What’s Decidable About Parametric Timed
Automata?

Etienne André!-2(™)

! Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR. 7030,
93430 Villetaneuse, France
etienne.andre@lipn.univ-parisi3.fr
2 Ecole Centrale de Nantes, IRCCyN, CNRS, UMR 6597, Nantes, France

Abstract. Parametric timed automata (PTA) are a powerful formalism
to reason, simulate and formally verify critical real-time systems. After
two decades of research on PTA, it is now well-understood that any
non-trivial problem studied is undecidable for general PTA. We provide
here a survey of decision and computation problems for PTA. On the one
hand, bounding time, bounding the number of parameters or the domain
of the parameters does not (in general) lead to any decidability. On the
other hand, restricting the number of clocks, the use of clocks (compared
or not with the parameters), and the use of parameters (e.g., used only
as upper or lower bounds) leads to decidability of some problems.

1 Introduction

The absence of undesired behaviors in real-time critical systems is of utmost
importance in order to ensure the system safety. Model checking aims at for-
mally verifying a model of the system against a correctness property. Timed
automata (TA) are a popular formalism to model and verify safety critical sys-
tems with timing constraints. TA extend finite state automata with clocks, i.e.,
real-valued variables increasing linearly [1]. These clocks can be compared with
integer constants in guards (sets of linear inequalities that must be satisfied to
take a transition) and invariants (sets of linear inequalities that must be satisfied
to remain in a location). TA have been widely studied, and several state-of-the-
art model checkers (such as UPPAAL [28] or PAT [33]) support TA as an input
language.

TA benefit from many interesting decidable properties, such as the emptiness
of the accepted language, the reachability of a control state, etc. However, TA
also suffer from some limitations. First, they cannot be used to specify and verify
systems incompletely specified (i.e., whose timing constants are not known yet),
and hence cannot be used in early design phases. Second, verifying a system for
a set of timing constants usually requires to enumerate all of them one by one if
they are supposed to be integer-valued; in addition, TA cannot be used anymore

This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002).
© Springer International Publishing Switzerland 2016

C. Artho and P.C. Olveczky (Eds.): FTSCS 2015, CCIS 596, pp. 52-68, 2016.
DOI: 10.1007/978-3-319-29510-7_3

What’s Decidable About Parametric Timed Automata? 53

if these constants are rational- or real-valued, and can be taken from a dense
interval. Third, robustness in TA often assumes that all guards can be enlarged
or shrinked by the same small variation; considering independent variations or
considering both enlarging and shrinking was not addressed, and it is actually
unclear whether this can be even considered for TA.

Parametric timed automata (PTA) overcome these limitations by allowing
the use of parameters (i.e., unknown constants) in guards and invariants [3].
This increased expressive power comes at the price of the undecidability of most
interesting problems — at least in the general case.

Tools such as an extension of UPPAAL [24], RoMEO [29] or IMITATOR [5] take
PTA as input formalism. Beyond the usual academic examples (such as variants
of train controllers [3,24]), PTA were also used to successfully specify and ver-
ify numerous interesting case studies such as the root contention protocol [24],
Philip’s bounded retransmission protocol [24], a 4-phase handshake protocol [27],
the alternating bit protocol [25], an asynchronous circuit commercialized by ST-
Microelectronics [17], (non-preemptive) schedulability problems [25], a distrib-
uted prospective architecture for the flight control system of the next generation
of spacecrafts designed at ASTRIUM Space Transportation [20], an unmanned
aerial video system by Thales, and even analysis of music scores [19].

In this paper, we survey decision problems for PTA proposed in the past two
decades. On the one hand, bounding time, bounding the number of parameters
or the domain of the parameters does not (in general) lead to any decidability. On
the other hand, restricting the number of clocks, the use of clocks (compared or
not with the parameters), and the use of parameters (e.g., used only as upper or
lower bounds) can lead to the decidability of some problems.

Related Surveys. To the best of our knowledge, no survey was dedicated specifi-
cally to decision problems for PTA. In addition, recent results in the field in the
past two years (e.g., [8,10,16,25,32]) justify the need for a clear picture of these
updated (un)decidability results.

Related works include a work by Henzinger et al. [21], that is not a sur-
vey, but exhibits decidable subclasses of hybrid automata, an extension of timed
automata where variables can have (in general) arbitrary rates. Then, Asarin
et al. proposed a work [9] acting both as a survey and as a contribution paper
that studies hybrid automata with “low dimensions”, i.e., with few variables. Our
survey is also concerned (in Sect.4) with decidability results for PTA with few
variables (i.e., clocks and parameters). Various problems related to the robust-
ness in TA were also surveyed [12].

Outline. In Sect.2, we propose a unified syntax for PTA, and we define the
decision problems that we will consider throughout this manuscript. In Sect. 3,
we recall general undecidability for PTA. We then study in Sect.4 the decid-
ability when restricting the syntax of PTA (number of variables, syntax of the
constraints, etc.). We consider specifically in Sect. 5 the subclass of L/U-PTA.
We conclude by emphasizing open problems in Sect. 6.

