Modeling Railway Control Systems in Promela

Roberto Nardone! ™), Ugo Gentile!, Massimo Benerecetti', Adriano Peron?,

Valeria Vittorini!, Stefano Marrone?, and Nicola Mazzocca!

1 Universita di Napoli Federico II, Naples, Italy
{roberto .nardone,ugo.gentile,massimo.benerecetti,adrperon,
valeria.vittorini,nicola.mazzocca}@unina.it
2 Seconda Universita di Napoli, Naples, Italy
stefano.marrone@unina2.it

Abstract. This paper presents an approach to systematically build
Promela models with the aim of generating test cases within the sys-
tem level testing process of railway control systems. The paper focuses
on the encoding of the system model, of the aspects related to the repre-
sentation of possible execution environments and their interaction with
the system. The input for building a Promela model of the system under
test is a state machine based specification. Indeed, state machines are
one of the most common notations used in industrial settings to model
critical systems and allow for easily obtaining the Promela model of the
system by applying a well structured transformational approach; further-
more, state-based formalism are also highly recommended by CENELEC
norms to model railway control systems.

In our approach Dynamic State Machines (DSTMs) are used, a newly
developed extension of hierarchical state machines which allow for mod-
eling dynamic instantiation of processes. The approach is applied to a
functionality of the Radio Block Centre, the vital core of the ERTM-
S/ETCS Control System, in order to show the feasibility and effective-
ness of the generation of the Promela model on a real system.

Keywords: Model checking < Promela - SPIN : Dynamic state
machine - CRYSTAL - Railway control systems - Test case generation

1 Introduction and Related Work

The extensive usage of model checking in the Verification& Validation (V&V)
activities in the context of control systems development is not a common prac-
tice in industry. One of the reasons is the difficulty of building a non trivial model
of the system under test (and expressing the properties to be verified) from the
artifacts produced during the verification and testing process, without requiring
radical changes in the process itself. Other reasons may be the lack of efficiency
of the available approaches or the lack of expressive power of the languages used
to build the system models. This paper addresses these problems with specific
reference to the railway domain. The European norm CENELEC EN50128 [3]
© Springer International Publishing Switzerland 2016

C. Artho and P.C. Olveczky (Eds.): FTSCS 2015, CCIS 596, pp. 121-136, 2016.
DOI: 10.1007/978-3-319-29510-7_7

122 R. Nardone et al.

emphasizes the usage of model checking as one of the highly recommended tech-
niques to be exploited for formal verification purposes. We propose an automat-
able approach to build a Promela model, which can be easily integrated into
V&V activities. The resulting Promela model can be conceptually divided into
two main parts: the first one consists of a set of Promela processes obtained
by translating a state-based specification of the system under test (SUT), the
second one is a dedicated Promela process modeling possible environment execu-
tions. In this work we adopt DSTM (Dynamic State Machine) [9] as the formal
language used to model the SUT. DSTM extends Hierarchical State Machine
(HSM, [1,8]) and allows for dynamic instantiation of machines (processes), pro-
cedure calls, parallelism, parameter passing, interrupts, communication through
global variables and channels. The basic ideas underlying the proposed approach
are not new. In past work [5] a model-based approach is proposed for the formal
verification of the executable code of a railway control system. Several transla-
tions from state-based formalisms to model checkers have been proposed in the
literature. For example, the work [13] describes an approach to automatically
generate test cases for code coverage, by exploiting the capability of the NuSMV
model checker. A similar approach is presented in the work [4], which focuses
on a methodology to encode Abstract State Machine into Promela, in order to
automatically generate test cases. In the past work [12] timing constraints, spec-
ified with MARTE Profile, are modeled as automata and then translated into
Promela models for the verification of constraints fulfillment.

With respect to the literature, the major strength of our work resides in the
definition of a structured approach to build non trivial Promela models taking
into account both the issues to be faced in modeling the SUT and the (possibly
non-deterministic) behaviors of the environment. The proposed approach is fully
automatable starting from a DSTM specification and can be easily integrated in
existing industrial settings. The ability of constraining the possible inputs to the
SUT provided by the non-deterministic environment, allows, on the one hand,
to achieve efficiency in terms of state space generation and analysis effort and,
on the other, to prevent the generation of unfeasible test cases.

This paper provides a bird-eye view on the overall modeling approach, in
particular a description of how some of the features of DSTM are translated
into Promela and the definition of the environment model are presented by
using a running example. A complete case study is also proposed, based on a
functionality of the Radio Block Centre, a real railway control system. The paper
is organized as follows: Sect.2 summarizes the essential features of DSTM and
introduces the running example. Section 3 presents the approach to construct
the Promela model. Section 4 contains the railway case study and, finally, Sect. 5
provides some closing remarks and hints about future work.

2 Background and Running Example

DSTM [9] is a newly defined formalism developed within the context of the
ongoing ARTEMIS Joint Undertaking project CRitical sYSTem engineering

Modeling Railway Control Systems in Promela 123

AcceLeration! (CRYSTAL, [10]). It has been designed according to the needs
expressed by a railway industry in order to be easily integrated in the testing
process of signaling control systems. The ultimate goal is to develop an interop-
erable testing environment providing a high level of automation [2].

