥ α2|I|.
Proof. Let v be a vertex in a path p′ ∈ I∗, then v must be a part of a discon-
nected pair, otherwise v is a singleton or part of a connected pair and thus the
considered recoloring is not a path-recoloring. Observe, also, that aside from the
two endpoints of each path, no two vertices of the same disconnected pair can



308 R. Bar-Yehuda et al.

be present in I∗ (or otherwise I∗ is not independent). Thus, we can count �p′ −1
disconnected pairs for every path p′ in I∗. Hence

|D| ≥
∑

p′∈I∗
(�p′ − 1) =

∑

p′∈I∗
�p′ − |I∗| .

Consider a path p ∈ I, recall from Observation 1 that if p′ ∈ N(p) then
�p′ ≥ �p. Hence,

∑
p′∈N(p) �p′ ≥ dp · �p, and it follows that

∑

p′∈I∗
�p′ ≥

∑

p∈I

dp · �p ≥
∑

p∈I

dp(dp + 1) =
∑

p∈I

d2p + |I∗| ,

where the second inequality is due to Lemma8 and the equality is due to Obser-
vation 2. Hence, by Lemma 10 we have that |D| ≥ ∑

p∈I d2p ≥ α2|I|. �	
We can now obtain two upper bounds on the approximation ratio r as a

function of α.

Theorem 3. The greedy algorithm is a 3
2 -approximation algorithm for 2-CR.

Proof. Using Lemma 11 and the fact that α ≥ 1 we get that

r =
|D| − |I|

|D| − α · |I| ≤ α2 · |I| − |I|
α2 · |I| − α · |I| =

α2 − 1
α2 − α

=
α + 1

α
,

and from Lemma 9 we get that

r =
|D| − |I|

|D| − α · |I| ≤ 2α · |I| − |I|
2α · |I| − α · |I| =

2α − 1
α

.

Putting the two bound together, it follows that r ≤ 1
α ·min{α+1, 2α− 1} ≤ 3

2�	

1

2

3

45

6 7

8

Fig. 3. Greedy might choose to color the
path (1, 3, 2), then it must recolor one of
the vertices {5, 6} and one of the vertices
{7, 8}, a total of three recolored vertices,
while an optimal recoloring can color two
paths: (5, 1, 6) and (7, 3, 8), a total of two
recolored vertices (Color figure online).

We show that our analysis is
tight even for colored trees, using
the instance depicted in Fig. 3, which
consists of a colored graph where
the greedy algorithm might recolor
3
2 times more vertices than the opti-
mal convex recoloring. We note that
one can simply duplicate the instance
using new colors for each copy in order
to construct an arbitrary large graph
with the same approximation ratio.

Simple Paths. We show that for the
special case where G is a path, the
greedy algorithm achieves an even bet-
ter approximation ratio. To do that we start by observing that, in the case of a
path, we can replace Lemma 8 with the following lemma:
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Lemma 12. dp ≤ �p − 2.

Proof. Given a path p ∈ I, we show that the number of paths in I∗ that are
in conflict with p is at most �p − 2. This is true, because if G is a path, then
for every path that is in conflict with p, we can now associate a vertex that is
not one of the endpoints of p. If the conflict is direct, then the two paths must
overlap, thus associate the other path’s endpoint. If the conflict is indirect, then
this must be due to some color other than the one on the endpoints of p, or else
this is a direct conflict. �	

Using the above lemma we can strengthen Lemma 11.

Lemma 13. |D| ≥ (α2 + α)|I|.
Proof. The proof is similar to the proof of Lemma11, where the main difference
is that ∑

p′∈I∗
�p′ ≥

∑

p∈I

dp · �p ≥
∑

p∈I

(d2p + 2dp) =
∑

p∈I

d2p + 2|I∗| ,

which means that

|D| ≥
∑

p′∈I∗
�p′ − |I∗| ≥

∑

p∈I

d2p + |I∗| =
∑

p∈I

d2p + α|I| ≥ (α2 + α)|I| ,

and the lemma follows. �	
In this case only one upper bound suffices.

Theorem 4. Greedy is a 5
4 -approximation algorithm for 2-CR on paths.

Proof. Using Lemma 13 we get that

r =
|D| − |I|

|D| − α · |I| ≤ (α2 + α)|I| − |I|
(α2 + α)|I| − α|I| =

α2 + α − 1
α2

≤ 5
4
,

as required. �	
To see that our analysis is tight, consider the instance depicted in Fig. 4. On

this colored path, the greedy algorithm might recolor 5
4 times more vertices than

the optimal recoloring.

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4. The greedy algorithm might choose to color the path (2, 3, 4, 5), then it must
recolor one of the vertices {1, 10}, one of {6, 12}, and one of {8, 11}, a total of five
recolored vertices, while an optimal recoloring can recolor the paths (4, 5, 6, 7) and (8,
9, 10, 11), a total of four recolored vertices (Color figure online).
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5 Parameterized Complexity

Let k be the minimum number of vertices that has to be recolored. In this
section, we describe an exact algorithm for 2-CR with a running time of O(|E|)+
2O(k log k).

Theorem 5. There is a 4k kernel for 2-CR that can be computed in linear
time, where the parameter k is the size of an optimal solution.

Proof. Recall from Lemma 4 that k = |D| − |I∗|. From Lemma 9 we know that
|D| ≥ 2|I∗| and we can conclude that |D| ≤ 2k. That is, the number of dis-
connected pairs in any colored graph is at most twice the minimum number
of vertices needed to be recolored by any convex recoloring. Finally, Lemma 3
states that an optimal solution that recolors only disconnected pairs exists. Thus,
given a colored graph, we can reduce, in linear time, the number of vertices in
the graph to no more than 4k by removing all singletons and connected pairs. �	

We use kernelization to obtain a parameterized algorithm for 2-CR.

Theorem 6. There is an O(|E|) + 2O(k log k) time algorithm for 2-CR, where
the parameter k is the size of an optimal solution.

Proof. First reduce the size of the graph to no more than 4k vertices, as described
in the proof of Theorem5. A brute force search algorithm that test every possible
recoloring can now be used to find an optimal one. Such algorithm need to
consider 2k colors for every vertex of the 4k vertices, thus at most 2k4k coloring
exists. Each proposed recoloring can be tested in linear time, so the overall
running time of the algorithm is O(k2 · 2k4k) = 2O(k log k) �	
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Abstract. We show how to modify the in-place Burrows-Wheeler trans-
form (BWT) algorithm proposed by Crochemore et al. [4, 5] to also
compute the longest common prefix (LCP) array. Our algorithm runs in
quadratic time, as its predecessor, constructing both the BWT and the
LCP array using just O(1) additional space. It is supported by interesting
properties of the BWT and of the LCP array and inherits its predecessor
simplicity.

Keywords: Burrows-Wheeler transform · Longest common prefix
array · Constant space algorithms

1 Introduction

The suffix array [9,16], the longest common prefix (LCP) array and the Burrows-
Wheeler transform (BWT) [3] are in the core of string matching problems as
building blocks of both practical solutions and theoretical improvements in algo-
rithms [1,10,20,21].

There are many suffix array construction algorithms (SACAs) (see [6,23] for
reviews) including linear time [12,14,15,19] and some that compute the LCP
array during the suffix sorting [7]. There are linear time LCP array construction
algorithms that take both the text and the suffix array as input [11,13,17] and
others that take only the BWT as input [2]. The BWT can either be obtained
from the suffix array and the text or can be computed directly from the text [22],
both in linear time [20].

In 2007, Franceschini and Muthukrishnan [8] introduced the first constant
space SACA, that is, it uses O(1) additional memory apart from the input text
and by the output suffix array. Its running time is O(n log n) for an input text
of length n from an unbounded alphabet. Recently, Nong [18] presented a linear
time and constant space SACA for constant size alphabets.

In 2013, Crochemore et al. [4,5] introduced the first in-place BWT algorithm,
that is, it uses O(1) additional memory apart from the memory used by the input
text, which is overwritten by the output BWT. In other words, the input text
is not read-only, it is directly permuted into the output BWT. Its running time
is O(n2) for unbounded alphabets, but its elegance and simplicity make it very
attractive from a theoretical point of view.
c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 312–320, 2016.
DOI: 10.1007/978-3-319-29516-9 26
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In this article we introduce an extension to the in-place BWT algorithm [4,5]
that computes both the BWT and the LCP array at the same time in constant
space. We consider the model in which the input text is stored in an array of
n symbols, which are overwritten by the n symbols of the output BWT and
in which the output LCP array is stored in another array of n integers. Our
algorithm runs in quadratic time using O(1) additional memory (it uses eight
integer variables, as shown in appendix) and, as its predecessor, is quite simple.

We are aware that given the input text of length n from an unbounded
alphabet, one could construct the suffix array in O(n log n) time and constant
space [8] and then easily compute the LCP array in O(n2) time and constant
space, overwriting the suffix array. Thus, one could use this procedure and the
algorithm by Crochemore et al. to compute both the BWT and the LCP array
in constant space. However, our algorithm is equivalent in time complexity and
much simpler than such procedure. The C implementation of the algorithm fits
in a single page.

The rest of the article is organized as follows. In Sect. 2 we introduce concepts
and notation. In Sect. 3 we present the in-place BWT algorithm. In Sect. 4 we
present our algorithm and in Sect. 5 we conclude the article.

2 Definitions and Notation

Let Σ be an ordered alphabet of σ symbols. The alphabet Σ can be unbounded.
We denote the set of every nonempty string of symbols in Σ by Σ∗. Let $ be a
symbol not in Σ that precedes every symbol in Σ. We define Σ$ = {T$|T ∈ Σ∗}.
We use the symbol < for the lexicographic order relation between strings.

The i-th symbol in a string T will be denoted by T [i]. Let T = T [0]T [1] . . .
T [n − 1] be a string of length n. A substring of T will be denoted by T [i, j] =
T [i] . . . T [j], 0 ≤ i ≤ j < n. A prefix of T is a substring of the form T [0, k] and
a suffix is a substring of the form T [k, n − 1], 0 ≤ k < n. The suffix T [k, n − 1] will
be denoted by Tk.

A suffix array for a string provides the lexicographic order for all its suffixes.
Formally, a suffix array SA for a string T ∈ Σ$ of size n is an array of integers
SA = [i0, i1, . . . , in−1] such that Ti0 < Ti1 < . . . < Tin−1 [9,16].

Let lcp(S, T ) be the length of the longest common prefix of two strings S
and T in Σ$. The LCP array for T stores the value of lcp for suffixes pointed
by consecutive positions of a suffix array. We define LCP[0] = 0 and LCP[i] =
lcp(TSA[i], TSA[i−1]) for 1 ≤ i < n.

The BWT of a string T can be constructed listing all the n circular shifts
of T , lexicographically sorting them, aligning the shifts columnwise and taking
the last column [3]. The BWT is reversible and tends to group similar symbols
in runs. It may also be defined in terms of the suffix array, to which it is closely
related. Let the BWT of a string T be denoted simply by BWT. We define
BWT[i] = T [SA[i] − 1] if SA[i] �= 0 or BWT[i] = $ otherwise.

The first column of the conceptual matrix of the BWT will be referred to as
F , and the last column will be referred to as L. The LF-mapping property of
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Fig. 1. SA, LCP and BWT for T = BANANA$.

the BWT states that the ith occurrence of a symbol α ∈ Σ$ in the last column
L corresponds to the ith occurrence of α in the first column F .

Some other relations between the SA and the BWT are the following. It is
easy to see that L[i] = BWT[i] and F [i] = T [SA[i]]. Moreover, if the first symbol
of TSA[i], T [SA[i]] = α, is the kth occurrence of α in F , then j is the position of
TSA[i]+1 in SA (i.e. j is the rank of TSA[i]+1) such that L[j] corresponds to the
kth occurrence of α in L.

As an example, Fig. 1 shows the circular shifts, the sorted circular shifts, the
SA, the LCP, the BWT and the sorted suffixes for T = BANANA$.

The range minimum query (RMQ) with respect to the LCP is the smallest lcp
value in an interval of a suffix array. We define RMQ(i, j) = mini<k≤j{LCP[k]},
for 0 ≤ i < j < n. Given a string T of length n and its LCP array it is easy to
see that lcp(TSA[i], TSA[j]) = RMQ(i, j).

3 In-Place BWT

The algorithm by Crochemore et al. [4,5] overwrites the input string T with the
BWT as it proceeds by induction on the suffix length.

Let BWT(Ts) be the BWT of the suffix Ts, stored in T [s, n−1]. The base cases
are the two rightmost suffixes, for which BWT(Tn−2) = Tn−2 and BWT(Tn−1) =
Tn−1. For the inductive step, the authors have shown that the position of $ in
BWT(Ts+1) is related to the rank of Ts+1 among the suffixes Ts+1,. . . ,Tn−1

(local rank), thus allowing to build BWT(Ts) even after T [s + 1, n − 1] has been
overwritten with BWT(Ts+1). The algorithm is composed by four steps.

1. Find the position p of $ in T [s + 1, n − 1]. Evaluating p − s gives the local
rank of Ts+1 that originally was starting at position s + 1.

2. Find the local rank r of the suffix Ts using just symbol c = T [s]. To this end,
sum the number of symbols in T [s + 1, n − 1] that are strictly smaller than c
with the number of occurrences of c in T [s + 1, p] and with s, obtaining r.

3. Store c into T [p], replacing $.
4. Shift T [s + 1, r] one position to the left. Write $ in T [r].
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The algorithm runs in O(n2) using constant space memory. Furthermore, the
algorithm is also in-place since it uses O(1) additional memory and overwrites
the input text with the output BWT.

4 BWT and LCP Array in Constant Space

Our algorithm computes both the BWT and the LCP array by induction on
the length of the suffix. The BWT construction is the same as proposed by
Crochemore et al. [4,5].

In a glimpse, the LCP evaluation works as follows. Suppose that BWT(Ts+1)
and the LCP array for the suffixes {Ts+1, . . . , Tn−1}, denoted by LCP(Ts+1),
have already been built. Adding the suffix Ts to the solution requires evaluating
exactly two values of lcp, involving the two suffixes that will be adjacent to Ts.

