
Towards Safety Analysis of ERTMS/ETCS
Level 2 in Real-Time Maude

Phillip James1, Andrew Lawrence2, Markus Roggenbach1,
and Monika Seisenberger1(B)

1 Swansea University, Swansea, UK
m.seisenberger@swansea.ac.uk

2 Hitachi Data Systems, Poole, UK

Abstract. ERTMS/ETCS is a European signalling, control and train
protection system. In this paper, we model and analyse this complex
system of systems, including its hybrid elements, on the design level in
Real-Time Maude. Our modelling allows us to formulate safety properties
in physical rather than in logical terms. We systematically validate our
model by simulation and error injection. Using the Real-Time Maude
model-checker, we effectively verify a number of small rail systems.

1 Introduction

The European Rail Traffic Management System (ERTMS)/European Train Con-
trol System (ETCS) is a European signalling, control and train protection sys-
tem designed to allow for high speed travel, to increase capacity, and to facilitate
cross-border traffic movements [7]. ERTMS/ETCS is a complex system of sys-
tems, made up by distributed components. It is specified at four different levels,
where each level defines a different use as a train control system. In our paper
we consider ERTMS/ETCS Level 2, which is characterised by continuous com-
munications between trains and a radio block centre.

The switch from classical railway signalling systems to ERTMS/ETCS train
control poses a number of research questions for the formal methods community.
Can safety be guaranteed? Can formal methods be used to confirm that such a
switch improves capacity? Is it possible to predict capacity using formal meth-
ods? To address such questions it is necessary to develop and analyse timed or
hybrid models. ERTMS/ETCS Level 2 takes speed and braking curves of each
individual train into account. These determine the train’s braking point well in
advance of the end of authority that the signalling system had granted to this
train. Such an approach is in contrast to classical signalling systems, which treat
all trains in the same way. Therefore, they need to be designed for worst case
braking. Consequently, in formal safety analysis, such traditional systems can be
treated on a purely logical level, ignoring the aspect of time – see, e.g., [9,10].

An ERTMS/ETCS system consists of a controller, an interlocking (a spe-
cialised computer that determines if a request from the controller is “safe”),
a radio block centre, track equipment, and a number of trains. While the ERTM-
S/ETCS standard details the interactions between trains and track equipment
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 103–120, 2016.
DOI: 10.1007/978-3-319-29510-7 6

104 P. James et al.

(e.g., in order to obtain concise train position information) and radio block
centre and trains (e.g., to hand out movement authorities), the details of how
controller, interlocking and radio block centre interact with each other are left to
the suppliers of signalling solutions such as our industrial partner Siemens Rail
Automation UK. In this paper we work with the implementation as realised by
Siemens. In the following we refer to this system simply as ERTMS.

One development step when building an ERTMS system consists of develop-
ing a so-called detailed design. Given geographical data such as a specific track
layout and what routes through this track layout shall be used, the detailed
design adds a number of tables that determine the location specific behaviour
of interlocking and radio block centre. The objective of our modelling is to pro-
vide a formal argument that a given detailed design is safe. Here we focus on
collision freedom, though our model is extensible for dealing with further safety
properties, and possibly also with performance analysis.

We base our modelling approach on Real-Time Maude, which is a language
and tool supporting the formal object-oriented specification and analysis of real-
time and hybrid systems. In order to obtain a faithful model of ERTMS/ETCS
level 2 on the design level, we follow a systematic approach, established by the
Swansea Railway Verification Group.

This paper extends our location-specific modelling presented in past work [12]
to a generic and far more detailed modelling. It is organised as follows. First,
we introduce the ERTMS Level 2 standard, and briefly discuss high level safety
properties for ERTMS. Then, we give a short presentation of Real-Time Maude
with a focus on standard specification techniques for hybrid systems. In Sect. 4,
we present our modelling of ERTMS in Real-Time Maude, discussing each com-
ponent in detail. In Sect. 5, we validate our model by simulation and error injec-
tion. Finally, we present model checking results and put our approach in the
context of related work.

2 ERTMS Level 2

ERTMS Level 2 extends classical railway signalling. To this end its location
specific design1 extends the classical notion of a scheme plan by information
used for the radio block centre (RBC). ERTMS safety analysis also requires
train characteristics such as maximum speed, acceleration and braking curves.

2.1 Scheme Plans

A scheme plan is a well-established concept within the railway domain. Figure 1
depicts such a scheme plan for a pass-through station. It comprises of a track
plan, a control table, release tables and RBC tables. The track plan provides the
topological information for the station. It consists of 8 tracks (e.g., BC) each with
a length, 3 marker boards (e.g., MB1), and two points (e.g., P2). A topological

1 We focus here on one ERTMS/ETCS system controlling a single, geographic region.

ERTMS/ETCS Level 2 in Real-Time Maude 105

route is a piece of railway on which a train can travel, (typically) between two
marker boards (e.g., from MB1 to MB2). The control table describes under which
conditions a route can be set.2 For example, a train can only proceed on route
1 A when point P1 is in normal (straight) position and tracks AA, AB and AC
are clear, i.e., currently not occupied by any train. The release table is used to
implement sequential release, a technique to improve capacity. The release table
describes when a point is again free to move after being locked for a particular
route. For example, when sending a train on route 1A, point P1 is free to move
already, when this train has reached track AC. This allows to send another train
on route 1B before the first train has reached track AD and thus completely left
route 1A. Finally, the RBC tables are used for calculations within the RBC.