As the aim of the paper is to introduce an approach to build non trivial
Promela models starting from a DSTM specification of the SUT, in the follow-
ing we provide an informal introduction to DSTM by means of the toy run-
ning example depicted in Fig. 1. The example contains two machines: a machine
modeling a Set-Reset (SR) flip-flop (Fig. 1(a)), and machine that models a 4-bit
register (Fig. 1(b)) by activating four parallel instances of the flip-flop machine.

A DSTM is a collection of parametric machines, channels, variables and data-
types. The evolution of a DSTM is a sequence of instantaneous reactions (steps).
A step is a maximal set of transition firings which are triggered by the current
set of available events avoiding sequential firings of transitions within the same
step. DSTM allows for the definition of (internal or external) channels and global
variables that allow for communication between machines. Additionally, DSTM
gives the possibility to build complex types starting form basic ones. Specifi-
cally, basic types are integer, enumerations and channel names. Basic types can
be composed to constitute compound types and multi-types. Compound types
are structured types similar to records of basic types; multi-types, instead, are
collections of basic and compound types. Channels may convey messages of any
available type.

M_FlipFlop (Chn[couple_bit] C_SR,

Chncouple_bit] C_out) M_Register

init_flipflop

T16: C_SR? T14: |C_out!<bit::bit_0> init_register
[C_SR[?<bit::bit_0,_>]]

|C_outi<bit:bit_0>

T7
inst:
C_SR=C_SR_3
_out=C_out_3
by_1

box_ff3
[M_FlipFlop]

: T5: T6:

: inst: inst:
C_SR=C_SR 0 [C_SR=C_SR_1 |C_SR=C_SR 2
C out=C_out 0 [C_out=C_out_ 1 |C_out=C_out 2

box_ff1 box_ff2
[M_FlipFlop] [M_FlipFlop] [M_FlipFlop]

T19: C_SR?
[C_SR[?<_bit:bit_1>]]
|C_outi<bit::bit_0>

T17:C_SR?
[C_SR[?<bit:bit_1, >])
|C_outi<bit:bit_1>

T18: C_SR?
[C_SR[?<_bit:tbit_0>]]
|C_outi<bit:bit_1>

by_1

\LTQ \Lﬂo \l’ﬂ 1 \Lﬂ 2
n TS T13
|C_outi<bit:bit_1> \l, 1
®exmng,regls‘er
(b)

(a)

Fig. 1. (a) SR flip-flop model. (b) 4-bit register model

A single machine is composed of vertices, transitions and parameters. Dif-
ferent kinds of vertices may be included in a machine. Nodes represent the pos-
sible control states (e.g., node idle of M_Register in Fig.1). An initial node
is also present in each machine, corresponding to the default entry (e.g., node
init_register of M Register). Moreover, a machine may contain additional
entering nodes (e.g., node by_1 of M_FlipFlop) and exiting nodes (e.g., node

! http://www.crystal-artemis.eu/.

http://www.crystal-artemis.eu/

124 R. Nardone et al.

exiting register of M_Register). Bozes represent single or multiple machine
invocations (parallel procedure calls). A transition entering a box models the
invocation of the machine(s) associated with the box, while a transition leaving
a box corresponds to a return from that machine(s). For instance, transitions
T4-T7 perform invocations of the parametric machine M_F1ipFlop, with suitable
instantiation of its parameters, by entering boxes box_ff0, box_ff1, box ff2
and box_ff3, respectively. Parallel behavior can be modeled either by associat-
ing multiple machines with a single box, or by explicitly splitting and merging
the control flow using fork and join constructs. To this end, Fork and Join
pseudonodes are provided in DSTM. A transition exiting a fork can execute
either synchronously or asynchronously with the currently executing process. In
the latter case, a transition from the fork node leads to a node of the caller
machine. For instance, transition T2 triggers an asynchronous fork, instantiat-
ing four boxes whose associated machines execute asynchronously with the caller
machine M_Register. Join nodes allow for merging of multiple control flows from
concurrently executing processes. It either synchronizes the termination of the
involved processes or forces their termination if a preemptive transition, marked
by the symbol ®, enters the join node. Note that asynchronous forks, occur-
ring within loops, allow for the dynamic instantiation of processes. This feature
may lead to an unbounded number of processes and, as a consequence, to an
unbounded state space. To allow Spin to analyze of the resulting designs, the
generation of the corresponding Promela models bounds the number of instan-
tiation of each machine.

Transitions are decorated with triggers, conditions and actions. With refer-
ence to Fig. 1, the decoration of transitions T2 in machine M_Register contains
only a trigger which tests the presence of a message on the channel power_on,
no additional condition is required for firing and no action is performed. Tran-
sition T16 in machine M_FlipFlop, instead, requires the presence of a specific
message on the parametric channel C_SR. In fact, messages sent over the channel
C_SR are structured as couple_bit = (bit,bit), where bit is an enumerative
type bit = {bit_0,bit_1}. The trigger of T16 tests the presence of a message
over the channel C_SR, while the condition further requires that the content of
the received message is a pair whose first component has the value bit: :bit_0,
whereas the second component is simply ignored (denoted by the wildcard “”).
The action performed upon firing of the transition corresponds to the delivery
of the value bit::bit_0 on the parametric channel C_out. Parameters associ-
ated to a machine (e.g., parameters C_SR and C_out of machine M_FlipFlop) are
instantiated at invocation time.

