
123

Cyrille Artho
Peter Csaba Ölveczky (Eds.)

4th International Workshop, FTSCS 2015
Paris, France, November 6–7, 2015
Revised Selected Papers

Formal Techniques for
Safety-Critical Systems

Communications in Computer and Information Science 596

Communications
in Computer and Information Science 596

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Cyrille Artho • Peter Csaba Ölveczky (Eds.)

Formal Techniques for
Safety-Critical Systems
4th International Workshop, FTSCS 2015
Paris, France, November 6–7, 2015
Revised Selected Papers

123

Editors
Cyrille Artho
AIST Ikeda
Ikeda, Osaka
Japan

Peter Csaba Ölveczky
University of Oslo
Oslo
Norway

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-29509-1 ISBN 978-3-319-29510-7 (eBook)
DOI 10.1007/978-3-319-29510-7

Library of Congress Control Number: 2015961022

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the proceedings of the Fourth International Workshop on Formal
Techniques for Safety-Critical Systems (FTSCS 2015), held in Paris on November 6–7,
2015, as a satellite event of the ICFEM conference.

The aim of FTSCS is to bring together researchers and engineers who are interested
in the application of formal and semi-formal methods to improve the quality of
safety-critical computer systems. FTSCS strives to promote research and development
of formal methods and tools for industrial applications, and is particularly interested in
industrial applications of formal methods. Specific topics of the workshop include, but
are not limited to:

– case studies and experience reports on the use of formal methods for analyzing
safety-critical systems, including avionics, automotive, medical, and other kinds of
safety-critical and QoS-critical systems;

– methods, techniques, and tools to support automated analysis, certification,
debugging, etc., of complex safety/QoS-critical systems;

– analysis methods that address the limitations of formal methods in industry
(usability, scalability, etc.);

– formal analysis support for modeling languages used in industry, such as AADL,
Ptolemy, SysML, SCADE, Modelica, etc; and

– code generation from validated models.

FTSCS 2015 received 41 regular paper submissions and five work-in-progress paper
submissions. Each submission was reviewed by at least three reviewers. Based on the
reviews and on extensive discussions, the program committee selected 15 of these
regular papers and two work-in-progress papers for presentation at the workshop. This
volume contains revised versions of those 15 regular papers, as well as an invited paper
by José Meseguer. As was the case for FTSCS 2012–2014, a special issue of the
Science of Computer Programming journal will be devoted to extended versions of
selected papers from FTSCS 2015.

Many colleagues and friends contributed to FTSCS 2015. We thank José Meseguer
for accepting our invitation to give an invited talk and the authors who submitted their
work to FTSCS 2015 and who made this workshop an interesting event. We are
particularly grateful to the members of the program committee, who all provided
timely, insightful, and detailed reviews.

We also thank the editors of Springer’s Communications in Computer and Infor-
mation Science (CCIS) series for publishing the proceedings of FTSCS 2015, Bas van
Vlijmen for accepting our proposal to devote a special issue of Science of Computer
Programming to extended versions of selected papers from FTSCS 2015, and Fatiha
Zaïdi and Étienne André for their help with local arrangements.

December 2015 Cyrille Artho
Peter Csaba Ölveczky

Organization

Program Chairs

Cyrille Artho AIST, Japan
Peter Csaba Ölveczky University of Oslo, Norway

Program Committee

Musab AlTurki King Fahd University of Petroleum & Minerals,
Saudi Arabia

Étienne André University Paris 13, France
Toshiaki Aoki JAIST, Japan
Cyrille Artho AIST, Japan
Kyungmin Bae SRI International, USA
David Broman KTH, Sweden and UC Berkeley, USA
Bernd Fischer Stellenbosch University, South Africa
Osman Hasan National University of Sciences & Technology,

Pakistan
Klaus Havelund NASA JPL, USA
Fuyuki Ishikawa National Institute of Informatics, Japan
Takashi Kitamura AIST, Japan
Alexander Knapp Augsburg University, Germany
Brian Larson Kansas State University, USA
Wenchao Li SRI International, USA
Robi Malik University of Waikato, New Zealand
Frédéric Mallet Université Nice Sophia-Antipolis, France
Roberto Nardone University of Napoli Federico II, Italy
Thomas Noll RWTH Aachen University, Germany
Peter Csaba Ölveczky University of Oslo, Norway
Charles Pecheur Université catholique de Louvain, Belgium
Paul Pettersson Mälardalen University, Sweden
Camilo Rocha Escuela Colombiana de Ingeniería, Colombia
Markus Roggenbach Swansea University, UK
Ralf Sasse ETH Zürich, Switzerland
Oleg Sokolsky University of Pennsylvania, USA
Sofiène Tahar Concordia University, Canada
Jean-Pierre Talpin Inria Rennes, France
Chen-Wei Wang State University of New York, Korea
Alan Wassyng McMaster University, Canada
Michael Whalen University of Minnesota, USA
Huibiao Zhu East China Normal University, China

Additional Reviewers

Ahmed, Waqar
Asavoae, Irina Mariuca
Bohórquez, Jaime
Cailliau, Antoine
Causevic, Adnan
Elleuch, Maissa
Enoiu, Eduard Paul
Filipovikj, Predrag
Gentile, Ugo

Guo, Jian
Hachani, Ahmed
Inoue, Jun
James, Phillip
Khan, Shahid
Limbrée, Christophe
Marinescu, Raluca
Matheja, Christoph
Nakagawa, Hiroyuki

Seddiki, Ons
Siddique, Umair
Su, Wen
Sun, Youcheng
Wang, Xu
Wu, Xi
Yokogawa, Tomoyuki
Zhang, Min

VIII Organization

Contents

Invited Paper

Variant-Based Satisfiability in Initial Algebras . 3
José Meseguer

Timed Systems

An Executable Semantics of Clock Constraint Specification Language
and Its Applications. 37

Min Zhang and Frédéric Mallet

What’s Decidable About Parametric Timed Automata? 52
Étienne André

Compositional Predictability Analysis of Mixed Critical Real Time Systems 69
Abdeldjalil Boudjadar, Juergen Dingel, Boris Madzar,
and Jin Hyun Kim

Railway Systems

Towards a Body of Knowledge in Formal Methods for the Railway
Domain: Identification of Settled Knowledge . 87

Stefan Gruner, Apurva Kumar, and Tom Maibaum

Towards Safety Analysis of ERTMS/ETCS Level 2 in Real-Time Maude . . . 103
Phillip James, Andrew Lawrence, Markus Roggenbach,
and Monika Seisenberger

Modeling Railway Control Systems in Promela. 121
Roberto Nardone, Ugo Gentile, Massimo Benerecetti, Adriano Peron,
Valeria Vittorini, Stefano Marrone, and Nicola Mazzocca

Fault Tolerance

A Formal Model and Analysis of Feature Degradation in Fault-Tolerant
Systems . 139

Klaus Becker and Sebastian Voss

Probabilistic Analysis of a Calculus for Wireless Sensor Networks 155
Xi Wu and Huibiao Zhu

http://dx.doi.org/10.1007/978-3-319-29510-7_1
http://dx.doi.org/10.1007/978-3-319-29510-7_2
http://dx.doi.org/10.1007/978-3-319-29510-7_2
http://dx.doi.org/10.1007/978-3-319-29510-7_3
http://dx.doi.org/10.1007/978-3-319-29510-7_4
http://dx.doi.org/10.1007/978-3-319-29510-7_5
http://dx.doi.org/10.1007/978-3-319-29510-7_5
http://dx.doi.org/10.1007/978-3-319-29510-7_6
http://dx.doi.org/10.1007/978-3-319-29510-7_7
http://dx.doi.org/10.1007/978-3-319-29510-7_8
http://dx.doi.org/10.1007/978-3-319-29510-7_8
http://dx.doi.org/10.1007/978-3-319-29510-7_9

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties. 172
Jackson R. Mayo, Robert C. Armstrong, and Geoffrey C. Hulette

Automotive Systems

A Controller Safety Concept Based on Software-Implemented Fault
Tolerance for Fail-Operational Automotive Applications 189

Majdi Ghadhab, Matthias Kuntz, Dmitrii Kuvaiskii, and Christof Fetzer

Modeling Safety Requirements of ISO26262 Using Goal Trees
and Patterns . 206

Toshiaki Aoki, Kriangkrai Traichaiyaporn, Yuki Chiba,
Masahiro Matsubara, Masataka Nishi, and Fumio Narisawa

Software and Systems Analysis

An Approach to Static-Dynamic Software Analysis 225
Pablo Gonzalez-de-Aledo, Pablo Sanchez, and Ralf Huuck

Towards Verifying VDM Using SPIN . 241
Hsin-Hung Lin, Yoichi Omori, Shigeru Kusakabe,
and Keijiro Araki

Tools

Statistical Model Checking of Simulink Models with Plasma Lab 259
Axel Legay and Louis-Marie Traonouez

g-HOL: A Graphical User Interface for the HOL Proof Assistant 265
Fahd Arshad, Hassan Mehmood, Fauzan Raza, and Osman Hasan

Author Index . 271

X Contents

http://dx.doi.org/10.1007/978-3-319-29510-7_10
http://dx.doi.org/10.1007/978-3-319-29510-7_11
http://dx.doi.org/10.1007/978-3-319-29510-7_11
http://dx.doi.org/10.1007/978-3-319-29510-7_12
http://dx.doi.org/10.1007/978-3-319-29510-7_12
http://dx.doi.org/10.1007/978-3-319-29510-7_13
http://dx.doi.org/10.1007/978-3-319-29510-7_14
http://dx.doi.org/10.1007/978-3-319-29510-7_15
http://dx.doi.org/10.1007/978-3-319-29510-7_16

Invited Paper

Variant-Based Satisfiability in Initial Algebras

José Meseguer(B)

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, Illinois, USA

meseguer@illinois.edu

Abstract. Although different satisfiability decision procedures can be
combined by algorithms such as those of Nelson-Oppen or Shostak, cur-
rent tools typically can only support a finite number of theories to use in
such combinations. To make SMT solving more widely applicable, generic
satisfiability algorithms that can allow a potentially infinite number of
decidable theories to be user-definable, instead of needing to be built in
by the implementers, are highly desirable. This work studies how fold-
ing variant narrowing, a generic unification algorithm that offers good
extensibility in unification theory, can be extended to a generic variant-
based satisfiability algorithm for the initial algebras of its user-specified
input theories when such theories satisfy Comon-Delaune’s finite variant
property (FVP) and some extra conditions. Several, increasingly larger
infinite classes of theories whose initial algebras enjoy decidable variant-
based satisfiability are identified and illustrated with examples.

Keywords: Finite variant property (FVP) · Constructor variant · Con-
structor unifier · Folding variant narrowing · Satisfiability in initial
algebras

1 Introduction

The use of decision procedures for theories axiomatizing data structures and
functions commonly occurring in software and hardware systems is currently one
of the most effective methods at the heart of state-of-the art theorem provers
and model checkers. It offers the promise, and often even the reality, of scaling
up such verification efforts to handle large systems used in industrial practice.
In the area of decision procedures two important phases stand out. The first is
the discovery in the late 70’s and early 80’s of combination methods by Nelson
and Oppen [73] and Shostak [78] to achieve satisfiability in combinations of
decidable theories. The second is the marriage of SAT-solving technology with
decision procedures for certain theories, an approach pioneered independently
by a number of different groups [5,7,14,45,46,72] and distilled in the influential
DPLL(T) architecture [75]. This approach has been key to the success of SMT,
as witnessed by a vast literature on the subject.

However, one important challenge is the lack of extensibility of current
SMT tools. This may seem somewhat paradoxical to say, since obviously the
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 3–34, 2016.
DOI: 10.1007/978-3-319-29510-7 1

4 J. Meseguer

Nelson-Oppen (NO) combination method [73,76] offers unlimited extensibility
by theory combinations under some conditions on the combined theories. This
is true enough, but:

1. One needs to have algorithms and implementations for each of the theories
supported by the SMT solver, which requires a non-trivial effort and in any
case limits at any given time each SMT solver to support a finite (and in
practice not very large) library of theories that it can handle.

2. What we need are generic —i.e., not for a single theory, but for a possi-
bly infinite class of theories— and easily user-definable satisfiability decision
procedures that are supported by an SMT solver tool, so that the tool’s reper-
tory of individual decidable theories becomes potentially infinite and easily
specifiable by the tool’s users, as opposed to its implementers.

Achieving extensibility in this, more ambitious sense can have large payoffs
for SMT solving technology, because it can widely extend both its scope and its
effectiveness. In formal verification practice this would allow automating larger
fragments of the verification effort, both in theorem proving and in model check-
ing, and therefore scaling up to effectively handle larger problems.

This paper is all about making SMT solving extensible in the just-mentioned
sense by what I call variant-based satisfiability methods. The best way for me
to explain the key ideas is to place them in the context of a recent sea change
in unification theory that has been quietly taking place thanks to variant-based
unification [41,42], inspired by the Comon-Delaune notion of variant [31].

Note that unification theory is not just a neighboring area of SMT solving,
but actually a subfield : specifically, the subfield obtained by: (i) considering the-
ories of the form th(TΣ/E(X)), associated to equational theories (Σ,E), where
th(TΣ/E(X)) denotes the theory of the free (Σ,E)-algebra TΣ/E(X) on count-
ably many variables X, and (ii) restricting ourselves to positive quantifier-free
(QF) formulas of the form ϕ =

∨
i

∧
Gi, with each

∧
Gi a conjunction of equa-

tions. A finitary E-unification algorithm then gives us a decision procedure for
satisfiability of such formulas ϕ not only in the free (Σ,E)-algebra TΣ/E(X), but
also in the initial (Σ,E)-algebra TΣ/E when all sorts of TΣ/E are non-empty.

Unification theory is not only a subfield of SMT solving but what might be
called a microcosm, where many problems and challenges of SMT solving already
show up, including the extensibility problem. For example, the Nelson-Oppen
(NO) combination algorithm [73,76] is mirrored by algorithms for combining
unification procedures, such as those of Baader and Schulz [8] and Boudet [19]
(see [10] for a unified treatment of both NO and the Baader-Schulz algorithms).
Also, as for SMT solving, extensibility is a problem for the exact same reasons:
although combination methods exist, E-unification algorithms require substan-
tial implementation efforts and a tool can only support so many of them.

One important advantage of unification theory is that it has had for a
long time generic E-unification semi-algorithms, namely, narrowing-based [44,
57,58,79] and transformation-based [47,80] ones. But one important drawback of
these semi-algorithms is that, since E-unification for arbitrary E is undecidable,

Variant-Based Satisfiability in Initial Algebras 5

in general they only provide a semi-decision procedure, which is useless for decid-
ing unifiability, i.e., satisfiability of formulas ϕ =

∨
i

∧
Gi in the initial algebra

TΣ/E , unless they can be proved terminating for a given equational theory E.
For theories E whose equations can be oriented as convergent rewrite rules R,
some termination results for narrowing-based unification, mostly based on the
basic narrowing strategy [57], do exist for some quite restrictive classes of rules R
(see [1,2], and references there, for a comprehensive and up-to-date treatment).
Instead, the more general case of termination for narrowing-based unification for
equational theories E � B for which the equations E can be oriented as con-
vergent rules R modulo axioms B having a finitary B-unification algorithm, has
been a real terra incognita until very recently, because negative results, like the
impossibility of using basic narrowing when B is a set of associative-commutative
(AC) axioms [31], seemed to dash any hopes not just of termination, but even
of efficient implementation. Many of these limitations have now disappeared
thanks to the folding variant narrowing algorithm [41,42]. Let me summarize
the current state of the matter after [42]:

1. When B has a finitary unification algorithm, folding variant narrowing with
convergent oriented equations E modulo B will terminate on any input term
(including unification problems expressed in an extended signature) iff E �B
has the finite variant property1 (FVP) in the Comon-Delaune sense [31].

2. No other complete narrowing strategy can terminate more often than folding
variant narrowing; in particular, basic narrowing (when applicable, e.g., B =
∅) terminates strictly less often.

3. FVP is a semi-decidable property and, when it actually holds, can be easily
checked by existing tools, assuming convergence [23].

4. Both folding variant narrowing and variant-based unification for theories
E � B, where B can be any combination of associativity, commutativity and
identity axioms, except associativity without commutativity, are already sup-
ported by tools such as Maude [25] in its latest 2.7 version.

There are by now papers, e.g., [31,39,40], many cryptographic protocol spec-
ifications, e.g., [22,40,53,77,84], and several verification tools, e.g., [22,40,77],
demonstrating that FVP equational theories are omni-present in cryptographic
protocol verification and that variant-based unification and narrowing are very
general and effective formal reasoning methods to verify such protocols. In this
paper I give many examples showing that, in a similar way, QF satisfiability in
initial algebras of FVP theories is decidable under reasonable conditions.

The key question addressed in this paper should now be obvious: can the
good properties of variant-based unification as a theory-generic, finitary E � B-
unification algorithm for FVP theories be extended to a, likewise generic, variant-
based E �B-satisfiability algorithm for the initial algebras TΣ/E�B of an infinite
1 Roughly, u is an E, B-variant of a term t if u is the E, B-canonical form of a substi-

tution instance, tθ, of t (for a more careful definition see Definition 5). Therefore, the
variants of t are intuitively the “irreducible patterns” to which t can be symbolically
evaluated by the rules E modulo B. E�B has the finite variant property if there is a
finite set of most general variants, which are computed by folding variant narrowing.

6 J. Meseguer

number of such FVP theories E � B under suitable conditions? If this were
possible, the advances in increasing the extensibility of unification theory could
then be leveraged to make SMT solving substantially more extensible than it is
at present. Answering this question is non-trivial, because unification only deals
with positive, i.e., negation-free, formulas, whereas satisfiability must deal with
all QF formulas. This is precisely what is done in this work, which answers this
main question in the affirmative as follows:

1. After some preliminaries in Sect. 2, Sect. 3 discusses an incorrect first attempt,
in [31], to relate satisfiability and initial FVP algebras. Section 4 then proposes
new notions of constructor variant and constructor unifier as key concepts
towards a solution.

2. Section 5 gives a general “descent theorem” reducing satisfiability in an initial
algebra to satisfiability in a simpler initial algebra on a subsignature Ω of
constructors, and outlines a general satisfiability algorithm when the initial
algebra of constructors has decidable satisfiability for QF formulas.

3. General conditions under which the initial algebra of constructors associated
to an initial algebra TΣ/E�B has decidable satisfiability and makes, in turn,
satisfiability in TΣ/E�B decidable are investigated. A key notion is that of
an OS-compact theory, which generalizes in several ways that of a compact
theory in [29]. In particular, it is shown that TΩ/B has decidable QF satis-
fiability for B any combination of associativity, commutativity and identity
axioms, except associativity without commutativity; furthermore, various rel-
evant examples of decidable initial algebras whose initial algebra of construc-
tors are of the form TΩ/B are given.

4. Section 7 shows that various parameterized data types, such as lists, compact
lists [33,34], multisets, and hereditarily finite (HF) sets, are satisfiability-
preserving under very general conditions; that is, they map a target initial
algebra with decidable QF satisfiability, like integers with addition, to the
initial algebra of the corresponding instance of the parameterized module,
like sets of integers, also with decidable QF satisfiability.

5. Related work is discussed in Sect. 8; and a fuller discussion of the entire work
is given in Sect. 9.

Proofs are omitted; they can be found in [69].

2 Order-Sorted Algebra, Rewriting, and Variants

I summarize the order-sorted algebra, order-sorted rewriting, and FVP notions
needed in the paper. The material, adapted from [42,66], extends ideas in [31,51].
It assumes the notions of many-sorted signature and many-sorted algebra, e.g.,
[37], which include unsorted signatures and algebras as a special case.

Definition 1. An order-sorted (OS) signature is a triple Σ = ((S,�), Σ) with
(S,�) a poset and (S,Σ) a many-sorted signature. Ŝ = S/≡�, the quotient of
S under the equivalence relation ≡� = (� ∪ �)+, is called the set of connected

Variant-Based Satisfiability in Initial Algebras 7

components of (S,�). The order � and equivalence ≡� are extended to sequences
of same length in the usual way, e.g., s′

1 . . . s′
n � s1 . . . sn iff s′

i � si, 1 � i � n.
Σ is called sensible if for any two f : w → s, f : w′ → s′ ∈ Σ, with w and
w′ of same length, we have w ≡� w′ ⇒ s ≡� s′. A many-sorted signature
Σ is the special case where the poset (S,�) is discrete, i.e., s � s′ iff s = s′.
Σ = ((S,�), Σ) is a subsignature of Σ′ = ((S′,�′), Σ′), denoted Σ ⊆ Σ′, iff
S ⊆ S′, � ⊆ �′, and Σ ⊆ Σ′.

For connected components [s1], . . . , [sn], [s] ∈ Ŝ

f
[s1]...[sn]
[s] = {f : s′

1 . . . s′
n → s′ ∈ Σ | s′

i ∈ [si], 1 � i � n, s′ ∈ [s]}

denotes the family of “subsort polymorphic” operators f . �
I will always assume that Σ’s poset of sorts (S,�) is locally finite, that is,

that for any s ∈ S its connected component [s] is a finite set.

Definition 2. For Σ = (S,�, Σ) an OS signature, an order-sorted Σ-algebra
A is a many-sorted (S,Σ)-algebra A such that:

– whenever s � s′, then we have As ⊆ As′ , and
– whenever f : w → s, f : w′ → s′ ∈ f

[s1]...[sn]
[s] and a ∈ Aw ∩ Aw′

, then we
have Af :w→s(a) = Af :w′→s′(a), where Aε = 1 (ε denotes the empty string and
1 = {0} is a singleton set), and As1...sn = As1 × . . . × Asn

.

An order-sorted Σ-homomorphism h : A → B is a many-sorted (S,Σ)-
homomorphism such that whenever [s] = [s′] and a ∈ As ∩ As′ , then we have
hs(a) = hs′(a). We call h injective, resp. surjective, resp. bijective, iff for each
s ∈ S hs is injective, resp. surjective, resp. bijective. We call h an isomorphism
if there is another order-sorted Σ-homomorphism g : B → A such that for each
s ∈ S, hs; gs = 1As

, and gs;hs = 1Bs
, with 1As

, 1Bs
the identity functions on

As, Bs. This defines a category OSAlgΣ. �
Theorem 1 [66]. The category OSAlgΣ has an initial algebra. Furthermore, if
Σ is sensible, then the term algebra TΣ with:

– if a : ε → s then a ∈ TΣ,s,
– if t ∈ TΣ,s and s � s′ then t ∈ TΣ,s′ ,
– if f : s1 . . . sn → s and ti ∈ TΣ,si

1 � i � n, then f(t1, . . . , tn) ∈ TΣ,s,

is initial, i.e., there is a unique Σ-homomorphism from TΣ to each Σ-algebra.

TΣ will (ambiguously) denote both the above-defined S-sorted set and the
set TΣ =

⋃
s∈S TΣ,s. For [s] ∈ Ŝ, TΣ,[s] =

⋃
s′∈[s] TΣ,s′ . An OS signature Σ

is said to have non-empty sorts iff for each s ∈ S, TΣ,s =| ∅. Unless explicitly
stated otherwise, I will assume throughout that Σ has non-empty sorts. An OS
signature Σ is called preregular [51] iff for each t ∈ TΣ the set {s ∈ S | t ∈ TΣ,s}
has a least element, denoted ls(t). I will assume throughout that Σ is preregular.

An S-sorted set X = {Xs}s∈S of variables, satisfies s =| s′ ⇒ Xs ∩ Xs′ = ∅,
and the variables in X are always assumed disjoint from all constants in Σ.

8 J. Meseguer

The Σ-term algebra on variables X, TΣ(X), is the initial algebra for the signature
Σ(X) obtained by adding to Σ the variables X as extra constants. Since a Σ(X)-
algebra is just a pair (A,α), with A a Σ-algebra, and α an interpretation of the
constants in X, i.e., an S-sorted function α ∈ [X → A], the Σ(X)-initiality of
TΣ(X) can be expressed as the following corollary of Theorem 1:

Theorem 2. (Freeness Theorem). If Σ is sensible, for each A ∈ OSAlgΣ and
α ∈ [X → A], there exists a unique Σ-homomorphism, α : TΣ(X) → A extend-
ing α, i.e., such that for each s ∈ S and x ∈ Xs we have xαs = αs(x).

In particular, when A = TΣ(X), an interpretation of the constants in X, i.e.,
an S-sorted function σ ∈ [X → TΣ(X)] is called a substitution, and its unique
homomorphic extension σ : TΣ(X) → TΣ(X) is also called a substitution.
Define dom(σ) = {x ∈ X | x =| xσ}, and ran(σ) =

⋃
x∈dom(σ) vars(xσ). A vari-

able specialization is a substitution ρ that just renames a few variables and may
lower their sort. More precisely, dom(ρ) is a finite set of variables {x1, . . . , xn},
with respective sorts s1, . . . , sn, and ρ injectively maps the x1, . . . , xn to variables
x′
1, . . . , x

′
n with respective sorts s′

1, . . . , s
′
n such that s′

i � si, 1 � i � n.
The first-order language of equational Σ-formulas is defined in the usual

way: its atoms are Σ-equations t = t′, where t, t′ ∈ TΣ(X)[s] for some [s] ∈ Ŝ
and each Xs is assumed countably infinite. The set Form(Σ) of equational Σ-
formulas is then inductively built from atoms by: conjunction (∧), disjunction
(∨), negation (¬), and universal (∀x:s) and existential (∃x:s) quantification with
sorted variables x:s ∈ Xs for some s ∈ S. The literal ¬(t = t′) is denoted t =| t′.

Given a Σ-algebra A, a formula ϕ ∈ Form(Σ), and an assignment α ∈
[Y → A], with Y = fvars(ϕ) the free variables of ϕ, the satisfaction relation
A,α |= ϕ is defined inductively as usual: for atoms, A,α |= t = t′ iff tα =
t′α; for Boolean connectives it is the corresponding Boolean combination of
the satisfaction relations for subformulas; and for quantifiers: A,α |= (∀x:s) ϕ
(resp. A,α |= (∃x:s) ϕ) holds iff for all a ∈ As (resp. some a ∈ As) we have
A,α�{(x:s, a)} |= ϕ, where the assignment α�{(x:s, a)} extends α by mapping
x:s to a. Finally, A |= ϕ holds iff A,α |= ϕ holds for each α ∈ [Y → A], where
Y = fvars(ϕ). We say that ϕ is valid (or true) in A iff A |= ϕ. We say that ϕ is
satisfiable in A iff ∃α ∈ [Y → A] such that A,α |= ϕ, where Y = fvars(ϕ). For a
subsignature Ω ⊆ Σ and A ∈ OSAlgΣ , the reduct A|Ω ∈ OSAlgΩ agrees with
A in the interpretation of all sorts and operations in Ω and discards everything
in Σ − Ω. If ϕ ∈ Form(Ω) we have the equivalence A |= ϕ ⇔ A|Ω |= ϕ.

An OS equational theory is a pair T = (Σ,E), with E a set of Σ-equations.
OSAlg(Σ,E) denotes the full subcategory of OSAlgΣ with objects those A ∈
OSAlgΣ such that A |= E, called the (Σ,E)-algebras. OSAlg(Σ,E) has an
initial algebra TΣ/E [66]. Given T = (Σ,E) and ϕ ∈ Form(Σ), we call ϕ T -valid,
written E |= ϕ, iff A |= ϕ for each A ∈ OSAlg(Σ,E). We call ϕ T -satisfiable iff
there exists A ∈ OSAlg(Σ,E) with ϕ satisfiable in A. Note that ϕ is T -valid iff
¬ϕ is T -unsatisfiable.

The inference system in [66] is sound and complete for OS equational deduc-
tion, i.e., for any OS equational theory (Σ,E), and Σ-equation u = v we have

Variant-Based Satisfiability in Initial Algebras 9

an equivalence E � u = v ⇔ E |= u = v. Deducibility E � u = v is often
abbreviated as u =E v and called E-equality. A preregular signature Σ is called
E-preregular iff for each u = v ∈ E and variable specialization ρ, ls(uρ) = ls(vρ).

In the above logical notions there is only an apparent lack of predicate sym-
bols: full order-sorted first-order logic can be reduced to order-sorted algebra and
the above language of equational formulas. The essential idea is to view a pred-
icate p(x1:s1, . . . , xn:sn) as a function symbol p : s1 . . . sn → Pred , with Pred , a
new sort having a constant tt . An atomic formula p(t1, . . . , tn) is then expressed
as the equation p(t1, . . . , tn) = tt . Let me just give a few technical details. An
order-sorted first-order logic signature, or just an OS-FO signature, is a pair
(Σ,Π) with Σ an OS signature with set of sorts S, and Π an S∗-indexed set
Π = {Πw}w∈S∗ of predicate symbols. An OS (Σ,Π)-model M is an OS Σ-algebra
M together with an S∗-indexed mapping M : Π → {P(Mw)}w∈S∗ interpreting
each p ∈ Πw as a subset Mp ⊆ Mw. Since p can be overloaded, we sometimes
write Mpw

⊆ Mw. M must also satisfy the additional condition that overloaded
predicates agree on common data. That is, if w ≡� w′, p ∈ Πw and p ∈ Πw′ ,
then for any a ∈ Mw ∩ Mw′

we have a ∈ Mpw
⇔ a ∈ Mpw′ . The language of

first-order (Σ,Π)-formulas extends that of equational Σ-formulas by adding as
atomic formulas predicate expressions of the form p(t1, . . . , tn), with p ∈ Πw and
(t1, . . . , tn) ∈ TΣ(X)w. The satisfaction relation is likewise extended by defining
M,α |= p(t1, . . . , tn) iff (t1α, . . . , tnα) ∈ Mp.

The reduction to OS algebra is achieved as follows. We associate to an OS-
FO signature (Σ,Π) an OS signature (Σ ∪ Π) by the above-mentioned method
of adding to Σ a new sort Pred with a constant tt in its own separate connected
component {Pred}, and viewing each p ∈ Πw as a function symbol p : s1 . . . sn →
Pred . The reduction at the model level is now very simple: each OS (Σ ∪ Π)-
algebra A defines a (Σ,Π)-model A◦ with Σ-algebra structure A|Σ and having
for each p ∈ Πw the predicate interpretation A◦

p = A−1
p:w→Pred(tt). The reduction

at the formula level is also quite simple: we map a (Σ,Π)-formula ϕ to an
equational formula ϕ̃, called its equational version, by just replacing each atom
p(t1, . . . , tn) by the equational atom p(t1, . . . , tn) = tt . The correctness of this
reduction is just the easy to check equivalence:

A◦ |= ϕ ⇔ A |= ϕ̃.

An OS-FO theory is just a pair ((Σ,Π), Γ), with (Σ,Π) an OS-FO signature
and Γ a set of (Σ,Π)-formulas. Call ((Σ,Π), Γ) equational iff (Σ ∪ Π, Γ̃) is
an OS equational theory. By the above equivalence and the completeness of
OS equational logic such theories allow a sound and complete use of equational
deduction also with predicate atoms. Note that if ((Σ,Π), Γ) is equational, it
is a very simple type of theory in OS Horn Logic with Equality and therefore
has an initial model TΣ,Π,Γ [52]. A useful, easy to check fact is that we have an
identity: T ◦

Σ∪Π/˜Γ
= TΣ,Π,Γ . I will give natural examples of OS-FO equational

theories later in the paper.
Recall the notation for term positions, subterms, and term replacement from

[32]: (i) positions in a term viewed as a tree are marked by strings p ∈ N
∗

10 J. Meseguer

specifying a path from the root, (ii) t|p denotes the subterm of term t at position
p, and (iii) t[u]p denotes the result of replacing subterm t|p at position p by u.

Definition 3. A rewrite theory is a triple R = (Σ,B,R) with (Σ,B) an order-
sorted equational theory and R a set of Σ-rewrite rules, i.e., sequents l → r,
with l, r ∈ TΣ(X)[s] for some [s] ∈ Ŝ. In what follows it is always assumed that:

1. For each l → r ∈ R, l �∈ X and vars(r) ⊆ vars(l).
2. Each rule l → r ∈ R is sort-decreasing, i.e., for each variable specialization

ρ, ls(lρ) � ls(rρ).
3. Σ is B-preregular.
4. Each equation u = v ∈ B is regular, i.e., vars(u) = vars(v), and linear, i.e.,

there are no repeated variables in u, and no repeated variables in v.

The one-step R,B-rewrite relation t →R,B t′, holds between t, t′ ∈ TΣ(X)[s],
[s] ∈ Ŝ, iff there is a rewrite rule l → r ∈ R, a substitution σ ∈ [X → TΣ(X)],
and a term position p in t such that t|p =B lσ, and t′ = t[rσ]p. Note that, by
assumptions (2)–(3) above, t[rσ]p is always a well-formed Σ-term.

R is called: (i) terminating iff the relation →R,B is well-founded; (ii) strictly
B-coherent [68] iff whenever u →R,B v and u =B u′ there is a v′ such that
u′ →R,B v′ and v =B v′ :

u
R/B

��

B

v

B

u′
R,B

�� v′

(iii) confluent iff u →∗
R,B v1 and u →∗

R,B v2 imply that there are w1, w2 such that
v1 →∗

R,B w1, v2 →∗
R,B w2, and w1 =B w2 (where →∗

R,B denotes the reflexive-
transitive closure of →R,B); and (iv) convergent if (i)–(iii) hold. If R is conver-
gent, for each Σ-term t there is a term u such that t →∗

R,B u and (� ∃v) u →R,B v.
We then write u = t!R,B and t →!R,Bt!R,B, and call t!R,B the R,B-normal form
of t, which, by confluence, is unique up to B-equality.

Given a set E of Σ-equations, let R(E) = {u → v | u = v ∈ E}. A decompo-
sition of an order-sorted equational theory (Σ,E) is a convergent rewrite theory
R = (Σ,B,R) such that E = E0 � B and R = R(E0). The key property of a
decomposition is the following:

Theorem 3. (Church-Rosser Theorem) [59,68] Let R = (Σ,B,R) be a decom-
position of (Σ,E). Then we have an equivalence:

E � u = v ⇔ u!R,B =B v!R,B.

If R = (Σ,B,R) is a decomposition of (Σ,E), and X an S-sorted set of
variables, the canonical term algebra CR(X) has CR(X)s = {[t!R,B]B | t ∈
TΣ(X)s}, and interprets each f : s1 . . . sn → s as the function CR(X)f :

Variant-Based Satisfiability in Initial Algebras 11

([u1]B , . . . , [un]B) �→ [f(u1, . . . , un)!R,B]B . By the Church-Rosser Theorem we
then have an isomorphism h : TΣ/E(X) ∼= CR(X), where h : [t]E �→ [t!R,B]B . In
particular, when X is the empty family of variables, the canonical term algebra
CR is an initial algebra, and is the most intuitive possible model for TΣ/E as an
algebra of values computed by R,B-simplification.

Quite often, the signature Σ on which TΣ/E is defined has a natural decom-
position as a disjoint union Σ = Ω � Δ, where the elements of CR, that is,
the values computed by R,B-simplification, are Ω-terms, whereas the function
symbols f ∈ Δ are viewed as defined functions which are evaluated away by
R,B-simplification. Ω (with same poset of sorts as Σ) is then called a construc-
tor subsignature of Σ. Call a decomposition R = (Σ,B,R) of (Σ,E) sufficiently
complete with respect to the constructor subsignature Ω iff for each t ∈ TΣ we
have: (i) t!R,B ∈ TΩ , and (ii) if u ∈ TΩ and u =B v, then v ∈ TΩ . This ensures
that for each [u]B ∈ CR we have [u]B ⊆ TΩ . Of course, we want Ω as small
as possible with these properties. I give in what follows many examples of such
decompositions Σ = Ω � Δ into constructors and defined functions. In Example
1 below, Ω = {�,⊥} and Δ = { ∧ , ∨ }. Tools based on tree automata [27],
equational tree automata [56], or narrowing [55], can be used to automatically
check sufficient completeness of a decomposition R with respect to constructors
Ω under some assumptions.

As the following definition shows, sufficient completeness is closely related to
the notion of a protecting theory inclusion, which is itself a special case of an
extending theory inclusion.

Definition 4. An equational theory (Σ,E) protects (resp. extends) another the-
ory (Ω,EΩ) iff (Ω,EΩ) ⊆ (Σ,E) and the unique Ω-homomorphism h : TΩ/EΩ

→
TΣ/E |Ω is an isomorphism h : TΩ/EΩ

∼= TΣ/E |Ω (resp. is injective). A decom-
position R = (Σ,B,R) protects (resp. is a conservative extension of) another
decomposition R0 = (Σ0, B0, R0) iff R0 ⊆ R, i.e., Σ0 ⊆ Σ, B0 ⊆ B, and
R0 ⊆ R, and for all t, t′ ∈ TΣ0(X) we have: (i) t =B0 t′ ⇔ t =B t′, (ii)
t = t!R0,B0 ⇔ t = t!R,B, and (iii) CR0 = CR|Σ0 (resp. CR0 ⊆ CR|Σ0).

RΩ = (Ω,BΩ , RΩ) is a constructor decomposition of R = (Σ,B,R) iff R
protects RΩ and Σ and Ω have the same poset of sorts, so that by (iii) above R
is sufficiently complete with respect to Ω. Furthermore, Ω is called a subsignature
of free constructors modulo BΩ iff RΩ = ∅, so that CR0 = TΩ/BΩ

.

The case where all constructor terms are in R,B-normal form is captured by
Ω being a subsignature of free constructors modulo BΩ . Note also that conditions
(i) and (ii) are, so called, “no confusion” conditions, and for protecting extensions
(iii) is a “no junk” condition, that is, R does not add new data to CR0 , whereas
for conservative extensions (iii) is relaxed to the “no confusion” condition CR0 ⊆
CR|Σ0 , which is already implicit in (i) and (ii). Therefore, protecting extensions
are a stronger kind of conservative extensions.

Given an OS equational theory (Σ,E) and a system of Σ-equations, that is,
a conjunction φ = u1 = v1 ∧ . . . ∧ un = vn of Σ-equations, an E-unifier of it
is a substitution σ such that uiσ =E viσ, 1 � i � n. An E-unification algorithm

12 J. Meseguer

for (Σ,E) is an algorithm generating a complete set of E-unifiers Unif E(φ) for
any system of Σ equations φ, where “complete” means that for any E-unifier σ
of φ there is a τ ∈ Unif E(φ) and a substitution ρ such that σ =E τρ, where =E

here means that for any variable x we have xσ =E xτρ. Such an algorithm is
called finitary if it always terminates with a finite set Unif E(φ) for any such φ.

The notion of variant answers, in a sense, two questions: (i) how can we
best describe symbolically the elements of CR(X) that are reduced substitution
instances of a pattern term t? and (ii) given an original pattern t, how many
other patterns do we need to describe the reduced instances of t in CR(X)?

Definition 5. Given a decomposition R = (Σ,B,R) of an OS equational theory
(Σ,E) and a Σ-term t, a variant2 [31,42] of t is a pair (u, θ) such that: (i)
u =B (tθ)!R,B, (ii) if x �∈ vars(t), then xθ = x, and (iii) θ = θ!R,B, that is, xθ =
(xθ)!R,B for all variables x. (u, θ) is called a ground variant iff, furthermore,
u ∈ TΣ. Note that if (u, θ) is a ground variant of some t, then [u]B ∈ CR. Given
variants (u, θ) and (v, γ) of t, (u, θ) is called more general than (v, γ), denoted
(u, θ) �R,B (v, γ), iff there is a substitution ρ such that: (i) θρ =B γ, and (ii)
uρ =B v. Let [[t]]R,B = {(ui, θi) | i ∈ I} denote a most general complete set of
variants of t, that is, a set of variants such that: (i) for any variant (v, γ) of t
there is an i ∈ I, such that (ui, θi) �R,B (v, γ); and (ii) for i, j ∈ I, i =| j ⇒
((ui, θi) |�R,B (uj , θj) ∧ (uj , θj) |�R,B (ui, θi)). A decomposition R = (Σ,B,R)
of (Σ,E) has the finite variant property [31] (FVP) iff for each Σ-term t there
is a finite most general complete set of variants [[t]]R,B = {(u1, θ1), . . . , (un, θn)}.

If B has a finitary unification algorithm, the folding variant narrowing strat-
egy described in [42] provides an effective method to generate [[t]]R,B . Further-
more, [[t]]R,B is finite for each t, so that the strategy terminates, iff R is FVP.

Example 1. Let B = (Σ,B,R) with Σ having a single sort, say Bool , constants
�,⊥, and binary opertors ∧ and ∨ , B the associativity and commutativity
(AC) axioms for both ∧ and ∨ , and R the rules: x ∧ � → x, x ∧ ⊥ → ⊥,
x ∨ ⊥ → x, and x ∧ � → �. Then B is FVP. For example, [[x ∧ y]]R,B =
{(x ∧ y, id), (y, {x �→ �}), (x, {y �→ �}), (⊥, {x �→ ⊥}), (⊥, {y �→ ⊥})}.

FVP is a semi-decidable property [23], which can be easily verified (when
it holds) by checking, using folding variant narrowing, that for each function
symbol f the term f(x1, . . . , xn), with the sorts of the x1, . . . , xn those of f , has
a finite number of most general variants. Given an FVP decomposition R its
variant complexity is the total number n of variants for all such f(x1, . . . , xn),
provided f has some associated rules of the form f(t1, . . . , tn) → t′. This gives
a rough measure of how costly it is to perform variant computations relative to
the cost of performing B-unification. For example, the variant complexity of B
above is 10.

2 For a discussion of similar but not exactly equivalent versions of the variant notion
see [23]. Here I follow the formulation in [42].

Variant-Based Satisfiability in Initial Algebras 13

Folding variant narrowing provides also a method for generating a complete
set of E-unifiers. I give below a method for generating such a set that is differ-
ent from the one given in [42], because in Sect. 4 this will allow me to express
the notion of constructor E-unifier in a straightforward way. Let (Σ,E) have a
decomposition R = (Σ,B,R) with B having a finitary B-unification algorithm.

To be able to express systems of equations, say, u1 = v1 ∧ . . . ∧ un = vn, as
terms, we can extend Σ to a signature Σ∧ by adding:

1. for each connected component [s] that does not already have a top element,
a fresh new sort �[s] with �[s] > s′ for each s ∈ [s]. In this way we obtain a
(possibly extended) poset of sorts (S�,�);

2. fresh new sorts Lit and Conj with a subsort inclusion Lit < Conj , with a
binary conjunction operator ∧ : Lit Conj → Conj , and

3. for each connected component [s] ∈ Ŝ� with top sort �[s], binary operators
= : �[s] �[s] → Lit and =| : �[s] �[s] → Lit .

Theorem 4. Under the above assumptions on R, let φ = u1 = v1 ∧ . . . ∧ un =
vn be a system of Σ-equations viewed as a Σ∧-term of sort Conj . Then

{θγ | (φ′, θ) ∈ [[φ]]R,B ∧ γ ∈ Unif B(φ′) ∧ (φ′γ, θγ) is a variant of φ}

is a complete set of E-unifiers for φ, where Unif B(φ′) denotes a complete set of
most general B-unifiers for each variant φ′ = u′

1 = v′
1 ∧ . . . ∧ u′

n = v′
n.

Since if R = (Σ,B,R) is FVP, then R∧ = (Σ∧, B,R) is also FVP,
Theorem 4 shows that if a finitary B-unification algorithm exists and R is an
FVP decomposition of (Σ,E), then E has a finitary E-unification algorithm.

3 A Satisfiability Puzzle

In Sect. 8 of their paper about the finite variant property [31], Comon-Lundh and
Delaune give a theorem (Theorem 3) stating that if (Σ,E) has an FVP decom-
position, say R = (Σ,E′, R), and satisfiability of quantifier-free (QF) equational
Σ-formulas in the initial algebra TΣ/E′ is decidable,3 then satisfiability of QF
equational Σ-formulas in the initial algebra TΣ/E is also decidable. They give
the following proof sketch for this theorem:

To prove this, simply compute the variants φ1, . . . , φn of the formula φ.
(In such a computation, logical connectives are seen as free symbols). For
every substitution σ, there is an index i and a substitution θ such that
φσ!R,E′ =E′ φiθ. In particular, φ is solvable modulo E iff one of the φi

is solvable modulo E′.

3 Such decidable QF satisfiability is of course equivalent to the decidability of whether
a sentence in the existential closure of such QF formulas belongs to the theory of
TΣ/E′ , which is how the decidability property is actually stated in [31].

14 J. Meseguer

The actual text in [31] only differs from the one above by the use of a different
notation for the normal form φσ!R,E′ . Their theorem, however, is incorrect, as
shown below. Since it is well-known that, putting a QF formula in DNF we can
reduce satisfiability of a QF formula to satisfiability of a conjunction of literals,
we can further simplify the above proof sketch by focusing on such conjunctions.

What the proof sketch then means is that, since (Σ∧, E) has an FVP decom-
position R∧ = (Σ∧, E′, R), and each conjunction of literals, say, φ = B1∧. . .∧Bk,
with each Bi either a Σ-equation or a Σ-disequation, is a Σ∧-term, the proof
sketch is a claim that φ is satisfiable in TΣ/E iff for some R,E′-variant (φi, θi)
of φ the conjunction φi is satisfiable in TΣ/E′ .

Example 2. The following counterexample shows that Theorem 3 in [31] is incor-
rect as stated. Let Σ have sorts Nat and Bool , with constants 0 of sort Nat
and �,⊥ of sort Bool , a unary successor operator s of sort Nat , and a unary
zero? : Nat → Bool . Let n be a variable of sort Nat , and E the equations
zero?(s(n)) = ⊥ and zero?(0) = �. Then (Σ, ∅, R(E)) is an FVP decompo-
sition of (Σ,E) of variant complexity 3 (i.e., in the above notation E′ = ∅).
Let φ be the formula x = zero?(n) ∧ x =| � ∧ x =| ⊥. It has a complete
set of three most general R(E), ∅-variants, namely: (φ, id), (φ′, {n �→ s(n′)}),
and (φ′′, {n �→ 0}), with n′ of sort Nat , id the identity substitution, the other
substitutions specified by how they map the variable n in φ, and where φ′ is the
formula x = ⊥ ∧ x =| � ∧ x =| ⊥, and φ′′ is the formula x = � ∧ x =| � ∧ x =| ⊥.
The formula φ is clearly unsatisfiable in TΣ/E . However, for the variant (φ, id)
the formula φ is satisfiable in TΣ for any substitution σ = {n �→ t, x �→ zero?(t)}
with t a ground term of sort Nat ; for example for σ = {n �→ 0, x �→ zero?(0)}.

A question still remains: whether, under suitable conditions, some analogue
of the (incorrect) Theorem 3 in [31] could somehow be obtained. That is, can
we find some results relating satisfiability in the initial algebras TΣ/E and in
TΣ/B (or some initial algebra related to TΣ/B) when R = (Σ,B,R) is an FVP
decomposition of (Σ,E)? I address this question in Sects. 5, 6 and 7. The key to
answer the question is the new notion of constructor variant that I present next.

4 Constructor Variants and Constructor Unifiers

Intuitively, an R,B-variant of a term t is another term v which is the normal
form of an instance tθ of t; i.e., such variants v are patterns covering the normal
forms of instances of t. But we can ask: what variants cover the normal forms
of the ground instances of t? I call them the constructor variants of t. Likewise,
a constructor unifier of φ is a special type of constructor variant of φ in the
extended decomposition R∧ = (Σ∧, B,R), and every R,B-normalized ground
unifier of φ is “covered” by a constructor unifier.

Definition 6. Let R = (Σ,B,R) be a decomposition of (Σ,E), and let RΩ =
(Ω,BΩ , RΩ) be a constructor decomposition of R. Then an R,B-variant (u, θ)
of a Σ-term t is called a constructor R,B-variant of t iff u ∈ TΩ(X).

Variant-Based Satisfiability in Initial Algebras 15

Suppose, furthermore, that B has a finitary B-unification algorithm, so that,
given a unification problem φ = u1 = v1 ∧ . . . ∧ un = vn, Theorem 4 allows us
to generate the complete set of E-unifiers

{θγ | (φ′, θ) ∈ [[φ]]R,B ∧ γ ∈ Unif B(φ′) ∧ (φ′γ, θγ) is a variant of φ}

Then a constructor E-unifier of φ is either: (1) a unifier θγ in the above set such
that φ′γ ∈ TΩ∧(X); or otherwise, (2) a unifier θγρ such that: (i) θγ belongs the
above set, (ii) ρ is a variable specialization4 of the variables in ran(θγ) such that
φ′γρ ∈ TΩ∧(X), (iii) (φ′γρ, θγρ) is a variant of φ, and (iv) the specialization ρ is
maximal5 satisfying conditions (ii) and (iii) in the order ρ � τ between variable
specializations with same domain that holds iff for each x : s in the domain, if
x :sρ = x′ :s′ and x :sτ = x′′ :s′′, then s′ � s′′.

Recall that if (v, δ) is a ground variant of t, then [v]B ∈ CR, so that v is an Ω-
term. Therefore, any ground variant (v, δ) of t is “covered” by some constructor
variant (u, θ) of t, i.e., (u, θ) �R,B (v, δ). Likewise, suppose that δ is an R,B-
normalized ground unifier of φ. Then, (i) (

∧
i(uiδ)!R,B = (viδ)!R,B) ∈ TΩ∧(X);

(ii) ((
∧

i(uiδ)!R,B = (viδ)!R,B), δ) is a variant of φ, and (iii) (uiδ)!R,B =B

(viδ)!R,B , 1 � i � n. Therefore, there is a constructor unifier θγρ and a substi-
tution α such that δ =B θγρα.

If (Σ,E) has a decomposition R = (Σ,B,R), B has a finitary B-unification
algorithm and we are only interested in characterizing the ground solutions of
an equation in the initial algebra TΣ/E , only constructor E-unifiers are needed,
since they completely cover all such solutions. Likewise, if we are only interested
in unifiability of a system of equations only constructor E-unifiers are needed.

4 By the assumption that Σ’s poset of sorts (S, �) is locally finite, up to variable
renaming the specializations of a finite set of variables form always a finite set. When
φ′γ �∈ TΩ∧(X) we may still have φ′γρ ∈ TΩ∧(X) for some variable specialization
ρ because a constructor symbol f : w → s may have a subsort-overloaded typing
f : w′ → s′ that is not a constructor but a defined symbol (see Footnote 5 below for
an example).

5 The following example illustrates all the issues involved. In the FVP decomposition
Z+ of the integers with addition of Example 10 in Sect. 6.2, the signature Ω of
constructors contains two typings for +, namely, + : Nat Nat → Nat and + :
NzNat NzNat → NzNat , with NzNat the subsort of non-zero naturals, and both
operations associative-commutative, and having 0 as unit element (ACU). Instead,
the typing + : Int Int → Int (also ACU) is not a constructor, but a function
defined by equations. Let φ be the equation x+ y = x′ + y′, where all variables have
sort Int . It has the variant (x + y = x′ + y′, id), and γ = {x �→ x′, y �→ y′} is one of
the ACU -unifiers of x + y = x′ + y′. Case (1) fails because x′ + y′ is not an Ω-term.
However, the variable specialization ρ = {x′ �→ x′′ : Nat , y′ �→ y′′ : Nat} yields the
constructor unifier idγρ = {x �→ x′′ :Nat , y �→ y′′ :Nat , x′ �→ x′′ :Nat , y′ �→ y′′ :Nat}
because now x′′ :Nat + y′′ :Nat is an Ω-term (property (ii) holds) and property (iii)
also holds. Furthermore, ρ is maximal with properties (ii) and (iii). For example,
ρ > τ for τ = {x′ �→ x′′′ :NzNat , y′ �→ y′′′ :NzNat}, so that the less general unifier
idγτ is unnecessary.

16 J. Meseguer

Theorem 5. Let (Σ,E) have a decomposition R = (Σ,B,R) with B having a
finitary B-unification algorithm. Then, for each system of Σ-equations φ = u1 =
v1 ∧ . . . ∧ un = vn, where Y = vars(φ), we have:

1. (Completeness for Ground Unifiers). If δ ∈ [Y → TΣ] is a ground E-unifier
of φ, then there is a constructor E-unifier θγρ and a substitution α such that
δ =E θγρα, i.e., xδ =E xθγρα for each variable x.

2. (Unifiability). TΣ/E |= (∃Y) φ iff φ has a constructor E-unifier. Furthermore,
we have equivalences:

E |= (∃Y) φ ⇔ TΣ/E(X) |= (∃Y) φ ⇔ TΣ/E |= (∃Y) φ.

Example 3. Let (Σ,E) be the OS equational theory of Example 2 and R =
(Σ, ∅, R(E)) its associated FVP decomposition. The term zero?(n) has three
variants: (zero?(n), id), (⊥, {n �→ s(n′)}), and (�, {n �→ 0}). Since all ground
instances of zero?(n) are R(E)-reducible, only the last two are constructor vari-
ants.

The E-unification problem zero?(n) = zero?(m) has three unifiers: {n �→ m},
obtained from the variant (zero?(n) = zero?(m), id), {n �→ s(n′),m �→ s(m′)},
obtained from the variant (⊥ = ⊥, {n �→ s(n′),m �→ s(m′)}), and {n �→ 0,m �→
0}, obtained from the variant (� = �, {n �→ 0,m �→ 0}). Only the last two are
constructor unifiers.

Example 4. Consider the unsorted theory (Σ,E) where Σ has a constant 0, a
unary s and a binary + , and E has the equations n+0 = n, n+s(m) = s(n+m).
(Σ,E) is not FVP, but it has an obvious decomposition R = (Σ, ∅, R(E)). The
variants of the term x + y are of the following types: (i) (x + y, id), (ii) (x, {y �→
0}), (iii) (sn(x+ y′), {y �→ sn(y′)}), n � 1, and (iv) (sn(x), {y �→ sn(0)}), n � 1.
Only variants of types (ii) and (iv) are constructor variants.

The E-unification problem x + y = z + 0 has the following types of E-
unifiers: (i) {z �→ x + y}, associated to the variant (x + y = z, id), (ii) {z �→
x, y �→ 0}, associated to the variant (x = z, {y �→ 0}), (iii) {z �→ sn(x + y′), y �→
sn(y′)}, associated to the variants (sn(x + y′) = z, {y �→ sn(y′)}), n � 1, and
(iv) {z �→ sn(x), y �→ sn(0)}, associated to the variants (sn(x) = z, {y �→ sn(0)}),
n � 1. Only unifiers of types (ii) and (iv) are constructor unifiers.

As the above examples show, there can be considerably fewer constructor E-
unifiers than general E-unifiers, so using constructor unifiers can be considerably
more efficient for various purposes.

5 Satisfiability in Initial Algebras: Descent Results

Using the constructor variant notion from Sect. 4 we can associate the failure
of Theorem 3 of [31] in Example 2 to the fact that for φ the formula x =
zero?(n) ∧ x =| � ∧ x =| ⊥, the variant (φ, id) is not a constructor variant. One
might conjecture that if R = (Σ,B,R) is an FVP decomposition of (Σ,E), a
QF equational formula φ is satisfiable in TΣ/E iff for some constructor variant
(φ′, θ) φ′ is satisfiable in TΣ/B. But this conjecture fails in general:

Variant-Based Satisfiability in Initial Algebras 17

Example 5. Let Σ be the unsorted signature with a constant 0 and a unary s, and
E consist of the single equation s(s(0)) = 0. Then, N2 = (Σ, ∅, R(E)) is an FVP
decomposition of (Σ,E). Let φ be the formula x =| 0 ∧ x =| s(0). Its only R(E), ∅-
variant is (φ, id), which is a constructor variant, since it has, for example, the
ground variant (0 =| 0 ∧ 0 =| s(0), {x �→ 0}) as an instance. Obviously, φ is
unsatisfiable in TΣ/E , but it is clearly satisfiable in TΣ/∅ = TΣ , for example
with the ground substitution {x �→ s(s(0))}. Of course, since TΣ/E is a finite
algebra, satisfiability in TΣ/E is decidable anyway, but not as conjectured.

A key reason for the failure of the above conjecture in Example 5 is that the
rules in R(E) rewrite constructor terms, so that not all constructor terms are in
normal form. Therefore, the conjecture’s mistake was to focus on TΣ/B , when
we should focus on the canonical algebra of constructors CRΩ

associated to a
constructor decomposition RΩ = (Ω,BΩ , RΩ) of the given FVP decomposition
R = (Σ,B,R). Note that the canonical term algebra CR and the canonical
constructor algebra CRΩ

are related by the equality CR|Ω = CRΩ
. This allows

us to reduce satisfiability in CR to satisfiability in CRΩ
as follows:

Theorem 6. (Descent Theorem). Let a decomposition R = (Σ,B,R) of an OS
equational theory (Σ,E) protect a constructor decomposition RΩ with equational
theory (Ω,EΩ). Then, a QF Σ-conjunction of literals φ is satisfiable in TΣ/E iff
there is a constructor variant (φ′, θ) of φ such that φ′ is satisfiable in TΩ/EΩ

.

This theorem has a useful corollary for equational OS-FO theories:

Corollary 1. Let an FVP decomposition R = (Σ ∪ Π,B,R) of an OS-FO
equational theory ((Σ,Π), Γ), with B having a finitary unification algorithm,
protect a constructor decomposition R(Ω,Δ) = (Ω ∪ Δ,BΩ , R(Ω,Δ)) of a the-
ory ((Ω,Δ), Γ0), with =BΩ

decidable and such that satisfiability of QF (Ω,Δ)-
formulas in TΩ,Δ,Γ0 is decidable. Then, satisfiability of any QF (Σ,Π)-formula
φ in TΣ,Π,Γ is decidable.

Given an OS equational theory (Σ,E), call a Σ-equality u = v E-trivial iff
u =E v, and a Σ-disequality u =| v E-consistent iff u =| Ev. Likewise, call a
conjunction

∧
D of Σ-disequalities E-consistent iff each u =| v in D is so.

Corollary 1 can be “unpacked” into an actual generic algorithm to decide
the satisfiability in TΣ,Π,Γ of any QF (Σ,Π)-formula φ. We can first of all shift
the problem to the equivalent one of satisfiability of the equational version φ̃ in
TΣ∪Π/˜Γ and, by assuming φ̃ in DNF,6 we can reduce to deciding whether some
conjunction of literals

∧
G ∧ ∧

D, with G equations and D disequations in such
a DNF is satisfiable. The algorithm is as follows:

1. Thanks to Theorem 5 we need only compute the variant-based constructor
Γ̃ -unifiers of

∧
G, and reduce to the case of deciding the satisfiability of

6 Using a lazy DPLL(T) solver (see, e.g., [13]) we do not have to assume that ϕ is in
DNF: the DPLL(T) solver will efficiently extract from ϕ the appropriate conjunctions
of T -literals to check for satisfiability.

18 J. Meseguer

some conjunction of disequalities (
∧

Dα)!R,B , for some constructor unifier α,
discarding any (

∧
Dα)!R,B containing a B-inconsistent disequality.

2. For each remaining (
∧

Dα)!R,B we can then compute a finite, complete set
of most general R,B-variants [[(

∧
Dα)!R,B]]R,B by folding variant narrowing,

and obtain from them7 the BΩ-consistent constructor variants
∧

D′.
3. We can then decide the satisfiability in TΩ,Δ,Γ0 of each such

∧
D′, so that∧

G ∧ ∧
D will be satisfiable in TΣ,Π,Γ iff some

∧
D′ is so in TΩ,Δ,Γ0 .

In a sequential implementation of such an algorithm, steps (1) and (2) should be
computed incrementally : one unifier, resp. variant, at a time. Maude 2.7 supports
incremental computation of variants and variant-based unifiers with caching to
reduce the cost of computing the next variant, resp. unifier.

The simplest case in which the above algorithm can be exploited is for
R = (Σ,B,R) FVP with a finitary B-unification algorithm, Ω a signature
of free constructors modulo BΩ, and satisfiability of QF formulas in TΩ/BΩ

decidable. In Sect. 6 I study such decidability for the commonly occurring case
when BΩ is any (possibly empty) combination of commutativity, associativity-
commutativity, and identity axioms for some binary function symbols in Σ.
Exploiting the descent theorem when RΩ =| ∅ is postponed until Sect. 7.

6 OS-Compact Theories and Satisfiability in TΩ/ACCU

The simplest application of Theorem 6 is when R = (Σ,B,R) is FVP with
a finitary B-unification algorithm, Ω is a signature of free constructors mod-
ulo BΩ , and satisfiability of QF formulas in TΩ/BΩ

is decidable. Generalizing a
similar result in [29] for the unsorted and AC case, I show below that, when
BΩ = ACCU —where ACCU stands for any combination of associativity-
commutativity (AC), commutativity (C), and/or left- or right-identity (U)
axioms for some binary function symbols— satisfiability of QF formulas in
TΩ/ACCU is decidable. But, generalizing again another result in [29], we can view
such a satisfiability result as part of a broader one, namely, decidable satisfia-
bility in TΣ,Π,Γ or, equivalently, in TΣ∪Π/˜Γ when ((Σ,Π), Γ) is an OS-compact
equational OS-FO theory.

Call a sort s ∈ S finite in both (Σ,E) and TΣ/E iff TΣ/E,s is a finite set, and
infinite otherwise. Here is the key notion:

Definition 7. An equational OS-FO theory ((Σ,Π), Γ) is called OS-compact
iff: (i) for each sort s in Σ we can effectively determine whether s is finite
or infinite in TΣ∪Π/˜Γ,, and, if finite, can effectively compute a representative
ground term rep([u]) ∈ [u] for each [u] ∈ TΣ∪Π/˜Γ,s; (ii) =

˜Γ is decidable and

Γ̃ has a finitary unification algorithm; and (iii) any finite conjunction
∧

D of

7 A complete set of constructor variants for a term t is obtained by inspecting each
(u, θ) ∈ [[t]]R,B and either: (1) choosing (u, θ) when u ∈ TΩ(X), or otherwise (2)
choosing those (uρ, θρ) such that ρ is a variable specialization and: (i) uρ ∈ TΩ(X),
(ii) (uρ, θρ) is a variant of t, and (iii) ρ is maximal with properties (i)–(ii).

Variant-Based Satisfiability in Initial Algebras 19

negated (Σ,Π)-atoms whose variables have all infinite sorts and such that
∧

D̃

is Γ̃ -consistent is satisfiable in TΣ,Π,Γ .
We call an OS equational theory (Σ,E) OS-compact iff the OS-FO theory

((Σ, ∅), E) is so.

Note that this generalizes the notion of compact theory in [29] in four ways: (i)
from unsorted to OS theories; (ii) by dealing with the phenomenon of possibly
having some sorts finite and some infinite; (iii) by extending the notion from
equational theories to OS-FO equational theories; and (iv) by including the case
of computable finite initial models, because an OS-FO theory ((Σ, ∅), E) whose
sorts are all finite and for which we can effectively compute representatives has
decidable equality and finitary unification, and is OS-compact in a vacuous sort
of way; e.g., the Boolean theory B of Example 1, and the theory N2 in Example
5 are both OS-compact. I will illustrate with examples that extensions (i)–(iii)
are needed in many useful applications.

The key theorem about OS-compact theories is again a generalization of a
similar one in [29].

Theorem 7. Let ((Σ,Π), Γ) be an OS-compact theory. The satisfiability of QF
(Σ,Π)-formulas in TΣ,Π,Γ is decidable.

This now gives us the following, quite useful corollary of Corollary 1:

Corollary 2. Let an FVP decomposition R = (Σ∪Π,B,R) of an OS-FO equa-
tional theory ((Σ,Π), Γ), with B having a finitary unification algorithm, protect
a constructor decomposition R(Ω,Δ) = (Ω ∪ Δ,BΩ , R(Ω,Δ)) of an OS-compact
theory ((Ω,Δ), Γ0), with =BΩ

decidable. Then, satisfiability of any QF (Σ,Π)-
formula φ in TΣ,Π,Γ is decidable.

This corollary further “unpacks” how the satisfiability in TΩ,Δ,Γ0 of an Ω∪Δ-
disjunction of disequalities

∧
D′ obtained in step (2) of the satisfiability decision

procedure “unpacking” Corollary 1 can be checked in step (3) when ((Ω,Δ), Γ0)
is OS-compact, namely, we then replace

∧
D′ by the disjunction of all the repre-

sentative ground instantiations
∧

D′rep(β) of its finite sort variables, and then
check whether at least one such

∧
D′rep(β) is satisfiable by checking the BΩ-

consistency of (
∧

D′rep(β))!R(Ω,Δ),BΩ
.

6.1 Theories (Ω,ACCU) are OS-Compact

Consider now an OS signature Ω where some (possibly empty) subsignature
ΩACCU ⊆ Ω of binary operators of the form f : s s → s, for some s ∈ S,
satisfy any combination of: (i) the associativity-commutativity (AC) axioms
f(f(x, y), z) = f(x, f(y, z)) and f(x, y) = f(y, x); (ii) just the commutativity
(C) axiom f(x, y) = f(y, x); (iii) the left-unit (LU) axiom f(ef , x) = x for a
unit constant ef ; or (iv) the right-unit (RU) axiom f(x, ef) = x (note that the
standard unit axioms (U) are just the combination of LU and RU). Furthermore,
if f : s s → s ∈ ΩACCU belongs to a subsort polymorphic family f

[s] [s]
[s] , then all

20 J. Meseguer

other members of the family are of the form f : s′ s′ → s′, f
[s] [s]
[s] ⊆ ΩACCU ,

and all operators in such a family satisfy exactly the same axioms. ACCU
abbreviates: any combination of associativity-commutativity and/or commuta-
tivity and/or unit axioms. Since all the above axiom combinations are possible
and ΩACCU can be empty, the acronym ACCU , covers in fact eight possibilities
for each subsort polymorphic family f

[s] [s]
[s] of binary function symbols: (i) the

“free” case where f satisfies no axioms; (ii) the case where f is only LU ; (iii) the
case where f is only RU ; (iv) the case where f is only U ; (v) the case where f is
C; (vi) the case where f is CU ; (vii) the case where f is AC; and (viii) the case
where f is ACU . Furthermore, I will always assume that Ω is ACCU -preregular.

The main goal of this section is to prove that, under the above assumptions,
satisfiability of QF Ω-formulas in TΩ/ACCU is decidable. This result generalizes
from the unsorted to the order-sorted case, and from AC to ACCU axioms, a
previous result by H. Comon-Lundh [29]. This is done in Theorem 8 below. But
we need before the following auxiliary proposition, generalizing to the order-
sorted and ACCU case a similar result in [29] for the unsorted and AC case:

Proposition 1. Under the above assumptions, let u = v be an ACCU -non-
trivial Ω-equation whose only variable is x : s. Then the set of most general
ACCU -unifiers Unif ACCU (u = v) is finite, and all unifiers in it are ground
unifiers, i.e., ground substitution {x : s �→ w}, with w ∈ TΩ,s. Since ground
unifiers cannot be further instantiated, for any ACCU -unifier α there is a β ∈
Unif ACCU (u = v) with α =ACCU β.

Note that for arbitrary combinations of associativity A, commutativity C,
and left LU , and right RU unit axioms, the above proposition is as general as
possible: any combination of axioms involving associativity without commuta-
tivity will violate the requirement that Unif ACCU (u = v) is finite. Not only is it
well-known that A and AU unification are in general infinitary: this also remains
true when u = v has a single variable x. For example, if · is an A operator,
and a a constant, the equation a · x = x · a has an infinite number of ground A
unifiers: {x �→ a}, {x �→ a · a}, {x �→ a · a · a}, and so on.

The following theorem generalizes an analogous one in [29] for the unsorted
and AC case.

Theorem 8. Under the above assumptions, satisfiability of QF Ω-formulas in
TΩ/ACCU is decidable.

The above theorem yields as a direct consequence the decidable satisfiability
of any QF equational formula in the natural numbers with addition.

Example 6. (Natural Numbers with +). This is an unsorted8 theory N u
+ with

sort Nat The operations in the signature Ω are: 0 :→ Nat , 1 :→ Nat , and
8 An order-sorted version N+ of N u

+ is obtained by adding a subsort inclusion NzNat <
Nat , where NzNat denotes the non-zero naturals, typing 1 with sort NzNat , and
adding the typing + : NzNat NzNat → NzNat . N+ is also OS-compact for
the exact same reasons. A reduction of satisfiability in the initial agebra of N+ to
satisfiability in the initial algebra of N u

+ is discussed in [69]. N+ makes the language
more expressive: instead of stating x �= 0 we can just type x as having sort NzNat .

Variant-Based Satisfiability in Initial Algebras 21

+ : Nat Nat → Nat , which satisfies the ACU axioms, with 0 as unit. Since
the conditions in Theorem 8 are met, satisfiability (and therefore validity) in the
initial algebra of N u

+ is decidable.
Note that, by Theorem 7, deciding satisfiability of a conjunction

∧
G ∧ ∧

D
in the initial algebra of N u

+ boils down to computing the most general unsorted
ACU -unifiers α of

∧
G, and then checking the ACU -consistency of each

∧
Dα,

which amounts to checking for each uα =| vα in Dα that uα =| ACUvα. Note also
that unsorted ACU -unification is NP-complete [60].

For example, n = 0 ∨ n + n =| n is a theorem in the initial algebra of N u
+

because its negation n =| 0 ∧ n + n = n is such that n + n = n has {n �→ 0} as
its only ACU -unifier, yielding the unsatisfiable disequality 0 =| 0.

6.2 The Descent Theorem with Free Constructors Modulo ACCU

Thanks to Theorem 8 we can apply Corollary 2 to the case of an FVP decom-
position R = (Σ,B,R) of an equational theory (Σ,E), with B having a
finitary unification algorithm, and protecting the constructor decomposition
RΩ = (Ω,ACCU , ∅) of (Ω,ACCU) to obtain a method to decide the satis-
fiability of any QF Σ-formula in TΣ/E . Let us see some examples.

Example 7. Recall Example 2. Since Ω = Σ − {zero?} is a signature of free
constructors, the conditions of Corollary 2 are met. Let now φ be the formula
x = zero?(n) ∧ x =| � ∧ x =| ⊥. Recall that its two constructor variants are
x = ⊥ ∧ x =| � ∧ x =| ⊥, and x = � ∧ x =| � ∧ x =| ⊥. Solving the equation
in each case we get formulas ⊥ =| � ∧ ⊥ =| ⊥, and � =| � ∧ � =| ⊥, which have
both ∅-inconsistent disequalities, so φ is unsatisfiable.

Example 8. (Natural Presburger Arithmetic). An FVP decomposition N u
+,>b

having the natural numbers with + and > as a Boolean-valued predicate9 as its ini-
tial model is obtained as an extension of N u

+ in Example 6: we just add a new sort
Truth with constants ⊥ and �, and a defined function > : Nat Nat → Truth
with rules 1 + m + n > n → � and m > m + n → ⊥. This specification is suffi-
ciently complete with N u

+ extended with �,⊥ as its constructor subspecification,
and yields an FVP decomposition with variant complexity 3.

The predicate � can either: (i) be explicitly defined by similar rules, or (ii)
be defined by the equivalence x � y ⇔ (x > y ∨ x = y).

Since N u
+ extended with �,⊥ is OS-compact, by Corollary 2 satisfiability

in the initial algebra of N u
+,>b is decidable. For example, the transitivity law

(n > m = � ∧ m > n′ = �) ⇒ n > n′ = � of natural Presburger arithmetic is a
theorem because its negation is the conjunction n > m = �∧m > n′ = �∧n >
n′ = ⊥, which has no variant-based unifiers.

Example 9. (Integers Offsets). This is perhaps the simplest possible theory Zs,p

of integers. Decisions procedures for it have been given in [4,17,21]. This example
9 See [69] for a version N+,> of natural Pressburger arithmetic in which > is only

explictly defined in the positive case.

22 J. Meseguer

is also interesting because it is usually specified in an unsorted way, for which no
signature of free constructors is possible. Instead, an order-sorted presentation
makes a signature of free constructors possible and allows Corollary 2 to be
applied. The sorts are: Int , Nat , Neg , and Zero, with subsort inclusions Zero <
Nat Neg < Int . The subsignature Ω of free constructors is 0 :→ Zero, s : Nat →
Nat , and p : Neg → Neg , and the defined symbols10 s, p : Int → Int . The rules
R are just p(s(m)) → m and s(p(n)) → n, with m of sort Nat and n of sort Neg .

Since Zs,p is FVP with variant complexity 4 and is sufficiently complete
with signature of free constructors Ω, the conditions of Corollary 2 are met and
satisfiability, and therefore validity, in CZs,p

is decidable. Let us, for example,
decide the validity of the inductive theorem s(x) = s(y) ⇒ x = y, with x, y of
sort Int . This is equivalent to checking that s(x) = s(y) ∧ x =| y is unsatisfiable.
The only variant-based E-unifier of s(x) = s(y), {x �→ y}, yields the inconsistent
disequality y =| y. Thus, s(x) = s(y) ⇒ x = y holds in CZs,p

.

Example 10. (Integers with Addition). The decomposition Z+ for integers with
addition imports in a protecting mode the theory N+ of natural numbers with
addition in Footnote 8, and extends its constructor signature by adding two
new sorts, NzNeg , and Int , with subsort inclusions Nat NzNeg < Int , and a
constructor − : NzNat → NzNeg , to get an extended constructor signature Ω.
The only defined function symbol is: + : Int Int → Int , also ACU . The
rewrite rules R defining + and making (Ω,ACU, ∅) an ACU -free constructor
decomposition of Z+ are the following (with i a variable of sort Int , and n,m
variables of sort NzNat): i + n + −(n) → i, i + −(n) + −(m) → i + −(n + m),
i + n + −(n + m) → i + −(m), and i + n + m + −(n) → i + m. Note that, by the
ACU axioms, the initial algebra CZ+ is automatically a commutative monoid.
Furthermore, by sufficient completeness CZ+ |Ω = TΩ/ACU , so that the first rule
(specialized to i = 0) plus the U axioms (specialized to x = 0) make CZ+ into
an abelian group, since it satisfies the axiom (∀x)(∃y) x + y = 0.

Subsorts make, again, the language of Z+ considerably more expressive than
an untyped language: we do not have to say x > 0 (resp. x < 0) by additionally
defining an order predicate >: we just type x with sort NzNat (resp. NzNeg).

Z+ is FVP with variant complexity 12. Since the conditions of Corollary 2
are met, satisfiability, and therefore validity, in CZ+ is decidable. Let us, for
example, decide the validity of the inductive theorem i + j = i + l ⇒ j = l, with
i, j, l variables of sort Int . This is equivalent to checking that i+ j = i+ l ∧ j =| l
is unsatisfiable. The only variant unifier of i + j = i + l is {j �→ l}, giving us
l =| l, which is AC-inconsistent.

Example 11. (Integer Presburger Arithmetic). The FVP theory Z+,>b of integer
Presburger arithmetic with Boolean-valued11 > protects Z+ by adding a new

10 Note the interesting phenomenon, impossible in a many-sorted setting, that a
subsort-polymorphic symbol like s or p can be a constructor for some typings and a
defined symbol for other typings.

11 See [69] for an even simpler version Z+,> of integer Presburger arithmetic in which
> is only explicitly defined in the positive case.

Variant-Based Satisfiability in Initial Algebras 23

sort Truth with constants ⊥ and �, and a defined function > : Int Int →
Truth with rules p + n > n → �, n > −(q) → �, −(p) > −(p + q) → �,
and i > i + n → ⊥, were p, q have sort NzNat , n has sort Nat , and i has sort
Int . Z+,>b is sufficiently complete with constructor subspecification that of Z+

extended with �,⊥, and FVP with variant complexity 17.
Again, � can either be explicitly defined, or be defined by an equivalence.

Since the constructor subspecification of Z+ extended with �,⊥ is OS-
compact, by Corollary 2 satisfiability in the initial algebra of Z+,>b is decidable.
For example, the transitivity law (i > j = � ∧ j > k = �) ⇒ j > k = � of inte-
ger Presburger arithmetic is a theorem because its negation is the conjunction
i > j = � ∧ j > k = � ∧ i > k = ⊥, which has no variant-based unifiers.

See [69] for the example N+,−· of the natural numbers with + and a “monus”
operator −·. Since we have the constructor decomposition N+,−· ⊃ N+ with N+

OS-compact, Corollary 2 applies, and satisfiability in CN+,−· is decidable.

7 Satisfiability in Parameterized FVP Data Types

What Corollary 2 achieves is a large increase in the infinite class of decidable
OS-FO equational theories for which satisfiability of QF formulas in their initial
models is decidable, namely, it grows from the class of OS-compact theories
(including those of the form (Ω,ACCU)) to that of all those OS-FO equational
theories having an FVP theory decompositions with axioms B having a finitary
unification algorithm and protecting an OS-compact constructor subtheory.

But how can we further enlarge the class of OS-FO equational theories for
which satisfiability of QF formulas in their initial model is decidable? Here is
one idea: since parameterized data types are theory transformations applicable
to a typically infinite class of input theories and yielding an equally infinite
class of instantiations, an appealing idea is to search for satisfiability-preserving
parameterized data types. That is, parameterized data types that, under suitable
conditions, transform an input theory with decidable satisfiability of QF formulas
in its initial model into a corresponding instance of the parameterized data type
with the same property for its initial model.