Entry

MB1

AA(1500m)

P1

AB(250m)

BC(1500m)BD(1500m)

MB2

AC(1500m)

MB3

AD(1500m)

P2

AE(250m) AF(1500m) Exit

Interlocking Tables:

Route Clear Tracks Normal Reverse

1A AA, AB, AC P1
1B AA, AB, BC P1
2 BD, AE, AF P2
3 AD, AE, AF P2

Point Route Release

P1 1A AC
P1 1B BC
P2 2 AF
P2 3 AF

RBC Tables:

Current Position Continuation Routes

Before MB1 1A, 1B
Before MB2 2
Before MB3 3

Granted Route EOA

1A 3249m
1B 3249m
2 6499m
3 6499m

Fig. 1. Scheme plan for a pass-through station.

We consider open scheme plans with entry and exit tracks only. Furthermore,
we assume that marker boards are placed at the end of tracks, and that the speed
limit is the same for all tracks.

2.2 ERTMS System Architecture

Once a scheme plan has been designed, a number of control systems are imple-
mented based around it. In the following we identify the entities of ERTMS,
describe their abstract behaviour and determine the abstract information flow
between them in line with the design by Siemens Rail UK, see Fig. 2.

The controller (manual or computerised) is responsible for controlling the
flow of trains through the railway network. The controller completes this task
by sending “route request” messages to the interlocking. These route requests
are dependent upon elements such as the current timetable to be adhered to

2 It is a design decision whether a topological route appears in the control table. The
routes in the table are those available for use by trains.

106 P. James et al.

and details on congestion within the network. For simplicity, we abstract from
“route cancel” and “acknowledgement” messages.

The interlocking is responsible for setting and granting requested routes.
Once the controller has requested a route, the interlocking will use information
on current track occupation and point settings (from the track equipment) to
determine if it is safe for the requested route to be set. Whether a route can
be set or not is computed in a process based upon the conditions stipulated by
the control table, see Fig. 1. Once the interlocking has checked that all points
on the route are free to move or already in the right position, it will send a
“route available” message to the RBC (Radio Block Centre). This informs the
RBC that the route is free for use, however it is not yet reserved for a train. The
RBC initiates the process of locking a route for a particular train by sending a
“request to proceed” message to the interlocking. On receiving this message, the
interlocking will then ensure that, based on the control table, all tracks for the
route are free and that the points are indeed locked in the required positions.
Once this step is completed, the interlocking sends a “proceed” message to the
RBC indicating that a train can use the route.

The RBC ’s main responsibility is to take the route information presented by
the interlocking and use it to manage the movement of trains across geographic
positions on the railway. To do this, the RBC and trains use the notion of a
movement authority. A movement authority is an area of geographical railway
that a train is permitted to move within. The furthest point along the railway
to which a train is permitted to move is indicated by a point known as the end
of authority (EoA) which is given to a train by the RBC. As a train moves
across the railway network, it uses beacons on the track to continually calculate
its position. When it is nearing its EoA, it makes a new “movement authority
request” to the RBC indicating that it would like its movement authority to be
extended. After receiving this request, the RBC will map the physical location
of the train to an available continuation route that has been presented to it
by the interlocking.3 This calculation is performed based on a look-up table
designed as part of the RBC for a scheme plan, an example of such a table
is provided in Fig. 1. It will then issue a “request to proceed” message to the
interlocking for this route. Once the RBC has received a “proceed” message from
the interlocking, it will compute, based on the route that has been granted, a
new EoA for the train. Again, this information is provided by a look-up table,
see Fig. 1. This new EoA is then finally sent as a “movement authority” message
to the train.

With regards to trains, their behaviour is parameterised by maximum speed,
acceleration and braking curves. We make a maximum progress assumption for
trains, i.e., trains are running as fast and as far as possible. Namely, if a train has
a movement authority beyond its current position it will accelerate towards its
maximum speed. When the maximum speed is reached, the train will continue to

3 At this point, there should be maximally one route available that matches a partic-
ular train. This is ensured by the requests from the controller and also the ability of
the interlocking to deny requests for conflicting routes.

ERTMS/ETCS Level 2 in Real-Time Maude 107

travel at this speed. Whilst accelerating or travelling at maximum speed the train
will start braking at the last possible time in order not to overrun its EoA. Trains
are guided by the track layout, respecting the positions to which the interlocking
has set points. As trains move along the track, track equipment senses track
occupation and reports it to the interlocking. We assume that track equipment
(points, track circuits, beacons etc.) functions correctly and that points move
instantaneously. This is justified as our verification aim is to establish correctness
of the location and train specific design parameters for a ERTMS system for a
single geographic region. Therefore, we refrain from modelling track equipment.

Fig. 2. ERTMS control architecture.

2.3 Safety Conditions

In the context of ERTMS, several high level safety conditions have been dis-
cussed such as collision freedom or derailment on a point. In this paper, we
focus on collision freedom, i.e., excluding the possibility that two trains collide.
In the context of classical signalling systems, this property usually is formulated
logically, e.g., we verify that there are never two trains on the same track [9].
In contrast, for ERTMS we rather consider the physical invariant: the distance
between trains never falls below a minimum threshold.