3 Definition of the Promela Model

Starting from a DSTM specification of the SUT, we build a Promela model with
the goal of generating test sequences, exploiting the capability of model checkers
to build counterexamples of violated properties. By following a structured app-
roach, a set of Promela processes is systematically built from the DSTM model of

Modeling Railway Control Systems in Promela 125

the SUT, together with a Promela process modeling a (non-deterministic) envi-
ronment. We exemplify the generation of test sequences by assuming that the
coverage of transitions is required. A more general discussion about requirements
and how they are expressed is out of the scope of this work. Before describing
how the Promela model can be automatically built, we provide a high level
overview of the steps implementing the translation of DTSMs into Promela.

3.1 Generation Steps

System Model (DSTM) Promela Code
mtype = {N1, N2, ...}
proctype process_Machine(mtype P1, ... { Spi
{0340 -
dstm dstm \ System Model
2 2
dstm promela K ——— -~ - ————-—--—
active proctype Engine() {
\
»' Environment Model
R . e Test Cases
equrements S
; Never Claims (counterexamples)

Fig. 2. Overview of the general approach.

Figure 2 depicts the steps which enable the automatic generation of the Promela
model. Since Promela does not support hierarchical specifications, the encoding
of a hierarchical DSTM model is performed in two phases. The first one is a
dstm2dstm, where the hierarchical source model is flattened, to get rid of the
hierarchical structure of a DSTM (the vertical modularity) and suitably encod-
ing the horizontal modularity (i.e., parallelism). In this phase, all boxes, forks
and joins are removed from the model and additional nodes are inserted when
necessary. The dynamic instantiation of machines is translated into specific run
commands, added to the action list of those transitions replacing the ones enter-
ing the boxes. During the second step, named dstm2promela, the flat DSTM
model resulting from the previous phase is translated directly into Promela and
a dedicated Promela process, called Engine, is generated to model the execution
environment of the SUT.

The test goal and the assumptions about the execution environment of the
SUT (if any) provide requirements that the model of the environment must
satisfy. These requirements drive: (1) the refinement of the Engine process, by
inserting constraints on the communication channels, and (2) the generation
of never claims. Never claims are used to focus the analysis of the system to
behaviors of special interest. In our case, never claims are used to describe those
behaviors of the system that exhibit the occurrence of some desired transition.
When a never claim is fulfilled, the model checker Spin provides a counterexam-
ple, which, in the present setting, corresponds to a possible test sequence that
covers the specified transition.

126 R. Nardone et al.

3.2 Building the System Model

The step semantics of DSTM prevents sequential firings of transitions within
the same execution step. Hence, we need to guarantee that at most one enabled
transition can fire for each active process. To this aim, each DSTM machine M is
translated into a Promela process, called process_M, which is instantiated by its
caller process using the Promela command run, which allows for dynamic activa-
tion of processes. Each process encoding machine M is then executed until a ter-
mination message, sent by its caller, is received over a special channel ch_term M
(defined as a local channel to the caller). Each Promela process, modeling a
DSTM machine, must own a token in order to fire an enabled transition. When
a process owns a token it is scheduled, it consumes its token and: if none of
its transitions is enabled, the process propagates the token to each of the child
processes it has previously activated, if any; otherwise, one of the enabled tran-
sitions is selected and executed. At the beginning of each step only the process
corresponding to the initial machine (main) owns the token. This machine is
M_Register in the case of the running example. A set of global variables and
channels is declared for each process. In Listing 1 all the automatically generated
declarations for the running example are reported.

Listing 1. Global variables for the running example.

. #define MAXPROC 6
. mtype last_-transition ;
bit has_token [MAXPROC];

. mtype = {init_register , idle, exiting-register };
. mtype = {T1, T2.T3.T4.T5_.T6.T7, T8 T9_.T10.T11_T12.T13};
. mtype = {init_-flipflop , by_-1, QO0, Ql};

. mtype = {T14, T15, T16, T17, T18, T19};
. mtype state-M_Register [MAX.PROC] ;
. mtype transition-M_Register [MAXPROC];
10. mtype state-M_FlipFlop [MAXPROC];
11. mtype transition_-M_FlipFlop [MAXPROC];

N e N N

12. mtype = {bit_0, bit_1};

13. chan power.on = [2] of {bit};

14. chan power_off = [2] of {bit};

15. chan C_.SR_0 = [2] of {mtype, mtype};

16. chan C_out.0 = [
17. chan C_SR.1 = [2
18. chan C_out.1 = |
19. chan C-SR-2 = [2
[
2
[

]

2] of {mtype}

] of {mtype, mtype};
2] of {mtype};

] of {mtype, mtype};
20. chan C_out-2 = [2
21. chan C.SR.3 = [2]
22. chan C_out-3 = [2

] of {mtype};
of {mtype, mtype};
] of {mtype};

A global variable has_token, typed as a bit array, is used to store the assign-
ment of the tokens described before (line 3). Specifically, this array contains 1in
the i-th location if the machine with pid equal to ¢ currently has the token. Note
that this array is global and visible to the entire Promela model. Two enumera-
tion types (mitype) introduce symbolic names for nodes and transitions (e.g., lines
6 and 7 correspond to process M _FlipFlop). The mtype vector variable state M
is used to maintain the current states of all the instances of machine M (e.g., line
10). Its elements are all initialized to the initial node of the corresponding machine.
A miype vector variable transition M is used to keep track, for each instance of
machine M, of the transition that fires in the current step (e.g., line 11). From lines
12 to 22 types and channels are declared. Both channels C_SR and C_out can store
two messages, in order to correctly implement the step semantics, as it will be

Modeling Railway Control Systems in Promela 127

explained in Sect. 3.3. Finally, the variable last_transition (line 2) is used to
store the name of the last transition covered in an execution. This information is
used for instrumentation purposes, specifically it allows for the definition of the
never claim requiring to find a the covering of a transition.