The first lcp value involves Ts and the largest suffix Ta in {Ts+1, . . . , Tn−1}
that is smaller than Ts. Fortunately, BWT(Ts+1) and LCP(Ts+1) are enough to
compute such value. Recall that if the first symbol of Ta is not equal to the first
symbol of Ts then lcp(Ta, Ts) = 0. Otherwise lcp(Ta, Ts) = lcp(Ta+1, Ts+1) + 1
and the RMQ may be used, since both Ta+1 and Ts+1 are already in BWT(Ts+1).
We know that the position of Ts+1 is p from Step 1 of the in-place BWT in Sect. 3.
Then it is enough to find, in BWT(Ts+1), the position of Ta+1, which stores the
symbol corresponding to the first symbol of Ta.

The second lcp value involves Ts and the smallest suffix Tb in
{Ts+1, . . . , Tn−1} that is larger than Ts. It may be computed in a similar fashion.

Basic Algorithm. Suppose that BWT(Ts+1) and LCP(Ts+1), have already been
built, and are stored in T [s+1, n−1] and LCP[s+1, n−1], respectively. Adding
Ts, whose rank is r, to the solution requires updating LCP(Ts+1): by first shifting
LCP[s+1, r] one position to the left and then computing the new values of LCP[r]
and LCP[r + 1], which refer to the two suffixes adjacent to Ts in LCP(Ts).

The value of LCP[r] is equal to the lcp of Ts and Ta in BWT(Ts+1). The rank
of Ta is r and will be r − 1 in BWT(Ts) after shifting. If the first symbol of Ta

is equal to T [s] then LCP[r] = lcp(Ta+1, Ts+1) + 1, otherwise LCP[r] = 0.
We can evaluate lcp(Ta+1, Ts+1) by the RMQ function from the position

of Ta+1 to the position of Ts+1. We know that p is the position of Ts+1 in
BWT(Ts+1). Then we have to find the position pa+1 of Ta+1 in BWT(Ts+1).

Note that T [pa+1] corresponds to the first symbol of Ta. If T [pa+1] �= T [s]
then lcp(Ta, Ts) = 0, otherwise the value of lcp(Ta, Ts) may be evaluated as
lcp(Ta+1, Ts+1) + 1 = RMQ(pa+1, p) + 1.

The value of LCP[r + 1] may be evaluated in a similar fashion. Let Tb be the
suffix with rank r+1 in BWT(Ts+1) (its rank will still be r+1 in BWT(Ts)). We
have to find the position pb+1 of Tb+1 in BWT(Ts+1) and then if T [s] = T [pb+1]
compute LCP[r + 1] = lcp(Ts, Tb) = lcp(Ts+1, Tb+1) + 1 = RMQ(p, pb+1) + 1.

The algorithm proceeds by induction on the length of the suffix. It is easy
to see that for the suffixes with length 1 and 2 the values in LCP will be always
equal to 0. Let the current suffix be Ts (0 ≤ s ≤ n − 3). Our algorithm has new



316 F.A. Louza and G.P. Telles

Steps 2’, 2” and 4’, added just after Steps 2 and 4, respectively, of the in-place
BWT algorithm as follows:

2’. Find the position pa+1 of the suffix Ta+1, such that suffix Ta has rank r in
BWT(Ts+1), and compute:

�a =
{

RMQ(pa+1, p) + 1 ifT [pa+1] = T [s]
0 otherwise.

2”. Find the position pb+1 of the suffix Tb+1, such that suffix Tb has rank r + 1
in BWT(Ts+1), and compute:

�b =
{

RMQ(p, pb+1) + 1 ifT [s] = T [pb+1]
0 otherwise.

4’. Shift LCP[s+1, r] one position to the left, store �a in LCP[r] and if r+1 < n
then store �b in LCP[r + 1].

Computing �a and �b. To find pa+1 and pb+1 and to compute �a and �b in
Steps 2’ and 2”, we use the following properties.

Lemma 1. Let Ts be the suffix to be inserted in BWT(Ts+1) at position r. Let
Ta ∈ {Ts+1, . . . , Tn−1} be the suffix whose rank is r in BWT(Ts+1), and let pa+1

be the position of Ta+1. If pa+1 /∈ [s + 1, p) then T [pa+1] �= T [s].

Proof. The local rank of Ta in BWT(Ts+1) is r − s. We know that T [pa+1]
corresponds to the first symbol of Ta, and it follows from LF-mapping that the
local rank of T [pa+1] is r − s in BWT(Ts+1). Then T [pa+1] is smaller or equal
to T [s], since Ts has also local rank r − s. If T [pa+1] is smaller than T [s], pa+1

must be in [s + 1, n). However, if T [pa+1] = T [s] then pa+1 must precede the
position where T [s] will be inserted, i.e. the position p of Ts+1, otherwise the
local rank of Ts would be smaller than r − s. Then if T [pa+1] = T [s] it follows
that pa+1 ∈ [s + 1, p). ��

We can use Lemma 1 to verify whether T [pa+1] = T [s] just checking if there
is a symbol in T [s + 1, p − 1] equal to T [s]. If no such symbol is found, �a = 0,
otherwise we have to compute RMQ(pa+1, p). Furthermore, if we have more then
one symbol in T [s+1, p−1] equal to T [s], the symbol whose local rank is r−s will
be the last symbol found in T [s+1, p−1], i.e. the largest symbol in T [s+1, p−1]
smaller than T [s]. Then, to find such symbol we can simply perform a backward
scan in T from p− 1 to s+1 until we find the first occurrence of T [pa+1] = T [s].
One can see that we can, simultaneously, compute the minimum function for the
lcp visited values, obtaining RMQ(pa+1, p) as soon as we find T [pa+1] = T [s].

Lemma 2. Let Ts be the suffix to be inserted in BWT(Ts+1) at position r. Let
Tb ∈ {Ts+1, . . . , Tn−1} be the suffix whose rank is r + 1 in BWT(Ts+1), and let
pb+1 be the position of Tb+1. If pb+1 /∈ (p, n − 1] then T [s] �= T [pb+1].
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The proof of Lemma 2 is similar to the proof of Lemma 1 and will be omitted.
Just remember that Tb will still have rank r+1 in BWT(Ts) (after inserting Ts).

The procedure to find �b uses Lemma 2 and computes lcp(Ts+1, Tb+1) in a
similar fashion. It scans T from p + 1 to n − 1 until it finds the first occurrence
of T [pb+1] = T [s], computing the minimum function to solve the RMQ if such
symbol is found.

Example. As an example, consider T = BANANA$ and s = 1. Figures 2 and 3
illustrate Steps 2’ and 4’, respectively. Suppose that we have computed BWT(T2)
and LCP(T2). We then have p = 6 (Step 1) and the rank r = 4 (Step 2).

Step 2’ finds the first symbol equal to T [s] (A) in T [s + 1, p − 1] at position
pa+1 = 5. It represents Ta+1 = NA$. In this case, the value of �a is calculated
during the scan of T from p − 1 = 5 to s + 1 = 2, i.e. �a = RMQ(pa+1, p) =
RMQ(5, 6) = 2. Step 2” does not find any symbol equal to T [s] (A) in T [p +
1, n − 1]. Then we know that T [s] �= T [pb+1] and �b = 0.

Fig. 2. After Step 2”: T = BANANA$ and s = 1.

Step 3 stores T [s] (A) at position T [p], p = 6. Step 4 shifts T [s + 1, r]
one position to the left and inserts $ at position T [r], r = 4. The last step,
4’, shifts LCP[s + 1, r] one position to the left and sets LCP[4] = �a = 3 and
LCP[4 + 1] = �b = 0.

Fig. 3. After Step 4’: T = BANANA$ and s = 1.

In the appendix, we show a C implementation of the algorithm, that is also
available at https://github.com/felipelouza/bwt-lcp-in-place.

https://github.com/felipelouza/bwt-lcp-in-place
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Theoretical Costs. The worst-case time complexity is O(n2), since we only
added two O(n) scans over Ts+1 (Steps 2’ and 2”) to compute the values of �a
and �b. Step 4’ shifts the LCP by the same amount that BWT is shifted. Then the
time complexity remains the same as the in-place BWT algorithm. Regarding
the space usage, the new algorithm needs only four additional variables to store
positions pa+1 and pb+1 and the values of �a and �b, thus using constant space
only.

5 Conclusion

We showed how to compute the BWT and LCP arrays using constant space. As
its predecessor, our algorithm is quite simple, and although it has no practical
applicability due its quadratic running time, it builds on interesting properties
of the BWT and of the LCP array. As a final remark, we note that our algorithm
can easily construct the suffix array using constant space, with no overhead on
the running time.

Acknowledgments. FAL acknowledges the financial support of CAPES. GPT
acknowledges the support of CNPq.

A Source Code

1 void compute_bwt_lcp(unsigned char *T, int n, int *LCP){

2 int i, p, r=1, s, p_a1 , p_b1 , l_a , l_b;

3 LCP[n-1] = LCP[n-2] = 0; // base cases

4
5 for (s=n-3; s>=0; s--) {

6
7 /*steps 1 and 2*/

8 p=r+1;

9 for (i=s+1, r=0; T[i]!= END_MARKER; i++)

10 if(T[i]<=T[s]) r++;

11 for (; i<n; i++)

12 if (T[i]<T[s]) r++;

13
14 /*step 2’*/

15 p_a1=p+s-1;

16 l_a=LCP[p_a1 +1];

17 while (T[p_a1 ]!=T[s]) // RMQ function

18 if (LCP[p_a1 --]<l_a)

19 l_a=LCP[p_a1 +1];

20 if (p_a1==s) l_a =0;

21 else l_a ++;

22
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23 /*step 2’’*/

24 p_b1=p+s+1;

25 l_b=LCP[p_b1];

26 while (T[p_b1 ]!=T[s] && p_b1 <n) // RMQ function

27 if (LCP [++ p_b1]<l_b)

28 l_b=LCP[p_b1];

29 if (p_b1==n) l_b =0;

30 else l_b ++;

31
32 /*steps 3 and 4*/

33 T[p+s]=T[s];

34 for (i=s; i<s+r; i++) {

35 T[i]=T[i+1];

36 LCP[i]=LCP[i+1];

37 }

38 T[s+r]= END_MARKER;

39
40 /*step 4’*/

41 LCP[s+r]=l_a;

42 if (s+r+1<n) // If r+1 is not the last position

43 LCP[s+r+1]= l_b;

44 }

45 }
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Abstract. We propose a new linear-size data structure which provides
a fast access to all palindromic substrings of a string or a set of strings.
This structure inherits some ideas from the construction of both the
suffix trie and suffix tree. Using this structure, we present simple and
efficient solutions for a number of problems involving palindromes.

1 Introduction

Palindromes are one of the most important repetitive structures in strings.
During the last decades they were actively studied in formal language theory,
combinatorics on words and stringology. Recall that a palindrome is any string
S = a1a2 · · · an equal to its reversal S← = an · · · a2a1.

There are a lot of papers concerning the palindromic structure of strings.
The most important problems in this direction include the search and counting
of palindromes in a string and the factorization of a string into palindromes.
Manacher [12] came up with a linear-time algorithm which can be used to find
all maximal palindromic substrings of a string, along with its palindromic pre-
fixes and suffixes. The problem of counting and listing distinct palindromic sub-
strings was solved offline in [6] and online in [10]. Knuth, Morris, and Pratt [9]
gave a linear-time algorithm for checking whether a string is a product of even-
length palindromes. Galil and Seiferas [4] asked for such an algorithm for the k-
factorization problem: decide whether a given string can be factored into exactly
k palindromes, where k is an arbitrary constant. They presented an online algo-
rithm for k = 1, 2 and an offline one for k = 3, 4. An online algorithm working in
O(kn) time for the length n string and any k was designed in [11]. Close to the k-
factorization problem is the problem of finding the palindromic length of a string,
which is the minimal k in its k-factorization. This problem was solved by Fici et
al. in O(n log n) time [3]. In this paper we present a new tree-like data structure,
called eertree1, which simplifies and speeds up solutions to search, counting and
factorization problems as well as to several other palindrome-related algorithmic
problems. This structure can also cope with Watson–Crick palindromes [8] and
other palindromes with involution and may be interesting for the RNA studies
along with the affix trees [13] and affix arrays [17].
1 This structure can be found, with the reference to the first author, in a few IT blogs

under the name “palindromic tree”. See, e.g., http://adilet.org/blog/25-09-14/.
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In Sect. 2 we first recall the problem of counting distinct palindromic sub-
strings in an online fashion. This was a motive example for inventing eertree.
This data structure contains the digraph of all palindromic factors of an input
string S and supports the operation add(c) which appends a new symbol to the
end of S. Thus, the number of nodes in the digraph equals the number of dis-
tinct palindromes inside S. Maintaining an eertree for a length n string with σ
distinct symbols requires O(n log σ) time and O(n) space (for a random string,
the expected space is O(

√
nσ)). After introducing the eertree we discuss some

of its properties and simple applications.
In Sect. 3 we study advanced questions related to eertrees. We consider joint

eertree of several strings and name a few problems solved with its use. Then we
design two “smooth” variations of the algorithm which builds eertrees. These
variations require at most logarithmic time for each call of add(c) and then
allow one to support an eertree for a string with two operations: appending
and deleting the last symbol. Using one of these variations, we design a fast
backtracking algorithm enumerating all rich strings over a fixed alphabet up to
a given length. (A string is rich if it contains the maximum possible number
of distinct palindromes.) Finally, we show that eertree can be efficiently turned
into a persistent data structure.

The use of eertrees for factorization problems is described in Sect. 4. Namely,
new fast algorithms are given for the k-factorization of a string and for computing
its palindromic length. We also conjecture that the palindromic length can be
found in linear time and provide some argument supporting this conjecture.