I will give a full treatment of parameterized FVP data types elsewhere. Here,
I illustrate with several examples a general method for substantially enlarging, by
means of parameterization, the class of equational OS-FO theories with initial
models having decidable QF satisfiability. For my present purposes it will be
enough to summarize the basic general facts and assumptions for the case of
FVP parameterized data types with a single parameter X. That is, I will restrict
myself to parameterized FVP theories of the form R[X] = (R,X), where R =
(Σ ∪ Π,B,R) is an FVP decomposition of a finitary equational OS-FO theory
((Σ,Π), Γ); and X is a sort in Σ (called the parameter sort) such that: (i) is
empty,12 i.e., TΣ∪Π/˜Γ,X = ∅; and (ii) X is a minimal element in the sort order,
i.e., there is no other sort s′ with s′ < X.
12 This violates the general assumption that sorts are non-empty; however, parameter

sorts instantiated to target theories with non-empty sorts become non-empty.

24 J. Meseguer

Consider now an FVP decomposition G = (Σ′∪Π ′, B′, R′) of another finitary
OS-FO equational theory ((Σ′,Π ′), Γ ′), which we can assume without loss of
generality13 disjoint from ((Σ,Π), Γ), and let s be a sort in Σ′. The instantiation
R[G,X �→ s] = (Σ[Σ′,X �→ s], B ∪ B′, R ∪ R′) is the decomposition of a theory
(Σ[Σ′,X �→ s], E ∪ E′), extending (Σ′, E′), where the signature Σ[Σ′,X �→ s]
is defined as the union Σ[X �→ s] ∪ Σ′, with Σ[X �→ s] just like Σ, except for
X renamed to s. The set of sorts is (S − {X}) � S′, and the poset ordering is
obtained by combining those of Σ[X �→ s] and Σ′.

R[G,X �→ s] is also FVP under fairly mild assumptions. The only prob-
lematic issue is termination, because the disjoint union of terminating rewrite
theories need not be terminating [83]. However, many useful p-termination prop-
erties p ensuring the p-termination of a disjoint union have been found (see, e.g.,
[54]). Therefore I will assume that either: (i) R[X] and G are both p-terminating
for a modular termination property p, or (ii) R[G,X �→ s] has been proved
terminating. Convergence of R[G,X �→ s] then follows easily from termination,
because there are no new critical pairs. So does the FVP property, which is a
modular property (see, e.g., [18]). In fact one can say more: the variant com-
plexity of R[G,X �→ s] is the sum of those of R[X] and G. We furthermore
require the parameter protection property that the unique Σ′ homomorphism
h : TΣ′/E′ → TΣ[Σ′,X �→s]/E∪E′ |Σ′ is an isomorphism. Typically, parameter pro-
tection can be easily proved using a protected constructor subtheory R(Ω,Δ)[X].

Suppose now that B, B′ and B ∪B′ have finitary unification algorithms and
that both R[X] = (R,X) and G protect, respectively, constructor theories,14 say
R(Ω,Δ)[X] = (Ω∪Δ,B(Ω,Δ), R(Ω,Δ)) and G(Ω′,Δ′) = (Ω′∪Δ′, B(Ω′,Δ′), R(Ω′,Δ′)).
Then R[G,X �→ s] will protect R(Ω,Δ)[G(Ω′,Δ′),X �→ s]. Suppose, further, that
B(Ω,Δ), B(Ω′,Δ′), and B(Ω,Δ) ∪ B(Ω′,Δ′) have decidable equality.

The general kind of satisfiability-preserving result we are seeking follows the
following pattern: (i) assuming that G(Ω′,Δ′) is the decomposition of an OS-
compact theory, then (ii) under some assumptions about the cardinality of the
sort s, prove the OS-compactness of R(Ω,Δ)[G(Ω′,Δ′),X �→ s]. By Corollary 2
this then proves that satisfiability of QF formulas in the initial model of the
instantiation R[G,X �→ s] is decidable.

In [69] the following parameterized data types have been proved satisfiability-
preserving following the just-described pattern of proof: (i) L[X], parameterized
lists, which is just an example illustrating the general case of any constructor-
selector-based [70] parameterized data type; (ii) Lc[X], parameterized compact
lists, where any two identical contiguous list elements are identified [33,34]; (iii)
M[X], parameterized multisets; (iv) S[X], parameterized sets; and (v) H[X],
parameterized hereditarily finite sets. Since H[X] is the most complex data type,
I discuss it in more detail below.

13 There is no real loss of generality because we can make it so by renaming its sorts
and operations. In fact, disjointness must in any case be enforced by the “pushout
construction” for parameter instantiation, implicitly described in what follows for
this simple class of uni-parametric parameterized theories.

14 For more details about sufficient completeness of parameterized OS theories and
methods for checking it see [67].

Variant-Based Satisfiability in Initial Algebras 25

Example 12. (Hereditarily Finite (HF) Sets). HF sets are a model of set theory
without the axiom of infinity. All effective constructions of finitary mathematics
—including in particular all effective arithmetic constructions— can be repre-
sented within it (see [26], Chap. I). I specify below a data type of HF sets
with set union ∪ and a set inclusion predicate ⊆ (the predicates ⊂ and ∈ are
obtained as definitional extensions). As is well-known, all HF sets can be built
“ex nihilo” out of the empty set ∅. However, it is very convenient to also allow
“urelements,” like a, b, c, 7, 2/9,

√
2, π, and so on, as set elements. This can be

achieved by making HF sets parametric on a parameter sort X for such “urele-
ments.” That is, HF sets is an FVP parameterized data type H[X] protecting
an FVP constructor subtheory H(Ω,Π)[X] which has the following signature Ω
of constructors: there are five sorts: X, Elt , Set , Magma, and Pred , and subsort
inclusions X Set < Elt < Magma, where Magma represents multisets of sets
and has an AC multiset union constructor , : Magma Magma → Magma.
There is also the empty set constructor constant ∅ :→ Set , and a constructor
{ } : Magma → Set that builds a set out of a magma. The signature Π of
constructor predicates has the usual constructor constant tt :→ Pred , plus the
constructor set inclusion predicate ⊆ : Set Set → Pred . Using M,M ′ as vari-
ables of sort Magma and U, V as variables of sort Set , the rules R(Ω,Π) rewriting
constructor terms and constructor predicates are: (i) the“magma idempotency”
rules, M,M → M and M,M,M ′ → M,M ′; and (ii) the rules defining the ⊆
predicate, ∅ ⊆ U → tt , {M} ⊆ {M} → tt , and {M} ⊆ {M,M ′} → tt .

This constructor decomposition H(Ω,Π)[X] is extended in a sufficiently com-
plete and protecting way by the specification of the union operator ∪ :
Set Set → Set as a function defined by means of the following rules: U ∪∅ → U ,
∅ ∪ U → U , and {M} ∪ {M ′} → {M,M ′}. The variant complexity of this
decomposition of HF sets is 17.

The predicates ∈ and ⊂ need not be explicitly defined, since they can be
expressed by the definitional equivalences x ∈ V = tt ⇔ {x} ∪ V = V , with x
of sort Elt , and U ⊂ V = tt ⇔ (U ⊆ V = tt ∧ U =| V).

Let us consider instantiations of HF sets whose actual the parameter is spec-
ified by an infinity-closed decomposition G, defined as a theory where, if a term
t has at least one variable having an infinite sort, then the least sort of t is itself
infinite. For example, offset integers (Example 9) have the Zero finite sort, but
are infinity-closed. The main theorem preservation of OS-compactness for HF
sets can be stated as follows:

Theorem 9. For H[X] the above parameterized HF set module, protecting the
constructor decomposition H(Ω,Π)[X], G = (Σ′ ∪ Π ′, B′, R′) an infinity-closed
FVP decomposition of a finitary OS-FO equational theory ((Σ′,Π ′), Γ ′), where G
protects a constructor decomposition G(Ω′,Δ′) = (Ω′ ∪Δ′, B(Ω′,Δ′), R(Ω′,Δ′)) of an
equational OS-FO-compact theory ((Ω′,Δ′), Γ), and s a sort of G in Ω′, if: (i) H[X]
and G are both p-terminating for a modular termination property p or H[G,X �→ s]
is terminating, (ii) B′ and B′ ∪ AC have finitary unification algorithms and
(iii) B(Ω′,Δ′) ∪ AC-equality is decidable, then HΩ,Π [G(Ω′,Δ′),X �→ s] is the

26 J. Meseguer

decomposition of an OS-compact theory and therefore satisfiability of QF formulas
in the initial model of the instantiation H[G,X �→ s] is decidable.

By the above theorem, validity of all QF inductive theorems in an instance
of the HF sets module satisfying the requirements in the theorem is decidable.
Therefore, we can decide, for example, that CH[G,X �→s] satisfies theorems such
as: the extensionality axiom (U ⊆ V ∧ V ⊆ U) ⇒ U = V , the pairing axiom,
x ∈ {S, S′} ⇔ (x ∈ S ∨ x ∈ S′), the extensionality of ordered pairs lemma,
{x, {x, y}} = {x′, {x′, y′}} ⇒ (x = x′ ∧ y = y′), the finite union axiom, x ∈
(S ∪ S′) ⇔ (x ∈ S ∨ x ∈ S′), the equivalence x ∈ S = tt ⇔ S = (S ∪ {x}), the
associativity-commutativity and idempotency of ∪, and so on.

The extensionality of ordered pairs lemma holds of course for all instances,
including the instance H[N u

+,X �→ Nat]. Proving this is equivalent to check-
ing the unsatisfiability in CH[N u

+,X �→Nat] of the two conjunctions: {x, {x, y}} =
{x′, {x′, y′}} ∧ x =| x′, and {x, {x, y}} = {x′, {x′, y′}} ∧ y =| y′. The equation
{x, {x, y}} = {x′, {x′, y′}} has the single, variant-based, unifier: {x �→ x′, y �→
y′}, yielding the unsatisfiable formulas x′ =| x′, and y′ =| y′, as desired.

8 Related Work

The original paper proposing the concepts of variant and FVP is [31]. These
ideas have been further advanced in [18,23,24,42]. In particular, I have used
the ideas on folding variant narrowing and variant-based unification from [42],
and have provided a different, detailed description of variant-based unifiers in
Theorem 4 needed to better clarify the notion of constructor unifier in Sect. 4.
To the best of my knowledge the notions of constructor variant and constructor
unifier and the results on satisfiability in FVP initial algebras are new.

There is a vast literature on satisfiability in data types, including parame-
terized ones such as, e.g., [12,20,33,34,62,74,81]. In relation to that large body
of work, what the results in this paper provide is both the characterization of a
wide class of data types for which satisfiability is decidable, and a new generic
algorithm to check satisfiability for data types in such a class. In particular,
there are interesting parallels between the work on unification and satisfiability
for lists, compact lists, sets, and HF sets in [33,34] and that in Sect. 7. Again,
an important difference is that in [33,34] specific, inference-rule-based, unifica-
tion and satisfiability algorithms are developed for each such data type, whereas
in Sect. 7 both unification and satisfiability are obtainable as part of generic,
variant-based unification and satisfiability procedures. A detailed comparison
between the two approaches should be a topic for further research.

There are also various results about decidability of QF or sometimes gen-
eral first-order formulas in some initial unsorted, many-sorted, and order-sorted
algebras modulo some equations, e.g., [9,28–30,65,71], that can be very useful,
because, as shown in Sect. 6, they can be used in the reduction from satisfiability
in an FVP initial algebra TΣ/E to satisfiability in TΩ/BΩ

by ensuring that sat-
isfiability in TΩ/BΩ

is decidable. For example, as already mentioned, Theorem 8

Variant-Based Satisfiability in Initial Algebras 27

generalizes to the OS and ACCU case a similar result in [29] for the unsorted
and AC case for theories of constructors modulo axioms.

A line of work that is quite close in aims to the present one is the so-called
rewriting-based approach to satisfiability [4,6,17,36,61,63,64]. Since the present
work is also “rewriting-based” in an obvious sense, but quite different from the
work just cited, to help the reader appreciate the differences I would rather
call that work superposition-based satisfiability. That, is, the relevant first-order
theory is axiomatized, and then it is proved that a superposition theorem prov-
ing inference system terminates for that theory together with any given set of
ground clauses representing a satisfiability problem. Common features between
the superposition-based and variant-based (both rewriting based!) approaches
involve good modularity properties (see [4]), and no need for an explicit NO
combination between procedures developed in either approach (although both
approaches can of course be combined with other satisfiability procedures in
the classical NO way15). The aims in both approaches are quite similar, but
the methods are very different. I view both approaches as complementary and
think that exploring potential synergies between them can further increase the
extensibility of SMT solving.

Another approach to making SMT solving more extensible is presented
in [35]. The goal is to allow a user to define a new theory with decidable QF sat-
isfiability by axiomatizing it according to some requirements, and then making
an SMT solver extensible by such a user-defined theory. This is done as follows:

1. A new theory T ′, extending a given background theory T already supported
by the SMT solver, is axiomatized by the user in a first-order logic enhanced
with the notion of using a literal l as a trigger (or dually as a witness) in a
formula ϕ, denoted [l]ϕ (resp. 〈l〉ϕ).

2. If the user proves that T ′ is complete and terminating in the precise sense of
[35], he/she automatically obtains a QF satisfiability procedure for T ′.

3. The DPLL(T) procedure is extended to support theories axiomatized by for-
mulas with triggers. Thus, the satisfiability of a complete and terminating
user-defined theory T ′ can be decided. This extension of DPLL(T) has been
implemented in the Alt-Ergo SMT solver [16], and a non-trivial case study
on the decidable satisfiability of a theory of doubly-linked lists axiomatized
with triggers using this implementation is presented in [35].

The approach in [35] is very different, yet complementary, to the one presented
here. Ways of using both approaches together are worth investigating.

Last, but not least, there is also an important connection between the present
work and a body of work in inductive theorem proving aimed at characterizing
classes of algebraic specifications and associated kinds of formulas for which
validity in an initial algebra can be decided automatically, e.g., [3,43,48,49].
The obvious relation to that work is that decidable validity and decidable satis-
fiability in an initial algebra are two sides of the same coin, so this paper might

15 For combining variant-based decision procedures with other decision procedures, the
order-sorted NO combination method in [82] will be particulary useful.

28 J. Meseguer

as well have been entitled “variant-based validity in initial algebras.” What this
work contributes to inductive theorem proving are new methods and results,
complementing those in [3,43,48,49], for bringing large classes of initial algebras
within the fold of decidable validity. In particular, to the best of my knowl-
edge, the methods for decidable inductive validity for parameterized data types
presented in Sect. 7 seem to be new.

9 Conclusions and Future Work

This work has made two main contributions:

1. To Unification Theory: The new notion of constructor unifier can make
the use of the generic variant-based unification algorithm considerably more
efficient by generating fewer unifiers than up to now. This can have a substan-
tial impact in reducing the search space of variant-unification-based model
checking methods such as those used in, e.g., [11,40].

2. To Extensible Satisfiability Methods: The new generic algorithm for
variant-based satisfiability presented in this paper brings an infinite class of
theories for which satisfiability in their initial algebras is decidable within the
fold of SMT solving, thus making SMT solving considerably more extensible.
Such theories are in fact user-definable, their required properties easy to check
(by existing methods and tools for checking confluence, termination, sufficient
completeness, and FVP), and quite modular. Also, combining satisfiability
procedures for such theories is very simple (just theory union), without any
need for a NO infrastructure. Specifically, the classes of theories to which these
methods can be applied to make satisfiability in their initial algebras decidable
has been extended in four concentric circles: (i) theories (Ω,ACCU), which
are all OS-compact; (ii) FVP theories having a constructor decomposition
of type (i); (iii) parameterized data types (several examples have been given
to illustrate the general method) that transform input theories with an OS-
compact core into corresponding instantiations of the parameterized data
type, also having an OS-compact core, including input theories such as those
in (ii), and nested instantiations of different parameterized data types; and
(iv) a still broader class of theories that can be reduced to cases (i)–(iii) by
means of the descent maps discussed in [69].

Much work remains ahead. I have already pointed out that variant-based
satisfiability complements, and can be synergistic with, other methods, such as
superposition-based satisfiability, decidable theories defined by means of formu-
las with triggers, or the NO combination method. Indeed, NO combinations
remain essential, since one obviously wants to combine generic procedures based
on variant-based, superpositon-based, or trigger-based algorithms with efficiently
implemented ones for well-known theories and with each other. In this regard,
my focus in this work on satisfiability in initial algebras could be misunderstood
as exclusive, when actually it is not. The general picture emerging from such NO
combinations is that of combinations of theories which may have some “initiality

Variant-Based Satisfiability in Initial Algebras 29

constraints” (more generally understood as freeness constraints, as in the case
of formulas valid in uninstantiated parameterized data types, which I have men-
tioned en passant in the HF sets example) as well as some other unconstrained
theories with a “loose semantics,” in the sense of Goguen and Burstall [50].

What all this suggests as a longer-term goal is the development of an extensi-
ble framework and tools for the definition, prototyping and combination of satis-
fiability procedures. Within such a framework one would already have available
a library of dedicated and generic procedures that would make quite easy for
users to prototype a first version of a new satisfiability procedure by combining
existing procedures with a newly specified one. There are of course tensions and
tradeoffs between the efficiency of a generic algorithm and that of an optimized,
domain-specific one; but the whole point of an extensible framework is precisely
to make it easy to migrate in a correct, tool-supported, and seamless way proto-
types into efficient algorithms. In this regard, the notion of descent map in [69]
can be an important tool in such a framework, and can be applied very broadly
to both generic and dedicated algorithms, and to quantified and unquantified
formulas. Also, the computational cost of deciding satisfiability is seldom that of
a single procedure but is instead the overall cost. Here interesting situations may
arise. For example, we may have a combination of four procedures obtained by
generic methods and two by dedicated algorithms. Although the dedicated ones
may be more efficient, since the three generic ones may be combined as their
union, NO will only have to deal with the interactions between three procedures,
as opposed to six, thus reducing the computational cost of the combination.

On a shorter time frame, all the algorithms presented here, and suitable
extensions or optimizations of them, should be implemented; and new descent
maps should be developed. A first implementation should then be used to eval-
uate the practical effectiveness of variant-based satisfiability, and to compare it
with that of other existing methods and tools such as those for superposition-
based and trigger-based satisfiability [4,6,17,35,36,61,63,64], constraint logic
programming methods such as those in [33,34] and others, and state of the art
SMT solvers. The implementation task will be made easier by the fact that
Maude 2.7 already supports the computation of variants and of variant-based
unifiers. It will also be made easier by Maude’s reflective capabilities, which allow
easy transformation and manipulation of theories by built-in and user-definable
meta-level functions.

Last, but not least, besides experimental performance comparisons, compu-
tational complexity bounds should be developed for different satisfiability algo-
rithms. This of course is impossible for a generic algorithm such as variant-
based narrowing, superposition theorem proving, or trigger-based satisfiability
algorithms, whose complexity depends on the input theory; but it may become
possible when the input theory T is fixed. For example, in superposition theorem
proving results along the lines of [4,6,15,63] do exactly this. For variant-based
satisfiability this will be a non-trivial task, because —besides the fact that com-
plexity issues for variant-based computations have not yet been investigated—
all R,B-variant-based computations first of all invoke order-sorted B-unification
algorithms which themselves do not have just the complexity of their unsorted

30 J. Meseguer

version, but the added complexity of their sort computations (which itself
depends on the given subsort hierarchy) (see [38] for a detailed complexity analy-
sis when only free function symbols are involved).

Acknowledgements. I thank the organizers of FTSCS 2015 for inviting me to present
these ideas in Paris, and the FTSCS participants for their interest and very helpful
comments. I thank Andrew Cholewa, Steven Eker, Santiago Escobar, Ralf Sasse, and
Carolyn Talcott for their contributions to the development of the theory and Maude
implementation of folding variant narrowing. I have learned much about satisfiability
from Maria-Paola Bonacina, Vijay Ganesh and Cesare Tinelli along many conversa-
tions; I am most grateful to them for their kind enlightenment. I also thank the following
persons for their very helpful comments on earlier drafts: Maria-Paola Bonacina, Santi-
ago Escobar, Dorel Lucau, Peter Ölveczky, Vlad Rusu, Ralf Sasse, Natarajan Shankar,
and Cesare Tinelli. The pioneering work of Hubert Comon-Lundh about compact the-
ories [29], and that of him with Stephanie Delaune about the finite variant property
[31], have both been important sources of inspiration for the ideas presented here. This
work has been partially supported by NSF Grant CNS 13-19109.

References

1. Alpuente, M., Escobar, S., Iborra, J.: Termination of narrowing revisited. Theor.
Comput. Sci. 410(46), 4608–4625 (2009)

2. Alpuente, M., Escobar, S., Iborra, J.: Modular termination of basic narrowing and
equational unification. Log. J. IGPL 19(6), 731–762 (2011)

3. Aoto, T., Stratulat, S.: Decision procedures for proving inductive theorems without
induction. In: Proceedings of PPDP2014, pp. 237–248. ACM (2014)

4. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)

5. Armando, A., Castellini, C., Giunchiglia, E.: SAT-based procedures for temporal
reasoning. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 97–108.
Springer, Heidelberg (2000)

6. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Inf. Comput. 183(2), 140–164 (2003)

7. Audemard, G., Bertoli, P.G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT
based approach for solving formulas over boolean and linear mathematical propo-
sitions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210.
Springer, Heidelberg (2002)

8. Baader, F., Schulz, K.: Unification in the union of disjoint equational theories:
combining decision procedures. J. Symbolic Comput. 21, 211–243 (1996)

9. Baader, F., Schulz, K.U.: Combination techniques and decision problems for dis-
unification. Theor. Comput. Sci. 142(2), 229–255 (1995)

10. Baader, F., Schulz, K.U.: Combining constraint solving. In: Comon, H., Marché, C.,
Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, pp. 104–158. Springer, Heidelberg
(2001)

11. Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas using nar-
rowing. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 113–129. Springer,
Heidelberg (2014)

Variant-Based Satisfiability in Initial Algebras 31

12. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiabil-
ity in the theory of inductive data types. J. Satisfiability Boolean Model. Comput.
3, 21–46 (2007)

13. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger,
T., Veith, H. (eds.) Handbook of Model Checking. Springer (2017, to appear)

14. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas
by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 236–249. Springer, Heidelberg (2002)

15. Basin, D.A., Ganzinger, H.: Automated complexity analysis based on ordered res-
olution. J. ACM 48(1), 70–109 (2001)

16. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism
in SMT solvers. In: Proceedings of 6th International Workshop on Satisfiability
Modulo Theories and 1st International Workshop on Bit-Precise Reasoning. SMT
2008/BPR 2008, pp. 1–5. ACM (2008)

17. Bonacina, M.P., Echenim, M.: On variable-inactivity and polynomial T -
satisfiability procedures. J. Log. Comput. 18(1), 77–96 (2008)

18. Lynch, C., Gero, K.A., Narendran, P., Bouchard, C.: On forward closure and the
finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) Fro-
CoS 2013. LNCS, vol. 8152, pp. 327–342. Springer, Heidelberg (2013)

19. Boudet, A.: Combining unification algorithms. J. Symb. Comput. 16(6), 597–626
(1993)

20. Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures
with Applications to Verification. Springer, Heidelberg (2007)

21. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92.
Springer, Heidelberg (2002)

22. Chadha, R., Kremer, S., Ciobâcă, Ş.: Automated verification of equivalence prop-
erties of cryptographic protocols. In: Seidl, H. (ed.) Programming Languages and
Systems. LNCS, vol. 7211, pp. 108–127. Springer, Heidelberg (2012)

23. Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite vari-
ant property. Technical report, CS Department University of Illinois at Urbana-
Champaign, February 2014. http://hdl.handle.net/2142/47117

24. Ciobaca, S.: Verification of composition of security protocols with applications to
electronic voting. Ph.D. thesis, ENS Cachan (2011)

25. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

26. Cohen, P.: Set Theory and the Continuum Hypothesis. W.A. Benjamin, New York
(1966)

27. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://
www.grappa.univ-lille3.fr/tata. 12th October 2007

28. Comon, H., Lescanne, P.: Equational problems and disunification. J. Symbolic
Comput. 7, 371–425 (1989)

29. Comon, H.: Complete axiomatizations of some quotient term algebras. Theor.
Comput. Sci. 118(2), 167–191 (1993)

30. Comon, H., Delor, C.: Equational formulae with membership constraints. Inf. Com-
put. 112(2), 167–216 (1994)

31. Delaune, S., Comon-Lundh, H.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005)

http://hdl.handle.net/2142/47117
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

32 J. Meseguer

32. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland,
Amsterdam (1990)

33. Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for
lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3) (2008)

34. Dovier, A., Policriti, A., Rossi, G.: A uniform axiomatic view of lists, multisets,
and sets, and the relevant unification algorithms. Fundam. Inf. 36(2–3), 201–234
(1998)

35. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding Decision Procedures to
SMT Solvers using Axioms with Triggers. Journal of Automated Reasoning (2016)
(accepted for publication). https://hal.archives-ouvertes.fr/hal-01221066

36. Echenim, M., Peltier, N.: An instantiation scheme for satisfiability modulo theories.
J. Autom. Reasoning 48(3), 293–362 (2012)

37. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Springer,
Heidelberg (1985)

38. Eker, S.: Fast sort computations for order-sorted matching and unification. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 299–314. Springer, Heidelberg (2011)

39. Lynch, C.A., Narendran, P., Escobar, S., Meseguer, J., Liu, Z., Santiago, S., Kapur,
D., Sasse, R., Meadows, C., Erbatur, S.: Asymmetric unification: a new unification
paradigm for cryptographic protocol analysis. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS, vol. 7898, pp. 231–248. Springer, Heidelberg (2013)

40. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007/2008/2009 Tutorial Lectures. LNCS, vol. 5705, pp. 1–50. Springer,
Heidelberg (2009)

41. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 52–68.
Springer, Heidelberg (2010)

42. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Algebraic Log. Program. 81, 898–928 (2012)

43. Falke, S., Kapur, D.: Rewriting induction + Linear arithmetic = Decision proce-
dure. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364,
pp. 241–255. Springer, Heidelberg (2012)

44. Fay, M.: First-order unification in an equational theory. In: Proceedings of the 4th
Workshop on Automated Deduction, pp. 161–167 (1979)

45. Filliâtre, J.-C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated Canonizer and
Solver. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 246–249. Springer, Heidelberg (2001)

46. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof
explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 355–367. Springer, Heidelberg (2003)

47. Gallier, J.H., Snyder, W.: Complete sets of transformations for general
E-unification. Theor. Comput. Sci. 67(2–3), 203–260 (1989). http://dx.doi.org/
10.1016/0304-3975(89)90004--2

48. Giesl, J., Kapur, D.: Decidable classes of inductive theorems. In: Goré, R.P.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469–
484. Springer, Heidelberg (2001)

49. Giesl, J., Kapur, D.: Deciding inductive validity of equations. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 17–31. Springer, Heidelberg (2003)

https://hal.archives-ouvertes.fr/hal-01221066
http://dx.doi.org/10.1016/0304-3975(89)90004--2
http://dx.doi.org/10.1016/0304-3975(89)90004--2

Variant-Based Satisfiability in Initial Algebras 33

50. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and
programming. J. ACM 39(1), 95–146 (1992)

51. Goguen, J., Meseguer, J.: Order-sorted algebra I. Theor. Comput. Sci. 105, 217–
273 (1992)

52. Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Ehrig,
H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT’87. LNCS, vol. 250,
pp. 1–22. Springer, Heidelberg (1987)

53. Escobar, S., Meseguer, J., Santiago, S., Meadows, C., González-Burgueño, A.:
Analysis of the IBM CCA security API protocols in Maude-NPA. In: Chen, L.,
Mitchell, C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 111–130. Springer, Heidelberg
(2014)

54. Gramlich, B.: Modularity in term rewriting revisited. Theor. Comput. Sci. 464,
3–19 (2012)

55. Hendrix, J., Meseguer, J., Clavel, M.: A sufficient completeness reasoning tool for
partial specifications. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 165–174.
Springer, Heidelberg (2005)

56. Meseguer, J., Ohsaki, H., Hendrix, J.: A sufficient completeness checker for linear
order-sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006)

57. Hullot, J.M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.)
5th Conference on Automated Deduction. LNCS, vol. 87, pp. 318–334. Springer,
Heidelberg (1980)

58. Jouannaud, J.P., Kirchner, C., Kirchner, H.: Incremental construction of unifica-
tion algorithms in equational theories. In: Diaz, J. (ed.) Automata, Languages and
Programming. LNCS, vol. 154, pp. 361–373. Springer, Heidelberg (1983)

59. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM J. Comput. 15, 1155–1194 (1986)

60. Kapur, D., Narendran, P.: Complexity of unification problems with associative-
commutative operators. J. Autom. Reasoning 9(2), 261–288 (1992)

61. Ringeissen, C., Tran, D.-K., Ranise, S., Kirchner, H.: On superposition-based sat-
isfiability procedures and their combination. In: Van Hung, D., Wirsing, M. (eds.)
ICTAC 2005. LNCS, vol. 3722, pp. 594–608. Springer, Heidelberg (2005)

62. Krstić, S., Goel, A., Tinelli, C., Grundy, J.: Combined satisfiability modulo para-
metric theories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 602–617. Springer, Heidelberg (2007)

63. Lynch, C., Morawska, B.: Automatic decidability. In: Proceedings of LICS 2002,
p. 7. IEEE Computer Society (2002)

64. Tran, D.-K., Lynch, C.: Automatic decidability and combinability revisited. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 328–344. Springer,
Heidelberg (2007)

65. Maher, M.J.: Complete axiomatizations of the algebras of finite, rational and infi-
nite trees. In: Proceedings of LICS 1988, pp. 348–357. IEEE Computer Society
(1988)

66. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

67. Meseguer, J.: Order-sorted parameterization and induction. In: Palsberg, J. (ed.)
Semantics and Algebraic Specification. LNCS, vol. 5700, pp. 43–80. Springer,
Heidelberg (2009)

34 J. Meseguer

68. Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Techni-
cal report, C.S. Department, University of Illinois at Urbana-Champaign, August
2014. http://hdl.handle.net/2142/50288

69. Meseguer, J.: Variant-based satisfiability in initial algebras. Technical report, Uni-
versity of Illinois at Urbana-Champaign, November 2015. http://hdl.handle.net/
2142/88408

70. Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, mul-
tiple representation and coercion problems. Inf. Comput. 103(1), 114–158 (1993)

71. Meseguer, J., Skeirik, S.: Equational formulas and pattern operations in initial
order-sorted algebras. In: Falaschi, M., et al. (eds.) LOPSTR 2015. LNCS, vol.
9527, pp. 36–53. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27436-2 3

72. de Moura, L., Rueß, H.: Lemmas on demand for satisfiability solvers. In: Pro-
ceedings of the Fifth International Symposium on the Theory and Applications of
Satisfiability Testing (SAT 2002), May 2002

73. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

74. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356–364 (1980)

75. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

76. Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput.
Sci. 12, 291–302 (1980)

77. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Proceedings of CSF 2012,
pp. 78–94. IEEE (2012)

78. Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)
79. Slagle, J.R.: Automated theorem-proving for theories with simplifiers commutativ-

ity, and associativity. J. ACM 21(4), 622–642 (1974)
80. Snyder, W.: A Proof Theory for General Unification. Birkhäuser, Basel (1991)
81. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an

extensional theory of arrays. In: Proceedings of LICS 2001, pp. 29–37. IEEE Com-
puter Society (2001)

82. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 641–653.
Springer, Heidelberg (2004)

83. Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting
systems. Inf. Process. Lett. 25(3), 141–143 (1987)

84. Yang, F., Escobar, S., Meadows, C., Meseguer, J., Narendran, P.: Theories of homo-
morphic encryption, unification, and the finite variant property. In: Proceedings of
PPDP 2014, pp. 123–133. ACM (2014)

http://hdl.handle.net/2142/50288
http://hdl.handle.net/2142/88408
http://hdl.handle.net/2142/88408
http://dx.doi.org/10.1007/978-3-319-27436-2_3

Timed Systems

An Executable Semantics of Clock Constraint
Specification Language and Its Applications

Min Zhang1(B) and Frédéric Mallet1,2,3

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

zhangmin@sei.ecnu.edu.cn
2 University of Nice Sophia Antipolis, I3S, UMR 7271 CNRS, Nice, France

Frederic.Mallet@unice.fr
3 INRIA Sophia Antipolis Méditerranée, Valbonne, France

Abstract. The Clock Constraint Specification Language (ccsl) is a lan-
guage to specify logical and timed constraints between logical clocks.
Given a set of clock constraints specified in ccsl, formal analysis is pre-
ferred to check if there exists a schedule that satisfies all the constraints,
if the constraints are valid or not, and if the constraints satisfy expected
properties. In this paper, we present a formal executable semantics of
ccsl in rewriting logic and demonstrate some applications of the formal
semantics to its formal analysis: (1) to automatically find bounded or
periodic schedules that satisfy all the given constraints; (2) to simulate
the execution of schedules with customized simulation policies; and (3)
to verify LTL properties of ccsl constraints by bounded model checking.
Compared with other existing modeling approaches, advantages with the
rewriting-based semantics of ccsl are that we do not need to assume a
bounded number of steps for the formalization, and we can exhaustively
explore all the solutions within a given bound for the analysis.

1 Introduction

Logical time such as defined by Lamport [9] gives a flexible abstraction to com-
pare and order occurrences of events when appealing to more traditional physical
measures is either not possible or not desirable. This is the case in a great variety
of application domains, from widely distributed systems, for which maintaining a
global clock can be costly, to deeply embedded software or in latency-insensitive
designs [3], for which the complexity of the control mechanisms (like frequency
scaling) makes it neither desirable nor efficient. In the latter case, synchronous
languages [2,14] have shown that logical clocks can give a very adequate tool to
represent any recurrent event uniformly, whether occurring in a periodic fashion
or not.

The Clock Constraint Specification Language (ccsl) [11] is a language that
handles logical clocks as first-class citizens. While synchronous languages mainly
focus on signals and values and use logical clocks as a controlling mechanism,
ccsl discards the values and only focuses on clock-related issues. The formal
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 37–51, 2016.
DOI: 10.1007/978-3-319-29510-7 2

38 M. Zhang and F. Mallet

operational semantics of ccsl was initially defined in a research report [1]
in a bid to provide a reference semantics for building simulation tools, like
TimeSquare [6]. We are interested here in studying the properties of a ccsl
specification and we give another formal executable semantics in rewriting logic
and demonstrate the benefits of this new semantics. The first benefit is that
rewriting logic gives a direct implementation of the operational semantics while
TimeSquare provides a Java-based implementation, which is prone to introduce
accidental complexity.

The second and most important benefit is that we can directly use rewriting
logic tooling to model-check a ccsl specification. Previous works on studying
ccsl properties [13], rely on several intermediate transformations to automata
and other specific formats so that model-checking becomes possible when a ccsl
specification is finite (or safe) [12]. It either meant, reducing to a safe subset
of ccsl [8] or detecting that the specification was finite even though relying
on unsafe operators. In this contribution, we rely on Maude environment [4]
to provide a direct analysis support from the operational semantics and we
can explore unsafe specifications by using bounded-model checking and do not
restrict to the safe subset. While before, successive intermediate transformations
could each introduce variations in the semantics, if not careful enough, we rely
here on the strong, widely used, generic tooling provided by Maude, rather than
on an ad-hoc manual implementation.

More precisely, in this paper, we introduce the notions of bounded and peri-
odic schedules for a ccsl specification. Periodic schedules are useful to reason
on specifications that rely on unsafe operators. With periodic schedules, we can
use bounded model-checking to verify temporal logic properties on ccsl models.
The tooling and automatic verification directly comes with the newly introduced
semantics and the Maude environment.

The rest of the paper is organized as follows. Sections 2 and 3 give a brief
introduction to ccsl and Maude. In Sect. 4 we present the formal definition of
semantics of ccsl in Maude, and in Sect. 5 we demonstrate four applications of
the formal semantics to the analysis of ccsl. Section 6 mentions some related
work and Sect. 7 concludes the paper.

2 CCSL

2.1 Syntax and Semantics of CCSL

In ccsl, there are four primitive constraint operators which are binary relations
between clocks, and five kinds of clock definitions [11]. The four constraint oper-
ators are called precedence, causality, subclock and exclusion; and the five clock
definitions are called union, intersection, infimum, supremum, and delay.

The meaning of the nine primitive operators (see Fig. 1) is given using the
notions of schedule and history. Given a set C of clocks, a schedule of C is used
to decide which clocks can tick at a given step, and a history is used to calculate
the number of ticks of each clock at a given step.

An Executable Semantics of CCSL and Its Applications 39

Fig. 1. Definition of 9 primitive ccsl operators

Definition 1 (Schedule). Given a set C of clocks, a schedule of C is a total
function δ ∶ N+ → 2C such that for any n in N

+, δ(n) ≠ ∅.

Note that a schedule must be non-trivial such that there is at least one clock
ticking at any execution step. This condition excludes from schedules those steps
where no clocks tick. Such steps are called empty steps and are trivial in that
adding them to a schedule does not affect the logical relations among clocks.

Definition 2 (History). A history of a schedule δ ∶ N+ → 2C over a set C
of clocks is a function χ ∶ C ×N→ N such that for any clock c ∈ C and n ∈ N:

χ(c, n) =

⎧
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎩

0 if n = 0
χ(c, n − 1) if n ≠ 0 ∧ c /∈ δ(n)
χ(c, n − 1) + 1 if n ≠ 0 ∧ c ∈ δ(n)

We use δ ⊧ φ to denote that schedule δ satisfies constraint φ. Figure 1 shows
the definition of the satisfiability of a constraint φ with regards to a schedule
δ. We take the definition of precedence for example. δ ⊧ c1 ≺ c2 holds if and
only if for any n in N, c2 must not tick at step n + 1 if the number of ticks of c1
is equal to the one of c2 at step n. Precedence and causality are asynchronous
constraints and they forbid clocks to tick depending on what has happened
on other clocks in the earlier steps. Subclock and exclusion are synchronous
constraints and they force clocks to tick or not depending on whether another
clock ticks or not in the same step. Union defines a clock c1 which ticks whenever
c2 or c3 ticks; intersection defines a clock c1 which ticks whenever both c2 and
c3 tick; supremum defines the slowest clock c1 which is faster than both c2 and
c3; infimum defines the fastest clock c1 which is slower than both c2 and c3; and
delay defines the clock c1 which is delayed by c2 with d steps. More details can
be found in a recent study on ccsl [13].

Given a set Φ of clock constraints and a schedule δ, δ satisfies Φ (denoted by
δ ⊧ Φ) if for any φ in Φ there is δ ⊧ φ. In particular, we use δ;k ⊧ φ to denote
that δ satisfies φ at step k(k ∈ N+). We use δ;k ⊧ Φ to denote that δ satisfies all
the constraints in Φ at step k, i.e., ∀φ ∈ Φ, δ;k ⊧ φ.

40 M. Zhang and F. Mallet

1start 2 . . . k k + 1 . . . k + p k + p + 1 . . .

p

Fig. 2. Periodic schedule

2.2 Satisfiability Problem of CCSL

Given a set Φ of ccsl constraints, one of the most important problems is to
decide if there exist some schedules that satisfy Φ. However, it is still an open
problem whether the satisfiability of a given arbitrary set of ccsl constraints is
decidable or not. We consider two kinds of schedules called bounded schedule and
periodic schedule from the pragmatic point of view and show the satisfiability
problem of an arbitrary given set of ccsl constraints with regards to bounded
schedule and periodic schedule is decidable.

Definition 3 (Bounded schedule). Given a set Φ of clock constraints on
clocks in C, and a function δ ∶ N≤n → 2C , δ is called an n-bounded schedule
if for any i ≤ n, δ; i ⊧ Φ.

We denote the bounded satisfiability relation by δ ⊧n Φ, which means that δ is
an n-bounded schedule of Φ. It is obvious that given a bound n it is decidable to
check if there exists an n-bounded schedule for a set of ccsl constraints because
the number of candidate schedules is finite, i.e., (2∣C∣ − 1)n, where ∣C ∣ denotes
the number of clocks in C. If there does not exist an n-bounded schedule for a
set Φ of clock constraints, there must not be a schedule that satisfies Φ, although
not vice versa.

Bounded schedule is sometimes too restrictive in practice because we usually
do not assign a bound to clocks in real-time embedded systems, but assume
that reactive systems run forever and only terminate when shutdown. Thus,
clocks should tick infinitely often from the theoretical point of view. There is
another class of schedules which are unbounded and force all the clocks to occur
periodically. We call them periodic schedules.

Definition 4 (Periodic schedule). A schedule δ is periodic if there exist k, p
in N such that for any k′ ≥ k, δ(k′ + p) = δ(k′).

Figure 2 depicts a periodic schedule whose period is p. Each node denotes a
time point, and each arrow denotes the elapse of a time unit. The dashed line
indicates that, for any clock, it ticks at one point if and only if it ticks at the
other point. From step k, the schedule starts to repeat every p steps infinitely. To
decide whether there exists a periodic schedule for a given set of clock constraints
is also an open problem. In the rest of this section, we propose an approach to
constructing a periodic schedule from a bounded one when the bounded one
satisfies certain conditions which are to be introduced below.

An Executable Semantics of CCSL and Its Applications 41

Fig. 3. Construction of periodic schedule δ′ from an n-bounded schedule δ

Lemma 1. Given a schedule δ ∶ N+ → 2C and two natural numbers k, k′, if there
exists m ∈ N such that for any c in C χ(c, k) +m = χ(c, k′) and χ(c, k + 1) +m =
χ(c, k′ + 1) then δ(k + 1) = δ(k′ + 1).

Proof. It is equal to prove that for any c ∈ C, c ∈ δ(k + 1) ⇐⇒ c ∈ δ(k′ + 1).
(⇒): c ∈ δ(k + 1) implies that χ(c, k + 1) = χ(c, k) + 1. Thus, χ(c, k + 1) +m =

χ(c, k′ + 1) = χ(c, k) + 1 +m = χ(c, k′) + 1. Thus, c ∈ δ(k′ + 1).
(⇐): c ∈ δ(k′+1) implies that χ(c, k′+1) = χ(c, k′)+1. Namely, χ(c, k+1)+m =

χ(c, k) +m + 1. Thus, χ(c, k + 1) = χ(c, k) + 1, and hence we have c ∈ δ(k + 1). ⊓⊔

Theorem 1. Given a schedule δ ∶ N+ → 2C , a clock constraint φ, and two natural
numbers k, k′, δ;k ⊧ φ⇒ σ;k′ ⊧ φ if all the following three conditions are true:

1. δ(k) = δ(k′);
2. There exists m in N such that m > 0 and for any c in C, χ(c, k)+m = χ(c, k′)

and χ(c, k + 1) +m = χ(c, k′ + 1);
3. If φ ≡ (c1 ≜ c2 $ d), χ(c2, k) ≥ d.

Theorem 1 can be proved with Lemma 1. We omit the proof due to the limit of
space. From Theorem 1 we can directly derive the following corollary.

Corollary 1. Given a schedule δ ∶ N+ → 2C , a set Φ of clock constraints, and two
natural numbers n, k′, δ;k ⊧ Φ⇒ σ;k′ ⊧ Φ if the three conditions in Theorem 1
are satisfied.

Given an n-bounded schedule δ of a set Φ of clock constraints, if there exist
two natural numbers k, k′ ≤ n, which satisfy the three conditions in Theorem 1,
we can define a periodic schedule δ′ based on δ such that δ′ satisfies Φ.

δ′(x) = {
δ(x) if x ≤ k′

δ(k + (x − k)%(k′ − k)) if x > k′

Figure 3 shows the construction of δ′ based on δ. From k′, the schedule δ′

repeats infinitely the steps from k to k′ − 1. By Corollary 1, it is obvious that
for any k′′ such that k′′ > k′, we have δ′;k′′ ⊧ Φ because we can find a natural
number k1 = k+(k′′−k)%(k′−k) such that δ;k1 ⊧ Φ, δ(k1) = δ′(k1) and k′′, k1, δ

′

satisfy the three conditions in Theorem 1. Thus, we have δ′ ⊧ Φ.

42 M. Zhang and F. Mallet

3 Maude in a Nutshell

Maude is rewriting-based algebraic language and also an efficient rewriting
engine. We assume the readers are familiar with Maude, and only give a brief
introduction to Maude meta-level functionality and Maude LTL model check-
ing, which is used in this paper. More details about Maude can be found in the
Maude book [4].

The underlying logic of Maude is rewriting logic, which is reflective in the
sense that it can be faithfully interpreted in itself [4]. The reflectivity allows us
to reason with a specified rewrite theory in customized strategies by Maude.
Intuitively, we define a rewrite theory R and then define a metatheory U where
R is treated as data. A rewrite theory R is a tripe ⟨Σ,E,R⟩, where Σ is called
the signature specifying the type structure, E is a set of equations and R is
a set of rewrite rules. Maude provides efficient function by command search
to find if there exist some paths from a given term t to a target term t′ by
repeatedly applying the rewrite rules in R. It also provides a corresponding
meta-level searching function metaSearch which takes R, t and t′ as arguments
and returns the searching result. An LTL model checker has been implemented
based on Maude to verify LTL properties of a rewrite theory when the set of
states that are reachable from an initial state in the rewrite theory is finite [7].

4 Formal Semantics of CCSL in Maude

We formalize a clock as a triple (c, �, n), consisting of the clock identifier c, a list �
of records, with each value being tick or idle (abbreviated by t or i respectively),
representing that the clock ticks or not at the corresponding step, and a natural
number n to indicate the numbers of ticks in �. � represents a bounded schedule
of c whose bound is equal to the length of �. Initially, � is empty and n is 0. Let
C be the set of such clock triples of a set C of clocks. We call C a configuration.
We suppose that the length of the lists in each clock triple in C are equal, e.g.
n. C essentially represents an n-bounded schedule for all the clocks in C.

We declare a predicate satisfy which takes three arguments: a configuration
C, a non-zero natural number k, and a set Φ of constraints, and returns true if
C satisfies Φ at step k, and otherwise false. We consider each possible constraint
form in Φ when defining satisfy. For instance, the following two equations are
defined to specify a configuration C satisfies precedence and infimum at step k:

1 ceq satisfy(C, k, c1 ≺ c2) = (num(�1,k) >= num(�2, k)) and
2 (if num(�1,k − 1) == num(�2, k − 1) then t-val(�2,k) =/= t else true fi)
3 if (c1, �1, n1) := getConf(C, c1) /\ (c2, �2, n2) := getConf(C, c2).

4 ceq satisfy(C, k, c1 ≜ c2 ∧ c3) = (if n2 > n3 then n1 == n2 else n1 == n3 fi)
5 if (c1, �1, n1) := getConf(C, c1) /\ (c2, �2, n2) := getConf(C, c2)
6 /\ (c3, �3, n3) := getConf(C, c2) .

The first equation says that satisfy returns true with C, k and c1 ≺ c2 when
the number of ticks of c1 up to step k is greater than or equal to the one of c2
and further if the number of ticks of c1 up to step k − 1 is the same as the one

An Executable Semantics of CCSL and Its Applications 43

of c2 then c2 must not tick at step k (as represented by t-val(�2,k) =/= t,
where t-val is a function returning the kth value in the list �2). The equation
has a condition which is a conjunction of two matching equations [4]. The two
conjuncts are used to retrieve the tick list and the number of ticks of c1 (and
c2) by function getConf and assign them to �1 and n1 (and �2 and n2). The
second equation defines the semantics of infimum relation, namely, at any step
k the number of ticks of c1 must be the minimum of those of c2 and c3. The
correspondence between the formalization of the constraints and their formal
semantics defined in Fig. 1 should be clear. Other constraints can be formalized
in Maude likewise, and we omit them from the paper.

Next we formalize one-step ticking from k to k + 1 of all clocks by a set of
rewrite rules. The basic idea is as follows. From step k to k+1 each clock decides
to tick or not (be idle). After all the clocks make a decision, we check if the
bounded schedule satisfies all the constraints at step k+1. The first rewrite rule
at Line 1 specifies the behavior that clock c ticks at step k + 1. The list � is
changed into � t. The rule is conditional because we need the condition that c is
not the last clock which makes a decision. If c is the last one, we need to check if
all the constraints in Φ are satisfied at step k + 1. The step k can be represented
by the length of the list � of an arbitrary clock triple in C, i.e., k = size(�),
where size(�) returns the length of �. Thus, k + 1 is equal to size(�) + 1, and
hence we use the latter one in the condition of the fourth equation on Line 6.

Similarly, if c decides to remain idle next step and c is not the last clock, its
corresponding tick list is changed from � to � i, which is specified by the rule on
Line 2. If c is the last clock in this case, we also need to guarantee that from step
k to k + 1 there must be at least one clock ticking (represented by the formula
not allIdle(C′)) and all the clocks satisfy the constraints in Φ at step k + 1.

1 crl ((c, �,n) C ; C′ ; Φ) => (C ; C′ (c, � t,n + 1) ; Φ) if C =/= nil .

2 crl ((c, �,n) C ; C′ ; Φ) => (C ; C′ (c, � i, n) ; Φ) if C =/= nil .

3 crl ((c, �,n) ; C′ ; Φ) => (nil ; C′ (c, � t,n + 1) ; Φ)

4 if satisfy(C′ (c, � t,n + 1), size(�) + 1, Φ) .

5 crl ((c, �,n) ; C′ ; Φ) => (nil ; C′ (c, � i, n) ; Φ)

6 if not allIdle(C′) /\ satisfy(C′ (c, � i, n), size(�) + 1, Φ) .

We assume that C is a k-bounded schedule of a set Φ of ccsl constraints.
If there is a rewriting sequence from (C; nil; Φ) to a new one (nil; C′; Φ)
with the above four rules, C′ must be a k + 1-bounded schedule of Φ because
C
′ satisfies Φ up to k + 1 steps. We can define the following rule to specify the

one-step ticking of all the clocks from step k to k + 1.

1 crl < C ; k ; Φ > => < C′ ; k + 1 ; Φ > if (C ; nil ; Φ) => (nil ; C′ ; Φ) .

The condition of the rule is a rewrite condition [4], which is true if and only if
there exists a rewriting sequence from the term at the left-hand side of => to
the one at the right-hand side when the condition is true. In the above rule, C′

represents an arbitrary immediate successor of C such that C′ satisfies Φ up to
k + 1 steps.

44 M. Zhang and F. Mallet

5 Applications of the Formal Semantics

In this section, we show four applications of the executable formal semantics of
ccsl in Maude.

5.1 Bounded Scheduling

Given a bound n and a set of clock constraints Φ, we can use Maude’s search
function to find automatically if there exists an n-bounded schedule of Φ. If
Maude cannot find a schedule within a given bound n, it means that there must
not exist such an n-bounded schedule, and further we can conclude that there
must not exist a schedule that satisfies Φ. However, if a schedule is found up to
bound n, we can only conclude that the returned schedule is n-bounded, but
cannot guarantee the existence of a schedule for Φ.

We show an example of finding bounded schedules for a given set of clock
constraints using Maude’s search command.

Example 1. Given a set of constraints Φ1 = {c1 ≺ c2, c3 ≜ c1 $ 1 , c2 ≺ c3 , we
can use Maude’s search command to find a 100-bounded schedule.

1 search [2 ,100] init(Φ1) =>* < C ; 100 ; (Φ1) > .
2 states: 101 rewrites: 629424
3 C -->
4 (c1,t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t
5 i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i
6 t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i ,50)
7 (c2,i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i
8 t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t
9 i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t ,50)

10 (c3,i i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t
11 i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i
12 t i t i t i t i t i t i t i t i t i t i t i t i t i t i t i ,49)

Maude’s search command takes two optional arguments in the square brackets.
The first one is used to specify the number of expected solutions, and the second
one is used to specify the maximal depth of searching. Function init takes a
set Φ of constraints and generates an initial configuration < C0 ; 0 ; Φ >, where
C0 is a set of clock triples, each of which is of the form (c,nil,0). The operator
=>* indicates there are zero or more rewritings from the given initial term to the
expected term that can be matched by the target term.

In this example, the target term represents those configurations where the
current step is 200. C is a configuration which is assigned by Maude. The result
is obtained by repeatedly applying the rewrite rule. Maude only returns one
result with the command. It means that there is only one possible 100-bounded
schedule for the constraints. The schedule shows that c1 and c3 only tick at all
odd steps except that c3 does not tick at the first step, because of the constraint
c3 ≜ c1 $ 1 . c2 only ticks at all even steps. The returned bounded schedule
coincides with the result in an earlier work of the second author [13].

An Executable Semantics of CCSL and Its Applications 45

5.2 Customized Simulation

Given a set Φ of clock constraints, it is also desirable to have a customized
schedule which satisfies not only Φ but also some customized requirements, e.g.,
at each step if a clock can tick it must tick, or if a clock does not have to
tick, it must not tick. We only consider three basic scheduling policies, called
randomness, maximum and minimum respectively.

– Randomness: If a clock can tick and not tick at next step, we randomly choose
whether it ticks or not.

– Maximum: If a clock can tick at next step, it must tick.
– Minimum: If a clock may not to tick at next step, it must not tick.

Based on the four rewrite rules defined in Sect. 4, we can achieve customized
scheduling for a given set of clock constraints using Maude’s meta-level facility.
We first find all the possible immediate successors of a set C of clock triples
using Maude’s metaSearch function, and then choose the successor that satisfies
the customized policy given by users. The following rewrite rule is defined for
customized scheduling.

1 −−− the rewrite rule is defined for customized scheduling

2 crl < C ; k ; Φ ; ρ > => < C′ ; k + 1 ; Φ ; ρ > if C′ := conf(sucs(C, Φ), ρ)
.

3 −−− the equation needs the meta−level function metaSearch to compute all successors
4 ceq sucsAux(C, Φ, j) = downTerm(T, nil), sucsAux(C, Φ, j + 1)
5 if RT := metaSearch(upModule(’ONE -STEP -TICKING , false),
6 ’‘(_;_;_‘)[upTerm(C), ’nil.Conf , upTerm(Φ)],

7 ’‘(_;_;_‘)[’nil.Conf , C′, upTerm(Φ)],nil ,’*,unbounded ,i) /\

8 (C′ <- T) := getSubstitution(RT) .

In the rule, ρ is a variable, denoting the customized policy given by users, e.g.
rand for randomness, max for maximum or min for minimum. The function sucs
used in the condition returns the set of all the successors of C that satisfy Φ,
and conf returns one among them according to the customized policy ρ. The
equation above is used to define a recursive function sucsAux, which is the main
auxiliary function to define sucs. Function sucsAux takes three arguments, C,
Φ and a natural number j, which indicate that we want metaSearch to find the
jth(j ≥ 0) successor of C. The metaSearch function takes a meta-module of the
module ONE-STEP-TICKING where the four rewrite rules in Sect. 4 are defined, a
term from which searching begins, a target term that the result term can match,
and other three arguments, and returns a searching result. The searching result
contains a meta-level term which substitutes for C′. We change it to the object
level by the built-in function downTerm. The object-level term represents the ith

successor of C. We omit the detailed explanation about the usage of metaSearch.
Interested readers can refer to the work [4] for the details.

Example 2. Let Φ2 be the set of the following constraints:

in1 ≼ step1 step1 ≺ step3 in2 ≼ step2

step2 ≺ step3 step3 ≼ out

46 M. Zhang and F. Mallet

We show the simulations of the bounded schedules that satisfy Φ2 with maximum
and minimum policy. We use Maude’s rew command to rewrite the initial con-
figuration < C0 ; 0 ; Φ ; ρ > by applying the rewrite rule defined in this section
10 times with max and min respectively. The initial configuration is generated by
function init1, which takes a set Φ of ccsl constraints and a simulation policy
ρ as its arguments. The commands and returned results are shown as follows.

1 rew [10] init1(Φ2, max) .
2 result CCC: (’in1 , t t t t t t t t t t,10)(’in2 , t t t t t t t t t t,10)
3 (’out , i t t t t t t t t t,9) (’step1 ,t t t t t t t t t t,10)
4 (’step2 ,t t t t t t t t t t,10)(’step3 ,i t t t t t t t t t,9)

...
5 rew [10] init1(Φ2, min) .
6 result CCC: (’in1 , i i i i i i i i i i,0) (’in2 , t i t i t i t i t i,5)
7 (’out , i i i i i i i i i i,0) (’step1 ,i i i i i i i i i i,0)
8 (’step2 ,i t i t i t i t i t,5) (’step3 ,i i i i i i i i i i,0)

...

For the first schedule, the number of ticking clocks is always maximal, while for
the second one the number of ticking clocks is always minimal.

5.3 Periodic Scheduling

We also can find automatically periodic schedules of a given set of ccsl con-
straints by Maude’s search command with the rewriting-based semantics of
ccsl in Maude. The basic idea is to compute all possible immediate successors
of the current k-bounded schedule at every step k(k ≥ 1) and check if there
exists a successor that satisfies all the three conditions in Theorem 1. If such a
successor exists, a periodic schedule is found, and the step k + 1 is the first step
of the second iteration. We also can compute the period of the schedule. The
following rewrite rule is defined for periodic scheduling.

1 −−− the rewrite rule is defined to represent periodic schedules
2 crl < C ; k ; Φ ; 0 > =>

3 if C′′ == nil then < C′ ; k + 1 ; Φ ; 0 > else < C′′ ; k + 1 ; Φ ; p > fi

4 if (CS1,C
′,CS2) := sucs(CF,CTS) /\ <C′′; p> := checkOcc ((CS1, C

′,CS2),k + 1)
.

The term on the left-hand side of the rule is a 4-tuple, where the last argument,
i.e., 0 indicates that the k-bounded schedule does not satisfy the three conditions
in Theorem 1. Function checkOcc is used to check if there exists a k+1-bounded
schedule that satisfies all the constraints in Φ and also the three conditions in
Theorem 1. If that is the case, checkOcc returns the schedule C′′ and the period
p(p > 0), and otherwise nil and 0. Once a periodic schedule is found, the rewrite
rule cannot be applied and Maude returns the result. Note that the rule may
cause non-termination if no periodic schedule is found and no bound to the times
of rewriting is set.

As an example, we use Maude’s search command to find periodic schedules
of the precedence constraint c1 ≺ c2. The command is as follows:

1 search [4] init2(c1 ≺ c2) =>* < C; k ; c1 ≺ c2 ; p > such that p =/= 0 .

An Executable Semantics of CCSL and Its Applications 47

Table 1. Four periodic schedules that satisfy c1 ≺ c2

schedule clock step 1 2 3 4 5 6 . . . period p

1 c1 t t t t t t . . . 1
c2 i t t t t t . . .

2 c1 t i t i t i . . . 2
c2 i t i t i t . . .

3 c1 t t t t t t . . . 1
c2 i i t t t t . . .

4 c1 t t t i t i . . . 2
c2 i i i t i t . . .

Function init2 takes a set Φ of ccsl constraints and returns an initial config-
uration < C0 ; 0 ; Φ ; 0 >, where the last natural number is used to record the
period of the current bounded schedule. We provide an upper bound (e.g. 4) to
the expected periodic schedules. In the command, C is a set of two clock triples
of c1 and c2 returned by Maude when a periodic schedule is found. k indicates
the step where the first period of the schedule ends, and p indicates the period
of the schedule. The condition p =/= 0 means that C represents a periodic sched-
ule. Table 1 shows four periodic schedules found by Maude for c1 ≺ c2 when the
bound is set to 4. The red steps for each schedule are the beginning of the first
and second iterations of the period. We also can give p a concrete value and use
Maude to search those periodic schedules with a fixed period.

5.4 Bounded Model Checking

Given a set of clock constraints, it is desired to know if the constraints satisfy
some properties, e.g. if all the clocks can tick infinitely often, or a clock must tick
immediately after another clock ticks. Based on the formal semantics of ccsl in
Maude, we can model check LTL properties of a given set of ccsl constraints by
Maude LTL model checker. Maude model checker requires the reachable state
space being verified must be finite, while the reachable state space specified by
the rewrite theory of a set of clock constraints may be infinite if there exist some
non-periodic schedules. For periodic schedules, we force the schedule to repeat
from step n to n′ where n and n′ are the beginning and ending steps of the first
period. As depicted by Fig. 4, by setting a bound we can compute all periodic
schedules up to the bound. The periodic schedules compose a finite state space
which can be used for model checking. Figure 4 (left) shows an example of an
unbounded state space. Each path represents a schedule. The path with a loop
represents a periodic schedule. There are three periodic schedules in the figure
when the bound is set to 3. The three periodic schedules constitute a finite state
space which can be model checked, as shown in Fig. 4 (right).

Next, we show some basic properties that clock constraints are expected to
satisfy and their representations in LTL formula. Let tick be a parameterized
predicate on states, which takes a clock c as argument and returns true if c ticks
in a state and otherwise false.

48 M. Zhang and F. Mallet

start start

State space without bound Bounded state space

bound: 3

Fig. 4. Bounded state-space of periodic schedulers

– Repeated ticking : all clocks must tick infinitely often, which can be formalized
as: ⋀c∈C ◻◇ tick(c).

– Simultaneous ticking : two clocks c1 and c2 must tick simultaneously, which
can be formalized as: ◻(tick(c1) ⇐⇒ tick(c2)).

– Leading-to ticking : if a clock c1 ticks, it must cause another clock c2 to tick
eventually, which can be formalized as: ◻(tick(c1) → ◇tick(c2)).

– Alternating ticking : two clocks c1 and c2 must always tick immediately after
each other, which can be formalized as: ◻(tick(c1) → ◯ tick(c2) ∧ tick(c2) →

◯ tick(c1).

As an example, we model check if the constraints Φ1 in Example 1 satisfy the
alternating ticking property.

1 −−− definition of the state predicate tick in Maude
2 ceq <(C; k; Φ; p> |= tick(c) = (tval(�,k) == t) if (c,�,n) := getConf(C, c)

.

3 −−− the following command is used for model checking in Maude
4 red modelCheck(init2((c1 ≺ c2)(c3 ≜ c1 $ 1)(c2 ≺ c3)),
5 [](tick(c1) -> O tick(c2) /\ tick(c2) -> O tick(c1))) .

6 Result: true

The first equation is used to define the state predicate tick, and modelCheck
is a built-in function to do model checking in Maude. It takes an initial state
(configuration) and an LTL formula. Maude returns true with the above com-
mand, which means that the constraints Φ1 indeed satisfies the alternating tick-
ing property. This result coincides with the one obtained by encoding ccsl into
finite-state transition systems [13].

By bounded model checking in Maude we also can find invalid schedules of
a given set of clock constraints. A schedule is called invalid if it prevents some
clocks from ticking after some step, namely, it does not satisfy the repeated
ticking property. A set Φ of ccsl constraints are called invalid if there exist
invalid schedules that satisfy Φ. Once Maude finds such a periodic schedule that
violates the repeated ticking property, we can conclude that the constraints are
not valid. However, it cannot guarantee the constraints are valid if no invalid
schedules are found because not all schedules are model checked.

An Executable Semantics of CCSL and Its Applications 49

Table 2. Eight deadlock schedules found by Maude for ccsl constraints Φ′2

No. in1 in2 step1 step2 step3 out tmp1 tmp2

1 t i t i i i t i
2 i t i t i i t i
3 t i i i i t i i i i i i t i i i
4 i i t i i i i t i i i i t i i i
5 t i t t i i t i t t i i i t i i t i t i t i i t
6 t i i t i t t i i t i t i t i i t i t i t i i t
7 t i t t i i t i t i t i i t i i t i t i t i i t
8 t i i t i t t i i i t t i t i i t i t i t i i t

A special invalid case of ccsl constraints is that some schedules may prevent
all clocks from ticking after some step. We call them deadlock schedules. We can
use Maude to find if there exist deadlock schedules within a given bound. Let us
consider a case of Example 2. Assume that we introduce the following four new
constraints to Φ2 and denote the new set as Φ′2:

tmp1 ≜ in1 + in2 tmp1 ≺ out tmp2 ≜ tmp1 $ 1 out ≺ tmp2

The four constraints mean that clocks tmp1 and out must alternatively tick. We
can find a number of schedules satisfying all the constraints in Φ′2. However,
some of them may cause deadlock. We find 8 deadlock schedules by searching
within 3 steps in Maude with the command:

1 search [10 ,3] init(Φ′2)=>! CF .

In the command CF is a variable to which a 4-tuple is going to be assigned
by Maude, and =>! means that the value assigned to CF must be rewritten
by any rewrite rules. Namely, the value assigned to CF is a deadlock schedule.
Table 2 shows the eight deadlock schedules. We take the first one as an example.
According to the first schedule, only three clocks, i.e. in1, step1 and tmp1 tick at
the first step. In next step, no clocks can tick because of the newly introduced four
constraints. For instance, in2 cannot tick in next step. If in2 ticked, so did tmp1
(by constraint tmp1 ≜ in1 + in2) and tmp2 (by constraint tmp2 ≜ tmp1 $ 1),
which violates the constraint out ≺ tmp2. Because in2 cannot tick, step2 cannot
tick either by constraint in2 ≺ step2. Other clocks also cannot tick because of
the corresponding constraints, leading to a deadlock.

6 Related Works and Discussion

ccsl mainly deals with logical clocks, i.e., unbounded increasing sequences of
integers. The semantics of clock constraints may depend on boolean parameters,
in which case, we remain in a finite world and can rely on traditional verification

50 M. Zhang and F. Mallet

and analysis results and tools. The constraints may also depend on unbounded
integer values, for instance, the number of times a given clock has ticked. In this
latter case, the constraint is called unsafe [12]. A specification is safe if it does
not use any unsafe constraint.

The reference semantics of ccsl was given in a research report [1] mainly to
be able to define a simulation tool called TimeSquare [6]. TimeSquare encodes
the operational semantics of ccsl in Java and captures boolean constraints
symbolically using Binary Decision Diagrams (BDD). TimeSquare works step by
step and at each step, finding a solution reduces to a satisfiability problem. After
deciding if and how many valid solutions can be found at a step, TimeSquare
clock engine picks one solution according to its simulation policy, updates the
state space and moves forward. TimeSquare does not consider the unbounded
specification as a whole and only produce one finite possible trace that satisfies
all the constraints up to a given number of steps. In this work, we use bounded
model-checking, we can then explore all the solutions reached in a given number
of steps, instead of only one.

Other works have tried to make an exhaustive exploration of the entire state
space (not up to a pre-defined number of steps). A comprehensive list of such
works has been summarized in a recent survey [13]. However, one aspect is
to be able to decide whether the state space can be represented with a finite
abstraction even though the specification is unsafe. Another way is to force a
finite space by restricting to safe constraints [8,15,16]. In this work, we do not
make any assumptions on whether the specification is safe or not.

The most important achievement in this paper is that, thanks to Maude envi-
ronment, all the analyses performed result directly from the operational seman-
tics without intermediate transformations, so without the need to prove that
the semantics is preserved. Yu et al. proposed to encode ccsl in Signal before
transforming it to the internal format of Sigali [16]. We hope that the encoding
in Maude will allow to conduct automated verification for all the transforma-
tional approaches that use ccsl as a step. Maude also gives a framework to
define the simulation policies formally. Some undocumented simulation policies
are available in TimeSquare [6]. In Sect. 4, we give a simple formal interpretation
for three of these simulation policies.

Finally, abstract interpretation [5] or infinite model-checking [10] would allow
reasoning on the global ccsl specification without restrictions. However, the
encoding is likely to introduce semantic variations and we do not know at the
moment how to encode ccsl constraints in a compositional way.

7 Conclusion and Future Work

We have proposed a new semantic model for ccsl constraints. We have also
introduced the notion of bounded and periodic schedules. The satisfiability prob-
lem for ccsl specifications, which is still an open problem in the general case,
is proved to be decidable with regards to bounded and periodic schedules even
when using unsafe constraints. This is the first main result. The second result is

An Executable Semantics of CCSL and Its Applications 51

to use the Maude encoding to perform bounded scheduling, customized simula-
tion with different policies, periodic scheduling, and bounded model-checking.

The notion of periodic schedule seems promising but a bit constraining. In the
future, we shall try to provide a more general definition where the behavior might
slightly vary between successive periods while still maintaining decidability.

References

1. André, C.: Syntax and semantics of the Clock Constraint Specification Language
(CCSL). Research Report 6925, INRIA (2009)

2. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

3. Carloni, L.P., McMillan, K.L., Sangiovanni-Vincentelli, A.L.: Theory of latency-
insensitive design. IEEE Trans. CAD Integr. Circ. Syst. 20(9), 1059–1076 (2001)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

5. Cousot, P.: Abstract interpretation. ACM Comput. Surv. 28(2), 324–328 (1996)
6. Mallet, F., DeAntoni, J.: TimeSquare: treat your models with logical time. In:

Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer,
Heidelberg (2012)

7. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude LTL model checker. In:
4th WRLA. ENTCS, vol. 71, pp. 162–187. Elsevier (2002)

8. Gascon, R., Mallet, F., DeAntoni, J.: Logical time and temporal logics: comparing
UML MARTE/CCSL and PSL. In: Combi, C., Leucker, M., Wolter, F. (eds.)
TIME, pp. 141–148. IEEE (2011)

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

10. Sutre, G., Leroux, J.: Flat counter automata almost everywhere!. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

11. Mallet, F., André, C., de Simone, R.: CCSL: specifying clock constraints with
UML/Marte. Innovations Syst. Softw. Eng. 4(3), 309–314 (2008)

12. Mallet, F., Millo, J.V., de Simone, R.: Safe CCSL specifications and marked graphs.
In: 11th ACM/IEEE International Conference on Formal Methods and Models for
Codesign, pp. 157–166. IEEE (2013)

13. Mallet, F., de Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci.
Comput. Program. 106, 78–92 (2015)

14. Potop-Butucaru, D., de Simone, R., Talpin, J.: The Synchronous Hypothesis and
Polychronous Languages, chap. 6. CRC Press (2009)

15. Yin, L., Mallet, F., Liu, J.: Verification of MARTE/CCSL time requirements in
Promela/SPIN. In: Perseil, I., Breitman, K., Sterritt, R. (eds.) ICECCS, pp. 65–74.
IEEE Computer Society (2011)

16. Yu, H., Talpin, J., Besnard, L., Gautier, T., Marchand, H., Guernic, P.L.: Poly-
chronous controller synthesis from MARTE/CCSL timing specifications. In: 9th
IEEE/ACM International Conference on Formal Methods and Models for Code-
sign, MEMOCODE, pp. 21–30. IEEE (2011)

What’s Decidable About Parametric Timed
Automata?

Étienne André1,2(B)

1 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030,
93430 Villetaneuse, France

etienne.andre@lipn.univ-paris13.fr
2 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, Nantes, France

Abstract. Parametric timed automata (PTA) are a powerful formalism
to reason, simulate and formally verify critical real-time systems. After
two decades of research on PTA, it is now well-understood that any
non-trivial problem studied is undecidable for general PTA. We provide
here a survey of decision and computation problems for PTA. On the one
hand, bounding time, bounding the number of parameters or the domain
of the parameters does not (in general) lead to any decidability. On the
other hand, restricting the number of clocks, the use of clocks (compared
or not with the parameters), and the use of parameters (e.g., used only
as upper or lower bounds) leads to decidability of some problems.

1 Introduction

The absence of undesired behaviors in real-time critical systems is of utmost
importance in order to ensure the system safety. Model checking aims at for-
mally verifying a model of the system against a correctness property. Timed
automata (TA) are a popular formalism to model and verify safety critical sys-
tems with timing constraints. TA extend finite state automata with clocks, i.e.,
real-valued variables increasing linearly [1]. These clocks can be compared with
integer constants in guards (sets of linear inequalities that must be satisfied to
take a transition) and invariants (sets of linear inequalities that must be satisfied
to remain in a location). TA have been widely studied, and several state-of-the-
art model checkers (such as Uppaal [28] or PAT [33]) support TA as an input
language.

TA benefit from many interesting decidable properties, such as the emptiness
of the accepted language, the reachability of a control state, etc. However, TA
also suffer from some limitations. First, they cannot be used to specify and verify
systems incompletely specified (i.e., whose timing constants are not known yet),
and hence cannot be used in early design phases. Second, verifying a system for
a set of timing constants usually requires to enumerate all of them one by one if
they are supposed to be integer-valued; in addition, TA cannot be used anymore

This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002).

c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 52–68, 2016.
DOI: 10.1007/978-3-319-29510-7 3

What’s Decidable About Parametric Timed Automata? 53

if these constants are rational- or real-valued, and can be taken from a dense
interval. Third, robustness in TA often assumes that all guards can be enlarged
or shrinked by the same small variation; considering independent variations or
considering both enlarging and shrinking was not addressed, and it is actually
unclear whether this can be even considered for TA.

Parametric timed automata (PTA) overcome these limitations by allowing
the use of parameters (i.e., unknown constants) in guards and invariants [3].
This increased expressive power comes at the price of the undecidability of most
interesting problems – at least in the general case.

Tools such as an extension of Uppaal [24], Roméo [29] or IMITATOR [5] take
PTA as input formalism. Beyond the usual academic examples (such as variants
of train controllers [3,24]), PTA were also used to successfully specify and ver-
ify numerous interesting case studies such as the root contention protocol [24],
Philip’s bounded retransmission protocol [24], a 4-phase handshake protocol [27],
the alternating bit protocol [25], an asynchronous circuit commercialized by ST-
Microelectronics [17], (non-preemptive) schedulability problems [25], a distrib-
uted prospective architecture for the flight control system of the next generation
of spacecrafts designed at ASTRIUM Space Transportation [20], an unmanned
aerial video system by Thales, and even analysis of music scores [19].

In this paper, we survey decision problems for PTA proposed in the past two
decades. On the one hand, bounding time, bounding the number of parameters
or the domain of the parameters does not (in general) lead to any decidability. On
the other hand, restricting the number of clocks, the use of clocks (compared or
not with the parameters), and the use of parameters (e.g., used only as upper or
lower bounds) can lead to the decidability of some problems.

Related Surveys. To the best of our knowledge, no survey was dedicated specifi-
cally to decision problems for PTA. In addition, recent results in the field in the
past two years (e.g., [8,10,16,25,32]) justify the need for a clear picture of these
updated (un)decidability results.

Related works include a work by Henzinger et al. [21], that is not a sur-
vey, but exhibits decidable subclasses of hybrid automata, an extension of timed
automata where variables can have (in general) arbitrary rates. Then, Asarin
et al. proposed a work [9] acting both as a survey and as a contribution paper
that studies hybrid automata with “low dimensions”, i.e., with few variables. Our
survey is also concerned (in Sect. 4) with decidability results for PTA with few
variables (i.e., clocks and parameters). Various problems related to the robust-
ness in TA were also surveyed [12].

Outline. In Sect. 2, we propose a unified syntax for PTA, and we define the
decision problems that we will consider throughout this manuscript. In Sect. 3,
we recall general undecidability for PTA. We then study in Sect. 4 the decid-
ability when restricting the syntax of PTA (number of variables, syntax of the
constraints, etc.). We consider specifically in Sect. 5 the subclass of L/U-PTA.
We conclude by emphasizing open problems in Sect. 6.

54 É. André

Table 1. Syntax of operators in guards

Operator Definition

∼ {<,≤,=,≥, >}
≤≥ {≤,≥}
<> {<,>}
� {<,≤}

2 Parametric Timed Automata and Problems

2.1 Clocks, Parameters and Constraints

Let Z, N, Q
+ and R

+ denote the sets of (possibly negative) integer num-
bers, (non-negative) natural numbers, non-negative rational numbers, and non-
negative real numbers, respectively. In the following, T denotes the domain of
time, and P the domain of the parameters; these domains will be instantiated
with N, Q

+ or R
+ later on. Throughout this survey, let d denote an integer

constant in Z, and d+ denote a non-negative constant in N.
Let us assume a set X = {x1, . . . , xH} of clocks, that are T-valued variables

that evolve at the same rate. Let us assume a set P = {p1, . . . , pM} of parame-
ters, i.e., unknown constants. A parameter valuation v is a function v : P → P.
Throughout this survey, symbols x, xi denote clocks whereas p, pi denote para-
meters.

A parametric linear term is
∑

1≤i≤M αipi + d, with αi ∈ Z; in the following
plt will denote a parametric linear term.

A (linear) inequality is x ∼ plt , where x is a clock, plt a parametric linear
term, and ∼ ∈ {<,≤,=,≥, >}. We give in Table 1 the conventions used through-
out this survey concerning comparison operators. A (linear) constraint is a set
of linear inequalities.

A simple inequality is either x ∼ p or x ∼ d+. A simple constraint is a set of
simple inequalities.

2.2 A Unified Syntax for Parametric Timed Automata

The syntax of PTA varies a lot in the literature; we give below a definition that
includes any definition in the literature. That is, any definition of PTA can be
obtained from the following one by adding restrictions such as removing the set
of accepting locations, forbidding invariants, restricting the domain of clocks or
parameters, simplifying the syntax of the guards and invariants, etc.