54 E. André

Table 1. Syntax of operators in guards

Operator| Definition
~ (s S=2>)

<> {<,>}
<> {<,>}
= <. <3

2 Parametric Timed Automata and Problems

2.1 Clocks, Parameters and Constraints

Let Z, N, QT and R* denote the sets of (possibly negative) integer num-
bers, (non-negative) natural numbers, non-negative rational numbers, and non-
negative real numbers, respectively. In the following, T denotes the domain of
time, and P the domain of the parameters; these domains will be instantiated
with N, Q* or RT later on. Throughout this survey, let d denote an integer
constant in Z, and d* denote a non-negative constant in N.

Let us assume a set X = {x1,...,xg} of clocks, that are T-valued variables
that evolve at the same rate. Let us assume a set P = {p1,...,pap} of parame-
ters, i.e., unknown constants. A parameter valuation v is a function v : P — P.
Throughout this survey, symbols z, z; denote clocks whereas p, p; denote para-
meters.

A parametric linear term is), ., -, aipi + d, with a; € Z; in the following
plt will denote a parametric linear term.

A (linear) inequality is ~ plt, where z is a clock, plt a parametric linear
term, and ~ € {<, <,=,>,>}. We give in Table 1 the conventions used through-
out this survey concerning comparison operators. A (linear) constraint is a set
of linear inequalities.

A simple inequality is either ~ p or ~ dT. A simple constraint is a set of
simple inequalities.

2.2 A Unified Syntax for Parametric Timed Automata

The syntax of PTA varies a lot in the literature; we give below a definition that
includes any definition in the literature. That is, any definition of PTA can be
obtained from the following one by adding restrictions such as removing the set
of accepting locations, forbidding invariants, restricting the domain of clocks or
parameters, simplifying the syntax of the guards and invariants, etc.

Definition 1. A PTA is a tuple A= (X, L,ly, F, X, P, I, E), where:

— XY is a finite set of actions,
— L is a finite set of locations,
— lg € L is the initial location,

What’s Decidable About Parametric Timed Automata? 55

T2 = p3
coffee
I = 0

preparing coffee

T2 < p3

Fig. 1. A coffee machine modeled using a PTA

— F C L is a set of accepting (or final) locations,

~ X is a set of clocks with domain T = RY,

— P is a set of parameters with domain P = R*,

— I is the invariant, assigning to everyl € L a constraint I1(l), and

— E is a set of edges (l,g,a, R,1") where l,I' € L are the source and destination
locations, g is a constraint which is the transition guard, a € X, and R C X
is a set of clocks to be reset.

Given a PTA A and a parameter valuation v, the valuation of A with v,
denoted by v(A), is the (non-parametric) TA where each occurrence of p is
replaced with v(p).

We say that a PTA is deterministic if, for any [€ L, for any a € X, there
exists at most one edge (I, g,a, R,l') € E, for some g, R,lI’. (Note that it differs
from a rather common definition of determinism for TA, that allows two or more
outgoing transitions with the same action label provided that the corresponding
guards are pairwise disjoint.)

A clock is said to be a parametric clock if it is compared with at least one
parameter in at least one guard or invariant; otherwise, it is a non-parametric
clock. This notion is central when studying the decidability of problems for PTA
with few clocks and parameters.

Ezxzample 1. Consider the coffee machine in Fig. 1, modeled using a PTA with
4 locations, 2 clocks (z; and x3) and 3 parameters (pq,ps,ps). This PTA is
deterministic; both clocks x; and xs are parametric clocks. The machine can
initially idle for an arbitrarily long time. Then, whenever the user presses the
(unique) button (action press), the PTA enters location “add sugar”, resetting
both clocks. The machine can remain in this location as long as the invariant
(2 < po) is satisfied; there, the user can add a dose of sugar by pressing the
button (action press), provided the guard (z; > p;) is satisfied, which resets x.
That is, the user cannot press twice the button (and hence add two doses of
sugar) in a time less than p;. Then, ps time units after the machine left the
idle mode, a cup is delivered (action cup), and the coffee is being prepared;
eventually, po time units after the machine left the idle mode, the coffee (action

56 E. André

coffee) is delivered. Then, after 10 time units, the machine returns to the idle
mode — unless a user again requests a coffee by pressing the button.

Semantics. The semantics of a PTA A can be defined as the union over all para-
meter valuations v of the semantics of v(A). In the following, given § € R™, w+4¢
denotes the valuation such that (w + 0)(z) = w(z) + 6, for all z € X. Given
R C X, we define the reset of a clock valuation w, denoted by [w]g, as the valu-
ation resetting the clocks in R, and keeping the other clocks unchanged. Given a
parameter valuation v, v(C') denotes the constraint over X obtained by replacing
each parameter p in C with v(p). Likewise, given a clock valuation w, w(v(C))
denotes the expression obtained by replacing each clock x in v(C) with w(z).
We use the notation w|v = C to indicate that w(v(C)) evaluates to true.

Definition 2 (Semantics of a TA). Given a« PTA A= (X,L,1ly,X,P, I, E),
and a parameter valuation v, the semantics of v(A) is given by the timed transi-
tion system (Q, qo, =), with

- Q={(w) e LxR [vjw = 1)},
= qo = (lo, X =0),
— ((Lbw),e, (I, w') € = if " : (l,w) S (I, w") 3, (', w"), with:
e discrete transitions: (I,w) = (I';w'), if (lL,bw),(I',w') € Q, there exists
e=(l,9,a,R]l') € E, w = [w]g, and v|w [g;
e delay transitions: (I, w) 2 (l,w+0), with § € R, if V6" € [0,4], (I, w+d") €
Q.