Definitions and Notation. We study finite strings, viewing them as arrays of
symbols: w = w[1..n]. The number of distinct symbols of the processed string
is denoted by σ. We write ε for the empty string, |w| for the length of w, w[i]
for the ith letter of w and w[i..j] for w[i]w[i+1] . . . w[j], where w[i..i−1] = ε for
any i. A string u is a substring of w if u = w[i..j] for some i and j. A substring
w[1..j] (resp., w[i..n]) is a prefix [resp. suffix ] of w. If a substring (prefix, suffix)
of w is a palindrome, it is called a subpalindrome (resp. prefix-palindrome, suffix-
palindrome).Throughout the paper we do not count ε as a palindrome.

Trie is a rooted tree with some nodes marked as terminal and all edges
labeled by symbols such that no node has two outgoing edges with the same
label. Each trie represents a finite set of strings, which label the paths from the
root to the terminal nodes.

2 Building an Eertree

Motive Problem: Distinct Subpalindromes Online. Well-known online
linear-time Manacher’s algorithm [12] encodes all subpalindromes of a string in
a special way. Another problem is to find and count all distinct subpalindromes.
Groult et al. [6] solved this problem offline in linear time and asked for an online
solution. Such a solution in O(n log σ) time and O(n) space was given in [10],
based on Manacher’s algorithm and Ukkonen’s suffix tree algorithm [18]. As was
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also proved in [10], this time is optimal over a general ordered alphabet. In spite
of a good asymptotics, this algorithm is based on two rather “heavy” data struc-
tures. In is natural to try finding a lightweight structure for solving the analyzed
problem with the same asymptotics. Such a data structure is described below.
Its further analysis revealed that it is useful for many algorithmic problems
involving palindromes.

Eertree: Structure, Interface, Construction. The basic version of eertree
supports a single operation add(c), which appends the symbol c to the processed
string (from the right), updates the data structure respectively, and returns the
number of new palindromes appeared in the string. According to the next lemma,
add(c) returns 0 or 1.

Lemma 1 ([2]). Let S be a string and c be a symbol. The string Sc contains at
most one palindrome which is not a substring of S. This new palindrome is the
longest suffix-palindrome of Sc.

From inside, eertree is a directed graph with some extra information. Its
nodes numbered with positive integers starting with 1 are in one-to-one corre-
spondence with subpalindromes of the processed string. Below we denote a node
and the corresponding palindrome by the same letter. We write eertree(S) for
the state of eertree after processing the string S symbol by symbol, left to right.

Remark 1. To report the number of distinct subpalindromes of S, just return
the maximum number of a node in eertree(S).

0

ee
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e t r

rtr

ertre

eertree

e

e t r

r

e

e

Fig. 1. Eertree of eertree.
Edges are black, suffix
links are dashed.

Each node v stores the length len[v] of its palin-
drome. For the initialization purpose, two special
nodes are added: with the number 0 and length 0
for the empty string, and with the number −1 and
length −1 for the “imaginary string”.

The edges of the graph are defined as follows. If
c is a symbol, v and cvc are two nodes, then an edge
labeled by c goes from v to cvc. The edge labeled by
c goes from the node 0 (resp. −1) to the node labeled
by cc (resp., by c) if it exists. This explains why we
need two initial nodes. The outgoing edges of a node
v are stored in a dictionary which, given a symbol c,
returns the edge to[v][c] labeled by it. Such a dictio-
nary is implemented as a binary balanced search tree.

An unlabeled suffix link link[u] goes from u to v
if v is the longest proper suffix-palindrome of u. By
definition, link[c] = 0, link[0] = link[−1] = −1. The
resulting graph, consisting of nodes, edges, and suffix
links, is the eertree; see Fig. 1 for an example. The
following lemma is straightforward.
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Lemma 2. A node of positive length in an eertree has exactly one incoming
(labeled) edge.

Proposition 1. The eertree of a string S of length n is of size O(n).

Proof. The eertree of S has at most n+2 nodes, including 0, −1 (by Lemma 1),
at most n edges (Lemma 2), and at most n+2 suffix links (one per node). ��
Proposition 2. For a string S of length n, eertree(S) can be built online in
O(n log σ) time.

Proof. We start defining eertree(ε) as the graph with two nodes (0 and −1) and
two suffix links. Then we make the calls add(S[1]), . . . , add(S[n]) in this order.
By Lemma 1 and the definition of add, after each call we know the longest suffix-
palindrome maxSuf(T ) of the string T processed so far. We support the following
invariant: after a call to add, all edges and suffix links between the existing nodes
are defined. In this case, adding a new node u one must build exactly one edge
(by Lemma 2) and one suffix link: any suffix-palindrome of u is its prefix as well,
and hence the destination node of the suffix link from u already exists.

Consider the situation after i calls. We have to perform the next call, say
add(a), to T = S[1..i]. We need to find the maximum suffix-palindrome P of
Ta. Clearly, P = a or P = aQa, where Q is a suffix-palindrome of T . Thus, to
determine P we should find the longest suffix-palindrome of T preceded by a.
To do this, we traverse the suffix-palindromes of T in the order of decreasing
length, starting with maxSuf(T ) and following suffix links. For each palindrome
we read its length k and compare T [i−k] against a until we get an equality or
arrive at the node −1. In the former case, the current palindrome is Q; we check
whether it has an outgoing edge labeled by a. If yes, the edge leads to aQa = P ,
and P is not new; if no, we create the node P of length |Q| + 2 and the edge
(Q,P ). In the latter case, P = a; as above, we check the existence of P in the
graph from the current node (which is now −1) and create the node if necessary,
together with the edge (−1, P ) and the suffix link (P, 0).

It remains to create the suffix link from P if |P | > 1. It leads to the second
longest suffix-palindrome of Ta. This palindrome can be found similar to P : just
continue traversing suffix-palindromes of T starting with the suffix link of Q.

Now estimate the time complexity. During a call to add(a), one checks the
existence of the edge from Q with the label a in the dictionary, spending O(log σ)
time. The path from the old to the new value of maxSuf requires one transition
by an edge (from Q to P ) and k ≥ 0 of transitions by suffix links, and is
accompanied by k+1 comparisons of symbols. In order to estimate k, follow the
position of the first symbol of maxSuf: a transition by a suffix link moves it to
the right, and a transition by an edge moves it one symbol to the left. During the
whole process of construction of eertree(S), this symbol moves to the right by
≤ n symbols. Hence, the total number of transitions by suffix links is ≤ 2n. The
same argument works for the second longest suffix-palindrome, which was used
to create suffix links. Thus, the total number of graph transitions and symbol
comparisons is O(n), and the time complexity is dominated by checking the
existence of edges, O(n log σ) time in total. ��
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Some Properties of Eertrees. We call a node odd (even) if its palindrome
has odd (resp., even) length. A path consisting of suffix links is a suffix path.

Lemma 3. (1) Nodes and edges of an eertree form two weakly connected com-
ponents: the tree of odd (resp., of even) nodes rooted at −1 (resp., at 0).
(2) The tree of even (resp., odd) nodes is precisely the trie of right halves of even-
length palindromes (resp., the trie of right halves, including the central symbol,
of odd-length palindromes).
(3) Nodes and inverted suffix links form a tree with a loop at its root −1.

Remark 2. Tries are convenient data structures, but a trie built from the set of
all suffixes (or all factors) of a length n string is usually of size Ω(n2). For a linear-
space implementation, such a trie should be compressed into a more complicated
and less handy structure: suffix tree or suffix automaton (DAWG). On the other
hand, eertrees are linear-size tries and need no compression. Moreover, the size
of an eertree is usually much smaller than n, because the expected number of
distinct palindromes in a length n string is O(

√
nσ) [15]. This fact explains high

efficiency of eertrees in solving different problems.

Remark 3. A θ-palindrome is a string S = a1 · · · an equal to θ(an · · · a1), where
θ is a symbol-to-symbol function and θ2 is the identity (see, e.g., [8]). Clearly, an
eertree containing all θ-palindromes of a string can be built in the way described
in Proposition 2 (the comparisons of symbols should take θ into account).

First Applications. We demonstrate the performance of eertrees on two test
problems taken from student programming contests. The first problem is Palin-
dromic Refrain [19, Problem A], stated as follows: for a given string S find a
palindrome P maximizing the value |P | · occ(S, P ), where occ(S, P ) is the num-
ber of occurrences of P in S.

Proposition 3. Palindromic Refrain can be solved by an eertree with the use of
O(n) additional time and space.

Proof (Idea). The occurrence of P ending at position i is either the longest
suffix-palindrome of S[1..i] or the longest suffix-palindrome of another suffix-
palindrome of S[1..i]. The number of occurrences of the first type can be com-
puted during the construction of eertree(S); after that, occ(S, P ) for all subpalin-
dromes P can be found by traversing all nodes of eertree(S) in decreasing order
(the last created node first). ��

The second problem is Palindromic Pairs [20, Problem B]: for a string S, find
the number of triples i, j, k such that 1 ≤ i ≤ j < k ≤ |S| and the strings S[i..j],
S[j+1..k] are palindromes.

Proposition 4. Palindromic Pairs can be solved by an eertree with the use of
O(n log σ) additional time and O(n) space.
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Proof (Idea). The number of triples for a fixed j is the number of suffix-
palindromes of S[1..j] times the number of prefix-palindromes of S[j+1..n]. The
former value can be computed during the construction of eertree(S) and stored
in the node maxSuf(S[1..j]). The latter value is computed in a symmetric way
from eertree(S←) (this is why the time bound is O(n log σ)). ��

3 Advanced Modifications of Eertrees

Joint Eertree for Several Strings. When a problem assumes the comparison
of two or more strings, it may be useful to build a joint data structure. For
example, a variety of problems can be solved by joint (“generalized”) suffix
trees, see [7]. The joint eertree of a set of strings, denoted by eertree(S1, . . . , Sk),
is built as follows. We build eertree(S1) in a usual fashion; then reset the value
of maxSuf to 0 and proceed with the string S2, addressing the add calls to the
currently built graph; and so on, until all strings are processed. Each created
node stores a k-element boolean array flag. After each call to add, we update
flag of the current maxSuf node, setting its ith bit to 1, where Si is the string
being processed. As a result, flag[v][i] equals 1 if and only if v is contained in Si.
Some problems easily solved by a joint eertree are gathered below.

Problem Solution

Find the number of subpalindromes,
common to all k given strings.

Build eertree(S1, . . . , Sk) and count the
nodes having only 1’s in the flag array

Find the longest subpalindrome contained
in all k given strings.

Build eertree(S1, . . . , Sk). Among the
nodes having only 1’s in the flag array,
find the node of biggest length

For strings S and T find the number of
palindromes P having more
occurrences in S than in T .

Build eertree(S, T ), computing occS and
occT in its nodes (see the proof of
Proposition 3). Return the number of
nodes v such that occS [v] > occT [v]

For strings S and T find the number of
triples (i, j, k) such that S[i..i+k]=
T [j..j+k] is a palindrome.

Build eertree(S, T ), computing the values
occS and occT in its nodes. The
answer is

∑
v occS [v] · occT [v]

Coping with Deletions. In the proof of Proposition 2, an O(n log σ) algo-
rithm for building an eertree is given. Nevertheless, in some cases one call of add
requires Ω(n) time, and this kills some possible applications. For example, we
may want to support an eertree for a string which can be changed in two ways:
by appending a symbol on the right (add(c)) and by deleting the last symbol
(pop()). Consider the following sequence of n calls:

add(a), . . . , add(a),
︸ ︷︷ ︸

n/3 times

add(b), pop(), add(b), pop(), . . . , add(b), pop()
︸ ︷︷ ︸

n/3 times
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Since each add(b) requires n/3 suffix link transitions, the algorithm from Propo-
sition 2 will process this sequence in Ω(n2) time independent of the implemen-
tation of the operation pop(). Below we describe two algorithms which build
eertrees in a way providing an efficient solution to the problem with deletions.

Searching Suffix-Palindromes with Quick Links. Consider a pair of nodes
v, link[v] in an eertree and the symbol b = v[|v|−|link[v]|] preceding the suffix
link[v] in v. In addition to the suffix link, we define the quick link : let quickLink[v]
be the longest suffix-palindrome of v preceded in v by a symbol different from b.

Lemma 4. As a node v is created, quickLink[v] can be computed in O(1) time.

Proof. The two longest suffix-palindromes of v are u = link[v] and u′ =
link[link[v]]. Assume that v has suffixes bu and cu′. If c �= b, then quickLink[v] = u′

by definition. If c = b, then quickLink[v] = quickLink[u]. ��
Recall that appending a letter c to a current string S, we scan suffix-

palindromes of S to find the longest suffix-palindrome Q preceded by c; then
maxSuf(Sc) = cQc. (If cQc is a new palindrome, then this scan continues until
link[cQc] is found.) The use of quick links reduces the number of scanned suffixes
as follows. When the current palindrome is v, we check both v and link[v]. If both
are not preceded by c, then all suffix-palindromes of S longer than quickLink[v]
are not preceded by c either; so we skip them and check quickLink[v] next.

Example 1. Let us call add(b) to the eertree of the string S = aabaabaaba.
The longest suffix-palindrome of S is the string v = abaabaaba. Since the sym-
bols preceding v and link[v] = abaaba in S are distinct from b, we jump to
quickLink[v] = a, skipping the suffix-palindrome aba preceded by the same let-
ter as link[v]. Now quickLink[v] is preceded by b, so we find maxSuf(Sb) = bab.
Note that v “does not know” which symbol precedes its particular occurrence.
So there is no way to avoid checking the symbol preceding link[v].

Constructing an eertree with quick links, on each step we add O(1) time and
space for maintaining these links and possibly reduce the number of processed
suffixes. So the time and space bounds from Proposition 2 are in effect. The
bound on the number of operations per step is based on the following proposition.

Proposition 5. In eertree(S), any path of quick links has length O(log n).

Corollary 1. The algorithm constructing an eertree using quick links spends
O(log n) time and O(1) space for any call to add.