Definition 1. A PTA is a tuple A = (Σ,L, l0, F,X, P, I, E), where:

– Σ is a finite set of actions,
– L is a finite set of locations,
– l0 ∈ L is the initial location,

What’s Decidable About Parametric Timed Automata? 55

idle add sugar

x2 ≤ p2

preparing coffee

x2 ≤ p3

done

x2 ≤ 10

press
x1 := 0
x2 := 0

x1 ≥ p1
press
x1 := 0

x2 = p2
cup

x2 = p3
coffee
x1 := 0

press
x1 := 0
x2 := 0

x2 = 10
idle

Fig. 1. A coffee machine modeled using a PTA

– F ⊆ L is a set of accepting (or final) locations,
– X is a set of clocks with domain T = R

+,
– P is a set of parameters with domain P = R

+,
– I is the invariant, assigning to every l ∈ L a constraint I(l), and
– E is a set of edges (l, g, a,R, l′) where l, l′ ∈ L are the source and destination

locations, g is a constraint which is the transition guard, a ∈ Σ, and R ⊆ X
is a set of clocks to be reset.

Given a PTA A and a parameter valuation v, the valuation of A with v,
denoted by v(A), is the (non-parametric) TA where each occurrence of p is
replaced with v(p).

We say that a PTA is deterministic if, for any l ∈ L, for any a ∈ Σ, there
exists at most one edge (l, g, a,R, l′) ∈ E, for some g,R, l′. (Note that it differs
from a rather common definition of determinism for TA, that allows two or more
outgoing transitions with the same action label provided that the corresponding
guards are pairwise disjoint.)

A clock is said to be a parametric clock if it is compared with at least one
parameter in at least one guard or invariant; otherwise, it is a non-parametric
clock. This notion is central when studying the decidability of problems for PTA
with few clocks and parameters.

Example 1. Consider the coffee machine in Fig. 1, modeled using a PTA with
4 locations, 2 clocks (x1 and x2) and 3 parameters (p1, p2, p3). This PTA is
deterministic; both clocks x1 and x2 are parametric clocks. The machine can
initially idle for an arbitrarily long time. Then, whenever the user presses the
(unique) button (action press), the PTA enters location “add sugar”, resetting
both clocks. The machine can remain in this location as long as the invariant
(x2 ≤ p2) is satisfied; there, the user can add a dose of sugar by pressing the
button (action press), provided the guard (x1 ≥ p1) is satisfied, which resets x1.
That is, the user cannot press twice the button (and hence add two doses of
sugar) in a time less than p1. Then, p2 time units after the machine left the
idle mode, a cup is delivered (action cup), and the coffee is being prepared;
eventually, p2 time units after the machine left the idle mode, the coffee (action

56 É. André

coffee) is delivered. Then, after 10 time units, the machine returns to the idle
mode – unless a user again requests a coffee by pressing the button.

Semantics. The semantics of a PTA A can be defined as the union over all para-
meter valuations v of the semantics of v(A). In the following, given δ ∈ R

+, w+δ
denotes the valuation such that (w + δ)(x) = w(x) + δ, for all x ∈ X. Given
R ⊆ X, we define the reset of a clock valuation w, denoted by [w]R, as the valu-
ation resetting the clocks in R, and keeping the other clocks unchanged. Given a
parameter valuation v, v(C) denotes the constraint over X obtained by replacing
each parameter p in C with v(p). Likewise, given a clock valuation w, w(v(C))
denotes the expression obtained by replacing each clock x in v(C) with w(x).
We use the notation w|v |= C to indicate that w(v(C)) evaluates to true.

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, l0,X, P, I, E),
and a parameter valuation v, the semantics of v(A) is given by the timed transi-
tion system (Q, q0,⇒), with

– Q = {(l, w) ∈ L × R
+H | v|w |= I(l)},

– q0 = (l0,X = 0),
– ((l, w), e, (l′, w′)) ∈ ⇒ if ∃w′′ : (l, w) e→ (l′, w′′) δ→ (l′, w′), with:

• discrete transitions: (l, w) e→ (l′, w′), if (l, w), (l′, w′) ∈ Q, there exists
e = (l, g, a,R, l′) ∈ E, w′ = [w]R, and v|w |= g;

• delay transitions: (l, w) δ→ (l, w+δ), with δ ∈ R
+, if ∀δ′ ∈ [0, δ], (l, w+δ′) ∈

Q.

A run of a TA is an alternating sequence of states of Q and edges of the
form (l0, w0)

e0⇒ (l1, w1)
e1⇒ · · · em−1⇒ (lm, wm), such that for all i = 0, . . . ,m − 1,

ei ∈ E, and ((li, wi), ei, (li+1, wi+1)) ∈ ⇒.
Note that time elapsing can still be a 0-duration (d ∈ R

+ allows d = 0); in
other words, TA allow to model Zeno behaviors, i.e., an infinite number of actions
within a 0-time or, more generally, a finite time (see e.g., [34]). The accepted
timed language is the set of timed words (alternating sequences of actions and
time elapsing) associated with an accepting run, i.e., a run ending in a location of
F (or, in some works, passing infinitely often by a location in F). Note that some
works make a difference between finite and infinite runs. The untimed language
of a TA is the timed language projected onto the actions. The set of traces (or
trace set) is the set of accepting runs projected onto the locations and actions,
i.e., a set of alternating locations and actions.

A symbolic semantics is also defined for PTA as a parametric zone graph
[4,24,25], where a symbolic state is made of a discrete part (the current location)
and a symbolic, continuous part (a set of diagonal constraints, i.e., xi −xj ∼ plt ,
sometimes allowing disjunctions).

Simple PTA. We defined simple PTA as the subclass of PTA where guards and
invariants are simple constraints. We define this class to show that, even in this
restricted situation, all non-trivial problems are undecidable (Sect. 3).

What’s Decidable About Parametric Timed Automata? 57

Variants of the PTA Syntax. PTA were first defined in the seminal paper [3]
using a set of accepting locations. This is similar to timed automata [1]. Timed
Safety Automata (TSA) were introduced later by removing the final states, but
adding invariants to locations [23]; many subsequent papers then refer to timed
safety automata as simply “timed automata”. In contrast, timed automata with
accepting locations are often referred to as timed Büchi automata (TBA). The
timed expressive power of TSA is strictly less than that of TBA [22].

The syntax of PTA differs in most of the papers in the literature. Concern-
ing guards and invariants, in work [3] (resp. [30]), guards (resp. guards and
invariants) are conjunctions of inequalities of the form x ∼ p. In works [13,24],
guards are conjunctions of inequalities of the form xi − xj � plt ∪ {∞}; in
work [24] invariants have the same form as guards (invariants are not consid-
ered in work [13]). In work [18], guards and invariants are all open, i.e., of the
form x <> p or x <> d+. In work [25], guards and invariants are conjunctions
of inequalities of the form x ∼ plt , and invariants can only bound clocks from
above (i.e., x � plt). In work [10], guards are conjunctions of inequalities of
the form x ∼ p and invariants can only bound clocks from above (i.e., x � p).
In work [8], guards and invariants are conjunctions of inequalities of the form
x ∼ p + d, x ∼ d+ or p ∼ d (although the proofs of undecidability only need
inequalities of the form x ∼ p or x ∼ d+).

A set of accepting locations is considered in several previous works [3,10,13],
but only one [13] is interested in infinite accepting runs, i.e., runs that pass
infinitely often by an accepting location; hence this latter work considers what
could be referred to as parametric timed Büchi automata. In contrast, other
previous approaches [4,8,18,24,25] consider parametric timed safety automata
(i.e., without accepting locations).

Expressiveness. A comparison of the expressiveness of these different syntactic
models remains to be done. Whereas it is likely that allowing constraints of the
form x ∼ plt may be simulated using constraints of the form x ∼ p (perhaps
adding additional locations, clocks and parameters), the expressiveness may dif-
fer when adding a set of accepting locations (just as the timed expressive power
of TSA is strictly less than that of TBA [22]). In fact, the expressiveness of a
PTA was not even defined; we believe that shall be studied in the future.

2.3 Decision and Computation Problems

We follow here the presentation of a previous approach [25]. Given a class of deci-
sion problems P (reachability, unavoidability, etc.), let us define the P-emptiness,
the P-universality and the P-finiteness. Given a PTA A and an instance φ of P,
the P-emptiness, P-universality and P-finiteness ask whether the set of parame-
ter valuations v such that v(A) satisfies φ is empty, is equal to P

|P | and is finite,
respectively.

In this survey, we mainly focus on reachability and unavoidability properties,
and call them EF and AF respectively.1 We will also mention the EG property,
1 The names EF, AF, EG, AG were first used for PTA by Jovanović et al. [25], and

come from the CTL syntax.

58 É. André

that checks whether there exists a maximal run along which the locations remain
in a subset G of the locations, and the AG property that checks whether the
locations remain in G for all runs.2

Additionally, we will survey the language (resp. trace) preservation (empti-
ness) problem [8]: given a PTA A and a parameter valuation v, does there exist
another valuation v′ �= v such that the untimed languages (resp. sets of traces)
of v(A) and v′(A) are the same?

We finally define the P-synthesis problem: Given a PTA A and an instance
φ of P, compute the parameter valuations such that v(A) satisfies φ.

Example 2. Let us exemplify some decision and computation problems for the
PTA in Fig. 1. Assume the unique target location is “done”, i.e., G = {done}.
EF-emptiness asks whether at least one parameter valuation can reach location
“done” for some run; this is true (e.g., p1 = 1, p2 = 2, p3 = 3). EF-universality
asks whether all parameter valuations can reach location “done” for some run;
this is false (no parameter valuation such that p2 > p3 can reach “done”). AF-
emptiness asks whether at least one parameter valuation can reach location
“done” for all runs; this is true (e.g., p1 = 1, p2 = 2, p3 = 3). EF-synthesis
consists in synthesizing all valuations for which a run reaches location “done”;
the resulting set of valuations is 0 ≤ p2 ≤ p3 ≤ 10 ∧ p1 ≥ 0.

3 Almost Everything is Undecidable for Simple PTA

In this entire section, we consider simple PTA without restriction on the number
of clocks and parameters. In that situation, all non-trivial problems studied in
the literature are undecidable, with the exception of the membership problem
(that asks whether the language of a valuated PTA is empty) – which is rather
a problem for TA. By non-trivial, we mean requiring a semantic analysis, and
not, e.g., a sole analysis of the syntax of the PTA (e.g., “is the number of clocks
even”, or any problem defined in Sect. 2.3 by setting G = L).

We also survey that bounding time (Sect. 3.3) or the parameter domain for
rational-valued parameters (Sect. 3.4) preserves the undecidability. However, we
will show in Sect. 4 that bounding the number of clocks and/or parameters brings
decidability.

All proofs of undecidability reduce from either the halting problem, or the
boundedness problem, of a 2-counter machine, known to be undecidable [31].

3.1 Decidability of the Membership

In the seminal PTA paper [3], the membership problem for PTA is defined
as follows: given a PTA A and a parameter valuation v, is the language of
v(A) empty? The membership problem is not strictly speaking a problem for
PTA, but rather for TA, since it considers a valuated PTA. As a consequence,
2 Note that EF-, AF-, EG-, and AG-emptiness are equivalent to AG-, EG-, AF-, EF-

universality, respectively.

What’s Decidable About Parametric Timed Automata? 59

the decidability of this problem only relies on known results for TA [1]: the
membership problem is decidable (and PSPACE-complete) for PTA over discrete
time (T = N and P = N), over dense time with integer-valued parameters (T =
R

+ and P = N), and over dense time with rational-valued parameters (T = R
+

and P = Q). However, it becomes undecidable with real-valued (in fact irrational)
parameters [30].

3.2 General Undecidable Problems

EF-, AF, EG, AG-emptiness. The seminal paper on PTA [3] showed that the
EF-emptiness problem is undecidable for PTA, both for discrete time, and for
dense-time (real-valued clocks and real-valued parameters). Although not explic-
itly stated in that paper, the proof of undecidability, that consists in reducing
from the halting problem of a 2-counter machine, also works for real-valued
clocks with integer-valued parameters.

It was then proved that the AF-emptiness is undecidable for L/U-PTA (a
subclass of PTA, see Sect. 5), and hence for PTA as well [25]. Again, the proof
of undecidability consists in reducing from the halting problem of a 2-counter
machine.

AG- and EG-emptiness are also undecidable [7].

Language and trace preservation problems. Both language preservation and trace
preservation problems are undecidable for simple PTA [8]. The continuous (or
robust) versions of those problems additionally require that the language (resp.
set of traces) is preserved under any intermediary valuation of the form λ · v +
(1 − λ) · v′, for λ ∈ [0, 1] (with the classical definition of addition and scalar
multiplication). These problems are also undecidable for simple PTA.

The language preservation problems and its continuous version are undecid-
able for a PTA with at least 4 parametric clocks. The trace preservation and
its continuous version require either an unbounded number of non-parametric
clocks and diagonal constraints (that go beyond the usual syntax of PTA), or an
unbounded number of parametric clocks. This is due to the fact that the proof
encodes the 2-counter machine with a fixed number of locations, which thus
requires to encode each location with a different clock. It remains open whether
this problem is undecidable for a bounded number of clocks.

3.3 Bounding Time

Bounded-time model checking consists in checking a property within a bounded
time domain. Undecidable problems might become decidable in this situation,
or be of a lower complexity. For example, time-bounded reachability becomes
decidable for a special subclass of hybrid automata with monotonic rates [14].

In contrast, the EF-emptiness problem remains undecidable for (general)
PTA over bounded, dense time [26, Theorem 3.4].

This said, we emphasize that (quite trivially) model checking discrete-time
PTA over bounded-time would become decidable. (This remains to be shown
formally though.)

60 É. André

3.4 Bounding the Parameter Domain

Bounding the parameter domain consists in setting a minimal and a maximal
bound on the possible parameter valuations of a PTA.

For integer parameters, any problem for a PTA over a bounded parameter
domain is decidable iff the corresponding problem is decidable for a TA. In fact,
the P-emptiness problem for PTA with bounded integer is PSPACE-complete
for any class of problems P that is PSPACE-complete for TA [25]. Indeed, it
suffices to enumerate all parameter valuations, of which there is a finite number.
As a consequence, EF-, AF-, EG-, AG-emptiness are all decidable; and so are
language and trace preservation. A symbolic method was proposed to compute
EF- and AF-synthesis [25]; experiments showed that this symbolic computation
is faster than an exhaustive enumeration (using Uppaal).

For rational-valued parameters, the EF-emptiness problems is undecidable
for a single parameter in [1, 2] [30]. EG- and AG-emptiness [7], and language
and trace preservation [8] are also undecidable for a single parameter in [0, 1].

4 Bounding the Numbers of Clocks and Parameters

4.1 EF-Emptiness

Since the seminal paper on PTA [3], the decidability of the EF-emptiness problem
was studied in various settings, by bounding the number of parametric clocks, of
non-parametric clocks, and of parameters. The syntax was also restrained. We
summarize these results in Table 2 (partially inspired by a similar table in a pre-
vious work [18], improved by adding more dimensions, and more recent results).
The open question of the syntax expressiveness requires to consider a multi-
dimensional table: we need to consider not only the number of clocks and parame-
ters, but also the syntax allowed in guards and invariants. For example, a recent
paper [16] improves the complexity of the seminal PTA papers [3] (NEXPTIME-
complete instead of non-elementary) over N for 1 clock, but requires non-strict
inequalities, and uses invariants; it is hence unclear whether the result of the
seminal paper [3] is really subsumed by that more recent paper [16].

Let us extract the most important results out of Table 2. The decidability is
clearly impacted by the number of parametric clocks. First, let us consider PTA
with a single parametric clock: the EF-emptiness problem is decidable over dis-
crete time with arbitrarily many non-parametric clocks (NEXPTIME-complete
when only large inequalities are used [16], and non-elementary otherwise [3]). It
is NP-complete over dense time with no non-parametric clock [30]. It is open
over dense time with two non-parametric clocks, and undecidable with three
non-parametric clocks [30]; note that this problem is decidable over discrete
time [3,16], which exhibits a difference between dense and discrete time [30].

Second, let us consider PTA with two parametric clocks: the EF-emptiness
problem is decidable over discrete time with a single parameter [16]; this result
is claimed in the same paper to extend to dense time with integer-valued para-
meters. Any other case with two parametric clocks remains open. Third, the EF-
emptiness problem is undecidable in all settings with three (or more) parametric

What’s Decidable About Parametric Timed Automata? 61

Table 2. Decidability of the EF-emptiness problem for general PTA

T P Guards Invariants P-clocks NP-clocks Params Decidability Main ref.

N N x ≤≥ p|d+ 1 any any NEXPTIME-compl. [16]

N N x ∈ I None 1 any any non-elementary [3]

N N x ≤≥ p|d+ 2 any 1 PSPACENEXP-hard [16]

N N any 2 any > 1 open

N N x ∼ p|d None 3 0 1 undecidable [10]

N N x <> p any any any open

N N bounded x ∼ plt x � plt any any any decidable [25] (conseq.)

R+ N x ∈ I None 1 0 any non-elementary [3] (conseq.)

R+ N x ∼ p|d x � p 1 any any NEXPTIME [10]

R+ N x ≤≥ p|d+ 2 any 1 PSPACENEXP-hard [16]

R+ N any 2 any > 1 open

R+ N x ∼ p|d None 3 0 1 undecidable [10]

R+ N x ∼ plt x � plt 3 0 2 undecidable [25]

Q+/R+ N x <> p any any any open

R+ N bounded x ∼ plt x � plt any any any PSPACE-complete [25]

R+ R+ x ∈ I None 1 0 any non-elementary [3]

R+ Q+ x ∼ p|d 1 0 any NP-complete [30]

R+ Q+ x ∼ p|d 1 0 bounded PTIME [30]

R+ R+ any 1 1 or 2 1 open

R+ Q+ x ∼ p|d 1 3 1 undecidable [30]

R+ R+ any 2 any any open

R+ R+ x ∈ I None 3 0 6 undecidable [3]

R+ Q+ x ∼ p|d 3 0 1 undecidable [30]

R+ R+
[1;2] x ∼ p|d 1 3 1 undecidable [30]

R+ R+
[1;2] x ∼ p|d 3 0 1 undecidable [30]

Q+/R+ Q+/R+ x <> p < 2 < 3 < 2 open

Q+/R+ Q+/R+ x <> p 2 3 2 undecidable [18]

clocks. Finally, using only strict inequalities, the EF-emptiness is undecidable
over dense time for two parametric clocks, three non-parametric clocks and two
parameters [18]; this situation was not considered over discrete time.

4.2 Language and Trace Preservation

The language- and trace-preservation problems are decidable for deterministic
PTA with a single clock, and with linear parameter constraints allowed in guards
and invariants, i.e., of the form x ∼ plt or plt ∼ 0 [8]. A procedure to compute
parameter valuations with the same trace set as a given valuation is proposed
(close to the “inverse method” [4]), that is complete for deterministic PTA, and
terminates in the case of a single clock [8].

4.3 Parametric Model Checking

Parametric model checking was addressed in different settings: verifying a non-
parametric model against a parametric formula, or a parametric model against
a non-parametric formula, or a parametric model against a parametric formula.

Non-parametric Model/Parametric Formula. An extension of LTL with parame-
ters in the formula (“PLTL”) was studied [2]. When only parametric “always”

62 É. André

modalities are allowed of the form “≤ p”, checking emptiness of the valuation
set is PSPACE-complete. The solution to the synthesis problem is doubly expo-
nential in the number of parameters. However, when allowing equality in PLTL,
the emptiness problem becomes undecidable [2].

Parametric Model/Non-parametric Formula. It is shown that model checking
PTA with the (non-parametric) logic MTL is undecidable, even with a single
clock and a single parameter, and even when the PTA is deterministic [32].
This negative result comes in contrast to the decidability of the EF-emptiness
problem for one-clock PTA. Note that the proof of undecidability requires the
parameters to be rational-valued (integer-valued parameters are not sufficient –
and this latter case can hence be considered as open).

Parametric Model/Parametric Formula. Model checking a PTA over discrete-
time with a single parametric clock against a PTCTL formula (a parametric
version of TCTL) is decidable, provided the formula does not use equality con-
straints; otherwise the problem becomes undecidable [15].

5 The Disappointing Class of L/U-PTA

Lower-bound/upper-bound parametric timed automata (L/U-PTA) restrict the
use of parameters in the model [24]. A parameter is said to be an upper-bound
parameter if, whenever it is compared with a clock, it is compared as an upper
bound, i.e., it only appears in inequalities of the form x � p. Conversely, a
parameter is a lower-bound parameter if it is only compared with clocks as a
lower bound, i.e., of the form p � x.

An L/U-PTA is a PTA where the set of parameters is partitioned into upper-
bound parameters and lower-bound parameters. Two additional subclasses were
introduced later [13]: L-PTA (resp. U-PTA) are PTA with only lower-bound
(resp. upper-bound) parameters.

Example 3. Consider again the coffee machine in Fig. 1, modeled using a PTA A.
This PTA is not an L/U-PTA; indeed, the guard x2 = p2 (resp. x2 = p3) makes
p2 (resp. p3) be compared with clocks both as a lower-bound and as an upper-
bound. (Recall that = stands for ≤ and ≥.)

However, if one replaces x2 = p2 with x2 ≤ p2 and one replaces x2 = p3
with x2 ≤ p3, then A becomes an L/U-PTA with lower-bound parameter p1
and upper-bound parameters {p2, p3}. Note that equalities are not forbidden in
L/U-PTA (e.g., x1 = 10), but only equalities involving parameters.

Several case studies fit into the class of L/U-PTA: the root contention pro-
tocol, the bounded retransmission protocol and the Fischer mutual exclusion
protocol are all modeled with L/U-PTA in the paper introducing L/U-PTA [24];
in two works [24,27], both the Fischer mutual exclusion protocol and a producer-
consumer are verified using L/U-PTA. Interestingly, the two case studies of the
seminal paper on PTA [3] (viz., a toy railroad crossing model and a model of

What’s Decidable About Parametric Timed Automata? 63

Fischer mutual exclusion protocol) are also L/U-PTA. In addition, most models
of asynchronous circuits with bi-bounded delays (i.e., where each delay between
the change of an input signal and the change of the corresponding output is a
parametric interval) can be modeled using L/U-PTA.

5.1 Decidability Results

The first (and main) positive result for L/U-PTA is the decidability of the EF-
emptiness problem [24]. L/U-PTA benefit from the following interesting prop-
erty: increasing the value of an upper-bound parameter or decreasing the value
of a lower-bound parameter necessarily relaxes the guards and invariants, and
hence can only add behaviors. Hence, checking the EF-emptiness of an L/U-
PTA can be achieved by replacing all lower-bound parameters with 0, and all
upper-bound parameters with ∞; this yields a non-parametric TA, for which
emptiness is PSPACE [1]. This procedure is not only sound but also complete.

Further decidability results are exhibited [13], for infinite runs acceptance
properties, i.e., where a location is met infinitely often (to which we refer here-
after as BüEF). Note that, in contrast to the first paper on L/U-PTA [24] where
the parameters are valued with non-negative reals, the results this later work
[13] consider integer-valued parameters (though time is dense, i.e., clocks are
real-valued). It is shown in this later work [13] that emptiness, universality,
finiteness of the valuation set are PSPACE-complete for infinite runs acceptance
properties. Remark that the decidability of the BüEF-finiteness is due to the
integerness of the parameters; in short, a sufficient bound is computed on the
parameters, and then valuations smaller or equal to this bound are enumerated,
which would not be feasible for real-valued parameters.

A parametric extension of the dense-time linear temporal logic MITL0,∞
(denoted “PMITL0,∞”) is proposed [13]; when parameters are used only as lower
or upper bound in the formula (to which we refer as L/U-PMITL0,∞), satisfiabil-
ity and model checking are PSPACE-complete; this is obtained by translating the
formula into an L/U-automaton and checking an infinite acceptance property.

5.2 Undecidability Results

The first undecidability results for L/U-PTA are shown in works by Bozelli et al.
[13]: the constrained EF-emptiness problem and constrained EF-universality
problem (for infinite runs acceptance properties) are undecidable for L/U-PTA.
By constrained it is meant that some parameters of the L/U-PTA can be con-
strained by an initial linear constraint, e.g., p1 ≤ 2 × p2 + p3. Indeed, using
linear constraints, one can constrain an upper-bound parameter to be equal to
a lower-bound parameter, and hence build a 2-counter machine using an L/U-
PTA. However, when no upper-bound parameter is compared to a lower-bound
parameter (i.e., when no initial linear inequality contains both an upper-bound
and a lower-bound parameter), these two problems retrieve decidability [13].

A second negative result is shown by Jovanović et al. [25]: the AF-emptiness
problem is undecidable for L/U-PTA. This is achieved by a reduction from a

64 É. André

Table 3. Decision problems for L/U-PTA

Problem P Complexity Main ref.

EF-emptiness R+ PSPACE [24]

AG-emptiness R+ PSPACE [24]

AF-emptiness R+ undecidable [25]

EG-emptiness R+ open

ssenitpme-FEüB N PSPACE-complete [13]

ytilasrevinu-FEüB N PSPACE-complete [13]

ssenetinfi-FEüB N PSPACE-complete [13]

ssenitpme-FEüBdeniartsnoc N undecidable [13]

ytilasrevinu-FEüBdeniartsnoc N undecidable [13]

ssenitpme-FEüBdeniartsnoc-U/L N PSPACE-complete [13]

ytilasrevinu-FEüBdeniartsnoc-U/L N PSPACE-complete [13]

Language preservation N undecidable [8]

Language preservation R+ undecidable [8]

L/U-PMITL0,∞-emptiness N PSPACE-complete [13]

L/U-PMITL0,∞-universality N PSPACE-complete [13]

2-counter machine where a lower-bound parameter is equal to an upper-bound
parameter iff AF holds. This restricts again the use of L/U-PTA, as AF is essen-
tial to show that all possible runs of a system eventually reach a (good) state.

Then, it is shown that the language preservation problem is undecidable for
L/U-PTA [8]. Again, this is achieved by a reduction from a 2-counter machine
where a lower-bound parameter is equal to an upper-bound parameter iff the
language is preserved.

We summarize in Table 3 decision problems for L/U-PTA.

5.3 Intractability of the Synthesis

The most disappointing result concerning L/U-PTA is shown by Jovanović et al.
[25]: if it can be computed, the solution to the EF-synthesis problem for L/U-
PTA cannot be represented using a formalism for which the emptiness of the
intersection with equality constraints is decidable. The proof relies on the unde-
cidability of the constrained emptiness problem of Bozelli et al. [13]. A very
annoying consequence is that such a solution cannot be represented as a finite
union of polyhedra (since the emptiness of the intersection with equality con-
straints is decidable).

5.4 Two Open Classes: L-PTA and U-PTA

L-PTA and U-PTA (introduced by Bozelli et al. [13]) are very open classes, in the
sense that to the best of our knowledge, no result known to be decidable for L-PTA
(or U-PTA) was shown undecidable for L/U-PTA (and is hence either decidable

What’s Decidable About Parametric Timed Automata? 65

or open). Conversely, and even stronger, no result known to be undecidable for
L/U-PTA was shown decidable for L-PTA (or U-PTA) – and is always open.

To summarize, the AF-emptiness, the language- and trace-preservation prob-
lems, are all undecidable for L/U-PTA, but remain open for L-PTA and U-PTA.

In fact, the only result that could be described as a difference between L/U-
PTA and U-PTA (resp. L-PTA) is as follows [8]: the language-preservation prob-
lem is decidable for deterministic U-PTA (resp. deterministic L-PTA) with a
single integer-valued parameter, whereas this problem is proved undecidable for
L/U-PTA. However, one could argue that an L/U-PTA with a single parame-
ter is necessarily either an L-PTA (if the unique parameter is a lower-bound
parameter) or a U-PTA (otherwise).

Synthesis. The synthesis for L-PTA and U-PTA was not much addressed, with
the exception of integer-valued parameters: in that case, it is possible to synthe-
size the solution to the BüEF-synthesis problem in the form of a union of linear
constraints doubly exponential in the number of parameters [13]. The authors
note that it remains open whether one can construct a linear constraint with
a single exponential blow-up. This result does not extend in a straightforward
manner to rational-valued parameters, as the technique of Bozelli et al. [13]
(for U-PTA) requires the computation of a sufficient upper bound, and then an
exhaustive enumeration of parameters below this bound.

6 Open Questions

Syntax and Expressiveness. A first perspective is to compare the expressiveness
of the various syntaxes of PTA defined in the literature. This implies to first agree
on a definition of the expressiveness of a PTA. We propose as a perspective two
possible definitions: either the union over all parameter valuations of the timed
language, or the union over all parameter valuations of the untimed language.
Comparing the expressiveness of the syntaxes in the literature would reduce the
number of dimensions for the various decidability results of the EF-emptiness
problem studied in Table 2.

Decidability Problems. A main open problem is the decidability of PTA with two
clocks, that was only studied with a single parameter and over discrete time [16].
Studying further the EG-, AF- and AG-emptiness problems for few clocks and
parameters (as it was quite extensively done for EF-emptiness) remains to be
done too, although the theoretical or practical interest may be somehow debat-
able. More interesting (and promising) are the two open classes of L-PTA and U-
PTA. These classes are non-trivial, and relate to the robust analysis of TA: most
robustness problems (see [12]) consider an enlargement of all guards by (usually)
the same constant factor, whereas U-PTA allow to enlarge or decrease some of
the upper-bound guards by a possibly different parameter, which gives an orthog-
onal definition of robustness. The language preservation problem remains open
for U-PTA [8], and the question of the synthesis is also challenging.

66 É. André

Also note that formalisms close to PTA (not surveyed here for lack of
space) include subclasses of hybrid automata [14] and parametric interrupt timed
automata [11], that benefit from promising decidability results.

Synthesis. Whereas decision problems (surveyed in this document) were much
studied, little interest has been dedicated to the synthesis of parameters, which
should however be a main practical challenge. Despite undecidability (in gen-
eral [3]) or intractability (for L/U-PTA [25]), semi-algorithms or approximated
procedures could be devised; SMT-based techniques [27], or the integer hull
approximation [6,25] can serve as a basis for future works.

Are PTA a Useless Formalism? Despite many undecidability problems, PTA
were often used to model and verify various case studies (see Sect. 1). This can
be seen as a paradox considering the numerous undecidability results PTA suffer
from. In fact, as all of the aforementioned analyses terminate, it is challenging to
understand why, and perhaps to exhibit further classes for which the problems
considered in this survey become decidable.

Acknowledgements. This manuscript benefited from discussions with Didier Lime,
Nicolas Markey, and Olivier H. Roux.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for
“model measuring”. ACM Trans. Comput. Logic 2(3), 388–407 (2001)

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

4. André, É., Chatain, Th., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)

5. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012)

6. André, É., Lime, D., Roux, O.H.: Integer-complete synthesis for bounded para-
metric timed automata. In: Bojanczyk, M., Lasota, S., Potapov, I. (eds.) RP
2015. LNCS, vol. 9328, pp. 7–19. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24537-9 2

7. André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed automata
(submitted, 2016)

8. André, É., Markey, N.: Language preservation problems in parametric timed
automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS,
vol. 9268, pp. 27–43. Springer, Heidelberg (2015)

9. Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional hybrid systems –
decidable, undecidable, don’t know. Inf. Comput. 211, 138–159 (2012)

http://dx.doi.org/10.1007/978-3-319-24537-9_2
http://dx.doi.org/10.1007/978-3-319-24537-9_2

What’s Decidable About Parametric Timed Automata? 67

10. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015, Part II. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015)

11. Bérard, B., Haddad, S., Jovanović, A., Lime, D.: Parametric interrupt timed
automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp.
59–69. Springer, Heidelberg (2013)

12. Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata. In: Abdulla,
P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 1–18. Springer, Heidelberg
(2013)

13. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Meth. Syst. Des. 35(2), 121–151 (2009)

14. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.:
Time-bounded reachability for monotonic hybrid automata: complexity and fixed
points. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
55–70. Springer, Heidelberg (2013)

15. Bruyère, V., Raskin, J.F.: Real-time model-checking: parameters everywhere. Log-
ical Meth. Comput. Sci. 3(1: 7), 1–30 (2007)

16. Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In: Csuhaj-
Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634,
pp. 123–134. Springer, Heidelberg (2014)

17. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of
the generic architecture of a memory circuit using parametric timed automata.
Formal Meth. Syst. Des. 34(1), 59–81 (2009)

18. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett.
102(5), 208–213 (2007)

19. Fanchon, L., Jacquemard, F.: Formal timing analysis of mixed music scores. In:
International Computer Music Conference (2013)

20. Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis for scheduling
problems using the inverse method. In: TIME, pp. 73–80. IEEE Computer Society
Press (2012)

21. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

22. Henzinger, T.A., Kopke, P.W., Wong-Toi, H.: The expressive power of clocks. In:
Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 417–428. Springer, Heidelberg
(1995)

23. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111(2), 193–244 (1994)

24. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52–53, 183–220 (2002)

25. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

26. Jovanović, A.: Parametric verification of timed systems. Ph.D. thesis , École Cen-
trale Nantes, France (2013)

27. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 141–
159. Springer, Heidelberg (2012)

28. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transfer 1(1–2), 134–152 (1997)

68 É. André

29. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009)

30. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, p. 296. Springer, Heidelberg (2000)

31. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Englewood Cliffs (1967)

32. Quaas, K.: MTL-model checking of one-clock parametric timed automata is unde-
cidable. SynCoP. EPTCS 145, 5–17 (2014)

33. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

34. Wang, T., Sun, J., Wang, X., Liu, Y., Si, Y., Dong, J.S., Yang, X., Li, X.: A
systematic study on explicit-state non-zenoness checking for timed automata. IEEE
Trans. Softw. Eng. 41(1), 3–18 (2015)

Compositional Predictability Analysis
of Mixed Critical Real Time Systems

Abdeldjalil Boudjadar1(B), Juergen Dingel2,
Boris Madzar2, and Jin Hyun Kim3

1 Linköping University, Linköping, Sweden
abdeldjalil.boudjadar@liu.se

2 Queen’s University, Kingston, Canada
3 INRIA, Rennes, France

Abstract. This paper introduces a compositional framework for analyz-
ing the predictability of component-based embedded real-time systems.
The framework utilizes automated analysis of tasks and communication
architdepicts the structureectures to provide insight on the schedulabil-
ity and data flow. The communicating tasks are gathered within com-
ponents, making the system architecture hierarchical. The system model
is given by a set of Parameterized Stopwatch Automata modeling the
behavior and dependency of tasks, while we use Uppaal to analyze the
predictability. Thanks to the Uppaal language, our model-based frame-
work allows expressive modeling of the behavior. Moreover, our reconfig-
urable framework is customizable and scalable due to the compositional
analysis. The analysis time and cost benefits of our framework are dis-
cussed through an avionic case study.

1 Introduction

Since the Apollo Guidance Computer has been recognized as one of the first suc-
cessful embedded systems designed early in the 60’s, embedded software func-
tions have been increasing in number, complexity and scale in the design of
automotive and avionic systems. In some application areas, for example avion-
ics, human life might be dependent on the reliability of such embedded systems
which makes these systems highly critical. To demonstrate the reliability of safety
critical systems, an intensive effort has been jointly undertaken by researchers
and practitioners. Such a pursuit includes the definition of appropriate software
engineering principles [23] (modularity, abstraction, separation of concerns, etc.)
and the development of powerful analysis tools [3,17,27].

A common execution requirement to be guaranteed when designing an
embedded system is the response time [19], which is the end-to-end delay of the
system execution. To be able to guarantee response times, (1) the execution times
of actions must be bounded; (2) an analysis must demonstrate that the system
produces its results under all relevant circumstances and all ways to resolve inter-
nal non-determinism (due to, e.g., concurrency and communication delays) and
external non-determinism (due to, e.g., changes in input values/arrival times).
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 69–84, 2016.
DOI: 10.1007/978-3-319-29510-7 4

70 A. Boudjadar et al.

Predictability [16] has been identified as an input related requirement. It
ascertains that the externally observable behavior of a process or a system
remains the same despite internal non-determinism while removing external non-
determinism (i.e., keeping the inputs and their timing unchanged).

Proving the predictability [25] means that the system analysis is successfully
passed regarding both data flow and time-constrained behavior under any exe-
cution assumption, for example concerning failure and workload. An example of
the predictability property is the Emergency Brake System [26] mounted in Volvo
FH truck series since 2013 to avoid rear end collisions. Such a feature is a compo-
nent of the Adaptive Cruise Control (ACC) system. Once the radar of a moving
truck discovers an obstacle on the route of the truck, it communicates the distance
information to a computation process that calculates the braking pressure to be
applied based on the obstacle distance and the truck speed and delivers the brak-
ing pressure value to the braking system. The radar component is a composition of
sensors and cameras. A danger state is determined by the presence of a stationary
or a moving vehicle just in the front of the truck with a very slower speed than the
truck’s. The computation must output the correct brake pressure at the expected
time, which is a couple of micro seconds after the detection of the obstacle. An
unpredictable computation process might deliver different outputs in response to
the same inputs, which could result in bugs that are hard to detect.

Different techniques have been introduced to analyze the predictability of
real-time systems [12,14,15,28], where the analysis does not leverage the system
structure and systems are analyzed monolithically. This may lead to a state space
explosion, making large systems non-analyzable. To the best of our knowledge,
compositional analysis techniques for predictability have not received a lot of
attention in the literature (discussed in Sect. 3).

By compositional analysis [5], we mean that the analysis of a system relies on
the individual analysis of its components separately, since they are independent.
In such a design architecture, when a component violates its requirements it
does not affect the execution of other components because the faulty component
cannot request more than the resource budgeted by its interface (Sect. 5.2).

The system architecture we consider in this paper is structured in terms
of components having different criticality levels. During execution, criticality
levels will be used as static priorities to sort components. Each component is
the composition of either other components (hierarchical) or basic processes
(periodic tasks) having deterministic behavior. Each component will be analyzed
individually and independently from the other system components thanks to its
abstraction through an interface. We use parameterized stopwatch automata
(PSA) to model the system while we use Uppaal toolsuite for simulation and
formal analysis. The contributions of this paper include:

– How to support the predictability of hierarchical real-time systems through
certain design restrictions.

– A scalable predictability analysis framework due to the component-based
design and compositional analysis.

Compositional Predictability Analysis of Mixed Critical Real Time Systems 71

(a) (b)

Fig. 1. Volvo’s emergency brake system.

– Flexible and customizable framework due to the parametrization and instan-
tiation mechanism of Uppaal.

The rest of the paper is organized as follows: Sect. 2 motivates the predictabil-
ity analysis through an industrial example. Section 3 cites relevant related work.
Section 4 introduces the predictability notion we adopt as well as schedulability
as a sufficient condition for the predictability. In Sect. 5, we introduce a com-
positional analysis technique. Section 6 shows our model-based analysis for the
predictability of component-based real-time systems using the Uppaal. Section 7
presents a case study. Section 8 concludes the paper.

2 Motivating Example

Figure 1 depicts the structure (Fig. 1(a)) and abstract behavior (Fig. 1(b)) of
Volvo’s emergency brake system mentioned above. The system consists of 6
concurrent components, each of which is given a set of timing attributes as well
as a priority level. Once an input is generated by component Radar module, the
component Determine risk determines whether a potential obstacle is present
or not. The component Notify driver is responsible for notifying the driver
in case a risk occurs. Based on the driver reaction, received and analyzed by
component Driver reaction, the system decides which action to take next.
If the driver reaction is continuously missing for a certain duration, component
Process brake data calculates the necessary brake pressure according to certain
input data such as distance, truck speed and obstacle speed. Once the pressure
value is handed over to component Applying brakes, it brakes the truck.

Figure 1(b) depicts an abstract behavior of the overall emergency brake sys-
tem. The system execution is initially in state Wait waiting to be triggered by
the radar (external sensor) via a signal through channel detection. Once such a
notification occurs, the system moves to state Notified waiting for the emer-
gency data acquisition before notifying the truck driver. The data communica-
tion could be done via shared memory, bus, etc. The maximum waiting time for

72 A. Boudjadar et al.

data acquisition must not exceed slacktime1 time units. If the data is commu-
nicated late during the allowed interval [0, slacktime1], the remaining distance
to the collision will not be the same, i.e., much shorter, as the truck is mov-
ing. After notifying the driver, the system moves to the state Processing and
keeps calculating the remaining distance and time to the collision until either
the driver reacts, and thus moves to the initial state, or reaches a critical time
slacktime2 by which it moves to state PressureCalculation. The slack time is
calculated on the fly according to the distance, the truck speed, the elapsed time
since detection and the obstacle speed. Once the brake pressure is calculated,
the system activates the hardware through a signal on channel EmegencyBrake
and moves to the initial state. The pressure calculation must be done within
slacktime3 time units. A safety property expected from this system is that it
must deliver the right brake pressure at the expected time (bounded by the slack
times). The later the notification arrives, the stronger the brake pressure has to
be. In fact, the brake pressure delivered at time x, is different of that delivered
at time x + 1, and strongly dependent to the input values and the acquisition
time of such inputs. Moreover, such a brake pressure must be predictable in a
way that it is the same whenever the system is in the same configuration (data
arrival time, elapsed time since the collision detection, the initial distance, the
truck speed, etc.). If the brake pressure is wrongly calculated (not sufficient) or
delivered late, the truck will probably collide with the obstacle.

3 Related Work

In the literature, several model-based frameworks for the predictability analy-
sis of real-time systems have been proposed [12,14,15,28]. However, only few
proposals consider the behavior of system processes (tasks) when analyzing pre-
dictability. Moreover, to the best of our knowledge it is very rare that the system
predictability is analyzed in a compositional way.

The authors of [12] presented a model-based architectural approach for
improving predictability of performance in embedded real-time systems. This
approach is component-based and utilizes automated analysis of task and com-
munication architectures. The authors generate a runtime executive that can
be analyzed using the MetaH language and the underlying toolset. However the
tasks considered are abstract units given via a set of timing requirements. With-
out considering the concrete behavior of system tasks, the analysis could be
pessimistic and may lead to over-approximated results.

The authors of [22] defined a predictable execution model PREM for COTS
(commercial-off-the-shelf) based embedded sysestimated the resource utilization-
tems. The purpose of such a model is to control the use of each resource in the
way that it does not exceed its saturation limit. Accordingly, each resource must
be assigned at the expected time thus avoiding any delay at the operation points.
This work focuses on resource utilization rather than data flow in case of com-
municating architectures. Moreover, analyzing the whole system at once might
not be possible.

Compositional Predictability Analysis of Mixed Critical Real Time Systems 73

Garousi et al. introduced a predictability analysis approach [15], for real-time
systems, relying on the control flow analysis of the UML 2.0 sequence diagrams as
well as the consideration of the timing and distribution information. The analysis
includes resource usage, load forecasting/balancing and dynamic dependencies.
However, analyzing the whole system at once makes the identification of faulty
processes/components not trivial.

The authors of [4] introduced a compositional analysis technique enabling
predictable deployment of component-based real time systems running on het-
erogeneous multi-processor platforms. The system is a composition of software
and hardware models according to a specific operational semantics. Such a frame-
work is a simulation-based analysis, thus it cannot be used as a rigorous analysis
means for critical systems.

Our paper introduces a compositional model-based framework for the pre-
dictability analysis of component-based real time systems, so that faulty compo-
nents can easily be identified. The framework uses the expressive real-time for-
malism of parameterized stopwatch automata to describe the system/components
behavior. We rely on the advances made in the area of model-checking by analyzing
each component formally using the Uppaal model checker. The compositionality
and parametrization lead our framework to be scalable and flexible.

4 Predictable Real Time Systems

Concurrent real-time systems [18] are usually specified by a set of communicating
processes called tasks. Each task performs a specific job such as data acquisition,
computation and data actuation. Moreover, tasks are constrained by a set of
features, such as roundness and execution time, as well as a dependency relation
capturing the data flow between processes.

– Roundness includes the activation rhythm (periodic, aperiodic, sporadic) and
the necessary time interval for each activation.

– Execution time specifies the amount of processing time required to achieve
the execution of one task activation on a given platform.

– Dependency [10] describes the communication and synchronization order
between tasks, meaning that a dependent task cannot progress if the task
on which it depends has not reached a certain execution step or delivered a
specific message.

Another property to be considered in case of dependency is the manipulation
of correct data. So that when a task T1 interacts with (or preempts) another task
T2, task T1 must reload the data possibly modified by the execution of T2 in
order to avoid using out of date or inconsistent data. Powerful synchronization
mechanisms enable to capture the interaction, and thus determine the time point
at which the data produced by a task must be delivered to the consumer task.

In the literature, recent work [2,22] enhances the predictability of real-time
systems by restraining the observability of data in such a way that a consumer
task can only access the data produced by a run-until-completion execution of

74 A. Boudjadar et al.

Radar

Tracking

Target
 Disp

Keyset

Weapon

(a) Dependency

Tracking: Execution
Pj Pj+1

Execution

Radar: Execution
Pi Pi+1

Execution

y

x

(b) Restricted observability

Fig. 2. Example of dependency and restricted observability.

the corresponding producer task. Moreover, such data must be produced before
the consumer starts it current execution. For data consistency, tasks read and
write data only on the beginning and the end of their period execution respec-
tively. This implies that any data update made after the release of a given task
will be ignored by that task for the current execution. This notion of run-to-
completion data consistency is called restricted observability [2].

For example, if a consumer task synchronizes with a producer task, the legal
data values to be used by the consumer after the synchronization must be the
data issued before the consumer started its current job. This means that if the
producer does not complete its execution before a synchronization point, the
data value to be considered by the consumer for its current execution (potentially
released at the synchronization time point) is not the value computed until the
synchronization time but rather it is the data delivered at the termination of
the previous execution period of the producer.

Figure 2(a) illustrates a dependency relation between different tasks of a mis-
sion control computer system. An arrow from one task T1 to another task T2

means that T2 depends on T1. Once the radar component captures the presence
of a potential enemy engine it outputs data concerning the enemy position to the
tracking task which in turn identifies the enemy status, speed, etc. Meanwhile,
the tracking task unlocks the display task with the updated data for the target
display on the screen. Once the enemy is positioned in a reachable distance, the
keyset task will be unlocked to enable the aircraft pilot activating the weapon
task to destroy the enemy engine.

Figure 2(b) depicts a data flow example following the restricted observability.
For the period Pj+1, Tracking is released at time y while Radar is still running
under its period Pi+1, the data to be considered by Tracking must be that issued
by Radar before time x which means before the beginning of period Pi+1. Thus,
the data considered by task Tracking during the period Pj+1 is the update made
by task Radar at the end of its execution for period Pi.

Compositional Predictability Analysis of Mixed Critical Real Time Systems 75

Technically, the predictability property we consider consists of 2 require-
ments: (1) data consistency; (2) execution order.

– Data consistency ensures that all tasks have the same observability of the
data regardless of their dependencies. The non-preemption of tasks ensures
that tasks access the shared data only at the scheduling time points, i.e. a
dependent task execution considers the data update made by the tasks on
which it depends before its current release (scheduling) for the whole current
period. Any other data update made externally during the task execution
is ignored and can only be considered in the next scheduling of the task.
A scheduling time point is the time instant when the execution of a running
tasks is done and the scheduler releases another ready task. This approach to
data observability is known as predictable intervals [22].

– Execution order between tasks follows the scheduling mechanism adopted by
the real-time system, and must not be in contradiction with the dependency
relation so that a dependent task cannot first execute before the tasks on
which it depends.

Therefore, for real-time systems specified using non-preemptive tasks if the
execution order, reflecting both scheduling mechanism and data consistency, is
guaranteed then the schedulability is a sufficient condition for predictability [2].
Accordingly, predictability will simply be analyzed through schedulability.

Apart from the temporal partitioning [24] of the system workload to tasks,
the separation of concerns [21] allows gathering collaborative and dependent
tasks within components. Thus making the system architecture modular.

5 Compositional Framework for Predictability Analysis

In this section, we consider real-time systems structured as a set of independent
components while we analyze system predictability, relying on the schedulability
as a sufficient condition, in compositional way so that each component will be
analyzed individually.

5.1 Hierarchical Real-Time Systems

Hierarchical scheduling systems [11,13] have been introduced as a component-
based representation of real-time systems, allowing temporal partitioning and
separation of concerns. A major motivation of the separation of concerns [21]
is that it allows isolation and modular design to accommodate changes in the
system such that the impact of a change is isolated to the smallest component. An
example of the increasing use of hierarchical scheduling systems is the standard
ARINC-653 [1] for avionics real-time operating systems.

An example of a hierarchical scheduling system running on a single core plat-
form is depicted in Fig. 3. It consists of 2 independent components, Component1
and Component2, scheduled by the system level according to FPS (Fixed Priority

76 A. Boudjadar et al.

System

Component1 Component2

Task1

FPS

FPS RM

(100,37,2) (70,25,3)

Task2
(250,40,2) (400,50,1)

Task3 Task4
(140,7,4) (150,7,3)

Task5
(300,30,2)

Fig. 3. Example of a hierarchical scheduling system.

Scheduling). For compositionality purposes, each component is given an inter-
face (period, budget, criticality) e.g. (100,37,2) for Component1, where budget is
the CPU time required by component for a time interval period. In our con-
text, criticality1 is handled as static priority to sort components at their parent
level, so that in Fig. 3 Component2 has priority over Component1 (2 < 3). Each
component in turn is a composition of tasks scheduled according to a local sched-
uler, FPS for Component1 and RM (Rate Monotonic) for Component2. Each task
is also assigned an interface (period, exectime, prio), where exectime and prio
are respectively the execution time and priority. Of course, the priority will be
considered if a static priority scheduling scheduler is adopted. We also consider
dependencies between tasks (the dashed arrow from Task4 to Task5), so that
the execution of a dependent task (Task5) cannot start until the task on which
it depends (Task4) finishes it execution. In this work, we only consider periodic
non-preemptive tasks.

At the system level, each component will be abstracted as a task given by the
interface (period, budget, criticality) regardless of its child tasks. The interface
of a component is a contract that the system level supplies such a component
with budget CPU time every time interval of size period. Once a component is
scheduled by the system level, it schedules one of its local tasks according to its
scheduler, i.e. a component can trigger its child tasks only when it is allocated
the CPU resource.

5.2 Compositional Analysis

By compositional analysis [5] we mean that the analysis process of a system
relies on the individual analysis of each component separately, since components

1 We do not consider the criticality related features like fault tolerance for soft critical
components.

Compositional Predictability Analysis of Mixed Critical Real Time Systems 77

are independent. In such a design architecture, when a component violates its
requirements it does not affect the execution of other components. The misbe-
havior cannot propagate because the faulty component, even though it is not
satisfied with the resource budget it has been granted, cannot request more
than the resource budgeted by its interface. Thus, the other concurrent compo-
nents will not be deprived and remain supplied with the same budgeted resource
amounts as in case of the successful behavior.

The analysis of each component consists in checking the feasibility of its tasks
against its interface (period, budget), which is a guarantee that the component
always supplies its tasks with the budgeted resource amount every period. To
check that the tasks are feasible whatever the budget supply time, we consider all
possible scenarios. We model the resource supply by a periodic process (supplier)
having a non-deterministic behavior. For each period, the supplier provides the
resource amount specified in the component interface (budget). Thereafter, we
use a model checker to explore the state space, by considering all potential
supply times, and verify whether all tasks are satisfied for all supply scenarios.
For further description and illustration of our compositional analysis technique,
we refer readers to [7,8].

Depending on the interpretation of the deadline miss, the faulty compo-
nent can either be suspended for the current period execution, discarded from
the system (blocked) or just be kept running. The deadline miss interpreta-
tion strongly depends on the criticality and the application area of the failed
component/system. Since we are considering criticality, in our framework the
occurrence of a deadline miss implies a suspension of the execution, thus tasks
termination (by deadline) is not guaranteed (the system is not schedulable).
This implies that tasks cannot output data at the expected time (deadline),
thus violate the predictability property.

5.3 Conceptual Design

Basically, the dependency relation can be viewed as order on the tasks execu-
tion in the way that a dependent task cannot run while the task on which it
depends does hand out the event or data expected by the dependent task (in
our context it is just a run-to-termination of the task execution for the cur-
rent period). Tasks are usually given with a period period, an offset offset, an
execution time execTime, a priority prio and a deadline deadline. Moreover, in
our framework we consider a dependency relation Dependency between tasks.
Throughout this paper we assume that the task period is greater or equal to the
deadline. Moreover, the deadline must be greater than the execution time.

Figure 4 depicts a conceptual model of tasks with dependency. The task is
initially in state Wait Offset expiry waiting for the expiration of its offset. In state
Wait dependency, the task waits execution termination of the immediate tasks
on which it depends while its deadline is not missed yet. Once a task obtains
the requested inputs it becomes ready to be scheduled and thus waiting for the
CPU. A ready task moves to state Running when it is scheduled. Since the task
behavior we consider is not preemptive, a scheduled task keeps running until

78 A. Boudjadar et al.

Offset expired

Dependency
solved

scheduled

Execution done

Period
expired Deadline missed

Deadline
missed

Deadline
missed

Wait offset
expiry

Wait
dependency

Wait period
expiry Running

ReadyDeadline
miss

Fig. 4. Conceptual model of tasks.

satisfying the execution requirement or missing its deadline by which it joins the
state Deadline miss. After having satisfied the execution requirement the task
enters state Wait period expiry waiting for the expiry of its current period.

Namely, the dependency relation is a direct acyclic graph where nodes rep-
resent tasks execution and transitions are the dependency order. A transition
from a node to another means once the execution of the source node task is done
the target node task is unlocked. Of course this does mean that the execution
of such a task will start immediately but only becomes ready to be scheduled.
A task must not depend to its dependent tasks nor to the tasks depending to one
of its dependent tasks so far. The dependency of task must be applied for each
period. Accordingly, a dependent task waits for its dependency to be satisfied
whenever a new period starts. In turn, such a task unlocks its dependent tasks
just for the execution of their current periods.

6 Uppaal System Model

Uppaal [3] is a tool environment for modeling, simulation and formal verification
of real-time systems modeled as composition of inter-communicating processes.
Each process is an instance of a template model. Our system model consists of a
set of independent components, each of which is modeled separately and will be
analyzed individually. Each template is a Parameterized Stopwatch Automata
(PSA), offering the ability to use stopwatch clocks [9] and instantiation with
different parameters.

Components Modeling. Each component is given by an interface (period,
budget, criticality), a local scheduler and a workload. The workload of a com-
ponent is either a set of tasks (i.e., basic component) or other components (i.e.,
hierarchical component). Components are independent and viewed by their par-
ents as single periodic tasks having deadlines the same as periods. Such compo-
nents are scheduled by their parent level’s scheduler according to their criticality.

Compositional Predictability Analysis of Mixed Critical Real Time Systems 79

Each component consists of a task model, a scheduler model, a CPU resource
model, a supplier model [5] and a dependency relation.

Task Model. Tasks are instances of the task template with the corresponding
attributes (tid, period, offset, exectime, deadline, prio) as parameters. The task
identifier tid is used to distinguish between tasks. Figure 5 shows the PSA tem-
plate we designed to model tasks. We use two stopwatch variables exeTime[tid]
and curTime[tid] to keep track of the execution time and the current time respec-
tively of a given task tid . Such variables are continuous but do not progress when
their derivatives are set to 0.

curTime[tid]<=task[tid].deadline &&
exeTime[tid]'==0

wcrt[tid]'==0

r_req[tstat[tid].pid]!

finished[tstat[tid].pid]!

curTime[tid]>=task[tid].deadline

x>=task[tid].offsetexeTime[tid] >= task[tid].execTime

dependencySolved(tid)

exeTime[tid]'==isTaskSched()
&& curTime[tid]<=task[tid].deadline

exeTime[tid]'==0
&& curTime[tid] <= task[tid].period
&& wcrt[tid]'==0

curTime[tid]>=task[tid].deadline

exeTime[tid]'==0
&& x<=task[tid].offset

exeTime[tid]'==0
&& x<=task[tid].initial_offset
&& wcrt[tid]'==0

curTime[tid]>=task[tid].periodPDone WaitOffset

IDLE

WaitDependency

Run

MISSDLINE

curTime[tid]=0, exeTime[tid]=0, x=0

enque(tstat[tid].pid,tid),
x=0, temp = isTaskSched()

curTime[tid]=0, exeTime[tid]=0, x=0, wcrt[tid]=0

error=1

x=0
delete_tid(tstat[tid].pid,tid), temp=0,
unlockDependency(tid),
reestablishDependency(tid)

error=1

Fig. 5. Task model.

Once started, the task model waits for the expiry of the initial offset at
location IDLE. At location WaitOffset, the task waits until its periodic offset
expires then moves to location WaitDependency. At both locations IDLE and
WaitOffset the stopwatch exeTime[tid] does not progress because the task is
not running yet. At location WaitDependency, the task is waiting until either
its deadline is missed (curTime[tid]≥ task[tid].deadline) or its dependency gets
unlocked (dependencySolved(tid)). The stay at such a location is constrained by
the invariant curTime[tid]≤ task[tid].deadline, during which the stopwatch exe-
Time[tid] does not progress. Once the deadline is missed, the task moves to

80 A. Boudjadar et al.

location MISSDLINE. Otherwise, the task is ready and it requests the CPU
resource through an event r req[tstat[tid].pid]! on channel r req and moves to
location Run. Through such an edge, the task enqueues its identifier tid into
the queue of the resource model identified by pid. In fact, location Run corre-
sponds to both ready and running status thanks to the stopwatch. Once the
task gets scheduled through function isTaskSched() it keeps running while it is
scheduled and its execution requirement is not fully satisfied. Thus, the stop-
watch exeTime[tid] measuring the execution time increases continuously while
isTaskSched() holds, i.e., exeTime[tid]’==isTaskSched().

For analysis performance, whenever a deadline is missed the faulty task
updates the global variable error to one. Thus, the schedulability will be checked
upon the content of this variable. When the execution requirement execTime
is satisfied, exeTime[tid]≥task[tid].execTime, the task moves to location PDone
waiting for the expiry of the current period. Through such an edge, the task
releases the CPU, unlocks the dependent tasks waiting for such a termination
and reestablishes its original dependency for the next period.

CPU Resource Model. Figure 6 depicts the CPU resource model. Once it
starts, the CPU resource moves to location Idle, because the initial location
(with double circles) is committed, and waits for a request from tasks through
channel r req[rid]. Through a resource request, the CPU model moves to location
ReqSched and immediately calls the underlying scheduler. At location WaitSched,
the CPU model is waiting for a notification from the scheduler through which
the CPU will be assigned to a particular task at location Assign. Such a task
will immediately be removed from the resource queue by the edge leading to the
location InUse. As we consider non-preemptive execution only, if a task requests
the CPU while it is assigned to another task such a request will be declined.
However the requesting task will immediately be enqueued. Whenever the CPU
resource is released by the current scheduled task, the resource model calls the
scheduler to determine to which task it will be assigned if the queue is not
empty (location ReqSched). Otherwise, the resource model moves to location
Idle waiting for task requests.

Dependency Relation Modeling. Given n tasks, we model their dependen-
cies by a matrix of 2 dimensions each of which has n elements. A row i represents
the dependencies of all tasks to the task having identifier tid = i, whereas a col-
umn j states the identifiers of tasks on which the task tid = j depends. The
content of each cell is Boolean, so that cell [i, j] states whether task tid = j
depends on the task having identifier tid = i. Accordingly, the dependencies of
a task x are satisfied if the cells of column x are all False. Table. 1 shows the
matrix representation of the dependency relation given in Fig. 2(a).

To manipulate the dependencies of tasks during components execution, we
introduce the following functions:

Compositional Predictability Analysis of Mixed Critical Real Time Systems 81

rq[rid].length== 0

rq[rid].length!=0

rq[rid].length>0

rq[rid].length==0

Assign WaitSchedReqSched

InUse

Idle

r_preemptive[rid]=preemptive

r_sup[rid][rq[rid].element[1]]!

r_req[rid]?

finished[rid]?

ack_sched[policy][rid]?run_sched[policy][rid]!

r_req[rid]?

Fig. 6. CPU resource model.

Table 1. Implementation of the dependency relation of Fig. 2(a).

Dependency Radar Tracking Target Keyset Weapon

Radar False True False False False

Tracking False False True True False

Target False False False False False

Keyset False False False False True

Weapon False False False False False

– dependencySatisfied(tid) checks whether all tasks on which a given task tid
depends have already updated their status to Done (execution finished for
one period). This is done by verifying that all cells of the tid th column of the
dependency matrix are False.

– unlockDependent(tid) unlocks all tasks dependent on a given task tid when
the execution of such a task is finished. This is done by updating the cells of
row tid to False.

– reestablishDependency(tid) establishes the original dependency relation of a
given task tid when its execution is done. This is done by updating the cells
of column tid , corresponding to the tasks on which task tid originally depends,
to True. Such a reestablishment is because, as stated earlier, the dependency
relation is applicable every task period.

7 Case Study

To show the applicability and scalability of our analysis framework, we mod-
eled and analyzed an avionics system [20]. Table 2 lists the system components,
tasks and their underlying timing attributes. Columns two and three list the

82 A. Boudjadar et al.

Table 2. Avionics mission control system

Component Criticality Tasks pi ei di prioi Task dependency

Display 1 Status update (T1) 200 3 200 12 T2, T3, T5

Keyset (T2) 200 1 200 16 —

Hook update (T3) 80 2 80 36 —

Graph display (T4) 80 9 80 40 T1, T3

Store updates (T5) 200 1 200 20 T2

RWR 3 Contact mgmt (T6) 25 5 25 72 —

Radar 3 Target update (T7) 50 5 50 60 T8

Tracking filter (T8) 25 2 25 84 —

NAV 2 Nav update (T9) 59 8 59 56 T10

Steering cmds (T10) 200 3 200 24 —

Nav status (T11) 1000 1 1000 4 T9

Tracking 1 Target update (T12) 100 5 100 32 —

Weapon 4 Weapon protocol (T13) 200 1 200 28 T15

Weapon release (T14) 200 3 200 98 T13

Weapon aim (T15) 50 3 50 64 —

BIT 0 Equ stat update (T16) 1000 1 1000 8 —

Data bus 2 Poll bus (T17) 40 1 40 68 —

Table 3. Analysis results of the case study.

Component Period Budget CPU utilization Analysis time (s) Memory space (KB)

Display 80 13 13/80 0.016 8852

Radar 10 2 2/10 0.016 7656

NAV 20 3 3/20 0.016 7784

Weapon 50 4 4/50 0.015 7748

criticality level and tasks of each component. Columns four to seven list the
timing attributes of tasks, whereas the last column describes the tasks on which
each task depends. Due to space limitation, we do not consider inter-component
dependencies however it can simply be applied since our analysis is recursive
where components are viewed by their parent levels as single tasks.

We consider that components having criticality levels less than 2 are not
hard critical. Moreover, for the components having one task only, the compo-
nent period, respectively budget, is the same as the child task period, respec-
tively execution time. Since tasks are non preemptible and satisfy the restricted
observability, we check predictability through schedulability. Table 3 summarizes
the analysis results. First, we calculate the minimum budget of each composite
component using a binary checking while varying the component budget [6].

The analysis time (15 and 16 ms) is very low compared to the system size, while
the used memory space is relatively acceptable. In a previous work [20], Locke et al.
estimated the resource utilization of the whole system to 85 % without considering
data flow time. In our paper, while considering data flow between certain tasks we
estimated the resource utilization to 86.25 %. Such a utilization is very high and

Compositional Predictability Analysis of Mixed Critical Real Time Systems 83

leads the avionic system to be non-schedulable, in particular if the overhead time
is also considered. Accordingly, the individual tasks cannot guarantee to output
data before their deadlines, thus making the system unpredictable.

8 Conclusion

In this paper we have introduced a compositional model-based framework for
the predictability analysis of real-time systems. The architecture we considered
is hierarchical where components running on a single core platform may have
different criticality levels. The system tasks are periodic and may depend on
each other. We analyze each component individually by providing insight on the
schedulability and data flow.

Our framework is set using Uppaal while the real-time formalism we used
to model tasks and data flow is the stopwatch automata. We believe that our
framework is scalable as long as the system is designed in terms of independent
(average size) components.

A future work is the introduction of a new task model to capture data flow
and analyze the predictability without considering the schedulability as a suffi-
cient condition.

References

1. ARINC 653. Website. https://www.arinc.com/cf/store/documentlist.cfm
2. Aussagues, C., Chabrol, D., David, V., Roux, D., Willey, N., Tournadre, A.,

Graniou, M.: PharOS, a multicore OS ready for safety-related automotive sys-
tems:results and future prospects. In: ERTS2 2010, May 2010

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

4. Bondarev, E., Chaudron, M., de With, P.: Compositional performance analysis of
component-based systems on heterogeneous multiprocessor platforms. In: SEAA
2006, pp. 81–91, August 2006

5. Boudjadar, A., Nyman, U., Kim, J.H., Larsen, K.G., Mikučionis, M., Skou, A.,
David, A.: Hierarchical scheduling framework based on compositional analysis
using uppaal. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol.
8348, pp. 61–78. Springer, Heidelberg (2014)

6. Skou, A., Boudjadar, A., David, A., Larsen, K.G., Mikučionis, M., Nyman, U.,
Kim, J.H.: Widening the schedulability of hierarchical scheduling systems. In:
Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol. 8997, pp. 209–227. Springer,
Heidelberg (2015)

7. Boudjadar, A., David, A., Kim, J.H., Larsen, K.G., Mikucionis, M., Nyman, U.,
Skou, A.: A reconfigurable framework for compositional schedulability and power
analysis of hierarchical scheduling systems with frequency scaling. Sci. Comput.
Program. J. 113, 236–260 (2015)

8. Boudjadar, A., Kim, J.H., Larsen, K.G., Nyman, U.: Compositional schedulability
analysis of an avionics system using Uppaal. In: Proceedings of the International
Conference on Advanced Aspects of Software Engineering ICAASE, pp. 140–147
(2014)

https://www.arinc.com/cf/store/documentlist.cfm

84 A. Boudjadar et al.

9. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

10. Larsen, K.G., Mikučionis, M., David, A., Legay, A.: Schedulability of herschel-
planck revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012)

11. Deng, Z., Liu, J.W.S.: Scheduling real-time applications in an open environment.
In: RTSS, pp. 308–319 (1997)

12. Feiler, P., Lewis, B., Vestal, S.: Improving predictability in embedded real-
timesystems. Technical Report CMU/SEI-2000-SR-011, Carnegie Mellon Univer-
sity, December 2000

13. Feng, X.A., Mok, A.K.: A model of hierarchical real-time virtual resources. In:
RTSS 2002, pp. 26–35. IEEE Computer Society (2002)

14. Fredriksson, J.: Improving predictability and resource utilization in component-
based embedded real-time systems. Ph.D. thesis, Mälardalen University (2008)

15. Garousi, V., Briand, L.C., Labiche, Y.: A unified approach for predictability analy-
sis of real-time systems using UML-based control flow information (2005)

16. Henzinger, T.A.: Two challenges in embedded systems design: predictability and
robustness. Philos. Trans. R. Soc. London Math. Phy. Eng. Sci. 366(1881), 3727–
3736 (2008)

17. Holzmann, G.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

18. Hooman, J.: Specification and Compositional Verification of Real-Time Systems.
LNCS. Springer, Heidelberg (1991)

19. Joseph, M., Pandya, P.: Finding response times in a real-time system. Comput. J.
29(5), 390–395 (1986)

20. Locke, C., Vogel, D., Mesler, T.: Building a predictable avionics platform in ADA:
a case study. In: Proceedings of RTSS, pp. 181–189 (1991)

21. Panunzio, M., Vardanega, T.: A component-based process with separation of con-
cerns for the development of embedded real-time software systems. J. Syst. Softw.
96, 105–121 (2014)

22. Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J., Caccamo, M., Kegley, R.: A
predictable execution model for COTS-based embedded systems. In: RTAS 2011,
pp. 269–279, April 2011

23. Pfleeger, S.L., Atlee, J.M.: Software Engineering - Theory and Practice, 4th edn.
Pearson Education, Upper Saddle River (2009)

24. Purna, K., Bhatia, D.: Temporal partitioning and scheduling data flow graphs for
reconfigurable computers. IEEE Trans. Comput. 48(6), 579–590 (1999)

25. Stankovic, J., Ramamritham, K.: What is predictability for real-time systems?
Real-Time Syst. 2(4), 247–254 (1990)

26. Volvo Trucks Great Britain and Ireland. Driver support systems: Keeping anextra
eye on the road. http://www.volvotrucks.com/trucks/uk-market/en-gb/trucks/
volvo-fh-series/key-features/Pages/driver-support-systems.aspx

27. Wang, F.: Efficient verification of timed automata with BDD-like data-structures.
In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003.
LNCS, vol. 2575, pp. 189–205. Springer, Heidelberg (2002)

28. Yau, S., Zhou, X.: Schedulability in model-based software development for distrib-
uted real-time systems. In: Proceedings of WORDS 2002, pp. 45–52 (2002)

http://www.volvotrucks.com/trucks/uk-market/en-gb/trucks/volvo-fh-series/key-features/Pages/driver-support-systems.aspx
http://www.volvotrucks.com/trucks/uk-market/en-gb/trucks/volvo-fh-series/key-features/Pages/driver-support-systems.aspx

Railway Systems

Towards a Body of Knowledge in Formal
Methods for the Railway Domain:
Identification of Settled Knowledge

Stefan Gruner1(B), Apurva Kumar2, and Tom Maibaum3

1 Department of Computer Science, University of Pretoria, Pretoria, South Africa
sgruner@cs.up.ac.za

2 Department of Computing and Software, McMaster University, Hamilton, Canada
kumara39@mcmaster.ca

3 Department of Computing and Software, McMaster University, Hamilton, Canada
tom@maibaum.org

Abstract. Bodies of Knowledge (BoK) are available only in mature
technical fields, in which professional practices and technical rules have
been well established (i.e.: ‘settled’), and are compiled for any prospec-
tive or current practitioner to refer to. By their factual establishment
they also become professionally normative to a considerable extent. As
a precursor to establishing a BoK it is important to determine whether
or not a target domain already contains sufficient ‘settled’ knowledge,
and, if yes, how such knowledge can be identified for its reproduction.
In the undisputed safety-critical railway domain, formal methods have
been applied for several decades in the solution of various modelling and
verification problems. The application of many of those formal methods
in the railway domain has also reached sufficient levels of maturity or
‘stability’ — yet no BoK for this domain has ever been compiled so far.
Thus the time is ripe now to start such a project. In this paper, with
regard to the necessary identification of settled knowledge, we apply the
lattice-theoretical methods of Formal Concept Analysis (FCA) in order
to structure and organise large amounts of relevant bibliometric data
from the railway domain’s corpus of literature. In other words, we con-
struct a formal concept lattice, the semantics of which is suitable for
revealing the ‘settled’ parts of this domain. As a result of our formalised
domain analysis, we provide a clear and theoretically well-grounded indi-
cation of the ‘settled’ themes and topics which any future BoK on Formal
Methods in the Railway Domain ought to contain.

Keywords: Formal methods · Railway domain · Body of knowledge ·
Settled knowledge · Formal concept analysis · Semantic lattices

1 Introduction: Motivation and Related Work

Engineering disciplines, as well as other science-based disciplines such as medi-
cine, are characterised by high levels of standardisation and the subsequent avail-
ability of readily applicable handbook knowledge, also known as the discipline’s
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 87–102, 2016.
DOI: 10.1007/978-3-319-29510-7 5

88 S. Gruner et al.

Body of Knowledge (BoK). In those disciplines of engineering or applied science,
a BoK handbook compiling the key concepts, terms and activities that constitute
a professional domain can be found in the office of every serious practitioner [14].
One example is the Civil Engineering Body of Knowledge for the 21st Century
(2008) released by the American Society of Civil Engineers.

Michael Jackson, in discussing his understanding of engineering practice
based on a reading of Vincenti [19], has clarified this notion further. According
to Jackson [10], an engineering handbook is not a compendium of scientific laws
or fundamental principles; rather it contains a corpus of rules and procedures
by which it has been found that those principles can be most easily and effec-
tively applied to the particular design tasks established in the field. The outline
design is already given, determined by the established needs and products. In
Chap. 11 of his standard textbook on the philosophy of science, the philosopher
Mario Bunge called those rules ‘technological rules’ and clarified their relation to
the ‘nomological’ and ‘nomopragmatic statements’ on which technological rules
are grounded [4]: Nomological statements describe scientific facts, nomoprag-
matic statements describe science-based technical possibilities, and technolog-
ical rules outline the adequate implementation of those possibilities. Moreover
—now according to Jackson again— the methods of value for engineers are based
on so-called ‘micro theories’ which describe only small and well understandable
parts of an entire domain, and which are closely fitted to the tasks of developing
particular well understood components of particular well-understood products
within the development phases of so-called ‘normal engineering’ [10].

Formal Methods in software science and software engineering have existed
at least as long as the term ‘software engineering’ itself. In many engineering-
based and software-supported application areas, particularly in the railway
domain [3], formal methods —as defined in further details by Formal Meth-
ods Europe (FME),1 or similar professional associations— have already reached
a level of maturity amenable to the compilation a BoK. Its various methods and
techniques include algebraic specification, process-algebraic modelling and veri-
fication, Petri nets, fuzzy logics, etc. The B-method, for example, has been used
successfully to verify the most relevant parts of a model of the Metro under-
ground railway system of the city of Paris (in which this FTSCS workshop is
held this year). Also software tool support is already available for a variety of
those formal methods, for example in the form of various model checker or SAT
solver programs, such that ‘formal’ can become ‘normal’ to a large extent.

The use of formal methods has also shifted from only proof-based applications
to also including formal modelling of systems and their behaviour. This is an
observable trend within the railway domain [6].

When we bring those above-mentioned trains of thought together, then it
‘naturally’ appears as a fundamental task of applied formal methods research
to build a catalogue of such micro-methods in support of the everyday work
of formal method engineers, particularly those ones who are working in the
safety-critical railway domain. We also call this the ‘BoK-ification’ of the domain.

1 http://www.fmeurope.org/.

http://www.fmeurope.org/

Towards a Body of Knowledge in Formal Methods for the Railway Domain 89

Alas, one important question has remained unanswered so far, namely: Which,
exactly, is the domain knowledge that already ‘matured’ to such an extent that
its BoK-ification is reasonably justified —in contrast to other knowledge which is
still too immature, too recent or ‘in the flow’— and by what rationally grounded
method can such mature knowledge be recognised and subsequently ‘filtered’
out of a topically vast and epistemically diverse domain (such as the Formal-
Methods-in-the-Railway domain)? This question is the topic of this paper, and a
plausible answer to this question is our main contribution to FTSCS’15. Thereby
we do not merely indicate which particular parts of the particular Formal-
Methods-in-the-Railway domain ought to be selected for its future BoK-ification
[8] — we also provide, more importantly, a general method by means of which any
other domain can be analysed for its future BoK-ification, too. As the remainder
of this paper will show, this meta-method is Formal Concept Analysis (FCA) as
it was first introduced by Ganter and Wille on the basis of mathematical lattice
theory [7]. In other words: in this paper, which is based on the recent Master’s-
dissertation by one of our co-authors [11], we use and apply a formal method,
namely FCA, in support of the future BoK-ification of other formal methods,
namely the ones in the safety-critical railway domain. To our best awareness this
is a new solution which had never been presented for the railway domain so far.

2 Method

In order to answer the question: which knowledge in the railway domain has
matured, it is most important to look at the possible sources of domain knowledge
within the domain, and what the definition of ‘settled knowledge’ is. It is also
necessary to investigate how this knowledge is structured within an engineering
domain, so that it is easier to identify.

The answers to these questions will decide which formal attributes are
included in the concept lattice that will contain the collected knowledge. After
constructing the lattice and pruning it with the use of stability indices, the result-
ing lattice shows the most stable, and therefore, settled knowledge (including its
structure) within the railway domain in the context of the dataset used.

2.1 Settled Knowledge

Poser [15], Vincenti [19], Arageorgis and Baltas [1] describe engineering as a
multi-level activity. In order to design a device or a system, we need to first
understand its operational principle, that is, what it does. That overall goal
drives the smaller aspects of design, as the goal is broken up into smaller design
tasks that have their own requirements constrained by scientific and practical
expertise.

Without a particular goal in mind, engineering activity loses its meaning.
This goal is determined by people that need to solve a problem — here: the
engineers. Their purposes bring a variety of social aspects into the engineering
disciplines. These social aspects of engineering are built into its knowledge, and

90 S. Gruner et al.

provide the body of knowledge with context information about the form vari-
ous classes of problems being (or to be) solved. Hence there are categories of
knowledge which are almost always relevant in any engineering activity [19]. The
categories include explicit forms of knowledge such as fundamental design con-
cepts, criteria, as well as theoretical tools (such as formal methods). They also
include tacit knowledge which is much harder to identify and isolate, i.e.: general
‘guidelines’ (rather than precisely stipulated rules).