A run of a TA is an alternating sequence of states of () and edges of the
form (lo, wo) = (I, w;) = --- gt (lm,wm,), such that for all i =0,...,m — 1,
e; € E, and ((li,wi),ei, (li+1,wi+1)) € =.

Note that time elapsing can still be a O-duration (d € RT allows d = 0); in
other words, TA allow to model Zeno behaviors, i.e., an infinite number of actions
within a O-time or, more generally, a finite time (see e.g., [34]). The accepted
timed language is the set of timed words (alternating sequences of actions and
time elapsing) associated with an accepting run, i.e., a run ending in a location of
F (or, in some works, passing infinitely often by a location in F'). Note that some
works make a difference between finite and infinite runs. The untimed language
of a TA is the timed language projected onto the actions. The set of traces (or
trace set) is the set of accepting runs projected onto the locations and actions,
i.e., a set of alternating locations and actions.

A symbolic semantics is also defined for PTA as a parametric zone graph
[4,24,25], where a symbolic state is made of a discrete part (the current location)
and a symbolic, continuous part (a set of diagonal constraints, i.e., x; —xz; ~ plt,
sometimes allowing disjunctions).

Simple PTA. We defined simple PTA as the subclass of PTA where guards and
invariants are simple constraints. We define this class to show that, even in this
restricted situation, all non-trivial problems are undecidable (Sect. 3).

What’s Decidable About Parametric Timed Automata? 57

Variants of the PTA Syntax. PTA were first defined in the seminal paper [3]
using a set of accepting locations. This is similar to timed automata [1]. Timed
Safety Automata (TSA) were introduced later by removing the final states, but
adding invariants to locations [23]; many subsequent papers then refer to timed
safety automata as simply “timed automata”. In contrast, timed automata with
accepting locations are often referred to as timed Biichi automata (TBA). The
timed expressive power of TSA is strictly less than that of TBA [22].

The syntax of PTA differs in most of the papers in the literature. Concern-
ing guards and invariants, in work [3] (vesp. [30]), guards (resp. guards and
invariants) are conjunctions of inequalities of the form = ~ p. In works [13,24],
guards are conjunctions of inequalities of the form z; — z; < plt U {oo}; in
work [24] invariants have the same form as guards (invariants are not consid-
ered in work [13]). In work [18], guards and invariants are all open, i.e., of the
form z <> p or z <> d*. In work [25], guards and invariants are conjunctions
of inequalities of the form x ~ plt, and invariants can only bound clocks from
above (i.e., x < plt). In work [10], guards are conjunctions of inequalities of
the form z ~ p and invariants can only bound clocks from above (i.e., z < p).
In work [8], guards and invariants are conjunctions of inequalities of the form
x ~p+d, x~d" orp~ d (although the proofs of undecidability only need
inequalities of the form z ~ p or & ~ d™).

A set of accepting locations is considered in several previous works [3,10,13],
but only one [13] is interested in infinite accepting runs, i.e., runs that pass
infinitely often by an accepting location; hence this latter work considers what
could be referred to as parametric timed Biichi automata. In contrast, other
previous approaches [4,8,18,24,25] consider parametric timed safety automata
(i.e., without accepting locations).

Expressiveness. A comparison of the expressiveness of these different syntactic
models remains to be done. Whereas it is likely that allowing constraints of the
form x ~ plt may be simulated using constraints of the form = ~ p (perhaps
adding additional locations, clocks and parameters), the expressiveness may dif-
fer when adding a set of accepting locations (just as the timed expressive power
of TSA is strictly less than that of TBA [22]). In fact, the expressiveness of a
PTA was not even defined; we believe that shall be studied in the future.

2.3 Decision and Computation Problems

We follow here the presentation of a previous approach [25]. Given a class of deci-
sion problems P (reachability, unavoidability, etc.), let us define the P-emptiness,
the P-universality and the P-finiteness. Given a PTA A and an instance ¢ of P,
the P-emptiness, P-universality and P-finiteness ask whether the set of parame-
ter valuations v such that v(A) satisfies ¢ is empty, is equal to PPl and is finite,
respectively.

In this survey, we mainly focus on reachability and unavoidability properties,
and call them EF and AF respectively.! We will also mention the EG property,

! The names EF, AF, EG, AG were first used for PTA by Jovanovié et al. [25], and
come from the CTL syntax.

58 E. André

that checks whether there exists a maximal run along which the locations remain
in a subset G of the locations, and the AG property that checks whether the
locations remain in G for all runs.?

Additionally, we will survey the language (resp. trace) preservation (empti-
ness) problem [8]: given a PTA A and a parameter valuation v, does there exist
another valuation v’ # v such that the untimed languages (resp. sets of traces)
of v(A) and v'(A) are the same?

We finally define the P-synthesis problem: Given a PTA A and an instance
¢ of P, compute the parameter valuations such that v(A) satisfies ¢.