Using Direct Links. Now we describe the fastest algorithm for constructing an
eertree which, however, uses more than O(1) space for creating a node. Still, the
space requirements are quite modest, so the algorithm is highly competitive:

Proposition 6. There is an algorithm which constructs an eertree spending
O(log σ) time and O(min(log σ, log log n)) space for any call to add.
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Proof. For each node we create up to σ direct links: directLink[v][c] is the longest
suffix-palindrome of v preceded in v by c.

Let Q be the longest suffix-palindrome of a string S, preceded by c in S.
Then either Q = maxSuf(S) or Q = directLink[maxSuf(S)][c], and the longest
suffix-palindrome of Q, preceded by c, is directLink[Q][c]. Thus, we scan suffixes
in constant time, and the time per step is dominated by the O(log σ) search for
an edge in the dictionary plus the time for creating direct links for a new node.
The arrays directLink[v] and directLink[link[v]] coincide for all symbols except for
the symbol c preceding link[v] in v. Hence, creating a node v we first find link[v],
then copy directLink[link[v]] to directLink[v] and assign directLink[v][c] = link[v].
Storing or copying direct links explicitly would cost a lot of space and time; so
we do this using fully persistent balanced binary search tree (persistent tree for
short; see [1]). The persistent tree provides full access to any of its versions,
which are balanced binary search trees ordered by the time of their creation.
An update of any version results in creating a new version, which is also fully
accessible; the updated version remains unchanged. Such an update as adding
a node or changing the information in a node takes O(log k) time and space,
where k is the size of the updated version.

We store direct links from all nodes of the eertree in a single persistent tree,
one version per node. Direct links directLink[v][c] in a version v form a search tree,
with c serving as the key for sorting (assuming an ordered alphabet). Creation
of a version for a node v is an update of the version for link[v]. The size of a
single search tree is at most σ by definition and is O(log n) by Proposition 5.
Thus, the update time and space is O(min(log σ, log log n)), as required. ��

Comparing Different Implementations. The three methods of building an eertree
are gathered in the following table.

Method Time for n calls Time for one call Space for one node

Basic Θ(n log σ) Ω(log σ) but O(n) Θ(1)

QuickLink Θ(n log σ) Ω(log σ) but O(log n) Θ(1)

DirectLink Θ(n log σ) Θ(log σ) O(min(log σ, log log n))

The basic version is the simplest one and uses the smallest amount of memory.
Quick and direct links work somewhat faster, but their main advantage is that
any call can be reversed without much pain. Thus, one can maintain an eertree
for a string with both operations add(c) and pop(). Indeed, let add(c) push to
a stack the node containing P = maxSuf(Sc) and, if P is a new palindrome,
the node containing Q such that P = cQc. This takes O(1) additional time
and space. Then pop() reads this information from the stack and restores the
previous state of the eertree in O(1) time. The table above also suggests

Question 1. Is there an online algorithm which builds an eertree spending
O(log σ) time and O(1) space for any call to add?
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Enumerating Rich Strings. By Lemma 1, the number of distinct subpalin-
dromes in a length n string is at most n. Such strings with exactly n palindromes
are called rich. Rich strings possess a number of interesting properties; see, e.g.,
[2,5]. The sequence A216264 in the OEIS [16] is the growth function of the lan-
guage of binary rich strings, i.e., the nth term of this sequence is the number of
binary rich strings of length n. J. Shallit computed this function up to n = 25,
thus enumerating several millions of rich strings. Using an eertree with direct
links, we raised the upper bound to n = 60, enumerating several trillions of rich
strings in 10 hours on an average laptop. The new numerical data shows that this
sequence grows much slower than it was expected before. Our implementation is
available at http://pastebin.com/4YJxVzep. Proposition 7 below serves as the
theoretic basis for such a breakthrough in computation.

Proposition 7. Suppose that R is the number of k-ary rich strings of length
≤ n, for some fixed k and n. Then the trie built from all these strings can be
traversed in time O(R).

Proof (Idea). We recursively traverse the set of rich strings depth first. In a call
for string S, for each letter c we call add(c), then make a recursive call if Sc is
rich (i.e., add(c) = 1), and then call pop(). Over a constant-size alphabet, add(c)
can be computed with direct links in O(1) time. ��

Persistent Eertrees. Earlier in this section we have built an eertree supporting
deletions from a string. A natural generalization of this approach leads to per-
sistent eertrees. Recall that a persistent data structure is a set of “usual” data
structures of the same type, called versions and ordered by the time of their
creation. A call to a persistent structure asks for the access or update of any
specific version. Existing versions are neither modified nor deleted; any update
creates a new (latest) version.

Consider a tree of versions T whose nodes, apart from the root, are labeled
by symbols. The tree represents the set of versions of some string S: each node
v represents the string read from the root to v. Recall that we denote a node
of a data structure by the same letter as the string related to it. Note that
some versions can be identical except for the time of their creation (i.e., for the
number of a node). The problem we study is maintaining an eertree for each
version of S. More precisely, the function addVersion(v, c) to be implemented
adds a new child u labeled by c to the node v of T and computes eertree(u). The
data structure which performs the calls to addVersion, supporting the eertrees
for all nodes of T , will be called a persistent eertree. Surprisingly enough, this
complicated structure can be implemented efficiently in spite of the fact that
the current string cannot be addressed directly for symbol comparisons. Due to
space constraints, we give the following proposition without proof.

Proposition 8. The persistent eertree can be implemented to perform each call
to addVersion(v, c) in O(log |v|) time and space.

http://pastebin.com/4YJxVzep
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4 Factorizations into Palindromes

The k-factorization problem can be solved online in O(kn) time for any length
n string. Here we are aimed at solving this problem in time independent of k.
This is motivated by the fact that the expected palindromic length of a random
string is Ω(n) [14], so the O(kn) asymptotics can be quite bad. On the positive
side, the palindromic length of a string S, which is the minimum k such that a
k-factorization of S exists, can be found in O(n log n) time [3].

Palindromic Length vs. k-Factorization. Due to the following lemma, the
k-factorization problem is reduced in linear time to two similar problems: factor
a string into the minimum possible odd (resp. even) number of palindromes.
These two problems can be solved similar to the palindromic length problem.

Lemma 5. Given a k-factorization of a length n string S, it is possible, in O(n)
time, to factor S into k+2t palindromes for any t ∈ N such that k+2t ≤ n.

Proposition 9. Using an eertree, the palindromic length of a length n string
can be found online in time O(n log n).

Proof (Idea). For a string S we compute online the array ans such that ans[i] is
the palindromic length of S[1..i]. Any k-factorization of S can be obtained by
appending a suffix-palindrome S[j+1..n] of S to a (k−1)-factorization of S[1..j].
Thus,

ans[n] = 1 + min{ans[j] | S[j + 1..n] is a palindrome}. (1)

A naive algorithm computes the minimum in (1) in O(n) time, scanning all suffix-
palindromes of S starting at maxSuf(S) and following suffix links. In our fast
algorithm we split the suffix path from maxSuf(S) into O(log n) blocks (“series
of palindromes”) in a special way and compute the minimum inside each block in
O(1) time. This gives us ans[n] in O(log n) time and thus proves the proposition.

The announced split is based on two additional parameters of the nodes of
eertree(S): difference diff[v] = len[v] − len[link[v]] and series link seriesLink[v],

S[1..n]

ans[1..n]

S[1..n−diff[v]]

v

link[v]

Fig. 2. Series of a palindrome v in S[1..n] and of link[v] in S[1..n−diff[v]]. “Heads” of
the next series are shown by dash lines. The function getMin(v) returns the minimum
of the values of ans in the marked positions, plus one.



EERTREE: An Efficient Data Structure for Processing Palindromes 331

which is the longest suffix-palindrome u of v such that diff[u] �= diff[v]. (Series
links are not the same as quick links!) Both diff[v] and seriesLink[v] are com-
putable in O(1) time on the creation of the node. Series of palindromes consist
of nodes with the same difference and the series link points to the “head” of the
next block. It is nothing to compute for 1-element series; for longer series the
situation is shown in Fig. 2: to compute the minimum for the series headed by v
we compare such a minimum computed diff[v] steps before for the series headed
by link[v] with one new value of ans. The proof of this property requires some
combinatorics on words. The code below computes ans[n], using an auxiliary
array dp[v] for storing precomputed minimums for the use in later steps. ��

int getMin(v)

dp[v] = ans[n - (len[seriesLink[v]] + diff[v])]

if (diff[v] == diff[link[v]])

dp[v] = min(dp[v], dp[link[v]])

return dp[v] + 1

ans[n] = /*@$\infty$@*/

for (v = maxSuf; len[v] > 0; v = seriesLink[v])

ans[n] = min(ans[n], getMin(v))

Remark 4. Series links can replace quick links in the construction of eertrees.
Each step requires at most t+1 comparisons of letters, where t is the number of
series of suffix-palindromes of S (we omit the details).

Remark 5. Let ti be the maximum length of a path of series links for the eertree
of the string S[1..i]. Our computation of palindromic length (for an implemen-
tation, see http://ideone.com/xE2k6Y) performs, on each step, the following
operations. For the eertree: at most ti+1 symbol comparisons (Remark 4) and
one (log σ)-time access to a dictionary. For palindromic length: ti calls to getMin,
which fills one cell in dp and one cell in ans.

The algorithm by Fici et al. [3, Fig. 8] on each step fills 9ti cells. So, our
algorithm should work significantly faster.

Now we return to the k-factorization problem.

Proposition 10. Using an eertree, the k-factorization problem for a length n
string can be solved online in time O(n log n).

Proof. The above algorithm for palindromic length can be easily modified to
obtain both minimum odd number of palindromes and minimum even number
of palindromes needed to factor a string. Instead of ans and dp, one can maintain
in the same way four parameters: anso, anse, dpo, dpe, to take parity into account.
Now anso (resp., anse) uses dpe (resp., dpo), while dpo (resp., dpe) uses anso (resp.,
anse). The reference to Lemma 5 finishes the proof. ��

http://ideone.com/xE2k6Y
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Towards a Linear-Time Solution. Can palindromic length be found faster
than in O(n log n) time? This is indeed the worst case time bound for our algo-
rithm, since a length n string can have Θ(n log n) series of palindromes [3].
On the other hand, the bit compression technique (the so-called method of four
Russians) is capable of reducing the complexity of many problems by a log n fac-
tor. In particular, in [11] an O(kn log n) algorithm for k-factorization was trans-
formed into a O(kn) algorithm using bit compression. That algorithm produced
a k ×n bit matrix (showing whether a jth prefix of the string is i-factorable), so
the speed up by grouping bits in packs of log n size was natural. In our case we
work with integers, so the direct application of a bit compression is impossible.
However, we have the following property.

Lemma 6. If S is a string of palindromic length k and c is a symbol, then the
palindromic length of Sc is k−1, k, or k+1.

By Lemma 6, if we have a n × n bit matrix M such that M [i, j] = 1 iff
S[1..j] is i-factorable, then, when filling the jth column, we have to compute
just M [k−1, j] and M [k, j], where k is the palindromic length of S[1..j−1]. For
each entry we should apply the OR operation to log n bit values, to the total of
2n log n bit operations. If we will be able to arrange these operations in groups
of size log n, we will use the bit compression to obtain the palindromic length
in just O(n) operations. But to get an overall linear time, we need to build an
eertree in O(n) time as well; fortunately, this is possible.

Proposition 11. The eertree of a length n string over the alphabet {1, . . . , n}
can be built offline in O(n) time.

The proof is omitted due to space constraints. Finally, we formulate

Conjecture 1. Palindromic length of a string can be found in O(n log σ) time
online and in O(n) time offline using Lemma 6, eertree and bit compression.

5 Conclusion

In this paper, we proposed a new tree-like data structure, named eertree, which
stores all palindromes occurring inside a given string. The eertree has linear
size (even sublinear on average) and can be built online in nearly linear time.
We proposed some advanced modifications of the eertree, including the joint
eertree for several strings, the version supporting deletions from a string, and
the persistent eertree.

Then we provided a number of applications of the eertree. The most impor-
tant of them are the new online algorithms for k-factorization, palindromic
length, the number of distinct palindromes, and also for computing the num-
ber of rich strings up to a given length. For further research we formulated a
conjecture on the linear-time factorization into palindromes and an open prob-
lem about the optimal construction of the eertree.

Acknowledgement. The authors thank A. Kul’kov, O. Merkuriev and G. Nazarov
for helpful discussions.
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Abstract. The zero forcing number of a graph is a graph parameter
based on a color change process, which starts with a state, where all
vertices are colored either black or white. In the next step a white vertex
turns black, if it is the only white neighbor of some black vertex, and
this step is then iterated. The zero forcing number Z(G) is defined as
the minimum cardinality of a set S of black vertices such that the whole
vertex set turns black.

In this paper we study Z(G) for the class of bijection graphs, where a
bijection graph is a graph on 2n vertices that can be partitioned into two
parts with n vertices each, joined by a perfect matching. For this class of
graphs we show an upper bound for the zero forcing number and classify
the graphs that attain this bound. We improve the general lower bound
for the zero forcing number, which is Z(G) ≥ δ(G), for certain bijection
graphs and use this improved bound to find the exact value of the zero
forcing number for these graphs. This extends and strengthens results
of Yi (2012) about the more restricted class of so called permutation
graphs.

Keywords: Zero forcing set · Zero forcing number · Bijection graph

1 Introduction

The zero forcing number is a well-studied graph parameter that was introduced
in [2]. Let each vertex of a graph be colored either black or white. The color
change rule says that if a vertex u is the only white neighbor of a black vertex v,
then the color of u is turned to black. In this case, we say v forces u and denote
it by v → u. A set of black vertices S is said to be a zero forcing set if all vertices
of the graph turn to black after finitely many applications of the color change
rule. The zero forcing number of a graph G, denoted by Z(G), is the minimum
cardinality over all zero forcing sets S.