In this context, settled knowledge is the knowledge which can become ‘offi-
cially codified’ in a BoK. Its structure would be consistent with Vincenti’s above-
mentioned epistemological categories [19], influenced by relevant external social
purposes. This knowledge must be stable and coherent throughout the BoK’s
domain over a reasonably long period of time, and should appear in similar
form for all similar problems to be solved in that domain. Forms of engineering
knowlege could include mathematical formulae, semi-formal descriptions, or even
pictures and diagrams. Such settled knowledge stems from the typical knowledge-
generating activities which Vincenti has comprehensively described [19].

The aim of the future BoK should be to discover these operational theories
—i.e.: theories about methods rather than theories about natural objects [4]—
of software engineering for the railway domain, and a starting point would be to
find any consistencies of the use of formal methods, by surveying a large amount
of sources of railway domain knowledge spread out over a reasonably long period
of time.

Applications of formal methods are almost always ‘straight-forward’ —i.e.:
under not too complicated circumstances— with refinements or variations
depending on the overall aim of a project. Formal methods are also used widely
throughout the railway domain [6]. Identification of the actually applied formal
methods is our first step towards creating the afore-mentioned BoK, because
they can be easily identified and ectracted from the large amount of knowledge
which the railway domain has already accumulated. Other aspects of settled
knowledge may not be so easily identified.

Sources of Knowledge. In order to extract settled domain knowledge from
the railway domain we need to find sources of domain knowledge within this
domain. These sources could consist of

– industry standards and guidelines laid out by governing bodies,
– papers and articles written as a result of research done in the domain (both

academic and industrial),
– requirements specifications or other documents produced by domain experts

and specialists,

and many more. Papers and articles, written as a result of research done in the
domain, are the main source of domain knowledge used for this paper, although
a mixture of the above-mentioned source-types would be ideal for a ‘holistic’
view of the domain. This source is selected because its papers cover a reasonable
duration of time (as long as formal methods in railway software engineering have

Towards a Body of Knowledge in Formal Methods for the Railway Domain 91

been used) and are relevant with regard to our epistemic purposes. They were
also suggested by experts in the domain, (see Acknowledgements). The chosen
papers are from the following venues:

– Proceedings IFAC Symposiums on Control in Transportation Systems: 1975–
2012 [9],

– Proceedings FORMS-FORMAT: 2010–2014 [9],
– Proceedings SAFECOMP: 2005–2014.

Those conferences provided more than three hundred papers related to the rail-
way domain. Many papers did not relate to the use of formal methods in railways
or were discussions or predictions of the current status of the domain. Due to
this, only one hundred and fifty were used in our analysis. It is just the beginning
of a long list papers that have been published within the railway domain [11].

Classification of Knowledge. The use of formal concept analysis (FCA) in
this project provides an attribute-based classification system of knowledge. In
the case of formal methods, the simplest classification is the name of the formal
method used in each source. Each formal method used in the railway domain is
an attribute of the source, though it is also important to look at further pertinent
characteristics of the knowledge to the railway domain. Simply including only
the names of formal methods is not enough, as different methods are used in
different contexts and when solving different problems or classes of problems.
Therefore, additional techniques and keywords (context of the knowledge of the
domain) is used as attributes for the resulting lattice. A summary of the reasons
for each choice is given below and a full explanation can be found in the Master’s
dissertation of a similar name [11].

It is also necessary to know where in the railway domain these formal methods
are used. This gives us more context around the use of each formal method.
In future, the analysis could even be extended to problems or problem-types
being solved within the domain. To this end we record the subdomain of the
railway domain each source of knowledge (paper) deals with. This also gives us
the added advantage of visualising generic uses of formal methods as opposed
to methods only used in specific areas of the domain. For the purposes of this
paper, the railway domain is divided into the following subdomains: The Net,
Timetables, Scheduling and Allocation, Traffic Monitoring and Control, Rolling
Stock, Passenger Handling, Freight Handling. This list was a culmination of
the opinion of a number of domain experts (see Acknowledgements), as well as
Bjørner’s work on the subdomain division of the railway domain [3].

Next, it also seems useful to include the year that each paper was published
within our collected domain knowledge. As it was mentioned earlier, knowledge
existing over a length of time has a greater chance of being ‘settled’ than knowl-
edge that is much more recent. Methods that have been studied over time show
refinement in their use and therefore, like in the case with most engineering
knowledge, are honed until they become standard practice. It is possible that
the inclusion of year-attributes may cause extra ‘noise’ in the lattice which will
require the use of noise-removing techniques on the lattice to take out.

92 S. Gruner et al.

Lastly, other keywords and attributes might also be included that add to
the structure and context of the knowledge that each paper holds. Some of these
keywords measured the ‘settled-ness’ of knowledge included in a paper, similar to
the scientific maturity scheme outlined by Mary Shaw in [18]. This also includes
the type of modeling that occurs in each source, such as mathematical, descriptive
or analytical modeling as well as commonly used techniques or languages that
provide extra context to the general use of formal methods.

2.2 Formal Concept Analysis

A formal context, which is a set of objects supplied with their descriptions as
sets of attributes, gives rise to a family of formal concepts. A formal concept has
an intent and an extent. The extent of a concept consists of all formal objects
which belong to the concept, and the intent of a concept consists of all formal
attributes that apply to all formal objects of the concept.

In our case, the objects will be the sources of knowledge, i.e.: published
papers within the railway domain from relevant journals, conference proceedings
or other books. The attributes are a collection of characteristics of these papers:
for example, when they were published, which sub-domain the papers deal with,
what formal methods are used, etc.

Thus the mathematical model of a formal context includes formal objects,
formal attributes, and a relation between the object and attribute sets. The
following mathematical descriptions are taken from the book by Ganter and
Wille on Formal Concept Analysis [7].

Formal Context. A context K has a structure K := (G,M, I) where G and M
are sets representing objects and attributes respectively. I is a binary relation
between sets G and M where I ⊆ G x M and gIm indicates that the object g
has the attribute m. We define two operators for arbitrary X ⊆ G and Y ⊆ M
such that:2

X �→ XI := m ∈ M |∀g ∈ XgIm

Y �→ Y I := g ∈ G|∀m ∈ Y gIm

Within this context K, we can define a concept as a pair (A,B) with A ⊆ G,
B ⊆ M , A = BI and B = AI . A and B are called the extent and the intent
of the formal concept (A,B) respectively. The mathematical meaning of the
relationship between the subconcept and superconcept is as follows:

(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2(⇐⇒ B1 ⊇ B2)

The set of all formal concepts of context K together with their defined order
relation is denoted by B(K). The visual representation of this is referred to as
a concept lattice. For an object g ∈ G, its object concept γg := (gII , gI) is the
smallest concept in B(K) whose extent contains g. Additionally, for an attribute

Towards a Body of Knowledge in Formal Methods for the Railway Domain 93

needs water lives in water lives on land is mobile

Bream X X X
Frog X X X X
Dog X X X
Reed X X X
Corn X X

Fig. 1. Structure of a cross table in FCA: example adapted from [16]

m ∈ M , its attribute concept μm := (mI ,mII) is the greatest concept in B(K)
whose intent contains m.
The formal context can be represented as a cross table, like the one shown for

example in Fig. 1). Each row represents an object and each column represents
an attribute. A cross at the intersection of a row and column indicates that
the object possesses the particular attribute. In our application of FCA this
means that a studied paper describes the use of a specific formal method, or
was published in a particular year. Such a cross table can then be translated
automatically into a concept lattice to visualise the relationships within the
context.

Fig. 2. Concept lattice: example taken from [16]

An example of such a concept lattice can be seen in Fig. 2. Concepts closer to
the top are on a ‘higher level’ than those below them. Concepts on lower levels
are more specific than concepts on a higher level, appearing near the bottom of
the lattice. Concepts on higher levels are more general than concepts on lower
levels and appear near the top of the lattice. A concept at the top of an edge in
the graph is called a parent concept, in relation to the concept at the bottom of

2 �→ defines a relation pair, and := precedes a definition statement.

94 S. Gruner et al.

that edge which is called a child concept. If a child concept has more than one
parent, the parent concepts all share a subset of attributes of the child.

Each node (ball) in a concept lattice, such as depicted, represents a single
concept. The radius of the nodes represents the relative number of objects that
exist within the concept. If the drawing of a node shows a blue-filled upper semi-
circle, there is a so-called own-attribute attached to this concept. This means:
not only is the attribute in the concept’s intent, it belongs solely to this con-
cept and its children. If a node contains a black-filled lower semicircle, there is
an object attached to this concept. This means that the intent of this concept
exactly matches the attributes of the object.

The concept lattice at this stage represents all the domain knowledge con-
tained within the sources, but we still need to determine which information
within it has matured and which has not. There might be noise within the lat-
tice (representing un-settled knowledge) which needs to be filtered out for the
sake of accurate analysis results, for example: some formal techniques that were
attempted in a few papers but were not successfully adopted as the norm within
the domain.

2.3 Stability Index

The definition of stability and the stability index can be found in the papers
by Buzmakov, Kuznetsov and Napoli [5,12] and is as follows: For a context
K = (G,M, I) and a concept c = (A,B),

Stab(c) :=
| {s ∈ ℘(Ext(c)) | sI = Int(c)} |

2|Ext(c)|

That is, the relative number of subsets of the concept extent (denoted by
Ext(c)), whose description (the result of applying I) is equal to the concept
intent (denoted by Int(c)) where ℘(P) is the power set of P . Stability indicates
the independence of a concept’s intent from its extent. Stability does not only
provide noise-resistance. A stable concept does not collapse when certain objects
(in our case: literature sources) are removed from the context — that is, the
concept does not merge with a different concept nor disintegrate into smaller
concepts.

In our domain analysis study, noise in the knowledge-representing lattice
should be expected. There are, for example, avenues of research that have been
unsuccessfully attempted; they are sources of noise in our lattice. Redundancy
is an issue to be taken into consideration, too: If a context and its concepts are
stable, then the same lattice and the same relations could be seen on the basis
of a rather different data set.

As we presume settled knowledge to be integral to the body of knowledge
in our domain, we expect settled knowledge to be incorporated in stable con-
cepts rather than unstable ones. So we need to distillate the stable concepts in
the lattice and ‘prune’ the unstable ones away. Thus, we extract the most rele-
vant domain-specific knowledge by selecting concepts with the highest stability
indices.

Towards a Body of Knowledge in Formal Methods for the Railway Domain 95

Stability Threshold. Selecting a threshold stability index will decide which
concepts are ‘stable enough’ to be preserved in the final lattice. Previous work in
knowledge ontologies allows for a systematic post-processing of the raw data to
influence this crucial decision [5,12,13,17]. Picking a stability threshold has the
advantage of getting rid of noise but the disadvantage of removing even some
potentially relevant data. Therefore, we need to find a balance between both for
the best fit lattice. We plot the percentage of data included in the lattice versus
the stability threshold indices. The resulting graph will allow us to decide what
is an acceptable stability threshold based on the amount of data left out.

After selecting this threshold, we prune the concepts that fall below it and
arrive at a clean and stable lattice with concepts that better represent the struc-
ture of data within the railway domain. Note that a pruned lattice does not
necessarily form a single lattice [17]. If there are formal methods represented in
this final lattice, we can conclude that those formal methods are indeed present
in the settled knowledge of the railway domain.

Using the stability threshold as a pruning technique has an important advan-
tage. It provides a mathematical measure of the stability of the structure of the
lattice. Concepts with low stability rely on too varied a dataset that makes their
case as a reliable data point come into question. This allows us to include data
that has a number of varied characteristics, and be assured that only those that
provide a stable structure remain after the pruning with regard to a chosen
stability threshold value.

3 Results

Concept Lattice. A large cross table for the railway domain was constructed
with the knowledge collected. From this table, we use the tool ConExp [20] to
automatically construct a concept lattice. The resulting lattice is too large and
complicated for any meaningful visualisation. Therefore, it is broken up into
smaller, easier-to-understand lattices that contain objects and their attributes
for specific subdomains of the railway domain. An example subdomain can be
seen in Fig. 3; it represents the lattice for the Rolling Stock subdomain. There is
a similar lattice for each subdomain of the railway domain [11]. Model-Driven
Engineering (MDE) can be found as a very prominent technique, as shown in
Fig. 3. Tool chains, domain-specific specification as well as further languages are
other familiar techniques in this subdomain. We can also see that the sources of
that knowledge are from 2000, 2010, 2012 and 2014, and have thus a reasonably
long historic duration in this field.

These smaller sub-domain-specific lattices permit the visualisation of a par-
ticular set of data, such that relevant relations are easily observable. Important
formal techniques within the subdomain can be seen as well as specific and gen-
eral methods. These smaller lattices also allow a closer look at smaller areas of
the wider railway domain, so that more detailed structures can be gleaned from
them.

96 S. Gruner et al.

Fig. 3. Lattice representing knowledge in the Rolling stock subdomain in ConExp

Pruning of the Lattice. By manually examining the data, there are a large
number of concepts with only one object in their extent. There is no way of
knowing whether the corresponding papers are actually pertinent to the overall
structure, or if they are merely noise. We would need more data to support either
theory, therefore the one-object concepts do not give us any useful information
about the structure of the domain or the settled knowledge we seek. Thus, these
concepts are pruned from the final lattice.

After examining this lattice, the additional attributes such as the years and
non-formal-method papers were also removed from the context, in order to pro-
duce a more streamlined visual representation of the final results. We need to not
only to distill settled knowledge but also to discover some structure, so removal
of deliberate noise was important.

To get a stability threshold value, we plot a graph of the percentage of data
included in the lattice versus the stability threshold indices (expressed as per-
centages). The graph, which can be seen in Fig. 4, shows us the percentage of
data left in the lattice if a particular stability index was used as a threshold.
Here it is easy to see that there are two significantly large drops in data inclu-
sion: one drop at 25 % and one drop at 50 %. This is due to the mathematics of
the formula that is used to calculate stability, and also because of a number of
concepts with 3 or more objects in their extent.

Since stability index values below 0.5 do not make sense and keeping 100 %
of the data is not needed as per the definition of stability, the data inclusion
drop at 25 % is not so meaningful. However, the drop at 50 % is much more
reasonable and would highlight the most important concepts within the context
while removing noise from the structure. This also coincides with the mathemat-
ical prediction that at least 0.5 stability can be considered as ‘good enough’ to
be taken as a stable lattice structure.

Towards a Body of Knowledge in Formal Methods for the Railway Domain 97

Selecting this threshold and removing the noise in the original lattice leads to
the final complete lattice as shown in Fig. 5. Acronym definitions for this figure
can be found in the dissertation of a similar name [11].

Fig. 4. Changes in percentage data inclusion as a function of the stability threshold
indices (expressed as a percentage)

The formal methods included in the final lattice (Fig. 5) are given below. Note
that these are considered ‘formal’ methods within the context of their use in
the railway domain and also can be found stated as such in much of the litera-
ture [6,8].

– Petri Nets
– Mathematical Models
– Markov Models
– Discrete Mathematical Models
– Discrete Event Systems
– Fuzzy Logic

The final lattice has a non-empty subset of formal methods used both in general
problems within the domain and specific problems to a particular subdomain.
This directly fulfills one aspect of settled knowledge. The data spans a period of
over twenty years and therefore fulfills the main requirement that the knowledge

98 S. Gruner et al.

Fig. 5. Final lattice of stable concepts with a stability threshold ≥ 0.5 and extent > 1

must exist over a reasonable period of time. Some other observations about the
contents of this knowledge and its structure can also be made:

– Particular subdomains of the railway domain use more formal methods than
others. Especially, formal methods seem to be very popular in the Traffic
Monitoring and Control subdomain. This involves engineering problems in
signalling and interlocking systems.

– The railway domain often uses formal methods for modelling purposes, specif-
ically mathematical modelling.

– Petri Nets are a generic formal method used in modelling railway systems,
whereas Markov Models are specifically used for analysing the Traffic Mon-
itoring and Control subdomain. Other techniques like Model Checking are
specific to the same domain while Model Driven Engineering (MDE) with
Tool Chains is used for the subdomains of Passenger Handling and Rolling
Stock.

– UML and the RAISE Specification Language are frequently used in railways,
specifically for modelling the subdomain Traffic Monitoring and Control.

– There are some unknown concepts that also exist within the lattice, connect-
ing several concepts which might provide extra context within the domain. For
example, there is a connection between Domain Specific Languages, RAISE
Language, Analytical Models and the subdomain Traffic Monitoring and Con-
trol. It could be noted that the specification language RAISE is used in the
domain Traffic Monitoring and Control to create analytical models.

Ultimately, there are at least six formal methods that can be seen as ‘settled’ in
this subset of data. According to our original criteria, as previously mentioned,
and in relation to this collected subset of domain knowledge, there is definitely
settled knowledge to be found in the railway domain and it can be isolated by
interpreting a stable lattice constructed from domain knowledge sources.

Towards a Body of Knowledge in Formal Methods for the Railway Domain 99

4 Discussion: Possible Threats to Validity

The results of our domain analysis were obtained on the basis of several precondi-
tions and rational assumptions. Though these can well be defended —see above—
as ‘reasonable’, we must nevertheless make those preconditions and assumptions
explicit such as to enable both scholarly critique and future improvements. The
following points shall be particularly mentioned:

Notion of ‘Settled-ness’: In asking which knowledge is sufficiently ‘settled’ for its
BOK-ification, we assumed a notion of ‘settled-ness’ which is essentially tempo-
ral. Such knowledge must occur and re-occur sufficiently often over a sufficiently
long historic period of time.

– Other epistemologists might thus argue whether or not our notion of ‘settled-
ness’ is appropriate.

Choice of Database: We have sought settled knowledge in the public domain,
particularly in the community-relevant conference proceedings indicated in [9]
and [11].

– Other experts might thus argue against us that the chosen conferences are not
‘community-relevant’ at all, that the set of chosen conferences is insufficiently
small such that relevant settled knowledge has been omitted, or that the
settled knowledge of the engineering industry exists only in form of corporate
secrets rather than being publicly available. We also have to admit that the
number of conferences, which we scanned for domain-specific literature, was
rather small; only a part of the entire railway domain could be captured so far.

Choice of Attributes for FCA: We have used the attribute-based method of
FCA to automatically identify those concepts which we have strongly associated
with ‘settled’ knowledge. Our definition of the relevant attributes, to be used in
the lattice matrices such as the one shown in Fig. 1, was done rationally upon
a thorough hermeneutical reading and interpretation of relevant engineering-
philosophical literature.

– Other experts might thus argue against us that our attributes were not defined
appropriately, or that we have wrongly omitted important attributes alto-
gether: consequently the automatically generated lattice graphs, such as the
one shown in Fig. 3, would not represent an accurate ‘image’ of the chosen
domain or subdomain.

Choice of Stability Threshold: After a first ‘raw’ lattice with too many ‘unstable’
concepts had been obtained in the first phase of our FCA, we have selected and
included into our recommendable results only those concepts with a stability
above a particular percentage threshold (0 < s < 1). Though the value v for
s := v was chosen carefully on the basis of reasonable considerations (see Fig. 4),
it was nevertheless still our choice.

100 S. Gruner et al.

– Other experts might thus argue against us that our choice of v was not appro-
priate, and that an alternative threshold s := v′ (with v′ �= v) should have
been chosen instead of v.

5 Conclusion and Outlook to Future Work

From the preceding sections of this paper, supported by many further details
in [11], two kinds of conclusions can now be drawn, namely about:

– how to proceed methodically, in a rationally well-grounded, mathematically
formalised and scientifically repeatable manner, for the identification of set-
tled knowledge in any engineering domain which possesses a sufficiently large
corpus of scholarly literature;

– which topics to include into the future BoK book on the topic of Formal
Methods in the Railway Domain.

As far as the first point is concerned: We have shown how to ‘dissect’ a large
domain into its most relevant sub-domains (a.k.a. ‘divide and conquer’), how to
lay out for each sub-domain a many-dimensional ‘attribute space’ which accom-
modates all the epistemically relevant entities of that sub-domain, how to use
Formal Concept Analysis (FCA) to well-order the entities which ‘live’ in that
space, and how to apply well-defined ‘stability’ calculations on formal concept
lattices in support of a final decision about which concepts are to be regarded as
most important (or which ones are merely spurious and may be ignored). From
an engineering-philosophical point of view, the thus-identified epistemic entities
could possibly belong to any of the six categories of engineering-knowledge in
Vincenti’s epistemology [19].

As far as the second point is concerned: Our analyses of very large volumes of
scholarly literature on the application of Formal Methods in the railway domain,
over a long period of more than twenty years, have indicated clearly that at least
the following epistemic concepts must now be regarded as well-established or
‘settled’ in this domain: Petri Nets (and similar types of mathematical modelling)
in almost all of the domain’s subdomains, Formal Risk Analysis particularly in
the sub-domain of traffic monitoring and control, UML in the same sub-domain,
and Max Plus Algebra as well as Discrete Event Systems particularly in the
sub-domain of timetable scheduling; please see [11] for many further details.

As far as future work is concerned: Two of this paper’s co-authors belong to
an international planning committee, in which the table-of-contents of a forth-
coming BoK book on the application of Formal Methods in the railway domain
shall be prepared. The results published in this preparatory paper (on the basis
of [11]) have clearly identified the predominant topics of ‘settled’ knowledge in
the domain, i.e.: the knowledge, themes and topics which may soon await their
further BoK-ification for the benefits of the engineers and professionals working
in this domain. The future BoK book, with all its finer details, shall also be well-
aligned with the higher-level standards of quality (such as CENELEC EN50128,
EN50126-1, EN50129, EN ISO 9000, EN ISO 9001, ISO IEC 90003, ISO IEC

Towards a Body of Knowledge in Formal Methods for the Railway Domain 101

9126) which the international community of engineers has already accepted as
normative and ‘professionally binding’ to a large extent. The ultimate purpose
of the BoK book will be the provision of ‘settled’, problem-specific solution-
templates, which shall —when applied properly— support the fulfillment of the
quality requirements stipulated by those normative standards at their coarser
level of abstraction.

Epilogue

At the workshop in Paris on the 7th of November 2015, after the presentation of this

paper, the question was asked why we have used FCA instead of ‘ontologies’. The answer

to this question is two-fold. First of all, FCA has already proven its practical value

in various other application domains —see the annual ICFCA conferences published

by Springer-Verlag in the LNAI— and is thus a trustworthy method in the field of

formal epistemology. A second —and also more important— reason is the possibility

of numeric assessment of ‘stability’, and subsequent elimination of ‘noise’, which is not

possible in the framework of classical ‘ontologies’. Last but not least we might perhaps

conjecture —here without proof— that many practically relevant ‘ontologies’ could

possibly be translated (more or less accurately) into (more or less equivalent) table

representations of the typed needed and used in our work: in this case the suggested

opposition —‘ontologies’ versus FCA— would disappear.

Acknowledgments. Many thanks to a number of experts, who have been helpful
and supportive during the course of our project, especially: Sergei Obiedkov, Markus
Roggenbach, Anne Haxthausen, Hannes Gräbe, Jackie van der Westhuizen, René Hosse,
Jan Welte, Francesco Flammini, Hans True, Jérôme Lalouette, and Stefan Östlund.
Many thanks also to the anonymous reviewers of FTSCS’15 for their constructive
remarks. Last but not least many thanks to the workshop participants, particularly
José Meseguer, for some interesting questions and comments during our meeting in
Paris.

References

1. Arageorgis, A., Baltas, A.: Demarcating technology from science: problems and
problem solving in technology. Zeitschrift für allgemeine Wissenschaftstheorie
20(2), 212–229 (1989)

2. Bjørner, D.: Formal software techniques in railway systems. In: Proceedings 9th
IFAC Symposium on Control in Transportation Systems, pp. 1–12. VDI/VDE
(2000)

3. Bjørner, D.: TRain: the railway domain. http://euler.fd.cvut.cz/railwaydomain/
4. Bunge, M.: Philosophy of Science: From Explanation to Justification, vol. 2,

Revised edn. Transaction Publ., Piscataway (1998)
5. Buzmakov, A., Kuznetsov, S., Napoli, A.: Is concept stability a measure for pattern

selection? Procedia Comput. Sci. 31, 918–927 (2014)
6. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:

Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Heidelberg (2014)

http://euler.fd.cvut.cz/railwaydomain/

102 S. Gruner et al.

7. Ganter, B., Wille, R.: Formale Begriffsanalyse: Mathematische Grundlagen.
Springer, Berlin (1996)

8. Gruner, S., Haxthausen, A., Maibaum, T., Roggenbach, M.: FM-RAIL-BOK orga-
nizers’ message. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368.
Springer, Heidelberg (2014)

9. Gruner, S., Haxthausen, A., Maibaum, T., Roggenbach, M.: Homepage of the work-
shop on a formal methods body of knowledge for railway control and safety systems
(2013). https://ssfmgroup.wordpress.com/rel/

10. Jackson, M.: Formal methods and traditional engineering. J. Syst. Softw. 40, 191–
194 (1998)

11. Kumar, A.: A preparatory study towards a body of knowledge in the field of
formal methods for the railway domain. Master-of-Applied Science Dissertation,
McMaster University, Canada (2015). http://hdl.handle.net/11375/18416

12. Kuznetsov, S.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4),
101–115 (2007)

13. Kuznetsov, S., Ignatov, D.: Concept stability for constructing taxonomies of web-
site users. Computing Research Repository (CoRR) abs/0905.1424 (2009)

14. Maibaum, T.: What is a BoK? large: extended abstract. In: Counsell, S., Núñez,
M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 184–188. Springer, Heidelberg (2014)

15. Poser, H.: On structural differences between science and engineering. Digital
Library and Archives of the Virginia Tech University Libraries (1998)

16. Priss, U.: Formal concept analysis homepage. http://www.fcahome.org.uk/
17. Roth, C., Obiedkov, S., Kourie, D.G.: Towards concise representation for tax-

onomies of epistemic communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R.
(eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg
(2008)

18. Shaw, M.: The Coming-of-age of software architecture research. In: Proceedings
23rd ICSE, pp. 656–663. IEEE Computer Society (2001)

19. Vincenti, W.: What Engineers Know and How They Know It: Analytical Studies
From Aeronautical History. John Hopkins University Press, Baltimore (1990)

20. Yevtushenko, S., ConExp,: Concept Explorer. http://conexp.sourceforge.net/

https://ssfmgroup.wordpress.com/rel/
http://hdl.handle.net/11375/18416
http://www.fcahome.org.uk/
http://conexp.sourceforge.net/

Towards Safety Analysis of ERTMS/ETCS
Level 2 in Real-Time Maude

Phillip James1, Andrew Lawrence2, Markus Roggenbach1,
and Monika Seisenberger1(B)

1 Swansea University, Swansea, UK
m.seisenberger@swansea.ac.uk

2 Hitachi Data Systems, Poole, UK

Abstract. ERTMS/ETCS is a European signalling, control and train
protection system. In this paper, we model and analyse this complex
system of systems, including its hybrid elements, on the design level in
Real-Time Maude. Our modelling allows us to formulate safety properties
in physical rather than in logical terms. We systematically validate our
model by simulation and error injection. Using the Real-Time Maude
model-checker, we effectively verify a number of small rail systems.

1 Introduction

The European Rail Traffic Management System (ERTMS)/European Train Con-
trol System (ETCS) is a European signalling, control and train protection sys-
tem designed to allow for high speed travel, to increase capacity, and to facilitate
cross-border traffic movements [7]. ERTMS/ETCS is a complex system of sys-
tems, made up by distributed components. It is specified at four different levels,
where each level defines a different use as a train control system. In our paper
we consider ERTMS/ETCS Level 2, which is characterised by continuous com-
munications between trains and a radio block centre.

The switch from classical railway signalling systems to ERTMS/ETCS train
control poses a number of research questions for the formal methods community.
Can safety be guaranteed? Can formal methods be used to confirm that such a
switch improves capacity? Is it possible to predict capacity using formal meth-
ods? To address such questions it is necessary to develop and analyse timed or
hybrid models. ERTMS/ETCS Level 2 takes speed and braking curves of each
individual train into account. These determine the train’s braking point well in
advance of the end of authority that the signalling system had granted to this
train. Such an approach is in contrast to classical signalling systems, which treat
all trains in the same way. Therefore, they need to be designed for worst case
braking. Consequently, in formal safety analysis, such traditional systems can be
treated on a purely logical level, ignoring the aspect of time – see, e.g., [9,10].

An ERTMS/ETCS system consists of a controller, an interlocking (a spe-
cialised computer that determines if a request from the controller is “safe”),
a radio block centre, track equipment, and a number of trains. While the ERTM-
S/ETCS standard details the interactions between trains and track equipment
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 103–120, 2016.
DOI: 10.1007/978-3-319-29510-7 6

104 P. James et al.

(e.g., in order to obtain concise train position information) and radio block
centre and trains (e.g., to hand out movement authorities), the details of how
controller, interlocking and radio block centre interact with each other are left to
the suppliers of signalling solutions such as our industrial partner Siemens Rail
Automation UK. In this paper we work with the implementation as realised by
Siemens. In the following we refer to this system simply as ERTMS.

One development step when building an ERTMS system consists of develop-
ing a so-called detailed design. Given geographical data such as a specific track
layout and what routes through this track layout shall be used, the detailed
design adds a number of tables that determine the location specific behaviour
of interlocking and radio block centre. The objective of our modelling is to pro-
vide a formal argument that a given detailed design is safe. Here we focus on
collision freedom, though our model is extensible for dealing with further safety
properties, and possibly also with performance analysis.

We base our modelling approach on Real-Time Maude, which is a language
and tool supporting the formal object-oriented specification and analysis of real-
time and hybrid systems. In order to obtain a faithful model of ERTMS/ETCS
level 2 on the design level, we follow a systematic approach, established by the
Swansea Railway Verification Group.

This paper extends our location-specific modelling presented in past work [12]
to a generic and far more detailed modelling. It is organised as follows. First,
we introduce the ERTMS Level 2 standard, and briefly discuss high level safety
properties for ERTMS. Then, we give a short presentation of Real-Time Maude
with a focus on standard specification techniques for hybrid systems. In Sect. 4,
we present our modelling of ERTMS in Real-Time Maude, discussing each com-
ponent in detail. In Sect. 5, we validate our model by simulation and error injec-
tion. Finally, we present model checking results and put our approach in the
context of related work.

2 ERTMS Level 2

ERTMS Level 2 extends classical railway signalling. To this end its location
specific design1 extends the classical notion of a scheme plan by information
used for the radio block centre (RBC). ERTMS safety analysis also requires
train characteristics such as maximum speed, acceleration and braking curves.

2.1 Scheme Plans

A scheme plan is a well-established concept within the railway domain. Figure 1
depicts such a scheme plan for a pass-through station. It comprises of a track
plan, a control table, release tables and RBC tables. The track plan provides the
topological information for the station. It consists of 8 tracks (e.g., BC) each with
a length, 3 marker boards (e.g., MB1), and two points (e.g., P2). A topological

1 We focus here on one ERTMS/ETCS system controlling a single, geographic region.

ERTMS/ETCS Level 2 in Real-Time Maude 105

route is a piece of railway on which a train can travel, (typically) between two
marker boards (e.g., from MB1 to MB2). The control table describes under which
conditions a route can be set.2 For example, a train can only proceed on route
1 A when point P1 is in normal (straight) position and tracks AA, AB and AC
are clear, i.e., currently not occupied by any train. The release table is used to
implement sequential release, a technique to improve capacity. The release table
describes when a point is again free to move after being locked for a particular
route. For example, when sending a train on route 1A, point P1 is free to move
already, when this train has reached track AC. This allows to send another train
on route 1B before the first train has reached track AD and thus completely left
route 1A. Finally, the RBC tables are used for calculations within the RBC.

Entry

MB1

AA(1500m)

P1

AB(250m)

BC(1500m)BD(1500m)

MB2

AC(1500m)

MB3

AD(1500m)

P2

AE(250m) AF(1500m) Exit

Interlocking Tables:

Route Clear Tracks Normal Reverse

1A AA, AB, AC P1
1B AA, AB, BC P1
2 BD, AE, AF P2
3 AD, AE, AF P2

Point Route Release

P1 1A AC
P1 1B BC
P2 2 AF
P2 3 AF

RBC Tables:

Current Position Continuation Routes

Before MB1 1A, 1B
Before MB2 2
Before MB3 3

Granted Route EOA

1A 3249m
1B 3249m
2 6499m
3 6499m

Fig. 1. Scheme plan for a pass-through station.

We consider open scheme plans with entry and exit tracks only. Furthermore,
we assume that marker boards are placed at the end of tracks, and that the speed
limit is the same for all tracks.

2.2 ERTMS System Architecture

Once a scheme plan has been designed, a number of control systems are imple-
mented based around it. In the following we identify the entities of ERTMS,
describe their abstract behaviour and determine the abstract information flow
between them in line with the design by Siemens Rail UK, see Fig. 2.

The controller (manual or computerised) is responsible for controlling the
flow of trains through the railway network. The controller completes this task
by sending “route request” messages to the interlocking. These route requests
are dependent upon elements such as the current timetable to be adhered to

2 It is a design decision whether a topological route appears in the control table. The
routes in the table are those available for use by trains.

106 P. James et al.

and details on congestion within the network. For simplicity, we abstract from
“route cancel” and “acknowledgement” messages.

The interlocking is responsible for setting and granting requested routes.
Once the controller has requested a route, the interlocking will use information
on current track occupation and point settings (from the track equipment) to
determine if it is safe for the requested route to be set. Whether a route can
be set or not is computed in a process based upon the conditions stipulated by
the control table, see Fig. 1. Once the interlocking has checked that all points
on the route are free to move or already in the right position, it will send a
“route available” message to the RBC (Radio Block Centre). This informs the
RBC that the route is free for use, however it is not yet reserved for a train. The
RBC initiates the process of locking a route for a particular train by sending a
“request to proceed” message to the interlocking. On receiving this message, the
interlocking will then ensure that, based on the control table, all tracks for the
route are free and that the points are indeed locked in the required positions.
Once this step is completed, the interlocking sends a “proceed” message to the
RBC indicating that a train can use the route.

The RBC ’s main responsibility is to take the route information presented by
the interlocking and use it to manage the movement of trains across geographic
positions on the railway. To do this, the RBC and trains use the notion of a
movement authority. A movement authority is an area of geographical railway
that a train is permitted to move within. The furthest point along the railway
to which a train is permitted to move is indicated by a point known as the end
of authority (EoA) which is given to a train by the RBC. As a train moves
across the railway network, it uses beacons on the track to continually calculate
its position. When it is nearing its EoA, it makes a new “movement authority
request” to the RBC indicating that it would like its movement authority to be
extended. After receiving this request, the RBC will map the physical location
of the train to an available continuation route that has been presented to it
by the interlocking.3 This calculation is performed based on a look-up table
designed as part of the RBC for a scheme plan, an example of such a table
is provided in Fig. 1. It will then issue a “request to proceed” message to the
interlocking for this route. Once the RBC has received a “proceed” message from
the interlocking, it will compute, based on the route that has been granted, a
new EoA for the train. Again, this information is provided by a look-up table,
see Fig. 1. This new EoA is then finally sent as a “movement authority” message
to the train.

With regards to trains, their behaviour is parameterised by maximum speed,
acceleration and braking curves. We make a maximum progress assumption for
trains, i.e., trains are running as fast and as far as possible. Namely, if a train has
a movement authority beyond its current position it will accelerate towards its
maximum speed. When the maximum speed is reached, the train will continue to

3 At this point, there should be maximally one route available that matches a partic-
ular train. This is ensured by the requests from the controller and also the ability of
the interlocking to deny requests for conflicting routes.

ERTMS/ETCS Level 2 in Real-Time Maude 107

travel at this speed. Whilst accelerating or travelling at maximum speed the train
will start braking at the last possible time in order not to overrun its EoA. Trains
are guided by the track layout, respecting the positions to which the interlocking
has set points. As trains move along the track, track equipment senses track
occupation and reports it to the interlocking. We assume that track equipment
(points, track circuits, beacons etc.) functions correctly and that points move
instantaneously. This is justified as our verification aim is to establish correctness
of the location and train specific design parameters for a ERTMS system for a
single geographic region. Therefore, we refrain from modelling track equipment.

Fig. 2. ERTMS control architecture.

2.3 Safety Conditions

In the context of ERTMS, several high level safety conditions have been dis-
cussed such as collision freedom or derailment on a point. In this paper, we
focus on collision freedom, i.e., excluding the possibility that two trains collide.
In the context of classical signalling systems, this property usually is formulated
logically, e.g., we verify that there are never two trains on the same track [9].
In contrast, for ERTMS we rather consider the physical invariant: the distance
between trains never falls below a minimum threshold.

3 Maude/Real-Time Maude

The Maude system [5] is a multi-purpose tool with support for executable spec-
ification, simulation and verification. Its wide range of capabilities made us to
favour Maude. Particularly, we are interested in the Maude LTL Model Checker
[6]. Real Time Maude [13] is an extension of Maude containing specific support
enabling the modelling and verification of real-time systems.

108 P. James et al.

Object-based systems can be modelled as multisets of objects and messages
where the messages define the communication between the objects and typically
trigger actions of the objects. A class C with attributes of a 1 to a n of sort
Sort 1 to Sort n, and an object O with attribute values v 1 to v n of class C are
written as, respectively

class C | a_1 : Sort_1 , ... , a_n : Sort_n .
< O : C | a_1 : v_1 , ... , a_n : v_n > .

Objects declared together with messages

msgs M_1 ... M_k : Sort_1 ... Sort_n -> Msg .

form a multiset of the sort Configuration, a subsort of Maude’s built-in sort
System, using −− for multiset union.

sorts Object Msg Configuration .
subsort Object Msg < Configuration .
op __ : Configuration Configuration -> Configuration [ctor] .

A real-time specification [13] consists of a sort Time (in our case PosRat),
the constructor { } : System− > Globalsystem with the meaning that {t} rep-
resents the whole system (and does not appear as an argument to another func-
tion - as is marked by using the independent type Globalsystem), instantaneous
rewrite rules, and a so-called tick rule that defines how time elapses. As [17], we
use the operators delta and mte in order to define the effect of time elapse on
a configuration, and of the maximal possible time elapse, resp.

op delta : Configuration Time -> Configuration [frozen (1)] .
op mte : Configuration -> TimeInf [frozen (1)] .

Here, TimeInf is the sort Time enriched with an infinity element Inf. These two
functions are distributed over objects and messages, i.e., each object has the
same time available, and as the maximal time elapse for a message has value 0,
time can only progress once all messages are consumed.

vars CON1 CON2 : NeConfiguration . var R : Time .
eq delta(none , R) = none .
eq delta(CON1 CON2 , R) = delta(CON1 ,R) delta(CON2 ,R) .
eq mte(none) = INF .
eq mte(CON1 CON2) = min(mte(CON1),mte(CON2)) .

The argument R of type Time is determined by the tick rule

crl [tick] : {CURRENT} => {delta(CURRENT ,R)} in time R
if R <= mte(CURRENT) [nonexec] .

The default tick time is defined by

(set tick def 1 .)

This means we look at the configuration either at each time step, or more often
in the case that some event occurs, for a justification see e.g. [15].

ERTMS/ETCS Level 2 in Real-Time Maude 109

4 Modelling ERTMS in Maude

To the best of our knowledge, our modelling of ERTMS is the first one com-
prising all ERTMS subsystems required for the control cycle in ERTMS/ETCS
Application Level 2, c.f. Fig. 6 in the ERTMS/ETCS System Requirements Spec-
ification [2]. For simplicity, we consider only uni-directional rail yards, as these
exhibit many of the components of bi-directional rail yards, but are of a lower
complexity with regards to the number of routes required within the model.
Also, we make the standard assumption that trains have no length. This is the
typical abstraction when one deals with trains whose length is shorter than any
track length in the given scheme plan. For a detailed discussion of the topic see,
e.g., our publication discussing train length [10].

In the following, we provide an overview of our model:4 first we discuss the
static data types; then we look at the instantaneously reacting sub-systems,
i.e., controller, interlocking, and RBC; next, we describe how we capture train
behaviour, which requires differential equations describing motion; finally, we
address how to express collision-freedom. We note that our model is generic, with
only location specific data as a parameter. This location specific data has been
encoded manually, however this process could be automated within OnTrack [11].

4.1 Datatypes: Location Specific Data and Messages

We model the rail topology as a connected collection of tracks, points, and routes
and provide a systematic translation into Maude. For the example given in Fig. 1,
the location specific data Maude is encoded as follows:

sort RouteName . ops RouteName1A ... : -> RouteName .
sort Track . ops AA AB AC ... : -> Track .
sort Point . ops P1 P2 : -> Point .

The connection between tracks is given by a next function. If the track under
discussion is a point, as, e.g., track AB, it has two potential successors, namely
AC and BC, depending on the current setting of the point.

op next : Track PointPos -> Track . var PPos : PointPos .
eq next(AA ,PPos) = AB .
eq next(AB ,normal) = AC . eq next(AB ,reverse) = BC .

The various tables (clear and release tables for the scheme plan, the tables of
the RBC) are encoded by defining a function for each column. A typical example
is the “Clear Tracks” column5 of the control table in Fig. 1:

op clearTracks : RouteName -> SetOfTracks .
eq clearTracks(RouteName1A) = (AA , AB , AC) .
...
eq clearTracks(RouteName4) = empty .

4 The models are available at: http://www.cs.swan.ac.uk/%7Ecsmarkus/Processes
AndData/Models.

5 Compared to the given control table, we add RouteName4 to cover the exit track.

http://www.cs.swan.ac.uk/%7Ecsmarkus/ProcessesAndData/Models
http://www.cs.swan.ac.uk/%7Ecsmarkus/ProcessesAndData/Models

110 P. James et al.

The ERTMS components exchange a number of messages, see Fig. 2. As we are
dealing with a single geographic region, controller, interlocking, and RBC are
unique. Thus, for most messages no object identifier is needed:

msgs routerequest , proceedrequest , ... : RouteName -> Msg .

This is in contrast to messages involving trains. For instance, the message

msg magrant : Oid Nat -> Msg .

grants a movement authority (encoded as a natural number, determining the
position to which the train is allowed to travel) to a specific train with an object
identifier of type Oid. Messages are urgent, i.e., their processing time is 0:

eq mte(M:Msg) = 0 .

4.2 Instantaneously Reacting Sub-Systems

The processing time of controller, interlocking, and RBC is negligible compared
to the time that it takes a train to pass a track. Thus, in our modelling we assume
that these three components react instantaneously. In Maude this is expressed
by saying that these components do not pose any time constrains. Here, written
for the controller:

eq mte(< O1 : Controller | >) = INF .

Controller. An ERTMS controller issues route requests. For a general safety
analysis, a random controller that can make any order of route requests should
be considered:

op randomRoute : -> RouteName .
rl randomRoute => RouteName1A .
...
rl randomRoute => RouteName4 .

However, it is also possible to perform safety analysis relatively to a specific
strategy, e.g., a round-robin controller that requests routes as follows – 1A first,
followed by 1B, until route 4, starting over with 1A again:

eq routeOrder = (RouteName1A : RouteName1B : ... : RouteName4) .

Yet another parameter are the times at which the controller makes route
requests. For both controllers we work with a constant frequency.

Interlocking. In rail control systems, the interlocking provides a safety layer
between controller and track. To this end, it monitors the physical rail yard (occ
says which tracks are currently occupied, pointPositions says for each point
if it is in normal or in reverse position), manages locks (pointslocked says if a
point is currently locked by a route), and stores which routes are currently set
(routeset):

ERTMS/ETCS Level 2 in Real-Time Maude 111

class Inter | routeset : MapRouteName2Bool ,
pointslocked : MapPoint2Bool ,
occ : MapTrack2Bool ,
pointPositions : MapPoint2PointPos .

The interlocking is a passive component, i.e., only upon receiving a message
it possibly changes its state and/or sends a message. A typical rule for preserving
safety is the following:

crl routerequest(RN1)
< O : Inter | routeset : MAPRNB1 ,

occ : MAPTB1 , pointslocked : MAPPB3 >
=> < O : Inter | > if (not checkClear(RN1 , MAPTB1)) or

pointsLocked(RN1 , MAPPB3) .

A route request by the controller is ignored in case that the tracks specified in
the clear table for route RN1 are occupied or the points of route RN1 are locked
in different positions.

RBC. The RBC mediates between requests from the trains to extend their
movement authorities and the successful route requests by the controller. To
this end it reconciles two different views on the rail yard: trains use continuous
data to represent their position (in our model the distance from the leftmost
point of the rail yard); the interlocking uses discrete data (track occupation, set
routes, point positions) in its logic. In our model, we take a rather simplified
and also abstract view on the challenges involved. We make the assumption that
trains request a new movement authority only on the track on which their current
authority ends. Furthermore, we abstract the mapping between continuous and
discrete data to the two tables presented in Fig. 1.

In our model, the RBC only holds information on successful route requests (in
availableRoutes) and for which trains (characterised by their Oid) it currently
has an open “request to proceed” (in designatedRoutes):

class RBC | availableRoutes : SetOfRouteNames ,
designatedRoutes : MapOid2RouteName .

Also, the RBC is a passive system component. A typical reaction is the
following: When the interlocking sends a “proceed message” for a route RN, the
RBC sends a new “end of authority” to the train and removes the corresponding
request from its internal state.

rl proceedgrant(RN) < O2 : RBC | designatedRoutes : TRN >
=> magrant(getTrain(RN , TRN), endOfAuthority(RN))

< O2 : RBC | designatedRoutes : removeRoute(_,_) > .

4.3 Trains

The Train class is the only time dependent entity in our model. It is designed
as an automaton with four states stop, acc for accelerating, cons for constant
speed, and brake. There are transitions stop → acc → cons → brake, and
acc → brake and vice versa. In addition, it has fields representing the current

112 P. James et al.

distance (relative to a given reference point 0), speed, acceleration, movement
authority (relative to 0), maximum speed, and the current track segment.

class Train | state : TrainState , dist : NNegRat ,
speed : NNegRat , ac : NNegRat , ma : NNegRat ,
tseg : Track , maxspeed : NNegRat .

We assume that acceleration is linear, and – apart from Scenario 3 in Sect. 5.2 –
use a value of 1 for both acceleration and deceleration. Trains move according to
Newton’s laws, i.e., if at time 0 a train is at DT with speed S and acceleration A,
then the speed at time R is S + A*R and the location is DT + S*R + A*R*R/2.
Its braking distance bd(S,A) is S*S/2*A. We show the rule for a train in the
accelerating state.

crl [acc] :
< O1 : Inter | pointPositions : PointSettings >
delta(< O : Train | state : acc , dist : DT , speed : S,

ac : A, ma : MA , tseg : AN , maxspeed : MAX >, R)
=>
< O1 : Inter | pointPositions : PointSettings >
trackseg(PointSettings , < O : Train |
state : if (S + A * R == MAX)

then cons
else (if R == mteMA(DT ,S,A,MA)

then brake
else acc fi) fi ,

dist : DT + S * R + R * R * A * (1/2),
speed : S + A * R >) if not AN == Exit .

The rule computes the new configuration of a train after time R from its old
configuration and the interlocking. It is sufficient to list those attributes that are
updated, here speed, location, and, possibly, the state. The operator trackseg
takes the new location of the train and the PointSettings from the interlocking
and returns a new train object. In the case that the train has entered a new
track it will update the train object accordingly. Here, we combine the delta
rule together with a state transition, allowing us to exactly determine when
a state transition occurs. An alternative approach would be to decouple these
orthogonal concepts by expressing the rule as equation + rules. This, in turn,
may lead to improvements when model checking.

The time R is determined by the maximal time elapse which is, in the accel-
eration state, the minimum of the following three cases. (1) maximum speed
is reached, (2) the end of a track segment is reached, (3) the distance to the
movement authority is not greater than the required braking distance.

ceq mte (< O : Train | state : acc , dist : DT , speed : S,
ac : A, ma : MA , tseg : AN , maxspeed : MAX >)
= min((MAX monus S) / A,

((endof(AN) + 1) monus DT) / S,
mteMA(DT ,S,A,MA)) if S > 0 .

eq mteMA(DT , S, A, MA) = (((MA monus 1) monus DT) monus
(S * S / (2 * A))) / (2 * S) .

In case (1) we used monos for the maximum of the difference between two num-
bers and 0. For cases (2) and (3) the calculation of mte involves quadratic equa-
tions. From DT + S*R + A*R*R/2 < endof(AN)+1 we could determine R using
an approximation via Newton’s method. However, since, thanks to our default

ERTMS/ETCS Level 2 in Real-Time Maude 113

tick, we have 0 < R <= 1, and therefore 0 < A*R*R/2 <= A*R/2, we approx-
imate the quadratic term either from below or from above depending on the
context: in the case of entering a new track we ignore the quadratic term, and
put the sampling point slightly late, as we want to be on the new track already;
in the case of calculating where to start braking, we bring the event slightly for-
ward, i.e., we start braking slightly too early. Both approximations are justified
by the default tick.

4.4 Safety Condition

For classical railway signalling, we established the following finitisation theorem:
if a signalling system is collision free for two trains, then it is collision free for
any number of trains [9]. We conjecture that this result carries over to ERTMS
and consider our ERTMS system to be safe if – within the scheme plan under
consideration – two trains are always more than, say, 40 m apart. Thus, we check
for the invariant “no collisions”:

eq { REST < train1 : Train | tseg : T1 , dist : N1 >
< train2 : Train | tseg : T2 , dist : N2 > }

|= nocrashDistance (train1 , train2)
=

((not (T1 == Entry) and not (T2 == Entry) and
not (T1 == Exit) and not (T2 == Exit))

and (T1 == T2 or
T1 == next(T2 , normal) or T1 == next(T2 , reverse) or
T2 == next(T1 , normal) or T2 == next(T1 , reverse)))

implies ((N2 monus N1 > 100) or (N1 monus N2 > 100)) .

This formula reads: a configuration with two objects train1 and train2 of type
train models the parameterised formula nocrashDistance iff the state of the two
trains objects under consideration are in the relation specified after the equal
sign. Here, T1 and T2 are the tracks and N1 and N2 are the positions on which the
two trains are respectively. In the formula we check that the trains are more than
100 m apart, provided they are not on the Entry or Exit track, and provided
they are on the same (T1 == T2) or on adjacent tracks.

The second condition is necessary as we model positions from a single refer-
ence point on the Entry track. For instance, on the track plan shown in Fig. 1,
we can have one train on track BC and another train on track AC, both with the
same distance, though by no means colliding with each other. We note that we
use the value of 100 m for our invariant. This is different from the desired 40 m,
but necessary due to our time sampling strategy: we sample the system only
once every second. Within this time, the distance between two trains can reduce
by maximally 60 m as we consider trains that travel at a maximum of 60 m/s.

4.5 Completeness

An important question is whether our modelling is complete, that is all errors can
be detected by our modelling. Ölveczky and Meseguer give criteria for complete-
ness in object oriented Real-Time Maude [15]. Essentially, one needs to prove
that the maximal time elapse function is time robust. This is clearly the case if

114 P. James et al.

we consider movement without acceleration. It is almost all the time the case for
our modelling with acceleration, however the small shifts of the sampling points
require further analysis. We expect that a weakening of Theorem 4 [15], which
takes approximation into account, holds. A necessary premise for this theorem
is non-zenoness for which we give the following argument.

Our modelling is non-zeno in the sense of Henzinger [8] as there are no cycles
in the behaviour of the automaton which allow time to converge. The argument is
that any cycle will involve the accelerating state, which requires a new movement
authority to be granted that will extend the current movement authority by at
least one. This causes a minimal time elapse bounded away from zero by a fixed
amount since the speed of a train is limited.

5 Validation Through Simulation and Error Injection

Here we give a number of scenarios to illustrate that our modelling is able to
capture typical errors that are made when designing ERTMS subsystems. Con-
cerning verification tools, we rely on the model checking capabilities of the Real-
Time Maude Tool [16] to provide the relevant counter-examples. In carrying out
the verification, our starting point is that the generic models of the interlock-
ing, RBC and trains are correct. However, we make no assumptions about the
correctness of the instantiation of our modelling with concrete Control Tables,
Release Tables and RBC tables.

5.1 Simulation

We first demonstrate the behaviour of one train moving through the rail yard in
Fig. 1 with a start position on track AA and a movement authority of 1498. For
this we use the Real Time Maude trew command to execute our model upto a
given time bound.

(trew {
< inter1 : Inter | pointPositions : (P1 |-> normal ,

P2 |-> normal) , ... >
< train1 : Train | state : acc , dist : 2, speed : 0, ac : 1,

ma : 1498, tseg : AA , maxspeed : 60 > }
in time <= 39 .)

The train accelerates until it begins to brake at the distance of 749.72m:

Result ClockedSystem : { < inter1 : Inter | ...>
< train1 : Train | ac : 1, dist : 1499446241/2000000 ,

ma : 1498, maxspeed : 60, speed : 38671/1000 ,
state : brake , tseg : AA >} in time 38671/1000

A query one time step later shows that a movement authority request is made.

{marequest(train1 ,AA) < inter1 : ...>
< train1 : Train | speed : 37671/1000 , ... >} in time 39671/1000

Now, the system cannot progress, unless we add an RBC to our configuration.

ERTMS/ETCS Level 2 in Real-Time Maude 115

(trew { < inter1 : Inter | ... > < train1 : Train | ... >
< rbc1 : RBC | availableRoutes : empty ,

designatedRoutes : empty >} in time <= 78 .)

As no follow-up route is available in the RBC, the train stops at 1497.46 m.
{< inter1 : Inter | ... > < rbc1 : RBC | ... >
< train1 : Train | dist : 1497446241/1000000 , ma : 1498,

speed : 0, state : stop , tseg : AA >} in time 38671/500

To continue, assume that we start in the configuration where the interlocking
has set RouteName3 and the train has made a movement authority request.

(trew {marequest(train1 ,AA)
< inter1 : Inter | routeset : RouteName3 |-> true ,... >
< train1 : Train | state : brake , dist : 760, speed : 37,

ac : 1, ma : 1498, tseg : AA , maxspeed : 60 >
< rbc1 : RBC | availableRoutes : (RouteName3), ... >
} in time <= 17 .)

Below we see that the authority is extended to 6499 m, and P2 gets locked. Time
17 is when the train crosses to track AB and can accelerate to maximum speed.

{ < inter1 : Inter | occ : (AA |-> false , AB |-> true),
pointslocked : P2 |-> true , ... >
< rbc1 : RBC | availableRoutes : empty , ... >
< train1 : Train | dist : 3001/2 , ma : 6499, speed : 52,
state : acc ,tseg : AB >} in time 17

5.2 Error Injection

We now show that our modelling is able to find errors in the design of various
ERTMS components. The following scenarios use our random controller and
check the safety condition presented in Sect. 4.4. Furthermore, we model one
slow train (max speed 20 m/s) and one fast train (max speed 60 m/s).

eq initState = {...
< train1 : Train | state : stop , dist : 0, speed : 0,

ac : 1, ma : 1, tseg : Entry , maxspeed : 20 >
< train2 : Train | state : stop , dist : 0, speed : 0,

ac : 1, ma : 1, tseg : Entry , maxspeed : 60 > ...} .

Scenario 1 – Incorrect Control Tables. We consider a scheme plan where
the designer forgets to put track section AC into the various interlocking tables
in Fig. 1. Model checking highlights that two trains may be within 100 m of each
other, with both trains on track AC.

{...< train1 : Train | ac : 1, dist : 3249, ma: 3249,
maxspeed : 20, speed : 0, state : stop , tseg : AC >

< train2 : Train | ac : 1, dist : 1939979/625 , ma : 6499,
maxspeed : 60, speed : 60, state : cons , tseg : AC > ...}

Scenario 2 – Incorrect RBC Tables. We consider a scheme plan where the
designer incorrectly calculates an EoA of 3449m for route 1 A in the RBC tables
given in Fig. 1. Model checking highlights that two trains may be within 100
meters with train1 overrunning onto track AD due to the incorrect EoA and
train2 approaching on AC.

116 P. James et al.

{...< train1 : Train | ac : 1,dist : 3449,ma : 3449,
maxspeed : 20,speed : 0,state : stop ,tseg : AD >

< train2 : Train | ac : 1,dist : 12433788921/4000000 ,
ma : 6499, maxspeed : 60, speed : 60,state : cons ,
tseg : AC > ...}

Scenario 3 – Incorrect Train Braking Parameters. The computation of the
braking distance for a train is based on various parameters, some of which may
be incorrectly entered by the driver. Hence the train’s physical braking distance
may differ from the computed one. Below we consider a starting scenario where a
deceleration value of 1 (hard-coded, for illustration) has been incorrectly entered
for train2, whilst the physical train has a deceleration value of 8/10. The other
train has correct parameters.

{...< train1 : Train | state : stop , dist : 3249, speed : 0,
ac : 1, ma : 6499, tseg : AD , maxspeed : 20 >

< train2 : Train | state : stop , dist : 1, speed : 0,
ac : 8/10, ma : 1, tseg : Entry , maxspeed : 60 > ...}

The incorrect parameter causes the two trains both to be on track AF within
100 m of each other. This is due to the incorrect behaviour of train2 which
overruns its movement authority thanks to its wrong braking parameter.

{...< train1 : Train | ac : 1,dist : 15662341/2500 , ma : 6499,
maxspeed : 20,speed : 20,state : cons ,tseg : AF >

< train2 : Train | ac : 4/5,dist : 968593576867/156250000 ,
ma : 7999, maxspeed : 60,speed : 60,state : cons ,
tseg: AF > ...}

6 Model Checking Results

In this section we verify a number of rail yards with the Real-Time Maude
Tool [16]. We check that the invariant “no collisions”, c.f. Sect. 4.4, is globally
true, either for all time

mc initState |=t [] nocrashDistance (train1 ,train2) .

or for 300 time steps:
mc initState |=t [] nocrashDistance (train1 ,train2) in time <= 300.

Here, initState is as given in Sect. 5.2. As track plans, we consider the pass-
through station shown in Fig. 1 as well as some variations of it, see Fig. 3. This
is in order to obtain an indication of how variations in the complexity of the rail
yard influence the time required for model checking.

We check all three track plans with manually constructed tables that we
consider to be correct. In all settings the model checking confirms that these rail
yard designs are collision free (within the given time-bound, if applicable). The
table shows verification times6 and the number of rewrite steps for the three
rail yards against the random controller and the round-robin controller (see
Sect. 4.2). The following table presents our model checking results (Table 1).
6 Using a PC running Xubuntu 14.04.2 with an i7 4790 @3.60 Ghz and 32 GB RAM.

ERTMS/ETCS Level 2 in Real-Time Maude 117

Entry

MB1

AA(500m) AB(500m)

P1

AC(150m)

BD(500m) BE(500m)

AD(500m) AE(500m) Exit1

Exit2

Entry

MB1

AA(1500m)

P1

AB(250m)

BC(1500m)

P2

BD(250m) BE(1500m)

AC(1500m)AD(1500m)

CE(1500m) CF(1500m)

MB4

CG(1500m)

BF(1500m)BG(1500m)

MB5

AE(1500m) AF(1500m)AG(1500m)

MB6

AH(1500m) AI(1500m)

P3

BH(250m) BI(1500m)

P4

AJ(250m) Exit

Fig. 3. Track plans for a junction and three platform station.

Table 1. Performance results of model checking three scheme plans.

Scheme Plan Round Robin Controller Random Controller in Time 300

Unbounded

Junction 0.5 s/1,465,601 rewrites 361.1 s/151,564,627 rewrites

Pass-through Station 0.7 s/1,886,303 rewrites 589.0 s/500,397,040 rewrites

Three Platform Station 1.2 s/2,622,022 rewrites 1957.9 s/1,009,144,410 rewrites

The table shows that unbounded model checking is successful when control
is restricted, e.g., to our round-robin controller. This is due to the restrictions
that such a control strategy puts on train movements through the sheme plan.
However, when using our random controller, the state space vastly increases.
Thus, we provide results for up to a given time bound of 300s. Note that this
time is enough to ensure that two trains can travel completely through the
Junction and Station scheme plan. As expected, model checking times increase
with the complexity of the scheme plans. It is future work, to consider further,
more varied rail yards.

7 Related Work

ERTMS is a complex system of systems, made up of distributed components
interconnected through standard (e.g. Euroradio) and proprietary (e.g. Siemens-
specific) protocols and algorithms. Our approach reflects this by covering the
full control cycle between controller, interlocking, radio-block centre and trains.
Our objective is to verify the location specific data of railway designs in their
early development stages, accompanying a standard design process performed
by signalling companies such as our industrial partner Siemens.

Our approach to cover all components is different from several verification
approaches with a focus on a single component only. Vu et al. [18] provide a
generic and re-configurable model of ERTMS Level 2 on the design level shar-
ing our objective. They present their model as a Kripke structure and verify
high-level safety properties such as head-to-head collision or derailment on a

118 P. James et al.

point. Their approach abstracts from trains and the RBC and presumes these
components to be correctly implemented. Thus, their verification focuses on the
interlocking component. Cimatti et al. [4] apply software model checking to ver-
ify the implementation level of a subsystem responsible for the allocation of
logical routes to trains. The software under consideration has been developed
by Ansaldo-STS and is part of this company’s implementation of ERTMS Level
2. They focus on software verification of a sub-component rather than on loca-
tion specific data for the whole system. Nardone et al. [14] develop a new, rail
specific specification language DSTM4Rail, an extension of hierarchical state
machines. They employ DSTM4Rail to the modelling of specific functionali-
ties of the ERTMS Radio Block Centre. Overall the objective is to obtain a
formal model of ERTMS requirements for system testing purposes. This work is
specialised to quality assurance for one ERTMS component.

The openETCS initiative [1] sets out to provide specifications that can be
used for software generation for ETCS train control components, track elements,
and functionality to be integrated in track side interlocking systems. This soft-
ware development follows a model-driven approach, where the methods and tools
shall comply with a SIL 4 development process.

Chiappini et al. [3] work towards the formalisation and validation of the
overall ERTMS/ETCS specifications. To this end, they formalise a reference
subset (including Movement Authority Management and RBC/RBC Handover)
of the system requirements through a set of concepts and diagrams in UML, and
through additional constraints in a defined controlled natural language. This
formalisation then undergoes an automatic validation check covering questions
concerning consistency, scenario compatibility, and if certain properties hold.
Their work puts the ERTMS/ETCS specifications themselves under scrutiny.

8 Summary and Future Work

In this paper, we have modelled, validated, and verified a complex system of
systems of hybrid nature. To this end, we presented an analysis of the ERTMS
system, described its information flow, and provided a concise model in Real
Time Maude. This model is astonishingly small: it consists of around only 1000
lines of code. We believe this is due to the advanced concepts, especially the
object orientated features that Real Time Maude offers. Through simulation we
have demonstrated that our model exhibits a number of expected behaviours.
Furthermore, by systematic error injection, we have shown that safety in ERTMS
depends on all its components. This simulation and error injection give us con-
fidence that our model is valid. Finally, we have presented a number of model
checking results that indicate that, for small rail yards, complexity of model
checking of physical safety properties is under control.

It is future work to explore further, more complex rail yards, including bi-
directional ones. On the practical side we intend to extend our modelling with
further controller strategies and more complex train progression behaviour. On
the more theoretical side, we plan to investigate completeness and abstraction
techniques to reduce model-checking time, including finitisation.

ERTMS/ETCS Level 2 in Real-Time Maude 119

Acknowledgement. The authors would like to thank Simon Chadwick, Siemens
Rail Automation, UK, for his continued support and many helpful discussions. We
also appreciate the helpful advice from Peter Ölveczky on Real-Time Maude and
the constructive comments given by three anonymous referees. Finally, we thank
Erwin R. Catesbeiana (Jr.) for timely hints on how to stay on track.

References

1. openETCS (2015). http://openetcs.org. Accessed 30 August 2015
2. Alcatel, Alstom, Ansaldo Signal, Bombardier, Invensys Rail and Siemens. System

Requirements Specification, Chap. 2, Basic System Description (2006). SUBSET-
026-2

3. Chiappini, A., Cimatti, A., Macchi, L., Rebollo, O., Roveri, M., Susi, A., Tonetta,
S., Vittorini, B.: Formalization and validation of a subset of the european train
control system. In: Proceedings of ICSE 2010. ACM Press (2010)

4. Rizzo, T., Sanseviero, A., Roveri, M., Narasamdya, I., Tchaltsev, A., Lazzaro, A.,
Corvino, R., Cimatti, A.: Formal verification and validation of ERTMS industrial
railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

6. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
WRLA 2002, vol. 71, ENTCS. Elsevier (2002)

7. European Railway Industry. ERTMS (2015). http://www.era.europa.eu/
Core-Activities/ERTMS/Pages/home.aspx. Accessed 30 August 2015

8. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Heidelberg (2000)

9. James, P., Moller, F., Nga, N.H., Roggenbach, M., Schneider, S.A., Treharne, H.:
Techniques for modelling and verifying railway interlockings. STTT 16(6), 685–711
(2014)

10. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S.A., Treharne,
H.: On modelling and verifying railway interlockings: tracking train lengths. Sci.
Comput. Program. 96, 315–336 (2014)

11. James, P., Roggenbach, M.: Encapsulating formal methods within domainspecific
languages: a solution for verifying railway scheme plans. Math. Comput. Sci. 8(1),
11–38 (2014)

12. Lawrence, A., Berger, U., James, P., Roggenbach, M., Seisenberger, M.: Modelling
and analysing the european rail traffic management system in Real-Time Maude.
In: FTSCS 2014 - Preliminary Proceedings (2014)

13. Meseguer, J., Ölveczky, P.C.: Semantics and pragmatics of Real-Time Maude.
Higher-Order Symbolic Comput. 20(1–2), 161–196 (2007)

14. Nardone, R., Gentile, U., Peron, A., Benerecetti, M., Vittorini, V., Marrone, S.,
De Guglielmo, R., Mazzocca, N., Velardi, L.: Dynamic state machines for formal-
izing railway control system specifications. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 93–109. Springer, Heidelberg (2015)

15. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
In: WRLA 2006, vol. 176, ENTCS (2007)

http://openetcs.org
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/home.aspx
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/home.aspx

120 P. James et al.

16. Meseguer, J., Ölveczky, P.C.: The Real-Time Maude tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008)

17. Thorvaldsen, S., Ölveczky, P.C.: Formal modeling and analysis of the OGDC wire-
less sensor network algorithm in Real-Time Maude. In: Bonsangue, M.M., Johnsen,
E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 122–140. Springer, Heidelberg
(2007)

18. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of inter-
locking systems featuring sequential release. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2014. CCIS, vol. 476, pp. 223–238. Springer, Heidelberg (2015)

Modeling Railway Control Systems in Promela

Roberto Nardone1(B), Ugo Gentile1, Massimo Benerecetti1, Adriano Peron1,
Valeria Vittorini1, Stefano Marrone2, and Nicola Mazzocca1

1 Università di Napoli Federico II, Naples, Italy
{roberto.nardone,ugo.gentile,massimo.benerecetti,adrperon,

valeria.vittorini,nicola.mazzocca}@unina.it
2 Seconda Università di Napoli, Naples, Italy

stefano.marrone@unina2.it

Abstract. This paper presents an approach to systematically build
Promela models with the aim of generating test cases within the sys-
tem level testing process of railway control systems. The paper focuses
on the encoding of the system model, of the aspects related to the repre-
sentation of possible execution environments and their interaction with
the system. The input for building a Promela model of the system under
test is a state machine based specification. Indeed, state machines are
one of the most common notations used in industrial settings to model
critical systems and allow for easily obtaining the Promela model of the
system by applying a well structured transformational approach; further-
more, state-based formalism are also highly recommended by CENELEC
norms to model railway control systems.

In our approach Dynamic State Machines (DSTMs) are used, a newly
developed extension of hierarchical state machines which allow for mod-
eling dynamic instantiation of processes. The approach is applied to a
functionality of the Radio Block Centre, the vital core of the ERTM-
S/ETCS Control System, in order to show the feasibility and effective-
ness of the generation of the Promela model on a real system.

Keywords: Model checking · Promela · SPIN · Dynamic state
machine · CRYSTAL · Railway control systems · Test case generation

1 Introduction and Related Work

The extensive usage of model checking in the Verification&Validation (V&V)
activities in the context of control systems development is not a common prac-
tice in industry. One of the reasons is the difficulty of building a non trivial model
of the system under test (and expressing the properties to be verified) from the
artifacts produced during the verification and testing process, without requiring
radical changes in the process itself. Other reasons may be the lack of efficiency
of the available approaches or the lack of expressive power of the languages used
to build the system models. This paper addresses these problems with specific
reference to the railway domain. The European norm CENELEC EN50128 [3]

c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 121–136, 2016.
DOI: 10.1007/978-3-319-29510-7 7

122 R. Nardone et al.

emphasizes the usage of model checking as one of the highly recommended tech-
niques to be exploited for formal verification purposes. We propose an automat-
able approach to build a Promela model, which can be easily integrated into
V&V activities. The resulting Promela model can be conceptually divided into
two main parts: the first one consists of a set of Promela processes obtained
by translating a state-based specification of the system under test (SUT), the
second one is a dedicated Promela process modeling possible environment execu-
tions. In this work we adopt DSTM (Dynamic State Machine) [9] as the formal
language used to model the SUT. DSTM extends Hierarchical State Machine
(HSM, [1,8]) and allows for dynamic instantiation of machines (processes), pro-
cedure calls, parallelism, parameter passing, interrupts, communication through
global variables and channels. The basic ideas underlying the proposed approach
are not new. In past work [5] a model-based approach is proposed for the formal
verification of the executable code of a railway control system. Several transla-
tions from state-based formalisms to model checkers have been proposed in the
literature. For example, the work [13] describes an approach to automatically
generate test cases for code coverage, by exploiting the capability of the NuSMV
model checker. A similar approach is presented in the work [4], which focuses
on a methodology to encode Abstract State Machine into Promela, in order to
automatically generate test cases. In the past work [12] timing constraints, spec-
ified with MARTE Profile, are modeled as automata and then translated into
Promela models for the verification of constraints fulfillment.

With respect to the literature, the major strength of our work resides in the
definition of a structured approach to build non trivial Promela models taking
into account both the issues to be faced in modeling the SUT and the (possibly
non-deterministic) behaviors of the environment. The proposed approach is fully
automatable starting from a DSTM specification and can be easily integrated in
existing industrial settings. The ability of constraining the possible inputs to the
SUT provided by the non-deterministic environment, allows, on the one hand,
to achieve efficiency in terms of state space generation and analysis effort and,
on the other, to prevent the generation of unfeasible test cases.

This paper provides a bird-eye view on the overall modeling approach, in
particular a description of how some of the features of DSTM are translated
into Promela and the definition of the environment model are presented by
using a running example. A complete case study is also proposed, based on a
functionality of the Radio Block Centre, a real railway control system. The paper
is organized as follows: Sect. 2 summarizes the essential features of DSTM and
introduces the running example. Section 3 presents the approach to construct
the Promela model. Section 4 contains the railway case study and, finally, Sect. 5
provides some closing remarks and hints about future work.

2 Background and Running Example

DSTM [9] is a newly defined formalism developed within the context of the
ongoing ARTEMIS Joint Undertaking project CRitical sYSTem engineering

Modeling Railway Control Systems in Promela 123

AcceLeration1 (CRYSTAL, [10]). It has been designed according to the needs
expressed by a railway industry in order to be easily integrated in the testing
process of signaling control systems. The ultimate goal is to develop an interop-
erable testing environment providing a high level of automation [2].

As the aim of the paper is to introduce an approach to build non trivial
Promela models starting from a DSTM specification of the SUT, in the follow-
ing we provide an informal introduction to DSTM by means of the toy run-
ning example depicted in Fig. 1. The example contains two machines: a machine
modeling a Set-Reset (SR) flip-flop (Fig. 1(a)), and machine that models a 4-bit
register (Fig. 1(b)) by activating four parallel instances of the flip-flop machine.

A DSTM is a collection of parametric machines, channels, variables and data-
types. The evolution of a DSTM is a sequence of instantaneous reactions (steps).
A step is a maximal set of transition firings which are triggered by the current
set of available events avoiding sequential firings of transitions within the same
step. DSTM allows for the definition of (internal or external) channels and global
variables that allow for communication between machines. Additionally, DSTM
gives the possibility to build complex types starting form basic ones. Specifi-
cally, basic types are integer, enumerations and channel names. Basic types can
be composed to constitute compound types and multi-types. Compound types
are structured types similar to records of basic types; multi-types, instead, are
collections of basic and compound types. Channels may convey messages of any
available type.

Q0

Q1

T16: C_SR?
[C_SR[?<bit::bit_0,_>]]
|C_out!<bit::bit_0>

T17: C_SR?
[C_SR[?<bit::bit_1,_>]]
|C_out!<bit::bit_1>

T19: C_SR?
[C_SR[?<_,bit::bit_1>]]
|C_out!<bit::bit_0>

T18: C_SR?
[C_SR[?<_,bit::bit_0>]]
|C_out!<bit::bit_1>

idle

box_ff0
[M_FlipFlop]

M_Register
M_FlipFlop (Chn[couple_bit] C_SR,
Chn[couple_bit] C_out)

box_ff1
[M_FlipFlop]

box_ff2
[M_FlipFlop]

box_ff3
[M_FlipFlop]

T1 T2: power_on?

T3
T4:
inst:
C_SR=C_SR_0
C_out=C_out_0

T8: power_off?

T9 T10 T11 T12

T13

T14: |C_out!<bit::bit_0>

T15:
|C_out!<bit::bit_1>

by_1

by_1

(a) (b)

T5:
inst:
C_SR=C_SR_1
C_out=C_out_1

T6:
inst:
C_SR=C_SR_2
C_out=C_out_2

T7:
inst:
C_SR=C_SR_3
C_out=C_out_3

init_flipflop

init_register

exiting_register

Fig. 1. (a) SR flip-flop model. (b) 4-bit register model

A single machine is composed of vertices, transitions and parameters. Dif-
ferent kinds of vertices may be included in a machine. Nodes represent the pos-
sible control states (e.g., node idle of M Register in Fig. 1). An initial node
is also present in each machine, corresponding to the default entry (e.g., node
init register of M Register). Moreover, a machine may contain additional
entering nodes (e.g., node by 1 of M FlipFlop) and exiting nodes (e.g., node

1 http://www.crystal-artemis.eu/.

http://www.crystal-artemis.eu/

124 R. Nardone et al.

exiting register of M Register). Boxes represent single or multiple machine
invocations (parallel procedure calls). A transition entering a box models the
invocation of the machine(s) associated with the box, while a transition leaving
a box corresponds to a return from that machine(s). For instance, transitions
T4-T7 perform invocations of the parametric machine M FlipFlop, with suitable
instantiation of its parameters, by entering boxes box ff0, box ff1, box ff2
and box ff3, respectively. Parallel behavior can be modeled either by associat-
ing multiple machines with a single box, or by explicitly splitting and merging
the control flow using fork and join constructs. To this end, Fork and Join
pseudonodes are provided in DSTM. A transition exiting a fork can execute
either synchronously or asynchronously with the currently executing process. In
the latter case, a transition from the fork node leads to a node of the caller
machine. For instance, transition T2 triggers an asynchronous fork, instantiat-
ing four boxes whose associated machines execute asynchronously with the caller
machine M Register. Join nodes allow for merging of multiple control flows from
concurrently executing processes. It either synchronizes the termination of the
involved processes or forces their termination if a preemptive transition, marked
by the symbol ⊗, enters the join node. Note that asynchronous forks, occur-
ring within loops, allow for the dynamic instantiation of processes. This feature
may lead to an unbounded number of processes and, as a consequence, to an
unbounded state space. To allow Spin to analyze of the resulting designs, the
generation of the corresponding Promela models bounds the number of instan-
tiation of each machine.

Transitions are decorated with triggers, conditions and actions. With refer-
ence to Fig. 1, the decoration of transitions T2 in machine M Register contains
only a trigger which tests the presence of a message on the channel power on,
no additional condition is required for firing and no action is performed. Tran-
sition T16 in machine M FlipFlop, instead, requires the presence of a specific
message on the parametric channel C SR. In fact, messages sent over the channel
C SR are structured as couple bit = 〈bit, bit〉, where bit is an enumerative
type bit = {bit 0,bit 1}. The trigger of T16 tests the presence of a message
over the channel C SR, while the condition further requires that the content of
the received message is a pair whose first component has the value bit::bit 0,
whereas the second component is simply ignored (denoted by the wildcard “ ”).
The action performed upon firing of the transition corresponds to the delivery
of the value bit::bit 0 on the parametric channel C out. Parameters associ-
ated to a machine (e.g., parameters C SR and C out of machine M FlipFlop) are
instantiated at invocation time.

3 Definition of the Promela Model

Starting from a DSTM specification of the SUT, we build a Promela model with
the goal of generating test sequences, exploiting the capability of model checkers
to build counterexamples of violated properties. By following a structured app-
roach, a set of Promela processes is systematically built from the DSTM model of

Modeling Railway Control Systems in Promela 125

the SUT, together with a Promela process modeling a (non-deterministic) envi-
ronment. We exemplify the generation of test sequences by assuming that the
coverage of transitions is required. A more general discussion about requirements
and how they are expressed is out of the scope of this work. Before describing
how the Promela model can be automatically built, we provide a high level
overview of the steps implementing the translation of DTSMs into Promela.