Example 2. Let us exemplify some decision and computation problems for the
PTA in Fig. 1. Assume the unique target location is “done”, i.e., G = {done}.
EF-emptiness asks whether at least one parameter valuation can reach location
“done” for some run; this is true (e.g., p1 = 1, po = 2, p3 = 3). EF-universality
asks whether all parameter valuations can reach location “done” for some run;
this is false (no parameter valuation such that ps > ps can reach “done”). AF-
emptiness asks whether at least one parameter valuation can reach location
“done” for all runs; this is true (e.g., p1 = 1, po2 = 2, p3 = 3). EF-synthesis
consists in synthesizing all valuations for which a run reaches location “done”;
the resulting set of valuations is 0 < ps < p3 <10 A p; > 0.

3 Almost Everything is Undecidable for Simple PTA

In this entire section, we consider simple PTA without restriction on the number
of clocks and parameters. In that situation, all non-trivial problems studied in
the literature are undecidable, with the exception of the membership problem
(that asks whether the language of a valuated PTA is empty) — which is rather
a problem for TA. By non-trivial, we mean requiring a semantic analysis, and
not, e.g., a sole analysis of the syntax of the PTA (e.g., “is the number of clocks
even”, or any problem defined in Sect. 2.3 by setting G = L).

We also survey that bounding time (Sect. 3.3) or the parameter domain for
rational-valued parameters (Sect. 3.4) preserves the undecidability. However, we
will show in Sect. 4 that bounding the number of clocks and/or parameters brings
decidability.

All proofs of undecidability reduce from either the halting problem, or the
boundedness problem, of a 2-counter machine, known to be undecidable [31].

3.1 Decidability of the Membership

In the seminal PTA paper [3], the membership problem for PTA is defined
as follows: given a PTA A and a parameter valuation v, is the language of
v(A) empty? The membership problem is not strictly speaking a problem for
PTA, but rather for TA, since it considers a valuated PTA. As a consequence,

2 Note that EF-, AF-, EG-, and AG-emptiness are equivalent to AG-, EG-, AF-, EF-
universality, respectively.

What’s Decidable About Parametric Timed Automata? 59

the decidability of this problem only relies on known results for TA [1]: the
membership problem is decidable (and PSPACE-complete) for PTA over discrete
time (T = N and P = N), over dense time with integer-valued parameters (T =
R* and P = N), and over dense time with rational-valued parameters (T = R
and P = Q). However, it becomes undecidable with real-valued (in fact irrational)
parameters [30].

3.2 General Undecidable Problems

EF-, AF, EG, AG-emptiness. The seminal paper on PTA [3] showed that the
EF-emptiness problem is undecidable for PTA, both for discrete time, and for
dense-time (real-valued clocks and real-valued parameters). Although not explic-
itly stated in that paper, the proof of undecidability, that consists in reducing
from the halting problem of a 2-counter machine, also works for real-valued
clocks with integer-valued parameters.

It was then proved that the AF-emptiness is undecidable for L/U-PTA (a
subclass of PTA, see Sect.5), and hence for PTA as well [25]. Again, the proof
of undecidability consists in reducing from the halting problem of a 2-counter
machine.

AG- and EG-emptiness are also undecidable [7].

Language and trace preservation problems. Both language preservation and trace
preservation problems are undecidable for simple PTA [8]. The continuous (or
robust) versions of those problems additionally require that the language (resp.
set of traces) is preserved under any intermediary valuation of the form A - v +
(I —=2X) -, for A € [0,1] (with the classical definition of addition and scalar
multiplication). These problems are also undecidable for simple PTA.

The language preservation problems and its continuous version are undecid-
able for a PTA with at least 4 parametric clocks. The trace preservation and
its continuous version require either an unbounded number of non-parametric
clocks and diagonal constraints (that go beyond the usual syntax of PTA), or an
unbounded number of parametric clocks. This is due to the fact that the proof
encodes the 2-counter machine with a fixed number of locations, which thus
requires to encode each location with a different clock. It remains open whether
this problem is undecidable for a bounded number of clocks.

3.3 Bounding Time

Bounded-time model checking consists in checking a property within a bounded
time domain. Undecidable problems might become decidable in this situation,
or be of a lower complexity. For example, time-bounded reachability becomes
decidable for a special subclass of hybrid automata with monotonic rates [14].

In contrast, the EF-emptiness problem remains undecidable for (general)
PTA over bounded, dense time [26, Theorem 3.4].

This said, we emphasize that (quite trivially) model checking discrete-time
PTA over bounded-time would become decidable. (This remains to be shown
formally though.)

60 E. André

3.4 Bounding the Parameter Domain

Bounding the parameter domain consists in setting a minimal and a maximal
bound on the possible parameter valuations of a PTA.

For integer parameters, any problem for a PTA over a bounded parameter
domain is decidable iff the corresponding problem is decidable for a TA. In fact,
the P-emptiness problem for PTA with bounded integer is PSPACE-complete
for any class of problems P that is PSPACE-complete for TA [25]. Indeed, it
suffices to enumerate all parameter valuations, of which there is a finite number.
As a consequence, EF-, AF-, EG-, AG-emptiness are all decidable; and so are
language and trace preservation. A symbolic method was proposed to compute
EF- and AF-synthesis [25]; experiments showed that this symbolic computation
is faster than an exhaustive enumeration (using UPPAAL).

For rational-valued parameters, the EF-emptiness problems is undecidable
for a single parameter in [1,2] [30]. EG- and AG-emptiness [7], and language
and trace preservation [8] are also undecidable for a single parameter in [0, 1].