The zero forcing number has been used to bound the minimum rank of a
graph, which is the smallest possible rank over all symmetric real matrices that
are prescribed by the graph. The connection between the zero forcing number
and the minimum rank problem has been considered in [3,4]. Furthermore, the
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-29516-9 28



On the Zero Forcing Number of Bijection Graphs 335

zero forcing process and its variants have independently been studied in quan-
tum mechanics [5,6,11] and in power networks [9,15]. For more details about
computing the zero forcing set and the behavior of the zero forcing number,
see [7,10,13,14]. The determination of the zero forcing number is NP-hard [13].
Furthermore, no good bounds for the zero forcing number are known. For a given
minimum and maximum degree of a graph G, δ(G) and Δ(G), respectively, it
holds that δ(G) ≤ Z(G) ≤ nΔ(G)

Δ(G)+1 , see [1,4].
In this paper we introduce a new class of graphs, called bijection graphs, and

consider the behavior of the zero forcing number on it. A bijection graph G is a
graph that can be presented as the union of two subgraphs H0, H1, each with n
vertices and joined by a perfect matching. Studying the zero forcing number of
bijection graphs in relation to the zero forcing number of the two subgraphs is
of interest as a possible reduction step in determining the zero forcing number
of a general graph: If a general graph G on 2n vertices has the structure of
a bijection graph, then the question of the zero forcing number of G can be
informed by studying the properties of the two component graphs, having n
vertices each. We present a general lower and upper bound for the zero forcing
number of a bijection graph (Theorem 1). The class of bijection graphs includes
the more restricted class of permutation graphs (also called prism graphs) defined
by Harary and Chartrand, see [8]1. The zero forcing number of permutation
graphs was considered by Yi [14]. Note that since a permutation graph is a
special case of a bijection graph, all results for bijection graphs hold also for
permutation graphs.

Since the determination of the zero forcing number is NP-hard, one funda-
mental question is how to optimize the process of finding a minimum zero forcing
set. Our first result in this direction describes the structure of a zero forcing set
of a bijection graph (Proposition 1). For this we use the specific structure of
a bijection graph and the fact that the zero forcing number depends on the
minimum degree.

Another way to simplify the task of finding a minimum zero forcing set S is
to get information about the content of S. In particular we show which subsets
of vertices of a bijection graph cannot be a zero forcing set (Lemma 2). As a
consequence, for certain bijection graphs we improve the lower bound for Z(G)
(Theorems 2 and 3).

As the main result of the paper we show conditions for subgraphs H0,
H1 ⊂ G, when the zero forcing number of a bijection graph reaches the upper
bound (Theorem 4). This result is important, as in this case Z(G) doesn’t depend
on the bijection f , and a minimum zero forcing set can be found without any
computation. Applying this result to permutation graphs leads to an improve-
ment of a result of Yi [14] (Theorem 5).

The paper is organized as follows. We give basic notation and preliminaries
in Sect. 2. We show general rules and principles of the zero forcing process on
bijection graphs and get a general lower and upper bound for the zero forcing
1 Note that the term permutation graph is also used in a different way in literature,

see [12].
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number in Sect. 3. For certain types of graphs we improve the lower bound in
Sect. 4 and consider graphs where the zero forcing number is equal to the upper
bound n.

2 Notation and Preliminaries

Let G = (V (G), E(G)) be a simple and undirected graph of order |V (G)| = n.
The degree degG(v) of a vertex v ∈ V (G) is the number of edges incident with
v in G. The minimum degree over all vertices of a graph G is denoted by δ(G)
and the maximum degree by Δ(G).

Definition 1. Let H0 and H1 be two disjoint copies of a graph, and let σ :
V (H0) → V (H1) be a permutation. A permutation graph Gσ = (V,E) consists
of the vertex set V (Gσ) = V (H0) ∪ V (H1) and the edge set E(Gσ) = E(H0) ∪
E(H1) ∪ {{v, u} | u = σ(v), v ∈ V (H0), u ∈ V (H1)}.
Definition 2. Let H0 = (V,X) and H1 = (U, Y ) be graphs, where |V | = |U |,
and let f : V → U be a bijection. A bijection graph G = (W,Z) consists of the
vertex set W = V ∪ U , and the edge set Z = X ∪ Y ∪ {{v, u} | u = f(v), v ∈
V, u ∈ U}
We refer to the vertex subset V (H0) of a bijection graph G = (H0,H1, f) as
the H0-side of G and denote it by VG(H0), and the vertex subset V (H1) as the
H1-side of G and denote it by VG(H1) (see Fig. 1). We refer to the graphs H0 and
H1 as the components of the bijection graph G. For brevity we write Hi+1 instead
of H(i+1)mod 2 for i = 0, 1. This is convenient when we consider a parameter of
the “other side” of G. For instance, if we consider a vertex in one side (in H0 or
in H1) and need to use the minimum degree of the graph of the other side, we
may write “v ∈ Hi has at least δ(Hi+1) neighbors”.

The color change rule turns the color of a white vertex v2 to black, if it
is the only white neighbor of some black vertex v1. We denote this change by
v1 → v2. A sequence v1 → v2 → . . . → vt, obtained through an iterative
application of the color change rule is called a forcing chain. Notice that the set
of black vertices changes after each iteration of the color change rule. We call
the set of black vertices obtained after each iteration of the color change rule the

H0

v1

v2 v3

v4 v5

→

H0-side H1-side

v1

v2
v3

v4 v5

f

G = (H0, H1, f)

u1

u2 u3

u4
u5

←

H1

u1

u2 u3

u4 u5

Fig. 1. Example for a bijection graph.
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current set of black vertices. The derived set of black vertices F (S) is the result
of applying the color change rule starting with an initial set S, until no more
changes are possible. If the derived set F (S) includes all vertices of a graph G,
then S is called a zero forcing set. The minimum cardinality over all zero forcing
sets is called the zero forcing number of G, denoted by Z(G).

It may happen that more than one vertex can force at the same time, as
illustrated by Example 1. This is the reason why the color change process is not
unique. However, the derived set of black vertices F (S) is independent of the
order of the color change process [2]. We will need the following two definitions.

Definition 3. Let G be a graph and let M be a current set of black vertices.
A vertex v ∈ M is called an active vertex of M if v has only one white neighbor
in G \ M . The union of all active vertices of M is called active subset of M .

Definition 4. Let G be a graph and let M be a current set of black vertices.
The forcing of all active vertices of M is called a step of the color change process,
denoted by M → M ′, where M ′ is the set of vertices turned to black.

Example 1. Consider Fig. 2a, where we have a graph G with an initial set S. The
vertices v1 and v3 are active vertices of S and can force. Since it does not matter
which vertex v1 or v3 forces first, we assume that they force simultaneously.
Thus, the first step of the color change process is S → S′, where S′ = {v5, v6}.
After the first step of the color change process the current set of black vertices
is S1 = S ∪ S′ = {v1, v2, v3, v5, v6} (see Fig. 2b).

S

G

v1

v3v2

v4 v5 v6

(a) Initial set.

S

S′

G

v1

v3v2

v4 v5 v6

(b) Current set after the first step.

Fig. 2. One step of a zero forcing process.

Note that if we have more than one vertex that forces the same vertex, then
we also assume that all of them force this vertex. The zero forcing process can
thus be presented as a nested sequence of black vertices S = S0 � S1 � · · · � Sk,
where Sj+1 = Sj ∪S′

j , Sj → S′
j for j = 0, 1, . . . , k − 1. If S is a zero forcing set,

we obviously have Sk = V (G).

3 The Zero Forcing Process on Bijection Graphs

Consider an initial set S of a bijection graph G = (H0,H1, f) with an active
vertex w ∈ V (Hi), where i ∈ {0, 1}. Let w force w1, i.e., w → w1. There are
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two cases for the location of w1. If w1 lies at the same side, i.e., w1 ∈ VG(Hi),
then only one neighbor of w in VG(Hi) is white. Thus, VG(Hi) contains at least
(degHi

(w) − 1) + 1 = degHi
(w) black vertices. If w1 lies at the other side,

i.e., w1 ∈ VG(Hi+1), then all neighbors of w in VG(Hi) are black, Thus, VG(Hi)
contains at least degHi

(w)+1 black vertices. In addition, if S has p black vertices
at the Hi-side, any black v ∈ VG(Hi) cannot have more than p−1 black neighbors
in VG(Hi), and maybe one black neighbor in VG(Hi+1). Therefore, for an active
vertex w it holds that degHi

(w) ≤ p. The following observation summarizes
these results.

Observation 1. Let G = (H0,H1, f) be a bijection graph and S be an initial
set. Then the following holds for i = 0, 1:

(a) If w ∈ VG(Hi) is an active vertex of S, then S must contain at least degHi
(w)

black vertices at the Hi-side.
(b) If S contains p black vertices in VG(Hi), then an active vertex w fulfills

degHi
(w) ≤ p.

Sometimes it is important to know where the vertices whose color has currently
been changed are placed. We now prove a lemma which gives information about
this issue.

Lemma 1. Let H0 and H1 be graphs of order n, and let f : V (H0) → V (H1) be
a bijection. For i = 0, 1 the following holds: If an initial set S of the corresponding
bijection graph G = (H0,H1, f) has an active vertex in VG(Hi), then there is an
initial set T with |T | = |S|, such that F (S) = F (T ) and each active vertex of T
in VG(Hi) forces a vertex in VG(Hi+1).

Proof. Let i = 0, 1 be fixed, S be an initial set, M := {v1, v2, . . . , vp} be an
active subset of S, and suppose that M ⊆ VG(Hi). If each vj ∈ M forces f(vj) ∈
VG(Hi+1) for j = 1, 2, . . . , p, then we may set T := S and we are done.

Consider the case where some vertices {w1, w2, . . . , wt} ⊆ M force vertices
in VG(Hi), namely wj → wj,1 ∈ VG(Hi) for j = 1, 2, . . . , t (see Fig. 3a). After w1

has forced, the set of black vertices is S ∪ {w1,1}.

· · ·w1,1

VG(Hi) VG(Hi+1)

w1

· · ·
· · · f

f(w1)
· · ·

· · ·

(a) Initial set S.

· · ·w1,1

VG(Hi) VG(Hi+1)

w1

· · ·
· · · f

f(w1)
· · ·

· · ·

(b) Initial set T (w1).

Fig. 3. Two initial sets with the same derived set.

Consider a new initial set T (w1) = S ∪{w1,1}\{f(w1)} (see Fig. 3b), i.e., we
change the only white neighbor of the vertex w1 from w1,1 to f(w1). In this case,
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after w1 has forced, the set of black vertices is T (w1) ∪ {f(w1)} (see Fig. 3b). It
is easy to see that S ∪ {w1,1} = T (w1) ∪ {f(w1)}, and thus, F (S) = F (T (w1)).
Therefore, for the new initial set T (w1) we have |S| = |T (w1)| and F (S) =
F (T (w1)) and by construction of T (w1) we receive w1 → f(w1) ∈ VG(Hi+1).

We repeat this process of switching vertices for each new initial set and for
all active vertices in VG(Hi). This process terminates, because the number of
black vertices in VG(Hi+1) decreases after each step. Thus, after a finite number
of steps we get an initial set T with |T | = |S|, where each active vertex of T in
VG(Hi) forces a vertex in VG(Hi+1), and F (T ) = F (S). �

Note that for a bijection graph G = (H0,H1, f), δ(G) = min{δ(H0),
δ(H1)} + 1 holds. It is easy to see that the initial set of black vertices V (H0)
(or V (H1)) is a zero forcing set of G. Using the well-known bound for the zero
forcing number Z(G) ≥ δ(G) [4], we receive the following theorem:

Theorem 1. Let H0 and H1 be graphs of order n, and let f : V (H0) → V (H1)
be a bijection. Then for the bijection graph G = (H0,H1, f) the following holds:

min{δ(H0), δ(H1)} + 1 = δ(G) ≤ Z(G) ≤ n.

Note that for the case δ(H0) ≤ δ(H1), it holds that δ(H0) + 1 ≤ Z(G) ≤ n. The
following proposition establishes a necessary condition for a zero forcing set of a
bijection graph.

Proposition 1. Let H0 and H1 be graphs of order n, and let f : V (H0) →
V (H1) be a bijection. Then for any zero forcing set S of the bijection graph G =
(H0,H1, f) at least one of the following conditions holds: |S ∩ VG(H0)| ≥ δ(H0)
or |S ∩ VG(H1)| ≥ δ(H1).

Proof. Let S ⊆ G be a zero forcing set of G, and set b0 := |S ∩ VG(H0)| and
b1 := |S ∩ VG(H1)|. Assume that b0 < δ(H0) and b1 < δ(H1). Since VG(H0)
contains b0 black vertices, by Observation 1(b), for an active vertex v ∈ VG(H0)
it holds that degH0

(v) ≤ b0, which is a contradiction. Thus, there is no active
vertex of S in VG(H0). The same is true for VG(H1). Overall, there is no active
vertex in S, i.e., S cannot be a zero forcing set. Thus, b0 ≥ δ(H0) or b1 ≥ δ(H1)
holds. �

We combine Lemma 1 and Proposition 1 to describe the structure of a zero
forcing set of a graph with Z(G) = δ(G).

Proposition 2. Let H0 and H1 be graphs of order n, and let f : V (H0) →
V (H1) be a bijection. If the zero forcing number of the corresponding bijection
graph G = (H0,H1, f) is Z(G) = δ(G), then there is a minimum zero forcing
set which is not divided between the H0-side and H1-side of G.

Proof. Let S be a zero forcing set with |S| = δ(G). If S ⊆ VG(H0) or S ⊆
VG(H1), there is nothing to prove. Let S be divided between the sides. For
definiteness and without loss of generality we assume that δ(H0) ≤ δ(H1). By
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Proposition 1, one of the sides of the bijection graph must contain at least
δ(H0) = δ(G) − 1 vertices of S. In this case, the other side contains one vertex
of the initial set.