3 Maude/Real-Time Maude

The Maude system [5] is a multi-purpose tool with support for executable spec-
ification, simulation and verification. Its wide range of capabilities made us to
favour Maude. Particularly, we are interested in the Maude LTL Model Checker
[6]. Real Time Maude [13] is an extension of Maude containing specific support
enabling the modelling and verification of real-time systems.

108 P. James et al.

Object-based systems can be modelled as multisets of objects and messages
where the messages define the communication between the objects and typically
trigger actions of the objects. A class C with attributes of a 1 to a n of sort
Sort 1 to Sort n, and an object O with attribute values v 1 to v n of class C are
written as, respectively

class C | a_1 : Sort_1 , ... , a_n : Sort_n .
< O : C | a_1 : v_1 , ... , a_n : v_n > .

Objects declared together with messages

msgs M_1 ... M_k : Sort_1 ... Sort_n -> Msg .

form a multiset of the sort Configuration, a subsort of Maude’s built-in sort
System, using −− for multiset union.

sorts Object Msg Configuration .
subsort Object Msg < Configuration .
op __ : Configuration Configuration -> Configuration [ctor] .

A real-time specification [13] consists of a sort Time (in our case PosRat),
the constructor { } : System− > Globalsystem with the meaning that {t} rep-
resents the whole system (and does not appear as an argument to another func-
tion - as is marked by using the independent type Globalsystem), instantaneous
rewrite rules, and a so-called tick rule that defines how time elapses. As [17], we
use the operators delta and mte in order to define the effect of time elapse on
a configuration, and of the maximal possible time elapse, resp.

op delta : Configuration Time -> Configuration [frozen (1)] .
op mte : Configuration -> TimeInf [frozen (1)] .

Here, TimeInf is the sort Time enriched with an infinity element Inf. These two
functions are distributed over objects and messages, i.e., each object has the
same time available, and as the maximal time elapse for a message has value 0,
time can only progress once all messages are consumed.

vars CON1 CON2 : NeConfiguration . var R : Time .
eq delta(none , R) = none .
eq delta(CON1 CON2 , R) = delta(CON1 ,R) delta(CON2 ,R) .
eq mte(none) = INF .
eq mte(CON1 CON2) = min(mte(CON1),mte(CON2)) .

The argument R of type Time is determined by the tick rule

crl [tick] : {CURRENT} => {delta(CURRENT ,R)} in time R
if R <= mte(CURRENT) [nonexec] .

The default tick time is defined by

(set tick def 1 .)

This means we look at the configuration either at each time step, or more often
in the case that some event occurs, for a justification see e.g. [15].

ERTMS/ETCS Level 2 in Real-Time Maude 109

4 Modelling ERTMS in Maude

To the best of our knowledge, our modelling of ERTMS is the first one com-
prising all ERTMS subsystems required for the control cycle in ERTMS/ETCS
Application Level 2, c.f. Fig. 6 in the ERTMS/ETCS System Requirements Spec-
ification [2]. For simplicity, we consider only uni-directional rail yards, as these
exhibit many of the components of bi-directional rail yards, but are of a lower
complexity with regards to the number of routes required within the model.
Also, we make the standard assumption that trains have no length. This is the
typical abstraction when one deals with trains whose length is shorter than any
track length in the given scheme plan. For a detailed discussion of the topic see,
e.g., our publication discussing train length [10].

In the following, we provide an overview of our model:4 first we discuss the
static data types; then we look at the instantaneously reacting sub-systems,
i.e., controller, interlocking, and RBC; next, we describe how we capture train
behaviour, which requires differential equations describing motion; finally, we
address how to express collision-freedom. We note that our model is generic, with
only location specific data as a parameter. This location specific data has been
encoded manually, however this process could be automated within OnTrack [11].

4.1 Datatypes: Location Specific Data and Messages

We model the rail topology as a connected collection of tracks, points, and routes
and provide a systematic translation into Maude. For the example given in Fig. 1,
the location specific data Maude is encoded as follows:

sort RouteName . ops RouteName1A ... : -> RouteName .
sort Track . ops AA AB AC ... : -> Track .
sort Point . ops P1 P2 : -> Point .

The connection between tracks is given by a next function. If the track under
discussion is a point, as, e.g., track AB, it has two potential successors, namely
AC and BC, depending on the current setting of the point.

op next : Track PointPos -> Track . var PPos : PointPos .
eq next(AA ,PPos) = AB .
eq next(AB ,normal) = AC . eq next(AB ,reverse) = BC .

The various tables (clear and release tables for the scheme plan, the tables of
the RBC) are encoded by defining a function for each column. A typical example
is the “Clear Tracks” column5 of the control table in Fig. 1:

op clearTracks : RouteName -> SetOfTracks .
eq clearTracks(RouteName1A) = (AA , AB , AC) .
...
eq clearTracks(RouteName4) = empty .

4 The models are available at: http://www.cs.swan.ac.uk/%7Ecsmarkus/Processes
AndData/Models.

5 Compared to the given control table, we add RouteName4 to cover the exit track.

http://www.cs.swan.ac.uk/%7Ecsmarkus/ProcessesAndData/Models
http://www.cs.swan.ac.uk/%7Ecsmarkus/ProcessesAndData/Models

110 P. James et al.

The ERTMS components exchange a number of messages, see Fig. 2. As we are
dealing with a single geographic region, controller, interlocking, and RBC are
unique. Thus, for most messages no object identifier is needed:

msgs routerequest , proceedrequest , ... : RouteName -> Msg .

