
Chapter 7
Deciding on Alternative Investments: A Real
Options Approach

Investment decisions in power plants and other assets are typicallymade under evolv-
ing uncertainties. Power companies often have managerial discretion over the timing
of the investment as well as flexibility regarding the type of technology. By abstract-
ing from some real-world details, the real options approach provides an elegant
mathematical framework in which to assess the value of such flexibilities to provide
both managerial and policy insights. In this chapter, we introduce the real options
approach and contrast it with the now-or-never net present value perspective. Besides
dealing with the issue of optimal timing, the real options approach also enables a
power company to value operational flexibility, e.g., in the form of faster ramping, as
compound options. Other flexibilities, such as modularized investment and endoge-
nous capacity choice, are also amenable to analysis via this approach. Finally, the
impact of risk aversion is explored, and the chapter concludes with extensions and
exercises for further analysis.

7.1 Assumptions and the Need for Dynamic Programming

In previous chapters, we observed that it may be beneficial to delay investment in
new technologies when there is uncertainty concerning prices or performance. For
example, consider a small power company that may invest in a new power plant
from which it will earn revenues by selling the generated electricity at the prevailing
spot price of power and incur costs associated with fuel purchases.1 At the time of
investment, the company must pay a one-time capital cost to cover the expenses
associated with purchasing the equipment and installing it. Subsequently, there may
be operating and maintenance (O&M) expenses not related directly to fuel costs.
The basic question in engineering economics is, “Is it profitable to proceed with the

1Of course, there may be other streams of revenue, e.g., from feed-in tariffs (FITs) or renewable
energy certificates (RECs), and the possibility to sell the power in various types of markets, e.g.,
futures, day-ahead, and balancing. We neglect these possibilities for the sake of exposition.
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investment now?” For this purpose, it is straightforward to calculate the expected
now-or-never net present value (NPV) of investment and to determine whether it
warrants immediate investment.

However, if the power company has exclusive rights to invest at a particular
location, e.g., because of licensing agreements, then it also has the discretion to
consider investing at a later date. Indeed, given the trajectory of electricity and fuel
prices, it may be beneficial to delay the adoption decision by a year. In doing so, the
power company must trade off the following three aspects in determining the correct
timing:

1. The marginal benefit from postponing the investment cost. Rather than paying
the full investment cost now, delaying the project’s start by a year would mean
incurring the discounted investment cost.

2. The marginal benefit from starting the project with higher electricity prices or
lower fuel prices. It may be profitable to invest immediately, but the trajectory of
prices may be such that it is beneficial to delay adoption.

3. The marginal cost from forgone cash flows in the waiting period. In effect, the
cash flows that the power company could have been earning are an opportunity
cost that must be figured into its decision.

In general, if the power company has the discretion to defer investment perpetually,
then what should be the optimal time to invest? For example, in Fig. 7.1, the NPV
of a hypothetical power plant is given as a function of the current electricity price.
In addition to being able to invest immediately, the power company may undertake
the same project in five or ten years’ time. Depending on the current electricity
price and its growth rate, it may be optimal to invest immediately, wait five years,
wait ten years, or never invest. Thus, the NPV of the overall investment opportunity
is the upper envelope of the three NPV functions as well as zero. Furthermore, if
underlying prices are uncertain, then how would the optimal investment decision
be affected? How would characteristics of alternative technologies, e.g., operational
flexibility or sizing, affect the investment decision? Would a modular investment
strategy make sense in certain situations? Finally, how would the decisions change if
the power company were risk averse? Tackling all of these features within an elegant
mathematical framework would be desirable in order to elicit managerial insights.