Obviously, for an active vertex v of S it holds that degG(v) = δ(G), and all
other black vertices of S are its neighbors. Since one of the black neighbors of v
is at the other side, v forces a vertex at the same side (see Fig. 4). By Lemma 1,
we can get a zero forcing set T with |T | = δ(G), where v forces f(v). In this case
all black vertices are at the same side, and thus, T is not divided. �

· · ·
S

G

v

· · ·
· · ·

f
f(v)

· · ·

· · ·

Fig. 4. Replacing the black vertex to get an initial set which is not divided.

4 The Zero Forcing Number of Bijection Graphs

Lemma 2. Let H0 and H1 be graphs of order n and δ(Hi) = n − ri, ri ≥ 1
for i = 0, 1. Furthermore, let f : V (H0) → V (H1) be a bijection, and
G = (H0,H1, f) be the corresponding bijection graph. Then for i = 0, 1 the
following holds: If S � VG(Hi) is an initial set, it follows that:

(a) If S → S′, then |S′| ≤ ri − 1.
(b) If δ(Hi+1) ≥ ri, then S is not a zero forcing set.

Proof. Let i = 0, 1 be fixed. Note that, if an initial S � VG(Hi) cannot force
more than ri − 1 vertices, then consequently, neither can any subset K ⊂ S. So,
if we prove the statement for an initial set S � VG(Hi) with |S| = n − 1, it is
true for any initial set K � VG(Hi). Thus, we may assume that |S| = n − 1.

(a) As |S| = n − 1, VG(Hi) contains only one white vertex v1. Writing the
degree of v1 as degHi

(v1) = n−p, we receive n−p = degHi
(v1) ≥ δ(Hi) = n−ri

and thus, p ≤ ri. Each black vertex v ∈ VG(Hi) which is adjacent to v1 cannot
force at this step of the forcing process, because it is also adjacent to the white
vertex f(v) ∈ VG(Hi+1) (see Fig. 5a).

On the other hand, exactly p − 1 vertices in S are not adjacent to v1, and
thus, none of them has a white neighbor in VG(Hi), and each of them has only
one white neighbor in VG(Hi+1). Thus, each of these p − 1 vertices forces at the
first step of the forcing process (see Fig. 5b). As p ≤ ri, S cannot force more
than ri − 1 vertices. This proves (a).

(b) We continue the zero forcing process in G. After all active vertices of S
have forced, i.e., S → S′, the current set of black vertices is S1 = S ∪ S′. Note
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· · ·
S

VG(Hi) VG(Hi+1)

vn−pv1
· · ·

f

· · ·
· · ·
· · ·

(a)

· · ·
S

VG(Hi) VG(Hi+1)

vn−pv1
· · ·

f

· · ·
· · ·
· · ·

(b)

Fig. 5. The forcing of the initial set S � VG(Hi).

that the remaining black vertices v1, . . . , vn−p at the Hi-side still cannot force,
because they didn’t receive any new black neighbor (see Fig. 5b). Therefore, for
continuation of the zero forcing process, S′ must contain at least one active ver-
tex. By Observation 1(a), VG(Hi+1) must contain at least δ(Hi+1) black vertices.
We have shown in a) that |S′| ≤ ri −1. Consequently, if δ(Hi+1) ≥ ri, then there
is no active vertex in S1 = S ∪ S′. Thus, the forcing process stops, and S is not
a zero forcing set. This proves (b). �

For the following results we need the following equivalence statement.

Remark 1. Let H0 and H1 be graphs of order n, and let δ(Hi) = n − ri, where
ri ≥ 1 for i = 0, 1. Then δ(H0) + δ(H1) ≥ n is equivalent to δ(Hi+1) ≥ ri for
i = 0, 1.

Proof. “⇒”: Let δ(H0) + δ(H1) ≥ n. By δ(H0) = n − r0 we get δ(H1) ≥ r0.
Analogously, by δ(H1) = n − r1 we get δ(H0) ≥ r1.
“⇐”: Let δ(H0) ≥ r1 and δ(H1) ≥ r0. By δ(H1) = n − r1 we get δ(H0) +
δ(H1) ≥ n. �

As a consequence we get an improved lower bound on the zero forcing number
for the bijection graphs from Lemma 2.

Theorem 2. Let H0 and H1 be graphs of order n, which are not both complete
graphs, and let δ(H0) + δ(H1) ≥ n. Furthermore, let f : V (H0) → V (H1) be a
bijection. Then for the corresponding bijection graph G = (H0,H1, f) it holds
that Z(G) > δ(G).

Proof. Assume that Z(G) = δ(G), and let S be a zero forcing set with |S| =
δ(G). By Proposition 2, we may assume that S is not divided between the sides,
i.e., S ⊆ VG(Hi), where i ∈ {0, 1}. As H0 and H1 are not both complete graphs,
it follows that S � VG(Hi). By Lemma 2(b) and Remark 1, S � VG(Hi) cannot
be a zero forcing set. The result follows. �

Our aim is to get a better lower bound for Z(G) of a bijection graph G, where
the minimum degree of its components satisfies max{δ(H0), δ(H1)} ≥ n

2 . To
do this we use the technique shown in the following example.
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Example 2. Let G = (H0,H1, f) be a bijection graph and S be an initial set.
Furthermore, suppose each active vertex of S at the H0-side changes the color
of a vertex at the H1-side. For instance consider Fig. 6a. The active vertex of S
in VG(H0) is v4. Note that S is a wasteful initial set, because all the neighbors
of v5 are black, so it doesn’t have an opportunity to force any vertex in G.

v1v2
v3

v4 v5

f

VG(H0) G VG(H1)

u1

u2 u3

u4 u5

(a) Initial set S.

v1v2
v3

v4 v5

f

VG(H0) G VG(H1)

u1

u2 u3

u4 u5

(b) Initial set W .

Fig. 6. Comparison of the forcing processes of two initial sets.

Consider an initial set W which we get from S by removing all black vertices
at the H1-side (see Fig. 6b). We can see that v4 is an active vertex of W , as
well as of S, because it doesn’t have a black neighbor in VG(H1)∩ S, and so the
coloring of its neighbors is the same for S and W . On the other hand, v5 is an
active vertex only for W and not for S. We can also observe that the number
of active vertices at the H0-side for S is less than the number of active vertices
for W .

As in this simple example we get the following general conclusion.

Observation 2. Consider a bijection graph G = (H0,H1, f) with two initial
sets S and W such that the following holds:

(i) Each active vertex of S in VG(H0) forces a vertex in VG(H1).
(ii) W is the result of removing all black vertices of S which lie in VG(H1).

Then all active vertices of S at the H0-side are active vertices of W , too.

Now, we determine a lower bound of the zero forcing number Z(G) of a bijection
graph G = (H0,H1, f) with δ(H0) + δ(H1) ≥ n.

Theorem 3. Let H0 and H1 be graphs of order n, and let δ(H0) + δ(H1) ≥ n.
Assume that δ(H0) ≤ δ(H1). Furthermore, let f : V (H0) → V (H1) be a bijec-
tion. Then for the corresponding bijection graph G = (H0,H1, f) it holds that
Z(G) ≥ min{n, 2δ(H0) + δ(H1) − n + 2}.
Proof. Let δ(H0) = n − r0, δ(H1) = n − r1, where r0, r1 ≥ 1. Let S be a
minimum zero forcing set of the bijection graph G. By Lemma 2(b) and Remark
1, an initial set W � VG(Hi), where i ∈ {0, 1}, is not a zero forcing set. Thus,
S must either fulfill |S| = n, or be divided between two sides. Since the case
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|S| = n satisfies the statement, we consider the case where S is divided and
|S| < n.

Let VG(Hi) be a side of G with active vertices, where i ∈ {0, 1}. Denote by
M = {v1, v2, . . . , vp} the set of active vertices of S in VG(Hi), and set b0 :=
|S ∩ VG(Hi)| and b1 := |S ∩ VG(Hi+1)|. By Lemma 1, we may assume that
each active vertex vj ∈ M forces a vertex f(vj) ∈ VG(Hi+1) for j = 1, 2, . . . p
(see Fig. 7a). Consider an active vertex v ∈ M . As v forces the vertex f(v) ∈
VG(Hi+1), all neighbors of v in VG(Hi) are black. Thus, VG(Hi) contains at least
degHi

(v) + 1 black vertices, as v and all of its neighbors must be black. In other
words, b0 ≥ degHi

(v) + 1, and consequently

b0 ≥ δ(Hi) + 1. (1)

By assumption,

Z(G) = b0 + b1 < n (2)

⇒ b1
(1),(2)

< n − δ(Hi) − 1 = n − (n − ri) − 1 = ri − 1
Remark 1≤ δ(Hi+1) − 1.

Thus, each black vertex at the Hi+1-side has less than or equal to δ(Hi+1)−2
black neighbors, i.e., at least two white neighbors. It follows that there are no
active vertices in VG(Hi+1). In other words, at the first step of the color change
process only black vertices in VG(Hi) can force. By assumption, each active
vertex of S in VG(Hi) changes the color of a vertex in VG(Hi+1). Therefore, we
can write the set of black vertices after the first step of the color change process
as S1 = S ∪ S′, where S → S′ and S′ ⊂ VG(Hi+1).

By Observation 2, each active vertex of S is an active vertex of W = S ∩
VG(Hi), too. Using these facts we can write |W ′| ≥ |S′|, where S → S′, W → W ′.
By Lemma 2(a), for such a type of bijection graph it holds that |W ′| ≤ ri − 1.

⇒ |S′| ≤ ri − 1. (3)

Therefore, after the first step of the zero forcing process we have b0 black ver-
tices at the Hi-side, and b1 + |S′| black vertices at the Hi+1-side (see Fig. 7b).
The vertices in VG(Hi) didn’t receive any new black neighbor except the active
vertices of S. Thus, there is no vertex in VG(Hi) which can continue the color
change process. In this case, active vertices of S1 lie in VG(Hi+1). Since the Hi+1-
side has an active vertex, by Observation 1(a), the number of black vertices in
VG(Hi+1) must be at least δ(Hi+1). It follows:

|b1| + |S′| ≥ δ(Hi+1) (4)

⇒ b1
(4)

≥ δ(Hi+1) − |S′|
(3)

≥ δ(Hi+1) − (ri − 1) (5)

⇒ b0 + b1
(1),(5)

≥ (δ(Hi) + 1) + (δ(Hi+1) − (ri − 1))=2δ(Hi) + δ(Hi+1)− n+2.

Using the fact that δ(H1) ≥ δ(H0) we receive that |S| ≥ 2δ(H0) + δ(H1) −
n + 2. Thus, the cardinality of a minimum zero forcing set S satisfies:
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(a) |S| ≥ 2δ(H0) + δ(H1) − n + 2, if it is divided between the sides,
(b) |S| = n, if it is equal to one of the sides.

We can rewrite this to Z(G) ≥ min{n, 2δ(H0) + δ(H1) − n + 2}. �

v1
· · · vp

S

M

VG(Hi) VG(Hi+1)

· · ·
· · ·

f

f(vp)
· · ·

f(v1)

· · ·
· · ·

(a) Initial set.

v1
· · · vp

S

M
f(vp)

· · ·
f(v1)

VG(Hi) VG(Hi+1)

· · ·
· · ·

f

· · ·
· · ·
· · ·

(b) Current set.

Fig. 7. First step of the zero forcing process.

In the following we will show bounds on Z(G) for some special n and δ(H0),
δ(H1).

Theorem 4. Let H0 and H1 be graphs of order n, and let δ(H0) + δ(H1) ≥ n.
Assume that δ(H0) ≤ δ(H1). Furthermore, let f : V (H0) → V (H1) be a bijection.
Then for the corresponding bijection graph G = (H0,H1, f) the following holds:

(a) Z(G) ≥ min{n, δ(H0) + 3}, if δ(H0) + δ(H1) > n,
(b) Z(G) = n, if δ(H0) ≥ 2n−2

3 .

Proof. (a) Let δ(H0) + δ(H1) > n.

⇒ 2δ(H0) + δ(H1) − n + 2 = δ(H0) + δ(H0) + δ(H1) − n + 2 ≥ δ(H0) + 3.

Thus, (a) follows from Theorem 3.
(b) Let δ(H0) ≥ 2n−2

3 . This is equivalent to 3δ(H0) + 2 ≥ 2n. It follows that

2δ(H0) + δ(H1) − n + 2 ≥ (3δ(H0) + 2) − n ≥ 2n − n = n.

Thus, (b) follows from Theorems 1 and 3. �

Remark 2. From the assumption δ(H0) + δ(H1) ≥ n, it follows that

max{δ(H0), δ(H1)} ≥ n

2
.

Yi proved that for a permutation graph Gσ with n vertices and δ(G) = n − 2
it holds that Z(Gσ) = n [14]. Theorem 4(b) improves on this theorem. We just
need to use the fact that for a permutation graph Gσ the minimum degree of its
components is the same and receive the following statement.

Theorem 5. Let H0 and H1 be two disjoint copies of a graph of order n, and let
δ(H0) = δ(H1) ≥ 2n − 2

3 . Furthermore, let σ : V (H0) → V (H1) be a permuta-
tion. Then for the corresponding permutation graph Gσ it holds that Z(Gσ) = n.
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Abstract. The klam value of an algorithm that runs in time O∗(f(k))
is the maximal value k such that f(k) < 1020. Given a graph G and
a parameter k, the k-Leaf Spanning Tree (k-LST) problem asks if
G contains a spanning tree with at least k leaves. This problem has
been extensively studied over the past three decades. In 2000, Fellows et
al. [FSTTCS’00] asked whether it admits a klam value of 50. A steady
progress towards an affirmative answer continued until 5 years ago,
when an algorithm of klam value 37 was discovered. Our contribution is
twofold. First, we present an O∗(3.188k)-time parameterized algorithm
for k-LST, which shows that the problem admits a klam value of 39.
Second, we rely on an application of the bounded search trees tech-
nique where the correctness of rules crucially depends on the history of
previously applied rules in a non-standard manner, encapsulated in a
“dependency claim”. Similar claims may be used to capture the essence
of other complex algorithms in a compact, useful manner.