This is in contrast to messages involving trains. For instance, the message

msg magrant : Oid Nat -> Msg .

grants a movement authority (encoded as a natural number, determining the
position to which the train is allowed to travel) to a specific train with an object
identifier of type Oid. Messages are urgent, i.e., their processing time is 0:

eq mte(M:Msg) = 0 .

4.2 Instantaneously Reacting Sub-Systems

The processing time of controller, interlocking, and RBC is negligible compared
to the time that it takes a train to pass a track. Thus, in our modelling we assume
that these three components react instantaneously. In Maude this is expressed
by saying that these components do not pose any time constrains. Here, written
for the controller:

eq mte(< O1 : Controller | >) = INF .

Controller. An ERTMS controller issues route requests. For a general safety
analysis, a random controller that can make any order of route requests should
be considered:

op randomRoute : -> RouteName .
rl randomRoute => RouteName1A .
...
rl randomRoute => RouteName4 .

However, it is also possible to perform safety analysis relatively to a specific
strategy, e.g., a round-robin controller that requests routes as follows – 1A first,
followed by 1B, until route 4, starting over with 1A again:

eq routeOrder = (RouteName1A : RouteName1B : ... : RouteName4) .

Yet another parameter are the times at which the controller makes route
requests. For both controllers we work with a constant frequency.

Interlocking. In rail control systems, the interlocking provides a safety layer
between controller and track. To this end, it monitors the physical rail yard (occ
says which tracks are currently occupied, pointPositions says for each point
if it is in normal or in reverse position), manages locks (pointslocked says if a
point is currently locked by a route), and stores which routes are currently set
(routeset):

ERTMS/ETCS Level 2 in Real-Time Maude 111

class Inter | routeset : MapRouteName2Bool ,
pointslocked : MapPoint2Bool ,
occ : MapTrack2Bool ,
pointPositions : MapPoint2PointPos .

The interlocking is a passive component, i.e., only upon receiving a message
it possibly changes its state and/or sends a message. A typical rule for preserving
safety is the following:

crl routerequest(RN1)
< O : Inter | routeset : MAPRNB1 ,

occ : MAPTB1 , pointslocked : MAPPB3 >
=> < O : Inter | > if (not checkClear(RN1 , MAPTB1)) or

pointsLocked(RN1 , MAPPB3) .

A route request by the controller is ignored in case that the tracks specified in
the clear table for route RN1 are occupied or the points of route RN1 are locked
in different positions.

RBC. The RBC mediates between requests from the trains to extend their
movement authorities and the successful route requests by the controller. To
this end it reconciles two different views on the rail yard: trains use continuous
data to represent their position (in our model the distance from the leftmost
point of the rail yard); the interlocking uses discrete data (track occupation, set
routes, point positions) in its logic. In our model, we take a rather simplified
and also abstract view on the challenges involved. We make the assumption that
trains request a new movement authority only on the track on which their current
authority ends. Furthermore, we abstract the mapping between continuous and
discrete data to the two tables presented in Fig. 1.

In our model, the RBC only holds information on successful route requests (in
availableRoutes) and for which trains (characterised by their Oid) it currently
has an open “request to proceed” (in designatedRoutes):

class RBC | availableRoutes : SetOfRouteNames ,
designatedRoutes : MapOid2RouteName .

Also, the RBC is a passive system component. A typical reaction is the
following: When the interlocking sends a “proceed message” for a route RN, the
RBC sends a new “end of authority” to the train and removes the corresponding
request from its internal state.

rl proceedgrant(RN) < O2 : RBC | designatedRoutes : TRN >
=> magrant(getTrain(RN , TRN), endOfAuthority(RN))

< O2 : RBC | designatedRoutes : removeRoute(_,_) > .

4.3 Trains

The Train class is the only time dependent entity in our model. It is designed
as an automaton with four states stop, acc for accelerating, cons for constant
speed, and brake. There are transitions stop → acc → cons → brake, and
acc → brake and vice versa. In addition, it has fields representing the current

112 P. James et al.

distance (relative to a given reference point 0), speed, acceleration, movement
authority (relative to 0), maximum speed, and the current track segment.

class Train | state : TrainState , dist : NNegRat ,
speed : NNegRat , ac : NNegRat , ma : NNegRat ,
tseg : Track , maxspeed : NNegRat .

We assume that acceleration is linear, and – apart from Scenario 3 in Sect. 5.2 –
use a value of 1 for both acceleration and deceleration. Trains move according to
Newton’s laws, i.e., if at time 0 a train is at DT with speed S and acceleration A,
then the speed at time R is S + A*R and the location is DT + S*R + A*R*R/2.
Its braking distance bd(S,A) is S*S/2*A. We show the rule for a train in the
accelerating state.

crl [acc] :
< O1 : Inter | pointPositions : PointSettings >
delta(< O : Train | state : acc , dist : DT , speed : S,

ac : A, ma : MA , tseg : AN , maxspeed : MAX >, R)
=>
< O1 : Inter | pointPositions : PointSettings >
trackseg(PointSettings , < O : Train |
state : if (S + A * R == MAX)

then cons
else (if R == mteMA(DT ,S,A,MA)

then brake
else acc fi) fi ,

dist : DT + S * R + R * R * A * (1/2),
speed : S + A * R >) if not AN == Exit .