3.1 Generation Steps

System Model (DSTM)

Requirements

dstm
2

dstm

dstm
2

promela

System Model

Promela Code

Environment Model

Never Claims

Test Cases
(counterexamples)

mtype = {N1, N2, ...}
...
proctype process_Machine(mtype P1, ...) {
...
}

active proctype Engine() {
...
}

never {
...
}

Fig. 2. Overview of the general approach.

Figure 2 depicts the steps which enable the automatic generation of the Promela
model. Since Promela does not support hierarchical specifications, the encoding
of a hierarchical DSTM model is performed in two phases. The first one is a
dstm2dstm, where the hierarchical source model is flattened, to get rid of the
hierarchical structure of a DSTM (the vertical modularity) and suitably encod-
ing the horizontal modularity (i.e., parallelism). In this phase, all boxes, forks
and joins are removed from the model and additional nodes are inserted when
necessary. The dynamic instantiation of machines is translated into specific run
commands, added to the action list of those transitions replacing the ones enter-
ing the boxes. During the second step, named dstm2promela, the flat DSTM
model resulting from the previous phase is translated directly into Promela and
a dedicated Promela process, called Engine, is generated to model the execution
environment of the SUT.

The test goal and the assumptions about the execution environment of the
SUT (if any) provide requirements that the model of the environment must
satisfy. These requirements drive: (1) the refinement of the Engine process, by
inserting constraints on the communication channels, and (2) the generation
of never claims. Never claims are used to focus the analysis of the system to
behaviors of special interest. In our case, never claims are used to describe those
behaviors of the system that exhibit the occurrence of some desired transition.
When a never claim is fulfilled, the model checker Spin provides a counterexam-
ple, which, in the present setting, corresponds to a possible test sequence that
covers the specified transition.

126 R. Nardone et al.

3.2 Building the System Model

The step semantics of DSTM prevents sequential firings of transitions within
the same execution step. Hence, we need to guarantee that at most one enabled
transition can fire for each active process. To this aim, each DSTM machine M is
translated into a Promela process, called process M, which is instantiated by its
caller process using the Promela command run, which allows for dynamic activa-
tion of processes. Each process encoding machine M is then executed until a ter-
mination message, sent by its caller, is received over a special channel ch term M
(defined as a local channel to the caller). Each Promela process, modeling a
DSTM machine, must own a token in order to fire an enabled transition. When
a process owns a token it is scheduled, it consumes its token and: if none of
its transitions is enabled, the process propagates the token to each of the child
processes it has previously activated, if any; otherwise, one of the enabled tran-
sitions is selected and executed. At the beginning of each step only the process
corresponding to the initial machine (main) owns the token. This machine is
M Register in the case of the running example. A set of global variables and
channels is declared for each process. In Listing 1 all the automatically generated
declarations for the running example are reported.

Listing 1. Global variables for the running example.

1 . #de f i n e MAX PROC 6
2 . mtype l a s t t r a n s i t i o n ;
3 . b i t has token [MAX PROC] ;
4 . mtype = { i n i t r e g i s t e r , i d l e , e x i t i n g r e g i s t e r } ;
5 . mtype = {T1 , T2 T3 T4 T5 T6 T7 , T8 T9 T10 T11 T12 T13 } ;
6 . mtype = { i n i t f l i p f l o p , by 1 , Q0, Q1} ;
7 . mtype = {T14 , T15 , T16 , T17 , T18 , T19} ;
8 . mtype s ta t e M Reg i s t e r [MAX PROC] ;
9 . mtype t r an s i t i on M Reg i s t e r [MAX PROC] ;
10 . mtype state M Fl ipFlop [MAX PROC] ;
11 . mtype t rans i t i on M Fl ipF lop [MAX PROC] ;
12 . mtype = {b i t 0 , b i t 1 } ;
13 . chan power on = [2] o f { b i t } ;
14 . chan power o f f = [2] o f { b i t } ;
15 . chan C SR 0 = [2] o f {mtype , mtype } ;
16 . chan C out 0 = [2] o f {mtype } ;
17 . chan C SR 1 = [2] o f {mtype , mtype } ;
18 . chan C out 1 = [2] o f {mtype } ;
19 . chan C SR 2 = [2] o f {mtype , mtype } ;
20 . chan C out 2 = [2] o f {mtype } ;
21 . chan C SR 3 = [2] o f {mtype , mtype } ;
22 . chan C out 3 = [2] o f {mtype } ;

A global variable has token, typed as a bit array, is used to store the assign-
ment of the tokens described before (line 3). Specifically, this array contains 1 in
the i-th location if the machine with pid equal to i currently has the token. Note
that this array is global and visible to the entire Promela model. Two enumera-
tion types (mtype) introduce symbolic names for nodes and transitions (e.g., lines
6 and 7 correspond to process M FlipFlop). The mtype vector variable state M
is used to maintain the current states of all the instances of machine M (e.g., line
10). Its elements are all initialized to the initial node of the corresponding machine.
A mtype vector variable transition M is used to keep track, for each instance of
machine M, of the transition that fires in the current step (e.g., line 11). From lines
12 to 22 types and channels are declared. Both channels C SR and C out can store
two messages, in order to correctly implement the step semantics, as it will be

Modeling Railway Control Systems in Promela 127

explained in Sect. 3.3. Finally, the variable last transition (line 2) is used to
store the name of the last transition covered in an execution. This information is
used for instrumentation purposes, specifically it allows for the definition of the
never claim requiring to find a the covering of a transition.
Promela Model of MachineM FlipFlop. Each node of a machine is mapped
into a guarded statement of the form guard −>statement . In Listing 2 an excerpt
of the Promela translation of machine M FlipFlop is reported. Notice that the
channel names C SR and C out are parameters. The actual names are provided by
the caller process, which can distinguish the different instances of M FlipFlop.
Furthermore, the ch term channel is added as parameter: over this channel,
defined locally to the caller, this latter sends the termination message to the one
executing.

Listing 2. Promela code of machine M FlipFlop (excerpt).

24 . proctype process M Fl ipFlop (chan C SR ; chan C out , chan ch term) {
25 . do

46 . :: (s tate M Fl ipFlop [p id]==Q0 && has token [p id]==1) −>
47 . atomic {
48 . p r i n t f (”< current node[\%d] = Q0>\n” , p id) ;
49 . has token [p id]=0;
50 . i f
51 . :: (C SR? [b i t 0 ,]) −>
52 . C out ! b i t 0 ;
53 . p r i n t f (”< f i r i n g t r a n s i t i o n [\%d] = T16>\n” , p id) ;
54 . t r ans i t i on M Fl ipF lop [p id]=T16 ;
55 . s tate M Fl ipFlop [p id]=Q0 ;
56 . l a s t t r a n s i t i o n=T16 ;
57 . :: (C SR? [b i t 1 ,]) −>
58 . C out ! b i t 1 ;
59 . p r i n t f (”< f i r i n g t r a n s i t i o n [\%d] = T17>\n” , p id) ;
60 . t r ans i t i on M Fl ipF lop [p id]=T17 ;
61 . s tate M Fl ipFlop [p id]=Q1 ;
62 . l a s t t r a n s i t i o n=T17 ;
63 . :: e l s e
64 . f i ;
65 . }

86 . od un l e s s {
87 . ch term ?1 ;
88 . p r i n t f (”<Machine M FlipFlop [\%d] terminated>\n” , p id) ;
89 . }
92 . }

The guard of the statement checks whether some enabled transition is allowed
to fire from a node: the current node must be the source node of the transi-
tion (e.g., state M FlipFlop[pid]==Q0 in Listing 2, line 45) and the process
owns the token (has token[pid]==1, line 45). The statement is atomic and
contains a sequence of statements executed indivisibly. The first statement in
the sequence consumes the token. Then, a conditional statement contains one
guarded statements for each transition exiting from that node (e.g., lines 51, 57).
Their guards correspond to the enabling condition of the DSTM transitions and
the associated statements translate the actions of the transitions. The actions
(if any) associated with a DSTM transition are translated into basic Promela
statements and operators, and they are executed when the associated guarded
statement is selected. If more than one guarded statement is executable, one of
them is non-deterministically selected. The else branch in the conditional state-
ment (e.g., line 63) is taken when no transition can fire. The process is executed

128 R. Nardone et al.

until a termination message, sent by its caller, is received by the caller over the
channel ch term (lines 86–89).

Promela Model of Machine M Register. As opposed to the previous com-
ponent, machine M Register has a hierarchical structure, which requires to be
flattened before translating it to Promela. The flattening phase removes all the
boxes, fork and join constructs. In doing that, some transitions may be modified,
eliminated or added. Moreover, additional variables and channels are introduced
and proper conditions and actions are modified or added to the decorations of
existing transitions. These elements are used to provide additional information
and directives for the generation of the Promela code. The resulting flattened
model of the DSTM in Fig. 1(b) is reported in Fig. 3.

idle

T2_T3_T4_T5_T6_T7: power_on?
|pid_temp=run process_M_FlipFlop(C_SR_0, C_out_0, ch_term_box_ff0_M_FlipFlop);
 state_M_FlipFlop[pid_temp]=init_flipflop; ...;
 pid_temp=run process_M_FlipFlop(C_SR_3, C_out_3, ch_term_box_ff3_M_FlipFlop);
 state_M_FlipFlop[pid_temp]=by_1;

T8_T9_T10_T11_T12_T13: power_off? |ch_term_box_ff0_M_FlipFlop!1;
ch_term_box_ff1_M_FlipFlop!1;

...;

T1

M_Register

init_register

exiting_register

Fig. 3. Promela representation of the hierarchical machine M Register.

The flattening of machine M Register proceeds as follows. Since transition
T2 (see Fig. 1(b)) enters a fork, the process continues its execution after the fork
is performed. The DSTM model of M Register is changed as follows:

– the fork and join nodes and the boxes are removed together with their entering
and exiting transitions;

– a loop transition from the node idle is created which replaces transition T2,
T3, T4, T5, T6 and T7. The decoration of this transition specifies the trigger
of T2 (i.e., power on?) and actions which contain all the information needed
to instantiate the machines called inside the boxes; in particular, the actions
specify the Promela statements to execute the four instances of the processes
called by the fork operation (e.g., run process M flipflop) and set their
initial state (e.g., state M flipflop[pid temp]=initial).

– a transition from node idle to the exit node is created which replaces
transitions T8, T9, T10, T11, T12 and T13. The decoration of this transi-
tion specifies the trigger of the preemptive transition T8 (power off?) and
actions encoding the preemptive join by requesting the termination of the
four flip-flop processes through message on the termination channels (e.g.,
ch term box ff0 M FlipFlop!1) which are added to the model.

Modeling Railway Control Systems in Promela 129

Listing 3 shows an excerpt of the Promela process encoding the flat machine
depicted in Fig. 3 obtained by applying the technique explained above.

Listing 3. Promela code of machine M Register (excerpt).

94 . proctype proce s s M Reg i s t e r () {
95 . byte i ;
96 . pid pid temp ;
97 . b i t my chi ldren [MAX PROC] ;
98 . chan ch term box f f0 M Fl ipFlop , ch term box f f1 M Fl ipFlop ,

ch term box f f2 M Fl ipFlop , ch term box f f3 M Fl ipFlop ;
99 . do
. . .
109 . :: (s ta t e M Reg i s t e r [p id]== i d l e && has token [p id]==1) −>
110 . atomic {
111 . p r i n t f (”< current node[\%d] = id l e >\n” , p id) ;
112 . has token [p id]=0;
113 . i f
114 . :: (power on ? [1]) −>
115 . pid temp = run process M Fl ipFlop (C SR 0 , C out 0 ,

ch term box f f0 M Fl ipFlop) ;
116 . s tate M Fl ipFlop [pid temp]= i n i t f l i p f l o p ;
117 . my chi ldren [pid temp] = 1 ;
118 . has token [pid temp]=1;

135 . :: (power o f f ? [1]) −>
136 . ch term box f f0 M Fl ipFlop ! 1 ;
137 . ch term box f f1 M Fl ipFlop ! 1 ;
138 . ch term box f f2 M Fl ipFlop ! 1 ;
139 . ch term box f f3 M Fl ipFlop ! 1 ;
140 . p r i n t f (”< f i r i n g t r a n s i t i o n [\%d] = T8 T9 T10 T11 T12 T13}>\n” , p id) ;
141 . t r an s i t i on M Reg i s t e r [p id]=T8 T9 T10 T11 T12 T13 ;
142 . s ta t e M Reg i s t e r [p id]= e x i t i n g r e g i s t e r ;
143 . l a s t t r a n s i t i o n=T8 T9 T10 T11 T12 T13 ;
144 . :: e l s e −>
145 . f o r (i : 0 . . MAX PROC−1) {
146 . has token [i]=my chi ldren [i] ;
147 . }
148 . f i ;
149 . }
. . .
155 . od un l e s s {
156 . ch term M Register ? [1] ;
157 . p r i n t f (”<Machine proces s M Reg i s t e r [\%d] terminated>\n” , p id) ;
158 . }
159 . }

3.3 Modeling the Environment

As anticipated in the previous section, the possible environments of the SUT
are modeled by a Promela process named Engine. This is the first process to
be activated in the and it is the only process required to be running in the
initial state by using the prefix active in its proctype declaration. The process
Engine is in charge of: (1) instantiating the main machine of the system model;
(2) non-deterministically generating messages, delivered by the environment on
the external channels at the beginning of each execution step; (3) assigning the
token to the main machine, starting the execution of a new execution step.

The Engine process is activated whenever no statement is executable in
any process belonging to the system model. This situation is captured by the
timeout Promela variable being true. This happens when each process belonging
to the system model has consumed its own token, meaning that the execution
current step is completed. Furthermore, Engine uses local variables to non-
deterministically generate new messages in the external channels. These local
variables are in correspondence to the fields of the compound types exchanged
over those channels. Hence, in the running example, we have two variables, temp1
and temp2, as declared at line 162 of the snippet of code reported in Listing 4.

130 R. Nardone et al.

Listing 4. Promela code of machine
Engine - initialization

Listing 5. Promela code of machine
Engine - generation of new messages

C N

(a) (b)

current
value

(c)

C N

non deterministic
input (if empty)

C N C N

(d)

current
value

Fig. 4. Message generation for the
power on channel.

First, the Engine process runs the main machine (i.e., process M Register())
and stores its pid in the local variable pid main (Listing 4, line 164). Then,
Engine initializes the channels (Listing 4, lines 167–171).

After those initialization steps, process Engine starts an atomic block in which
it non-deterministically generates the messages to be sent over the channels (e.g.,
Listing 5, lines 182–187 initialize the power on channel). The starting statement
of this block is identified by the label generation at line 178 in Listing 5.

The subsequent evolution of the processes is driven by a suitable message
handling mechanism, implemented as explained in the following. Each external
channel has a buffer that stores two messages (Fig. 4). The first position C is
used to store the message available in the current step, whereas the position N
is used to store the message to be delivered in the next step (if any). During the
execution of the current step, the processes modeling the SUT can read mes-
sages contained in positions C of any channels, without removing them. If a new
message is produced by the SUT, it is stored in positions N of the corresponding
channel (Fig. 4(a)). At the beginning of the next step, the Engine checks for the

Listing 6. Promela code of machine Engine - constraints.

212 . //MESSAGES ON C SR 0
213 . i f
214 . :: (l en (C SR 0)==1) −>
215 . i f
216 . :: (1) −> temp1=0;
217 . :: (1) −> temp1=1;
218 . f i ;
219 . i f
220 . :: (1) −> temp2=0;
221 . :: (1) −> temp2=1;
222 . f i ;
223 . i f
224 . :: (temp1==1 && temp2==1)−> goto abort ;
225 . :: e l s e −> sk ip ;
226 . f i ;

Modeling Railway Control Systems in Promela 131

presence of messages in positions N, (Listing 5, line 183). If a position N does
not contain a message generated by the SUT processes during the previous step,
the Engine generates a new message by using temp variables and if statements
(Fig. 4(b), Listing 5, lines 184–189). Finally, the Engine consumes all the mes-
sages contained in positions C (line 192), by moving the content of position N in
each channel to position C, thus making the messages previously generated for
the next steps available (Fig. 4(c)).

Note that the receive statement at line 192 is always executable. This is
ensured by the fact that the SUT never removes messages from the external
channels. Therefore, that statement is never blocked, as two messages are always
stored in each channel when it is executed.

The generation block ends by assigning the token to the main process (List-
ing 5, line 344). Then, the Engine process enters the do construct, where it waits
until the Promela global variable timeout evaluates to true. This happens when
no statement is executable in the active processes, hence when all the SUT
processes have consumed their token. In this case, Engine executes a jump to
the generation label, starting a new step.

3.4 Constraining Behaviors

The non-deterministic generation of messages to be sent over the channels can
be constrained to a set of requirements that the desired environment must fulfill.
Such constraints can be used to prevent the environment to prompt the system
with unfeasible combinations of inputs.

The simplest constraint a designer may require is to avoid the generation of
conflicting messages over the channels. As an example, the SR flip-flop cannot
be prompted with both R = 1 and S = 1. This constraint can be expressed in
Promela as shown in Listing 6. The constraint is included in the already described
generation block for channel C SR 0. After the generation of the values for the
signals S and R in the variables temp 1 and temp 2 respectively, the statements
reported at lines 223–225 check that these values are not both equal to 1. If
the constraint is not satisfied, the Engine process jumps to the abort label
(reported in Listing 5), which immediately ends this process, interrupting the
related behavior. Note that the alternative handling of constraint violations that
generates a new set of values for the messages is not an efficient solution, since
it increases the number of possible execution paths in the state space, without
adding meaningful behaviors. Similarly, we can express constraints involving
different fields of the same compound message and constraining the generation of
messages subject to the occurrence of specific events. These kinds of constraints
are not described here for sake of space.

4 A Case Study in the Railway Domain

ERTMS/ETCS (European Rail Traffic Management System/European Train
Control System, [11]) is a standard for the interoperability of the European
railway signalling systems ensuring both technological compatibility among

132 R. Nardone et al.

trans-European railway networks and integration of the new signalling system
with the existing national interlocking systems. The ERTMS/ETCS specifica-
tion identifies three functional levels featuring growing complexity. They can be
implemented singularly or in conjunction and mainly differ in the communica-
tion mechanisms adopted to control the trains. Level 2 and Level 3 represent
two more cutting-edge solutions than Level 1, at this moment Level 2 is the
most widespread choice between Level 2 and Level 3. A reference architecture for
ERTMS/ETCS systems consists of three main subsystems: the on-board system
is the core of the control activities located on the train; the line side subsystem
is responsible for providing geographical position information to the on-board
subsystem; the trackside sub-system is in charge of monitoring the movement
of the trains. The Radio Block Centre (RBC) is the most important component
of the track side subsystem of the ERTMS/ETCS architecture. RBC is a com-
puting system whose aim is to guarantee a safe inter-train distance on the track
area under its supervision. It interacts with the on-board system by managing
a communication session, by using the EURORADIO protocol and the GSM-R
network. In the following, part of a realistic realization of an RBC procedure is
described, together with the test generation procedure that demonstrates how
the proposed approach can be effectively applied to obtain test sequences.

4.1 The Communication Procedure of the Radio Block Centre

The Communication procedure is modeled by the DSTM specification shown in
Fig. 5. The main machine M CommunicationEstablishment (Fig. 5(a)) is in
charge of modeling the management of the connection requests issued by the
trains. It accepts a limited number of requests (collected in variable V cont)
and for each accepted request it instantiates a new machine M ManageTrain by
entering the box MCE manageTrain. Three transitions exit from node MCE idle:
MCE T03, MCE T06 and MCE T02. MCE T03 enters the fork, it is triggered by the
availability of a message on channel C request and it is guarded by the condition
V cont<=3. The action of this transition delivers acceptance message over chan-
nel C answer, increments counter V cont and stores in variables V chSystemVer
sion, V chAck and V chSessionEstablished the names of the channels to be
used to communicate with the train. The asynchronous control flow exiting
from this fork returns back to node MCE idle. When an instance of machine
M ManageTrain terminates its execution, transitions MCE T06 and MCE T07 merge
the control flow by entering the join node; transition MCE T08 exiting the join
decrements the counter V cont. Transition MCE T02 from node MCE idle, instead,
is activated on receiving a connection request, when the maximal number of ser-
vice requests has been reached. The action of this transition delivers of a suit-
able refusal message over channel C answer. Machine M ManageTrain (Fig. 5(b))
models the management of the communication procedure with a specific train. It
takes the names of the channels, on which the train and RBC will communicate,
as parameters. This machine enters node MMT idle and then instantiates machine
M SessionEstablishment, which models the session establishment protocol, by
entering the corresponding box. Machine M SessionEstablishment (Fig. 5(c))
can terminate its execution with different exiting conditions (i.e., different exiting

Modeling Railway Control Systems in Promela 133

MCE_idle

MCE_T01:
/V_cont:=0;

MCE_T03:
C_request? [V_cont<=3] /C_request[?]<V_chSystemVersion,
 V_chAck, V_chSessionEstablished>;
 C_answer!<answer::accepted>;

 V_cont:=++V_cont;

MCE_T08:
/V_cont:=--V_cont;

MCE_manageTrain
[M_ManageTrain]

MCE_T02: C_request? [V_cont=4] /C_answer!<answer::refused>;

M_CommunicationEstablishment

MCE_T05: inst: ch_SystemVersion =
 V_chSystemVersion;

ch_Ack =
V_chAck;

 ch_SessionEstablished =
 V_chSessionEstablished;

MCE_T04
MCE_T06

MMT_establishment
[M_Session

Establishment]

MMT_som
[M_StartOf

Mission]

aborted
MSE_som

MSE_entry

MMT_entry
[M_Entry]

MMT_giveMA
[M_MovAuth]

MMA_afterEntry
MMT_idle

MMT_T02:
inst:
ch_SystemVersion=
ch_SystemVersion;
...

MMT_T03: inst: ...

MMT_T04: inst: ...

MMT_T05: inst: ...

MMT_T06: inst: ...

MMT_T01

MMT_T07

MMT_T08

MSE_waitFor
Ack

MSE_T01: /ch_SystetmVersion!<version::V1>

MSE_T03: ch_Ack?MSE_T02:
ch_SystemVersion? ||
ch_SessionEstablished?

MSE_aborted MSE_entry

MSE_T06:
ch_SessionEstablished?
[ch_SessionEstablished[?
<area::L1,_,_>]]

MSE_som

M_SessionEstablishment(Chn[M_SystemVersion] ch_SystemVersion, Chn[M_Ack] ch_Ack,
 Chn[M_SessionEstablished] ch_SessionEstablished)

MSE_waitFor
SessEstab

(a)

(b)

(c)

MSE_T04:
ch_SystemVersion?
|| ch_Ack?

MSE_T05:
ch_SessionEstablished?
[ch_SessionEstablished[?
<area::L0,_,_>]]

M_ManageTrain(Chn[M_SystemVersion] ch_SystemVersion, Chn[M_Ack] ch_Ack,
 Chn[M_SessionEstablished] ch_SessionEstablished)

MCE_T07

Fig. 5. DSTM model of the Communication Procedure.

nodes). If the communication session with the train has been successfully estab-
lished, then the machine exits via either via node MSE som or node MSE entry,
according to the specific communication mode established. Depending on the
exit node of this machine, machine M ManageTrain then instantiates either
M StartOfMission or machine M Entry. If, on the other hand, the session estab-
lishment protocol aborts, then it terminates its execution in node MSE aborted.
Finally, machine M MovAuth is instantiated after the termination of either one
of mechines M StartOfMission and M Entry, which provides the train with the
Movement Authority.

4.2 Results

The construction of the Promela model is automatically generated as explained
in Sect. 3. The model contains as many processes as DSTM machines depicted in
Fig. 5 plus the Engine process. As the structure of the Promela model is exactly
the same of the code discussed in Sects. 3.2 and 3.3, only a portion of the code
for process M CommunicationEstablishment is shown in Listing 7. The
entire model of the case study contains around 1250 lines of code, where the
first 75 of them are types and variable declarations.

134 R. Nardone et al.

Listing 7. Promela model of MCommunicationEstablishment()

proctype process_M_CommunicationEstablishment(chan ch_term) {
byte i;
pid pid_temp;
bit my_children[MAX_PROC];
chan ch_term_MCE_manageTrain_M_ManageTrain ,

ch_term_MCE_manageTrain_M_ManageTrain_exiting;
do
:: (state_M_CommunicationEstablishment[_pid]== MCE_initial && has_token[

_pid]==1) ->
atomic {

printf("<current node[
has_token[_pid]=0;
V_cont =0;
printf("<firing transition[
transition_M_CommunicationEstablishment[_pid]= MCE_T01;
state_M_CommunicationEstablishment[_pid]= MCE_idle;
last_transition=MCE_T01;

}
:: (state_M_CommunicationEstablishment[_pid]== MCE_idle && has_token[_pid

]==1) ->
atomic {

printf("<current node[
has_token[_pid]=0;
if
:: (C_request ?[_,_,_] && V_cont ==4) ->

C_answer!refused;
printf("<firing transition[
transition_M_CommunicationEstablishment[_pid]= MCE_T02;
state_M_CommunicationEstablishment[_pid]= MCE_idle;
last_transition=MCE_T02;

:: (C_request ?[_,_,_] && V_cont <=3) ->
C_request?V_chSystemVersion ,V_chAck ,V_chSessionEstablished;
C_answer!accepted;
V_cont ++;
pid_temp=run process_M_ManageTrain(V_chSystemVersion ,V_chAck ,

V_chSessionEstablished , ch_term_MCE_manageTrain_M_ManageTrain ,
ch_term_MCE_manageTrain_M_ManageTrain_exiting);

state_M_ManageTrain[pid_temp]= MMT_initial;
my_children[pid_temp]=1;
has_token[pid_temp]=1;
printf("<firing transition[
transition_M_CommunicationEstablishment[_pid]= MCE_T03_MCE_T04_MCE_T05;
state_M_CommunicationEstablishment[_pid]= MCE_idle;
last_transition= MCE_T03_MCE_T04_MCE_T05;

:: (ch_term_MCE_manageTrain_M_ManageTrain_exiting ?[1]) ->
ch_term_MCE_manageTrain_M_ManageTrain_exiting?_;
ch_term_MCE_manageTrain_M_ManageTrain !1;
V_cont --;
printf("<firing transition[
transition_M_CommunicationEstablishment[_pid]= MCE_T06_MCE_T07_MCE_T08;
state_M_CommunicationEstablishment[_pid]= MCE_idle;
last_transition= MCE_T06_MCE_T07_MCE_T08;

:: else ->
for (i : 0 .. MAX_PROC -1) {

has_token[i]= my_children[i];
}

fi;
}
od unless {

ch_term ?1;
printf("<Machine M_CommunicationEstablishment [

}
}

Modeling Railway Control Systems in Promela 135

In order to show the effectiveness of the approach, we report the resulting
performance of the Promela model for generating a test sequence that covers
transition MSE T06 of machine M SessionEstablishment. The test sequence is
obtained by generating a Promela never claim that checks for the existence of
behaviors in which transition MSE T06 is taken (i.e., such that the condition
last transition==MSE T06 holds). The corresponding never claim is shown in
Listing 8. This Promela model has been executed by SPIN [6] on a personal
computer equipped with an Intel Core-i7, 8GB of RAM. The generation of the
test sequence requires the exploration of 5211 states analyzed in 0.234 s.

Listing 8. Never claim

never {
step1:

if
:: (last_transition == MSE_T06) -> goto endStep
:: else -> goto step1

fi;
endStep: skip
}

5 Conclusions and Future Work

In this paper we presented a fully automatable approach to build a non trivial
Promela model from a DSTM specification of a system under test. The app-
roach has been defined to be integrated into existing testing environments in
railway industrial settings and provide practical means to support the auto-
matic generation of test sequences for gray-box testing of control systems. We
are currently completing the process for the automatic translation of DSTM
models into Promela and the construction of the Promela model modeling the
environment of the SUT. This involves the implementation of a chain of model
transformations partially written in ATL [7]. More work along several directions
is needed to provide a complete test case generation environment. In particular,
we are currently working on automating the construction of test specifications
to obtain transition coverage, on optimizing the generation of the test cases, and
on providing the end-user with a proper presentation of the generated sequences.

Acknowledgments. This paper is partially supported by research project CRYSTAL
(Critical System Engineering Acceleration), funded from the ARTEMIS Joint Under-
taking under grant agreement no. 332830 and from ARTEMIS member states Austria,
Belgium, Czech Republic, France, Germany, Italy, Netherlands, Spain, Sweden, United
Kingdom.

References

1. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines.
In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 169–178. Springer, Heidelberg (1999)

136 R. Nardone et al.

2. Di Martino, B., et al.: An interoperable testing environment for ERTMS/ETCS
control systems. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP
2014. LNCS, vol. 8696, pp. 147–156. Springer, Heidelberg (2014)

3. CENELEC EN50128: communication, signalling and processing systems - software
for railway control and protection systems (2011)

4. Riccobene, E., Rinzivillo, S., Gargantini, A.: Using spin to generate testsfrom
ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003)

5. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construc-
tion and verification of railway control systems. Formal Aspects Comput. 23(2),
191–219 (2011)

6. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual,
vol. 1003. Addison-Wesley, Reading (2004)

7. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: a model transformation tool.
Sci. Comput. Program. 72(1), 31–39 (2008)

8. Lanotte, R., Maggiolo-Schettini, A., Peron, A., Tini, S.: Dynamic hierarchical
machines. Fundam. Inf. 54(2–3), 237–252 (2002)

9. Nardone, R., et al.: Dynamic state machines for formalizing railway control system
specifications. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2014. CCIS, vol. 476,
pp. 93–109. Springer, Heidelberg (2015)

10. Pflügl, H., El-Salloum, C., Kundner, I.: Crystal, critical system engineering accel-
eration, a truly european dimension. ARTEMIS Mag. 14, 12–15 (2013)

11. UIC. ERTMS/ETCS class1 system requirements specification, ref. SUBSET-026,
issue 2.2.2 (2002)

12. Yin, L., Mallet, F., Liu, J.: Verification of marte/ccsl time requirements in
promela/spin. In: 16th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), pp. 65–74 (2011)

13. Zheng, Y., Zhou, J., Krause, P.: A model checking based test case generation
framework for web services. In: Fourth International Conference on Information
Technology, ITNG 2007, pp. 715–722. IEEE (2007)

Fault Tolerance

A Formal Model and Analysis of Feature
Degradation in Fault-Tolerant Systems

Klaus Becker(B) and Sebastian Voss

fortiss GmbH, An-Institut Technische Universität München,
Guerickestr. 25,80805 Munich, Germany

{becker,voss}@fortiss.org

Abstract. Fault-tolerant systems have to react on errors resulting from
faults properly to avoid error propagation and finally a harmful failure of
the entire system. Beside the detection of failing system elements, also the
actions to handle failures are essential to cover the safety requirements.
Actions reach from enabling fail-silent, fail-safe or fail-operational behav-
ior of system elements, or also hybrids of this in a mixed-critical sys-
tem design. Graceful degradation may be applied when system resources
become insufficient, reducing the set of provided functional features. In
this paper we address mixed critical systems, which partially comprise
fail-operational functional features. We consider degradations of func-
tional features in failure scenarios. We describe a formal model that con-
tains i.a. the features of a system, possible feature degradations, the soft-
ware components that realize these features, as well as the deployment
of these components to execution units. We calculate valid deployments
of software components to execution units and analyze them according
to the level of graceful degradation on feature level and system level, as
a consequence of failures of execution units or software components. We
show an example from the automotive domain to illustrate our approach.

Keywords: Graceful-degradation · Fault-tolerance · Redundancy · Fail-
operational · Mixed-critical · Diversity · Deployment · Dependability

1 Introduction and Motivation

Many embedded systems operate in safety-critical environments, in which faults
could cause errors and failures of system elements, and finally a harmful failure
of the entire system. This requires that these systems can detect failing elements,
such as hardware or software components, and react properly. However, going
into a fail-safe state may cause the loss of some provided functional features.
This is not acceptable for features that require fail-operational behavior.

If system resources get lost due to hardware failures, the remaining resources
should be used efficiently to keep those features alive that comprise the highest
demand with respect to safety, reliability and availability (we use these terms
as defined in [1]). For instance, if an execution unit has to be isolated from the
remaining system due to a hardware failure, another execution unit has to be
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 139–154, 2016.
DOI: 10.1007/978-3-319-29510-7 8

140 K. Becker and S. Voss

able to provide some of those features that were provided by the failing unit.
However, as the remaining system-resources may become insufficient to provide
the full set of features, it may be needed to explicitly deactivate or degrade some
features to handle this resource limitation. This results in graceful degradation
of the system.

This paper relates to two previous publications. We introduced a formal
model and formal constraints to calculate valid redundant deployments of soft-
ware components (SWCs) to the execution units of a particular fault-tolerant
system platform in [2]. We also treated the relationship of functional features
and the SWCs that realize these features. We analyzed required degradations of
the provided set of features in case of hardware failures of execution units. In
another publication, we extended the model and the analysis by communication
channels between the SWCs, again considering failing execution units [3].

In this paper, we consider additional faults, namely systematic faults of soft-
ware components, which may be introduced by bugs in the software. In case
a SWC fails to provide its intended function due to such a fault, it has to be
isolated from the residual system to avoid failure propagation and harm. We
assume an underlying platform runtime environment (RTE) which is able to
detect such failures, to isolate failing components, and to trigger recovery mech-
anisms. Without activation of a backup, the functional features that are realized
by a failing SWC cannot be provided anymore. Redundant backups of the same
SWC would not be very helpful in this scenario, as the same systematic fault
(e. g., a bug) would be contained in all backups. Hence, there is no use to deploy
the same buggy SWC multiple times redundantly. Instead, diversity by alterna-
tive implementations is needed.

We consider a safety concept that incorporates degradations of failing fea-
tures. We assume that diversity is introduced by implementing two similar fea-
tures, which however are not providing exactly the same specification, but the
second feature is a degraded version of the first full-fledged feature. This means,
a failing full-fledged feature can be substituted by another degraded feature that
fulfills a subset of the original requirements, with potentially less quality of ser-
vice. An example is a full-fledged functional feature that provides a steer-by-wire
application of a vehicle including active assistance functions, like lane-keeping
or collision-avoidance. The degraded corresponding feature may support only
rudimentary manual steering, without any assistance functions. Therefore, this
paper introduces an approach to consider not only degradations on system level,
like in the previous publications, but we also model degradations at feature
level in order to be able to analyze the deployment of the resulting software
component architectures onto the execution units. Also in scenarios of failing
execution units, the existence of a degraded feature is helpful, if the system
resources become insufficient to provide the initial full-fledged feature. In this
case, the degraded feature can be activated, assuming that this requires less
resources than the corresponding full-fledged feature.

Our approach is based on a formal system model and a set of formal con-
straints describing the validity of deployments with respect to the safety-concept.

A Formal Model and Analysis of Feature Degradation 141

The model and the constraints characterize an arithmetic problem that can be
solved for instance by SMT-solvers, like Z3 [4,5].

In section 2, we present the basic concepts of an assumed underlying sys-
tem platform. Section 3 shows the main contribution of this paper, which is an
approach to analyze which feature degradations are required after isolations of
execution units or software components. Section 4 contains an example, showing
the applicability of our approach. The conclusion is given in section 5.

2 Assumed System Design

Fault-tolerance is the ability of a system to maintain control objectives despite
the occurrence of a fault, while degradation of control performance may be
accepted [6]. If a system has to support fail-operational features, it has to be
capable to compensate for loss of failing execution units and of failing software
components. We assume in this paper that the execution units of the system
are homogeneous, allowing flexibility in the deployment, and are connected and
communicating to each other by a reliable bus system.

As scheduling policy, we assume a system using the concept of logical exe-
cution times (LET), meaning that the software components are executed within
fixed cycles. Each execution unit provides a budget of time per cycle that can
be used to execute application software components (ASWCs).

We assume a system platform technology that is able to detect runtime fail-
ures of certain system elements, like sensors, actuators, execution units, commu-
nication links, and also software components. Furthermore, this system platform
is able to isolate failing system elements from the residual system to avoid failure
propagation and harm. The principles and more details about a platform that
conforms to these assumptions have been presented in [7–9].

3 Deployment Calculation and Degradation Analysis

To handle systematic faults, diversity is needed. This can be achieved by provid-
ing two different realizations of the same functional feature. However, instead of
realizing exactly the same functional feature by two different implementations,
in this paper we address the substitution of a faulty realization of a full-fledged
functional feature by a realization of a degraded functional feature, fulfilling less
functional requirements and providing a less quality of service. The degradation
of the feature may be required either because an ASWC of the full-fledged feature
has to be isolated, or because an execution unit has to be isolated, resulting in
reduced available computation resources. As we assume that a degraded feature
requires less resources than the original full-fledged feature, such a degradation
can be an adequate reaction in such hardware failure scenarios to deal with the
decreasingly available resources.

For the case of failing hardware units, we also apply redundancy techniques to
be able to keep alive fail-operational features without any degradation. For this,
we deploy multiple instances of the realizing software components redundantly

142 K. Becker and S. Voss

to the execution units. This enables the system to absorb loss of execution units
and results in features being fully fail-operational without feature degradation.
Due to this, these features can be kept alive in the presence of a limited number
of hardware failures, while ensuring the absence of harm to the users or the
environment.

Hence, there is a difference between full fail-operational behavior (the same
functional feature is kept alive after a failure), and degraded fail-operational
behavior (a degraded version of the functional feature is provided after a failure).

3.1 Formal System and Deployment Model

We define the system properties and the deployment problem as shown below.
In the definitions, we write P+(X) for the power set without empty set P(X)\∅.

Definition 1. A System V = 〈F, SA,HA, Φ〉 comprises a set of Functional
Features F , an Application Software Architecture SA, an Execution Hardware
Architecture HA and a Configuration Φ.

Definition 2. An Application Software Architecture SA = 〈S, SC〉 is composed
of a set S = {s1, ..., sn} of Application Software Components (ASWCs) and a
set SC = {sc1, ..., scq} of ASWC-Clusters (with n, q ∈ N). The ASWCs are
grouped by mapping them into the ASWC-Clusters. To describe the mapping of
the s ∈ S to a cluster sc ∈ SC, we define αs : S → SC. To describe which
s ∈ S are contained in which sc ∈ SC, we define αsc : SC → P(S) with
αsc(sc) = {s ∈ S | αs(s) = sc}. Note that αs is a total function, but neither
injective nor surjective, as clusters might be empty in the formal model. For
sci �= scj, it holds that (αsc(sci) ∩ αsc(scj) = ∅) and

⋃
sc∈SC αsc(sc) = S.

For simplicity, we do not model communication channels between ASWCs in
this paper. We introduced how we model the channels in [3].

Definition 3. The set of functional features F = {f1, ..., fm} contains the fea-
tures of the system that can be recognized by the user. Each feature is realized
by one or more ASWCs, while each ASWC contributes to realize one or more
features. We define the relationship between ASWCs s ∈ S and features f ∈ F as
χs : S → P+(F) with χs(s) = {f ∈ F | s contributes to realize f}. Accordingly,
we define χf : F → P+(S) with χf (f) = {s ∈ S | f is partially or totally realized
by s}.
Definition 4. An Execution Hardware Architecture HA = 〈E,L〉 comprises
execution units E and communication links L ⊆ E × E between these units.

Definition 5. The System Configuration Φ = 〈δP (S), δA(S), δ(S)〉 defines the
solution of the deployment problem, namely how ASWCs s ∈ S are deployed to
execution units e ∈ E, either passively (δP) or actively (δA). For s ∈ S, we define
δP : S → P(E) with δP (s) = {e ∈ E | s is in memory of e, but not executed on
e}, as well as δA : S → P(E) with δA(s) = {e ∈ E | s is in memory of e and
executed on e}. Furthermore, δ(s) = δA(s) ∪ δP (s).

A Formal Model and Analysis of Feature Degradation 143

We describe the system configuration as the deployment of single ASWCs
onto execution units, not as the deployment of ASWC-Clusters onto execution
units like done in [2], because the activity of the ASWCs within a cluster may
become different in degradation scenarios. This means, some ASWCs within a
cluster may become isolated due to detected failures of that ASWCs or passivated
due to insufficient resources, while other ASWCs within the same cluster are still
active. Due to this, the deployment has to be described on ASWC level.

We ensure by a constraint that ASWCs which are mapped to the same clus-
ter, get deployed to the same execution units:
∀si, sj ∈ S,∀sc ∈ SC : si ∈ αsc(sc) ∧ sj ∈ αsc(sc) =⇒ δ(si) = δ(sj)

The ASWC-Clusters are structure building elements. They group ASWCs with
the same safety and reliability requirements, providing a basis for separating
mixed critical ASWCs from each other, as different clusters can be separated
using spatial and temporal partitioning mechanisms [10]. Furthermore, clusters
can be used to group ASWCs with high communication dependencies, ensuring
a high amount of local communication, instead of distributed communication.

3.2 Degradation of Functional Features

Definition 6. For some of the functional features f ∈ F , there may exist a
degraded version f ′ ∈ F of that feature. A degraded functional feature is a feature
fulfilling a subset of the functional requirements of the original full-fledged fea-
ture, potentially with a worse quality of service. We define Df : F → F ∪{⊥} as
the relationship between the original full-fledged feature f ∈ F and the degraded
version f ′ ∈ F of that feature, with ⊥ being no element.

Df (f) =

{
f ′ ∈ F if f ′ is the degraded version of the feature f ∈ F with f �= f ′

⊥ if the feature f ∈ F has no degraded version

Hence, Df (F) is not a total function, but it is a partial injective and surjective
function (see Fig. 1).

Full-fledged features
fi ∈ F

Degraded features
f ′
i ∈ F

Df (f1) = f ′
1

Df (f2) = f ′
2

Df (f3) =⊥

Fig. 1. Example partial injective and surjective function between full-fledged and
degraded functional features

144 K. Becker and S. Voss

Definition 7. For some ASWCs s ∈ S, there may exist a degraded version
s′ ∈ S of that ASWC. We define Ds : S → S ∪{⊥} as the relationship between a
normal ASWC s ∈ S and its degraded version s′ ∈ S, with ⊥ being no element.

Ds(s) =

{
s′ ∈ S if s′ is the degraded version of the ASWC s ∈ S

⊥ otherwise, if the ASWC s ∈ S has no degraded version
Ds(S) is a partial injective and surjective function (see Fig. 2).

Figure 2 shows how a degraded feature can be realized. For the realization of
the degraded feature f ′

1, the ASWC s1 is reused from the full-fledged feature f1, a
degraded version s′

2 of ASWC s2 is used, and ASWC s3 is not used anymore. The
motivation to introduce degraded ASWCs is providing diversity in the realization
of features, as well as an efficient usage of decreasing system resources in case of
failing system elements, assuming that s′

2 requires less resources than s2.

Df (f1) = f ′
1

ASWCs realizing full-
fledged feature f1,

χf (f1) = {s1, s2, s3}

ASWCs realizing
degraded feature f ′

1,
χf (f ′

1) = {s1, s
′
2}Ds(s2

) = s
′
2

Fig. 2. Example relation between normal and degraded ASWCs, realizing a full-fledged
feature f1 (green ellipse) and the corresponding degraded feature f ′

1 (orange ellipse)
(Color figure online)

3.3 Fixed Properties of the Model

In this section, we describe the properties of the system elements (e. g., soft-
ware components and execution units), that define the input problem model
for our analysis. We do not aim to optimize these fixed properties. Instead, we
consider the properties introduced below in this section as given and analyze pos-
sible degradation scenarios w.r.t. the fulfillment of the required fail-operational
behavior. The properties that represent the solution of our analysis are intro-
duced later in section 3.4.

Functional Features: Each functional feature f ∈ F has properties defining in
which sense it is required to behave fail-operational. We distinguish between
full fail-operational and degraded fail-operational behavior. We express this dis-
tinction by assigning a property failOp : F → N0 to f ∈ F and f ′ ∈ F with

A Formal Model and Analysis of Feature Degradation 145

Df (f) = f ′. If failOp(f) > 0, then feature f ∈ F must be kept active with full-
fledged functionality during the first failOp(f) hardware or software failures,
and is not allowed to be degraded meanwhile. More generally, it is allowed that
feature f becomes degraded after failOp(f) + 1 hardware or software failures,
and it is allowed that it becomes deactivated completely after failOp(f ′) + 1
failures. For instance, this means that if failOp(f) = 1 and failOp(f ′) = 3, then
the full-fledged feature f has to survive the first failure and can be degraded to
f ′ after a second failure. The degraded feature f ′ itself has to survive the third
failure and can be deactivated after a fourth failure (see Fig. 3).

f

f'

failOp(f) = 1
failOp(f') = 3

Df(f) = f'
Df(f') =

failures

time

provided
features

Fig. 3. Example of a feature degradation over time

In this paper, we consider at most one degradation step, meaning that
degraded features do not have further degraded versions. However, our approach
can be extended to allow such chains of multiple degradations.

Application Software Components: Each ASWC si ∈ S is defined by sev-
eral properties. Property wcet : S → N

+ defines the Worst-Case Execution
Time of its cyclic executable function. Property flash : S → N

+ defines the
required amount of flash memory to store the binary of the ASWC. Property
asil : S → {0..4} defines the Automotive Safety Integrity Level (ASIL) of an
ASWC [0: Quality-Management (QM), 1: ASIL-A, 2: ASIL-B, 3: ASIL-C, 4:
ASIL-D]. Property redncy : S → N0 defines the level of redundancy, with which
an ASWC has to be deployed to the execution units [n: si has to be deployed
n + 1 times (either passively or actively)].

Execution Units: For execution units e ∈ E, the following properties are defined.
The property providedTimeBudget : E → N

+ defines the budget of time that is
provided in each cycle to execute the ASWCs. We assume here that all ASWCs
have the same execution rate and hence are executed in every cycle. The property
providedFlash : E → N

+ defines the amount of flash memory that is provided to
store binary images of ASWCs. For simplicity, we do not model other memory
types, like RAM or NVRAM. These can be handled in a similar manner as the
time budget and flash. Finally, the property isolated : E → {0, 1} defines if an
execution unit e ∈ E is isolated, after a failure of that unit has been detected.

146 K. Becker and S. Voss

Cluster sc1 Cluster sc3Cluster sc1Cluster sc2

Deployment

Feature-Relationship

ASWC s1

redncy = 1

ASWC s2

redncy = 0

ASWC s3

redncy = 0

Feature f1
failOp = 0

Feature f1'
failOp = 1

ASWC s1

redncy = 1

ASWC s2'

redncy = 1

Ds(s2) = s2'

Df(f1) = f1'

f(f1) = {s1, s2, s3} f(f1') = {s1, s2'}

sc(sc1) = {s1}

sc(sc2) = {s2, s3}

sc(sc3) = {s2'}

Execution Unit e1
s1 (Active)

s2 (Active)

s3 (Active)

Execution Unit e2
s1 (Passive)

Execution Unit e1
s1 (Active)

s2' (Active)

Execution Unit e2
s1 (Passive)

s2' (Passive)

A(s1) = {e1}, P (s1) = {e2}

A(s2) = {e1}, P (s2) =

Fig. 4. Example for the definitions (Color figure online)

Figure 4 shows Definitions 6 and 7 in context, based on the example that
was shown in Fig. 2. Also the mapping of ASWCs to clusters and some fixed
properties are shown. The full-fledged feature f1 is realized by overall three
ASWCs s1, s2 and s3. The three ASWCs are mapped to two different ASWC-
Clusters sc1 and sc2. The ASWCs get deployed to the execution units e1 and
e2, partially in a redundant manner (see s1). Feature f1 has a degraded version
f ′
1, which is realized by overall two ASWCs s1 and s′

2. The ASWC s1 is reused
from the realization of feature f1, and s′

2 is a degraded version of s2, which was
realizing parts of f1. The degradations are indicated by the horizontal dashed
red arrows.

3.4 Solution Properties of the Model

In this section we describe the model-properties that represent the solution of
the deployment and degradation analysis.

ASWCs: To cover degradation scenarios that might be required after isolations
of execution units, each ASWC s ∈ S has the following properties:

– hotStandbySlaveReq : S → {0, 1} indicates if a redundant hot-standby slave
is required. A hot-standby slave is active in the schedule, but it’s output
data is ignored by the system. Contrary to this, a cold-standby slave is only
passively deployed and not in the schedule. The decision if a hot- or a cold-
standby slave is required is based on a further fault-tolerance time property
of the input model, which is not introduced in this paper.

– hotStandbySlaveActive : S → {0, 1} indicates if a required hot-standby slave
can be kept active. In degradation scenarios, it can be valid that a hot-standby
slave is deactivated due to insufficient resources, depending on the failOp(f)
properties of the features f ∈ χs(s) for f ∈ F and s ∈ S.

A Formal Model and Analysis of Feature Degradation 147

– masterActive : S → {0, 1} indicates if one master instance can be kept
active. In degradation scenarios, it is only allowed that no active master
instance exists, if the requirements with respect to fail-operational behavior
of the realized functional features fj ∈ χs(s) are not violated.

ASWC Clusters: Certain properties of ASWC-Clusters sc ∈ SC depend on the
mapped ASWCs. Properties asil : SC → {0..4} and redncy : SC → N0 define
the ASIL and the redundancy level of a cluster. It is ensured by constraints that
∀s ∈ αsc(sc) : asil(sc) = asil(s) and redncy(sc) = redncy(s).

Execution Units: For execution units e ∈ E, property usedTimeBudget : E → N0

is defined to be equal to
∑

s∈S | e∈δA(s) wcet(s), which is the sum of the wcet(s)
of those ASWCs that are active on execution unit e. A constraint ensures that
∀e ∈ E : usedTimeBudget(e) ≤ providedTimeBudget(e). Property usedFlash :
E → N0 is the amount of flash memory which is occupied by the binaries of
the ASWCs that are deployed to an execution unit actively or passively. Hence,
usedFlash(e) =

∑
s∈S | e∈δ(s) flash(s), for e ∈ E.

System: The following two properties define the solution matrices that contain
the mapping of ASWCs S to ASWC-Clusters SC and the deployment of the
ASWCs S to the execution units E.

– map : (S, SC) → {0, 1} is the mapping of ASWCs s ∈ S to ASWC-Clusters
sc ∈ SC. [0: s /∈ αsc(sc), 1: s ∈ αsc(sc)]

– deploy : (S,E) → {0, 1, 2, 3} is the deployment of ASWCs s ∈ S to execu-
tion units e ∈ E. [0: e /∈ δ(s), 1: e ∈ δP (s), 2: e ∈ δA(s) while s is a master
on e, 3: e ∈ δA(s) while s is a hot-standby slave on e]

3.5 Reconfigurations After Isolations

In this paper, we consider two different system elements which may fail:

1. a hardware execution unit e ∈ E
2. an application software component s ∈ S

We do not consider failures of physical communication links, because we
assume a system platform with a reliable redundant communication backbone,
like the platform introduced in [7]. Furthermore, we assume that the system
platform is able to detect failing system elements with appropriate mechanisms
(e. g., as sketched in [9]), and isolates these system elements to avoid further
failure propagation and harm.

Reconfigurations in the deployment and in the schedules may be required
after such isolations in order to ensure the fail-operational requirements of the
functional features that are realized by the software components. ASWCs that
realize non-fail-operational features may be deactivated (taken out of sched-
ule) to enable the activation of redundant backups of ASWCs that realize fail-
operational features. In section 4, we illustrate this based on an example.

148 K. Becker and S. Voss

Our objective is to maximize the value of the active ASWCs in a sense that
the ASWCs with the highest requirements according to safety (asil(s)) and fail-
operationality (redncy(s)) will be kept active as long as possible. ASWCs with
low requirements according to these properties are deactivated first if the system
resources become insufficient, for instance after isolations of execution units.

Priority Points: To fulfill the mentioned objective, we introduce so called
priority-points that define the importance of a deployed ASWC instance. Each
ASWC has the properties prioPointsMaster : S → N

+ and prioPointsHotSlave :
S → N

+, storing the priority-points of instances of the ASWCs, deployed actively
as master or as hot-standby slave. The priority-points are used to construct an
order in which the active instances of ASWCs should be deactivated in case
of insufficient resources in degradation scenarios. We derive the priority-points
depending on the properties asil(s) and redncy(s).

On system level, the solution property prioSumActiveASWCs : V → N0

defines the sum of the priority-points of all (partially redundant) ASWC
instances that are actively deployed in the current degradation scenario.

To implement the objective, we use an objective function of the Z3 SMT
solver with optimization capabilities [5] over its Python API. Listing 1 shows a
sketch of the implementation of the objective function. Line 1 creates an opti-
mization solver. Lines 3–6 add a constraint that specifies the calculation of the
sum of the priority-points of the active ASWC instances. An If statement is
embedded into the calculation of the sum, defining that if an ASWC s ∈ S
is deployed as master to an execution unit e ∈ E, then prioPointsMaster(s)
is added to the sum. Else, if s is deployed as hot-standby slave to e, then
prioPointsHotSlave(s) is added to the sum. Finally, line 8 specifies that the
objective is to maximize this sum. This objective function ensures that ASWC
instances with low priority-points are deactivated first when resources become
insufficient in degradation scenarios.

1 s = Optimize ()
2

3 s . add (prioSumActiveASWCs ==
∑

s∈S,e∈E (

4 I f (deploy (s , e) == 2 ,

5 pr ioPointsMaster (s) ,
6 I f (deploy (s , e) == 3 , pr ioPo intsHotS lave (s) , 0))))

7

8 s . maximize (prioSumActiveASWCs)

Listing 1. Objective to maximize the value of priority-points of active ASWCs

An ASWC with low priority-points has a low ASIL and low or no fail-
operational requirements mirrored in their redundancy property. The redun-
dancy property has a higher weight than the ASIL in the calculation of the
priority-points. This is required to ensure that ASWCs with low ASIL but high
fail-operational requirement are kept active with higher priority than ASWCs
with high ASIL but low or no fail-operational requirement.

A Formal Model and Analysis of Feature Degradation 149

4 Example

In this section, we show an example of a feature set containing a feature degra-
dation, as well as the corresponding ASWCs that realize these features. We show
how this example can be degraded when execution units or ASWCs have to be
isolated.

Table 1. Example set of functional features and realizing software components

Feature fi fa
il
O
p
(f

i
)

A
S
W

C
s

s i
∈

χ
f
(f

i
)

a
si
l(

s i
)

re
d
n
c
y
(s

i
)

w
c
e
t(

s i
)

in
m

s

fl
a
sh

(s
i
)

in
k
b

Full-fledged Features:

f1 : Steer-By-Wire
(with assistance)

0 s1
s2
s3

D
C
C

1 (hot-slave)
0
0

1.5
1
1

10
10
10

f2 : Parking
Assistance (active)

0 s3
s4

—
C

—
1 (cold-slave)

—
0.5

—
10

f3 : Drive-By-Wire 1 s5 D 1 (cold-slave) 1.3 10

f4 : Infotainment 0 s6 QM 0 0.5 17

Degraded Features:

f ′
1 : Steer-By-Wire

(without assistance)
1 s1

s′
2

—
C

—
1 (cold-slave)

—
0.5

—
5

f ′
2 : Parking

Assistance (passive)
1 s4 — — — —

Table 1 shows the properties of the example. The first two columns show
four full-fledged features {f1, f2, f3, f4} and two degraded features (f ′

1, f ′
2) with

Df (f1) = f ′
1 and Df (f2) = f ′

2. The right five columns show the ASWCs that
realize the features. The property values, like the ASIL levels, are fictional and
not related to a real case-study. Some of the ASWCs contribute to realize mul-
tiple features, like s3 which contributes to realize features f1 and f2, meaning
that χs(s3) = {f1, f2}. Due to this, s3 is shown in two rows. We write ’—’ in
the property cells of the repetition rows, as the properties are the same.

Figure 5 shows the feature degradations of the example from a different
perspective. As mentioned, ASWC s3 contributes to realize both full-fledged
functional features f1 and f2. Furthermore, ASWC s1 is used to realize both
the full-fledged feature f1 (upper green ellipse) and the related degraded feature
f ′
1 (upper orange ellipse). Hence, χs(s1) = {f1, f

′
1}. The same holds for s4 and

features f2 and f ′
2. It can be seen in the figure that the example contains also one

150 K. Becker and S. Voss

ASWC degradation, namely Ds(s2) = s′
2, which is applied during the feature

degradation Df (f1) = f ′
1. Features f3 and f4 from the example are not shown

in Fig. 5, as these have no degraded versions.

Df (f1) = f ′
1

Df (f2) = f ′
2

ASWCs realiz-
ing feature f1,

χf (f1) = {s1, s2, s3}

ASWCs realiz-
ing feature f2,

χf (f2) = {s3, s4}

ASWCs realizing
degraded feature f ′

1,
χf (f ′

1) = {s1, s
′
2}

ASWCs realizing
degraded feature
f ′
2, χf (f ′

2) = {s4}

Fig. 5. Realization of full-fledged features f1 and f2, as well as corresponding degraded
features f ′

1 and f ′
2 by (partially shared) ASWCs (Color figure online)

4.1 Initial Deployment Solution for the Example

The shown example set of ASWCs should now be deployed on two execution units
e1, e2 ∈ E, each having a provided time budget of 4ms to execute ASWCs in each
execution cycle, providedTimeBudget(ei) = 4ms. Furthermore, both execution
units have providedFlash(ei) = 64kb in this example.

We now consider four different failure scenarios. In scenario 1 the first execu-
tion unit e1 has a failure and has to be isolated, with the result that no ASWCs
can be executed anymore on e1. In scenario 2 the second execution unit e2 has
to be isolated. In scenario 3 the ASWC s2 has to be isolated, and in scenario 4
the ASWC s3 has to be isolated.

We use the introduced formal model to calculate deployment solutions for
these scenarios, using the Z3 SMT solver to calculate the results. Several for-
mal constraints ensure the validity of follow-up deployments after isolations of
execution units or ASWCs. For instance, one constraint defines that the master
instance of an ASWC is not allowed to migrate to another execution unit in a
follow-up deployment, if the execution unit to which the master was initially
deployed is still alive.

Figure 6 shows the initial valid deployment solution for the example. Also
exemplary schedules of the execution units are shown. In the schedule, it can be
seen that for instance s′

2 is not executed in the initial solution, as it is a passive
cold-standby slave which only becomes active if s2 gets lost. Also the redundant
cold-standby slave of s5 on e1 is not executed initially, as it only is a backup for
the case that the master of s5 on e2 gets lost. However, the components which

A Formal Model and Analysis of Feature Degradation 151

are not executed in the schedule need flash memory space. On execution unit
e1, 55 kb of flash memory are used in this example (10+10+10+10+5+10).

Also the ASWC-Clusters are shown. Five clusters are created for the given
set of ASWCs. Those ASWCs are mapped to the same cluster, which have the
same properties of asil(si) and redncy(si).

e1

usedFlash: 55 kb, providedFlash: 64 kb
usedTimeBudget: 4 ms, providedTimeBudget: 4 ms

e2

usedFlash: 52 kb, providedFlash: 64 kb
usedTimeBudget: 3.3 ms, providedTimeBudget: 4 ms

sc3sc5

sc1 sc3

sc4 sc5

sc2

e2 s1 s5

0ms 2ms 4ms

e1 s1 s2

0ms 2ms 4ms

s3 s4 s6

sc1

s1
(Master)

s2
(Master)

d2
s3

(Master)
d2

s2'
(ColdSlave)

s4
(Master)

s5
(Master)

s6
(Master)

s1
(HotSlave)

s5
(ColdSlave)

s2'
(ColdSlave)

d1 d1

d1

d1 d1
s4

(ColdSlave)

d3 opt

d3 opt

d3

s1
s2
s3

ASWC

s5

s4

s6
s'2

wcet(si)

in ms

1.5

1

1

1.3

0.5

0.5

0.5

Fig. 6. An initial deployment solution for the example

In Fig. 6, there are also shown some communication channels between the
ASWCs for illustration purpose. ASWC s2 receives data from both s1 and s3.
ASWC s4 receives data from s3 optionally, meaning that s4 can also work with-
out the input from s3. The formalization of these communication dependencies
in our model is described in [3].

4.2 Analysis of Degradations for the Example

Figures 7, 8, 9 and 10 show the follow-up deployments for the four mentioned
considered failure scenarios. The solution property usedTimeBudget(ei) changes
in the follow-up deployments, as the schedules change. However, the solution
property usedFlash(ei) keeps unchanged, assuming that the binaries of isolated
or deactivated ASWCs are kept stored in the flash memory. Notice that the
solution property deploy(s, e) equals to 1 for all ASWC instances that we call
cold-standby slave, deactivated/inactive or isolated.

When the execution unit e1 has to be isolated (Fig. 7), the cold standby-slaves
of s′

2 and s4 on e2 have to be activated to be able to provide the degraded features
f ′
1 and f ′

2 and by this fulfilling the required level of degraded fail-operationality.
However, in order to be able to activate s′

2 and s4 on e2, the ASWC s6 has to be
deactivated, as otherwise the providedTimeBudget(e2) would be exceeded. This
means, feature f4 is lost in this scenario, what is okay.

152 K. Becker and S. Voss

e1 (Isolated) e2

usedFlash: 52 kb, providedFlash: 64 kb
usedTimeBudget: 3.8 ms, providedTimeBudget: 4 ms

sc3sc5

sc1 sc3

sc4 sc5

sc2

e2 s1 s5

0ms 2ms 4ms

e1

0ms 2ms 4ms

s2'

sc1

s1 s2
d2 d2

s2' s4 s5
(Master)

s6
(Inactive)

s1
(Master)

s5

s2'
(Master)

d1 d1

d1

d1 d1
s4

(Master)

3 opt

d3 opt

d3

s4

s1
s2
s3

ASWC

s5

s4

s6
s'2

wcet(si)

in ms

1.5

1

1

1.3

0.5

0.5

0.5

Fig. 7. Follow-Up deployment after isolation of execution unit e1

When the execution unit e2 has to be isolated (Fig. 8), the cold standby-slave
of s5 on e1 has to be activated, because s5 realizes feature f3 which is required to
behave fully fail-operational. In order to be able to activate s5 on e1, some other
ASWCs have to be deactivated on e1. However, deactivating s1 would cause the
loss of f1 and f ′

1. Deactivating s4 would cause the loss of f2 and f ′
2. Hence, this

is not allowed. Thus, s2 and s3 have to be deactivated to free enough space in
the schedule to be able to activate s5. Hence, s′

2 has also to be activated on e1 in
order to be able to provide feature f ′

1. Feature f1 cannot be provided anymore
in this scenario. Also f2 cannot be provided anymore as s3 is inactive, but f ′

2

can be provided because s4 can operate standalone without the optional input.

e1

usedFlash: 55 kb, providedFlash: 64 kb
usedTimeBudget: 3.8 ms, providedTimeBudget: 4 ms

e2 (Isolated)

sc3sc5

sc1 sc3

sc4 sc5

sc2

e2

0ms 2ms 4ms

e1 s1

0ms 2ms 4ms

sc1

s1
(Master)

s2
(Inactive)

d2
s3

(Inactive)
d2

s2'
(Master)

s4
(Master)

s5 s6

s

s5
(Master)

s2'

s5s2'

d1

d1

d1

d3 opt

d3 opt

s4

d3

s1
s2
s3

ASWC

s5

s4

s6
s'2

wcet(si)

in ms

1.5

1

1

1.3

0.5

0.5

0.5

d1d1

Fig. 8. Follow-Up deployment after isolation of execution unit e2

A Formal Model and Analysis of Feature Degradation 153

e1

usedFlash: 55 kb, providedFlash: 64 kb
usedTimeBudget: 3.5 ms, providedTimeBudget: 4 ms

e2

usedFlash: 52 kb, providedFlash: 64 kb
usedTimeBudget: 3.3 ms, providedTimeBudget: 4 ms

sc3sc5

sc1 sc3

sc4 sc5

sc2

e1 s1

0ms 2ms 4ms

s3 s4

sc1

s1
(Master)

s2
(Isolated)

d2
s3

(Master)
d2

s2'
(Master)

s4
(Master)

s5
(Master)

s6
(Master)

s1
(HotSlave)

s5
(ColdSlave)

s2'
(ColdSlave)

e2 s1 s5

0ms 2ms 4ms

s6s2'

d1 d1d1

d1

d1

d3 opt

s4
(ColdSlave)

d3 opt

d3

s1
s2
s3

ASWC

s5

s4

s6
s'2

wcet(si)

in ms

1.5

1

1

1.3

0.5

0.5

0.5

Fig. 9. Follow-Up deployment after isolation of ASWC s2

e1

usedFlash: 55 kb, providedFlash: 64 kb
usedTimeBudget: 2.5 ms, providedTimeBudget: 4 ms

e2

usedFlash: 52 kb, providedFlash: 64 kb
usedTimeBudget: 3.3 ms, providedTimeBudget: 4 ms

sc3sc5

sc1 sc3

sc4 sc5

sc2

e1 s1

0ms 2ms 4ms

s4

sc1

s1
(Master)

s2
(Inactive)

d2
s3

(Isolated)
d2

s2'
(Master)

s4
(Master)

s5
(Master)

s6
(Master)

s1
(HotSlave)

s5
(ColdSlave)

s2'
(ColdSlave)

e2 s1 s5

0ms 2ms 4ms

s6s2'

d1 d1d1

d1

d1

d3 opt

s4
(ColdSlave)

d3 opt

d3

s1
s2
s3

ASWC

s5

s4

s6
s'2

wcet(si)

in ms

1.5

1

1

1.3

0.5

0.5

0.5

Fig. 10. Follow-Up deployment after isolation of ASWC s3

When s2 has to be isolated (Fig. 9), then feature f1 cannot be provided
anymore. ASWC s′

2 has to be activated to provide the degraded f ′
1. ASWC s3

is kept active to continue providing feature f2.
When s3 has to be isolated (Fig. 10), also s2 has to be deactivated as s2 needs

mandatory data from s3. Hence, features f1 and f2 cannot be provided anymore.
But the degraded features f ′

1 and f ′
2 can be provided, as s1, s′

2 and s4 are active.
Hence, all requirements w.r.t. to full and degraded fail-operational behavior

can be fulfilled in all considered scenarios. Our approach can be used to automat-
ically analyze these and the other scenarios and obtain results about the subsets
of functional features that can be kept alive in each case. We use an optimiz-
ing SMT solver [5] to calculate results for the problem model and use objective

154 K. Becker and S. Voss

functions to describe that the high critical features, having high requirements
according to fail-operational behavior, have to be kept alive as long as possible.

5 Conclusion

In this paper, we provided an approach for a formal analysis of graceful degra-
dation in the context of the deployment of mixed-critical software components
to the execution units of a fault-tolerant system. We distinguish between full
and degraded fail-operational behavior of functional features. The fulfillment of
these fail-operational requirements can be analyzed with our approach in sce-
narios of failing execution units and failing software components. We illustrate
the concepts and resulting degradation scenarios based on an example.

References

1. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. Dependable Secure Comput.
1(1), 11–33 (2004)

2. Becker, K., Schätz, B., Armbruster, M., Buckl, C.: A formal model for
constraint-based deployment calculation and analysis for fault-tolerant systems. In:
Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 205–219.
Springer, Heidelberg (2014)

3. Becker, K., Voss, S.: Analyzing graceful degradation for mixed critical fault-tolerant
real-time systems. In: IEEE 18th International Symposium on Real-Time Distrib-
uted Computing (ISORC) (2015)

4. Bjørner, N.S., de Moura, L.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

5. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015)

6. Blanke, M., Staroswiecki, M., Wu, N.E.: Concepts and methods in fault-tolerant
control. In: Proceedings of the American Control Conference, vol. 4, pp. 2606–2620.
IEEE (2001)

7. Armbruster, M., Fiege, L., Freitag, G., Schmid, T., Spiegelberg, G., Zirkler, A.:
Ethernet-based and function-independent vehicle control-platform: motivation,
idea and technical concept fulfilling quantitative safety-requirements from ISO
26262. In: Meyer, G. (ed.) Advanced Microsystems for Automotive Applications
2012 (AMAA), pp. 91–107. Springer, Heidelberg (2012)

8. Sommer, S., Camek, A., Becker, K., Buckl, C., Knoll, A., Zirkler, A., Fiege, L.,
Armbruster, M., Spiegelberg, G.: RACE: a centralized platform computer based
architecture for automotive applications. In: IEEE Vehicular Electronics Confer-
ence / International Electric Vehicle Conference (VEC-IEVC) (2013)

9. Becker, K., Frtunikj, J., Felser, M., Fiege, L., Buckl, C., Rothbauer, S., Zhang,
L., Klein, C.: RACE RTE: a runtime environment for robust fault-tolerant vehicle
functions. In: 3rd Workshop on Critical Automotive Applications : Robustness &
Safety (CARS) (2015)

10. Rushby, J.: Partitioning in avionics architectures: Requirements, mechanisms, and
assurance. Technical report, DTIC Document (2000)

Probabilistic Analysis of a Calculus for Wireless
Sensor Networks

Xi Wu(B) and Huibiao Zhu

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

{xiwu,hbzhu}@sei.ecnu.edu.cn

Abstract. The CWQ Calculus (a Calculus for Wireless sensor networks
from Quality perspective) was recently proposed for modeling and rea-
soning about Wireless Sensor Networks (WSNs). It has the flexibility
that not all input data in a binder need to be received in order for the
process to continue. Meanwhile, it has the unique and important char-
acteristic that, in order for the decision of a system of a WSN to be of
high trustworthiness, the decision is expected to be made by considering
all data from all network nodes in the WSN. Consequently, decisions of
a system may have different trustworthiness depending on which input
data have actually been received. In this paper, we propose a data-driven
probabilistic trust analysis of the CWQ Calculus for WSNs. We assume
that data received from a channel have trust values that follow a proba-
bility distribution; that is, the trust value of a data represents the trust
of the decision of a system made solely based on that data. Thus, we
decouple the probability of receiving input data from the probability of
data trustworthiness. The overall trustworthiness of the decision of a sys-
tem is determined by performing a relational analysis to combine these
probability distributions.

1 Introduction

As one of the key components of Cyber Physical Systems [7], Wireless Sensor
Networks (WSNs) [1,2] have drawn a great deal of attentions recently. Due to
significant applications of WSNs (e.g., distributed computing, medical systems,
traffic security management systems, and disaster recovery), many calculi have
been proposed in the literature for modeling and reasoning about WSNs; for
example, [3,4,6,8–10,14,15]. One important feature of wireless systems is broad-
cast, and wireless local broadcast is the commonly adopted broadcast model in
modeling and reasoning about WSNs, for example, in past works [4,6,8–10]. In
wireless local broadcast, not all nodes but only the nodes within the transmission
area of the sender can receive the message broadcasted by the sender. On the
other hand, one critical problem of wireless systems is unreliable communication
in WSNs. This problem may be mainly caused by deployment constraints and/or
communication modalities; this may result in abnormalities and thus decrease
the quality of the service provided by a wireless system. Therefore, it is of great
importance to ensure the service quality offered by a wireless system.
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 155–171, 2016.
DOI: 10.1007/978-3-319-29510-7 9

156 X. Wu and H. Zhu

The CWQ Calculus. To ensure wireless sensor nodes to behave in a reason-
able manner even if they are in an unreliable communication network, CWQ
Calculus (a Calculus for Wireless sensor networks from Quality perspective) [17]
was recently proposed for modeling and reasoning about WSNs and applica-
tions based on WSNs. It combines wireless local broadcast with quality predicate;
the topological structure is considered at the network level, and different node
behaviours are represented by processes. In CWQ Calculus, default values are
given to deal with the situations that the ideal behavior fails due to unreliable
communications. The CWQ Calculus was modified and simplified to be a para-
metric framework by extracting the network topology as a configuration [16]; this
makes it more flexible for modeling and reasoning about networks of different
topological structures.

Probabilistic Trust Analysis. CWQ Calculus includes an input guard,
binder, to specify the inputs to be performed before continuing. A simple binder
is of the form cl?x describing that some value should be received over channel c
and bound to variable x, and it has a trustworthiness l chosen from some finite
lattice of trust values. By incorporating a quality predicate q, a general binder
is of the form &q(cl1

1 ?x1, · · · , cln
n ?xn)1 indicating that several inputs are simul-

taneously active while the quality predicate q determines when sufficient inputs
have been received to continue (e.g., q ∈ {∀,∃,∃!,m/n} [13,16,17]). That is, the
CWQ Calculus has the flexibility that not all input data in a binder need to
be received in order for the process to continue. Then, there comes the problem
that one cannot be sure what data has actually been received. Nevertheless,
the subsequent process can determine this by testing whether a particular data
has actually been received (e.g., by using the case construct case x of some (y)),
and decisions can be made accordingly. Consequently, decisions of a system may
have different trustworthiness depending on which input data have actually been
received. This calls the need to analyze the trust of the robustness of a system.

In the literature, Nielson and Nielson [12] developed a novel probabilistic
trust analysis for supporting the Quality Calculus [13] to indicate the trust that
a user can have in the overall robustness of a system. However, it is not applicable
to the CWQ Calculus for WSNs, because the CWQ Calculus has a unique and
important characteristic that is not part of the Quality Calculus. Specifically,
the decision of a system of a WSN is expected to be made based on the data from
all network nodes in the WSN, and the decision has the highest trustworthiness
if data from all its constituent network nodes are received and considered. In
other words, from the perspective of a single network node, its locally stored
data may not be sufficient for making the best decision of a system. In Sect. 4,
we illustrate this characteristic of WSNs in more detail, through a case study of
refueling a car by using the information of gas stations stored in base stations.

1 Details of binder &q(c
l1
1 ?x1, · · · , clnn ?xn) shall be introduced in Sect. 2.

Probabilistic Analysis of a Calculus for Wireless Sensor Networks 157

Contributions. In this paper, we propose a data-driven probabilistic trust
analysis of the CWQ Calculus for WSNs. Instead of the channel having a trust
value, we assume that the data received from a channel have a trust value, where
the trust value of a data represents the trust of the decision of a system made
solely based on that data. Intuitively, data received from a channel of a net-
work node is of high trustworthiness if it is essential for making a high-quality
decision of the system, and it is not otherwise; for simplicity, we assume the
data received from a channel has a probability distribution of trust values. To
facilitate our probabilistic analysis, we change the syntax of binders in CWQ
Calculus for WSNs to &π

q (cl1
1 ?x1, · · · , cln

n ?xn) at the beginning of our probabilis-
tic analysis, where π ∈ D({x1, · · · , xn} → {t,⊥}) denotes whether an input data
xi is received (i.e., t) or not received (i.e., ⊥) over channel ci for 1 ≤ i ≤ n, and
li ∈ D(L) is a probability distribution of the trust of the input data received
over channel ci. Consequently, we consider data trustworthiness instead of chan-
nel trustworthiness, and decouple the probability of receiving input data from
the probability of data trustworthiness. In such a way, it is possible to conduct
more flexible probabilistic analysis, e.g., for analyzing systems based on WSNs.
Finally, the overall trustworthiness of the decision of a system is determined by
performing relational analysis to combine the probability distributions of π and
li(∀1 ≤ i ≤ n).

Organization. The rest of the paper is organized as follows. Firstly, we briefly
review the CWQ Calculus in Sect. 2. In Sect. 3, we give a motivating example
to illustrate the need for a data-driven probabilistic trust analysis to support
the CWQ Calculus, while the formal detailed analysis is given in Sect. 4. Finally,
Sect. 5 concludes the paper and points out some future directions.

2 Review of the CWQ Calculus

The CWQ Calculus [16,17] was recently proposed for modeling and reasoning
about WSNs and applications based on WSNs. It ensures that sensor nodes,
even if in an unreliable communication network, can behave in a reasonable
manner. In the following, we briefly review the syntax and semantics of the
CWQ Calculus.

Syntax of the CWQ Calculus. The processes and networks are interpreted
by a two-level syntax in the CWQ Calculus.
Syntax of Process. For presentation simplicity, name restrictions are omitted in
this paper. We employ P to range over the set of all processes, and N the set of
all network nodes. We use the set In to denote the node identities, where n1, n2,
... range over In. The syntax of the CWQ Calculus is illustrated by the Backus-
Naur form in Table 1. nil stands for the skip process. c!v denotes an output of a
value v, while the corresponding reception is represented by cl?x which receives
a value via channel c and binds it to a variable x. Here, l indicates the trust

158 X. Wu and H. Zhu

Table 1. The syntax of CWQ

Processes:

P ::= nil | Act.P | case e of some(y) : P1 else P2 | A(x̃)

Act ::= b | c!v b ::= cl?x | &q(b1, ..., bn)

d ::= c | v | y e ::= x | some(d) | none

Networks:

Network N has the form: n1[P1] || n2[P2] || ... || nk[Pk]

level of data received over channel c, and it is chosen from a finite trust lattice
L with ≤ for the ordering on L; for example, L = ({L,M,H},≤). A(x̃) denotes
a process with the (possibly recursive) definition of A(x̃)=df P , where A is a
process constant and x̃ contains all free variables in P .