Promela Model of Machine M _FlipFlop. Each node of a machine is mapped
into a guarded statement of the form guard —>statement. In Listing 2 an excerpt
of the Promela translation of machine M_FlipFlop is reported. Notice that the
channel names C_SR and C_out are parameters. The actual names are provided by
the caller process, which can distinguish the different instances of M_FlipFlop.
Furthermore, the ch_term channel is added as parameter: over this channel,
defined locally to the caller, this latter sends the termination message to the one
executing.

Listing 2. Promela code of machine M_F1lipFlop (excerpt).

24. proctype process_.M_FlipFlop (chan C.SR; chan C_out, chan ch_term) {
25. do

46. it (state-M_FlipFlop [-pid]==Q0 && has_token [_pid]==1) —>
47. atomic {

48. printf(”<current node[\%d] = QO0>\n”",_pid);

49. has_token [_pid]=0;

50. if

51. i: (C.SR?[bit-0,_-]) —>

52. C_out!bit_0;

53. printf(?<firing transition[\%d] = T16>\n”,_pid);
54. transition_.M_FlipFlop [.pid]=T16;

55. state_M_FlipFlop [-pid]=Q0;

56. last-transition=T16;

57. :: (CSR?7[bit_1,_]) —>

58. C_out!bit-1;

59. printf("<firing transition[\%d] = T17>\n”, _pid);
60. transition_M_FlipFlop [-pid]=T17;

61. state_M_FlipFlop [_-pid]=Q1;

62. last_transition=T17;

63. i1 else

64. £i

65. }

86. od unless {

87. ch_term 71;

88. printf(”<Machine M_FlipFlop[\%d] terminated>\n”,_pid);
89. }

92. }

The guard of the statement checks whether some enabled transition is allowed
to fire from a node: the current node must be the source node of the transi-
tion (e.g., state M FlipFlop[_.pid]==Q0 in Listing 2, line 45) and the process
owns the token (has_token[_pid]==1, line 45). The statement is atomic and
contains a sequence of statements executed indivisibly. The first statement in
the sequence consumes the token. Then, a conditional statement contains one
guarded statements for each transition exiting from that node (e.g., lines 51, 57).
Their guards correspond to the enabling condition of the DSTM transitions and
the associated statements translate the actions of the transitions. The actions
(if any) associated with a DSTM transition are translated into basic Promela
statements and operators, and they are executed when the associated guarded
statement is selected. If more than one guarded statement is executable, one of
them is non-deterministically selected. The else branch in the conditional state-
ment (e.g., line 63) is taken when no transition can fire. The process is executed

128 R. Nardone et al.

until a termination message, sent by its caller, is received by the caller over the
channel ch_term (lines 86-89).

Promela Model of Machine M _Register. As opposed to the previous com-
ponent, machine M_Register has a hierarchical structure, which requires to be
flattened before translating it to Promela. The flattening phase removes all the
boxes, fork and join constructs. In doing that, some transitions may be modified,
eliminated or added. Moreover, additional variables and channels are introduced
and proper conditions and actions are modified or added to the decorations of
existing transitions. These elements are used to provide additional information
and directives for the generation of the Promela code. The resulting flattened
model of the DSTM in Fig. 1(b) is reported in Fig. 3.

M_Register

|pid_temp=run process_M_FlipFlop(C_SR_0, C_out_0, ch_term_box_ff0_M_FlipFlop);
state_M_FlipFlop[pid_temp]=init_flipflop;

pid_temp=run process_M_FlipFlop(C_SR_3, C_out_3, ch_term_box_ff3_M_FlipFlop);
state_M_FlipFlop[pid_temp]=by_1;

init_register
T8_T9_T10_T11_T12_T13: power_off? |ch_term_box_ff0_M_FlipFlop!1;

ch_term_box_ff1_M_FlipFlop!1;
exiting_register o

Fig. 3. Promela representation of the hierarchical machine M_Register.

The flattening of machine M_Register proceeds as follows. Since transition
T2 (see Fig. 1(b)) enters a fork, the process continues its execution after the fork
is performed. The DSTM model of M_Register is changed as follows:

— the fork and join nodes and the boxes are removed together with their entering
and exiting transitions;

— a loop transition from the node idle is created which replaces transition T2,
T3, T4, T5, T6 and T7. The decoration of this transition specifies the trigger
of T2 (i.e., power_on?) and actions which contain all the information needed
to instantiate the machines called inside the boxes; in particular, the actions
specify the Promela statements to execute the four instances of the processes
called by the fork operation (e.g., run process M flipflop) and set their
initial state (e.g., state M _flipflop[pid_temp]l=initial).

— a transition from node idle to the exit node is created which replaces
transitions T8, T9, T10, T11, T12 and T13. The decoration of this transi-
tion specifies the trigger of the preemptive transition T8 (power_off?) and
actions encoding the preemptive join by requesting the termination of the
four flip-flop processes through message on the termination channels (e.g.,
ch_term box_ffO0 M FlipFlop!1) which are added to the model.