4 Bounding the Numbers of Clocks and Parameters

4.1 EF-Emptiness

Since the seminal paper on PTA [3], the decidability of the EF-emptiness problem
was studied in various settings, by bounding the number of parametric clocks, of
non-parametric clocks, and of parameters. The syntax was also restrained. We
summarize these results in Table 2 (partially inspired by a similar table in a pre-
vious work [18], improved by adding more dimensions, and more recent results).
The open question of the syntax expressiveness requires to consider a multi-
dimensional table: we need to consider not only the number of clocks and parame-
ters, but also the syntax allowed in guards and invariants. For example, a recent
paper [16] improves the complexity of the seminal PTA papers [3] (NEXPTIME-
complete instead of non-elementary) over N for 1 clock, but requires non-strict
inequalities, and uses invariants; it is hence unclear whether the result of the
seminal paper [3] is really subsumed by that more recent paper [16].

Let us extract the most important results out of Table 2. The decidability is
clearly impacted by the number of parametric clocks. First, let us consider PTA
with a single parametric clock: the EF-emptiness problem is decidable over dis-
crete time with arbitrarily many non-parametric clocks (NEXPTIME-complete
when only large inequalities are used [16], and non-elementary otherwise [3]). It
is NP-complete over dense time with no non-parametric clock [30]. It is open
over dense time with two non-parametric clocks, and undecidable with three
non-parametric clocks [30]; note that this problem is decidable over discrete
time [3,16], which exhibits a difference between dense and discrete time [30].

Second, let us consider PTA with two parametric clocks: the EF-emptiness
problem is decidable over discrete time with a single parameter [16]; this result
is claimed in the same paper to extend to dense time with integer-valued para-
meters. Any other case with two parametric clocks remains open. Third, the EF-
emptiness problem is undecidable in all settings with three (or more) parametric

What’s Decidable About Parametric Timed Automata? 61

Table 2. Decidability of the EF-emptiness problem for general PTA

T P Guards‘lnvariants P-clocks|NP-clocks/Params| Decidability Main ref.
N N x <> pld" 1 any any |NEXPTIME-compl. [16]
N N zel ‘ None 1 any any non-elementary 13]
N N z <> pld" 2 any 1 |PSPACEY™F. hard [16]
N N any 2 any > 1 open
N N @ ~pld] None 3 0 1 undecidable [10]
N N T <>p any any any open
N N bounded| z ~ plt | = < plt any any any decidable [25] (conseq.)
RT N zel None 1 0 any non-elementary | [3] (conseq.)
RT N z~pld z=<p 1 any any NEXPTIME 10
RT N x <> pld™ 2 any 1 PSPACEN™*F_hard 16
RT N any 2 any >1 open
R N x ~pld| None 3 0 1 undecidable 10
RT N z~plt| x =X plt 3 0 2 undecidable 25
QT /RT N T <>p any any any open
RT [N bounded| z ~ pit | z =< pit any any any | PSPACE-complete [25]
RT RT zel None 1 0 any non-elementary 13]
RT Q" z ~ pld 1 0 any NP-complete 30
RT QF x ~ pld 1 0 bounded PTIME 30
RT RT any 1 lor2 1 open
RT QF x ~ pld 1 3 1 undecidable [30]
RT RT any 2 any any open
RT RT z €l [None 3 0 6 undecidable [3]
RT QF x ~ pld 3 0 1 undecidable 30
RT R+[1;2] z ~ pld 1 3 1 undecidable 30
RT R+[1;2] x ~ pld 3 0 1 undecidable 30
Qf/RT| QT/RT T <>p <2 <3 <2 open
QF/RT| QT/RT T <>p 2 3 2 undecidable [18]

clocks. Finally, using only strict inequalities, the EF-emptiness is undecidable
over dense time for two parametric clocks, three non-parametric clocks and two
parameters [18]; this situation was not considered over discrete time.

4.2 Language and Trace Preservation

The language- and trace-preservation problems are decidable for deterministic
PTA with a single clock, and with linear parameter constraints allowed in guards
and invariants, i.e., of the form x ~ plt or plt ~ 0 [8]. A procedure to compute
parameter valuations with the same trace set as a given valuation is proposed
(close to the “inverse method” [4]), that is complete for deterministic PTA, and
terminates in the case of a single clock [8].

4.3 Parametric Model Checking

Parametric model checking was addressed in different settings: verifying a non-
parametric model against a parametric formula, or a parametric model against
a non-parametric formula, or a parametric model against a parametric formula.

Non-parametric Model/Parametric Formula. An extension of LTL with parame-
ters in the formula (“PLTL”) was studied [2]. When only parametric “always”

62 E. André

modalities are allowed of the form “< p”, checking emptiness of the valuation
set is PSPACE-complete. The solution to the synthesis problem is doubly expo-
nential in the number of parameters. However, when allowing equality in PLTL,
the emptiness problem becomes undecidable [2].

Parametric Model/Non-parametric Formula. It is shown that model checking
PTA with the (non-parametric) logic MTL is undecidable, even with a single
clock and a single parameter, and even when the PTA is deterministic [32].
This negative result comes in contrast to the decidability of the EF-emptiness
problem for one-clock PTA. Note that the proof of undecidability requires the
parameters to be rational-valued (integer-valued parameters are not sufficient —
and this latter case can hence be considered as open).