The CWQ Calculus also has the binder b, an input guard inherited from the
Quality Calculus, which is used to specify the inputs to be performed before
continuing. It is of the form &q(b1, ..., bn), where n is the total number of inputs
and q is a quality predicate to be satisfied. Here, q ∈ {∀,∃,∃!,m/n} and the
corresponding meanings are as follows: all inputs are required (∀), at least one
of the inputs is required (∃), only one input is required (∃!) and m sufficient
inputs among all n inputs are required (m/n), respectively. Moreover, nested
binders are also allowed; for example &∃(&∀(cl1

1 ?x1, c
l2
2 ?x2), cl3

3 ?x3). Thus, it
is possible that some variables in the binder do not get proper values when
the process continues. Consequently, data are distinguished from optional data,
and denoted by term d and expression e, respectively. In particular, some(d)
represents the presence of some data d and none for the absence of data. The
construct case e of some(y) : P1 else P2 is used to check whether e evaluates to
some data. If it does, then the data is bound to y and P1 continues; otherwise,
P2 continues.
Syntax of Network. Networks are collections of nodes running in parallel. Each
node, written as n[P], is assigned a unique identity n and runs a process P .
The topology T of a network is specified by an undirected graph G and a radius
constraint Rad , where G consists of a finite set of nodes Node and a set of edges
Edge between these nodes; T = (G,Rad), and G = (Node,Edge). Rad describes
the transmission radius of a node in G, and is defined as a partial function
of Rad : Chan ∗ Node ↪→ R+

0 , where Chan is a finite set of channels and R+
0

stands for non-negative real numbers. This partial function is used to distinguish
between different kinds of channels; for example, Rad(c1, n1) = 0 for internal
unicast communication while Rad(c2, n2) = 3 for broadcast communication.
Edge is also a partial function, Edge : Node∗Node ↪→ R+

0 , which assigns distances
to node-pairs (ni, nj) in G, and it satisfies symmetry and the triangle inequality.

Probabilistic Analysis of a Calculus for Wireless Sensor Networks 159

Labeled Transition Semantics of the CWQ Calculus. The labeled tran-
sition system is also divided into two levels: transitions for processes and for
networks. The rule for process is of the form P

λ−→ P ′, where the syntax of the
signal λ is, λ::=c!v | cl?x, where c!v stands for sending data v via channel c,
while cl?x represents the corresponding receiving and then assigning the value
to variable x. Some auxiliary relations are also used; c!v 	 b → b

′
and b::σθ

where σ ∈ {tt,ff}. The former one specifies that the binder b is changed to b′

after receiving an output c!v. The latter one is used to check whether the required
inputs in binder b have already been satisfied (::tt) or not (::ff). If all the required
inputs are satisfied, a substitution θ is constructed to replace all the variables
with the receiving values, i.e., cl?x::tt[some(v)/x] and cl?x::ff [none/x]. Usually, a
substitution has an id; thus, the composition (θ1θ2)(x) is equivalent to θ2(θ1(x))
for all x.

Semantics of Processes. The operational semantics of processes are illustrated
in Table 2. Rules Send and Recv refer to the primitive output and input of
values respectively. After receiving a value via channel c, a substitution θ is
constructed as [some(v)/x]. Rules Mat1 and Mat2 stand for the case construct.
e � some(c) and e � none are two relations for evaluating an expression e to
a constant with the form some(c) and none, respectively. The next three rules
denote the synchronization with quality binder. Rule Qsd1 defines that after the
binder b receiving an output, the required inputs in b still cannot be satisfied,
thus more inputs are required; Rule Qsd2 denotes that no more inputs are
needed. The general idea of Qrec is to record the binding of the value received
in the appropriate position. As mentioned before, the auxiliary relation b::σθ
is defined to evaluate the binder b for checking whether a sufficient number of
inputs have been performed (i.e., recorded in σ) and for computing the associated
substitution θ, which is shown by rules Jdg1, jdg2 and Sat. The semantics of the
example quality predicates are listed below:

Table 2. Semantics of processes

160 X. Wu and H. Zhu

• [{∀}](σ1, ..., σn) = (|{i|σi = tt}| = n) = σ1 ∧ ... ∧ σn

• [{∃}](σ1, ..., σn) = (|{i|σi = tt}| ≥ 1) = σ1 ∨ ... ∨ σn

• [{∃!}](σ1, ..., σn) = (|{i|σi = tt}| = 1)
• [{m/n}](σ1, ..., σn) = (|{i|σi = tt}| ≥ m)

|X| denotes the cardinality of a set X. Formally, ∃(x1, . . . , xn) ⇔ x1 ∨ · · · ∨ xn

and ∀(x1, . . . , xn) ⇔ x1 ∧ · · · ∧ xn. Here, we also allow to write the quality pred-
icate as [0 ∧ (1 ∨ 2)](x1, x2, x3) which is equivalent to x1 ∧ (x2 ∨ x3). Rule Rec
is a standard one for recursion. Finally, transitions can take place in contexts C
by rule Con and the replacement in C is also allowed which is shown as follows:

[Con] P
λ−→ P ′

C[P]
λ−→ C[P ′]

where C::= [] | C|P | P |C

Semantics of Networks. The formal transitional rules for the networks are
defined by a parameterized operational semantics. Transitions are of the form
T 	 N

α−→ N ′, where the action α is defined as, α::=c!v@n | cl?x@n | τ . The
parameter T refers to the topology of the entire network and N refers to the
network. For the actions, c!v@n denotes that a node identified n sends a message
v to its neighbors using channel c, cl?x@n refers to the corresponding receiving
from a node identified n, and τ is an internal action inside a network.

The labeled transition system for networks is defined in Table 3. One node
can either do an internal action in rule Int1 or keep unchanged in rule Int2,
where rule Int2 is a preliminary of rules BSyn and τSyn which shall be explained
shortly. Rule Bro denotes that a node, identified n, can send a message v via
channel c and the executing process P evolves into P ′. Three corresponding
receivings are listed in rule BRcv1, BRcv2 and BRcv3. Taking local broadcast
into account, only the nodes that are located inside the transmission area of the
sending node can receive the message according to rule BRcv1. The other nodes
that are outside the transmission area of the sender or cannot execute receiving

Table 3. Semantics of networks

[Int1] P → P ′

n[P]
τ−→ n[P ′]

[Int2] n[P]
τ−→ n[P] [Bro] P

c!v−−→P ′

T �n[P]
c!v@n−−−−→n[P ′]

[BRcv1] P
cl?x−−−→P ′ ∧ (n,m)∈G(T) ∧ Rad(c,n) ≥ Edge(n,m)

T � m[P]
cl?x@n−−−−−→ m[P ′]

[BRcv2] (n,m)∈G(T) ∧ Rad(c,n) < Edge(n,m)

T � m[P]
cl?x@n−−−−−→ m[P]

[BRcv3] P
cl?−−�−−→

T � m[P]
cl?x@n−−−−−→ m[P]

[BSyn]
T �ni[Pi]

c!v@ni−−−−→ ni[P
′
i] ∀j �=i T �nj [Pj]

cl?x@ni−−−−−→ nj [P
′
j]

T �n1[P1]||...||ni[Pi]||...||nk[Pk]
c!v@ni−−−−→ n1[P

′
1]||...||ni[P

′
i]||...||nk[P ′

k
]

[τSyn]
∀i T �ni[Pi]

τ−→ ni[P
′
i]

T �n1[P1]||...||ni[Pi]||...||nk[Pk]
τ−→ n1[P

′
1]||...||ni[P

′
i]||...||nk[P ′

k
]

Probabilistic Analysis of a Calculus for Wireless Sensor Networks 161

actions will remain unchanged, based on rules BRcv2 and BRcv3, respectively.
Rule BSyn specifies the parallel of the entire network when the nodes execute
the sending action, as well as the rule τSyn, for the internal action.

3 Motivating Example

As presented in Sect. 2, the CWQ Calculus has the flexibility that not all input
data in a binder need to be received in order for the process to continue (e.g., see
Puser in Fig. 3). Thus, decisions of a system may have different trustworthiness
depending on which input data have actually been received.

In the literature, Nielson and Nielson [12] developed a novel probabilistic
trust analysis for supporting the Quality Calculus to indicate the trust that a
user can have in the overall robustness of a system. They assume each channel
has a trust and change the syntax of binders from &q(cl1

1 ?x1, · · · , cln
n ?xn) to

&π
q (cl1

1 ?x1, · · · , cln
n ?xn). Here, π ∈ D({x1, · · · , xn} → L⊥) is a probability dis-

tribution indicating the probability of the various inputs having been received
where ⊥ denotes the absence of input and L⊥ is the lifted trust lattice obtained
from L by adding ⊥ as the new least element. Then, they use information about
the probabilities that expected input will be absent to associate probability dis-
tributions with all program points of interest, where the probabilities indicate
the trust level of the data.

The trust analysis performed for Quality Calculus in past work [12] however
is not applicable to the CWQ Calculus for WSNs, because the CWQ Calculus has
a unique and important characteristic which is not part of the Quality Calculus.
Specifically, the decision of a system of a WSN is expected to be made based
on data from all network nodes in the WSN, and the decision has the highest
trustworthiness if data from all its constituent network nodes are received and
considered. In other words, from the perspective of a single network node, its
locally stored data may not be sufficient for making the best decision of a system;
this characteristic of WSNs is elaborated more through a case study. Thus, in
this paper, we propose a new data-driven probabilistic trust analysis of the CWQ
calculus for WSNs. Firstly, we give a case study in the following.

Case Study. We give a case study of refueling a car by using the information
of gas stations stored in base stations. Specifically, we consider the scenario that
a car on the road is running out of gas and thus the car driver (i.e., the user)
wants to find the nearest gas station for refueling the car.

The request of finding the closest gas station (GS) is accomplished by broad-
casting the request in a wireless network and then receiving replying messages
that contain locations of GSs. The wireless network consists of a set of base
stations (BSs), where the user can also be regarded as a BS. Each BS has a
transmission area constraint (e.g., illustrated as dotted circles in Fig. 1). That
is, when a BS broadcasts a message, only other BSs that are within its trans-
mission area (i.e., within a certain distance) can receive the message. We assume
that each BS stores some information of GSs (i.e., locations of a subset of GSs)

162 X. Wu and H. Zhu

User

BS BBS A

BS E
BS C

BS D

Fig. 1. Communication in a WSN

Network
df
= User || (

∏
i∈Z

BSi ||
∏
k∈Z

GSk)

User
df
= n11[Puser] || n12[Localuser]

|| n13[Timeruser]

BSi
df
= n2i[Pbs]

GSk
df
= n3k[Pgs]

Using usH∨M, localL, timerH.

Fig. 2. The system

so that the location of a GS is stored in the local cache of the closest BS (or
several closest BSs).

To find the closest GS to the location of the user, the user broadcasts a request
to BSs in a wireless network and then waits for replies. Ideally, if every BSs in
the wireless network replies its locally stored GSs to the user, then the user can
obtain the closest GS by iterating through all the replied GSs. However, in real
wireless networks, a BS cannot (or may not) send its stored GSs to the user due
to several reasons. For example, (1) the BS does not receive the request since it
is not in the transmission area of the user (e.g., BS D in Fig. 1); (2) the user is
not in the transmission area of the BS even if the BS receives the request (e.g.,
BS E in Fig. 1); (3) although the BS sends its replying message to the user and
the user is in its transmission area, the message may be lost in the transmission
process due to unreliable wireless communications. Consequently, the user has
to make a decision based on the locations of a subset of GSs it received, and
the GSs stored at each BS have a probability to contain the closest GS to the
user. In the worst case, the user may not even receive any replies. Therefore, we
assume the user has a local computer (or other electronic devices) which caches
previously searched closest GSs, and the user will choose the closest one among
these locally cached GSs as a candidate if it receives no replies.

Since the GSs replied by BSs are preferred to the locally cached ones, the
user uses a clock to set a waiting time which will wait for at least t1 time units
but at most t2 time units. When t1 time units are reached, the user will check
the received replies. If at least one reply is received, then the user will choose the
closest replied GS for refueling the car and the process continues. Otherwise, it
waits for another t2 − t1 time units. Once t2 time units are reached, the user will
choose the closest replied GS. Note that, if there is still no reply received, then
the locally cached GS will be chosen. The overall scenario is illustrated in Fig. 2,
which is similar to that in [16]. We give details of the Puser process in Fig. 3,
which is the main subject of our probabilistic trust analysis, and omit details of
other processes.

Probabilistic Analysis of a Calculus for Wireless Sensor Networks 163

Puser
df
= usH∨M!req.localL!req.timerH!(t1, t2).

&∀(timerH?xt1 , &∃(usH∨M?xrepA , usH∨M?xrepB , usH∨M?xrepC , localL?xrep′)).
case xrepA of some(yrepA) :
case xrepB of some(yrepB) :

case xrepC of some(yrepC) :1 use(m̂in(yrepA , yrepB , yrepC)).Puser

else2 use(m̂in(yrepA , yrepB)).Puser

else case xrepC of some(yrepC) :3 use(m̂in(yrepA , yrepC)).Puser

else4 use(yrepA).Puser

else case xrepB of some(yrepB) :

case xrepC of some(yrepC) :5 use(m̂in(yrepB , yrepC)).Puser

else6 use(yrepB).Puser

else case xrepC of some(yrepC) :7 use(yrepC).Puser

else &∀(timerH?xt2 , &∃(usH∨M?xrepA , usH∨M?xrepB , usH∨M?xrepC , localL?xrep′)).
case xrepA of some(yrepA) :
case xrepB of some(yrepB) :

case xrepC of some(yrepC) :8 use(m̂in(yrepA , yrepB , yrepC)).Puser

else9 use(m̂in(yrepA , yrepB)).Puser

else case xrepC of some(yrepC) :10 use(m̂in(yrepA , yrepC)).Puser

else11 use(yrepA).Puser

else case xrepB of some(yrepB) :

case xrepC of some(yrepC) :12 use(m̂in(yrepB , yrepC)).Puser

else13 use(yrepB).Puser

else case xrepC of some(yrepC) :14 use(yrepC).Puser

else case xrep′ of some(yrep′) :15 use(yrep′).Puser

else16 0

Fig. 3. Model of the process Puser

Discussion. In Puser in Fig. 3, for ease of exposition we assume that there are
three BSs (i.e., BSs A, B, and C in Fig. 1) that can communicate with the user.
The binder of the second line in Fig. 3, denoted binder1, is equivalent to

&[1∧(2∨3∨4∨5)](timerH?xt1 , usH∨M?xrepA
, usH∨M?xrepB

,

usH∨M?xrepC
, localL?xrep′).

That is, when t1 time units are reached, the process continues when the input
from either BSs A, or B, or C, or the local computer is performed. Alternatively,
we might use the binder, denoted binder2,

&[1∧((2∧3)∨(2∧4)∨(3∧4)∨5)](timerH?xt1 , usH∨M?xrepA
,

usH∨M?xrepB
, usH∨M?xrepC

, localL?xrep′),

This binder requires that at least two BSs from {A,B,C} must reply messages
before the process can proceed. We will show through probabilistic trust analysis
in Sect. 4.3 that binder2 is better than binder1 as far as the quality of the GS
(i.e., how close is it to the user), obtained by the system, is concerned.

164 X. Wu and H. Zhu

4 Data-Driven Probabilistic Trust Analysis

For the case study, ideally, if every BSs in the wireless network replies its locally
stored GSs to the user, then the user can obtain the closest GS by iterating
through all the replied GSs. However, from the perspective of a single BS, the
locally stored GSs may not include the closest GS to the user. In other words,
the set of locally stored GSs in a BS may be of high trustworthiness if it includes
the closest GS to the user, and it may not otherwise.

To incorporate the above intuitions, instead of the channel having trust values
we assume that data received from a channel have trust values, where the trust
value of a data represents the trust of the decision of a system made solely based
on that data. Intuitively, data received from a channel of a network node is of high
trustworthiness if it is essential for making a high-quality decision of the system,
and it is not otherwise. Since it is hard to judge whether a data is essential
for making the decision of a system without actually evaluating the system,
we assume that the data received from a channel has a probability distribution
of trust values. To facilitate our probabilistic analysis, we change the syntax
of binders in CWQ Calculus for WSNs to &π

q (cl1
1 ?x1, · · · , cln

n ?xn), where π ∈
D({x1, · · · , xn} → {t,⊥}) denotes whether an input data xi is received (i.e., t) or
not received (i.e., ⊥) over channel ci for 1 ≤ i ≤ n, and li ∈ D(L) is a probability
distribution of the trust of the input data received over channel ci (i.e., li is
a probability distribution of the trust of xi). Consequently, we consider data
trustworthiness instead of channel trustworthiness, and decouple the probability
of receiving input data from the probability of data trustworthiness which makes
more flexible probabilistic analysis possible (e.g., for analyzing systems based on
WSNs). The overall trustworthiness of the decision of a system is determined by
performing relational analysis to combine the probability distributions of π and
li(∀1 ≤ i ≤ n).

4.1 Trust Propagation

The judgement of our analysis is of the form 	 p, π,L@P. Here, p is the proba-
bility that we will reach the process P , π is a distribution from D(V → {t,⊥})
where V = {x1, · · · , xn′} is a set of optional data variables, and L = {l1, . . . , lm′}
is a set of distributions of the trust level of data variables yi for 1 ≤ i ≤ m′ (i.e.,
distributions from D(L)). The mappings of V → {t,⊥} indicate whether optional
data are received or not and π specifies the distribution of these mappings when
P is reached. Similarly, L specifies the distributions of the trust levels of data
variables y, and we assume li and lj (i �= j) are independent. Note that, this
judgement is different from that in [12] which is of the form 	 p, π@P .

The main judgement is of the form 	 1, π◦,L◦@N as shown in Table 4, where
N stands for the entire program (or network) in the CWQ Calculus, and the
choice of p = 1 reflects that the main process must be called in order to reach
other program points. Here, we let π◦ = ∅ and L◦ = ∅, since there are no optional
data variables or data variables when reaching the main process. Note that, it is
also possible to incorporate constants into π (and π◦) and L (and L◦); however,

Probabilistic Analysis of a Calculus for Wireless Sensor Networks 165

Table 4. Trust propagation

� 1, π◦,L◦@(n1[P1]||...||nk[Pk]) � 1, π◦,L◦@n1[P1] · · · � 1, π◦,L◦@nk[Pk]

� p, π,L@(n1[P1]||...||nk[Pk])

� p, π,L@P1
· · · � p, π,L@(n1[P1]||...||nk[Pk])

� p, π,L@Pk

� p, π,L@(case x of some(y) : P1 else P2)

� p · π[x�=⊥], (π↓[x�=⊥])|Cx,L ⊕ lx[y := x]@P1
if π[x�=⊥] �= 0

� p, π,L@(case x of some(y) : P1 else P2)

� p · π[x=⊥], (π↓[x=⊥])|Cx,L@P2
if π[x=⊥] �= 0

� p, π,L@(c!v.P)

� p, π,L@P

� p, π,L@(b.P) � b � πb

� p, (π|Cbv(b)) ⊗ πb,L@P

we omit the constants in these distributions for ease of presentation, and all
constants are assumed to exist and be of the highest trustworthiness.

Operations on π and L. To do the trust propagation, we need to define sev-
eral operations on π and L. First is lookup on a name for π. That is, given a
distribution π : D(V → {t,⊥}) and a name u, we want to know the probabilities
π[u
=⊥] and π[u=⊥], corresponding to the probabilities that u is received or not,
respectively.

π[u=⊥] =
∑

(σ∈π s.t. σ(u)=⊥) π(σ)

Here, σ is a mapping σ : V → {t,⊥}. π[u
=⊥] is similarly defined, and moreover
π[u
=⊥] = π[u=t] = 1 − π[u=⊥]. These operations are used in the analysis of the
construct case x of some(y) : P1 else P2; π[x
=⊥] is the probability that the first
branch is taken and π[x=⊥] is that the second branch is taken.

The next operation for π is selection on a name. That is, given a distribution
π : D(V → {t,⊥}) and a name u, we want to construct a new distribution
π↓[u
=⊥] that gives 0 probability to all mappings σ with σ(u) �=⊥ and rescales
the remaining probabilities, and this is defined only if π[u
=⊥] �= 0.

(π↓[u
=⊥])(σ) =

{
π(σ)

π[u�=⊥]
if σ(u) �=⊥,

0 otherwise.

Similarly, we define π↓[u=⊥]. These two operations are used in the analysis of the
construct case x of some(y) : P1 else P2; π[x
=⊥] is the distribution of the first
branch if it is taken and π[x=⊥] is the distribution of the second branch if taken.

The next operation for π is projection on a subset of names. That is, given a
distribution π : D(V → {t,⊥}) and a subset of names U ⊆ V , we want to obtain
the distribution π|U in D(U → {t,⊥}). It is defined as,

(π|U)(σ) =
∑

(σ′∈π s.t. σ=σ′|U) π(σ′).

166 X. Wu and H. Zhu

Here, σ′|U is the restriction of the mapping σ′ : V → {t,⊥} to the domain
of U ; that is (σ′|U)(u) = σ(u) if u ∈ U , and (σ′|U)(u) is undefined otherwise.
Similarly, we define the projection on the complement of U , π|CU , which is the
same as π|V \U . These operations are used to reduce the size of a distribution.

The last operation of π is product of two distributions. That is, given two
distributions π1 : D(V1 → {t,⊥}) and π2 : D(V2 → {t,⊥}) over two disjoint
sets of names (i.e., V1 ∩ V2 = ∅), we construct a new distribution π1 ⊗ π2 in
D(V1 ∪ V2 → {t,⊥}). It is defined as,

(π1 ⊗ π2)(σ) = π1(σ|V1) · π2(σ|V2).

They are used when combining two stochastically independent distributions.
For L, we define two operations, replace and addition. Given a distribu-

tion lx in D(L) and a name y, the replace operation lx[y := x] is to con-
struct another distribution ly in D(L) with the same probabilities as lx; that
is, ly(t) = lx(t),∀t ∈ L. That is, the replace operation is to replace the name
of a distribution while all other information remains unchanged. Given a set of
distributions L and a distribution ly, the addition operation L ⊕ ly is to add ly
into L (i.e., L ∪ {ly}). Both operations are used in the analysis of the construct
case x of some(y) : P1 else P2. That is, when the optional data x is actually
received, then the process will continue on the first branch P1; since y instead of
x will be visible and used in P1, the distribution of the trust level of x is copied
and stored into data y to be prepared for being used in P1.

Propagation. Armed with the above operations on π and L, the detailed trust
propagation is shown in Table 4. The logic-flow of our analysis is similar to
that in the program analysis [11] and in the Quality Calculus [13]. That is,
the propagation operates in a top-down manner instead of a more conventional
bottom-up manner. As shown in Table 4, our propagation starts from an axiom 	
1, π◦,L◦@(n1[P1]||...||nk[Pk]) saying that the program (or network) is reachable.
Two inference rules for parallel composition are presented at the second row; it
means that if p, π,L describe the program point just before the entire network
n1[P1]||...||nk[Pk], then they also describe the program point just before each of
the k constitute processes.

For the case construct case x of some(y) : P1 else P2, there are two inference
rules as shown at the third and fourth rows. If π[x
=⊥] �= 0, then there is a non-
zero probability that the optional data x can be received. Thus, we will continue
with process P1 with probability p · π[x
=⊥]. Now since we are sure that x �=⊥
(since we reach P1), we need to do a selection on π conditioned on the fact that
x �=⊥; we can also do a project on the set of names excluding x to simplify the
distribution. Moreover, the data y is assigned and may be used in P1; since the
trust level of y is the same as the optional data x, we construct a new distribution
by replacing the x in lx with y, and add the new distribution to L. Note that, the
set of distributions L is used for conducting trust analysis at program points. If
πx=⊥ �= 0, then there is a similar inference rule for continuing with process P2.

Probabilistic Analysis of a Calculus for Wireless Sensor Networks 167

The last row illustrates inference rules for output and input, respectively. The
rule for output is straightforward, as p, π,L directly pass forward to the following
process. The rule for input binding makes use of another auxiliary judgement
	 b � πb, which obtains the distribution πb; note that, πb is computed by using
standard statistical inference, based on the probability distributions of all the
optional data and channels in b. When reaching P (i.e., successfully passing b),
the distribution π will be augmented by πb while p and L remain the same.

Remarks. Note that the probabilistic analysis of CWQ Calculus proposed
above is different from that conducted by Nielson et al. for probabilistic trust
analysis of the Quality Calculus. Firstly, the CWQ Calculus has a unique charac-
teristic that is not part of the Quality Calculus, as discussed in Sect. 3. Secondly,
we decouple the probability of receiving input data from the probability of data
trustworthiness. That is, the judgement of our analysis is of the form 	 p, π,L@P
where π and L are distributions with π : D(V → {t,⊥}), while the judgement
of the analysis in past work [12] is of the form 	 p, π′@P with π′ : D(V ′ → L⊥).

Note that, the set of distributions, L, in our analysis can be also regarded as a
distribution as follows. Given L = {l1, . . . , lm′} with each li being a distribution
li : L, we can construct a new distribution L

′ = L1⊗· · ·⊗Lm′ where Li : D(xi →
L) and ⊗ is the product operation. It is easy to show that L

′ is equivalent to L.
In this paper, we consider the set of distributions, L, due to its compact form
and the independence of li and lj (i �= j); note that, the size of L′ is much (i.e.,
exponentially) larger than that of L.

The analysis can be implemented using Standard ML. Each distribution can
be represented as a list of pairs (σ, p); for example, the distribution π can be
represented in the form as shown in Tables 5 and 6. Other improvements towards
the representation and the probability inference are also possible, we omit the
discussions in this paper since it is orthogonal to the content of this paper.

4.2 Trust Analysis

Now, we show how to extract information about outputs from the analysis.
Firstly, we consider an output of the form c!v; that is, we want to compute the
trust level of the value v sent over channel c. Assume the analysis gives the form
	 p, π,L@c!v.P when reaching P ; this means that P is reached with probability
p, and the distributions of trust levels of data y, which may be used in v or
P , are given in L. The trust level of v over channel c can be represented as a
distribution φ in D(L) and is defined as follows,

φ(t) =
∑

σ∈L s.t. σ(v)=t L(σ).

Note that, for ease of presentation, we assume L is in the form of a distribution
as discussed in above. Thus, if v is a single data y, then φ(y) is the same as
ly ∈ L. Otherwise, v is of the form f(y1, . . . , yn) where f(·) is a function (e.g.,
m̂in in Fig. 3). Given a set of data {y1, . . . , yn} with trust levels {t1, . . . , tn},

168 X. Wu and H. Zhu

respectively, the trust of the function f(y1, . . . , yn) is assume to be the greatest
lower bound of {t1, . . . , tn} in the trust lattice L. For example, given y1, y2, y3
of trust H,M, L, respectively, the trust of m̂in(y1, y2, y3) is H; that is, y1 is the
most important and sufficient data for the function.

Secondly, we consider all outputs of the form c!·; that is, we want to compute
the trust level of the decision of the system in the form c!· across all branches of
the case constructs. For simplicity, we assume that no occurrence of c!· prefixes
another. Then, the distribution Φc in D(L⊥) is defined as follows,

Φc(t) =
∑

p,π,L@c!v.P

∑
σ∈L s.t. σ(v)=t L(σ).

The probability of the trust level of ⊥ is Φc(⊥) = 1 − ∑
t∈L Φc(t).

4.3 Probabilistic Trust Analysis of the Case Study

We illustrate how to compute such a trust of the decision of a system through
two examples in the following.

Example 1. We consider the binder, binder1, which is described in Fig. 3,

&π
[1∧(2∨3∨4∨5)](timerH?xt1 , usH∨M?xrepA

, usH∨M?xrepB
,

usH∨M?xrepC
, localL?xrep′).

Here, the trust lrepA
of xrepA

received over channel us may be either H or M
(i.e., H ∨ M). Let us assume that lrepA

(H) = lrepA
(M) = 0.5. Note that, lrepA

is
a probability distribution in D(L). lrepB

and lrepC
are similarly defined, while

lt1 and lrep′ have deterministic trust H and L, respectively. For presentation
simplicity, Let us assume that li, lj(i �= j) are independent.

Let us assume that the process of receiving input data through channels us
and local are exponentially distributed with rates λus and λlocal, respectively.
For ease of presentation, assume the probability of receiving replying messages
through channels us and local are pus = 0.6 and plocal = 0.8, respectively; that
is, the probability of not receiving replying messages through channels us and
local are 1 − pus = 0.4 and 1 − plocal = 0.2, respectively. One can show that the
distribution π, indicating whether input data are received or not, is computed
as that in Table 5, with π(δ) = 0 for all other cases.

For presentation simplicity, we assume that there is only one time out (i.e.,
t1) in Puser in Fig. 3; that is, only labels, 1, . . . , 6, 16, are reachable, while those
branches corresponding to labels 7, . . . , 15 are ignored. Now, we illustrate how
to obtain the trust of the decision of the system. First, let us consider π1(xt1 �→
t, xrepA

�→ t, xrepB
�→ t, xrepC

�→ t, xrep′ �→ t) = 0.1750 in Table 5. Since all
optional data, xrepA

, xrepB
and xrepC

, have actually been received, the decision
of the system is made based on the combination of these three data; note that, π1

and π2 in Table 5 together correspond to label 1 in Fig. 3. Thus, when reaching
label 1, the trust of the decision is M with probability lrepA

(M) × lrepB
(M) ×

Probabilistic Analysis of a Calculus for Wireless Sensor Networks 169

Table 5. π for binder1

id xt1 xrepA xrepB xrepC xrep′ p

π1 t t t t t 0.1750

π2 t t t t ⊥ 0.0438

π3 t t t ⊥ t 0.1167

π4 t t t ⊥ ⊥ 0.0292

π5 t t ⊥ t t 0.1167

π6 t t ⊥ t ⊥ 0.0292

π7 t ⊥ t t t 0.1167

π8 t ⊥ t t ⊥ 0.0292

π9 t t ⊥ ⊥ t 0.0778

π10 t t ⊥ ⊥ ⊥ 0.0196

π11 t ⊥ t ⊥ t 0.0778

π12 t ⊥ t ⊥ ⊥ 0.0196

π13 t ⊥ ⊥ t t 0.0778

π14 t ⊥ ⊥ t ⊥ 0.0196

π15 t ⊥ ⊥ ⊥ t 0.0513

Table 6. π for binder2

id xt1 xrepA xrepB xrepC xrep′ p

π1 t t t t t 0.1860

π2 t t t t ⊥ 0.0465

π3 t t t ⊥ t 0.1245

π4 t t t ⊥ ⊥ 0.0315

π5 t t ⊥ t t 0.1245

π6 t t ⊥ t ⊥ 0.0315

π7 t ⊥ t t t 0.1245

π8 t ⊥ t t ⊥ 0.0315

π9 t t ⊥ ⊥ t 0.0827

π10 t t ⊥ ⊥ ⊥ 0

π11 t ⊥ t ⊥ t 0.0827

π12 t ⊥ t ⊥ ⊥ 0

π13 t ⊥ ⊥ t t 0.0827

π14 t ⊥ ⊥ t ⊥ 0

π15 t ⊥ ⊥ ⊥ t 0.0514

lrepC
(M) = 0.125, and it is H with probability 1−0.125 = 0.875; recall that each

lx ∈ D(L) is a probability distribution. Based on the above, we can see that
the probability that the trust of the decision is H includes 0.1750 × 0.875, and
the probability to be M includes 0.1750 × 0.125. Similarly, π3 and π4 in Table 5
together correspond to label 2 in Fig. 3, and π3 = 0.1167. When reaching label
2, the trust of the decision is M with probability lrepA

(M) × lrepB
(M) = 0.25,

and it is H with probability 1− 0.25 = 0.75. Thus, the probability that the trust
of the decision is H also includes another 0.1167 × 0.75, and the probability to
be M also includes another 0.1167 × 0.25.

Overall, the probability that the trust of the decision is H is (π1 + π2) ×
0.875+ (π3 + · · ·+π8)× 0.75+ (π9 + · · ·+π14)× 0.5 = 0.2188× 0.875+0.4377×
0.75 + 0.2922 × 0.5 = 0.6658, and the probability that the trust of the decision
is M is (π1 + π2) × 0.125 + (π3 + · · · + π8) × 0.25 + (π9 + · · · + π14) × 0.5 =
0.2188 × 0.125 + 0.4377 × 0.25 + 0.2922 × 0.5 = 0.2829

Example 2. Now, we consider binder2 which is discussed in the case study, as
follows,

&[1∧((2∧3)∨(2∧4)∨(3∧4)∨5)](timerH?xt1 , usH∨M?xrepA
,

usH∨M?xrepB
, usH∨M?xrepC

, localL?xrep′).

Here, lrepA
, lrepB

, lrepC
, and lrep′ are the same as in Example 1 in above. Note

that, the process Puser needs to be modified accordingly, and we also assume
there is only one time out (i.e., t1); we omit the details here. Similar to Example 1,
one can show that the distribution π, indicating whether input data are received
or not, is computed as that in Table 6.

170 X. Wu and H. Zhu

We illustrate how to obtain the trust of the decision of the system. First, let
us consider π1(xt1 �→ t, xrepA

�→ t, xrepB
�→ t, xrepC

�→ t, xrep′ �→ t) = 0.1860
in Table 6. Since all optional data, xrepA

, xrepB
and xrepC

, have actually been
received, the decision of the system is made based on the combination of these
three data. Thus, similar to that in Example 1, the probability that the trust of
the decision is H includes 0.1860 × 0.875, and the probability to be M includes
0.1860×0.125. Similarly, when considering π3 = 0.1245, the probability that the
trust of the decision is H also includes another 0.1245×0.75, and the probability
to be M also includes another 0.1245 × 0.25. Overall, the probability that the
trust of the decision is H is 0.6785, and the probability that it is M is 0.2701.

Remark. By comparing the above two examples, we can see that the probability
of the trust of the decision based on binder2 to be H is 0.6785 and it is larger
than the probability of the trust of the decision based on binder1 to be H which is
0.6658. Thus, by using probabilistic analysis we can quantify the trustworthiness
of decisions based on different binders, based on which we choose the better one.

5 Conclusion and Future Work

In this paper, we proposed a data-driven probabilistic trust analysis of the CWQ
Calculus for WSNs. The CWQ Calculus has the flexibility that not all input data
in a binder need to be received in order for the process to continue; thus, deci-
sions of a system may have different trustworthiness depending on which input
data have actually been received. We assumed that data received from a channel
have trustworthiness values which follow probability distributions, and the trust
value of a data represents the trust of the decision of a system made solely based
on that data. Then, we proposed to decouple the probability of receiving data
from the probability of data trustworthiness which makes more flexible proba-
bilistic analysis possible (e.g., for analyzing systems based on WSNs). The overall
trustworthiness of the decision of a system is then determined by performing a
relational analysis to combine these probability distributions.

Future directions for our research may include considering the topological
structure changing in the analysis and also incorporating the mobility of sensor
network nodes. It is also possible to use PRISM [5] for automatic probabilistic
analysis. Moreover, we are continuing to explore the denotational semantics and
algebraic semantics of the CWQ Calculus. Giving a deduction system of the
calculus may also be another interesting topic.

Acknowledgement. This work was partly supported by the Danish National
Research Foundation and the National Natural Science Foundation of China (Grant
No. 61361136002) for the Danish-Chinese Center for Cyber Physical Systems. It was
also supported by National Natural Science Foundation of China (Grant No. 61321064)
and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of
Things (No. ZF1213).

Probabilistic Analysis of a Calculus for Wireless Sensor Networks 171

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Comput. Netw. 38, 393–422 (2002)

2. Bulusu, N., Jha, S.: Wireless Sensor Networks: A Systems Perspective. Artech
House, Norwood (2005)

3. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In:
Proceedings of 15th International Parallel and Distributed Processing Symposium
(IPDPS 2001), pp. 149–149, San Francisco, CA, April 2001

4. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks. In: Seidl, H. (ed.) Programming
Languages and Systems. LNCS, vol. 7211, pp. 295–315. Springer, Heidelberg (2012)

5. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

6. Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wireless sys-
tems. Theor. Comput. Sci. 411(19), 1928–1948 (2010)

7. Lee, E.A.: Architectural support for cyber-physical systems. In: Proceedings of 12th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2015), pp. 14–18, Istanbul, Turkey, March 2015

8. Liu, S., Zhao, Y., Zhu, H., Li, Q.: A calculus for mobile ad hoc networks from a
group probabilistic perspective. In: Proceedings of 13th IEEE International Sym-
posium on High-Assurance Systems Engineering (HASE 2011), pp. 157–162. IEEE
Computer Society (2011)

9. Merro, M., Sibilio, E.: A timed calculus for wireless systems. In: Arbab, F., Sirjani,
M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 228–243. Springer, Heidelberg (2010)

10. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electr. Notes
Theor. Comput. Sci. 158, 331–353 (2006)

11. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

12. Nielson, H.R., Nielson, F.: Probabilistic analysis of the quality calculus. In: Pro-
ceedings of 8th International Federated Conference on Distributed Computing
Techniques (DisCoTec 2013), pp. 258–272, Florence, Italy (2013)

13. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013)

14. Prasad, K.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2–3),
285–327 (1995)

15. Prasad, K.: A prospectus for mobile broadcasting systems. Electr. Notes Theor.
Comput. Sci. 162, 295–300 (2006)

16. Wu, X., Nielson, H.R., Zhu, H.: A SAT-based analysis of a calculus for wireless
sensor networks. In: Proceedings of 9th IEEE International Symposium on Theo-
retical Aspects of Software Engineering (TASE 2015), pp. 23–30. IEEE Computer
Society (2015)

17. Wu, X., Zhu, H.: A calculus for wireless sensor networks from quality perspective.
In: Proceedings of IEEE 16th International Symposium on High Assurance Systems
Engineering (HASE 2015), pp. 223–231, Daytona Beach, FL, USA, January 2015

Leveraging Abstraction to Establish
Out-of-Nominal Safety Properties

Jackson R. Mayo(B), Robert C. Armstrong, and Geoffrey C. Hulette

Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-0969, USA
{jmayo,rob,ghulett}@sandia.gov

Abstract. Digital systems in an out-of-nominal environment (e.g., one
causing hardware bit flips) may not be expected to function correctly in
all respects but may be required to fail safely. We present an approach
for understanding and verifying a system’s out-of-nominal behavior as an
abstraction of nominal behavior that preserves designated critical safety
requirements. Because abstraction and refinement are already widely
used for improved tractability in formal design and proof techniques,
this additional way of viewing an abstraction can potentially verify a
system’s out-of-nominal safety with little additional work. We illustrate
the approach with a simple model of a turnstile controller with possible
logic faults (formalized in the temporal logic of actions and NuSMV),
noting how design choices can be guided by the desired out-of-nominal
abstraction. Principles of robustness in complex systems (specifically,
Boolean networks) are found to be compatible with the formal abstrac-
tion approach. This work indicates a direction for broader use of formal
methods in safety-critical systems.

Keywords: Abstraction · Refinement · Model checking · Fault toler-
ance · Soft errors · Temporal logic of actions · NuSMV

1 Introduction

Due to the combinatorial complexity of digital systems, not only is exhaustive
testing infeasible as a means to ensure safety, but even the reasoning techniques
used by formal methods face scalability challenges in verifying large designs and
complex safety requirements. A widely used technique to improve the tractabil-
ity of formal verification is to work with abstractions (or overapproximations),
which can be simpler to analyze and are conservative in the sense that their
verified safety properties are guaranteed to hold also in the actual implementa-
tion. This guarantee applies because a valid abstraction permits all behaviors
that occur in the implementation and possibly additional behaviors. In current
formal methods, abstractions are used in two main contexts:

1. Proof techniques that search for a post-hoc abstraction suitable for verifying
desired properties of a given implementation, as in counterexample-guided
abstraction refinement (CEGAR) [3].

c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 172–186, 2016.
DOI: 10.1007/978-3-319-29510-7 10

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 173

2. Design techniques that start from an abstraction in which desired properties
can be proven and then create an implementation by refinement, as in the
Event-B method [1].

In both cases, the abstraction is a means to an end: either generating a proof of
an existing design, or generating a provable design. The abstraction is of value
because it can be tractably verified for safety and because it has an overapprox-
imation relationship to the implementation, but serves little purpose beyond
these points. If the implementation could be verified directly, the need for the
abstraction would be obviated.

Here we present a different perspective on abstraction – useful when, under
some conditions, a system is physically capable of additional behaviors beyond
its “nominal” operation. In this approach, we note that a typical formal model
of the implementation makes certain assumptions about the environment that
are not universally valid. Thus, the requirements that are verified on this imple-
mentation model, which may include not only safety but also reliability, etc.,
are proven to hold in this nominal environment. This is practically sufficient
for some requirements, given that the nominal environment can be maintained
often enough for the system to be useful. But critical safety properties may need
to be guaranteed under a less restrictive model that permits particular “out-
of-nominal” behaviors, if such behaviors may physically occur often enough to
be of concern for the risk of catastrophic failure. Our observation is that the
abstraction concept, already commonly used in formal methods as a mathemat-
ical technique, can be reinterpreted as defining a space of possible “real-world”
out-of-nominal behaviors for which the abstraction-verified safety properties are
still guaranteed to hold. Thus, by leveraging suitable abstractions, we can gain
out-of-nominal safety verification for free.

A primary example of out-of-nominal behavior is the response of digital hard-
ware to electrical or other physical stimuli that produce states not accounted for
in the logic design – with the abnormal physical dynamics generating a nominally
disallowed digital state transition such as a bit flip. A variety of formal techniques
have been investigated for modeling and verifying such behavior [4,7,8]; recog-
nizing that out-of-nominal behavior may overlap with other formal abstractions
can increase the applicability of these techniques, particularly in earlier stages
of the design process. More generally, other types of unexpected but not totally
unforeseeable inputs from the environment can be treated as out-of-nominal
behavior. For example, in modular verification of a system where each compo-
nent is verified subject to assumptions on the behavior of other components
with which it interacts, a conservative approach that verifies safety for a suit-
able overapproximation can create a “firebreak” around each component that
mitigates the possibility of catastrophic cascading failure in the event of isolated
malfunctions. A complex systems theory of such firebreaks has been developed
previously [15].

In the remainder of this paper we present the formal abstraction framework
for understanding out-of-nominal behavior (Sect. 2), the definition of a simple
example model of a turnstile (Sect. 3), an illustration of the framework using the

174 J.R. Mayo et al.

example (Sect. 4), a conclusion (Sect. 5), and the formalization of aspects of the
example in the temporal logic of actions or TLA (AppendixA) and in NuSMV
(AppendixB).

2 Modeling Out-of-Nominal Safety Properties

The safety properties of a given model are required to hold at all times over
all possible behavioral paths. Such properties, when imposed on an abstraction,
require that every path in the abstraction conforms to the properties, and thus
every refinement will as well. The use of abstraction in verifying safety require-
ments is well established.

Here we distinguish “critical” safety requirements that must hold even in out-
of-nominal environments (Fig. 1). These out-of-nominal fail-safe requirements
are less strict (allow more behaviors) than the requirements for nominal oper-
ation and thus constitute an abstraction of the nominal requirements. Safety-
critical devices where failure modes can be anticipated are likely candidates for
this technique. Nominal requirements can be relaxed to admit acceptable modes
of failure. The resulting out-of-nominal safety requirements reflect an engineering
decision that certain properties must be preserved even in exceptional circum-
stances that may be considered unlikely to occur.

Fig. 1. Refinement/abstraction conceptual diagram for treating out-of-nominal and
nominal models in a unified way. The arrows point in the direction of abstraction.

The safety requirements must ultimately be verified on formal models that
reflect the actual nominal and out-of-nominal behavior of the system being
designed. Such models are typically tied to the requirements via one or more

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 175

abstraction/refinement steps ultimately leading to a model of a practical imple-
mentation. In our approach, upon refinement, the out-of-nominal model remains
an abstraction of the nominal one (Fig. 1). By stipulating that the out-of-nominal
refinement has a superset of the behaviors of the nominal refinement, we ensure
that the safety properties verified for out-of-nominal operation also hold for
nominal operation. These critical safety properties take the form of a fail-safe
mode where nominal function is no longer guaranteed but essential safety invari-
ants still hold. Of course, the approach is limited to those out-of-nominal failure
modes that can be foreseen and modeled.

Not all foreseeable failure modes may manifest an abstraction or overapprox-
imation of the system’s nominal behavior. A particular failure mode may render
the system incapable of performing some nominal behaviors. The removal of pos-
sible behavioral paths, by itself, does not invalidate any of the nominal safety
properties, but can affect functional requirements that are outside the scope of
the formal refinement methodology applied in this work. Out-of-nominal sce-
narios of concern for safety would involve adding at least some new behaviors.
In typical cases, failures can occur to varying degrees or not at all depending
on practically unpredictable events. Thus, it is often natural for out-of-nominal
behavior to be represented in a way that includes nominal behavior as a possibil-
ity. Regardless, an out-of-nominal model can be made an overapproximation by
simply adding the nominal behavior to it as an allowed nondeterministic branch.

If we are to apply critical safety requirements globally across all failure modes,
then the high-level out-of-nominal refinement will represent the union of all
failure modes together with the nominal behavior. In this way, all models of
particular failure modes are refinements of the global failure refinement and
inherit any safety property proven for this global refinement. The nominal model
is also a refinement and inherits the same safety properties (Fig. 1). Not admitted
in this work is a case where a safety property is required to hold only for out-
of-nominal operation and is not present in the nominal model. Though such
cases exist, it is considered rare for a nominal implementation to lack a safety
requirement present in a failure mode for that system.

Viewing behaviors of anticipated malfunctions as an abstraction of the nom-
inal behavior has some advantages. For complex safety-critical systems that are
prone to failure, it is important to “design-in” anticipated failures with their own
fail-safe requirements. Recasting such requirements into the familiar abstrac-
tion/refinement design practice means that the same tools can be brought to
bear on these designed-in benign failure requirements as part of the normal
design process. Another advantage is that anticipated failure modes are incor-
porated into the design process up-front rather than as an afterthought.

3 Example Turnstile Model

For an illustration, we use the familiar turnstile model [6] in simplified form.
A turnstile requires a coin to permit the patron admission by pushing on the
bar. In a simplified description, we can identify three Boolean state variables

176 J.R. Mayo et al.

for the device: C, P , and L, indicating whether a coin is present, whether the
bar is being pushed, and whether the bar is locked. We idealize the operation
of the turnstile as a sequence of discrete instants at which C and P can be set
arbitrarily from the outside and L updates at the next instant in response. If
the coin is present and the bar is locked, the bar should become unlocked and
remain so until the patron pushes through, after which it should become locked
again. If the coin is absent, the bar should remain locked. We can synthesize the
desired nominal properties into a TLA+ [11] formula:

S1 � (¬C ∧ L ⇒ L′) critical safety property
S2 � (C ∧ L ⇒ ¬L′)
S3 � (¬P ∧ ¬L ⇒ ¬L′)
S4 � (P ∧ ¬L ⇒ L′)
Safety � �[S1 ∧ S2 ∧ S3 ∧ S4]〈C,P,L〉.

(1)

Here, each Sn defines a safety property in terms of a TLA action, which
relates the variables C, P , and L in the “current” instant to L′, representing
the value of L in the “next” instant. TLA formulas describe behaviors, infinite
sequences of states over a set of named variables, and so we have to lift the
description of individual steps into a predicate on behaviors. To combine the
safety properties into the requirement Safety , we require that each step must
satisfy the conjunction of the safety properties, or else be a “skip” step where
the next state is identical to the current one. In TLA+ this is expressed as
�[S1 ∧ S2 ∧ S3 ∧ S4]〈C,P,L〉.

While all of the implications in (1) can be thought of as safety properties,
the “critical safety property” S1 is one that we wish to preserve in a design for
anticipated out-of-nominal conditions. We could have designated another one
(or more) of the safety conditions as “critical” – there is nothing special about
the property S1 other than our choice of it for this example. We can interpret
S1 as “the turnstile will remain locked unless a coin is present” (¬C ∧L ⇒ L′).
Out-of-nominal designs will be discussed further in Sect. 4.

The nominal requirements in (1) can be used as an abstraction suitable for
refinement. If the refinement is valid, all of S1 through S4 will be true of the
implementation. One initial refinement of the requirements is described by the
action

L′ = (¬C ∧ L) ∨ (P ∧ ¬L), (2)

and this can be elaborated into a full TLA+ model, shown in Fig. 4 in Appen-
dix A. The TLC model checker can prove that the behaviors of this model,
encoded in a TLA formula Spec, refine Safety , i.e., satisfy the safety conditions
S1 through S4. Since the model is finite, TLC readily verifies that Spec ⇒ Safety .

The refinement (2) would need to be “compiled” (i.e., further refined) into a
program running on a processor, or in the ensuing example for this paper, syn-
thesized into logic gates. It is the specifics of the implementation that determine
whether this circuit is robust to the anticipated failure modes.

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 177

4 Design and Out-of-Nominal Verification via
Abstraction

4.1 Refinement (High Level)

We now consider a method by which abstraction and refinement can be used
in a formal design process in order to account for out-of-nominal conditions.
The process starts, as any design process should, with the requirements. These
are gathered in the usual ways and must be formalized. These are the nominal
requirements.

Next, certain of these requirements are designated as “critical” – these are
the out-of-nominal requirements, i.e., those that must hold even under some
(predicted) mode of system failure or inconsistency. Our methodology dictates
that now the designer must prove that the nominal requirements refine the out-
of-nominal requirements. If the out-of-nominal requirements are a subset of the
nominal requirements then this proof is trivial, since any system behavior satis-
fying a set of requirements will also satisfy any subset of those requirements.

Next, we refine the nominal requirements. The refined model is closer to
an implementation, although it may still be quite abstract. Refinement of the
nominal model is done in the usual way [1,11], ensuring that the level above
simulates the level below.

Finally, we must construct the out-of-nominal refinement such that it both
refines the out-of-nominal requirements and abstracts the nominal refinement,
completing the commuting square diagram (shown for the turnstile example in
Fig. 2). This step might be quite difficult, and we know of no general approach
to construct this model. However the turnstile example may be typical of certain
cases. In this case, our out-of-nominal requirement is only that ¬C ∧L ⇒ L′. In
the nominal refinement, L evolves based on the action

L′ = (¬C ∧ L) ∨ (P ∧ ¬L).

Since the first disjunct alone already satisfies the out-of-nominal requirement
that ¬C ∧ L ⇒ L′, we can consider the second disjunct to behave “randomly”
and, at any step, draw its value from either the nominal behavior P ∧ ¬L or its
negation ¬(P ∧ ¬L). In the model, we denote by X a value from this set, and
the out-of-nominal refinement is derived by replacing the action above with

L′ = (¬C ∧ L) ∨ X.

This model is shown in Fig. 5 in Appendix A. We have verified with TLC that it
both refines the out-of-nominal requirements and abstracts the nominal refine-
ment, thus completing the commuting diagram.

By contrast, if we had used the logically equivalent nominal refinement

L′ = (¬C ∨ ¬L) ∧ (P ∨ L),

it would not have been straightforward to obtain an out-of-nominal abstraction
preserving the critical safety requirement S1. That is, while the disjunctive and

178 J.R. Mayo et al.

Fig. 2. Refinement/abstraction diagram for the turnstile example. The arrows point
in the direction of abstraction. Existing formal abstractions can be reinterpreted in
this framework; a technique like CEGAR might already prove that the nominal design
(lower right) satisfies a safety property (upper left) by finding an abstraction (lower
left) that satisfies the safety property.

conjunctive normal forms are of course equivalent in their nominal behavior,
in this example one particular choice of design offers the ability to tolerate a
faulty out-of-nominal operation. This interpretation gives abstraction an even
more central role in driving the design process.

It is useful to ask: How generalizable and automatable is the use of abstrac-
tion techniques to understand out-of-nominal behavior? While we present only
a preliminary exploration of this type of approach, we suggest that there are
likely insights to be gained on many specific digital system models by viewing
already-used abstraction techniques through the out-of-nominal lens. In tradi-
tional nominal verification, discovering a useful abstraction in which given safety
properties can be proven is typically an iterative process, either automated or
manual. The goal of capturing some realistic out-of-nominal behavior in the
abstraction can be an additional criterion guiding this process.

For example, in design by refinement, a high-level model satisfying critical
safety properties could be constrained to be assembled from abstracted compo-
nent models that are known to represent the behavior of implementable devices
including both nominal and out-of-nominal environments of interest. This would
ensure that subsequent refinement can match a physically realizable implemen-
tation while preserving the out-of-nominal requirements. Moreover, the choice
of physical implementation itself could be directly informed by abstractions that
are found in other ways. If CEGAR is applied to a critical safety property and
discovers a suitable abstraction of the nominal model automatically, the system
design could be adjusted to ensure that its out-of-nominal behavior falls within
this abstraction. In the turnstile model, CEGAR might produce the abstrac-
tion L′ = (¬C ∧ L) ∨ X in the course of proving ¬C ∧ L ⇒ L′. More realistic
applications of CEGAR [10] result in other abstractions that may correspond to
out-of-nominal behavior, such as allowing the values of variables to be corrupted

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 179

as long as certain predicates are not altered. This could define the strength of
error correction needed in an implementation.

4.2 Implementation (Low Level)

We now discuss how the refined logic design for the turnstile (on both the out-
of-nominal and nominal sides) can be related to a notional implementation in
hardware gates. This corresponds to adding another level of detail to the model
that could be reified in raw gates, moving from the second to the third row in
Fig. 3. We could initially interpret the nominal logic L′ = (¬C ∧ L) ∨ (P ∧ ¬L)
directly in terms of AND and OR gates. Then the out-of-nominal logic L′ =
(¬C ∧ L) ∨ X implies that the P ∧ ¬L term can be computed by an unreliable
gate, but the remaining gates must remain reliable even under out-of-nominal
conditions. Often this is achieved using some physically more robust but more
expensive type of gate, and is ineluctably tied to the physical failure mode(s)
that the designer has in mind. To illustrate an alternative technique, we discuss
an intrinsically robust implementation using Boolean networks (BNs) informed
by principles of digital error damping. Such BNs have several advantages:

1. The analysis draws on the rich body of science developed for BNs [9] as
previously applied to discrete system robustness, including digital and bio-
logical applications; error creation, propagation, and extinction in BNs are
well characterized.

2. The statistics of error damping in BNs have been previously evaluated [12]
for a digital half-adder. Because of this, the example implementations used
here are known to be representative of the class of BNs from which they are
chosen.

3. The dynamical systems principles illustrated by BNs are applicable to much
more complex designs than the turnstile example and to broader types of
faults, offering a means of assessment even for systems beyond the reach of
exhaustive formal verification.

We draw on previous work [12] in which example BNs were constructed
to compute a half-adder function and their robustness was analyzed with the
NuSMV [2] model checker. For present purposes, we ignore the “sum” output and
use only the “carry” output, which corresponds directly to an AND operation.
Conventionally, a BN is interpreted as a sequential logic circuit. To implement
combinational logic, we replicate the gates in “tiers”, with each tier providing
its results as input to the next, and with the final output being read at the
end of a specified number of tiers (here, 20). This corresponds to “unrolling”
the conventional BN steps and can analyzed identically using model checkers,
etc. The BNs are used here as a notional means of implementing the turnstile’s
combinational logic in a way that is systematic (rather than idiosyncratic) and
representative of more complex designs.

Two BNs were constructed, differing in the design parameter k, the average
number of inputs per node [12]. In accordance with complex systems analysis [9],

180 J.R. Mayo et al.

Fig. 3. Continuation of Fig. 2 where we add an implementation in gate-level Boolean
networks. It is at this lowest implementation level that the failure mode will evidence
itself and must be anticipated and accounted for in the out-of-nominal design.

the BN with k = 1.5 shows “quiescent” behavior (perturbations are damped)
and the BN with k = 2.5 shows “chaotic” behavior (perturbations are ampli-
fied). Typical real-world digital implementations are found empirically to be
chaotic [13]; such implementations are cheaper to create because they impose
fewer restrictions on programmability. Quiescent implementations that damp
bit-flip errors are more constrained and generally more difficult to create. Our
strategy here is to use the cheaper chaotic implementation for parts of the design
that do not impact the critical safety property, and to use the more expensive
quiescent implementation for parts that need robustness to preserve the critical
safety property.

In using the BNs for the turnstile, we take advantage of the higher-level
abstraction properties already established. Specifically, we implement each of
the two AND operations in L′ = (¬C ∧ L) ∨ (P ∧ ¬L) with a BN. This means
that the two values ¬C and L are wired to the inputs of a BN and the carry
output is used for the result ¬C ∧ L, and similarly for P ∧ ¬L. We assume that
the other operations, such as the NOT initially applied to some inputs and the
OR performed at the end, are fully reliable for this example.

Each of the two AND operations in L′ = (¬C ∧ L) ∨ (P ∧ ¬L) can be
implemented with either of the BNs as far as nominal behavior is concerned. This
is verified by exhaustive testing as well as model checking with NuSMV [12], and
is as expected because the BNs were chosen to compute their function correctly
when operating with their nominal logic. Thus, the abstraction arrow leading
upward from the bottom right of Fig. 3 is valid.

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 181

For out-of-nominal behavior, as before [12], we consider the possibility of
any single bit flip (incorrect gate output) within some range of tiers in the BN,
again using a nondeterministic formal model of the kind used in other work
on soft errors [14]. We have adapted the NuSMV analysis in this case to check
the correctness of the carry bit specifically. A portion of our NuSMV model
is shown in Fig. 6 in Appendix B. In these BNs, because bit flips occurring at
or shortly before the output stage may not have a chance to self-correct, the
bit flip is restricted to the first nmax tiers, where we consider 1 ≤ nmax ≤ 20.
The NuSMV analysis finds that for no such value of nmax does the chaotic BN
reliably implement the AND operation, while the quiescent BN does so for any
nmax ≤ 15. That is, most of the computations performed by the quiescent BN
can be susceptible to a bit flip, and relatively few of them (the last 5 tiers)
need to be protected. Thus, if we can arrange that the effect of the out-of-
nominal environment is not felt in the last 5 tiers, then the quiescent BN can
be used to implement the “critical” term ¬C ∧ L and correctly refines it on
the out-of-nominal side – the abstraction arrow leading upward from the lower
left in Fig. 3. Meanwhile, either BN (or for that matter, any nominally correct
implementation) can be used for P ∧¬L because the out-of-nominal side imposes
no constraint on this term.

Hence, we have shown that for a suitable out-of-nominal environment, a BN-
based implementation of the turnstile logic with quiescent ¬C ∧L and arbitrary
P ∧ ¬L can complete the bottom row in Fig. 3, conforming to the previous
abstractions on both the out-of-nominal and nominal sides. As mentioned, qui-
escent implementations are harder to design, and so limiting the need for them
(here to one half of the turnstile logic) is useful.

In accordance with the remarks at the end of Sect. 4.1, the relation between
the higher-level models and the BN implementations illustrates the potential for
two-way interaction in the design process. The robustness that is designed-in at
the gate level can be targeted at the goal of making the out-of-nominal behavior
conform to a chosen abstraction; resources need not be spent on correcting errors
that are allowed by the abstraction. Conversely, the availability and efficiency
of robust implementations can motivate the use of particular abstractions in a
formal design methodology.

5 Conclusion

We have presented an approach for modeling out-of-nominal behavior in dig-
ital systems so that critical safety properties can be established, in a way
that leverages existing formal design and verification techniques. Our approach
takes advantage of a key observation: The relation between nominal and out-
of-nominal behavior can be viewed as an instance of the same kind of for-
mal abstraction that is used for other purposes, and so analysis techniques
and specific abstractions can be shared. Nominal and out-of-nominal require-
ments and implementations are connected by an interlocking set of abstraction
relationships.

182 J.R. Mayo et al.

This work can contribute to new digital design and verification techniques
that ensure safety in out-of-nominal environments as an inherent property rather
than addressing it after the fact. This will likely benefit from an iterative design
process in which the nominal and out-of-nominal requirements and implementa-
tions can be adjusted until the network of abstractions is complete and consis-
tent. For a design already created with only nominal analysis, abstractions can
reveal what properties are preserved in what out-of-nominal environments, and
thus may enlarge the usefulness of the design or suggest ways of improving it.

Possible extensions of this work include:

1. Generalizing the dichotomy of nominal and out-of-nominal to a larger fam-
ily of different environments, each of which may have its own set of safety
requirements based on likelihood of occurrence and consequences of failure.

2. Enabling statistical reasoning with probabilistic (rather than merely nonde-
terministic) models of out-of-nominal behavior, probabilistic safety require-
ments, and probabilistic model checkers [5], using suitable notions of
abstraction and refinement.

3. Further integrating robust-design principles from formal methods and com-
plex systems theory to enable out-of-nominal verification with as much con-
fidence as possible for systems beyond the reach of exhaustive analysis.

Acknowledgments. Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration (NNSA) under contract DE-AC04-94AL85000. This work was funded
by NNSA’s Advanced Simulation and Computing (ASC) Program.

A High-Level Model for Turnstile in TLA

As discussed in Sect. 3 and Sect. 4.1, TLA+ is used to specify and verify both
nominal and out-of-nominal models for the turnstile example. The nominal
model is shown in Fig. 4 and the out-of-nominal model in Fig. 5. Both mod-
els have three variables lock , coin, and push, corresponding to the variables
L, C, and P described in Sect. 3. The specifications are given in the idiomatic
TLA+ style: Init constrains the initial conditions, Next describes the “next step”
relation, and Spec expresses the complete temporal logic specification [11].

The relation Next is defined by existential quantification over parameters
c and p, representing new values of coin and push in the relation Step. This
somewhat contorted idiom is used because a step must completely describe the
evolution of each variable. The existential expresses that coin and push may
each evolve nondeterministically at each step.

The property TypeInvariant states that each variable is limited to Boolean
values, while Safety expresses the set of safety properties drawn from S1 through
S4 that apply to each model. In the nominal model, OutOfNominalSpec imports
the out-of-nominal specification for use in proving refinement (see Sect. 4.1). The
type invariant, safety, and refinement properties were checked for correctness
using the TLC model checker.

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 183

Fig. 4. TLA+ specification for the nominal turnstile.

184 J.R. Mayo et al.

Fig. 5. TLA+ specification for the out-of-nominal turnstile.

B Boolean Network Model for Turnstile in NuSMV

As described in Sect. 4.2, the NuSMV model checker is used to verify the robust-
ness of the tiered combinational logic implementing the safety-critical term
¬C ∧ L, along the lines of previous work [12]. The inputs are taken as node
0 (¬C) and node 1 (L), and the output is taken as node 18. The Boolean net-
work (BN) is checked for conformance to the abstraction in the presence of any
single internal bit flip in one of the first nmax tiers, where nmax ∈ {1, . . . , 20}.
Figure 6 shows an extract from the model in the case where node 2 can be flipped

Leveraging Abstraction to Establish Out-of-Nominal Safety Properties 185

Fig. 6. Extract from a NuSMV model that is programmatically generated so that all
tiers and all nodes can be checked for susceptibility to bit flips. The linear temporal
logic (LTL) property at the end expresses conformance of the out-of-nominal output
to the abstraction ¬C ∧ L.

and nmax = 14. It is found that the quiescent BN is immune to any single bit
flip up to nmax = 15, whereas the chaotic BN can be corrupted by a single bit
flip for any value of nmax.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, Cambridge (2010)

2. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

3. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50, 752–794 (2003)

4. Fey, G.: Assessing system vulnerability using formal verification techniques. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 47–56. Springer, Heidelberg (2012)

5. Güdemann, M., Ortmeier, F.: Probabilistic model-based safety analysis. In: Pro-
ceedings of the 8th Workshop on Quantitative Aspects of Programming Languages,
pp. 114–128, March 2010

186 J.R. Mayo et al.

6. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In:
Proceedings of the 17th International Conference on Software Engineering, pp.
15–24 (1995)

7. Joshi, A., Heimdahl, M.P.E., Miller, S.P., Whalen, M.W.: Model-based safety
analysis. NASA Contractor Report CR-2006-213953, February 2006

8. Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.: A proposal for model-based
safety analysis. In: Proceedings of the 24th Digital Avionics Systems Conference,
October 2005

9. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolu-
tion. Oxford University Press, Oxford (1993)

10. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 222–233, June 2011

11. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

12. Mayo, J.R., Armstrong, R.C., Hulette, G.C.: Digital system robustness via design
constraints: the lesson of formal methods. In: Proceedings of the 9th Annual IEEE
International Systems Conference, pp. 109–114, April 2015

13. Mytkowicz, T., Diwan, A., Bradley, E.: Computer systems are dynamical systems.
Chaos 19, 033124 (2009)

14. Seshia, S.A., Li, W., Mitra, S.: Verification-guided soft error resilience. In: Proceed-
ings of the Conference on Design, Automation and Test in Europe, pp. 1442–1447,
April 2007

15. Vorobeychik, Y., Mayo, J.R., Armstrong, R.C., Ruthruff, J.R.: Noncooperatively
optimized tolerance: decentralized strategic optimization in complex systems. Phys.
Rev. Lett. 107, 108702 (2011)

Automotive Systems

A Controller Safety Concept Based
on Software-Implemented Fault Tolerance

for Fail-Operational Automotive Applications

Majdi Ghadhab1(B), Matthias Kuntz1, Dmitrii Kuvaiskii2,
and Christof Fetzer2

1 BMW AG, Munich, Germany
{majdi.el.ghadhab,matthias.kuntz}@bmw.de

2 Technische Universität Dresden, Dresden, Germany
{dmitrii.kuvaiskii,christof.fetzer}@tu-dresden.de

Abstract. We propose to build a fail-operational computing system
from a primary self-checking controller and a secondary limp-home con-
troller to guarantee an emergency operation in the case of hardware fail-
ure of the primary controller. A self-checking controller commonly builds
on hardware-implemented fault detection, e.g. lock-stepping to reach a
high diagnostic coverage of hardware faults. Such techniques come into
contradiction with new features of modern CPUs such as inherent non-
determinism of execution. Thus an interesting alternative to hardware-
based self-checking in the primary controller is to implement software-
based fault detection and recovery on the primary controller to detect
and mask its hardware failures. We prove by means of stochastic model
checking and prototype fault detection technique that the proposed app-
roach not only reduces costs, but also guarantees higher availability of
the computing system at the same safety level as common replicated
execution on redundant hardware.

Keywords: Automotive controller · Functional safety · Availability ·
Fail-operational · Stochastic model checking · Markov model · Coded
processing

1 Introduction

It is commonplace that modern automobiles are abundantly equipped with elec-
tronic systems that provide the driver with additional driving comfort, assis-
tance, and safety. Regardless of the purpose of the electronic systems, often they
impose high requirements for performance, availability, and functional safety. In
the near future enhanced functionality like automated or autonomous driving
will increase the aforementioned demands and in particular impose a shift in the
automotive safety philosophy from fail-safe to fail-operational. In this context,
fail-operational means, that on the occurrence of failures of the primary highly
comfortable automated driving function, a comfort- but not safety-reduced emer-
gency function can be maintained for a certain time. The challenge will not only
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 189–205, 2016.
DOI: 10.1007/978-3-319-29510-7 11

190 M. Ghadhab et al.

be to satisfy these technical properties given the constraints of automotive elec-
tronics such as limited computing resources, but also to comply with high cost
pressure, short development cycles, and customer expectations on functionality.

In this paper, we show for a simple fail-operational system how to meet
these demands by means of software-implemented fault tolerance. Typically the
embedded system architecture is provided with mechanisms such as diverse or
homogenous redundancy and monitoring devices to detect safety-critical hard-
ware failures with high probability and initiate transition into a safe behavior.
These techniques, however, generally raise negative side effects on costs, com-
plexity, and availability of the embedded system. Therefore we propose to make
use of software-implemented fault detection which reliably shifts the diagno-
sis of execution errors into the application software. We prove per stochastic
model checking that such techniques yield to appreciable customer advantages.
Moreover we recommend implementing a combination of coded processing and
instruction-level duplication (Δ-encoding), as it allows an optimized trade-off
between diagnostic coverage and computing overhead.

The paper is organized as follows: We introduce the transition from fail-safe
to fail-operational in Sect. 2. In Sect. 3 we propose a fail-operational computing
platform based on a self-checked primary controller and a limp-home controller.
Two variants of this platform are also presented in Sect. 3: a self-checked primary
controller by hardware redundancy in platform 1 and by software fault detection
in platform 2. In Sect. 4 we model the computing platform using the stochastic
model checker PRISM and compare platform 1 and 2 with regards to customer-
relevant criteria including availability. Furthermore we extend platform 2 by a
recovery mechanism (platform 3) and prove further improvements. In Sect. 5 we
introduce Δ-encoding as a novel software-implemented fault detection technique
which fulfills the diagnostic coverage assumed for platforms 2 and 3 and present
experimental results in terms of fault detection capabilities and performance
overhead. Finally we give in Sect. 6 a brief overview and discuss a selected current
research in dependable automotive computing.

2 From a Fail-Safe to a Fail-Operational System
Architecture

Current safety-critical automotive systems are fail-safe, which means they gen-
erally go into a safe state in the case of failure by stopping operation. Systems
where a shutdown in case of failure might lead to a dangerous or non-controllable
driving situation are referred to as fail-operational. In this case fault tolerance
measures must be provided to allow at least an emergency operation. This means
that the E/E1- system is designed with regard to its fault tolerance so that nec-
essary functionality can be maintained in the case of failures within a critical
operating phase. Figure 1 shows a typical fail-safe architecture. The basic princi-
ple consists of a monitoring of safety-critical elements, e.g. sensor or processing.

1 Electric/Electronic.

Software-Implemented Fault Detection for Fail-Operational Applications 191

Fig. 1. Example of a fail-safe architec-
ture [2].

Fig. 2. Example of a hybrid redun-
dancy approach [2].

Alternatively, structural redundancy is used in applications where the complex-
ity or the physical conditions do not permit a simpler monitoring. Examples of
structural redundancy include lockstep-CPUs [1], where two CPU cores execute
the same sequence of instructions in a tightly-coupled manner.

In contrast to a fail-safe system, a fail-operational system should continue
operation after a failure of one of its components (e.g. sensor, processor or actu-
ator). Therefore, the transition from fail-safe to fail-operational requires a sig-
nificant extension of the system architecture. Typical architectures for a fail-
operational behavior include 2-out-of-3 and duo-duplex systems [3,4]. In prac-
tice, especially for vehicles, a fully symmetric redundancy is often not neces-
sary since only a short emergency operation - so-called “Limp-home” phase - is
required to continue operation when the primary control system fails. Figure 2
shows a so-called hybrid redundancy approach. This approach consists of a pri-
mary control system designed with appropriate self-checking and a limp-home
system for an emergency operation. If the primary control system fails, the limp-
home system takes over the control for a short time.

3 Fail-Operational Computing Platform

This paper focuses on the fail-operability of the processing. For this purpose,
we design a computing platform according to the hybrid redundancy approach
with a self-monitored primary controller and a limp-home controller (Fig. 3).
A switch is integrated into the architecture to control the outputs to the actua-
tors depending on the health state of each controller. In case the primary controller
fails, the command of the actuators is switched to the limp-home controller.

192 M. Ghadhab et al.

Fig. 3. Fail-operational computing
Platform.

Master

Checker

Comparator

Other
Peripherals

Signal error

Address Bus

Data Bus

Control Bus

Address Bus

Data Bus

Control Bus

Parity
Coder/Decoder

Program
Memory

Data
Memory

Fig. 4. Architecture of a dual-core
lockstep processor [1].

The primary controller is self-monitored, so that it reliably detects its own
failures in order to give over the control to the limp-home controller. To ensure
a high diagnostic coverage through self-monitoring, the primary controller typi-
cally uses a redundant processor (structural redundancy). The most straightfor-
ward way to duplicate and compare a microprocessor is the technique of lock-
stepping (Fig. 4). Each processor is expected to generate the same outputs given
the same inputs. The main disadvantage of this approach is that lock-step micro-
processors double the computing resources while providing just the same perfor-
mance as single processing and requiring high synchronization and comparison
overhead. Lock-step processors are also susceptible to non-determinism; a num-
ber of mechanisms in current CPUs (e.g. pipelining) increase non-determinism,
potentially resulting in false positives that might disconnect such lock-step CPUs
from the latest developments in processor technology [5].

Furthermore, the expected relying on general-purpose processing units [6],
due to their high performance per price [7], requires safety techniques with-
out changes on the hardware architecture of these processors. To cope with
the dilemma of high performance, high safety integrity, and high cost-efficiency,
software-implemented fault detection achieves reliability using unreliable com-
modity hardware and redundancy on the application level [7].

Apart from that, we expect a better availability of the system by reduc-
ing the redundancy level within the dependable computing platform. To prove
and quantify these benefits, we perform a stochastic model checking of the fail-
operational computing platform and compare the results, when designing the
primary controller as a duplex controller (Platform 1, Fig. 5) or as a single con-
troller (Platform 2, Fig. 6). The duplex primary controller provides redundant
processing channels for the purpose of self-checking, whereas the single con-
troller performs self-checking by extending the single processing channel with
software-implemented fault detection mechanisms. Our stochastic model check-
ing indicates that fail-operational systems with a single-processor approach in
the primary controller perform better in terms of availability and repair costs
than with a dual-processor approach.

Software-Implemented Fault Detection for Fail-Operational Applications 193

Fig. 5. Duplex primary controller
(Platform 1).

Fig. 6. Single primary controller
(Platform 2).

4 Stochastic Model Checking of the Fail-Operational
Computing Platform

To prove the benefits of a fail-operational computing system with a single-
processor primary controller, we use stochastic model checking. We choose the
model-checker PRISM [10] to build and verify our model. First we give a short
introduction to stochastic model checking and to the tool PRISM. Then we show
the results of a simple comparison between platform 1 and platform 2 from the
previous section with regards to availability. Based on experiments (see Sect. 5)
platform 2 can exhibit a very high diagnostic coverage similar to platform 1
by implementing an adequate fault detection mechanism. Enhancing platform 2
with recovery, which is difficult to install on platform 1, leads to further signifi-
cant improvement of the computing platform (the extension of platform 2 with
a recovery mechanism is called platform 3). Finally we interpret the results to
illustrate the reached improvement.

4.1 Technical Background

In stochastic model checking [8] the property to be verified is specified using
a stochastic variant of a temporal logic, such as CTL. The temporal logic used in
this paper is CSL (continuous stochastic logic) [9]. It is tailored to reason about
stochastic quantitative system behavior, including the performance, safety, and
reliability of a system. Given an appropriate system model and a CSL specified
property, a stochastic model checking tool such as PRISM can verify automati-
cally whether the model satisfies that property or not. The verification process
essentially consists of the numerical analysis of a huge continuous-time Markov
chain (CTMC), i.e., the efficient solution of a large system of linear equations.

PRISM [10] is a free, open source stochastic model checker developed at the
University of Birmingham. It accepts stochastic models described in its model-
ing language, a simple, high-level state-based language. Three types of stochas-
tic models are supported directly; these include discrete-time Markov chains
(DTMCs) and continuous-time Markov chains (CTMCs).

194 M. Ghadhab et al.

A Markov chain [11] is a stochastic (random) and memoryless process that
undergoes transitions from one state to another on a state space. Memorylessness
means that the probability distribution of the next state depends only on the
current state and not on the sequence of events that preceded it.

4.2 Modeling and Implementation

PRISM is used to model the fail-operational system from Fig. 3. Its underlying
Markov chain is shown in Fig. 7. We assume that the Switch has a negligible
failure rate and therefore omit it from the model. PC and LHC refer to the pri-
mary controller and the limp-home controller respectively. States of the system
(primary controller, limp-home controller) are defined as follows:

2: Operational; 1: Failed detected; 0: Failed undetected

Fig. 7. Markov model of platforms 1 and 2

The initial state of (2,2) means
that both primary and limp-home
controller are operational and
fault-free. The state of (1,2), for
example, means a failed detected
primary and an operational limp-
home controller that takes over.
Further we assume that:

– The control system is intact,
only if both controllers are
processing correctly (green).

– The control system is degraded,
if only one of the controllers is
processing correctly (yellow).

– The control system is failed,
if the primary fails silently or
the limp-home controller is not
correct with failed primary con-
troller (red).

Table 1 specifies the parame-
ters of platform 1 and 2. The
data used are intended as exam-
ples only in order to investigate
the behavior of the platforms qualitatively and quantitatively. These data do
not reflect the parameters of an existing platform and have of course to be
adapted for each specific design.

Commonly backup systems are designed according to significantly lower
integrity requirements than corresponding primary systems. Therefore we
assume a higher failure rate and a lower diagnostic coverage for the limp-home
controller compared to the primary controller. Additionally to the failure rate
and the diagnostic coverage of each controller, we consider a common-cause fail-
ure rate that is one order of magnitude lower than the failure rate of the primary

Software-Implemented Fault Detection for Fail-Operational Applications 195

controller and a repair rate of once per day for each computing platform (we show
in the appendix that lower repair rates lead to higher relative improvement of
the considered platform properties).

Table 1. Parameters of the platforms 1 and 2.