The rule computes the new configuration of a train after time R from its old
configuration and the interlocking. It is sufficient to list those attributes that are
updated, here speed, location, and, possibly, the state. The operator trackseg
takes the new location of the train and the PointSettings from the interlocking
and returns a new train object. In the case that the train has entered a new
track it will update the train object accordingly. Here, we combine the delta
rule together with a state transition, allowing us to exactly determine when
a state transition occurs. An alternative approach would be to decouple these
orthogonal concepts by expressing the rule as equation + rules. This, in turn,
may lead to improvements when model checking.

The time R is determined by the maximal time elapse which is, in the accel-
eration state, the minimum of the following three cases. (1) maximum speed
is reached, (2) the end of a track segment is reached, (3) the distance to the
movement authority is not greater than the required braking distance.

ceq mte (< O : Train | state : acc , dist : DT , speed : S,
ac : A, ma : MA , tseg : AN , maxspeed : MAX >)
= min((MAX monus S) / A,

((endof(AN) + 1) monus DT) / S,
mteMA(DT ,S,A,MA)) if S > 0 .

eq mteMA(DT , S, A, MA) = (((MA monus 1) monus DT) monus
(S * S / (2 * A))) / (2 * S) .

In case (1) we used monos for the maximum of the difference between two num-
bers and 0. For cases (2) and (3) the calculation of mte involves quadratic equa-
tions. From DT + S*R + A*R*R/2 < endof(AN)+1 we could determine R using
an approximation via Newton’s method. However, since, thanks to our default

ERTMS/ETCS Level 2 in Real-Time Maude 113

tick, we have 0 < R <= 1, and therefore 0 < A*R*R/2 <= A*R/2, we approx-
imate the quadratic term either from below or from above depending on the
context: in the case of entering a new track we ignore the quadratic term, and
put the sampling point slightly late, as we want to be on the new track already;
in the case of calculating where to start braking, we bring the event slightly for-
ward, i.e., we start braking slightly too early. Both approximations are justified
by the default tick.

4.4 Safety Condition

For classical railway signalling, we established the following finitisation theorem:
if a signalling system is collision free for two trains, then it is collision free for
any number of trains [9]. We conjecture that this result carries over to ERTMS
and consider our ERTMS system to be safe if – within the scheme plan under
consideration – two trains are always more than, say, 40 m apart. Thus, we check
for the invariant “no collisions”:

eq { REST < train1 : Train | tseg : T1 , dist : N1 >
< train2 : Train | tseg : T2 , dist : N2 > }

|= nocrashDistance (train1 , train2)
=

((not (T1 == Entry) and not (T2 == Entry) and
not (T1 == Exit) and not (T2 == Exit))

and (T1 == T2 or
T1 == next(T2 , normal) or T1 == next(T2 , reverse) or
T2 == next(T1 , normal) or T2 == next(T1 , reverse)))

implies ((N2 monus N1 > 100) or (N1 monus N2 > 100)) .

This formula reads: a configuration with two objects train1 and train2 of type
train models the parameterised formula nocrashDistance iff the state of the two
trains objects under consideration are in the relation specified after the equal
sign. Here, T1 and T2 are the tracks and N1 and N2 are the positions on which the
two trains are respectively. In the formula we check that the trains are more than
100 m apart, provided they are not on the Entry or Exit track, and provided
they are on the same (T1 == T2) or on adjacent tracks.

The second condition is necessary as we model positions from a single refer-
ence point on the Entry track. For instance, on the track plan shown in Fig. 1,
we can have one train on track BC and another train on track AC, both with the
same distance, though by no means colliding with each other. We note that we
use the value of 100 m for our invariant. This is different from the desired 40 m,
but necessary due to our time sampling strategy: we sample the system only
once every second. Within this time, the distance between two trains can reduce
by maximally 60 m as we consider trains that travel at a maximum of 60 m/s.

4.5 Completeness

An important question is whether our modelling is complete, that is all errors can
be detected by our modelling. Ölveczky and Meseguer give criteria for complete-
ness in object oriented Real-Time Maude [15]. Essentially, one needs to prove
that the maximal time elapse function is time robust. This is clearly the case if

114 P. James et al.

we consider movement without acceleration. It is almost all the time the case for
our modelling with acceleration, however the small shifts of the sampling points
require further analysis. We expect that a weakening of Theorem 4 [15], which
takes approximation into account, holds. A necessary premise for this theorem
is non-zenoness for which we give the following argument.

Our modelling is non-zeno in the sense of Henzinger [8] as there are no cycles
in the behaviour of the automaton which allow time to converge. The argument is
that any cycle will involve the accelerating state, which requires a new movement
authority to be granted that will extend the current movement authority by at
least one. This causes a minimal time elapse bounded away from zero by a fixed
amount since the speed of a train is limited.

5 Validation Through Simulation and Error Injection

Here we give a number of scenarios to illustrate that our modelling is able to
capture typical errors that are made when designing ERTMS subsystems. Con-
cerning verification tools, we rely on the model checking capabilities of the Real-
Time Maude Tool [16] to provide the relevant counter-examples. In carrying out
the verification, our starting point is that the generic models of the interlock-
ing, RBC and trains are correct. However, we make no assumptions about the
correctness of the instantiation of our modelling with concrete Control Tables,
Release Tables and RBC tables.