Modeling Railway Control Systems in Promela 129

Listing 3 shows an excerpt of the Promela process encoding the flat machine
depicted in Fig. 3 obtained by applying the technique explained above.

Listing 3. Promela code of machine M_Register (excerpt).

94. proctype process-M_Register () {

95. byte i;

96. pid pid_temp ;

97. bit my_children [MAX_PROC];

98. chan ch_term_box_ffO_M_FlipFlop, ch_term_box_ffl_M_FlipFlop ,
ch_term_box_ff2_M_FlipFlop, ch_term_box_ff3_M_FlipFlop ;

99. do

109. it (state_M_Register [-pid]==idle && has_token [_pid]==1) —>

110. atomic {

111. printf(?”<current node[\%d] = idle>\n",_pid);

112. has_token [_pid]=0;

113. if

114. :: (power_on?[1]) —>

115. pid_temp = run process_M_FlipFlop (C_.SR.0, C_out.0,
ch_term_box_ffO_M_FlipFlop) ;

116. state_M_FlipFlop [pid_temp]=init_flipflop ;

117. my_children [pid-temp] = 1;

118. has_token [pid-temp]=1;

135. :: (power_off?[1]) —>

136. ch_term_box_ffO_M_FlipFlop!1;

137. ch_term_box_ffl_M_FlipFlop!1;

138. ch_term_box_ff2_M_FlipFlop !1;

139. ch_term_box_ff3_M_FlipFlop!1;

140. printf(?<firing transition[\%d] = T8_T9_T10_.T11_.T12_T13}>\n",_pid);

141. transition_.M_Register [_pid]=T8_T9_T10.T11_.T12_T13;

142. state_.M_Register [_pid]=exiting_register ;

143. last-transition=T8.T9.T10-T11.-T12.T13;

144. i: oelse —>

145. for (i : 0 .. MAXPROC—1) {

146. has_token [i]=my_children [i];

147.

148. fi;

149. }

155. od unless {

156. ch_term_M_Register ?[1];

157. printf(”<Machine process_.M_Register[\%d] terminated>\n”,_pid);

158. }

159. }

3.3 Modeling the Environment

As anticipated in the previous section, the possible environments of the SUT
are modeled by a Promela process named Engine. This is the first process to
be activated in the and it is the only process required to be running in the
initial state by using the prefix active in its proctype declaration. The process
Engine is in charge of: (1) instantiating the main machine of the system model;
(2) non-deterministically generating messages, delivered by the environment on
the external channels at the beginning of each execution step; (3) assigning the
token to the main machine, starting the execution of a new execution step.
The Engine process is activated whenever no statement is executable in
any process belonging to the system model. This situation is captured by the
timeout Promela variable being true. This happens when each process belonging
to the system model has consumed its own token, meaning that the execution
current step is completed. Furthermore, Engine uses local variables to non-
deterministically generate new messages in the external channels. These local
variables are in correspondence to the fields of the compound types exchanged
over those channels. Hence, in the running example, we have two variables, temp1
and temp2, as declared at line 162 of the snippet of code reported in Listing 4.

130 R. Nardone et al.

Listing 4. Promela code of machine Listing 5. Promela code of machine
Engine - initialization Engine - generation of new messages
161. active proctype Engine() { 178. generation :
162. mtype templ, temp2; 179. atomic {
163. pid pid-main; 180. printf(”<ENGINE: message
164. pid_-main = run process-M_Register generation >\n”) ;
O 181. //MESSAGES ON power-on
165. state-M_Register [pid-main]= 182. if
init_register; 183. : (len(power-on)==1) —>
166. printf(<ENGINE: main machine 184. if
has pid = %d\n>”, pid-main) ; 185. c: (1) —> templ=0;
167. //Generation of first message 186. i (1) —> templ=1;
168. power_on!0; 187. fi;
169. poyvcr—off!O; . 188. printf(”<ENGINE: power_on —
170. C,bR,lent_,O , bit_0; generated <%d>>\n”", templ) ;
171. C_.out_0!bit_0; 189. power_on!templ;
190. :: (full (power-on)) —> skip;
191. fi;
192. power_on?templ ;
343. //GIVE TOKEN TO THE MAIN
, , , PROCESS
344. has_token [pid_-main] = 1;
[CN] BTN CIN] |35 it iRame e cwion
' LN ! ! >\n");
current ! non deterministic ! R/ 1 current 346. \} a
val T f . . 347. do
alue input (if empty) value 348. :: timeout —>
(a) () (0) (A 349. goto generation;
350. od
351. abort:
. . 352. kip ;
Fig. 4. Message generation for the sas. 3 7

power_on channel.

First, the Engine process runs the main machine (i.e., process_M Register())
and stores its pid in the local variable pid main (Listing 4, line 164). Then,
Engine initializes the channels (Listing 4, lines 167-171).

After those initialization steps, process Engine starts an atomic block in which
it non-deterministically generates the messages to be sent over the channels (e.g.,
Listing 5, lines 182187 initialize the power_on channel). The starting statement
of this block is identified by the label generation at line 178 in Listing 5.

The subsequent evolution of the processes is driven by a suitable message
handling mechanism, implemented as explained in the following. Each external
channel has a buffer that stores two messages (Fig.4). The first position C is
used to store the message available in the current step, whereas the position N
is used to store the message to be delivered in the next step (if any). During the
execution of the current step, the processes modeling the SUT can read mes-
sages contained in positions C of any channels, without removing them. If a new
message is produced by the SUT, it is stored in positions N of the corresponding
channel (Fig.4(a)). At the beginning of the next step, the Engine checks for the

Listing 6. Promela code of machine Engine - constraints.