Parameters λPC λLHC DCPC DCLHC λCCF μR

Platform 1 2000 10000 99 60 200 0,04

Platform 2 1000 10000 99 60 100 0,04

λPC Failure rate of the primary controller (FIT2)
λLHC Failure rate of the limp-home controller (FIT)
DCPC Diagnostic coverage of the primary controller (%)
DCLHC Diagnostic coverage of the limp-home controller (%)
λCCF Common-cause failure rate (FIT)
μR Repair rate (1/h)

Due to the processor redundancy in the primary controller of platform 1, we
assume a higher failure rate λPC for platform 1 than for platform 2. It might
be counterintuitive that the failure rate of the hardware-redundant controller
(primary controller of platform 1) is two times the failure rate of the self-checked
single controller (primary controller of platform 2). However, note that the failure
rates of the redundant hardware modules in platform 1 are independent, and that
the failure of one module leads to the failure of the whole controller. Therefore,
such redundancy increases fault coverage but at the same time decreases MTTF.

Moreover, the diversity between the primary and the limp-home controller is
higher in platform 2 than in platform 1. Additionally to the software diversity due
to software-implemented fault tolerance, the hardware independence of the fault
detection mechanism in platform 2 allows to use different commodtiy processors
with high hardware diversity (e.g. from different manufacturers).“The diversity
provides effective coverage for common cause failures and systematic failures”
[12]. Hence we consider a lower common-cause failure rate for platform 2 than
for platform 1.

4.3 Properties

To compare both platforms we evaluate 3 properties:

– Availability: “readiness for correct service” [13]. In our case, it is the
probability that the computing platform is working correctly at an oper-
ation time T. The computing platform is considered available if at least
one of the controllers, the primary or the limp-home, is working correctly:
State “available” = State “intact” OR State “degraded”.

2 FIT: Failure in Time (1/10−9h).

196 M. Ghadhab et al.

– Duration of Limp-Home Mode: expected time where the limp-home con-
troller is taking control after an operation time T. We expect that only a
reduced functionality is provided within the limp-home mode; therefore this
property is significant for customer satisfaction.

– Number of Repairs: Expected repairs after an operation time T.

4.4 Results of the Stochastic Model Checking with PRISM

Figure 8 shows the same “intact”-probability for both platforms (the graphs of
Platform1 Intact and Platform2 Intact are overlapping). This behavior is
due to the low failure rate and the high repair rate considered in the model
(see the sensitivity analysis in Appendix). Instead, the “degraded”-probability
is higher for platform 2 and the“fail”-probability is lower. In sum the availability
of platform 2 is significantly higher than the availability of platform 1, especially
at high operation times (Fig. 9).

Fig. 8. Probability of each state at an
operation time T.

Fig. 9. Availability of platforms 1 and
2 at an operation time T.

Regarding the duration of the limp-home mode (Fig. 10) and the number of
repairs (Fig. 11) after an operation time T, clear improvements can be observed
when moving from platform 1 to platform 2. These improvements result mainly
from the lower failure rate of the primary controller of platform 1.

Fig. 10. Duration of limp-home mode
after an operation time T.

Fig. 11. Expected number of repairs
after an operation time T.

Software-Implemented Fault Detection for Fail-Operational Applications 197

4.5 Recovery from Transient Faults

Up until now our model considers all hardware failures of the same type irrevo-
cably leading to a failure of the primary controller.

Fig. 12. Single primary controller with
recovery (Platform 3).

Fig. 13. Backward recovery [14].

Fig. 14. Markov model of computing platform 3.

Next we introduce a refined
model that distinguishes between
two types of execution errors:
transient (soft) and permanent
(hard) ones. In the case of
transient faults, to re-start the
incorrectly executed software
generally allows to recover with
a high probability. A backward
recovery (Fig. 13) is easier,
faster, and more efficient when
the underlying fault detection
is performed in the applica-
tion software rather than on
the hardware level. A recovery
mechanism building on a lock-
step architecture (platform 1)
for example requires a much
higher development effort. In
the following we propose to
implement the recovery mechanism on the primary controller of platform 2 and
call the new computing platform “platform 3” (Fig. 12).

To model and evaluate the platform 3, we expand the states of the primary
controller as follows (Fig. 14):

198 M. Ghadhab et al.

3: Operational
2: Failed detected transient
1: Failed detected permanent
0: Failed undetected

Furthermore, a distribution of permanent and transient faults is introduced as
well as a recovery rate from transient faults. The new parameters are defined in
Table 2. The other parameters are the same as for platform 2.

Surprisingly, the availability of the control system is not improved by the
recovery mechanism (Figs. 15 and 16). The reason for this lies in the high repair
rate considered in the model (see sensitivity analysis in the appendix). However,
again significant improvements are observed regarding the duration of the limp-
home mode and the expected number of repairs (Figs. 17 and 18).

Table 2. Parameters of the platform 3.

Parameters PermPC TransLHC μRe

Platform 3 10 90 1

PermPC Permanent failure fraction of primary controller (%)
TransPC Transient failure fraction of primary controller (%)
μRe Recovery rate (1/h)

Fig. 15. Probability of each state of
each platform at an operation time T.

Fig. 16. Availability of each platform
at an operation time T.

4.6 Interpretation of the Results

To better illustrate the results of the stochastic model checking, we consider a
fleet of 100,000 vehicles with an average operation time of 1 hour per vehicle per
day. This leads to an operation time of 100,000 hours per day for the complete
fleet. Considering Fig. 18 we expect a number of repairs of 2, 1.75 or 1.5 per day
when respectively platform 1, 2 or 3 is used. This means a saving of repair costs

Software-Implemented Fault Detection for Fail-Operational Applications 199

Fig. 17. Duration of limp-home mode
after an operation time T.

Fig. 18. Expected number of repairs
after an operation time T.

up to 25 % for platform 3 compared to platform 1. This improvement becomes
more significant when future vehicles are equipped with a plurality of such sys-
tems. A similar improvement can be pointed on the availability. Considering an
unavailability probability of 0.75 after 100,000 hours of operation (Fig. 17), 0.75
vehicles will not be available every day due to a failure of one of the comput-
ing platforms. This number can be reduced to 0.5 by a single-processor safety
concept instead of processor redundancy.

In the following we introduce Software Coded Processing (SCP) as an ade-
quate single-processor safety technique that enables a high detection of hardware
faults at an acceptable computing overhead.

5 Software Coded Processing

5.1 Theory About Software Coded Processing

Software coded processing is a pure software-based fault-tolerant approach to
detect and possibly recover from hardware errors such as bit-flips and stuck-
at faults. At the heart of it lies the idea of information redundancy: all data
is augmented with additional, redundant bits and an error can be detected by
checking against these bits.

The most well-known encodings are parity bits and Error Correcting Codes
(ECC). However, they were introduced for data transmission, e.g., TCP/IP
packet transmission in the Internet, but not for data processing. If, say, an addi-
tion is to be performed on two ECC-encoded integers, then both integers have
to be decoded first, an addition is done, and the result is again ECC-encoded.

As such, a handful of arithmetic encodings - also referred to as Software
Coded Processing (SCP) techniques were developed. Among them are residue
codes, AN-encodings, and Δ-encoding. The first two were introduced in the
1960 s [15,16] and are successfully implemented in hardware and software nowa-
days [17–19]. These techniques share a common feature of producing encoded
results from encoded inputs without any interim decoding; this enables fault
tolerance, since at any point in time a hardware error can affect only an encoded
value, which is easily detected by a following check.

200 M. Ghadhab et al.

Consider a straight-forward idea of AN-encoding [20]: each integer variable
is multiplied by some predefined constant A. This multiplication increases the
number of bits to represent the variable and also “stretches” the domain of
possible values. Assume an original 2-bit domain of values 0, 1, 2, 3 and an
A = 7. Encoding a variable x transforms an original domain to a 5-bit encoded
domain with only possibly correct values in the set 0, 7, 14, 21. Values from
this set are called code words (note that they are multiples of A), whereas all
other 5-bit values 1-6, 8-13, 15-20, 22-31 are considered invalid words. Now if we
observe a value of say 23 in the encoded variable xe, this can only happen due
to a hardware error.

In short, AN-encoding provides the following 3 basic operations:

(a) encoding: xe = x * A; (b) decoding: x = xe / A; (c) checking: xe mod A = 0

Moreover, it is easy to see that other arithmetic operations such as addition, sub-
traction, multiplication can be mapped to work on encoded values. For example,
an addition of two encoded values results in an encoded value:

ze = xe + ye = A * (x + y) = A * z

Not all operations can be easily performed on AN-encoded values. For example,
bitwise XOR, AND, OR, shifts and division are notoriously difficult to reproduce
in AN-encoding. Another important disadvantage of AN-encoding is its expen-
sive decoding operation division, which requires many cycles even on modern
CPUs. To overcome these problems, Δ-encoding has been introduced [21].

5.2 Δ-encoding

Δ-encoding is a combination of AN-codes and instruction-level duplication
[22,23]. The general idea is to have not one, but two constants A1 and A2 and
duplicate all program flow including all program variables and all program oper-
ations. In comparison to AN-encoding, Δ-encoding has the following advantages.
Firstly, a clever choice of A1 and A2 enables fast and operation-diverse checking
and decoding operations. Secondly, bitwise operations can now be performed on
decoded values, and fault tolerance is still provided by the fact that a hard-
ware error cannot corrupt both copies. In comparison to instruction-duplication
approaches [22,23], Δ-encoding detects not only transient (soft) hardware errors,
but also intermittent and permanent (hard) ones. To this end, Δ-encoding pro-
vides very high fault detection guarantees at moderate performance costs. More
details can be found in [21].

In the following, we concentrate on Δ-encoding, its costs, and gains.

5.3 Evaluation of Δ-encoding

Previous work on Δ-encoding [21] indicates fault coverage of 99.997 % and per-
formance overheads of 2–4×. These results were produced on a diverse set of

Software-Implemented Fault Detection for Fail-Operational Applications 201

benchmarks imitating programs typical for embedded domain. To evaluate Δ-
encoding in a real-world environment, we applied it to a clutch-by-wire program.
The evaluation was held on an Intel Xeon CPU E5-2683 v3 @ 2.00 GHz with
Intel Haswell micro-architecture.

The results are as follows: Δ-encoded clutch-by-wire showed normalized run-
times of 2.45× in comparison to unmodified native version. In terms of fault
coverage, Δ-encoding detected 100 % of transient faults, 99.9 % of intermittent
faults (10 faults went undetected) and 99.98 % of permanent faults (2 faults went
undetected). Notice that we injected 10000 faults for each experiment, and the
native version exhibited 5828, 1873, and 2507 data corruptions respectively.

We conclude that Δ-encoding drastically reduced the number of data cor-
ruptions - up to 3 orders of magnitude in case of permanents - and increased
fault coverage - from ∼50 % to 100 % in case of transients - at the moderate
cost of ∼2.5× performance slowdown. We find these results encouraging and
proving the applicability of software coded processing techniques in the field of
embedded automotive systems.

6 Related Work

RACE: A centralized fail-operational platform computer for automo-
tive applications

The increasing amount of automotive complex functionalities up to highly and
fully automated driving results in dependability and expandability requirements
on the E/E-architecture. Such architecture is proposed in the RACE3 project
[24,25]. The fail-operational centralized platform consists of a redundant com-
munication infrastructure based on a switched Ethernet topology, redundant
power supply, and redundant high performance multi-core controllers. The cen-
tralized platform computer is composed from two or more homogeneous duplex
control computers (DCC). In order to guarantee fail-safe behavior, a DCC has
two execution lanes that monitor input and output data mutually. In case an
error occurs their results are discarded. Fail-operational behavior is guaranteed
by a second DCC, which takes over the control in case the first DCC has failed.

Figure 19 shows a snapshot of the communication from DCC1 to DCC2 and
DCC3. The redundant data exchange is used to detect failures of a sending
lane immediately. Therefore each lane of DCC1 sends out its data (control data,
application status, and platform status) cyclically to DCCs 2 and 3. As long as
DCC1 is fault-free, the output data of DCC lane A and lane B are identical.
In case of disparity, the receiver can immediately detect the failure and discard
the received data. After a well-defined confirmation time, a fault is indicated
and a system reconfiguration is initiated. Moreover, each line of a DCC sends its
output data to its neighboring lane within the same DCC. Each lane monitors its
opposite lane and may passivate itself, and thus the DCC, in case of inequality.
3 Robust and Reliant Automotive Computing Environment for Future eCars,

www.projekt-race.de/

www.projekt-race.de/

202 M. Ghadhab et al.

voting votingvoting voting

DCC 3DCC 1 DCC 2

CPU_a CPU_b CPU_a CPU_bCPU_a CPU_b

moni moni

Fig. 19. The logical topology of the RACE centralized computing platform [25].

DCCs are recognized as passive if at most one lane keeps sending data; proper
operation of the remaining platform is not endangered because only consistent
DCC output is processed and all nodes unanimously identify the failed DCC.

In summary, the proposed platform ensures integrity and availability of the
computing and communication hardware by using duo-duplex redundancy to
detect and isolate faulty DCCs and to provide a second DCC (slave) to guarantee
availability. If an application is configured to run redundantly, it is executed on
two lanes of a DCC to ensure integrity. A slave DCC can be configured as hot-
standby to ensure fail-operational behavior.

Due to redundancy of computing and communication, the costs of the
proposed architecture are high. Moreover, the centralized platform requires a
significant communication and monitoring overhead. In order to avoid false pos-
itives, the parallel software execution must be deterministic. This leads to a
high synchronization overhead and to a slowing of the execution. In contrast,
an important benefit of the proposed fail-operational architecture with software-
implemented fault tolerance is that it supports non-determinism in distributed
multi-core executions, by virtue of single processing and subsequent fault detec-
tion without comparison. Furthermore, the hardware homogeneity of the lanes in
the RACE approach does not allow the detection of systematic hardware faults
which restricts the choice of processors to those complying with ISO26262 [12]
or requires costly additional measures like software diversity.

7 Conclusion

In this paper we proposed a fail-operational computing architecture based on a
self-monitored primary controller and a limp-home controller ensuring a reliable
take-over when the primary controller fails. For a cost-efficient, future-proof
and hardware-independent self-monitoring of the primary processing, we rec-
ommended software-implemented fault tolerance, as it enables the use of low-
priced and high-performance commodity processors for automotive applications.
Apart from that, we showed per stochastic model checking significant benefits
on availability and repair costs of the computing system when fault detection

Software-Implemented Fault Detection for Fail-Operational Applications 203

and recovery are implemented in software on the primary controller instead of
common replicated execution on redundant cores. The key technique for the
proposed safety architecture is a combination of software coded processing and
instruction-level replication (Δ-encoding) allowing to reach a very high diagnos-
tic coverage of hardware faults at a moderate performance overhead.

Appendix: Sensitivity analysis

To understand the sensitivity of the measured properties to the failure rate and
the repair rate of the computing platform, we vary one of these parameters (see
Tables 3 and 4) by keeping the rest of the specification unchanged.

Table 3. Variation of failure rate λ.

λ1 λ2 λ3 λ4

1000 50000 100000 1000000

Table 4. Variation of repair rate μ.

μ1 μ2 μ3 μ4 μ5

1/24 1/(24*7) 1/(24*30) 1/(24*365) 1/(24*365*10)

Part 1 - Sensitivity of the “intact”-probability to the parameters
failure rate and repair rate (platform 1 vs. 2)

The improvement reached by platform 2 compared to platform 1 regarding the
probability of the state “intact” is more significant at high failure rates (Fig. 20)
and low repair rates (Fig. 21). At low failure rates or high repair rates, the
probability of the state “intact” is almost identical between platform 1 and
platform 2.

Part 2 - Sensitivity of the availability to the parameters failure rate
and repair rate (platform 2 vs. 3)

The improvement reached by platform 3 compared to platform 2 regarding the
availability of the computing platform is almost independent from the failure
rate of the primary controller. The improvement is actually negligible at high as
well as at low failure rates (Fig. 22). However, Fig. 23 shows a clear availability
improvement at low repair rates.

204 M. Ghadhab et al.

Fig. 20. Impact of the failure rate of
the primary controller on the probabil-
ity of the state “intact”.

Fig. 21. Impact of the repair rate on
the probability of the state “intact”.

Fig. 22. Impact of the failure rate of
the primary controller on the availabil-
ity of the computing platform.

Fig. 23. Impact of the repair rate on
the availability of the computing plat-
form.

References

1. Beckschulze, E., et al.: Fault handling approaches on dual-core microcontrollers
in safety-critical automotive applications. RWTH Aachen University, Germany,
Embedded Software Laboratory (2008)

2. Temple, C., Vilela, A.: Fehlertolerante Systeme im Fahrzeug: von “fail-safe” zu
“fail-operational”. Infineon Technologies. www.elektroniknet.de

3. Wanner, D., et al.: Survey on fault-tolerant vehicle design. In: EVS26 International
Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Los Angeles (2012)

4. Powel Douglass, B.: Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems. Addison-Wesley, Boston (2002)

5. Bernick, D., et al.: Nonstop advanced architecture. Hewlett Packard Company. In:
Proceedings of the International Conference on Dependable Systems and Networks
(DSN), Yokohama, Japan (2005)

6. German Electrical and Electronic Manufacturers Assosciation (ZVEI): Consumer-
Components in Safe Automotive Applications. Position paper (2014)

7. Ghadhab, M., Kaienburg, J., Süßkraut, M., Fetzer, C.: Is software coded process-
ing an answer to the execution integrity challenge of current and future software-
intensive applications? In: Schulze, T., Müller, B., Meyer, G. (eds.) Advanced
Microsystems for Automotive Applications 2015 Smart Systems for Green and
Automated Driving. LNIM, pp. 263–275. Springer, Heidelberg (2015)

8. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic Model Checking. School of
Computer Science, University of Birmingham Edgbaston, Birmingham B15 2TT
(2007)

www.elektroniknet.de

Software-Implemented Fault Detection for Fail-Operational Applications 205

9. Baier, C., et al.: Model-checking algorithms for continuous-time Markov chains.
IEEE Trans. Softw. Eng. 29(7), 524–541 (2003)

10. PRISM - Probabilistic Symbolic Model Checker. www.prismmodelchecker.org
11. Häggström, H.: Finite Markov Chains and Algorithmic Applications. Cambridge

University Press, Cambridge (2002)
12. International Organization for Standardization: ISO 26262: Road vehicles - Func-

tional safety. International standard, 1st edn. (2011)
13. Avizienis, A., Laprie, J.-C., Randell, B.: Fundamental concepts of dependability.

Research report, no. 1145, LAAS-CNRS (2001)
14. Pullum, L.L.: Software Fault Tolerance Techniques and Implementation. Artech

House Computing Library, Boston, London (2001)
15. Brown, D.T.: Error detecting and correcting binary codes for arithmetic operations.

IRE Trans. Electron. Comput. 3, 333–337 (1960)
16. Massey, J.L.: Survey of residue coding for arithmetic errors. Int. Comput. Cent.

Bull. 3, 3–17 (1964)
17. Nathan, R., Sorin, D.J.: Nostradamus: Low-cost hardware-only error detection

for processor cores. In: Design, Automation and Test in Europe Conference and
Exhibition (DATE), pp. 1–6 (2014)

18. Reick, K., et al.: Fault-tolerant design of the IBM Power6 microprocessor. IEEE
Micro 28(2), 30–38 (2008)

19. Forin, P.: Vital coded microprocessor principles and application for various transit
systems. In: IFAC-GCCT, pp. 79–84, Paris, France (1989)

20. Schiffel, U.: Hardware error detection using AN-codes. Ph.D thesis, Technische
Universität Dresden (2011)

21. Kuvaiskii, D., Fetzer, C.: Δ-encoding: practical encoded processing. In: Proceedings
of the 45th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, Rio de Janeiro, Brazil (2015)

22. Oh, N., et al.: Error detection by duplicated instructions in superscalar processors.
IEEE Trans. Reliab. 51(1), 63–75 (2002)

23. Reis, G.A., et al.: SWIFT: Software Implemented Fault Tolerance. In: Proceedings
of the International Symposium on Code Generation and Optimization (2005)

24. Sommer, S., et al.: RACE: a centralized platform computer based architecture
for automotive applications. In: Vehicular Electronics Conference (VEC) and the
International Electric Vehicle Conference (IEVC) (2013)

25. Armbruster, M., Freitag, G., Schmid, T., Spiegelberg, G., Fiege, L., Zirkler, A.:
Ethernet-based and function-independent vehicle control-platform: motivation,
idea and technical concept fulfilling quantitative safety-requirements from ISO
26262. In: Meyer, G. (ed.) Advanced Microsystems for Automotive Applications
2012 Smart Systems for Safe, Sustainable and Networked Vehicles, pp. 91–107.
Springer, Heidelberg (2012)

www.prismmodelchecker.org

Modeling Safety Requirements of ISO26262
Using Goal Trees and Patterns

Toshiaki Aoki1(B), Kriangkrai Traichaiyaporn1, Yuki Chiba1,
Masahiro Matsubara2, Masataka Nishi2, and Fumio Narisawa2

1 JAIST, 1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan
toshiaki@jaist.ac.jp

2 Research and Development Group,
Center for Technology Innovation - Controls, Hitachi, Ltd., Tokyo, Japan

Abstract. In ISO 26262, safety requirements are constructed step by
step. The construction is started to set safety goals to be achieved in
a system up, then they are refined into hardware and software require-
ments which the system consists of. Such stepwise construction of the
safety requirements provides traceability among them and allows us to
confirm that the system surely realizes the goals. The traceability also
helps us to exhaustively extract requirements which are necessary to
achieve safety. On the other hand, the quality of a document describ-
ing them is important to obtain those merits. If the document contains
ambiguities, contradictions and many of requirements are missed, those
lead to the unsafety of the system. In fact, we found many of missing
implicit assumptions and ambiguous requirements by analyzing a doc-
ument which describes safety requirements. To solve this problem, we
proposed a method to describe the safety requirements based on the
goal tree of KAOS and its patterns. We confirmed the effectiveness of
the method by applying it to an electronic power steering system as a
case study. In this paper, we show the case study which is not trivial but
a real system in addition to the proposed method.

Keywords: Functional safety · Safety requirements · ISO 26262 · Auto-
motive systems

1 Introduction

Recently, the safety of automotive systems is becoming a big concern of our
society. Although vehicles have been controlled by mechanical machines in the
past, many of electronic parts are embedded to them at present according to the
progress of electronic control technology and its performance. Those electronic
parts can realize the complex control of the vehicles, and make it possible to
provide high functionality to them such as electronic power steering systems
and emergency braking systems. On the other hand, it makes hard to analyze
and design the safety of the vehicles because there are a number of systematic
failures and hardware failures which have to be taken into account. To achieve
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 206–221, 2016.
DOI: 10.1007/978-3-319-29510-7 12

Modeling Safety Requirements of ISO26262 207

the safety of the vehicles, international standards of functional safety such as
IEC 61508 [2] and ISO 26262 [1] have been proposed.

ISO 26262 is an adaptation of IEC 61508 for automotive electric and elec-
tronic systems. ISO 26262 defines functional safety for automotive equipment
applicable throughout the lifecycle of all automotive electronic and electrical
safety-related systems. One of the most important implication obtained from
such functional safety standards is to make documents which explain reasons why
a developed system is safe. In ISO 26262, safety requirements are constructed
step by step. The construction is started to set safety goals to be achieved in
a system up, then they are refined into hardware and software requirements
which the system consists of. That allows us to confirm that the system satisfies
the goals because the reasons are traceable from the goals to the software and
hardware requirements. Such traceability also helps us to exhaustively extract
requirements which are necessary to achieve safety. On the other hand, the qual-
ity of a document describing them is important to obtain those merits. If the
document contains ambiguities, contradictions and many of requirements are
missed, those lead to the unsafety of the system. Thus, it is very important to
rigorously describe the requirements so that they are traceable.

We are working on the formalization and verification of safety requirements
for ISO26262 as a joint work of JAIST and Hitachi. We conducted a case study
to make safety requirements document in which traceability of the requirements
is realized. The target of the case study is an electronic power steering system.
We call the system EPS below. We first analyzed a safety document. It was
being constructed and still in a draft version at that time. The document was
described in the form of spreadsheets with English. The spreadsheets are used
to correspond safety requirements with each other. We analyzed the document
using a goal tree which is proposed in the field of requirement engineering. We
realized the traceability by relations between a parent and children of the goal
tree. By this analysis, we found that the original document has problems such as
containing inappropriate descriptions and missing requirements.To solve those
problems, we proposed a method to describe the safety requirements based on
the goal tree and its patterns. We confirmed the effectiveness of the method by
applying it to an electronic power steering system as a case study. In this paper,
we show the case study which is not trivial but a real system in addition to the
proposed method.

The rest of the paper is organized as follows. Section 2 discusses related
works. Section 3 introduces safety requirements of ISO 26262 and the goal tree.
Section 4 reveals problems of the safety document which was developed by engi-
neers. Section 5 explains our approach for describing the safety requirements so
that the traceability can be achieved. Section 6 shows a case study of a real sys-
tem and its results. Section 7 discusses the approach and results. Finally, Sect. 8
concludes this paper.

208 T. Aoki et al.

2 Related Works

We adopted the goal tree of KAOS [3] which is an approach for requirement
engineering in order to describe safety requirements. There is another model
named GSN (Goal Structuring Notation) [5] which is for describing safety cases.
A safety case is a structured argument which has evidences to justify that a
target system is acceptably safe. Patterns to reuse safety cases are proposed as
well [8]. The reason why we adopted the goal tree of KAOS instead of GSN is
that the goal tree has clear and simple semantics. Such semantics is important
since we also aim at formally verifying the safety requirements. There are works
on the formalization of GSN and its patterns [6,7]. These works mainly formal-
ize the syntactical aspect of GSN. Unlike them, in our approach, we focus on
semantical aspect of safety requirements. We represent the safety requirements
using propositional logic and relations among them which rely on the semantics
of the goal tree.

There are works on patterns of the goal tree as well. Darimont and
Lamsweerde proposed a set of generic goal refinement patterns based on KAOS
[11]. These generic patterns are proved to be complete and correct based on tem-
poral logic. They are designed to be domain-independent, that is, the patterns
can be reused in the construction of any goal tree for requirements elabora-
tion. One successful example applying these patterns can be found in [9], which
uses the patterns for policy refinement. The patterns proposed in this paper are
domain-dependent, that is, specific to series of EPS.

3 Safety Requirements and Goal Tree

3.1 Safety Requirements

ISO 26262 is an international standard which is specialized for automotive sys-
tems. It provides an automotive safety lifecycles and supports tailoring necessary
activities during these lifecycle phases. ISO 26262 is applied from preliminary
vehicle development phases through the whole of the development. It adopted a
top-down approach which refines a safety goal into more detailed safety require-
ments step by step. The objective of the safety requirements is called a safety
goal, shortly SG. Phases to obtain the safety requirements starts at defining
SG which is obtained from hazard analysis and risk assessment activities. Then,
the initial requirement called functional safety requirements, shortly FSR, are
defined based on SG. FSR is refined into technical safety requirements and hard-
ware/software safety requirements stepwise. Those requirements are abbreviated
as TSR, HSR and SSR respectively. TSRs are the technical requirements which
are necessary to implement FSRs. In this refinement, item-level functional safety
requirements are transformed into system-level technical safety requirements.
TSRs are allocated to hardware and software. The requirements that are allo-
cated to both are further partitioned to yield hardware/software only safety
requirements, that is, HSRs/SSRs.

Modeling Safety Requirements of ISO26262 209

We refer to a preliminary architecture assumption, shortly PAA, throughout
the refinement from SG to HSR/SSR. PAA is an abstract architecture of the sys-
tem, which is defined in the early stage of the development. In our approach, the
structure defined in PAA is refined according to the progress of the refinement. We
also call such refined structure PAA for the simplicity of technical words. In this
case, components appearing in FSR, TSR, HSR and SSR are defined in PAA.

3.2 Goal Tree

It is hard to analyze the safety requirements described in the form of the spread-
sheet with English because they do not have explicit semantics. In order to
analyze the safety requirements, we adopted a goal tree as a model which they
follow. The goal tree is the central model of KAOS which is an approach for
requirement engineering. A goal is a prescriptive statement of intent that the
system should satisfy through the cooperation of its agents such as human,
devices or software. The goal tree is for expressing relationships among goals
by showing how higher-level goals are refined into lower-level ones and, con-
versely, how lower-level goals contribute to higher-level goals. The higher-level
goals and lower-level goals are called parent-goals and sub-goals respectively.
A property named completeness of the goal tree is defined to represent such rela-
tionships. Let sub-goals G1, G2, . . . , Gn and a parent-goal G. The completeness
is formally defined as {G1, G2, . . . , Gn} |= G which means that the sub-goals
G1, G2, . . . , Gn are sufficient for deriving the parent goal G. The goal tree is an
appropriate for the reference model of the safety requirements since its com-
pleteness is fitted to the notion of the traceability of ISO 26262.

4 Safety Requirements of EPS

4.1 PAA of EPS

In the case study, we focus on safety requirements of EPS. EPS is a system which
assists the movement of steering by a motor which is electronically controlled.
Figure 1 shows PAA of EPS. Boxes and arrows represent components and flows
respectively. The power supply unit provides electric power to operate motor.
The flows of electric power is represented by solid lines in Fig. 1. The dotted
lines represent the other data such as signals and values. The electric power has
to be changed so that it can fit to the motor. Pre-Driver and Inverter changes
the voltage and waveform of the electric power with PWM respectively.

This system realizes fail safe mechanisms to safely stop the system if the elec-
tric power is failed. It is monitored by Pre-Driver Voltage Monitor and Inverter
Voltage Monitor. They provide the values of voltages supplied to Pre-Driver and
Inverter to Diagnostic Function module. Diagnostic Function module decides
whether the electric power is failed or not based on those values provided by
Pre-Driver Voltage Monitor and Inverter Voltage Monitor. If the electric power
failure is detected by Diagnostic Function module, that fact is notified to Fail-safe

210 T. Aoki et al.

Current Control
Unit

Pre-Driver InverterPower Supply
Unit

MPU

Fail-safe
Action Function

Pre-Driver
Voltage Monitor

Inverter
Voltage Monitor

Diagnostic
Function

Voltage
Manual Steering

LAN

Current
ControlPower Motor

Current

Motor
Relay

Inverter
Relay

PWM

Fig. 1. Overview of PAA

Action Function module by sending a demand to transit to ‘Manual Steering’.
Then, Fail-safe Action Function module cuts the power supply to the motor. To
make sure to cut the power supply, it is stopped by Pre-Driver, Inverter Relay
and Motor Relay. We use short names CCU, PD, Inv, DF and FSF which stand
for Current Control Unit, Pre-Driver, Inverter, Diagnostic Function and Fail-safe
Action Function respectively. MPU is generic reference to DF and FSF.

4.2 Analysis of Safety Requirements

We analyzed a document which specifies safety requirements of EPS. The doc-
ument is described in the form of spreadsheets with English. In this analysis,
we constructed a goal tree consisting of safety requirements appeared in the
document. As as result, we found that the following problems.

– There exist implicit assumptions.
Many of implicit assumptions are put and do not appear in the document.
This is because there are many assumptions as well as they appear in the
documents many times. Such implicit assumptions are harmful. If a system
is developed by multiple engineers, such assumptions may not be shared by
them. This might lead to making the system unsafe.

– Safety requirements are described ununiformly.
The safety requirements are expressed as different sentences even though they
represent the same or similar requirement. In addition, the abstraction of the
descriptions is not appropriate for ensuring the traceability as big gaps often
exist among FSR, TSR, HSR and SSR.

Modeling Safety Requirements of ISO26262 211

G1

G2

G3 G4

G5

Fig. 2. Safety Requirements in terms of Goal Tree

– Some of safety requirements are missing.
We found that some of safety requirements were missing in the document.
Missing the requirements directly leads to the unsafety of the system.

Figure 2 shows a part of the goal tree which corresponds to the document.
The descriptions of its nodes are shown in the following.

G1 System shall make transition to ‘Manual Steering’ If failure of voltage sup-
plied to Current Control Unit has been detected.

G2 Demand for transition to ‘Manual Steering’ shall be sent to ECU Processing
Unit if failure of voltage supplied to inverter has been detected.

G3 Demand for transition to ‘Manual Steering’ shall be sent to ECU Processing
Unit if failure of voltage supplied to Pre-Driver has been detected.

G4 ECU Processing Unit shall send ‘Stop Demand’ to Pre-Driver if ECU
Processing Unit has received demand for transition to Manual Steering.

G5 Pre-Driver shall stop according to ‘Stop Demand’.

Firstly, there is implicit assumptions in the safety requirements. The expected
behavior of the system is that the failure of voltage supplied to Inv and the
failure of voltage supplied to PD will lead to the failure of voltage supplied
to CCU. ‘Stop Demand’ will be sent to PD after the detection of the failure.
However, such behavior is not described in the safety requirements. This are
implicit assumptions put in the document. Secondly, there is a big gap between
the parent goal and its sub-goal of the goal tree. Although we have to derive the
parent goal from the sub-goals for the traceability, it is impossible in this case
because a relation among CCU, Inv and PD is not described. Furthermore, names
used in the document are not uniform. Despite that ECU Processing Unit does
not appear in PAA, it is used in this document. ECU Processing Unit represents
DF and FSF, and sometimes it is referred to as MPU in the other parts of
the document. Finally, the safety requirements for message transmissions among
CCU, Inv and PD are missing. The other part of the document contains the
safety requirement that demands have to be sent and received without failure,
however; it does not appear such one here.

212 T. Aoki et al.

5 Safety Requirements Development Based on Goal Tree
and Patterns

5.1 Goal Tree for Safety Requirements

The stepwise refinement of safety requirements of ISO26262 is fitted to the con-
cept of the goal tree. FSR is refined into TSR so that FSR can satisfy TSR, and
TSR is refined into HSR/SSR so that HSR/SSR can satisfy TSR. The correct-
ness of this refinement can be regarded as the completeness of the goal tree, and
that provides the traceability among FSR, TSR, HSR and SSR. On the other
hand, the completeness is defined formally based on temporal logic in KAOS. It
is well-known that correctly representing what we want to describe in temporal
logic is difficult [10]. In addition, as far as we analyze the document of EPS, tem-
poral properties are not essential in it. Thus, we decided to describe the safety
requirements not in temporal logic but in propositional logic with some syntax
sugars. Although the descriptive power of propositional logic is limited, we think
that it is sufficient to describe the safety requirements. In fact, we could describe
safety requirements in propositional logic within the scope of our case study. In
addition, reasoning with a rich logic tends to be hard to convince us that it is
valid as well as what we describe is correctly represented. We think that simpler
logic is better for the safety requirements.

Our concern on the safety requirements is that there is no missing require-
ment or contradiction of them. In fact, there are many safety requirements having
the form of implications. In this case, what we worry about them is whether a
upper safety requirement such as FSR can be logically derived from lower safety
requirements such as TSR with Modus Ponens. Modus Ponens is an inference rule
to derive a fact B from facts A and A ⇒ B. There are many safety requirements
in the document. Reasonings on the safety requirements might become unsound
due to implicit assumptions and their ambiguity. Propositional logic is useful to
ensure that upper safety requirements are surely derived from lower ones with
sound reasonings. For example, G1 and G2 shown in figures are described as
follows.

G1 CCU.V oltFailureDetected ⇒ S.State = ‘Manual Steering′

G2 Inv.V oltFailureDetected ⇒ DF.Send(‘Manual Steering′,DF,MPU)

CCU.VoltFailureDetected, ‘S.State=Manual Steering’, Inv.VoltFailure Detec-
ted and DF.Send (‘Manual Steering’, DF, MPU) are propositional variables. One
may think that = is an equality operator, however; it is a part of the name of the
propositional variable S.State=‘Manual Steering’. DF.Send(‘Manual Steering’,
DF, MPU) is not an application of a function but a propositional variable.
CCU.VoltFailureDetected and Inv.VoltFailureDetected represent the the failure
detection of voltage supplied to CCU has been detected and that of voltage
supplied to Inv respectively. S.State=‘Manual Steering’ represents the fact that
the mode of the system moves to manual steering. DF.Send (‘Manual Steering’,
DF, MPU) represents the fact that a demand message ‘Manual Steering’ is sent
to MPU from DF. Note that MPU is the abstract representation of FSF here.

Modeling Safety Requirements of ISO26262 213

Although ECU Processing Unit is used to represent a source or destination of
message transmissions in the document of EPS, it usually refers to the whole of
the system. This is an ambiguity of the safety requirements, that is, the sources
and destinations are ambiguous. DF and FSF are used to describe message
transmissions in the goal tree since the messages are transmitted between them.
On the other hand, there are the ones in which the sources and destinations
are not designated to abstractly describe safety requirements. In this case, we
use MPU which appears in PAA shown in Fig. 1. The abstraction is different
from the ambiguity. Using those symbols allow us to remove such ambiguity.
In addition, there exists an implicit assumption about relations among CCU,
Inv and PD. It can be described formally as CCU.V oltFailureDetected ==
(Inv.V oltFailureDetected||PD.V oltFailureDetected).

5.2 Safety Requirement Patterns

In safety requirements, there are usually small variations of mechanisms to
achieve the safety of a system. It implies that we can prepare mechanisms to
achieve the safety before making safety requirements. In addition, those mecha-
nisms can be common in an application domain. For example, systems that we
focus on deal with detections of components’ failure and notifying the failure to
components which are in charge to deal with the failure. Despite that there are
many components to detect the failure and those to deal with it, there are a
small number of safety mechanisms for the detection and communication. Thus,
in our approach, we define patterns for the mechanisms. We call such patterns
safety requirement patterns or shortly patterns below if there is no confusion in
a context.

We show an example of safety requirement patterns in Fig. 3. It is a par-
tial goal tree which has parameters to be replaced with logical expressions and
strings. This pattern represents a mechanism that a message M is safely trans-
mitted from S to D. M , S and D are parameters which represent a message to be
transmitted, a source of the transmission and a destination of the transmission
respectively. Those parameters are replaced with strings which constitute propo-
sitional variables when the pattern is instantiated. C and TC are parameters to
be replaced with logical expressions which represent a condition to transmit the
message and a condition which holds after receiving it respectively.

The pattern ensures that sub-goals derive a parent goal for any replacement
of the parameters. In Fig. 3, C ⇒ D.Received(M,D) is derived from the facts
C ⇒ D.Send(M,S,D), D.SendWithoutFailure (M,S,D) and D.Send(M,S,D) ∧
D.SendWithoutFailure(M,S,D) ⇒ D.Received(M,D) for any M , S, D, C and TC.
In addition, the upper goal C ⇒ TC is derived from the facts C ⇒ D.Received(M,
D) and D.Received(M, D) ⇒ TC. Hence, the parent goal is derived from the sub-
goals even if the parameters are replaced.

The patterns are documented like design patterns [15]. The description of
each of the patterns consists of a partial goal tree with parameters as shown in
Fig. 3, its explanation, applicability, example and formal proof as mentioned in
the above.

214 T. Aoki et al.

Fig. 3. Safety requirements pattern

We found that safety requirement patterns are effective to solve the prob-
lems pointed in Sect. 4.2. Firstly, the patterns allows us to explicitly describe
necessary assumptions for a specific mechanism. The primary reason why many
assumptions are omitted is that it is very tedious and costly to describe all of
them. Assumptions appearing many times in the documents tend to be omitted.
However, as we pointed out, omitting them might lead to making the system
unsafe. We should describe all of the assumptions even though they are obvious
for engineers who describe the document. To solve this problem, the patterns
are useful. Assumptions appearing many times in the document are defined once
in the pattern, and then we instantiate descriptions of the safety requirements
from the patterns. It allows us to avoid tedious and costly tasks in making
safety requirements. Secondly, the patterns are useful to uniformly describe the
safety requirements because they provide appropriate abstraction of the safety
requirements. What facts are essential for ensuring the safety is described in
the patterns. Thus, we do not need describe too concrete details because what
described in the patterns are sufficient to ensure the completeness of the safety
requirements. Finally, the patterns help us not to miss the safety requirements.
Mechanisms to achieve the safety are given by the patterns, that is, what is
needed is described in them. When we instantiate the patterns, we have to find
elements and conditions fitted to them. That makes it possible to notice missing
safety requirements.

5.3 Application of Safety Requirement Pattern

The safety requirement pattern describes requirements of a specific safety mech-
anism. The pattern shown in Fig. 3 represents a mechanism of the safe message
transmission which is used to communications among components to be made
when the electric power failure is detected. We prepared the other two patterns,
that is, there are totally three patterns, for mechanisms of the transmission.
There are three variations for the transmission in this system. Firstly, commu-
nication is completed within a chip. A communication means is not needed in
this case. Secondly, the communication means is needed and it is reliable enough.
Thirdly, the communication means is needed and it is unreliable. Error correction
mechanisms such as CRC are used in this case. Which mechanism is adopted

Modeling Safety Requirements of ISO26262 215

is determined according to the degree of reliability of the transmission. The
degree of the reliability is determined by communication types and signal types.
The communication types mean where the transmission takes place. The sig-
nal types mean contents of the communication. There are three communication
types, communications inside of a chip, between chips and between controllers.
We refer those communication types to In-chip, Inter-chip and Inter-controller
respectively. The reliability of the transmission is higher in the order of In-chip,
Inter-chip and Inter-controller. There are three signal types, digital data, analog
data and series of digital data. We refer those signal types to Digital, Analog
and DigitalCom. The reliability of the transmission is higher in this order.

The degree of the reliability of the transmission is determined by combination
of a communication type and signal type. It is shown in Table 1. There are
three degrees of the reliability, high, mid and low. For example, the degree of
the reliability in transmitting digital data within a chip is high and that in
transmitting series of digital data between controllers is low. We prepared three
mechanisms as well as safety requirement patterns for each of the degrees. The
pattern shown in Fig. 3 is the one for the transmission with high reliability.

Table 1. Reliability of transmission

Com./sig. Digital Analog DigitalCom

In-chip High High —

Inter-chip High Mid Low

Inter-controller Mid — Low

In developing safety requirements of EPS, we identify a communication type
and signal type based on PAA, then select a safety requirement pattern to be
used. Table 2 shows the patterns used for the transmissions in the safety require-
ments of EPS. HS, MS and HS represent the patterns for high, middle and low
reliability transmissions respectively. For example, in the third row of Table 2,
since voltage data is transmitted from PD to MPU, the pattern MS is used for
that transmission. In this way, the patterns are systematically used to develop
the safety requirements.

6 Case Study

6.1 Development of Goal Tree

Figure 4 shows a part of the goal tree obtained by our approach proposed in
Sect. 5. Firstly, the safety requirement pattern shown in Fig. 3 is instantiated
by replacing the parameters S, D, M , C and TC with DF , MPU , ‘Man-
ual Steering’, CCU.VoltFailureDetected and S.State=‘Manual Steering’ respec-
tively. Then, G2 and G5 which appear in the document are manually formalized.

216 T. Aoki et al.

Table 2. Patterns applications

src dst Com. Sig. Data Pattern

DF FSF In-chip Digital Signal HS

PD MPU Inter-chip Analog Voltage MS

MPU PD Inter-chip Digital Signal HS

MPU PD Inter-chip Digital PWM HS

...
...

...
...

...
...

G1

G2
G3 G4

G5

G6
G7

G8 G9
G10

G11

Fig. 4. Goal tree for EPS

G1

G2
G3 G4

G5

G6
G7

G8

G9

G10

G11

G14

G13G12

Fig. 5. Complete goal tree

The descriptions and their logical expressions of the goals of the goal tree are
found in Fig. 6. We can see from them that the parent goal G1 is derived from
sub-goals from G2 to G5 with Modus Ponens. Similarly, G2 is derived from those
from G6 to G8.

In Fig. 4, there is a sub-tree consisting of G5, G9, G10 and G11 which
describes that a stop demand is sent from MPU to PD and PD shall stop by
receiving the demand. Since the sub-tree represents a safe message transmission
mechanism, the pattern shown in Fig. 3 should be applied to it according to
Tables 1 and 2. Although D.SendWithoutFailure which represents the require-
ment that a message is sent without failure exists in the pattern, such require-
ment does not appear in Fig. 4. We can see from this fact that some require-
ments are missing in the sub-tree. Here, we apply the pattern to the sub-tree by
replacing the parameters S, D, M , C and TC with MPU , PD, ‘StopDemand′,

Modeling Safety Requirements of ISO26262 217

G1 System shall make transition to ’Manual Steering’ If failure of voltage supplied to
Current Control Unit has been detected.
CCU.VoltFailureDetected ⇒ S.State = ’Manual Steering’

G2 Demand for transition to ’Manual Steering’ shall be sent to ECU Processing Unit
if failure of voltage supplied to Current Control Unit has been detected.
CCU.VoltFailureDetected ⇒ DF.Send(’Manual Steering’, DF, MPU)

G3 Demand for transition to ’Manual Steering’ shall be sent without failure.
DF.SendWithoutFailure(’Manual Steering’, DF, MPU)

G4 Demand for transition to ’Manual Steering’ shall be received if it is sent without
failure.
(DF.Send (’Manual Steering’, DF, MPU) ∧ DF.SendWithoutFailure (’Man-
ual Steering’, DF, MPU)) ⇒ DF.Received (’Manual Steering’, MPU)

G5 System shall make transition to ’Manual Steering’ if Demand for transition to
’Manual Steering’ shall be received.
DF.Received(’Manual Steering’, MPU) ⇒ S.State = ’Manual Steering’

G6 Demand for transition to ’Manual Steering’ shall be sent to ECU Processing Unit
if failure of voltage supplied to inverter has been detected.
Inv.VoltFailureDetected ⇒ DF.Send(’Manual Steering’, DF, MPU)

G7 Demand for transition to ’Manual Steering’ shall be sent to ECU Processing Unit
if failure of voltage supplied to Pre-driver has been detected.
PD.VoltFailureDetected ⇒ DF.Send(’Manual Steering’, DF, MPU)

G8 failure of voltage supplied to Current Control Unit has been detected if failure of
voltage supplied to inverter or Pre-Driver has been detected.
CCU.VoltFailureDetected ⇔ (Inv.VoltFailureDetected || PD.VoltFailureDetected)

G9 System shall make transition to ’Manual Steering’ if Pre-Driver stops.
PD.Status = ’Stop’ ⇒ S.State = ’Manual Steering’

G10 ECU Processing Unit shall send ’Stop Demand’ to Pre-Driver if ECU Processing
Unit has received demand for transition to Manual Steering.
DF.Received (’Manual Steering’, MPU) ⇒ PD.Send (’Stop Demand’, MPU, PD)

G11 Pre-Driver shall stop according to ’Stop Demand’.
PD.Received(’Stop Demand’, PD) ⇒ PD.Status = ’Stop’

Fig. 6. Safety requirements

DF.Received(‘Manual Steering′,MPU) and S.State = ‘Manual Steering′

respectively. As a result, the goal tree becomes the one shown in Fig. 5 and
its goals are described as follows.

G5 DF.Received (‘Manual Steering’, MPU) ⇒ S.State=‘Manual Steering’
G10 DF.Received (‘Manual Steering’, MPU) ⇒ PD.Send (‘Stop Demand’,

MPU, PD)
G12 PD.SendWithoutFailure (‘Stop Demand’, MPU, PD)
G13 PD.Send (‘Stop Demand’,MPU ,PD)∧ PD.SendWithoutFailure (‘Stop

Demand’,MPU,PD) ⇒ PD.Received (‘Stop Demand’,PD)
G14 PD.Received (‘Stop Demand’,PD) ⇒ S.State = ‘Manual Steering’

The completeness which means the fact that a parent goal is derived from
sub-goals for each sub-tree holds in this goal tree. In this way, we can obtain
formally traceable safety requirements based on the goal tree.

218 T. Aoki et al.

6.2 Result

We have applied our approach to the development of safety requirements. We
focus on safety mechanisms to deal with electric power failure in EPS. There was
a document which was described informally in the form of the spreadsheet as
we already mentioned. Even though the document was in a draft version, all of
safety requirements of the mechanisms were described. We developed a goal tree
based on the document as shown in Sect. 6.1. There were 24 safety requirements
in the document. As the completeness does not hold in a goal tree consisting of
only safety requirements appearing the document, we added necessary ones so
that it can hold.

As a result, there were 53 goals of the goal tree for which the completeness
holds. In the goal tree, each of the goals represents a safety requirement. There
were 17 goals which were brought from the document without any modifica-
tion, 3 goals which appeared in the document but did not appear in the goal
tree, that is, deleted, 4 goals which were modified from the document, and 32
goals which did not appear in the document, that is, added, out of 53 goals.
It means that 67 % of the safety requirements were added or modified from the
document. In addition, we analyzed the safety requirements related to the safety
requirement patterns. 29 out of 53 goals were instantiated by means of the safety
requirement patterns. Thus, the safety requirement patterns cover 55 % of the
whole of the safety requirements. There were 12 goals which were brought from
the document without any modification, 4 goals which were modified and 13
goals which were added out of 29. It means that 59 % of safety requirements
were added or modified from the document by the safety requirement patterns
out of the instantiated ones. The percentage of them in the whole of the safety
requirements was 32 %.

6.3 Evaluation

We can say from this result that we have successfully complemented the safety
requirements of EPS by our approach. Many safety requirements were missing in
the original document so that it could be traceable. The most of missing safety
requirements were implicit assumptions put in it, however; they might cause
missing important safety requirements. In fact, an important safety requirement
representing that a message is sent without failure was missing as pointed out
in Sect. 6.1. We can see from the case study that our approach enables to find
missing important safety requirements although many safety requirements have
to be described. As the unsafety of automotive systems may cause fatal troubles
such as the loss of human lives, they have to be developed very carefully even if
it costs a lot.

We prepared three safety requirement patterns to develop the safety require-
ments. As a result, they cover more than half of the safety requirements. The
purpose of the patterns is to identify essential and typical safety requirements.
The patterns greatly contribute to efficiently describing the safety requirements
despite that their purpose is not to cover everything. On the other hand, the

Modeling Safety Requirements of ISO26262 219

percentage of safety requirements which were added or modified by the patterns
was 67 % among the ones related to the patterns but 32 % on the whole. It means
that many of the safety requirements related to the patterns were appeared in
the original document. We can see from this fact that the safety requirement
patterns captured the essential safety requirements of EPS. We observed from
the development of the safety requirements that it was started to describe essen-
tial safety requirements, then the ones related to them were identified, finally
we obtained traceable safety requirements. Thus, we can say that the safety
requirement patterns play an important role to develop the safety requirements.

7 Discussion

The traceability of safety requirements which is introduced in ISO 26262 is not
well-defined. Many engineers feel trouble about how it should be ensured. Thus,
we adopted the completeness of the goal tree in order to ensure the traceability.
It actually revealed many of missing safety requirements because we carefully
described them so that the completeness can be maintained. Introducing such
clear definition of the traceability is important to guide the development of the
safety requirements as well as improve the quality of them.

We took a shallow approach to formalize safety requirements based on propo-
sitional logic. This approach is not so heavy like formal specifications [12–14] in
which everything is described formally. Introducing the existing formal specifi-
cation languages to practical developments is very hard because there are many
problems such as education of engineers, change of development processes and
so on. The reason why we took such a shallow approach is that we aim at eas-
ily expanding it to daily developments done by engineers. On the other hand,
the shallow approach does not likely have sufficient effectiveness. Unlike this, in
our approach, we confirmed that it achieved drastic improvement of the quality
of the safety requirements. We found an appropriate way to describe the safety
requirements so that it can be sufficiently effective as well as easy to be expanded
to the developments.

On the other hand, one may think that propositional logic is insufficient
because computation and timing are important for automotive systems [4]. They
are definitely important in some development phases, for example, design of
control logics. What we focus on here is not design but descriptions of safety
requirements. Some safety requirements may contain complicated statements
like arithmetics or differential equations. Reasonings based on their underly-
ing theories should not be taken into account in describing the safety require-
ments. Such reasonings should be resolved before describing them. For example,
if f(x) implies g(x) based on a particular theory, the fact f(x) ⇒ g(x) should be
described as a safety requirement. The timing can be dealt with similarly. For
example, we show safety requirements that the timing of transmissions between
DF and MPU is taken into account. The safety requirements G5 and G7 of Fig. 6
are changed as follows.

220 T. Aoki et al.

G5’ DF.EventuallyReceived(‘Manual Steering’, MPU) ⇒ S.State= Man-
ual Steering’

G7’ PD.VoltFailureDetected ⇒ DF.AlwaysSend(‘Manual Steering’, DF, MPU)

DF.AlwaysSend (‘Manual Steering’, DF, MPU) and DF.ReceivedEventually
(‘Manual Steering’, MPU) mean that a demand ‘Manual Steering’ always sends
and it is received eventually respectively. In order to establish the communica-
tion, we need the following safety requirement.

G15 DF.AlwaysSend (‘Manual Steering’, DF, MPU) ⇒ DF.EventuallyReceived
(‘Manual Steering’, MPU)

In temporal logic, this fact is not needed because it is derived by its inference
rules. On the other hand, in our approach, we do not rely on the inference rules
but explicitly describe what holds about the timing in propositional logic like
G15. In this approach, although inconsistencies in the timing might be intro-
duced, it makes underlying logic simple.

We think that our approach is useful to explain the reason why the safety
requirements are traceable. We adopted propositional logic to formally describe
the safety requirements. Propositional logic is simple and easy to understand.
In our approach, a parent goal is derived from sub-goals by inference rules of
propositional logic, mainly, Modus Ponens. Such inference rules are also intu-
itively understandable. Explaining the traceability using such simple and intu-
itive logic makes it easier to convince others that the safety requirements are
traceable. On the other hand, one may think that propositional logic is too sim-
ple to describe the safety requirements. In fact, it was possible to describe all
of the safety requirements within propositional logic. We think that rich logic is
not needed to reason the safety requirements in terms of the traceability because
complex computation such as differential equations does not appear in reasoning
them. Even if it appears, it should be abstracted as propositional facts for the
safety requirements.

8 Conclusion

In this paper, we presented a case study to make safety requirements for ISO
26262. The target of the case study is to develop the safety requirements of EPS.
We identified a few major problems of the original document of EPS in its pre-
liminary analysis. To solve those problems, we adopted a goal tree proposed in
KAOS and proposed patterns of the goal tree for the safety requirements. We
confirmed that the quality of the safety requirements are drastically improved
by applying the goal threes and the patterns. In fact, more than half of the
safety requirements were modified or added. Such improvements were admitted
by engineers developing EPS. What we learned in the case study is as follows.
Firstly, propositional logic is sufficient and effective to ensure the traceability
of the safety requirements. Ensuring the traceability mainly relies on Modus

Modeling Safety Requirements of ISO26262 221

Ponens inferences. Secondly, the notion of patterns is well-fitted to the develop-
ment of safety requirements. There are small variations of essential and typical
safety mechanisms. The safety requirements which correspond to them should
be defined as the patterns.

Currently, we are developing a tool to manage and verify the safety require-
ments based on the approach proposed in this paper. The verification is fully
automated using a SAT solver [16] because the traceability is verified based on
propositional logic. We are going to expand the tool to daily developments of
automotive systems after the tool is released.

References

1. ISO 26262 Road vehicles - functional safety (2011)
2. IEC 61508: Functional safety of electrical/electronic/programmable electronic

safety-related systems (1998)
3. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-

els to Software Specifications. Wiley, New York (2011)
4. Broy, M., Kruger, I.H., Stauner, T.: Software engineering for automotive systems:

a roadmap. In: Future of Software Engineering, pp. 55–71 (2007)
5. Weaver, R.A., Kelly, T.P.: The goal structuring notation-a safety argument nota-

tion. Workshop on Assurance Cases, Dependable Systems and Networks (2004)
6. Denney, E., Pai, G., Whiteside, I.: Formal foundations for hierarchical safety cases.

In: High Assurance Systems Engineering, pp. 52–59 (2015)
7. Denney, E., Pai, G.: A formal basis for safety case patterns. In: Bitsch, F., Guio-

chet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153, pp. 21–32. Springer,
Heidelberg (2013)

8. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns.
In: Daniel, P. (ed.) SAFECOMP, pp. 55–69. Springer, London (1997)

9. Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P., Pavlou, G.: A func-
tional solution for goal-oriented policy refinement. In: Policies for Distributed Sys-
tems and Networks, pp. 133–144 (2006)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: International Conference on Software Engineering, pp.
411–420 (1999)

11. Darimont, R., van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. ACM SIGSOFT Softw. Eng. Notes 21(6), 179–190
(1996)

12. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

13. Jones, C.B.: Systematic Software Development using VDM, 2nd edn. Prentice Hall
International, Upper Saddle River (1990)

14. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, New York (1992)
15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of

Reusable Object-Oriented Software. Pearson Education, London (1995)
16. Minisat: http://minisat.se/

http://minisat.se/

Software and Systems Analysis

An Approach to Static-Dynamic Software
Analysis

Pablo Gonzalez-de-Aledo1(B), Pablo Sanchez1, and Ralf Huuck2

1 University of Cantabria, Santander, Spain
{pabloga,sanchez}@teisa.unican.es

2 NICTA and UNSW, Sydney, Australia
ralf.huuck@nicta.com.au

Abstract. Safety-critical software in industry is typically subjected to
both dynamic testing as well as static program analysis. However, while
testing is expensive to scale, static analysis is prone to false positives
and/or false negatives. In this work we propose a solution based on a
combination of static analysis to zoom into potential bug candidates in
large code bases and symbolic execution to confirm these bugs and create
concrete witnesses. Our proposed approach is intended to maintain scal-
ability while improving precision and as such remedy the shortcomings of
each individual solution. Moreover, we developed the SEEKFAULT tool
that creates local symbolic execution targets from static analysis bug
candidates and evaluate its effectiveness on the SV-COMP loop bench-
marks. We show that a conservative tuning can achieve a 98 % detecting
rate in that benchmark while at the same time reducing false positive
rates by around 50 % compared to a singular static analysis approach.

1 Introduction

Quality assurance for safety-critical systems is no longer only challenged by
hardware reliability and the complexity of the environment these systems are
operating in, but to a large degree these systems are suffering from the growth of
their software bases. In the automotive space a state-of-the-art car contains over
50 million lines of source code. And although the industry has stringent quality
assurance processes in place, complies to strict standards such as ISO 26262
and uses restrictive coding guidelines such as MISRA [1], safety is continuously
challenged. As shown by Miller et al. [2,3] modern automobiles are open to
numerous attack vectors, almost exclusively being exposed by software bugs
such as buffer overruns, null pointer dereferences and command injections.

Pablo gratefully thanks the funding and support of DATA61 and the Australian
Government as a Research intern and Fellow Student. Authors acknowledge the
funding from projects TEC2011-28666-C04-02, TEC2014-58036-C4-3-R and grant
BES-2012-055572, awarded by the Spanish Ministry of Economy and Competitivity.

Funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 225–240, 2016.
DOI: 10.1007/978-3-319-29510-7 13

226 P. Gonzalez-de-Aledo et al.

Industry has extensive experience designing and testing safety-critical sys-
tems. However, the growing software sizes pose problems to many of the existing
quality assurance methods and processes. This includes common practices such
as dynamic software testing and static program analysis. Software testing does
not scale well and is both expensive as well as time consuming. On the other
hand, static analysis scales well but suffers from both false positives and/or false
negatives. This means, there are spurious warnings not related to actual defects
and instances of software bugs that are part of checked defect classes, but missed.
Both false positives as well as false negatives are a serious concern in industry.

In this work we present a first approach that bridges some of the gaps between
the existing techniques and their shortcomings. In particular, we present a com-
bination of static program analysis and symbolic dynamic execution to minimize
false positives and false negatives, while at the same time maintaining scalabil-
ity. The core idea is to use static program analysis to broadly zoom in on a
potential software defect and treat that as a bug candidate. Next, we make this
bug candidate a precise target for symbolic execution. This has a number of
advantages:

1. Scalability is maintained by a broad static analysis pass that zooms in on bug
candidates.

2. Fine grained symbolic execution has a concrete target as opposed to an
unguided crawl, which allows for additional symbolic execution heuristics.

3. Performance can be tuned by relaxing static analysis constraints and remov-
ing false negatives at the expense of potential false positives, which in turn
can potentially be ruled out by symbolic execution. Conversely, only true pos-
itives can be reported where symbolic execution provides a concrete witness
execution.

Moreover, we present the first steps of an integrated tool called SEEKFAULT
using static analysis and symbolic execution, which borrows some of the under-
lying technology of the respective tools Goanna [4] and Forest [5]. As a first
benchmark we apply SEEKFAULT to the loop category of the SV-COMP verifi-
cation competition set. Relaxing static analysis to allow for over-approximations
we are able to detect 98 % of the defect cases in SV-COMP while reducing the
false positive rate by over 50 % compared to a single static analysis approach.

The remainder of this paper is structured as follows: In Sect. 2 we present
the overall ideas and their relation with existing work. In Sect. 3 we give a brief
introduction to the formal verification based static analysis we employ as well
as our symbolic execution framework for C/C++ code. This is followed by an
explanation of our new combined analysis framework and its architecture in
Sect. 4. We present our initial results from the tight integration of static analysis
and symbolic execution in Sect. 5 and conclude with a summary and future work
in Sect. 6.

An Approach to Static-Dynamic Software Analysis 227

Fig. 1. Top row: static analysis coverage; bottom row: symbolic execution coverage.

2 Overview and Related Work

Software testing is extensively used to validate the safety-critical system (or a
unit thereof) against requirements to ensure coverage of both the requirements
and the actual code. However, it is well understood that only a fraction of the
actual semantic behavior can be realistically tested and many of the known vul-
nerabilities result from corner cases of a particular input leading to vulnerabili-
ties [2]. For instance, even when a path with a particular division is covered, the
semantic case where that divisor happens to become zero might not. As a result
even full traditional test coverage does not equate to full semantic coverage.

There are various approaches to remedy this shortcoming including symbolic
execution [6] and concolic testing [7,8]. These techniques increase semantic cov-
erage criteria by treating inputs and undetermined return values symbolically.
As such, this enables the investigation of an execution not only for a single value,
but for a symbolic range of values at once. However, as shown in industry case
studies [9,10] symbolic techniques are prone to scalability limitations and cur-
rent tools are not well suited yet for deep embedded applications. As such, their
adoption in safety-critical industries has so far been limited.

One widely used technology in safety-critical industries is static program
analysis. Static analysis approximates the behavior of source code and detects
common coding violations such as the ones defined by MISRA, but also possi-
ble software bugs that lead to runtime errors such as null pointer dereferences,
memory leaks and buffer overruns. Many commercial tools are based on earlier
academic work and are routinely used in industry [4,11–13]. However, while sta-
tic analysis is scalable to very large code bases, it approximates program behav-
ior and as such is prone to false positives (false alarms) and/or false negatives
(missed bugs).

Static analysis and dynamic testing can be seen as two different approxima-
tion methods to cover the program semantics as shown in Fig. 1. While (sound)

228 P. Gonzalez-de-Aledo et al.

static analysis over-approximates the program behavior and as such allows false
positives, dynamic analysis under-approximates program behaviour leaving false
negatives.

Our approach combines both techniques and approximations to obtain a
solution that is more scalable than symbolic execution, yet more precise than
static program analysis. The main idea is to use static analysis to ‘zoom’ into
potential bugs we call bug candidates. These bug candidates are identified by
modern program analysis techniques including data flow, model checking and
CEGAR-style trace refinement [14]. However, while this type of program analysis
can be fast and scalable, it is typically less precise than some actual execution
or simulation. As such, there always remains a level of uncertainty regarding
false positives. To counter this, we use the bug candidates determined by static
analysis and pass them on to a symbolic execution execution pass, using those
candidates as local reachability targets. This means, we attempt to confirm that
a bug candidate is indeed a real bug. This allows us to boost the rate of true
positives. The reachability targets assist additional heuristics that guide the
search and are more efficient than classical crawling approaches [15].

Bug candidates that cannot be confirmed by symbolic execution remain
potential bugs due to the under-approximating nature of symbolic execution
unless, however, symbolic execution is able to explore all paths (symbolically)
and as such can make a precise decision whether a bug candidate exists or not.

Most of the work in the symbolic execution and the static program analysis
area has been focusing on improvements and heuristics in each individual field
[15–18]. Combining the different domains gained less attention and is mostly
related to improving symbolic execution search strategies by adding static analy-
sis information [19,20]. In [21], Young and Taylor use static analysis to compute
a concurrency graph and then to prune equivalent symbolic states by dynamic
execution. Their ideas focus on concurrency errors for Ada programs and the
goals are similar to symmetry and partial order reduction. Another combined
approach is presented in [22]. However, the authors focus on obtaining maximal-
coverage test cases for C programs. In contrast, our work focuses on the reach-
ability of a set of error locations. Moreover, we use these locations to guide the
symbolic execution search while [22] aims at heuristics for path coverage.

3 Our Approach to Static Analysis and Symbolic
Execution

We deploy two complementary program analysis techniques: Static code analysis
and symbolic execution. As the names suggest, the former is a static technique
that takes the source code and builds an abstraction that is analyzed using a
range of approaches including model checking and trace refinement. The latter
is a dynamic technique that symbolically executes the program under test by
building constraints over concrete execution paths and checking their validity
using SMT solving.

An Approach to Static-Dynamic Software Analysis 229

Fig. 2. Original program and automatically annotated CFG.

3.1 Static Analysis Using Model Checking and Trace Refinement

Static analysis comprises a number of techniques including data flow analysis,
abstract interpretation and software model checking [18,23]. The approach we
use in this work is based on model checking and trace refinement as originated
in the Goanna tool [24]. The core ideas are based on the observation that data
flow analysis problems can be expressed in modal µ-calculus [25]. This has been
developed further by Fehnker et al. in [26] and later expanded in [14].

The main idea is to abstractly represent a program (or a single function) by
its control flow graph (CFG) annotated with labels representing propositions of
interest. Example propositions are whether memory is allocated or freed in a
particular location, whether a pointer variable is assigned null or whether it is
dereferenced. In this way the possibly infinite state space of a program is reduced
to the finite set of locations and their propositions.

The annotated CFG consisting of the transition system and the (atomic)
propositions can then be transformed into the input language of a model checker.
Static analysis bug patterns can be expressed in temporal logic and evaluated
automatically by a model checker. To illustrate the approach, we use a contrived
function example shown in Fig. 2. It works as follows: First a pointer variable
p is initialized and memory is allocated accordingly. Then, in a loop, a second
pointer variable q is assigned the address saved in p. After hundred-thousand
assignments p is freed and the loop is left.

To automatically check for a use-after-free, i.e., whether the memory allo-
cated for p is still accessed after it is freed, we define atomic propositions for allo-
cating memory definep, freeing memory freep and accessing memory assignp,
and we label the CFG accordingly. The above check can now be expressed in
CTL as:

∀p : AG(definep ⇒ AG(freep ⇒ AG¬assignp))

This means, whenever memory is allocated, after freep there is no occur-
rence of a assignp. Note that once a check has been expressed in CTL, the
proposition can be generically pre-defined as a template of syntactic tree pat-
terns on the abstract syntax tree of the code and determined automatically.
Hence, it is possible to automatically check a wide range of programs for the
same requirement.

230 P. Gonzalez-de-Aledo et al.

Trace Refinement Loop. Model checking the above property for the model
depicted in Fig. 2 will find a violation and return a counterexample. The fol-
lowing path denoted by the sequence of locations is such a counterexample:
l0, l1, l2, l3, l4, l5, l6, l7, l3, l4, l5. However, if we match up the counterexample in
the abstraction with the concrete program, we see that this path cannot possibly
be executed, as the condition i == 0 cannot be true in the first loop iteration
and, therefore, l5 to l6 cannot be taken. This means, the counterexample is spuri-
ous and should be discarded. We might get a different counterexample in the last
loop iteration . . . , l5, l6, l7, l3, l4, l5. But again, such a counterexample would be
spurious, because once the condition i == 0 holds, the loop condition prevents
any further iteration.

To detect the validity of a counterexample we subjected the path to a fine-
grained simulation using an SMT solver. In essence, we perform a backward
simulation of the path computing the weakest precondition. If the precondition
for the initial state of the path is unsatisfiable, the path is infeasible and the
counterexample spurious. We use an efficient SMT encoding and a refinement
loop by creating observer automata to successively eliminate sets of infeasible
traces. For the example in Fig. 2 the approach is able to create two observer
automata from minimal unsatisfiable cores of a single path leading to the elim-
ination of all paths of the same nature, i.e., avoiding an unrolling of the loop.
This approach is similar to interpolation-based solutions and more details can
be found in Junker et al. [14].

False Positives and Tuning. Even in this formal verification based frame-
work of static program analysis there are possibilities for false positives (wrongly
warned bugs) and false negatives (missed bugs). This is caused by the abstraction
and encoding into the model checker, which is necessarily sound. For instance,
certain semantic constructs such as function pointers are typically not modelled
and their behaviour is optimistically assumed. And, finally, the false positive
elimination itself might time out and a judgment call whether to report a poten-
tial bug or not is made.

Industrial static analysis tools regularly make the aforementioned trade-offs.
In this work we scale back the potential false negatives and counter the increasing
false positives with symbolic execution.

3.2 SMT Solving Based Symbolic Execution

Symbolic execution is a faithful technique to observe program behavior by evalu-
ating it symbolically in an abstract or constraint-based domain [6]. This means,
values, variables and expressions are encoded as constraints over program paths
and solvers are used to determine the (symbolic) program state at each location.
The most common use case is to determine test inputs and coverage criteria [27],
which is generalized to the concept of concolic testing [7,8].

These approaches basically divide executions into equivalence classes exhibit-
ing the same behavior under a given symbolic value or constraint of input para-
meters and path conditions. The advantage of these approaches is the ability to

An Approach to Static-Dynamic Software Analysis 231

take into account a wide range of (equivalent) inputs within one interpreted exe-
cution. However, besides building a faithful symbolic interpreter, the challenges
of semantic coverage and dealing with a potentially exponential set of execution
paths with respect to the number of decision points remain.

A bug detected by symbolic execution or concolic testing is basically the same
as if discovered by dynamic testing. Hence, it provides some concrete validation
that the program under test exposes some vulnerability. This is a clear advan-
tage over static program analysis, where false positives are possible and further
investigation of the results is often required. The downside is that both from a
practical and theoretical point of view, not all execution paths can typically be
explored. As such symbolic execution helps for confirming bugs, but less so for
ruling them out.

In the following we describe our approach to symbolic execution using multi-
process execution and multi-theory SMT solving.

Our Approach to Symbolic Dynamic Execution. Symbolic execution eval-
uates the code under test using symbolic variables. The symbolic variables can
take any value of the replaced concrete variable range they substitute. This is in
particular true for free (input) variables. Moreover, all operations on symbolic
variables are recorded as a mathematical constraint over a pre-defined logic of
an SMT solver as detailed below. In our approach, whenever the evaluator hits
a conditional branch, the SMT solver is evaluating the two possible branching
outcomes (true and false) to see if any or all of the branches are feasible. As a
result, on each path the evaluator keeps a record of the set of constraints that
must hold to follow this path and it only keeps the feasible paths in memory. This
approach has proven to be a good compromise between generality, i.e., each path
is represented as a formula that is valid for different input values, and specificity,
i.e., only possible paths are considered, and they are considered explicitly.

To exemplify the approach, we can use the example shown in Fig. 5 and
the associated execution tree of Fig. 3. When this example is run in the symbolic
execution engine, it is emulated in a virtual environment that logs every access to
a variable and every operation performed on a variable. In the example we start
at the beginning of main. The first operation that takes place is the assignment
of the constant 0 to the variable i. Then i is compared to 10. The framework
keeps record of the fact that i comes from a constant, so there is no need to
explore two branches in the condition, because only one can be executed. If i
was not assigned to the constant 0 at the beginning, i would only have a symbolic
assignment when reaching the condition. In that case, an SMT solver is called
for the two possible outcomes of the branch, and the branch condition is added
to a set of constraints that is independent for every path. If the solver gives a
satisfying assignment for that branch output, we obtain two outcomes: Firstly,
we know that the path starting at the beginning of main is feasible. Secondly, we
get a concrete input vector for all free variables demonstrating the reachability.

232 P. Gonzalez-de-Aledo et al.

Fig. 3. Tree representation of the execution of program in Fig. 5

Multi-process Execution. As it can be intuitively seen in Fig. 3, the number
of paths grows exponentially with the number of branches in the code. To find
non-trivial bugs and to scale to larger programs we use parallelization as one
of the architectural solutions. This means for every decision point, i.e., every
branching, we spawn separate processes for the true and false branches. This
enables us to parallelize the SMT solver computation as well as to independently
follow different search strategies for different paths.

Multi-theory Solving. Another technique to speed up the process is to adjust
the representation of the symbolic variables and their encoding in the SMT
solver. For proving certain properties the sign of the variables might be enough or
a representation as intervals is appropriate. If we want to account for overflows, or
precisely capture sign-extension or bitwise operations, a bit-level representation
for every variable is used. Some other representations we support are linear
equations, where each variable is represented as a linear formula dependent of
input variables, and polynomials, where sets of variables are represented as a
polynomial equation. In our work we deploy heuristics to switch between different
SMT solver theories dynamically based on the current context [5].

Execution Monitors. While the main goal of symbolic execution is to generate
input test vectors, it is possible to instrument the code on top of the symbolic
execution framework to introduce monitors on it. Those monitors are observer
code that check for errors during run-time. For instance, we add a monitor that
on every pointer dereference checks that the value of the index to an array is
in the range of allocated memory. Monitors can be expressed as SMT-formulas
and their generation can be automated avoiding manual code annotations.

Although the semantics of symbolic execution precisely capture the set of
program behaviors, the program is still under-approximated, since not all paths
can necessarily be explored, neither in theory nor in practice. This is caused by
(non-regular) loops and recursion in programs leading to infinitely sized spaces.
In order to maximize the set of explored states, different heuristics have been
added to these frameworks [15,28]. These heuristics do not solve, however, the
fundamental problem of a potentially exponentially growing number of execution
paths. Hence, our goal is to use static analysis for defining more constrained bug

An Approach to Static-Dynamic Software Analysis 233

Fig. 4. SEEKFAULT architecture: static-dynamic integration.

candidates and provide a guidance of the symbolic execution framework in the
search strategy.

4 An Integrated Static-Dynamic Approach

4.1 Architecture

We illustrate our approach in Fig. 4: We start off with a static security analysis
phase. If there is no vulnerability found the process stops. Otherwise, we submit
the bug candidate to the symbolic execution engine. If the symbolic execution
engine is able to confirm the issue it generates a concrete trace and an input
vector. Otherwise, the bug candidate is neither confirmed nor ruled out auto-
matically and needs to be subjected to a manual investigation. Depending on
that outcome either the issue will be manually confirmed or it proves to be a
false positive that can be used to improve the static analysis checking algorithm
or the exact CTL specification.

4.2 Implementation

We implement our approach in a new tool called SEEKFAULT. The SEEK-
FAULT engine makes use of two approaches: Static analysis based on model
checking and SMT-based trace refinement as used in Goanna [29], and symbolic
execution based on multi-theory SMT solving as used in Forest [5]. Z3 is used
as the underlying SMT solver. SEEKFAULT itself is developed in a mixture of
C/C++ and OCaml.

At the current stage of development, the integrated SEEKFAULT tool first
runs a static analysis pass to determine bug candidates and for each potential
bug creates location information as well as a possible counter-example trace that
is then passed on to the dynamic execution phase. Unlike traditional symbolic
execution, the combined approach in SEEKFAULT enables new search heuris-
tics by applying the trace information as well as by using the bug locations as
reachability targets. For instance, as one heuristic, we calculate a distance mea-
sure from the last visited node in the program to the reachability target. This
distance is computed statically over the control flow graph. The symbolic execu-
tion engine can then use that distance to sort the set of candidate paths during
the guided search. To do so, we use the standard A* graph traversal algorithm.

234 P. Gonzalez-de-Aledo et al.

Fig. 5. Overflow detection static analysis

Finally, we use time outs on each branch of the symbolic execution if we are
unable to reach a particular target.

5 Experiments

In this section we outline some of the experiments we performed and some of the
experiences we gained so far. While implementation for larger projects is still
underway, it provides some valuable results.

5.1 Examples

We firstly demonstrate our idea by some examples from our internal test suite.
The first example program is shown in Fig. 5. An array with 10 elements ranging
form 0 to 9 is initialized in a loop. However, in the last loop iteration the counter
is increased to one beyond the array size and the subsequent access to that array
would result in an out of bounds violation.

This error can be detected by our SEEKFAULT static analysis engine alone
as the following command shows:

$ seekfault --static-only overflow.c
SEEKFAULT - analyzing file overflow.c
line 5: warning: Array ‘a’ subscript 10 is out of bounds [0,9].

For that example the analyzer is able to determine the array bounds as well
as the number of loop iterations that are executed and, therefore, can derive
the buffer overrun. However, in certain scenarios when the complexity of rea-
soning is increased by for instance copying memory around or reasoning about
strings, the analysis might lose precision. We do not warn in the latter cases. An
example is shown in Fig. 6. In the example, the buffer overflow introduces a real
vulnerability, as it can be used to write in the memory occupied by the variable
access, and grant the access to the application with an incorrect password.