Parametric Model/Parametric Formula. Model checking a PTA over discrete-
time with a single parametric clock against a PTCTL formula (a parametric
version of TCTL) is decidable, provided the formula does not use equality con-
straints; otherwise the problem becomes undecidable [15].

5 The Disappointing Class of L/U-PTA

Lower-bound/upper-bound parametric timed automata (L/U-PTA) restrict the
use of parameters in the model [24]. A parameter is said to be an upper-bound
parameter if, whenever it is compared with a clock, it is compared as an upper
bound, i.e., it only appears in inequalities of the form x < p. Conversely, a
parameter is a lower-bound parameter if it is only compared with clocks as a
lower bound, i.e., of the form p < z.

An L/U-PTA is a PTA where the set of parameters is partitioned into upper-
bound parameters and lower-bound parameters. Two additional subclasses were
introduced later [13]: L-PTA (resp. U-PTA) are PTA with only lower-bound
(resp. upper-bound) parameters.

Example 3. Consider again the coffee machine in Fig. 1, modeled using a PTA A.
This PTA is not an L/U-PTA; indeed, the guard xs = ps (resp. x2 = p3) makes
p2 (resp. p3) be compared with clocks both as a lower-bound and as an upper-
bound. (Recall that = stands for < and >.)

However, if one replaces xo = po with o < po and one replaces zo = p3
with 22 < ps, then A becomes an L/U-PTA with lower-bound parameter p;
and upper-bound parameters {p2,p3}. Note that equalities are not forbidden in
L/U-PTA (e.g., 1 = 10), but only equalities involving parameters.

Several case studies fit into the class of L/U-PTA: the root contention pro-
tocol, the bounded retransmission protocol and the Fischer mutual exclusion
protocol are all modeled with L/U-PTA in the paper introducing L/U-PTA [24];
in two works [24,27], both the Fischer mutual exclusion protocol and a producer-
consumer are verified using L/U-PTA. Interestingly, the two case studies of the
seminal paper on PTA [3] (viz., a toy railroad crossing model and a model of

What’s Decidable About Parametric Timed Automata? 63

Fischer mutual exclusion protocol) are also L/U-PTA. In addition, most models
of asynchronous circuits with bi-bounded delays (i.e., where each delay between
the change of an input signal and the change of the corresponding output is a
parametric interval) can be modeled using L/U-PTA.

5.1 Decidability Results

The first (and main) positive result for L/U-PTA is the decidability of the EF-
emptiness problem [24]. L/U-PTA benefit from the following interesting prop-
erty: increasing the value of an upper-bound parameter or decreasing the value
of a lower-bound parameter necessarily relaxes the guards and invariants, and
hence can only add behaviors. Hence, checking the EF-emptiness of an L/U-
PTA can be achieved by replacing all lower-bound parameters with 0, and all
upper-bound parameters with oo; this yields a non-parametric TA, for which
emptiness is PSPACE [1]. This procedure is not only sound but also complete.

Further decidability results are exhibited [13], for infinite runs acceptance
properties, i.e., where a location is met infinitely often (to which we refer here-
after as BUEF). Note that, in contrast to the first paper on L/U-PTA [24] where
the parameters are valued with non-negative reals, the results this later work
[13] consider integer-valued parameters (though time is dense, i.e., clocks are
real-valued). It is shown in this later work [13] that emptiness, universality,
finiteness of the valuation set are PSPACE-complete for infinite runs acceptance
properties. Remark that the decidability of the BiEF-finiteness is due to the
integerness of the parameters; in short, a sufficient bound is computed on the
parameters, and then valuations smaller or equal to this bound are enumerated,
which would not be feasible for real-valued parameters.

A parametric extension of the dense-time linear temporal logic MITLg o
(denoted “PMITLg «”) is proposed [13]; when parameters are used only as lower
or upper bound in the formula (to which we refer as L/U-PMITLg o), satisfiabil-
ity and model checking are PSPACE-complete; this is obtained by translating the
formula into an L/U-automaton and checking an infinite acceptance property.

5.2 Undecidability Results

The first undecidability results for L/U-PTA are shown in works by Bozelli et al.
[13]: the constrained EF-emptiness problem and constrained EF-universality
problem (for infinite runs acceptance properties) are undecidable for L /U-PTA.
By constrained it is meant that some parameters of the L /U-PTA can be con-
strained by an initial linear constraint, e.g., p1 < 2 X pa + ps3. Indeed, using
linear constraints, one can constrain an upper-bound parameter to be equal to
a lower-bound parameter, and hence build a 2-counter machine using an L/U-
PTA. However, when no upper-bound parameter is compared to a lower-bound
parameter (i.e., when no initial linear inequality contains both an upper-bound
and a lower-bound parameter), these two problems retrieve decidability [13].