5.1 Simulation

We first demonstrate the behaviour of one train moving through the rail yard in
Fig. 1 with a start position on track AA and a movement authority of 1498. For
this we use the Real Time Maude trew command to execute our model upto a
given time bound.

(trew {
< inter1 : Inter | pointPositions : (P1 |-> normal ,

P2 |-> normal) , ... >
< train1 : Train | state : acc , dist : 2, speed : 0, ac : 1,

ma : 1498, tseg : AA , maxspeed : 60 > }
in time <= 39 .)

The train accelerates until it begins to brake at the distance of 749.72m:

Result ClockedSystem : { < inter1 : Inter | ...>
< train1 : Train | ac : 1, dist : 1499446241/2000000 ,

ma : 1498, maxspeed : 60, speed : 38671/1000 ,
state : brake , tseg : AA >} in time 38671/1000

A query one time step later shows that a movement authority request is made.

{marequest(train1 ,AA) < inter1 : ...>
< train1 : Train | speed : 37671/1000 , ... >} in time 39671/1000

Now, the system cannot progress, unless we add an RBC to our configuration.

ERTMS/ETCS Level 2 in Real-Time Maude 115

(trew { < inter1 : Inter | ... > < train1 : Train | ... >
< rbc1 : RBC | availableRoutes : empty ,

designatedRoutes : empty >} in time <= 78 .)

As no follow-up route is available in the RBC, the train stops at 1497.46 m.
{< inter1 : Inter | ... > < rbc1 : RBC | ... >
< train1 : Train | dist : 1497446241/1000000 , ma : 1498,

speed : 0, state : stop , tseg : AA >} in time 38671/500

To continue, assume that we start in the configuration where the interlocking
has set RouteName3 and the train has made a movement authority request.

(trew {marequest(train1 ,AA)
< inter1 : Inter | routeset : RouteName3 |-> true ,... >
< train1 : Train | state : brake , dist : 760, speed : 37,

ac : 1, ma : 1498, tseg : AA , maxspeed : 60 >
< rbc1 : RBC | availableRoutes : (RouteName3), ... >
} in time <= 17 .)

Below we see that the authority is extended to 6499 m, and P2 gets locked. Time
17 is when the train crosses to track AB and can accelerate to maximum speed.

{ < inter1 : Inter | occ : (AA |-> false , AB |-> true),
pointslocked : P2 |-> true , ... >
< rbc1 : RBC | availableRoutes : empty , ... >
< train1 : Train | dist : 3001/2 , ma : 6499, speed : 52,
state : acc ,tseg : AB >} in time 17

5.2 Error Injection

We now show that our modelling is able to find errors in the design of various
ERTMS components. The following scenarios use our random controller and
check the safety condition presented in Sect. 4.4. Furthermore, we model one
slow train (max speed 20 m/s) and one fast train (max speed 60 m/s).

eq initState = {...
< train1 : Train | state : stop , dist : 0, speed : 0,

ac : 1, ma : 1, tseg : Entry , maxspeed : 20 >
< train2 : Train | state : stop , dist : 0, speed : 0,

ac : 1, ma : 1, tseg : Entry , maxspeed : 60 > ...} .

Scenario 1 – Incorrect Control Tables. We consider a scheme plan where
the designer forgets to put track section AC into the various interlocking tables
in Fig. 1. Model checking highlights that two trains may be within 100 m of each
other, with both trains on track AC.

{...< train1 : Train | ac : 1, dist : 3249, ma: 3249,
maxspeed : 20, speed : 0, state : stop , tseg : AC >

< train2 : Train | ac : 1, dist : 1939979/625 , ma : 6499,
maxspeed : 60, speed : 60, state : cons , tseg : AC > ...}

Scenario 2 – Incorrect RBC Tables. We consider a scheme plan where the
designer incorrectly calculates an EoA of 3449m for route 1 A in the RBC tables
given in Fig. 1. Model checking highlights that two trains may be within 100
meters with train1 overrunning onto track AD due to the incorrect EoA and
train2 approaching on AC.

116 P. James et al.

{...< train1 : Train | ac : 1,dist : 3449,ma : 3449,
maxspeed : 20,speed : 0,state : stop ,tseg : AD >

< train2 : Train | ac : 1,dist : 12433788921/4000000 ,
ma : 6499, maxspeed : 60, speed : 60,state : cons ,
tseg : AC > ...}

Scenario 3 – Incorrect Train Braking Parameters. The computation of the
braking distance for a train is based on various parameters, some of which may
be incorrectly entered by the driver. Hence the train’s physical braking distance
may differ from the computed one. Below we consider a starting scenario where a
deceleration value of 1 (hard-coded, for illustration) has been incorrectly entered
for train2, whilst the physical train has a deceleration value of 8/10. The other
train has correct parameters.

{...< train1 : Train | state : stop , dist : 3249, speed : 0,
ac : 1, ma : 6499, tseg : AD , maxspeed : 20 >

< train2 : Train | state : stop , dist : 1, speed : 0,
ac : 8/10, ma : 1, tseg : Entry , maxspeed : 60 > ...}

The incorrect parameter causes the two trains both to be on track AF within
100 m of each other. This is due to the incorrect behaviour of train2 which
overruns its movement authority thanks to its wrong braking parameter.