212. //MESSAGES ON C_SR._.0
213. if

214. :: (len (C-SR-0)==1) —>
215. if

216. 2 (1) —> templ=0;
217. 2 (1) —> templ=1;
218. fi;

219. if

220. i (1) —> temp2=0;
221. i (1) —> temp2=1;
222. fi;

223. if

224. :: (templ==1 && temp2==1)—> goto abort;
225. :: else —> skip;
226. fi;

Modeling Railway Control Systems in Promela 131

presence of messages in positions N, (Listing 5, line 183). If a position N does
not contain a message generated by the SUT processes during the previous step,
the Engine generates a new message by using temp variables and if statements
(Fig. 4(b), Listing 5, lines 184-189). Finally, the Engine consumes all the mes-
sages contained in positions C (line 192), by moving the content of position N in
each channel to position C, thus making the messages previously generated for
the next steps available (Fig. 4(c)).

Note that the receive statement at line 192 is always executable. This is
ensured by the fact that the SUT never removes messages from the external
channels. Therefore, that statement is never blocked, as two messages are always
stored in each channel when it is executed.

The generation block ends by assigning the token to the main process (List-
ing 5, line 344). Then, the Engine process enters the do construct, where it waits
until the Promela global variable timeout evaluates to true. This happens when
no statement is executable in the active processes, hence when all the SUT
processes have consumed their token. In this case, Engine executes a jump to
the generation label, starting a new step.

3.4 Constraining Behaviors

The non-deterministic generation of messages to be sent over the channels can
be constrained to a set of requirements that the desired environment must fulfill.
Such constraints can be used to prevent the environment to prompt the system
with unfeasible combinations of inputs.

The simplest constraint a designer may require is to avoid the generation of
conflicting messages over the channels. As an example, the SR flip-flop cannot
be prompted with both R = 1 and S = 1. This constraint can be expressed in
Promela as shown in Listing 6. The constraint is included in the already described
generation block for channel C_SR_0. After the generation of the values for the
signals S and R in the variables temp_1 and temp_2 respectively, the statements
reported at lines 223-225 check that these values are not both equal to 1. If
the constraint is not satisfied, the Engine process jumps to the abort label
(reported in Listing 5), which immediately ends this process, interrupting the
related behavior. Note that the alternative handling of constraint violations that
generates a new set of values for the messages is not an efficient solution, since
it increases the number of possible execution paths in the state space, without
adding meaningful behaviors. Similarly, we can express constraints involving
different fields of the same compound message and constraining the generation of
messages subject to the occurrence of specific events. These kinds of constraints
are not described here for sake of space.

4 A Case Study in the Railway Domain

ERTMS/ETCS (European Rail Traffic Management System/European Train
Control System, [11]) is a standard for the interoperability of the European
railway signalling systems ensuring both technological compatibility among

132 R. Nardone et al.

trans-European railway networks and integration of the new signalling system
with the existing national interlocking systems. The ERTMS/ETCS specifica-
tion identifies three functional levels featuring growing complexity. They can be
implemented singularly or in conjunction and mainly differ in the communica-
tion mechanisms adopted to control the trains. Level 2 and Level 3 represent
two more cutting-edge solutions than Level 1, at this moment Level 2 is the
most widespread choice between Level 2 and Level 3. A reference architecture for
ERTMS/ETCS systems consists of three main subsystems: the on-board system
is the core of the control activities located on the train; the line side subsystem
is responsible for providing geographical position information to the on-board
subsystem; the trackside sub-system is in charge of monitoring the movement
of the trains. The Radio Block Centre (RBC) is the most important component
of the track side subsystem of the ERTMS/ETCS architecture. RBC is a com-
puting system whose aim is to guarantee a safe inter-train distance on the track
area under its supervision. It interacts with the on-board system by managing
a communication session, by using the EURORADIO protocol and the GSM-R
network. In the following, part of a realistic realization of an RBC procedure is
described, together with the test generation procedure that demonstrates how
the proposed approach can be effectively applied to obtain test sequences.

4.1 The Communication Procedure of the Radio Block Centre

The Communication procedure is modeled by the DSTM specification shown in
Fig. 5. The main machine M_CommunicationEstablishment (Fig.5(a)) is in
charge of modeling the management of the connection requests issued by the
trains. It accepts a limited number of requests (collected in variable V_cont)
and for each accepted request it instantiates a new machine M_ManageTrain by
entering the box MCE_manageTrain. Three transitions exit from node MCE_idle:
MCE_T03, MCE_T06 and MCE_T02. MCE_TO3 enters the fork, it is triggered by the
availability of a message on channel C_request and it is guarded by the condition
V_cont<=3. The action of this transition delivers acceptance message over chan-
nel C_answer, increments counter V_cont and stores in variables V_chSystemVer
sion, V_chAck and V_chSessionEstablished the names of the channels to be
used to communicate with the train. The asynchronous control flow exiting
from this fork returns back to node MCE_idle. When an instance of machine
M_ManageTrain terminates its execution, transitions MCE_T06 and MCE_TO7 merge
the control flow by entering the join node; transition MCE_TO08 exiting the join
decrements the counter V_cont. Transition MCE_T02 from node MCE_idle, instead,
is activated on receiving a connection request, when the maximal number of ser-
vice requests has been reached. The action of this transition delivers of a suit-
able refusal message over channel C_answer. Machine M_ManageTrain (Fig. 5(b))
models the management of the communication procedure with a specific train. It
takes the names of the channels, on which the train and RBC will communicate,
as parameters. This machine enters node MMT_idle and then instantiates machine
M_SessionEstablishment, which models the session establishment protocol, by
entering the corresponding box. Machine M_SessionEstablishment (Fig.5(c))
can terminate its execution with different exiting conditions (i.e., different exiting