A second negative result is shown by Jovanovié et al. [25]: the AF-emptiness
problem is undecidable for L/U-PTA. This is achieved by a reduction from a

64 E. André

Table 3. Decision problems for L/U-PTA

Problem P Complexity |[Main ref.
EF-emptiness R PSPACE [24]
AG-emptiness RT PSPACE [24]
AF-emptiness RT undecidable [25]
EG-emptiness RT open

BuiEF-emptiness N |PSPACE-complete [13]
BuEF-universality N |PSPACE-complete [13]
BiEF-finiteness N |PSPACE-complete [13]
constrained BUEF-emptiness N undecidable [13]
constrained BiEF-universality N undecidable 13
L/U-constrained BiEF-emptiness | N [PSPACE-complete 13
L/U-constrained BiEF-universality| N [PSPACE-complete [13]
Language preservation N undecidable 8
Language preservation RT undecidable 8
L/U-PMITL,oc-emptiness N |PSPACE-complete [13]
L/U-PMITLg,c0-universality N |PSPACE-complete [13]

2-counter machine where a lower-bound parameter is equal to an upper-bound
parameter iff AF holds. This restricts again the use of L/U-PTA, as AF is essen-
tial to show that all possible runs of a system eventually reach a (good) state.

Then, it is shown that the language preservation problem is undecidable for
L/U-PTA [8]. Again, this is achieved by a reduction from a 2-counter machine
where a lower-bound parameter is equal to an upper-bound parameter iff the
language is preserved.

We summarize in Table 3 decision problems for L/U-PTA.

5.3 Intractability of the Synthesis

The most disappointing result concerning L/U-PTA is shown by Jovanovi¢ et al.
[25]: if it can be computed, the solution to the EF-synthesis problem for L/U-
PTA cannot be represented using a formalism for which the emptiness of the
intersection with equality constraints is decidable. The proof relies on the unde-
cidability of the constrained emptiness problem of Bozelli et al. [13]. A very
annoying consequence is that such a solution cannot be represented as a finite
union of polyhedra (since the emptiness of the intersection with equality con-
straints is decidable).

5.4 Two Open Classes: L-PTA and U-PTA

L-PTA and U-PTA (introduced by Bozelli et al. [13]) are very open classes, in the
sense that to the best of our knowledge, no result known to be decidable for L-PTA
(or U-PTA) was shown undecidable for L/U-PTA (and is hence either decidable

What’s Decidable About Parametric Timed Automata? 65

or open). Conversely, and even stronger, no result known to be undecidable for
L/U-PTA was shown decidable for L-PTA (or U-PTA) — and is always open.

To summarize, the AF-emptiness, the language- and trace-preservation prob-
lems, are all undecidable for L/U-PTA, but remain open for L-PTA and U-PTA.

In fact, the only result that could be described as a difference between L/U-
PTA and U-PTA (resp. L-PTA) is as follows [8]: the language-preservation prob-
lem is decidable for deterministic U-PTA (resp. deterministic L-PTA) with a
single integer-valued parameter, whereas this problem is proved undecidable for
L/U-PTA. However, one could argue that an L/U-PTA with a single parame-
ter is necessarily either an L-PTA (if the unique parameter is a lower-bound
parameter) or a U-PTA (otherwise).

Synthesis. The synthesis for L-PTA and U-PTA was not much addressed, with
the exception of integer-valued parameters: in that case, it is possible to synthe-
size the solution to the BUEF-synthesis problem in the form of a union of linear
constraints doubly exponential in the number of parameters [13]. The authors
note that it remains open whether one can construct a linear constraint with
a single exponential blow-up. This result does not extend in a straightforward
manner to rational-valued parameters, as the technique of Bozelli et al. [13]
(for U-PTA) requires the computation of a sufficient upper bound, and then an
exhaustive enumeration of parameters below this bound.

6 Open Questions

Syntax and Expressiveness. A first perspective is to compare the expressiveness
of the various syntaxes of PTA defined in the literature. This implies to first agree
on a definition of the expressiveness of a PTA. We propose as a perspective two
possible definitions: either the union over all parameter valuations of the timed
language, or the union over all parameter valuations of the untimed language.
Comparing the expressiveness of the syntaxes in the literature would reduce the
number of dimensions for the various decidability results of the EF-emptiness
problem studied in Table 2.

Decidability Problems. A main open problem is the decidability of PTA with two
clocks, that was only studied with a single parameter and over discrete time [16].
Studying further the EG-, AF- and AG-emptiness problems for few clocks and
parameters (as it was quite extensively done for EF-emptiness) remains to be
done too, although the theoretical or practical interest may be somehow debat-
able. More interesting (and promising) are the two open classes of L-PTA and U-
PTA. These classes are non-trivial, and relate to the robust analysis of TA: most
robustness problems (see [12]) consider an enlargement of all guards by (usually)
the same constant factor, whereas U-PTA allow to enlarge or decrease some of
the upper-bound guards by a possibly different parameter, which gives an orthog-
onal definition of robustness. The language preservation problem remains open
for U-PTA [8], and the question of the synthesis is also challenging.

66 E. André

Also note that formalisms close to PTA (not surveyed here for lack of
space) include subclasses of hybrid automata [14] and parametric interrupt timed
automata [11], that benefit from promising decidability results.

Synthesis. Whereas decision problems (surveyed in this document) were much
studied, little interest has been dedicated to the synthesis of parameters, which
should however be a main practical challenge. Despite undecidability (in gen-
eral [3]) or intractability (for L/U-PTA [25]), semi-algorithms or approximated
procedures could be devised; SMT-based techniques [27], or the integer hull
approximation [6,25] can serve as a basis for future works.