This occurs when the size of the string passed as first parameter to the
program is larger than 10 characters. In that case, the strcpy function writes in
a space that was not allocated to store the variable password buffer, but for

An Approach to Static-Dynamic Software Analysis 235

Fig. 6. Overflow detection symbolic execution

access. Once access is overwritten with a different value than the initial 0, the
access to the application is granted.

To be able to detect these kind of errors we tune the static analysis engine
of SEEKFAULT to always emit an error when it is not certain that a bug is
absent. This means it will generate a vulnerability candidate for the example in
Fig. 6. Moreover, using our symbolic execution engine on the target location of
the static analysis candidate we get a concrete confirmation of that bug. The
SEEKFAULT engine produces:

$ seekfault pwd.c
SEEKFAULT - analyzing file pwd.c
line 5: Array ‘password_buffer’ subscript 10 is out of bounds:
Symbolic analysis:
Testcase 12 : aaaaaaaaac\0
Testcase 13 : aaaaaaaaba\0
Testcase 14 : aaaaaaaaaba\0 < BufferOverflow

This shows this two-tiered approach where static analysis defined the bug
candidate and symbolic execution is able to provide a real exploitable scenario
in case the input is the aaaaaaaaaba\0 string.

5.2 SV-COMP Benchmark Results

For the evaluation of our integrated solution we use the well known SV-COMP
benchmark1, in particular, the loop category. SV-COMP is a set of competition
benchmarks used in the automated verification community to highlight complex
verification problems and to test the strength of individual tools.

The loop category is comprised of 117 files. All of the test cases expose a
potential error, but only a minority of 34 files exhibit a real bug. Hence, any
brute force approach by warning at any uncertainty will overwhelmingly exhibit
false positives.

We show the results of our integrated approach in Table 1. This table is
broken down by the different analysis phases as well as the final verdict, where
SA denotes static analysis, SE symbolic execution and SF SEEKFAULT. A tick
1 http://sv-comp.sosy-lab.org/.

http://sv-comp.sosy-lab.org/

236 P. Gonzalez-de-Aledo et al.

means proven to be correct, a cross that a bug has been confirmed and a warning
triangle means for static analysis that it flags a potential issue and for symbolic
execution that it times out. The file names shaded in gray are those containing
a bug.

We have broken the table in five groups, which are separated by horizontal
lines.

1. In the first set of examples, the static analysis engine is able to conclude
that the program is correct. This is because our static analysis phase over-
approximates the possible behavior and the program does not contain any
approximation breaking constructs such as function pointers.

2. In the second group, SEEKFAULT’s static analysis engine produces some
potential bug candidates that are passed to the symbolic analysis pass. How-
ever, the symbolic analysis engine was able to faithfully cover all the possible
branches in the program and conclude that all of them are bug-free.

3. In the third group, the full potential of the SEEKFAULT approach is shown.
In these cases static analysis concludes that there is a potential bug in the
code and provides a set of candidate locations that exhibit the undesired
behavior. This set of locations is used as target locations for the symbolic
execution heuristics. In each case SEEKFAULT was able to find the bug and
provide a test case that demonstrates this behavior.

4. In the next two groups, the relaxation of the rules in the static analysis tool
makes the analysis to produce error candidates in programs that however
do not exhibit undesired behavior under the fully-accurate semantics of the
operations of the program. The set of feasible paths, however, is too big
to be fully exercised by symbolic execution, so under the requirements of
a sound analysis, the algorithm has to output an inconclusive output. We
observe, however that the fact of having a concrete goal to reach helps a lot
in the symbolic execution framework so most of these cases (41 over 43) are
actually correct. Considering the two remaining cases as correct would break
the soundness of the approach but would leave us with an error rate of only
2/117.

In summary, the combined approach has a detection rate (number of detected
errors over files with an error) of 98 %. The true negative rate of the combined
approach (number of files “proven” as correct when they are correct) is 35 %,
which is approximately 50 % above the rate obtained by only using a static
analysis approach.

5.3 Observations and Limitations

It is worth noting some observations: Firstly, our SEEKFAULT solution is quite
capable of detecting bugs. All bugs have been identified by SEEKFAULT and
all apart from two have been confirmed with symbolic execution inputs and
traces. Secondly, the SEEKFAULT approach gives a slightly better coverage to
demonstrate the absence of bugs compared to single static analysis approach.

An Approach to Static-Dynamic Software Analysis 237

Table 1. Results of each engine and the integrated SEEKFAULT solution. SA = static
analysis, SE = symbolic execution, SF = SEEKFAULT, gray = bug

However, the SEEKFAULT solution is not yet very capable to prove the absence
of bugs in general.

Having said that, the SV-COMP results need to be taken with a grain of salt:
Many of the competition tools are variants of bounded model checking tools that
declare a program bug free if no violation up to a certain bound can be found.

238 P. Gonzalez-de-Aledo et al.

In our case, if we declared a program bug free when both SEEKFAULT phases
cannot come to a combined negative conclusion, we would correctly identify all
benchmark cases apart from two, keeping the overall error rate at around 1 %.
This is better than the rate exhibited by more mature state-of-the-art tools in
this set of programs.

Finally, we expect SEEKFAULT to shine outside the small but very com-
plex SV-COMP cases. The main reason is that symbolic execution adds a lot
of precision to static analysis, but is typically hampered by scalability. In the
SEEKFAULT approach, however, static analysis takes care of scalability and
provides local bug candidates that should be easier to identify. Implementation
work for those additional experiments is underway.

6 Conclusions

In this work we presented an integrated approach of static program analysis and
symbolic execution. In this new two-phased solution static analysis is tuned to
not miss bugs at the expense of higher false positives, which are filtered in the
second phase using symbolic execution. We implemented the solution in the tool
SEEKFAULT.

Our experiments on the challenging SV-COMP benchmark shows a 98 %
vulnerability detection rate with a 50 % reduced false positive rate compared to a
singular static analysis solution. Moreover, the overall true negative rate remains
at around 35 %, which is quite reasonable for this set of benchmarks. However,
overall the false positive rate is still too high, unless we add the soundness
breaking assumption that inconclusive symbolic execution results indicate the
absence of a bug.

Future work is to experiment on larger open source projects. Our conjecture
is that most detectable bugs are less complex than the SV-COMP ones and we
should see lower false positive rates. However, this will largely depend on the
scalability results for the symbolic execution phase. Earlier experiments with the
use of reachability targets, however, showed that our symbolic analysis scales well
to around several hundred to thousand lines of code.

Moreover, right now we still manually adjust the static analysis engine when-
ever possible to feedback the new information we gained from the symbolic exe-
cution phase. Another line of future work is to investigate a learning mechanism
to at least partially automate that process.

References

1. MISRA Ltd: MISRA-C:2004 Guidelines for the use of the C language in Critical
Systems. MISRA, October 2004

2. Miller, C., Valasek, C.: A survey of remote automotive attack surfaces. Black Hat
USA (2014)

An Approach to Static-Dynamic Software Analysis 239

3. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T., et al.: Comprehensive experi-
mental analyses of automotive attack surfaces. In: USENIX Security Symposium,
San Francisco (2011)

4. Huuck, R.: Technology transfer: formal analysis, engineering, and business value.
Sci. Comput. Program. 103, 3–12 (2015)

5. Gonzalez-de-Aledo, P., Sanchez, P.: Framework for embedded system verification.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 429–431.
Springer, Heidelberg (2015)

6. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Trans. Softw. Eng. 2(3), 215–222 (1976)

7. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference, ESEC/FSE-
13, pp. 263–272. ACM, New York, NY, USA (2005)

8. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
Programming Language Design and Implementation (PLDI) (2005)

9. Qu, X., Robinson, B.: A case study of concolic testing tools and their limitations.
In: International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 117–126, September 2011

10. Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C.S., Sen, K., Tillmann, N.,
Visser, W.: Symbolic execution for software testing in practice: preliminary assess-
ment. In: Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE 2011, pp. 1066–1071. ACM, New York (2011)

11. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: using static
analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)

12. GrammaTech: CodeSurfer. http://www.grammatech.com/
13. O’Hearn, P.W., Calcagno, C., Distefano, D., Lee, O., Cook, B., Yang, H., Berdine,

J.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

14. Junker, M., Huuck, R., Fehnker, A., Knapp, A.: SMT-based false positive elimi-
nation in static program analysis. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012.
LNCS, vol. 7635, pp. 316–331. Springer, Heidelberg (2012)

15. Marre, B., Mouy, P., Williams, N., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005)

16. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

17. Escalona, M.J., Gutierrez, J.J., Mej́ıas, M., Aragón, G., Ramos, I., Torres, J.,
Domı́nguez, F.J.: An overview on test generation from functional requirements. J.
Syst. Softw. 84(8), 1379–1393 (2011)

18. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput.-Aided Des. Integr. Circ.
Syst. (TCAD) 27(7), 1165–1178 (2008)

19. Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. Int. J. Softw. Tools Technol. Transf. 11(4), 339–353
(2009)

20. Qu, X., Robinson, B.: A case study of concolic testing tools and their limitations.
In: International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 117–126, September 2011

http://www.grammatech.com/

240 P. Gonzalez-de-Aledo et al.

21. Young, M., Taylor, R.N.: Combining static concurrency analysis with symbolic
execution. IEEE Trans. Softw. Eng. 14(10), 1499–1511 (1988)

22. Williams, N., Mouy, P., Roger, M., Marre, B.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005)

23. Nielson, F., Nielson, H.R., Hankin, C.L.: Principles of Program Analysis. Springer,
Berlin (1999)

24. Fehnker, A., Seefried, S., Huuck, R.: Counterexample guided path reduction for
static program analysis. In: Dams, D., Hannemann, U., Steffen, M. (eds.) Concur-
rency, Compositionality, and Correctness. LNCS, vol. 5930, pp. 322–341. Springer,
Heidelberg (2010)

25. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer,
Heidelberg (1998)

26. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model checking
software at compile time. In: Proceedings of the First Joint IEEE/IFIP Symposium
on Theoretical Aspects of Software Engineering, TASE 2007, pp. 45–56. IEEE
Computer Society, Washington, DC, USA (2007)

27. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association, Berkeley, CA, USA (2008)

28. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: Proceed-
ings of the 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. ASE 2008, pp. 443–446. IEEE Computer Society, Washington, DC,
USA (2008)

29. Bradley, M., Cassez, F., Fehnker, A., Given-Wilson, T., Huuck, R.: High perfor-
mance static analysis for industry. ENTCS, Third Workshop on Tools for Auto-
matic Program Analysis (TAPAS 2012), vol. 289, pp. 3–14 (2012)

Towards Verifying VDM Using SPIN

Hsin-Hung Lin(B), Yoichi Omori, Shigeru Kusakabe, and Keijiro Araki

School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka, Japan

{h-lin,yomori,kusakabe}@ait.kyushu-u.ac.jp, araki@csce.kyushu-u.ac.jp

Abstract. The Vienna Development Method (VDM) is a formal
method that supports modeling and analysis of software systems at vari-
ous levels of abstraction. Case studies have shown that applying VDM, or
formal specification, in general, in software development processes is the
key to achieving high-quality software development. However, to derive
full benefit from the use of VDM in software development, associative
activities such as validating and verifying VDM models are crucial. Since
the primary way of verifying a VDM model is specification animation,
we aim to utilize the animation feature of VDM to apply model checking
techniques. In this paper, we propose an approach to supporting model
check VDM models by constructing a hybrid verification model combin-
ing VDMJ, a VDM interpreter, and SPIN, one of the most popular model
checkers, especially in practical use. Two case studies are reported, and
the usability, scalability, and efficiency of our approach are discussed.

Keywords: Vienna Development Method · SPIN · Model checking

1 Introduction

The Vienna Development Method (VDM) [5,6,13] is a formal method which sup-
ports modeling and analysis of software systems at various levels of abstraction.
A VDM specification, i.e. software specifications described in a VDM model,
uses a combination of implicit and/or explicit definitions of functionalities to
describe software specifications acquired from software requirements.

VDM has a strong record of industrial application for design and specification
of software systems [14,15,17]. The well-known basic benefits of using VDM to
describe software specifications are from the accuracy and unambiguity of VDM,
which is common for other formal methods like B or Z. However, to derive the
full benefit from VDM to achieve high-quality software development, validation
and verification of VDM models are crucial. For example, the FeliCa IC card
development team [23] takes the testing (specification animation) approach to
validating the specifications of FeliCa IC card written in VDM++ [6] models,
a dialect of VDM specification language. The FeliCa IC card development team

This work was partly supported by KAKENHI, Grant-in-Aid for Scientific
Research(S) 24220001.

c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 241–256, 2016.
DOI: 10.1007/978-3-319-29510-7 14

242 H.-H. Lin et al.

put the most effort on the issues of how to construct the style of VDM++ models
and the design of test cases for better confidence in software quality.

On the other hand, when considering concurrency and/or reactivity of soft-
ware systems, it is not enough to specify each functionality with pre/post-
conditions and invariants. This is because (1) the dynamic properties related
to execution runs/traces of a concurrent/reactive system are more important
and usually formalized using temporal logics, and (2) the correctness of tempo-
ral properties and constraints specified in a VDM model is hard to be validated
by pure testing/animation. In this case, techniques like model checking [4] can
help a lot.

Since testing is the primary means to validate/verify a VDM model, there
is not yet any direct way of applying model checking on VDM models. Model
translation, for example, to translate VDM to Alloy [20], is considered. However,
data types and expressions in VDM are translated in a limited way since VDM
has abstract but rich data types and expressions. Therefore, we take a different
approach that utilizes the animation feature of VDM for applying model checking
techniques.

In our approach, we construct a hybrid verification model combining a VDM
interpreter VDMJ [1], and PROMELA, the modeling language of SPIN [9] model
checker. More specifically, in a PROMELA model, the embedded C code feature
of SPIN is applied to incorporate VDMJ’s functionality of evaluating correspond-
ing VDM expressions based on VDM models to be checked. By our approach,
we model check VDM models by interpretation, not model translation. Instead,
implementations for incorporating VDMJ are needed instead.

One of the advantages of our approach we want to address is the extensibility
to other VDM dialects. Our approach can check every dialect of VDM as long
as there is a supporting interpreter, and the VDM dialect’s features are handled
appropriately in embedded C code. In fact, VDMJ supports every dialect of
VDM including VDM-SL, VDM++, and VDM-RT.

The structure of this paper is as follows: Sect. 2 gives a brief introduction to
the basic knowledge of VDM and SPIN; Sect. 3 explains our approach, including
the definitions of a hybrid model and the construction of a hybrid model by
combining PROMELA and VDMJ; Sect. 4 demonstrates two case studies with
discussions; Sect. 5 describes the related work and clarifies the position of our
approach; Sect. 6 gives conclusions and the future plans.

2 Preliminaries

In this section, we give some introductions about the basic knowledge of the
technologies used in this paper.

2.1 The Vienna Development Method

The Vienna Development Method (VDM) was originally developed in the
1970’s at the IBM laboratories in Vienna [3]. The VDM Specification Language

Towards Verifying VDM Using SPIN 243

Fig. 1. A simple VDM-SL model: SIMPLE module

(VDM-SL) is a higher-order language with formally defined syntax and seman-
tics [18,19]. VDM provides various abstract data types: basic types such as
booleans, natural numbers, and tokens; advanced types such as record, product,
set, and map. Typed variables (state) may be restricted by invariants and oper-
ations/functions may be specified with preconditions and postconditions. For
example, Fig. 1 shows a VDM-SL model, module SIMPLE, with a state of a pool
of digits represented by a set of numbers from 0 to 9. The module has operations
that can put or take numbers in/from the pool. Invariants for type myNat and
state S are specified as well as pre/postconditions of operations putintoS and
takefromS. From this example, it is easy to understand that there are two essen-
tial parts of a VDM model: (1) constraints: pre/post-conditions and invariants,
and (2) abstract data type and corresponding operators for specifying function-
alities of a system.

Existing tools such as Overture Tool [16] and VDMTools [7] provide graphical
user interfaces for easy editing/building of VDM models. These tools also provide
functionalities such as type/syntax checking and testing/animation (execution
by the interpreter [19]) for validation and verification of VDM models.

There are other dialects of VDM: VDM++ [6] and VDM Real-Time (VDM-
RT) [26]. VDM++ is the extension of VDM-SL with object-orient concepts;

244 H.-H. Lin et al.

VDM-RT further extends VDM++ with scheduling controls of threads or
processes. Our approach applies to both VDM-SL and VDM++ though the
construction of verification models will be slightly different from each other. We
use VDMJ [1] as the engine of executing VDM expressions based on specified
VDM models. VDMJ is a Java implementation of VDM interpreter, which is
used as the base interpreter of Overture Tool.

2.2 The SPIN Model Checker

Model checking [4] is a promising verification technology for both hardware and
software systems. The basic idea of model checking is to explore the state space
of a system systemically, and various techniques and tools are developed. Among
these tools, the SPIN model checker [9] is one of the most popular model checkers
especially in practical use such as mission critical software verification [10].

From the model specified in PROMELA with given properties to be checked,
SPIN will generate a verifier pan.c that is the C program performs the model
checking. Several configurable settings are provided to tune the verification
process to match available computing resources such as CPU and memory usage.

SPIN has a special feature called embedded C code that incorporates external
C codes in PROMELA model [12]. With this feature, verifying a hybrid model
that consists of behavior fragments specified in PROMELA and specified by
external code is possible. Usually, the external code is part of the target soft-
ware itself, and PROMELA fragments capture the environment or user behavior
against the software. In our approach, the external code plays the role of exe-
cuting a VDM model through VDMJ interactively guided by the PROMELA
fragments.

3 Model Checking VDM Using SPIN

In this section, we firstly show the basic idea of our approach, the hybrid ver-
ification model concept, then give definitions related to the construction of a
hybrid verification model. Finally, we describe our implementation strategy.

3.1 Hybrid Model

Figure 2 shows the concept of hybrid verification model in our approach. The
concept is inspired by SPIN’s embedded C and take VDM models into consid-
eration. A hybrid model is considered a statechart-like finite transition system
where global variables and VDM models of a system are defined. In this system,
current state location and values of global (state) variables together represent
the overall state space. Although only one transition of the transition system
is showed, it is easy to analogize from UML state diagrams: a transition is in
the [condition]/action style where condition represents the guard of executing
action, and a state may have entry/exit actions. An action on a transition may
evaluate functions/operations of defined VDM models and update the values of
corresponding global variables.

Towards Verifying VDM Using SPIN 245

Fig. 2. A hybrid model

3.2 Hybrid Model as Extended Automata

Although we analogize UML state diagrams to our hybrid model, we do not
restrict our hybrid model to a UML state diagram model. Here we define the
hybrid model as an extended automaton system that consists of definitions of
global variables and VDM models. Before defining the extended automaton, we
define the notation of a VDM model at first in Definition 1.

Definition 1 (VDM Model). A VDM model is represented as a 6-tuple: M =
(Types,Var ,Values, Inv ,Fun,Ope), where

– Types is the finite set of types.
– Var is the finite set of variables (states);

– type(v) ∈ Types is the type of v ∈ Var.
– Values is the finite set of values (constants);

– type(v′) ∈ Types is the type of v′ ∈ Values.
– inv = {inv t | t ∈ Types} ∪ {inv Var} is the finite set of invariants;
– Fun is the finite set of functions.

– in f and out f represent the type signature of input and output of f ∈ Fun
respectively;

– pre f and post f represent the precondition and postcondition of f ∈ Fun
respectively.

– Ope is the finite set of operations.
– in op and out op represent the type signature of input and output of op ∈

Ope respectively;
– pre op and post op represent the precondition and postcondition of op ∈

Ope respectively.

Definition 1 shows that a VDM model consists of several definition blocks:
types, values, variables, invariants, functions, and operations. The definition
blocks are abstracted from a subset of VDM-SL and VDM++ syntax since it
is not necessary to look into the detailed syntax of VDM when focusing on the
construction of a hybrid verification model. For the purpose of verification, it is
reasonable seeing a VDM model as one module (VDM-SL) or class (VDM++)
containing these definition blocks. For convenience, we will focus on VDM-SL
models and use the module shown in Fig. 1 as the explanatory example in the

246 H.-H. Lin et al.

remainder of this section. We now give the definition of an extended automaton
called EAVDM .

Definition 2 is the automaton definition of the hybrid model shown in Fig. 2.
An EAVDM is a finite automaton with global variables and VDM models spec-
ified. In Definition 2, the set of variables V includes (state) variables defined in
the VDM model M. Also, a variable in V is allowed to be of the type defined
in M. For an event/action on a transition, the guard condition is a Boolean
expression, and the update function is an expression composed of a sequence
of arithmetic expressions. The expressions used in an EAVDM may update the
global variables including (state) variables defined in the VDM model.1

Definition 2 (EAVDM). Given a VDM model M = (TypesM,VarM,ValuesM,
InvM,FunM,OpeM), a hybrid model is an extended automaton EAVDM : P =
(S, s0,V, E , T ,A,F), where

– S is the finite set of locations;
– s0 ∈ S is the initial location;
– V is the finite set of variables. VarM ∈ V .
– ρ is the finite set of mappings from type signatures to subsets of variables;
– E = G × Θ is the finite set of events/actions;

– G is the finite set of guard conditions;
– Θ is the finite set of variable update functions;

– A is the finite set of propositions;
– T ⊆ S × E × S is the finite set of transitions.
– F ⊆ S is the finite set of final states;

In an expression, either boolean or arithmetic, if a function or operation
defined in the VDM model is involved, the evaluation is not computed directly
but instead the VDM interpreter is invoked for the evaluation. For this case, we
define evaluation functions in Definition 3. In Definition 3, an evaluation requires
specifying the related VDM expression for evaluating a function/operation along
with corresponding variables as the inputs and outputs. The evaluation functions
evaluate a VDM expression with specified input variables and assign the evalu-
ation result to the specified output variables.

Definition 3 (VDM Evaluation Function). For a VDM model M =
(TypesM,VarM,FunM,OpeM), and a set of variables V where ∀v ∈
V, type(v) ∈ TypesM.

– evalVDM = 2V × (FunM ∪ OpeM) × 2V → () | Error
– boolevalVDM = 2V × (FunM ∪ OpeM) → Bool | Error

In Definition 3, we defined two evaluation functions for boolean and arith-
metic expressions. For boolean expressions mainly used as a guard condition of a
transition, only a truth value is returned. For arithmetic expressions mainly used
as actions of a transition, assigning the result to output variables is included.
1 To avoid ambiguity, in Definition 2, S is called location to distinguish from state

variables.

Towards Verifying VDM Using SPIN 247

Fig. 3. Constructing hybrid model using PROMELA and VDMJ

Note that if an operation is being evaluated by an evaluation function, accord-
ing to the semantics of VDM, variables of the VDM model might be updated
during the evaluation. Therefore, not only the output variables but also state
variables of the VDM model, i.e. VarM in Definition 2, will be updated after
evaluation.

The evaluation functions return Error if a runtime error, i.e. a violation of
constraints defined in the VDM model M, is encountered during the evaluation.
For example, when evaluating an operation, variables defined in the VDM model
will be updated during the evaluation. If the updated variables violate one of
the variable invariants, the VDM interpreter captures the violation and makes
the evaluation function to return Error as the result of the evaluation.

3.3 Constructing Hybrid Model Based on EAVDM

This section describes how to construct a hybrid verification model defined in
Definitions 2 and 3 using PROMELA and VDMJ. Figure 3 shows the struc-
ture of the hybrid model which consists of several parts. The main part is the
PROMELA model that specifies behaviors of the environment or user against the
specified system, the VDM model. For the module SIMPLE, specifying a general
behavior which invokes operations putintoS and takefromS nondeterministi-
cally from its initial state would cover all possible scenarios.

C code that defines type definitions and implements the evaluation func-
tions in Definition 3 should be prepared to invoke functions/operations defined
in the VDM model. More specifically, the evaluation functions in Definition 3
are implemented as C code separately for each operation in the VDM model.
For example, for module SIMPLE there would be four evaluation functions for

248 H.-H. Lin et al.

evaluating the two operations and their preconditions, where the preconditions
are used as guard conditions.

In our implementation strategy, VDMJ is started as an independent process,
and the SPIN/PROMELA process communicates through pipes with VDMJ
using the evaluation functions implemented as embedded C code. Note that
PROMELA and VDMJ keep their state of variables individually but only the
variables in the PROMELA model are involved in the checking process. There-
fore, to keep the state of variables synchronized between PROMELA and VDMJ,
operations for reading and writing state variables are added to the VDM model.

Type definitions and variable declarations can be specified in either the
PROMELA model or in the embedded C code. Though there is no standard way
of mapping abstract types such as set, map, and seq in VDM to PROMELA/C,
according to our experiences, a structure comprised of an array and a length indi-
cator shall cover most cases. For basic types of VDM except integers, usually
mtype or enum can be used to define corresponding storages.

The inputs of a function/operation usually are not defined as state variables
in the VDM model but has to be defined and assigned in the PROMELA model.
Currently, our approach does not yet have intuitive or direct means to encode
type invariants in VDM to type definitions in PROMELA/C. Therefore, when
assigning values to variables in the PROMELA model that is related to a type
or variable defined in the VDM model with invariants specified, the variables
must be carefully assigned to not violate these invariants.

4 Case Study

4.1 Module SIMPLE

We have applied our approach on the simple VDM-SL module shown in Fig. 1.
The verification of this module is to find the violation of the state invariant in
line 12 which says that numbers 2 and 8 can not be put together alone in the
pool. In other words, the verification is to check the reachability of a particular
state of the pool in a state space of 210 = 1, 024 states.

We took the intuitive behavior for module SIMPLE: a transition system
that fires the two operations putintoS and takefromS nondeterministically and
continuously after initialization:

1 c_decl{\#include "simple_types.c"}

2 c_code{\#include "simple_ops.c"}

3

4 // state of SIMPLE module

5 typedef SIMPLE_S {

6 byte length = 0; // size

7 byte pool[10]; // pool : set of myNat (0~9)

8 }

9

10 // set of nat (input of operations in SIMPLE module)

11 typedef set_myNat {

Towards Verifying VDM Using SPIN 249

12 byte length = 0;

13 byte numbers[2]; // max length: 2

14 }

15

16 SIMPLE_S state_simple;

17 set_myNat param;

18 bool VDM_Error = 0;

19

20 active proctype simple() {

21 c_code{ initialization(); read_state_SIMPLE(); };

22 do

23 :: sel_set_mynat_param(param);

24 if

25 :: c_expr{ pre_SIMPLE_putintoS(); } ->

26 c_code{ write_state_SIMPLE(); }

27 c_code{ SIMPLE_putintoS(); }

28 c_code{ read_state_SIMPLE(); };

29 :: c_expr{ pre_SIMPLE_takefromS() } ->

30 c_code{ write_state_SIMPLE(); }

31 c_code{ SIMPLE_takefromS(); }

32 c_code{ read_state_SIMPLE(); };

33 fi;

34 :: break

35 od;

36 }

The above code shows the related part of PROMELA model.2 Firstly, two C
files are included using c decl and c code (lines 1–2). The former is to include
type definitions, and the latter is to include functions implementing the evalua-
tion functions of the VDM-SL operations and other support functions. Types
of S and set of myNat are defined in the SIMPLE module using struct in
PROMELA, with an array of byte and length indicator length (lines 4–14).

In the transition part (lines 21–35), synchronizations of state variables
between PROMELA and VDMJ are required. Therefore, after initialization (line
21), read state SIMPLE() is called to retrieve the value of initialized S in VDMJ
and assign it to state simple in PROMELA. Firing a transition contains three
steps: synchronization from PROMELA to VDMJ, operation execution, and
synchronization from VDMJ to PROMELA (lines 26–28, 30–32).

To address the C code implementing evaluation functions for module SIM-
PLE, we show the operation for synchronizing state variables as follows:

get_state : () ==> S

get_state() == (return S);

set_state : S ==> ()

set_state(a) == (pool := a.pool);

2 We skipped the detail of sel mynat param which is used to enumerate the input of
operations: a set of myNat containing one or two digits (0–9).

250 H.-H. Lin et al.

To execute these operations through VDMJ, we implemented two oper-
ations: read state SIMPLE() and write state SIMPLE() in the embedded
C code. read state SIMPLE() sends a string print get state() to VDMJ
process3 and gets VDMJ’s response = mk S(0,4,9). Similarly, assuming the
current value of state S is mk S(0,4,9), write state SIMPLE() sends print
write state(mk S(0,4,9)) and ignores the returned message if no runtime
error is detected.

The property we checked was specified as !<> VDM error == 1. We declared
a special variable VDM error (line 18) to monitor whether Error is returned by
an evaluation function. In module SIMPLE, the evaluation functions need to be
monitored are SIMPLE putintoS() and SIMPLE takefromS(). If any of the two
functions returns Error , i.e., a violation of the invariants of module SIMPLE
occurs, VDM error will be set to 1 and an assertion violation will be detected by
SPIN. The checking result is as follows:

pan:1: assertion violated !(VDM_Error==1) (at depth 406680)

pan: wrote simple.pml.trail

...

State-vector 32 byte, depth reached 406687, errors: 1

545237 states, stored

52645 states, matched

597882 transitions (= stored+matched)

0 atomic steps

hash factor: 246.164 (best if > 100.)

bits set per state: 3 (-k3)

Stats on memory usage (in Megabytes):

18.719 equivalent memory usage for states

16.000 memory used for hash array (-w27)

16.000 memory used for bit stack

38.147 memory used for DFS stack (-m1000000)

70.733 total actual memory usage

pan: elapsed time 33.5 seconds

pan: rate 16266.02 states/second

The above report from SPIN shows that the verifier found a violation of the
LTL property and output an error trace. The verification was performed on a
machine with Intel Core i5 2.3 GHz CPU and 4 GB RAM. The search was set to
use bit state-space search with search depth 1,000,000.

4.2 SAFER

We also applied our approach to a more realistic example SAFER [2]. SAFER
stands for “Simplified Aid For EVA (Extravehicular Activity) Rescue” and is
designed by NASA for space crewmembers in an EVA (Extravehicular Activity).
In [2], a VDM-SL model4 partly translated from a PVS model by NASA was
3 VDMJ process is in interactive mode.
4 The VDM-SL model can be downloaded at Overture tool example download page:

http://overturetool.org/download/examples/VDMSL/.

http://overturetool.org/download/examples/VDMSL/

Towards Verifying VDM Using SPIN 251

validated using specification animation (testing). This VDM-SL model focused
on the thruster selection logic and was specified as an operation with a postcon-
dition:

ControlCycle: HCM‘SwitchPositions * HCM‘HandGripPosition * AUX‘RotCommand

==> TS‘ThrusterSet

ControlCycle(mk_HCM‘SwitchPositions(mode,aah),raw_grip,aah_cmd) ==

let grip_cmd = HCM‘GripCommand(raw_grip,mode),

thrusters = TS‘SelectedThrusters(grip_cmd,aah_cmd,AAH‘ActiveAxes(),

AAH‘IgnoreHcm())

in

(AAH‘Transition(aah,grip_cmd,clock);

clock := clock + 1;

return thrusters)

post card RESULT <= 4 and

ThrusterConsistency(RESULT);

The above code shows the signature, body, and postcondition of the opera-
tion ControlCycle specified in module SAFER which has three inputs of types
referring to other modules: HCM‘SwitchPositions and HCM‘HandGripPosition
are of type “record of quote”; AUX‘RotCommand is of type “map of quote to
quote”.

In [2], a huge test that executes the operation with all 8,748 combinations of
inputs was conducted. However, the state variables are not considered in the huge
test due to the difficulty of building test cases exhaustively to state variables. We
conducted the same verification using our model checking approach with state
variables considered. We built a PROMELA model for verifying the operation
ControlCycle with an abstraction on clocks in the state variables.5 Below shows
part of the PROMELA code.

c_decl{\#include"safer_types.c"}

c_code{\#include "safer_ops.c"}

// quote types of SAFER specification

mtype = { m_Rot, m_Tran }; // HCM‘ControlModeSwitch

mtype = { m_Up, m_Down }; // HCM‘ControlButton

mtype = { m_Neg, m_Zero, m_Pos }; // AUX‘AxisCommand

mtype = { m_Roll, m_Pitch, m_Yaw }; // AUX‘RotAxis

mtype = { m_AAH_off, m_AAH_started, m_AAH_on, m_pressed_once,

m_AAH_closing, m_pressed_twice }; // AAH‘EngageState

// state of SAFER module

typedef SAFER_SAFER {

byte clock = 0; // clock : nat

}

// state of AAH module

typedef AAH_AAH {

5 There are two clocks of type nat in the state variables defined in module SAFER and
AAH we found that only two cases were worth considering in the verification.

252 H.-H. Lin et al.

mtype active_axes[3]; // active_axes : set of AUX‘RotAxis

mtype ignore_hcm[3]; // ignore_hcm : set of AUX‘RotAxis

mtype toggle = m_AAH_off; // toggle : AAH‘EngageState

byte mytimeout = 0; // timeout : nat

}

typedef HCM_SwitchPositions {

mtype mode = m_Rot; // mode: HCM‘ControlModeSwitch

mtype aah = m_Up; // aah : HCM‘ControlButton

};

typedef HCM_HandGripPosition {

mtype vert = m_Zero; // vert : AUX‘AxisCommand

mtype horiz = m_Zero; // horiz : AUX‘AxisCommand

mtype trans = m_Zero; // trans : AUX‘AxisCommand

mtype twist; // twist : AUX‘AxisCommand

};

// RotCommand = map RotAxis to AxisCommand

// inv cmd == dom cmd = rot_axis_set;

typedef AUX_RotCommand {

mtype key[3] = { m_Roll, m_Pitch, m_Yaw };

mtype val[3];

};

...

SAFER_SAFER state_safer;

AAH_AAH state_aah;

HCM_SwitchPositions param1;

HCM_HandGripPosition param2;

local AUX_RotCommand param3;

bool VDM_Error = 0;

active proctype safer() {

c_code{ initialization(); };

sel_SAFER_SAFER(state_safer);

sel_AAH_AAH(state_aah);

sel_HCM_SwitchPositions(param1);

sel_HCM_HandGripPosition(param2);

sel_AUX_RotCommand(param3);

c_code{ write_state_SAFER(); write_state_AAH(); SAFER_ControlCycle(); }

}

As above code shows, firstly, the elements of quote types are defined as
mtype in PROMELA. Then we define types of states of SAFER and AAH,
and types of inputs of ControlCycle. In this case study, we intended to confirm

Towards Verifying VDM Using SPIN 253

that there is no violation of post-condition. Therefore the value of the output
TS‘ThrusterSet is not needed and is ignored in the PROMELA model. Also,
to reduce the depth of search in SPIN, the process in PROMELA enumerates
all combination of inputs and state variables, so loops are eliminated in the
PROMELA model. The result is as follows where no violation of the postcondi-
tion was found:

State-vector 36 byte, depth reached 131, errors: 0

33593277 states, stored

20155223 states, matched

53748500 transitions (= stored+matched)

0 atomic steps

hash factor: 127.852 (best if > 100.)

bits set per state: 3 (-k3)

Stats on memory usage (in Megabytes):

1281.482 equivalent memory usage for states

512.000 memory used for hash array (-w32)

512.000 memory used for bit stack

0.382 memory used for DFS stack (-m10000)

1024.577 total actual memory usage

pan: elapsed time 1.42e+04 seconds

pan: rate 2369.6754 states/second

The time consumed was about 4 h with the memory usage of about 1 GB.
Other settings are similar to verifying module SIMPLE.

4.3 Discussion

From the case study on module SIMPLE, we showed how to apply our approach
to verifying VDM models. From the case study on SAFER, we showed that our
approach can be applied to real-world systems. In this section, we discuss some
issues of our approach with the results of the two case studies.

Usability: The cost of constructing a hybrid model for model checking a VDM
model is still high since we have to build PROMELA model manually including
implementing the embedded C codes. Fortunately, from the two case studies, we
have built some code blocks and functions that are reusable. For example, the
code for establishing the connection between PROMELA and VDMJ is directly
reusable, while the code implementing evaluation functions for operations in
SIMPLE and SAFER can be taken as templates for construction of hybrid models
for other VDM models. We have also implemented a built-in parser for read-
ing VDM literals which is mainly used in synchronization of variables between
PROMELA and VDMJ.

Scalability: From the SAFER case study, state explosion is easily encountered,
and we have to tune the verifier with care. Besides abstraction on VDM models,
we may also apply the swarm verification technique [11] to deal with large state

254 H.-H. Lin et al.

space. To reduce the computation complexity on enumerating variables of types
like set and map, we are considering to integrate constraint logic programming
(CLP) [25] to SPIN. CLP is expected to make the encoding of VDM invariants
much easier.

Efficiency: It should be noticed that the execution time is quite long compared
to verifying pure PROMELA models because the verification has two processes,
pan verifier and JVM (VDMJ is a Java software), which communicate with
each other through pipes. As a result, the I/O usage inevitably and significantly
increases the execution time. One choice to improve the efficiency is to implement
the evaluation functions using C++ APIs of VDMTools to eliminate frequent
I/O access in verification.

5 Related Work

There is little work on applying model checking techniques on VDM models.
K. Lausdahl [20] proposed a semantics-preserving translation that constructs
an Alloy model from a subset of VDM-SL model. This work aims to support
the validation of implicitly specified VDM-SL model by applying Alloy to find
instances of the scenarios described in requirements that meet the constraints
specified in a VDM-SL model. K. Lausdahl et al. [21] aim to interpret implicitly
specified VDM-SL/VDM++ models using the constraint solving functionality
of ProB [22]. Specifically, their approach encodes the precondition and postcon-
dition of functions/operations with invariants. By giving an input, the ProB
produces a solution based on the encoding, and the solution is encoded back to
VDM model as the body of the explicit specification.

The above two works are both based on model translation to Alloy or ProB
and aim to support validation of implicitly specified VDM models. Since VDM
has a rich syntax for specifying data types and expressions, it is difficult to
translate a VDM model to another formal model. Therefore, it is reasonable to
restrict the scope of translation to implicitly specified VDM models within a
subset of VDM.

On the other hand, our approach requires explicitly specified VDM mod-
els, which is executable by VDM interpreter (VDMJ). Our approach does not
use model translation but constructs a hybrid model combing PROMELA and
VDMJ using embedded C code feature of SPIN. We argue that our approach is
more practical because using SPIN is easier for software engineers to learn and
think, and a state-diagram-like model is more adaptable to existing software
development processes. Furthermore, as mentioned in Sect. 1, our approach is
easier to extend to other VDM dialects.

The technique used in our approach can be recognized as an aspect of combin-
ing source codes with VDM specifications. B. Frohlich and P.G. Larsen [8] pro-
posed an extension of VDM-SL Toolbox for integrating C++ codes into VDM-SL
specifications. C.B. Nielsen et al. [24] illustrated the use of external call inter-
face and remote control interface for linking VDM interpreter with Java codes.

Towards Verifying VDM Using SPIN 255

These techniques are useful for GUI-based simulation/animation of VDM spec-
ifications. Though our approach is currently using an indirect way of combining
source codes (PROMELA) with VDM models (VDMJ), it is one of the future
directions for improving the efficiency of our approach as discussed in Sect. 4.3.

6 Conclusion and Future Work

In this paper, we have presented an approach of applying model checking on
VDM models for validation and verification of VDM specifications to increase
software reliability. Our approach constructs a hybrid model that combines SPIN
model checker and VDMJ interpreter using the embedded C code feature of
SPIN. Thus, we can apply traditional logic model checking on VDM without
model translation. The greatest advantage of our approach is that it can be
extended to VDM-RT, the real-time dialect of VDM, if the scheduling of threads
and time are handled with care.

We also reported two case studies and discussed issues about usability, scal-
ability, and efficiency to point out the future directions. For usability, though
we have built reusable code blocks and templates, how to define types of VDM
in PROMELA/C especially types with invariants still needs more work such as
introducing constraint logic programming. For scalability, the SAFER case study
shows that our approach is scalable for real-world systems. Besides applying data
abstraction on VDM models, we may also utilize SPIN’s ability to handle large
state space. For efficiency issue, we plan to introduce C++ APIs of VDMTools
to improve the execution time of checking.

References

1. VDMJ. http://sourceforge.net/projects/vdmj/
2. Agerholm, S., Larsen, P.G.: Modeling and validating SAFER in VDM-SL. In: Pro-

ceedings of the Fourth NASA Langley Formal Methods Workshop, NASA Confer-
ence, Publication 3356 (1997)

3. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-
Language. LNCS, vol. 61. Springer, Heidelberg (1978)

4. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

5. Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques in
Software Development, 2nd edn. Cambridge University Press, New York (2009)

6. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs
For Object-Oriented Systems. Springer, Santa Clara (2005)

7. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: advances in support for formal
modeling in VDM. SIGPLAN Not. 43(2), 3–11 (2008)

8. Fröhlich, B., Larsen, P.: Combining VDM-SL specifications with C++ code. In:
Gaudel, M.C., Woodcock, J. (eds.) FME 1996. LNCS, vol. 1051, pp. 179–194.
Springer, Heidelberg (1996)

9. Holzmann, G.: SPIN Model Checker: The Primer and Reference Manual. Addison-
Wesley Professional, Reading (2003)

http://sourceforge.net/projects/vdmj/

256 H.-H. Lin et al.

10. Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)
11. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification techniques. IEEE Trans.

Softw. Eng. 37(6), 845–857 (2011)
12. Holzmann, G.J., Joshi, R.: Model-driven software verification. In: Graf, S.,

Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 76–91. Springer, Heidelberg
(2004)

13. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall
Inc, Upper Saddle River (1990)

14. Kurita, T., Chiba, M., Nakatsugawa, Y.: Application of a formal specification lan-
guage in the development of the “Mobile FeliCa” IC chip firmware for embedding
in mobile phone. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
425–429. Springer, Heidelberg (2008)

15. Kurita, T., Nakatsugawa, Y.: The application of VDM to the industrial develop-
ment of firmware for a smart card IC chip. Int. J. Softw. Inf. 3(2–3), 343–355
(2009)

16. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.:
The overture initiative integrating tools for VDM. SIGSOFT Softw. Eng. Notes
35(1), 1–6 (2010)

17. Larsen, P.G., Fitzgerald, J.: Recent industrial applications of VDM in Japan. In:
Proceedings of the 2007th Internatioanal Conference on Formal Methods in Indus-
try, FACS-FMI 2007, p. 8. British Computer Society, Swinton (2007)

18. Larsen, P.G., Pawlowski, W.: The formal semantics of ISO VDM-SL. Comput.
Stand. Interfaces 17(5–6), 585–601 (1995)

19. Larsen, P., Lassen, P.: An executable subset of meta-IV with loose specification. In:
Prehn, S., Toetenel, W. (eds.) VDM 1991. LNCS, vol. 551, pp. 604–618. Springer,
Berlin Heidelberg (1991)

20. Lausdahl, K.: Translating VDM to alloy. In: Johnsen, E.B., Petre, L. (eds.) IFM
2013. LNCS, vol. 7940, pp. 46–60. Springer, Heidelberg (2013)

21. Lausdahl, K., Ishikawa, H., Larsen, P.G.: Interpreting implicit VDM specifications
using ProB. In: Battle, N., Fitzgerald, J. (eds.) Proceedings of the 12th Overture
Workshop, Newcastle University, 21 June, 2014. School of Computing Science,
Newcastle University, UK, Technical report CS-TR-1446, January 2015

22. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Berlin
Heidelberg (2003)

23. Nakatsugawa, Y., Kurita, T., Araki, K.: A framework for formal specification con-
sidering review and specification-based testing. In: TENCON 2010–2010 IEEE
Region 10 Conference, pp. 2444–2448, November 2010

24. Lausdahl, K., Larsen, P.G., Nielsen, C.B.: Combining VDM with executable code.
In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 266–279. Springer, Heidelberg
(2012)

25. Triska, M.: The finite domain constraint solver of SWI-Prolog. In: Schrijvers,
T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 307–316. Springer,
Heidelberg (2012)

26. Larsen, P.G., Hooman, J., Verhoef, M.: Modeling and Validating Distrib-
uted Embedded Real-Time Systems with VDM++. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg
(2006)

Tools

Statistical Model Checking of Simulink Models
with Plasma Lab

Axel Legay and Louis-Marie Traonouez(B)

Inria Rennes – Bretagne Atlantique, Rennes, France
louis-marie.traonouez@inria.fr

Abstract. We present an extension of the statistical model-checker
Plasma Lab capable of analyzing Simulink models.

1 Introduction

Formal methods comprise a wide range of techniques capable of proving or eval-
uating the safety of a system. Model based techniques, like model-checking, rely
on a formal model of the system in order to perform an exhaustive exploration of
its state-space. The technique reaches its limit when the state-space of the model
is too large to be explored entirely, or when the model mixes heterogeneous data
like time, quantities and probabilities. Statistical Model Checking (SMC) is an
alternative technique that combines formal analysis with statistical methods. It
relies on a finite number of simulations of a formal model in order to compute
an evaluation of the system’s safety as a probability measure. This lightweight
approach can be applied on complex systems, even with infinite state-space.

SMC can be implemented easily for a wide range of formal models or even
directly applied to a system simulator. It only depends on three basic compo-
nents: 1. a simulator of the model or the system, capable of generating random
traces, specified as a finite sequence of states; 2. a monitor, that determines if
a trace satisfies a property expressed in a formal logic like the Bounded Lin-
ear Temporal Logic; 3. an SMC algorithm from the statistic area that evaluates
the probability to satisfy the formal property. For instance, the Monte Carlo
algorithm computes N executions ρ and it estimates the probability γ that the
system satisfies a logical formula ϕ using the following equation:

γ̃ =
1
N

N∑

i=1

1(ρ |= ϕ)

where 1 is an indicator function that returns 1 if ϕ is satisfied and 0 otherwise.
It guarantees that the estimate γ̃ is close enough to the true probability γ with
a probability of error that is controlled by the number N of simulations.

Several model-checking tools have added SMC as a complement to exhaus-
tive model-checking. This includes the model-checker UPPAAL [5] for timed
automata, the probabilistic model-checker PRISM [7], and the model-checker

c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 259–264, 2016.
DOI: 10.1007/978-3-319-29510-7 15

260 A. Legay and L.-M. Traonouez

Ymer [9] for continuous time Markov chains. Plasma Lab [3] is the first plat-
form entirely dedicated to SMC. Contrary to other tools, that target a specific
domain and offer several analysis techniques, including basic SMC algorithms,
Plasma Lab is designed as a generic platform that offers several advanced SMC
algorithms that can be applied to various models. Indeed to apply Plasma Lab
algorithms to a new model or system it is only required to implement a simula-
tor that extends public interfaces from Plasma Lab API. Currently, Plasma Lab
can already be used with the PRISM language, biological models, the SystemC
language, and Simulink models, the extension presented in this paper.

Simulink is a graphical programming language for multidomain dynamic sys-
tems. It is part of the MATLAB environment, a widely used tool in the industry.
Simulink models can be formally translated to hybrid automata [1], that inter-
leave discrete state automata with complex dynamic behaviors described by
differential equations. Model-checking of these models is however undecidable.
It is therefore interesting to use SMC to provide a formal analysis technique
for these models. Rather than translating Simulink models to a specific formal
language, we have been able to directly interface Plasma Lab and Simulink, and
we apply SMC algorithms by using the simulation engine provided by Simulink.
This approach facilitates the adoption of formal methods by non experts, who
can launch SMC analyses directly from a small MATLAB App.

2 Plasma Lab Architecture

Plasma Lab is a compact, efficient and flexible platform for SMC. The tool offers
a series of SMC algorithms, included advanced techniques for rare events simula-
tion, distributed SMC, non-determinism, and optimization. The main difference
between Plasma Lab and other SMC tools is that Plasma Lab proposes an
API abstraction of the concepts of stochastic model simulator, property checker
(monitoring) and SMC algorithm. In other words, the tool has been designed
to be capable of using external simulators, input languages, or SMC algorithms.
This not only reduces the effort of integrating new algorithms, but also allows
us to create direct plug-in interfaces with industry used specification tools. The
latter being done without using extra compilers.

Figure 1 presents Plasma Lab architecture. More specifically, the relations
between model simulators, property checkers, and SMC algorithms components.
The simulators features include starting a new trace and simulating a model
step by step. The checkers decide a property on a trace by accessing to state
values. They also control the simulations, with a state on demand approach
that generates new states only if more states are needed to decide the property.
A SMC algorithm component is a runnable object. It collect samples obtained
from a checker component. Depending on the property language, their checker
either returns Boolean or numerical values. The algorithm then notifies progress
and sends its results through the Controller API.

In coordination with this architecture, we use a plugin system to load models
and properties components. It is then possible to support new model or property

Statistical Model Checking of Simulink Models with Plasma Lab 261

Fig. 1. Plasma Lab architecture Fig. 2. Interface between Plasma Lab and
Simulink

languages. Adding a simulator or a checker is pretty straightforward as they share
a similar plugin architecture. Thus, it requires only a few classes and methods
to get a new component running. Each plugin contains a factory class used by
Plasma Lab to instantiate component objects. These components implement
the corresponding interface defining their behavior. Some companion objects
are also required (results, states, identifiers) to allow communication between
components and the Controller API.

One of the goal of Plasma Lab is also to benefit from a massive distribution of
the simulations, which is one of the advantage of the SMC approach. Therefore
Plasma Lab API provides generic methods to define distributed algorithms.

3 Plasma Lab and Simulink Integration

We now show how we have integrated Plasma Lab within Simulink, hence lifting
the power of our simulation approaches directly within the tool.

In order to obtain significant results with SMC the Simulink models should
include randomly generated events. By default the Simulink library provides
some random generators, but these are not compatible with SMC: they always
generate the same random sequence of values at each execution. To overcome
this limitation we use some custom C-code blocks that generate independent
sequences of random draws.

Our objective was to reuse the simulation engine provided with Simulink
and to integrate it in Plasma Lab. To do so, we developed a simulator plugin
whose architecture is showed in Fig. 2. One of the key points of our integration
has been to exploit MATLAB Control,1 a library that allows to interact with
MATLAB from Java. This library uses a proxy object connected to a MATLAB
session. Function calls and variables access are transmitted and executed on the
MATLAB session through the proxy. This allowed us to implement a MATLAB
1 https://code.google.com/p/matlabcontrol/.

https://code.google.com/p/matlabcontrol/

262 A. Legay and L.-M. Traonouez

program that controls a Simulink simulation. Calls to this implementation are
then done in Java from the Plasma Lab plugin.

Regarding the monitoring of properties, we exploit the simulation output of
Simulink. More precisely, BLTL properties are checked over sequences of states
and time stamps, based on a set of state variables defined by declaring some
Simulink signals as log output. During the simulation these signals are logged
in a data structure containing time stamps and are then retrieved as states in
Plasma Lab. One important point is that Simulink discretizes the signals trace,
its sample frequency being parameterized by each block. In terms of monitoring
this means that the sample frequency must be configured to observe any relevant
change in the model. In practice, the frequency can be set as a constant value,
or, if the model mixes both continuous data flow and state flow, the frequency
can be aligned on the transitions, i.e., when a state is newly visited.

Usage. We provide a Simulink plugin for the main interface of Plasma Lab.
Simulink models can be loaded in the interface and a MATLAB instance is
started to simulate the models. Alternatively we provide PLASMA2Simulink, a
MATLAB App that can be installed in MATLAB. It contains all the necessary
components to verify Simulink models: the simulator plugin, a BLTL monitor
and SMC algorithms. Then, SMC experiments can be directly started in MAT-
LAB from this App: it allows to select a model, a property and an algorithm,
to specify the parameters of the experiment and it displays the results. Both
Plasma Lab and PLASMA2Simulink can be downloaded from our website.2

Applications. We also describe in this webpage3 two case-studies developed with
Simulink and verified with Plasma Lab. The first is a fuel control system provided
by MathWorks. The second described the temperature controller of a pig shed.

In the first one, we replace manual switches, used in the standard model to
introduce failures in the system sensors, by random generators that implement
a Poisson probability distribution using C-code blocks. We then analyze the
probability of a long engine shutdown and compare our results obtained with
Plasma Lab with the results from [10].

4 Related Works

A first experiment with SMC and Simulink was presented by Zuliani et al. [10].
Their approach consists in programming one SMC algorithm within the Simulink
toolbox. On the contrary, the flexibility of our tool will allow us to incrementally
add new algorithms to the toolbox without new programming efforts.

A few other works consider formal verification of Simulink models via model-
checking. None consider adding stochastic behaviors to Simulink, but consider
the hybrid automata semantics of these models. However, model-checking hybrid
automata is undecidable, and therefore, the existing approaches restrict the type
2 https://project.inria.fr/plasma-lab/download/.
3 https://project.inria.fr/plasma-lab/examples/.

https://project.inria.fr/plasma-lab/download/
https://project.inria.fr/plasma-lab/examples/

Statistical Model Checking of Simulink Models with Plasma Lab 263

of blocks that can be used in Simulink models: in general by removing continu-
ous behaviors in order to obtain a finite state machine. For instance Honeywell
presents in [8] a tool that translates certain Simulink models to the input lan-
guage of the model-checker NuSMV. Barnat et al. [2] also presents a tool chain
that translates Simulink models to the input language of the LTL model-checker
DiViNE. This tool chain uses the tool HiLiTe [6], also developed by Honey-
well, that can perform semantic analyses of Simulink models. Contrary to these
model-checking approaches, SMC techniques are not restricted by the model,
and our Simulink plugin for Plasma Lab is able to handle any type of Simulink
and Stateflow diagrams, with both continuous and discrete behaviors.

Finally, our approach is also different from [4] that consists in translating
parts of Simulink models into the UPPAAL language. This makes it difficult
to analyze counter examples as it implies remapping traces from UPPAAL to
the Simulink model. Therefore Plasma Lab offers the first integrated verification
tool for Simulink models with stochastic information.

Acknowledgement. This work was supported by the European Union Seventh
Framework Programme under grant agreement number 318490 (SENSATION).

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of simulink/stateflow
models to hybrid automata using graph transformations. Electron. Notes Theor.
Comput. Sci. 109, 43–56 (2004)

2. Kratochv́ıla, T., Ročkai, P., Brim, L., Barnat, J., Beran, J.: Tool chain to sup-
port automated formal verification of avionics simulink designs. In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 78–92. Springer, Heidelberg
(2012)

3. Corre, K., Boyer, B., Sedwards, S., Legay, A.: PLASMA-lab: a flexible, distrib-
utable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013)

4. David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.,
Sedwards, S.: Statistical model checking for stochastic hybrid systems. In: Pro-
ceedings of HSB. EPTCS, vol. 92, pp. 122–136 (2012)

5. Legay, A., Wang, Z., Larsen, K.G., David, A., Mikučionis, M.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

6. Bhatt, D., Madl, G., Oglesby, D., Schloegel, K.: Towards scalable verification of
commercial avionics software. In: Infotech@Aerospace. AIAA (2010)

7. Norman, G., Parker, D., Kwiatkowska, M.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

8. Bhatnagar, A., Meenakshi, B., Roy, S.: Tool for translating simulink models into
input language of a model checker. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 606–620. Springer, Heidelberg (2006)

264 A. Legay and L.-M. Traonouez

9. Younes, H.L.S.: Verification and planning for stochastic processes with asynchro-
nous events. Ph.D. thesis, Carnegie Mellon (2005)

10. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Stateflow/Simulink verification. Formal Methods Syst. Des. 43(2),
338–367 (2013)

g-HOL: A Graphical User Interface for the HOL
Proof Assistant

Fahd Arshad(B), Hassan Mehmood, Fauzan Raza, and Osman Hasan

School of Electrical Engineering and Computer Sciences (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{10besefarshad,11besehmehmood,10besefraza,
osman.hasan}@seecs.nust.edu.pk

Abstract. Given the high expressiveness of higher-order logic, their
proof assistants are being widely advocated for formally verifying cyber-
physical systems these days. However, the usage of higher-order-logic
proof assistants is mostly restricted to academia. One of the main rea-
sons for the hesitancy of their usage in industrial setting is the associ-
ated long learning curve. We believe that one of the foremost factors
behind this slow learning process is the user-unfriendly text-based inter-
faces of the proof assistants. To facilitate the first experience of users
with a proof assistant, this paper presents a user-friendly graphical user
interface (GUI) g-HOL for the higher-order-logic (HOL) proof assistant.
g-HOL is developed in Java swing and is supported by the Windows,
Linux and MAC operating systems. It tends to minimize syntax errors
and the need to memorize and type commands and facilitates the search-
ing process, which is frequently required in interactive formal reasoning.
The paper describes the architecture and main features of g-HOL using
an illustrative example.

Keywords: Higher-order logic · Proof assistants · Theorem proving ·
HOL

1 Introduction

Theorem proving is one of the most widely used formal verification methods [4].
The system that needs to be analyzed is mathematically modeled in an appropri-
ate logic and the properties of interest are verified using computer-based formal
tools called theorem provers or proof assistants. The human interaction or the
manual proof effort required for proving logical formulas in a theorem prover
varies from trivial to complex depending on the underlying logic. For instance,
propositional logic [4] is decidable, i.e., the logical correctness of a formula speci-
fied in propositional logic can be automatically verified using an algorithm. How-
ever, it provides very limited expressiveness. On the other hand, higher-order
logic [4] allows quantification over functions and sets and is thus much more
expressive than propositional logic. The added expressiveness of higher-order
logic comes at the cost of explicit user guidance required to verify all formulas
c© Springer International Publishing Switzerland 2016
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2015, CCIS 596, pp. 265–269, 2016.
DOI: 10.1007/978-3-319-29510-7 16

266 F. Arshad et al.

expressed in higher-order-logic, due to its undecidable nature. The user interacts
with a proof assistant by providing it with the necessary tactics to prove goals.
This process could be very tedious and usually takes thousands of lines of script
and hundreds of man-hours for verifying analysis described in a page.

Despite the great potential of higher-order-logic theorem proving in verifying
the correctness of complex engineering systems, this technology is very rarely
used in the industry [3]. We believe that besides the manual proof guidance
requirement, the user-unfriendly command-line interfaces of proof assistants are
also mainly responsible for this limited usage. The need for a user-friendly inter-
face for proof assistants was majorly felt in the interactive theorem proving
course that we teach at NUST, Islamabad. Most of the undergraduate students
struggle with syntax errors and finding appropriate theorems from the libraries
during their initial hands-on experiences with the proof assistants for at least a
couple of weeks. These issues usually hinder the development of interest of the
students in this field. In order to alleviate this problem, this paper presents a
Graphical User Interface (GUI) called g-HOL [2], for the widely used HOL proof
assistant [1], which has been successfully used as a verification framework for
both software and hardware as well as a platform for the formalization of pure
mathematics. It is important to note that g-HOL has been developed for the sole
purpose of facilitating the learning process of proof assistants for novice users
and thus should not be considered as an alternative to the far more powerful
and efficient command-line based interface of HOL.

2 g-HOL’s Architecture and Features

g-HOL [2] is developed using Java Swing [5], i.e., a framework specifically for
designing and developing GUIs in Java. This choice was made due to the flexibil-
ity, platform independence and the large user community of the Java language.
The g-HOL GUI follows a simple Model view controller (MVC) pattern. The
architecture of g-HOL is composed of 5 main components:

1. HOL Theorem Prover (Back-end Software that does all the theorem proving)
2. Linker (Bridge between the HOL theorem Prover and g-HOL)
3. g-HOL (Front end Graphical Use Interface)
4. GraphicView Plugin (To create the layout using Java Swing)
5. View Controller (This consists of different types of listeners that handle inter-

rupts, like button clicks etc.)

The g-HOL user-interface, depicted in Fig. 1, tends to facilitate the HOL
learning process and enhance the productivity, usefulness and effectiveness of
HOL users by providing them with the following key features:

– Archiving and loading proof scripts.
– A built-in text editor that dynamically maintains the proof script

corresponding to mouse clicks on the g-HOL interface.

g-HOL: A Graphical User Interface for the HOL Proof Assistant 267

Fig. 1. g-HOL screen shot

– Ability to define and save definitions and theorems by just providing the logical
formulas and names, as required, without worrying about following the HOL
specific syntax.

– Availability of most of the commonly used HOL tactics (proof strategies) as
clickable buttons. The user is allowed to define her own proof strategy buttons
and replace the default ones with these.

– A simple to use search box, which accepts a logical formula and returns the
matching theorems within the loaded theories by a simple mouse click.

– An auto-complete suggestions based string search feature that accepts theo-
rem and definition names and returns the corresponding logical statements.

To the best of our knowledge, g-HOL is the first graphical user interface
(GUI) for the HOL proof assistant. One of its foremost distinguishing features is
the ability to conduct most of the commonly used formal reasoning steps using
click-able buttons. The other user interfaces, such as Isabelle/jEdit and CoqIDE,
are usually ‘Emacs’ style interfaces for other proof assistants (Isabelle and Coq)
and do not allow using click-able buttons for proof strategies. This ability to
conduct formal reasoning steps greatly minimizes the number of syntax errors
and spelling mistakes and thus significantly reduces the proof time. Another
useful feature of g-HOL is its flexibility to be used with any proof assistant in
the HOL family, like HOL4 or HOL-Light, due to the independence of the GUI
layer. The path for the target theorem prover can be selected from within the
g-HOL interface and the tactics (proof strategies) can be defined corresponding
to the target theorem prover.

3 Illustrative Example

In this section, we illustrate various features of g-HOL by working through a sim-
ple proof example: (x(m+n) = xmxn), using the HOL4 proof assistant. The first

268 F. Arshad et al.

step in the proof process is to load the appropriate theories required for the given
proof goal. For example, the above proof goal requires the Arithmetic (arith) and
Real (real) theories in HOL. We can open and load theories by using the appro-
priate buttons in the menu pane. g-HOL allows loading multiple theories at the
same time. Once the theory is loaded, it can be accessed using the DB-Search
and Theorem fields.

Next, we enter the proof goal, i.e., !x m n. x pow (m + n) = x pow m * x
pow n (! is the ∀ symbol in HOL) in the Goal field and click the Define button to
define it as a proof goal. Considering that there is no syntax error, the new goal
stack can be viewed in the HOL console of g-HOL. Note that the Script field
keeps track of the running script. The script can be loaded from an existing file
or by highlighting selected text from the editor and clicking the Execute button.

The main step in the formal reasoning process of this proof goal is to apply
induction on one of the variables m or n and then discharge the proof goal gen-
erated by induction using real-theoretic reasoning. The induction can be done
by applying the HOL tactic: Induct on, which is available in the Misc button
section of g-HOL. Upon clicking this button, we get the message of identifying
the variable name where induction needs to be applied. We mentioned m, which
breaks the goal into 2 sub-goals that are given in the console window.

The first step in the formal reasoning about the first sub-goal, i.e., ∀.x n.
x pow (0 + n) = x pow 0 * x pow n, requires rewriting with the definition
of the function pow. This can be done by clicking the REWRITE TAC button and
giving pow as an argument. This step simplifies the subgoal to ∀.x n. x pow
(0 + n) = 1 * x pow n. This goal can be discharged by arithmetic rewriting
using the facts that 0 + n = n and 1 ∗ x = x. We find the corresponding HOL
theorems by using the strings 0+n and 1*x in the DB search field of g-HOL
to find the theorems ADD CLAUSES and REAL MUL LID from the arith and real
theories, respectively. Rewriting with these two theorems can now be done by
clicking the REWRITE TAC button and giving ADD CLAUSES and REAL MUL LID as
arguments, which discharges the first subgoal.

We proceed with the verification of the subgoal corresponding to the step-
case of induction, i.e., ∀.x n. x pow (SUC m + n) = x pow SUC m * x pow n
given ∀.x n. x pow (m + n) = x pow m * x pow n, by rewriting it to bring
it to the form where the definition of the function pow, i.e., ∀(x. x pow 0
= 1) ∧ ∀ x n. x pow SUC n = x * x pow n, can be applied. This can be
done by representing (SUC m + n) as SUC (m + n) and we use the DB search
field on the arithmetic theory to find the corresponding theorem name, i.e.,
ADD CLAUSES. Rewriting with ADD CLAUSES using the REWRITE TAC button sim-
plifies the proof goal as mentioned above. This subgoal can now be simplified by
rewriting it with the definition of the function pow along with the assumption
by clicking the ASM REWRITE TAC button with an argument pow, which makes
the proof goal to become ∀x n. x * (x pow m * x pow n) = x * x pow m *
x pow n. This sub-goal can be discharged using the associative property of real
numbers and we find the corresponding theorem from the real theory using
the DB search field in the g-HOL interface and rewriting with it using the
REWRITE TAC. This completes the proof of our main proof goal. Once the goal

g-HOL: A Graphical User Interface for the HOL Proof Assistant 269

is verified, a prompt appears asking the user to save the theorem by giving an
appropriate name. Moreover, the complete script for the formal reasoning is also
available in the Script window of g-HOL.

In the above interactive proof example, the user of g-HOL only required
the working knowledge of induction (induct on), rewriting (REWRITE TAC and
ASM REWRITE TAC and searching the HOL libraries (DB search) and she did not
have to care about the syntax issues of these features. This freedom of not
worrying about the syntax related issues makes the users more focussed on con-
centrating and learning the interactive theorem proving processes. We chose
a simple example to illustrate the interaction with g-HOL here but it can be
equally used to verify more complex theorems as well. The screen shots corre-
sponding to a couple of more examples, involving transcendental functions and
HOL probability theory, can be found in [2].

4 Conclusions

The paper describes a GUI for the HOL proof assistant. The main motivation
of g-HOL is to facilitate learning the interactive theorem proving process and
thus pave the path for their usage in the industry. In order to evaluate the
effectiveness of g-HOL, we used it in a classroom, of 60 under-graduate stu-
dents of software engineering, as an alternative to the command line interface of
HOL. These students were taking their first course in Logic, which was 16 weeks
long and the HOL proof assistant was used to illustrate the process of natural
deduction and formal reasoning to them. Half of the class students were taught
interactive theorem proving using the command-line interface of HOL while g-
HOL was used for the other half. After the same amount of training time, the
g-HOL users were found to be about 4-times more-effective in terms of the time
spent to verify simple arithmetic proofs than their counterparts. The amount of
syntax errors were also predictably much less for the g-HOL users. These sta-
tistics clearly indicate the effectiveness of the proposed ideas. We are currently
working on enhancing the features of g-HOL and would appreciate suggestions
and comments about our interface, which is available for download for all major
operating systems at [2].

References

1. Hol Proof Assistant (2015). hol.sourceforge.net/
2. Arshad, F., Mehmood, H., Raza, F.: g-HOL - a graphical user interface for the HOL

proof assistant (2015). save.seecs.nust.edu.pk/projects/g-HOL/g-HOL.html
3. Geuvers, H.: Proof assistants: history, ideas and future. Acad. Proc. Eng. Sci. 34,

3–25 (2009). Springer-Verlag
4. Hasan, O., Tahar, S.: Formal verification methods. In: Encyclopedia of Information

Science and Technology. IGI Global Pub. (2014)
5. Oracle: Java documentation (2015). docs.oracle.com/javase/tutorial/uiswing/

http://hol.sourceforge.net/
http://save.seecs.nust.edu.pk/projects/g-HOL/g-HOL.html
http://docs.oracle.com/javase/tutorial/uiswing/

Author Index

André, Étienne 52
Aoki, Toshiaki 206
Araki, Keijiro 241
Armstrong, Robert C. 172
Arshad, Fahd 265

Becker, Klaus 139
Benerecetti, Massimo 121
Boudjadar, Abdeldjalil 69

Chiba, Yuki 206

Dingel, Juergen 69

Fetzer, Christof 189

Gentile, Ugo 121
Ghadhab, Majdi 189
Gonzalez-de-Aledo, Pablo 225
Gruner, Stefan 87

Hasan, Osman 265
Hulette, Geoffrey C. 172
Huuck, Ralf 225

James, Phillip 103

Kim, Jin Hyun 69
Kumar, Apurva 87
Kuntz, Matthias 189
Kusakabe, Shigeru 241
Kuvaiskii, Dmitrii 189

Lawrence, Andrew 103
Legay, Axel 259
Lin, Hsin-Hung 241

Madzar, Boris 69
Maibaum, Tom 87
Mallet, Frédéric 37
Marrone, Stefano 121
Matsubara, Masahiro 206
Mayo, Jackson R. 172
Mazzocca, Nicola 121
Mehmood, Hassan 265
Meseguer, José 3

Nardone, Roberto 121
Narisawa, Fumio 206
Nishi, Masataka 206

Omori, Yoichi 241

Peron, Adriano 121

Raza, Fauzan 265
Roggenbach, Markus 103

Sanchez, Pablo 225
Seisenberger, Monika 103

Traichaiyaporn, Kriangkrai 206
Traonouez, Louis-Marie 259

Vittorini, Valeria 121
Voss, Sebastian 139

Wu, Xi 155

Zhang, Min 37
Zhu, Huibiao 155

	Preface
	Organization
	Contents
	Invited Paper
	Variant-Based Satisfiability in Initial Algebras
	1 Introduction
	2 Order-Sorted Algebra, Rewriting, and Variants
	3 A Satisfiability Puzzle
	4 Constructor Variants and Constructor Unifiers
	5 Satisfiability in Initial Algebras: Descent Results
	6 OS-Compact Theories and Satisfiability in T/ACCU
	6.1 Theories (,ACCU) are OS-Compact
	6.2 The Descent Theorem with Free Constructors Modulo ACCU

	7 Satisfiability in Parameterized FVP Data Types
	8 Related Work
	9 Conclusions and Future Work
	References

	Timed Systems
	An Executable Semantics of Clock Constraint Specification Language and Its Applications
	1 Introduction
	2 CCSL
	2.1 Syntax and Semantics of CCSL
	2.2 Satisfiability Problem of CCSL

	3 Maude in a Nutshell
	4 Formal Semantics of CCSL in Maude
	5 Applications of the Formal Semantics
	5.1 Bounded Scheduling
	5.2 Customized Simulation
	5.3 Periodic Scheduling
	5.4 Bounded Model Checking

	6 Related Works and Discussion
	7 Conclusion and Future Work
	References

	What's Decidable About Parametric Timed Automata?
	1 Introduction
	2 Parametric Timed Automata and Problems
	2.1 Clocks, Parameters and Constraints
	2.2 A Unified Syntax for Parametric Timed Automata
	2.3 Decision and Computation Problems

	3 Almost Everything is Undecidable for Simple PTA
	3.1 Decidability of the Membership
	3.2 General Undecidable Problems
	3.3 Bounding Time
	3.4 Bounding the Parameter Domain

	4 Bounding the Numbers of Clocks and Parameters
	4.1 EF-Emptiness
	4.2 Language and Trace Preservation
	4.3 Parametric Model Checking

	5 The Disappointing Class of L/U-PTA
	5.1 Decidability Results
	5.2 Undecidability Results
	5.3 Intractability of the Synthesis
	5.4 Two Open Classes: L-PTA and U-PTA

	6 Open Questions
	References

	Compositional Predictability Analysis of Mixed Critical Real Time Systems
	1 Introduction
	2 Motivating Example
	3 Related Work
	4 Predictable Real Time Systems
	5 Compositional Framework for Predictability Analysis
	5.1 Hierarchical Real-Time Systems
	5.2 Compositional Analysis
	5.3 Conceptual Design

	6 Uppaal System Model
	7 Case Study
	8 Conclusion
	References

	Railway Systems
	Towards a Body of Knowledge in Formal Methods for the Railway Domain: Identification of Settled Knowledge
	1 Introduction: Motivation and Related Work
	2 Method
	2.1 Settled Knowledge
	2.2 Formal Concept Analysis
	2.3 Stability Index

	3 Results
	4 Discussion: Possible Threats to Validity
	5 Conclusion and Outlook to Future Work
	References

	Towards Safety Analysis of ERTMS/ETCS Level 2 in Real-Time Maude
	1 Introduction
	2 ERTMS Level 2
	2.1 Scheme Plans
	2.2 ERTMS System Architecture
	2.3 Safety Conditions

	3 Maude/Real-Time Maude
	4 Modelling ERTMS in Maude
	4.1 Datatypes: Location Specific Data and Messages
	4.2 Instantaneously Reacting Sub-Systems
	4.3 Trains
	4.4 Safety Condition
	4.5 Completeness

	5 Validation Through Simulation and Error Injection
	5.1 Simulation
	5.2 Error Injection

	6 Model Checking Results
	7 Related Work
	8 Summary and Future Work
	References

	Modeling Railway Control Systems in Promela
	1 Introduction and Related Work
	2 Background and Running Example
	3 Definition of the Promela Model
	3.1 Generation Steps
	3.2 Building the System Model
	3.3 Modeling the Environment
	3.4 Constraining Behaviors

	4 A Case Study in the Railway Domain
	4.1 The Communication Procedure of the Radio Block Centre
	4.2 Results

	5 Conclusions and Future Work
	References

	Fault Tolerance
	A Formal Model and Analysis of Feature Degradation in Fault-Tolerant Systems
	1 Introduction and Motivation
	2 Assumed System Design
	3 Deployment Calculation and Degradation Analysis
	3.1 Formal System and Deployment Model
	3.2 Degradation of Functional Features
	3.3 Fixed Properties of the Model
	3.4 Solution Properties of the Model
	3.5 Reconfigurations After Isolations

	4 Example
	4.1 Initial Deployment Solution for the Example
	4.2 Analysis of Degradations for the Example

	5 Conclusion
	References

	Probabilistic Analysis of a Calculus for Wireless Sensor Networks
	1 Introduction
	2 Review of the CWQ Calculus
	3 Motivating Example
	4 Data-Driven Probabilistic Trust Analysis
	4.1 Trust Propagation
	4.2 Trust Analysis
	4.3 Probabilistic Trust Analysis of the Case Study

	5 Conclusion and Future Work
	References

	Leveraging Abstraction to Establish Out-of-Nominal Safety Properties
	1 Introduction
	2 Modeling Out-of-Nominal Safety Properties
	3 Example Turnstile Model
	4 Design and Out-of-Nominal Verification via Abstraction
	4.1 Refinement (High Level)
	4.2 Implementation (Low Level)

	5 Conclusion
	A High-Level Model for Turnstile in TLA
	B Boolean Network Model for Turnstile in NuSMV
	References

	Automotive Systems
	A Controller Safety Concept Based on Software-Implemented Fault Tolerance for Fail-Operational Automotive Applications
	1 Introduction
	2 From a Fail-Safe to a Fail-Operational System Architecture
	3 Fail-Operational Computing Platform
	4 Stochastic Model Checking of the Fail-Operational Computing Platform
	4.1 Technical Background
	4.2 Modeling and Implementation
	4.3 Properties
	4.4 Results of the Stochastic Model Checking with PRISM
	4.5 Recovery from Transient Faults
	4.6 Interpretation of the Results

	5 Software Coded Processing
	5.1 Theory About Software Coded Processing
	5.2 -encoding
	5.3 Evaluation of -encoding

	6 Related Work
	7 Conclusion
	References

	Modeling Safety Requirements of ISO26262 Using Goal Trees and Patterns
	1 Introduction
	2 Related Works
	3 Safety Requirements and Goal Tree
	3.1 Safety Requirements
	3.2 Goal Tree

	4 Safety Requirements of EPS
	4.1 PAA of EPS
	4.2 Analysis of Safety Requirements

	5 Safety Requirements Development Based on Goal Tree and Patterns
	5.1 Goal Tree for Safety Requirements
	5.2 Safety Requirement Patterns
	5.3 Application of Safety Requirement Pattern

	6 Case Study
	6.1 Development of Goal Tree
	6.2 Result
	6.3 Evaluation

	7 Discussion
	8 Conclusion
	References

	Software and Systems Analysis
	An Approach to Static-Dynamic Software Analysis
	1 Introduction
	2 Overview and Related Work
	3 Our Approach to Static Analysis and Symbolic Execution
	3.1 Static Analysis Using Model Checking and Trace Refinement
	3.2 SMT Solving Based Symbolic Execution

	4 An Integrated Static-Dynamic Approach
	4.1 Architecture
	4.2 Implementation

	5 Experiments
	5.1 Examples
	5.2 SV-COMP Benchmark Results
	5.3 Observations and Limitations

	6 Conclusions
	References

	Towards Verifying VDM Using SPIN
	1 Introduction
	2 Preliminaries
	2.1 The Vienna Development Method
	2.2 The SPIN Model Checker

	3 Model Checking VDM Using SPIN
	3.1 Hybrid Model
	3.2 Hybrid Model as Extended Automata
	3.3 Constructing Hybrid Model Based on EAVDM

	4 Case Study
	4.1 Module SIMPLE
	4.2 SAFER
	4.3 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References

	Tools
	Statistical Model Checking of Simulink Models with Plasma Lab
	1 Introduction
	2 Plasma Lab Architecture
	3 Plasma Lab and Simulink Integration
	4 Related Works
	References

	g-HOL: A Graphical User Interface for the HOL Proof Assistant
	1 Introduction
	2 g-HOL's Architecture and Features
	3 Illustrative Example
	4 Conclusions
	References

	Author Index