1 Introduction

Given an undirected graph G = (V,E) and a parameter k, the k-Leaf Spanning
Tree (k-LST) problem asks if G contains a spanning tree with at least k
leaves. Due to its general nature, k-LST has applications in a variety of areas,
including, for example, the design of ad-hoc sensor networks (see [3,19,21]) and
computational biology (see, e.g., [18]). Furthermore, k-LST is tightly linked to
the classic k-Connected Dominated Set (k-CDS) problem, which asks if
a given graph G = (V,E) contains a connected dominating set of size at most
k.1 On the one hand, given a spanning tree T with t leaves, the set of internal
vertices of T forms a connected dominating set of size |V |−t. On the other hand,
given a connected dominating set S of size t, one can construct a spanning tree
T with at least |V | − t leaves (attach the vertices in V \S as leaves to a tree
spanning the subgraph of G induced by S).

Even in restricted settings, it has long been established that k-LST is
NP-hard (see, e.g., [9]). Thus, over the past three decades, k-LST has been exten-
sively studied in the fields of Parameterized Complexity, Exact Exponential-
Time Computation and Approximation. We focus on fixed-parameter tractable
1 A connected dominating set is a subset U ⊆ V such that the subgraph of G induced

by U is connected and every vertex in V \U is a neighbor of a vertex in U .

c© Springer International Publishing Switzerland 2016
Z. Lipták and W.F. Smyth (Eds.): IWOCA 2015, LNCS 9538, pp. 346–357, 2016.
DOI: 10.1007/978-3-319-29516-9 29
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Table 1. Known FPT algorithms for k-LST.

Reference First published Klam value Running time

Fellows et al. [14] 1988 [14] 0 FPT

Bodlaender et al. [4] 1989 [4] 1 O∗((17k4)!)

Fellows et al. [11] 1995 [10] 5 O∗((2k)4k)

Fellows et al. [15] 2000 [15] 17 O∗(14.23k)

Bonsma et al. [5] 2003 [5] 20 O∗(9.49k)

Estivill-Castro et al. [13] 2005 [13] 22 O∗(8.12k)

Bonsma et al. [6] 2008 [6] 24 O∗(6.75k)

Kneis et al. [17] 2008 [16] 33 O∗(4k)

Daligault et al. [8] 2008 [7] 35 O∗(3.72k)

Binkele-Raible et al. [2] 2010 [20] 37 O∗(3.46k)

This paper 2015 39 O∗(3.19k)

(FPT) algorithms, which run in time O∗(f(k)) for some function f , where O∗

hides factors polynomial in the input size.
Table 1 presents a summary of known FPT algorithms for k-LST. The klam

value of an algorithm that runs in time O∗(f(k)) is the maximal value k such
that f(k) < 1020. In 2000, Fellows et al. [15] asked whether k-LST admits a
klam value of 50. A steady progress towards an affirmative answer continued
until 2010, when an algorithm of klam value 37 was discovered [20].

We develop a deterministic polynomial-space FPT algorithm for k-LST that
runs in time O(3.188k + poly(|V |)). Thus, our contribution it twofold: we show
that k-LST admits a klam value of 39, and we explicitly define the notion of
a “dependency claim” (see below). Our result, like previous algorithms for k-
LST, is based on the bounded search trees technique (see Sect. 2): Essentially,
when applying a branching rule, we determine the “role” of a vertex in G—i.e.,
we decide whether it should be, in the constructed tree, a leaf or an internal
vertex (which, in turn, may determine roles of other vertices). Also, along with
the constructed tree (to be completed to a spanning tree), we maintain a list
of “floating leaves”—vertices in G that are not yet attached to the constructed
tree, but whose roles as leaves has been already determined.

The difference between our result and previous algorithms for k-LST lies in
the encapsulation of dependencies among nodes (of a search tree) in a “depen-
dency claim”. In our application of the bounded search trees technique, nodes
depend on the history of nodes that precede them in a non-standard manner—
the correctness of many of our reduction and branching rules crucially relies on
formerly executed branching rules, particularly on the fact that certain branches
considered by them could not lead to the construction of a solution. More pre-
cisely, for certain vertices whose roles are to be determined, our decision will
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rely on the fact that there is no solution in which their parents are leaves.2

Indeed, the crux of our algorithm is the explicit definition and demonstration of
the usefulness of a “dependency claim”, which describes that dependency of the
nodes (of a search tree) on the nodes that precede them. We consider this claim
as the foundation on which we build the rules of our algorithm. More precisely,
our rules are carefully designed to preserve the correctness of the dependency
claim along the search tree, while, most importantly, allowing us to exploit its
implications. Generally, the use of similar dependency claims may capture the
dependencies implicitly exploited by other complex algorithms, which are based
on the bounded search trees technique, in a compact, useful manner. This can
lead to the development of faster algorithms that might not be more compact,
but whose essence and “bigger picture”, presented by the claims, will be clearer.

Organization. First, Sect. 2 gives necessary information on bounded search trees,
along with standard definitions and notation. Then, Sect. 3 presents our algo-
rithm, including our measure and the dependency claim. We only present a brief
overview of the entire set of rules of the algorithm, after which we discuss in
detail two rules which capture its spirit. The complete set of rules can be found
at http://www.arxiv.org/abs/1502.07725. Finally, Sect. 4 concludes the paper.

2 Preliminaries

Bounded Search Trees. Bounded search trees is a fundamental technique in the
design of recursive FPT algorithms (see [12]). To apply it, one defines a list of
rules of the form Rule X. [condition] action, where X is the number of the rule
in the list. At each recursive call (i.e., a node in the search tree), the algorithm
performs the action of the first rule whose condition is satisfied. If by performing
an action, the algorithm recursively calls itself at least twice, the rule is a branch-
ing rule, and otherwise it is a reduction rule. We only consider polynomial-time
actions that increase neither the parameter nor the size of the instance.

The running time of the algorithm can be bounded as follows (see, e.g.,
[1]). Suppose that the algorithm executes a branching rule where it recursively
calls itself � times, such that in the ith call, the current value of the parameter
decreases by bi. Then, (b1, b2, . . . , b�) is called the branching vector of this rule.
We say that α is the root of (b1, b2, . . . , b�) if it is the (unique) positive real root
of xb∗

= xb∗−b1 +xb∗−b2 + . . .+xb∗−b� , where b∗ = max{b1, b2, . . . , b�}. If b > 0 is
the initial value of the parameter, and the algorithm (a) returns a result when (or
before) the parameter is negative, and (b) only executes branching rules whose
roots are bounded by a constant c, then its running time is bounded by O∗(cb).

Standard Definitions and Notation. Given a graph G = (V,E) and a vertex
v ∈ V , let N(v) denote the set of neighbors of v (in G, which will be clear from

2 Problematic vertices in whose examination we cannot rely on such a fact will be
handled by a “marking” approach—we will be able to consider our treatment of
them as better than it is, since we previously considered the treatment of the vertices
that marked them as worse than it is.

http://www.arxiv.org/abs/1502.07725


The k-Leaf Spanning Tree Problem Admits a Klam Value 349

context). Given subsets S,U ⊆ V , let Paths(S, v, U) denote the set of paths that
start from a vertex in S and end at the vertex v, whose internal vertices belong
to U (only). Given a rooted tree T = (VT , ET ), let Lea(T ), Int(T ) and Chii(T )
denote the leaf-set, the set of internal vertices and the set of vertices with exactly
i children in T , respectively. Clearly, Lea(T ) = Chi0(T ). Given a vertex v ∈ VT ,
let par(v) and Sib(v) denote the parent and set of siblings of v (in T , which will
be clear from context), respectively.

3 The Algorithm

Our algorithm, Alg, is based on the bounded search trees technique, in which we
integrate the ideas mentioned in the introduction.

Intermediate Instances. Each call to Alg is associated with an instance
(G = (V,E), T = (VT , ET ), L,M,F, k). Since G and k are always the graph
and parameter given as part of the (original) input, we simplify the notation to
(T,L,M,F ). This corresponds to:

– A rooted subtree T of G.
– L (“fixed leaves”) and M (“marked leaves”) are disjoint subsets of Lea(T ).
– F (“floating leaves”) is a subset of (Lea(T )\L) ∪ (V \VT ).

Informally, T is a tree that we try to extend to a solution (that is, a spanning
tree of G with at least k leaves) by attaching new vertices to its leaves; L contains
leaves in T that should be leaves in the solution (thus, we cannot attach new
vertices to them); M contains leaves in T that other vertices have “marked”,
thus when their roles are decided, the measure (defined below) is decreased by
a value large enough for our purpose; F contains vertices in G that are outside
L, but whose roles as leaves have been already determined. We note that once a
floating leaf becomes a leaf in T (which possibly belongs to M), the algorithm
applies a reduction rule (Rule 4) that inserts it into L and removes it from F
and M (if necessary). For the sake of clarity, denote N = Lea(T )\(L∪M). That
is, N is the set of leaves in T whose roles as leaves (in the solution) has not yet
been determined, and which are not marked. Roughly speaking, the separation
between M and N will reflect the different means using which we decide whether
their vertices should be internal vertices or fixed leaves: most of the vertices in
M will be handled using exhaustive rules whose analysis will rely on the fact
that |M | appears in the measure, while vertices in N will be handled using
rules that are not necessarily exhaustive (to ensure that they result in good
branching vectors), and whose correctness will rely on the dependency claim
(defined below). An example of an instance (T,L,M,F ) is illustrated in Fig. 1.

Goal. Our goal is to accept the (intermediate) instance iff G contains a spanning
tree S = (VS , ES) with at least k leaves that complies with (T,L ∪ F )—i.e., (1)
T is a subtree of S, (2) the vertices in L∪F are leaves in S, and (3) the neighbor
set of each internal vertex in T is the same as its neighbor set in S. An example
of such a spanning tree S is illustrated in Fig. 1.
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Fig. 1. (A) An instance associated with a node of the search tree; (B) A spanning tree
with 10 leaves that complies with (T, {d, h, k, l}).

By calling Alg with (T = ({r}, ∅), ∅, {r}, ∅) for all r ∈ V , and accepting iff at
least one of the calls accepts, we clearly solve k-LST in time that is bounded by
O∗ of the running time of Alg.

Measure. To ensure that the running time of Alg is bounded by O∗(3.188k), we
propose the following measure:

Measure: 2k +
1
4
|M | − (|L| + |F | +

∑

i≥2

(i − 1)| Chii(T )|).

Clearly, the measure is initially 2k + 1
4 . Moreover, as we will prove in this

paper, this measure was carefully chosen to ensure that Alg can return a correct
decision when the measure drops to (or below) 0, and that the roots of the
branching vectors associated with the branching rules are bounded by 3.1880.5.

We note that at this point, where we have not yet presented our rules, it is
already easy to see that the measure makes sense in the following manner: (1)
Marking a vertex (i.e., inserting it to M) increases the measure, so when the
vertex is “handled” and thus removed from M , its treatment is considered to
be better than it actually is, and (2) Determining the role of a vertex as a leaf
(i.e., inserting it to L ∪ F ) or an internal vertex with at least two children (i.e.,
inserting it to Chii(T ) for some i ≥ 2) decreases the measure by a significant
value (at least 1). When determining the role of a vertex as an internal vertex
with one child, we can avoid decreasing the measure, since this decision will be
made either in a reduction rule or in a branching rule where the role of another
vertex, which decreases the measure, is determined.

The Dependency Claim. To ensure the correctness of our rules, we will need to
preserve the correctness of the dependency claim (defined below), which describes
the dependency of a node in the search tree on the nodes preceding it. This
claim supplies information that is relevant only to vertices in N , and allows us
to handle them as efficiently as we handle marked vertices. More precisely, in
some branching rules that determine the roles of vertices in N , the dependency
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claim will justify why certain branches are either omitted or present but also
determine the roles of other vertices. Formally, for each v ∈ N , the dependency
claim supplies the following information:

1. |Sib(v)| ≤ 1.
2. Let (T ′, L′,M ′, F ′) be the instance associated with the (unique) ancestor

node (in the search tree) in which p � par(v) was inserted to T as an internal
vertex. Then,
(a) There is no solution that complies with (T̃ , L′ ∪ F ′ ∪ {p}), where T̃ is the

tree T ′ from which we remove the descendants of p.3
(b) If there is s ∈ Sib(v), then

i. s /∈ M ∪ (
⋃

i≥2 Chii(T )).
ii. Paths(Lea(T̃ )\(L′ ∪ F ′ ∪ {p}), s, V \(VT̃ ∪ L′ ∪ F ′)) �= ∅.

Roughly speaking, for each vertex v ∈ N , the dependency claim states that
we must have determined (at an ancestor node) that the parent p of v is an
internal vertex since otherwise there is no solution (item 2(a)). Moreover, it
states that if v has a sibling s, then v does not have another sibling (item 1),
the sibling s is neither marked nor has more than one child in T (item 2(b)i),
and p was not the only vertex from which we could have reached s when we
determined the role of p (item 2(b)ii).

We note that at this point, where we have not yet presented our rules, it
is already possible to see that the dependency claim is potentially useful when
handling vertices in N . Indeed, suppose that we can use items 1, 2(b)i and
2(b)ii to show in some “problematic situations”, where the role of at least one
vertex in N is determined, that the existence of a solution S where the roles of
certain vertices x, y and z are a, b and c implies that there also exists a solution
S′ which contradicts item 2(a). Then, we can avoid (in advance) setting the
roles of x, y and z as a, b and c. Having less options to consider implies that Alg
might examine a smaller search tree, and thus it would be faster.

Observe that initially (i.e., in an instance of the form (T = ({r}, ∅), ∅, {r}, ∅)),
the dependency claim is correct since the root is inserted to M .