Are PTA a Useless Formalism? Despite many undecidability problems, PTA
were often used to model and verify various case studies (see Sect.1). This can
be seen as a paradox considering the numerous undecidability results PTA suffer
from. In fact, as all of the aforementioned analyses terminate, it is challenging to
understand why, and perhaps to exhibit further classes for which the problems
considered in this survey become decidable.

Acknowledgements. This manuscript benefited from discussions with Didier Lime,
Nicolas Markey, and Olivier H. Roux.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183-235 (1994)

2. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for
“model measuring”. ACM Trans. Comput. Logic 2(3), 388-407 (2001)

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592-601. ACM (1993)

4. André, E., Chatain, Th., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819-836 (2009)

5. André, E., Fribourg, L., Kiihne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33-36. Springer, Heidelberg (2012)

6. André, E., Lime, D., Roux, O.H.: Integer-complete synthesis for bounded para-
metric timed automata. In: Bojanczyk, M., Lasota, S., Potapov, I. (eds.) RP
2015. LNCS, vol. 9328, pp. 7-19. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24537-9_2

7. André, E., Lime, D., Roux, O.H.: Decision problems for parametric timed automata
(submitted, 2016)

8. André, E., Markey, N.: Language preservation problems in parametric timed
automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS,
vol. 9268, pp. 27-43. Springer, Heidelberg (2015)

9. Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional hybrid systems —
decidable, undecidable, don’t know. Inf. Comput. 211, 138-159 (2012)

http://dx.doi.org/10.1007/978-3-319-24537-9_2
http://dx.doi.org/10.1007/978-3-319-24537-9_2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

What’s Decidable About Parametric Timed Automata? 67

Benes, N., Bezdék, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldérsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015, Part II. LNCS, vol. 9135, pp. 69-81. Springer,
Heidelberg (2015)

Bérard, B., Haddad, S., Jovanovié¢, A., Lime, D.: Parametric interrupt timed
automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp.
59-69. Springer, Heidelberg (2013)

Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata. In: Abdulla,
P.A., Potapov, L. (eds.) RP 2013. LNCS, vol. 8169, pp. 1-18. Springer, Heidelberg
(2013)

Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Meth. Syst. Des. 35(2), 121-151 (2009)

Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.:
Time-bounded reachability for monotonic hybrid automata: complexity and fixed
points. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
55-70. Springer, Heidelberg (2013)

Bruyere, V., Raskin, J.F.: Real-time model-checking: parameters everywhere. Log-
ical Meth. Comput. Sci. 3(1: 7), 1-30 (2007)

Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In: Csuhaj-
Varjd, E., Dietzfelbinger, M., Esik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634,
pp. 123-134. Springer, Heidelberg (2014)

Chevallier, R., Encrenaz-Tipheéne, E.; Fribourg, L., Xu, W.: Timed verification of
the generic architecture of a memory circuit using parametric timed automata.
Formal Meth. Syst. Des. 34(1), 59-81 (2009)

Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett.
102(5), 208-213 (2007)

Fanchon, L., Jacquemard, F.: Formal timing analysis of mixed music scores. In:
International Computer Music Conference (2013)

Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis for scheduling
problems using the inverse method. In: TIME, pp. 73-80. IEEE Computer Society
Press (2012)

Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94-124 (1998)

Henzinger, T.A., Kopke, P.W., Wong-Toi, H.: The expressive power of clocks. In:
Fulop, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 417-428. Springer, Heidelberg
(1995)

Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111(2), 193-244 (1994)

Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52-53, 183-220 (2002)

Jovanovié, A.,; Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Trans. Softw. Eng. 41(5), 445-461 (2015)

Jovanovié, A.: Parametric verification of timed systems. Ph.D. thesis , Ecole Cen-
trale Nantes, France (2013)

Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 141—
159. Springer, Heidelberg (2012)

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transfer 1(1-2), 134-152 (1997)

68

29.

30.

31.

32.

33.

34.

E. André

Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54-57. Springer, Heidelberg (2009)

Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, p. 296. Springer, Heidelberg (2000)

Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Englewood Cliffs (1967)

Quaas, K.: MTL-model checking of one-clock parametric timed automata is unde-
cidable. SynCoP. EPTCS 145, 5-17 (2014)

Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709—
714. Springer, Heidelberg (2009)

Wang, T., Sun, J., Wang, X., Liu, Y., Si, Y., Dong, J.S., Yang, X., Li, X.: A
systematic study on explicit-state non-zenoness checking for timed automata. IEEE
Trans. Softw. Eng. 41(1), 3-18 (2015)

	What's Decidable About Parametric Timed Automata?
	1 Introduction
	2 Parametric Timed Automata and Problems
	2.1 Clocks, Parameters and Constraints
	2.2 A Unified Syntax for Parametric Timed Automata
	2.3 Decision and Computation Problems

	3 Almost Everything is Undecidable for Simple PTA
	3.1 Decidability of the Membership
	3.2 General Undecidable Problems
	3.3 Bounding Time
	3.4 Bounding the Parameter Domain

	4 Bounding the Numbers of Clocks and Parameters
	4.1 EF-Emptiness
	4.2 Language and Trace Preservation
	4.3 Parametric Model Checking

	5 The Disappointing Class of L/U-PTA
	5.1 Decidability Results
	5.2 Undecidability Results
	5.3 Intractability of the Synthesis
	5.4 Two Open Classes: L-PTA and U-PTA

	6 Open Questions
	References