Modeling Railway Control Systems in Promela 133

M_CommunicationEstablishment

MCE_T02: C_tequest? [V_cont=4] /C_answerl<answer.refused>;

MCE_T03:
MCE_To1: C_request? [V._cont<=3] /C_request[?]<V_chSystemVersion,
o NV_cont=0; VICE idl V_chAck, V_chSessionEstablished>;
° idle
C_answerl<answer::accepted>;

@ V_cont:=++V_cont;

5: inst: ch_SystemVersion =
MCE_T08: MCE_manageTrain | oh_Ack =
V_cont:=-V_cont;

IGE.To7 Ch_SessionEstablished =
- V_chSessionEstablished;

M_ManageTrain(Chn[M_SystemVersion] ch_SystemVersion, Chn[M_Ack] ch_Ack,

Chn[M_ ch_
- MSE_entry
MMT_T02: [M_Session MMT_T03: ifist: . MMT_entry
inst: Establishment] E_som [M_Entry]
ch_SystemVersion= ‘aborted MMIT.
- MMT_T04: inst: —som
ch_SystemVersion; [M_Sstartof
| Mission]
() MMT_T07 T _givena | MMT_TOS: inst
MMT TO1 [M_MovAuth]
= MMT_idle
MMA_afterEntry
MMT_T08
MMT_TO6: inst: ..
M_ hn[M_] ch_ ., Chn[M_Ack] ch_Ack,
Chn[M_ ished] ch_
MSE_TO1: /ch_SystetmVersion!<version::V1>
MSE_T06:
MSE_waitFor ch_SessionEstablished?
Ack feh._ ished[?
<area:L1,_,_>]]

MSE_waitFor
SessEstab

© MSE_T02
ch_System\fersion? ||
ch_Sessionfstablished?

MSE_T04:
ch_SystemVersion?
[l ch_Ack?

MSE_T03: ch_Ack?

MSE_T05:
ch_SessionEstablished?

[ch_SessionEstablished[?
<area:L0,_,_>]]

MSE_aborteq

MSE _entry

Fig. 5. DSTM model of the Communication Procedure.

nodes). If the communication session with the train has been successfully estab-
lished, then the machine exits via either via node MSE_som or node MSE_entry,
according to the specific communication mode established. Depending on the
exit node of this machine, machine M_ManageTrain then instantiates either
M_StartOfMission or machine M_Entry. If, on the other hand, the session estab-
lishment protocol aborts, then it terminates its execution in node MSE_aborted.
Finally, machine M_MovAuth is instantiated after the termination of either one
of mechines M_Start0fMission and M_Entry, which provides the train with the
Movement Authority.

4.2 Results

The construction of the Promela model is automatically generated as explained
in Sect. 3. The model contains as many processes as DSTM machines depicted in
Fig. 5 plus the Engine process. As the structure of the Promela model is exactly
the same of the code discussed in Sects. 3.2 and 3.3, only a portion of the code
for process_M_CommunicationEstablishment is shown in Listing 7. The
entire model of the case study contains around 1250 lines of code, where the
first 75 of them are types and variable declarations.

134 R. Nardone et al.

Listing 7. Promela model of McommunicationEstablishment()

proctype process_M_CommunicationEstablishment (chan ch_term) {
byte 1i;
pid pid_temp;
bit my_children [MAX_PROC];
chan ch_term_MCE_manageTrain_M_ManageTrain,
ch_term_MCE_manageTrain_M_ManageTrain_exiting;
do
(state_M_CommunicationEstablishment[_pid]==MCE_initial && has_token[
_pidl==1) ->
atomic {
printf ("<current nodel[
has_token[_pid]=0;
V_cont=0;
printf ("<firing transitionl[
transition_M_CommunicationEstablishment[_pid]=MCE_TO1;
state_M_CommunicationEstablishment [_pid]=MCE_idle;
last_transition=MCE_TO01;

(state_M_CommunicationEstablishment [_pid]==MCE_idle && has_token[_pid
]==1) ->

atomic {

printf ("<current nodel

has_token[_pid]l=0;

if
(C_request?[_,_,_] && V_cont==4) ->
C_answer!refused;
printf ("<firing transitionl[
transition_M_CommunicationEstablishment [_pid]=MCE_T02;
state_M_CommunicationEstablishment[_pid]=MCE_idle;
last_transition=MCE_T02;
(C_request?[_,_,_] && V_cont<=3) ->
C_request?V_chSystemVersion,V_chAck,V_chSessionEstablished;
C_answer !accepted;
V_cont++;
pid_temp=run process_M_ManageTrain(V_chSystemVersion,V_chAck,