Result. We will show how to devise a set of 39 rules that preserve the correctness
of the dependency claim, solve the problem in polynomial time when the measure
drops to (or below) 0, and such that the roots of the branching vectors associated
with the branching rules are bounded by 3.1880.5. We thus obtain that Alg runs in
time O∗(3.188k) and uses polynomial-space. Estivill-Castro et al. [13] proved that
in polynomial time, given an instance (G = (V,E), k) of k-LST, one can compute
another instance (G′ = (V ′, E′), k) of k-LST such that |V ′| = 3.75k, and (G, k)
is a yes-instance iff (G′, k) is a yes-instance. Therefore, by first running the
kernelization algorithm in [13], and then calling Alg on the instance it computes,
we obtain the following result.
3 For example, if T = ({r, p, v, u, a, b, c}, {(r, p), (p, v), (p, u), (r, a), (a, b), (b, c)}), and

exactly before (after) p was inserted to T as an internal vertex, the tree was T1 =
({r, p, a}, {(r, p), (r, a)}) (T2 = ({r, p, v, u, a, b}, {(r, p), (p, v), (p, u), (r, a), (a, b)})),

then T ′ = T2 and T̃ = ({r, p, a, b}, {(r, p), (r, a), (a, b)}).
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Theorem 1. The k-LST problem is solvable in deterministic time O(3.188k +
poly(|V |)), using polynomial-space.

3.1 A Brief Overview of the Rules

Alg starts by examining three (reduction) rules that identify cases where the
instance can be solved in polynomial time. First, Rule 1 rejects the instance
when there is a vertex outside the constructed tree T that cannot be attached
to T via a path that starts at a vertex in M ∪N . Then, Rule 2 shows that when
the measure drops to (or below) 0, we have that k ≤ max{| Lea(T )|, |L ∪ F |},
in which case the instance is necessarily a yes-instance. Now, Alg considers the
case where all the vertices in G are already contained in T—then it concludes
(since Rule 2 was not applied) that the instance should be rejected.

Next, Alg examines six (reduction) rules that identify cases where the
instance, although not necessarily solvable in polynomial time, is still simple
in the sense that we can currently decrease its measure or add a vertex to T
without branching. First, Rule 4 turns a floating leaf that is a leaf in T into
a fixed leaf. Rule 5 turns a vertex outside T that does not have any neighbor
outside T into a floating leaf. Then, Rules 6 and 7 handle certain situations
where there are two vertices such that the neighbor set outside T of one of them
is a subset of the neighbor set of the other. In these situations, Alg turns one
of the two vertices into a floating leaf. Rule 8 handles the case where there is a
vertex v ∈ M ∪ N and a vertex u outside T such that v is the only vertex in
M ∪N from which we can reach u (without using vertices whose roles have been
already determined). In this case, Alg determines that v is an internal vertex
(while maintaining the correctness of the dependency claim). Rule 9 shows that
at this point, if there is a vertex v ∈ M ∪ N that has only one neighbor, u,
outside the tree, and u also has only one neighbor outside the tree, then v can
be turned into a fixed leaf.

Rule 10 considers the case where there is a vertex v ∈ M ∪ N that has
exactly two neighbors outside T , and these neighbors belong to F . It examines
two branches to determine the role of v (i.e., to determine whether v should
be an internal vertex or a fixed leaf), while relying on the dependency claim to
show that if v is an internal vertex, the neighbors of its neighbors in F should
be floating leaves.

Now, Rules 11–18 determine the roles of all of the remaining vertices in
M . First, Rule 11 handles the case where a vertex v ∈ M has at least three
neighbors outside T ; then, in the branch where it decides that v is an internal
vertex, it inserts its children to M . Rule 12 handles the case where v has two
neighbors outside T ; then, in the branch where it decides that v is an internal
vertex, it shows that its children can be inserted to N without contradicting the
dependency claim.4 Afterwards, Rule 13 handles the case where v has only one
neighbor, u, outside T , and u has at least three neighbors outside T . This rule is

4 In this context, recall that we need to avoid marking vertices when it is possible,
since each marked vertex increases the measure.
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similar to Rule 11, where upon deciding that v is internal vertex, u should also
be an internal vertex. Rules 14–18 handle the remaining situations, where v has
only one neighbor, u, outside T , and u has two neighbors outside T . Here we do
not simply perform one rule whose action is similar to the one of Rule 12, since
to preserve the correctness of the dependency claim, more delicate arguments
are required.

Rules 19–23 handle the situations where there is a vertex v ∈ N that does
not have a sibling in N . In the branches of these rules where Alg decides that v
is a fixed leaf, it relies on the dependency claim to show that it can insert the
neighbors outside T of v into F . Rule 19 (Rule 20) examines the case where v
has at least three (exactly two) neighbors outside T . Only when v has exactly
two neighbors outside T , Alg inserts them to N rather than M in the branch
where it decides that v is an internal vertex. Then, Rule 21 handles the case
where v has only one neighbor, u, outside T , and u has at least three neighbors
outside T , while Rules 22 and 23 handle the case where u has two neighbors
outside T . More precisely, Rule 22 assumes that there is no vertex outside T
that can be reached (from a vertex in N) only via paths that traverse u, while
Rule 23 assumes that such a vertex exists. This separation allows Alg to perform
different actions in Rules 22 and 23 in order to maintain the dependency claim.

Then, Rules 24–28 determine the roles of all the vertices in N that have a
sibling in N , and this sibling has only one neighbor outside T . These rules are
similar to rules 19–23, except that now, in order to preserve the correctness of
the dependency claim, we also need to handle the sibling, which is simply done
by inserting it to M . Observe that after Rule 28, we are necessarily handling a
situation where there is a vertex v ∈ N with a sibling s ∈ N , and both v and s
have at least two neighbors outside T . In most of the following rules, the roles
of both v and s are determined together.

Rules 29 and 30 handle the case where there is a vertex u outside T that
can be reached only from v and s. More precisely, Rule 29 (Rule 30) considers
the case where v has at least three (exactly two) neighbors outside T . Roughly
speaking, these situations require special attention, since upon deciding the roles
of v and s, it might be problematic to insert their children to N rather than M
(for some intuition why this action causes a problem, we refer the reader to item
2(b)ii of the dependency claim). However, rather than considering the situation
in these rules as a disadvantage, Alg actually exploits it; indeed, for intuition
why this is possible, observe that if v is a (fixed) leaf, s must be an internal
vertex, since otherwise it is not possible to connect the vertex u to T .

Next, Rule 31 handles the case where v and s have a common neighbor
outside T , and this neighbor is not a floating leaf. The efficiency of this rule
relies on an observation (whose correctness is based on the dependency claim)
that upon deciding that v is a leaf, Alg can also safely decide that s is an internal
vertex. After this rule, Alg examines two rules, Rules 32 and 33, that handle the
(remaining) cases where v has at least three neighbors outside T . The separation
between Rules 32 and 33 is done according to the number of neighbors in F that
v has outside T ; the case where there are at least two such neighbors is simple,
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while the case where there is at most one such neighbor requires (in Rule 33) to
rely on the dependency claim.

Finally, in Rules 34–39, Alg handles the remaining cases, where both v and
s have exactly two neighbors outside T . More precisely, Rules 34–36 handle
such cases where v and s have a common neighbor outside T , and Rules 37–39
handle such cases where the sets of neighbors of v and s outside T are disjoint.
The inner distribution of situations corresponding to these cases between Rules
34–36 and between Rules 37–39 is quite delicate, and all of these rules perform
actions whose correctness crucially relies on the dependency claim. The following
subsection discusses one of these rules in detail.

3.2 Examples of Central Rules

In this subsection, we present a reduction rule, as well as a branching rule, that
capture the spirit of our algorithm. In particular, Rule 37 demonstrates the power
of the dependency claim. We note that each rule is followed by an illustration.

Reduce 8. [There are v ∈ M ∪ N and u ∈ V \VT such that Paths((M ∪
N)\{v}, u, V \(VT ∪ F )) = ∅] Let X = N(v)\VT .

1. If |X| = 1: Return Alg(T ′ = (VT ∪ X,ET ∪ {(v, w) : w ∈ X}), L,M\{v}, F ).
2. Return Alg(T ′ = (VT ∪ X,ET ∪ {(v, w) : w ∈ X}), L, (M\{v}) ∪ (Sib(v) ∩

N) ∪ X,F ).

In this rule, there is a vertex v ∈ M∪N and a vertex u outside the constructed
tree T such that v is the only vertex in M ∪ N from which we can reach u
(via a path whose internal vertices are neither floating leaves nor belong to
T ). Therefore, if there is a solution S (which, in particular, means that S is
a spanning tree that complies with (T,L ∪ F )), it contains v as an internal
vertex. Moreover, the vertices in X are not ancestors of v (since X ∩ VT = ∅
and v ∈ M ∪ N); thus, we can disconnect each of them from its parent in S and
attach it to v as a child, obtaining a solution with at least as many leaves as
S. This implies that we can safely turn v into an internal vertex such that the
vertices in X are its children.

In the first case, the measure clearly does not increase. In the second case, the
measure both decreases by at least (|X|−1) (since v is inserted to Chi|X|(T )) and
increases by at most 1

4 (|X|+1) (since X∪(Sib(v)∩N) is inserted to M , where by
the dependency claim, | Sib(v)∩N | ≤ 1); thus, the measure decreases by at least
3
4 |X| − 5

4 ≥ 1
4 . Observe that in the second branch, we need to insert Sib(v) ∩ N

to M , since otherwise we might have a vertex in N whose sibling, v, has at least
two children in T , which contradicts item 2(b)i of the dependency claim.

Branch 37. [There are v, s ∈ N such that s ∈ Sib(v) ∩ N , |X| = |Y | = 2,
X ∩ Y = ∅ and |(X ∪ Y ) ∩ F | ≤ 1, where X = N(v)\VT and Y = N(s)\VT .
Moreover, there is no u ∈ V \VT such that Paths(N\{v, s}, u, V \(VT ∪ F )) = ∅]

1 If Alg(T,L ∪ {v, s},M, F ∪ X ∪ Y ) accepts: Accept.
2 Else if Alg(T ′ = (VT ∪X,ET ∪{(v, u) : u∈X}), L∪{s},M, F ) accepts: Accept.
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Fig. 2. The case handled by Rule 8.

3 Else if Alg(T ′ = (VT ∪Y,ET ∪{(s, u) : u∈Y }), L∪{v},M, F ) accepts: Accept.
4 Return Alg(T ′ = (VT ∪X ∪Y,ET ∪{(v, u) : u∈X}∪{(s, u) : u∈Y }), L,M,F ).

The rule is exhaustive in the sense that we try all four options to determine
the roles of v and s. Also, recall that once a vertex is determined to be an
internal vertex, we can attach each of its neighbors outside T as a child (as
explained in Rule 8). Thus, to prove the correctness of the rule, it suffices to
show that in the first branch, inserting the vertices in X ∪ Y to F is safe (i.e., if
(T,L ∪ {v, s},M, F ) is a yes-instance, then (T,L ∪ {v, s},M, F ∪ X ∪ Y ) is also
a yes-instance). Let S be a solution to (T,L ∪ {v, s},M, F ). Suppose that there
is a vertex u ∈ X ∩ Int(S). Then, we can disconnect (in S) the leaf v from its
parent and reattach it to u, obtaining a spanning tree S′ with the same number
of leaves as S (since u ∈ Int(S)). Next, we disconnect the leaf s and reattach
it (in S′) to another neighbor w ∈ V \(Int(T̃ ) ∪ L′ ∪ F ′), where T̃ , L′ and F ′

are defined as in the dependency claim (the existence of w is guaranteed by the
dependency claim). We thus obtain a solution S′′ with at least as many leaves as
S′, in which the parent of v and s in T is a leaf. By our construction, S′′ complies
with (T̃ , L′ ∪ F ′) (since as we progress in a certain branch, we only extend the
sets Int(T ) and L∪F ). This contradicts the dependency claim. Thus, there is no
vertex u ∈ X ∩ Int(S). Symmetrically, there is no vertex u ∈ Y ∩ Int(S). Thus,
S is also a solution to (T,L ∪ {v, s},M, F ∪ X ∪ Y ).

Next, we argue that the dependency claim holds in all branches. In the first
branch, this is clearly correct. Denote X = {x1, x2} and Y = {y1, y2}. Now, con-
sider the second branch. There is no solution for (T,L∪{v, s},M, F ), since other-
wise Alg would have accepted in the first branch. Moreover, x1, x2 ∈ Lea(T ′)\M
(where T ′ is defined in the second branch), and Paths(N\{v, s}, x1, V \(VT ∪
F )),Paths(N\{v, s}, x2, V \(VT ∪ F )) �= ∅ (this follows from the condition of the
rule). Therefore, the claim holds in the second branch. Symmetrically, the claim
holds in the third branch. Similarly, noting that Alg did not accept in the second
and third branches, the claim holds in the fourth branch.

Finally, the branching vector is at least as good as (5, 2, 2, 2) since in the first
branch, at least five vertices are inserted to L ∪ F , in each of the second and
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Fig. 3. The case handled by Rule 37.

third branches, one vertex in inserted to Chi2(T ) and one vertex is inserted to
L, and in the fourth branch, two vertices are inserted to Chi2(T ). The root of
this branching vector is at most 3.1880.5.

4 Conclusion

In this paper, we developed an O∗(3.188k)-time parameterized algorithm for the
k-LST problem, which implies that it admits a klam value of 39. To this end,
we employed the classic bounded search trees technique, in whose application
we integrated an interesting claim that captures dependencies between nodes in
a compact and useful manner. It is natural to ask whether our approach can be
further improved to obtain a faster algorithm for k-LST, which, in turn, might
prove that k-LST admits a klam value better than 39. Although a more refined
set of rules might result in a better running time, in order to make significant
progress while using our approach, we suggest to devise a more powerful depen-
dency claim. The most problematic cases in our analysis occur when we handle
vertices in N . The worse root that we obtain is associated with Rule 30; however,
optimizing this rule will not be very useful, since our algorithm contains other
rules (which handle vertices in N) whose roots are quite close to it. However, a
dependency claim that is easier to both exploit and maintain might lead to the
desired improvement. The new dependency claim should capture more delicate
relationships between decisions made along the branches of a search tree, which
might both speed-up and simplify our algorithm.
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