{...< train1 : Train | ac : 1,dist : 15662341/2500 , ma : 6499,
maxspeed : 20,speed : 20,state : cons ,tseg : AF >

< train2 : Train | ac : 4/5,dist : 968593576867/156250000 ,
ma : 7999, maxspeed : 60,speed : 60,state : cons ,
tseg: AF > ...}

6 Model Checking Results

In this section we verify a number of rail yards with the Real-Time Maude
Tool [16]. We check that the invariant “no collisions”, c.f. Sect. 4.4, is globally
true, either for all time

mc initState |=t [] nocrashDistance (train1 ,train2) .

or for 300 time steps:
mc initState |=t [] nocrashDistance (train1 ,train2) in time <= 300.

Here, initState is as given in Sect. 5.2. As track plans, we consider the pass-
through station shown in Fig. 1 as well as some variations of it, see Fig. 3. This
is in order to obtain an indication of how variations in the complexity of the rail
yard influence the time required for model checking.

We check all three track plans with manually constructed tables that we
consider to be correct. In all settings the model checking confirms that these rail
yard designs are collision free (within the given time-bound, if applicable). The
table shows verification times6 and the number of rewrite steps for the three
rail yards against the random controller and the round-robin controller (see
Sect. 4.2). The following table presents our model checking results (Table 1).
6 Using a PC running Xubuntu 14.04.2 with an i7 4790 @3.60 Ghz and 32 GB RAM.

ERTMS/ETCS Level 2 in Real-Time Maude 117

Entry

MB1

AA(500m) AB(500m)

P1

AC(150m)

BD(500m) BE(500m)

AD(500m) AE(500m) Exit1

Exit2

Entry

MB1

AA(1500m)

P1

AB(250m)

BC(1500m)

P2

BD(250m) BE(1500m)

AC(1500m)AD(1500m)

CE(1500m) CF(1500m)

MB4

CG(1500m)

BF(1500m)BG(1500m)

MB5

AE(1500m) AF(1500m)AG(1500m)

MB6

AH(1500m) AI(1500m)

P3

BH(250m) BI(1500m)

P4

AJ(250m) Exit

Fig. 3. Track plans for a junction and three platform station.

Table 1. Performance results of model checking three scheme plans.

Scheme Plan Round Robin Controller Random Controller in Time 300

Unbounded

Junction 0.5 s/1,465,601 rewrites 361.1 s/151,564,627 rewrites

Pass-through Station 0.7 s/1,886,303 rewrites 589.0 s/500,397,040 rewrites

Three Platform Station 1.2 s/2,622,022 rewrites 1957.9 s/1,009,144,410 rewrites

The table shows that unbounded model checking is successful when control
is restricted, e.g., to our round-robin controller. This is due to the restrictions
that such a control strategy puts on train movements through the sheme plan.
However, when using our random controller, the state space vastly increases.
Thus, we provide results for up to a given time bound of 300s. Note that this
time is enough to ensure that two trains can travel completely through the
Junction and Station scheme plan. As expected, model checking times increase
with the complexity of the scheme plans. It is future work, to consider further,
more varied rail yards.

7 Related Work

ERTMS is a complex system of systems, made up of distributed components
interconnected through standard (e.g. Euroradio) and proprietary (e.g. Siemens-
specific) protocols and algorithms. Our approach reflects this by covering the
full control cycle between controller, interlocking, radio-block centre and trains.
Our objective is to verify the location specific data of railway designs in their
early development stages, accompanying a standard design process performed
by signalling companies such as our industrial partner Siemens.

Our approach to cover all components is different from several verification
approaches with a focus on a single component only. Vu et al. [18] provide a
generic and re-configurable model of ERTMS Level 2 on the design level shar-
ing our objective. They present their model as a Kripke structure and verify
high-level safety properties such as head-to-head collision or derailment on a

118 P. James et al.

point. Their approach abstracts from trains and the RBC and presumes these
components to be correctly implemented. Thus, their verification focuses on the
interlocking component. Cimatti et al. [4] apply software model checking to ver-
ify the implementation level of a subsystem responsible for the allocation of
logical routes to trains. The software under consideration has been developed
by Ansaldo-STS and is part of this company’s implementation of ERTMS Level
2. They focus on software verification of a sub-component rather than on loca-
tion specific data for the whole system. Nardone et al. [14] develop a new, rail
specific specification language DSTM4Rail, an extension of hierarchical state
machines. They employ DSTM4Rail to the modelling of specific functionali-
ties of the ERTMS Radio Block Centre. Overall the objective is to obtain a
formal model of ERTMS requirements for system testing purposes. This work is
specialised to quality assurance for one ERTMS component.

The openETCS initiative [1] sets out to provide specifications that can be
used for software generation for ETCS train control components, track elements,
and functionality to be integrated in track side interlocking systems. This soft-
ware development follows a model-driven approach, where the methods and tools
shall comply with a SIL 4 development process.

Chiappini et al. [3] work towards the formalisation and validation of the
overall ERTMS/ETCS specifications. To this end, they formalise a reference
subset (including Movement Authority Management and RBC/RBC Handover)
of the system requirements through a set of concepts and diagrams in UML, and
through additional constraints in a defined controlled natural language. This
formalisation then undergoes an automatic validation check covering questions
concerning consistency, scenario compatibility, and if certain properties hold.
Their work puts the ERTMS/ETCS specifications themselves under scrutiny.