While the timing question may be addressed adequately via the now-or-never
NPV approach, the analysis becomes cumbersome and leads us to propose a more
suitable framework for decision making: real options. Essentially, real options is a
dynamic programming approach to making optimal decisions in which investment
and operational opportunities are thought of as options on real (rather than finan-
cial) assets. In finance, an “option” refers to an instrument that provides the holder
with the right, but not the obligation, to obtain an asset in exchange for a so-called
strike price [20]. Given suitable simplifying assumptions, real options can provide
powerful insights into the value of managerial flexibility in appraising alternative
investment proposals. For example, the now-or-never NPV approach would not be
able to distinguish between investing in a single 100 MW power plant and investing
in two 50 MW modules constructed sequentially when there is uncertainty about
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Fig. 7.1 NPV of power plant in different starting years

the electricity price. Yet intuitively, most managers would attribute more value to
the modular approach, even though the now-or-never NPV approach would give the
same expected value. Hence in this chapter, we abstract from some of the details
of the previous chapters in order develop the intuition and methodology for apply-
ing real options analysis to investment and operational problems in the electricity
industry.

Before proceeding to the exposition of the real options approach, we first state the
assumptions and define the notation to be used for the rest of this chapter. Without
loss of generality, we assume that the electricity price at time t ≥ 0, Et , follows a
geometric Brownian motion (GBM). First, a Brownian motion (BM) may intuitively
be thought of as a continuous-time analogue of a random walk with drift [35]. In
other words, the absolute changes in the value of a random parameter following a
BM are normally distributed. Second, in dealing with prices, it is convenient to limit
the range of realizations to be nonnegative.2 Thus, rather than considering absolute
changes, it is expedient to deal with percentage changes, and a GBM is a stochastic
process in which the percentage changes (rather than absolute changes) in the value
are normally distributed. Consequently, if Et follows a GBM, then:

2Because of nonconvexities in power plant operations such as startup costs and minimum uptimes,
electricity pricesmay actually become negative during certain hours. For example, it may be cheaper
for a power plant with high startup costs to remain online even during off-peak periodswhen demand
is low. Thus, the power plant effectively pays to continue generation [22]. Nevertheless, we assume
in this chapter for the sake of clarity that prices are nonnegative.
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Fig. 7.2 Forecast value and sample paths of a GBM

dEt = αEtdt + σ Etdzt , (7.1)

where dzt is the increment to a BM at time t , α is the annualized drift rate, σ ≥ 0 is
the annualized percentage volatility, and E0 ≡ E .3

Illustrative Example 7.1 GBM sample paths

If we ignore the stochastic dzt term, then we may derive the expected value of the
GBM in year t conditional on E as EE [Et ] = Eeαt . In effect, the GBM, on average,
exhibits exponential growth. Once the stochastic dzt term is considered, sample paths
for the GBM may be generated that evolve with uncertainty around the conditional
expectation. In Fig. 7.2, the forecast value, EE [Et ] = Eeαt , is plotted (solid series)
along with five sample paths (dotted series) from a GBMwith parameters α = 0.10,
σ = 0.20, and E = 50 over a period of ten years. Note that the forecast value after
ten years is 50e0.10×10 = 135.91. �

3There is considerable debate over whether energy prices follow BMs or mean-reverting processes.
For example, Pindyck [32] analyzes 127 years of coal, natural gas, and oil prices to test for mean
reversion. He finds that while such energy prices are indeed mean reverting, the rate of mean
reversion is so low that using aGBMassumption for the purposes of investment analysis is “unlikely
to lead to large errors.” Combined with the fact that real options models in the BM family typically
lead to closed-form solutions, we retain the GBMassumption for modeling long-term energy prices.
However, this may not be valid for short-term operational analyses in which the electricity price is
marked by stronger mean reversion and spikes [8].
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Taking the dynamic programming approach (see Appendix E for a summary)
to solving real options problems [12], we assume that all cash flows are real and
the exogenous discount rate is ρ > α. Without loss of generality, we assume that
the power company holds a perpetual option to invest in a power plant that will
last forever once constructed. The latter assumption about infinite lifetime may be
easily relaxed. However, the former is necessary to ensure analytical solutions that
will facilitate insights. Furthermore, it may be justified by the fact that typically, an
investor in the electricity industry will have monopoly rights to build a facility at a
particular location, e.g., through either an agreement with the municipal authority
or rights to the land. Finally, the impact of a finite option to build on the optimal
investment threshold price is weak when the time to expiration is relatively large.