V_chSessionEstablished, ch_term_MCE_manageTrain_M_ManageTrain,
ch_term_MCE_manageTrain_M_ManageTrain_exiting);

state_M_ManageTrain[pid_temp]=MMT_initial;
my_children[pid_templ=1;
has_token[pid_templ=1;
printf ("<firing transitionl[
transition_M_CommunicationEstablishment[_pid]=MCE_T03_MCE_TO4_MCE_T05;
state_M_CommunicationEstablishment [_pid]=MCE_idle;
last_transition=MCE_TO03_MCE_T04_MCE_TO05;
(ch_term_MCE_manageTrain_M_ManageTrain_exiting?[1]) ->
ch_term_MCE_manageTrain_M_ManageTrain_exiting?_;
ch_term_MCE_manageTrain_M_ManageTrain!'1l;
V_cont--;
printf ("<firing transition[
transition_M_CommunicationEstablishment [_pid]=MCE_T06_MCE_TO7_MCE_TO08;
state_M_CommunicationEstablishment[_pid]=MCE_idle;
last_transition=MCE_T06_MCE_TO7_MCE_TO08;

else ->
for (i : O .. MAX_PROC-1) {
has_token[i]l=my_children[i];
}
fi;

}
od unless {
ch_term?71;
printf ("<Machine M_CommunicationEstablishment [

e

Modeling Railway Control Systems in Promela 135

In order to show the effectiveness of the approach, we report the resulting
performance of the Promela model for generating a test sequence that covers
transition MSE_T06 of machine M_SessionEstablishment. The test sequence is
obtained by generating a Promela never claim that checks for the existence of
behaviors in which transition MSE_TO06 is taken (i.e., such that the condition
last_transition==MSE_T06 holds). The corresponding never claim is shown in
Listing 8. This Promela model has been executed by SPIN [6] on a personal
computer equipped with an Intel Core-i7, 8GB of RAM. The generation of the
test sequence requires the exploration of 5211 states analyzed in 0.234s.

Listing 8. Never claim

never {
stepl:
if
: (last_transition==MSE_T06) -> goto endStep
: else -> goto stepl
fi;
endStep: skip
}

5 Conclusions and Future Work

In this paper we presented a fully automatable approach to build a non trivial
Promela model from a DSTM specification of a system under test. The app-
roach has been defined to be integrated into existing testing environments in
railway industrial settings and provide practical means to support the auto-
matic generation of test sequences for gray-box testing of control systems. We
are currently completing the process for the automatic translation of DSTM
models into Promela and the construction of the Promela model modeling the
environment of the SUT. This involves the implementation of a chain of model
transformations partially written in ATL [7]. More work along several directions
is needed to provide a complete test case generation environment. In particular,
we are currently working on automating the construction of test specifications
to obtain transition coverage, on optimizing the generation of the test cases, and
on providing the end-user with a proper presentation of the generated sequences.

Acknowledgments. This paper is partially supported by research project CRYSTAL
(Critical System Engineering Acceleration), funded from the ARTEMIS Joint Under-
taking under grant agreement no. 332830 and from ARTEMIS member states Austria,
Belgium, Czech Republic, France, Germany, Italy, Netherlands, Spain, Sweden, United
Kingdom.

References

1. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines.
In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 169-178. Springer, Heidelberg (1999)

136

10.

11.

12.

13.

R. Nardone et al.

Di Martino, B., et al.: An interoperable testing environment for ERTMS/ETCS
control systems. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP
2014. LNCS, vol. 8696, pp. 147-156. Springer, Heidelberg (2014)

CENELEC EN50128: communication, signalling and processing systems - software
for railway control and protection systems (2011)

. Riccobene, E., Rinzivillo, S., Gargantini, A.: Using spin to generate testsfrom

ASM specifications. In: Borger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263-277. Springer, Heidelberg (2003)

Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construc-
tion and verification of railway control systems. Formal Aspects Comput. 23(2),
191-219 (2011)

Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual,
vol. 1003. Addison-Wesley, Reading (2004)

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: a model transformation tool.
Sci. Comput. Program. 72(1), 31-39 (2008)

Lanotte, R., Maggiolo-Schettini, A., Peron, A., Tini, S.: Dynamic hierarchical
machines. Fundam. Inf. 54(2-3), 237-252 (2002)

Nardone, R., et al.: Dynamic state machines for formalizing railway control system
specifications. In: Artho, C., Olveczky, P.C. (eds.) FTSCS 2014. CCIS, vol. 476,
pp. 93-109. Springer, Heidelberg (2015)

Pfliigl, H., El-Salloum, C., Kundner, I.: Crystal, critical system engineering accel-
eration, a truly european dimension. ARTEMIS Mag. 14, 12-15 (2013)

UIC. ERTMS/ETCS classl system requirements specification, ref. SUBSET-026,
issue 2.2.2 (2002)

Yin, L., Mallet, F., Liu, J.: Verification of marte/ccsl time requirements in
promela/spin. In: 16th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), pp. 65-74 (2011)

Zheng, Y., Zhou, J., Krause, P.: A model checking based test case generation
framework for web services. In: Fourth International Conference on Information
Technology, ITNG 2007, pp. 715-722. IEEE (2007)

	Modeling Railway Control Systems in Promela
	1 Introduction and Related Work
	2 Background and Running Example
	3 Definition of the Promela Model
	3.1 Generation Steps
	3.2 Building the System Model
	3.3 Modeling the Environment
	3.4 Constraining Behaviors

	4 A Case Study in the Railway Domain
	4.1 The Communication Procedure of the Radio Block Centre
	4.2 Results

	5 Conclusions and Future Work
	References