8 Summary and Future Work

In this paper, we have modelled, validated, and verified a complex system of
systems of hybrid nature. To this end, we presented an analysis of the ERTMS
system, described its information flow, and provided a concise model in Real
Time Maude. This model is astonishingly small: it consists of around only 1000
lines of code. We believe this is due to the advanced concepts, especially the
object orientated features that Real Time Maude offers. Through simulation we
have demonstrated that our model exhibits a number of expected behaviours.
Furthermore, by systematic error injection, we have shown that safety in ERTMS
depends on all its components. This simulation and error injection give us con-
fidence that our model is valid. Finally, we have presented a number of model
checking results that indicate that, for small rail yards, complexity of model
checking of physical safety properties is under control.

It is future work to explore further, more complex rail yards, including bi-
directional ones. On the practical side we intend to extend our modelling with
further controller strategies and more complex train progression behaviour. On
the more theoretical side, we plan to investigate completeness and abstraction
techniques to reduce model-checking time, including finitisation.

ERTMS/ETCS Level 2 in Real-Time Maude 119

Acknowledgement. The authors would like to thank Simon Chadwick, Siemens
Rail Automation, UK, for his continued support and many helpful discussions. We
also appreciate the helpful advice from Peter Ölveczky on Real-Time Maude and
the constructive comments given by three anonymous referees. Finally, we thank
Erwin R. Catesbeiana (Jr.) for timely hints on how to stay on track.

References

1. openETCS (2015). http://openetcs.org. Accessed 30 August 2015
2. Alcatel, Alstom, Ansaldo Signal, Bombardier, Invensys Rail and Siemens. System

Requirements Specification, Chap. 2, Basic System Description (2006). SUBSET-
026-2

3. Chiappini, A., Cimatti, A., Macchi, L., Rebollo, O., Roveri, M., Susi, A., Tonetta,
S., Vittorini, B.: Formalization and validation of a subset of the european train
control system. In: Proceedings of ICSE 2010. ACM Press (2010)

4. Rizzo, T., Sanseviero, A., Roveri, M., Narasamdya, I., Tchaltsev, A., Lazzaro, A.,
Corvino, R., Cimatti, A.: Formal verification and validation of ERTMS industrial
railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

6. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
WRLA 2002, vol. 71, ENTCS. Elsevier (2002)

7. European Railway Industry. ERTMS (2015). http://www.era.europa.eu/
Core-Activities/ERTMS/Pages/home.aspx. Accessed 30 August 2015

8. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Heidelberg (2000)

9. James, P., Moller, F., Nga, N.H., Roggenbach, M., Schneider, S.A., Treharne, H.:
Techniques for modelling and verifying railway interlockings. STTT 16(6), 685–711
(2014)

10. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S.A., Treharne,
H.: On modelling and verifying railway interlockings: tracking train lengths. Sci.
Comput. Program. 96, 315–336 (2014)

11. James, P., Roggenbach, M.: Encapsulating formal methods within domainspecific
languages: a solution for verifying railway scheme plans. Math. Comput. Sci. 8(1),
11–38 (2014)

12. Lawrence, A., Berger, U., James, P., Roggenbach, M., Seisenberger, M.: Modelling
and analysing the european rail traffic management system in Real-Time Maude.
In: FTSCS 2014 - Preliminary Proceedings (2014)

13. Meseguer, J., Ölveczky, P.C.: Semantics and pragmatics of Real-Time Maude.
Higher-Order Symbolic Comput. 20(1–2), 161–196 (2007)

14. Nardone, R., Gentile, U., Peron, A., Benerecetti, M., Vittorini, V., Marrone, S.,
De Guglielmo, R., Mazzocca, N., Velardi, L.: Dynamic state machines for formal-
izing railway control system specifications. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 93–109. Springer, Heidelberg (2015)

15. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
In: WRLA 2006, vol. 176, ENTCS (2007)

http://openetcs.org
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/home.aspx
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/home.aspx

120 P. James et al.

16. Meseguer, J., Ölveczky, P.C.: The Real-Time Maude tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008)

17. Thorvaldsen, S., Ölveczky, P.C.: Formal modeling and analysis of the OGDC wire-
less sensor network algorithm in Real-Time Maude. In: Bonsangue, M.M., Johnsen,
E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 122–140. Springer, Heidelberg
(2007)

18. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of inter-
locking systems featuring sequential release. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Heidelberg (2015)

	Towards Safety Analysis of ERTMS/ETCS Level 2 in Real-Time Maude
	1 Introduction
	2 ERTMS Level 2
	2.1 Scheme Plans
	2.2 ERTMS System Architecture
	2.3 Safety Conditions

	3 Maude/Real-Time Maude
	4 Modelling ERTMS in Maude
	4.1 Datatypes: Location Specific Data and Messages
	4.2 Instantaneously Reacting Sub-Systems
	4.3 Trains
	4.4 Safety Condition
	4.5 Completeness

	5 Validation Through Simulation and Error Injection
	5.1 Simulation
	5.2 Error Injection

	6 Model Checking Results
	7 Related Work
	8 Summary and Future Work
	References