At the optimal time, the power company pays a deterministic capital cost, I (in
$), to trigger the investment in the power plant. For now, we disregard the capacity
size of the facility, i.e., we assume that it generates a notional 1 MWh of electricity
per annum. Thus, I may be interpreted as a per-unit capacity cost. We assume that
the power plant is constructed immediately once ordered by the power company4

and starts generating electricity at heat rate H (in MWhth /MWh), which is sold at
price Et (in $/MWh). For now, we also assume that the fuel price at time t , Ft (in
$/MWhth), is constant, i.e., Ft = F . In subsequent sections, we will explore the
implications of relaxing some of these assumptions. However, in order to establish
a benchmark and to gain intuition for how investment with a deferral option differs
from a now-or-never NPV approach, we proceed to a stylized example in Sect. 7.2
with investment in a single power plant of given capacity. Next, in Sects. 7.3 and
7.4, we tackle flexibility in operations and modularity in investment, respectively.
Sections7.5 and 7.6 allow for the plant’s capacity to be a decision variable in either
a continuous or discrete setting. In order to examine the effect of risk aversion on
investment timing, we expand the framework in Sect. 7.7 to incorporate concave
utility functions. In Sect. 7.8, we summarize the chapter and provide an overview of
the recent literature. End-of-chapter exercises are included in Sect. 7.9. Section7.10
provides MATLAB codes for solving numerical examples.

The nomenclature for the rest of the chapter is as follows:

Indices

i, i ′ Index for states.
j Index for projects.
s, t Index for time.

Parameters

A j Investment cost term for power plant j with endogenous sizing [$/(MWh)2].

4Depending on the type of facility, this may not be a reasonable assumption. For example, wind
farms, solar plants, and run-of-river hydro plants can be constructed relatively quickly because
they use standardized components. Nuclear power plants, however, are notorious for time and cost
overruns because of the complexity of the task and the lack of suitable sites. Lead times for fossil-
fueled installations are somewhere in the middle, e.g., taking up to two years for gas-fired plants
and five years for coal plants. For how to handle this “time-to-build” problem, see [28].
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B j Investment cost superscript for power plant j with endogenous sizing (unit-
less).

Et Electricity price at time t [$/MWh].
Ft Fuel price at time t [$/MWhth].
H j Heat rate of power plant j [MWhth /MWh].
I j Investment cost of power plant j [$].
K j Annual electricity output of power plant j [MWh].
Si,i

′, j Switching cost between states i and i ′ of power plant j [$].

Constants and Rates

α Percentage growth rate [1/year].
β1(β2) Positive (negative) root of the characteristic quadratic.
γ Relative risk aversion parameter.
ρ Discount rate [1/year].
σ Percentage volatility [1/year].

Functions

I (K j ) Investment cost for power plant j with endogenous capacity sizing [$].
Q(β) Characteristic quadratic function.
U (E) Utility function given electricity price E .
V j (E) Expected now-or-never NPV of power plant j given electricity price E

[$].
W j

i (E) Value of power plant j in state i given electricity price E [$].

Variables

ai,1(ai,2) Coefficient for the positive (negative) branch of the option value function
in state i .

κ j (E) Optimal size for power plant j given current electricity price E [MWh].
ξ j Optimal investment threshold price for power plant j [$/MWh].
ξ i,i ′, j Optimal switching threshold from state i to state i ′ for power plant j

[$/MWh].
ξ
j
N PV Now-or-never NPV investment threshold price for power plant

j [$/MWh].
τ j Optimal stopping time for investment in plant j .

7.2 Optimal Timing Versus Now-or-Never Net Present
Value Approaches

In the now-or-never NPV approach, the expected discounted revenues of a project
are compared with its investment cost. The instantaneous cash flows of a power plant
with heat rate H at time t are Et − HFt . Assuming that the electricity price follows
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a GBM and that the fuel price is constant at F , the expected now-or-never NPV of
such a power plant is:

V (E) = EE

[∫ ∞

0
(Et − HF) e−ρt dt

]
− I

⇒ V (E) =
∫ ∞

0

(
Eeαt − HF

)
e−ρt dt − I

⇒ V (E) = E

ρ − α
− HF

ρ
− I. (7.2)

In Eq. (7.2), we use the fact that the conditional expectation of a continuous random
variable involves taking an integral. Thus, the first line is effectively a double inte-
gration, and without loss of generality, the order of integration may be reversed. We
use this fact in the second line by moving the conditional expectation operator inside
the integral with respect to time. Since EE [Et ] = Eeαt , we obtain the expression in
the second line, and evaluating this integral yields the result in the final line. Intu-
itively, it states that the expected now-or-never NPV of such a power plant is the
difference between the present value of the operating cash flows (stemming from
electricity sales and fuel purchases) and the up-front investment cost. Consequently,
if the option to defer investment is ignored, then investment occurs immediately as
long as V (E) ≥ 0. Otherwise, investment never occurs.

Rather than investing immediately, it may be desirable for the power company to
postpone taking action. For example, the electricity price may be likely to increase
in the next few years. The increase in expected revenues along with the delay in
paying the investment cost could make deferral favorable. However, the forgone
revenues from not having an active power plant in the intervening years are an
opportunity cost of delaying that would have to be factored into the decision. Thus,
the power company could consider waiting T years from now and then investing
immediately in the power plant. The expected NPV of such a strategy is simply
e−ρT

EE [V (ET )] = Ee−(ρ−α)T

ρ−α
− HFe−ρT

ρ
− I e−ρT , i.e., it is the discounted expected

NPV of a power plant that is constructed in T years when the electricity price is ET .
To elaborate, the expected NPV of a power plant that is constructed in T years is
EE

[∫ ∞
T (Et − HF) e−ρt dt

] − I e−ρT . Note that the conditional expectation may be
written as EE

[
EET

[∫ ∞
T (Et − HF) e−ρt dt

]]
because of the law of iterated expecta-

tions, i.e., E [X ] = E [E [X |Y ]], where X and Y are random variables. Furthermore,
since theGBM is aMarkov process, i.e., the probabilistic structure of the future given
the present is independent of the past, the inner conditional expectation may be ren-
dered as

∫ ∞
0

(
ET eαt ′ − HF

)
e−ρ(t ′+T )dt ′ after the change of variable t ′ = t − T .

Thus, this integral becomes e−ρTV (ET ) after including the discounted investment
cost.

Illustrative Example 7.2 Investment timing at discrete points in time

Using parameter values of I = 100, ρ = 0.10, α = 0.05, F = 20, and H = 2.5,
we obtain the value functions for T = 0, T = 5, and T = 10 in Fig. 7.1. We first
note that since the power plant is to generate a notional 1 MWh of electricity per
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annum, this results in an investment cost of $876/kW. Also, the heat rate implies a
40% electrical conversion efficiency. These two parameters are in line with the char-
acteristics of most gas-fired plants. Next, in terms of investment timing, if the power
company can construct the plant at only these three points in time, then its optimal
decision is dependent on the current electricity price. For example, if the current
electricity price is $25/MWh, then it is optimal to invest in ten years. This is because
the electricity price will need a decade to increase to a level that makes the plant
profitable. Plus, the investment cost will be discounted. On the other hand, a rela-
tively high current electricity price, e.g., greater than $60/MWh, warrants immediate
investment. Intuitively, waiting is not worthwhile because the price is high enough to
make the opportunity cost of not investing more than offset any benefit from deferral.
An electricity price in the middle of the range makes it optimal to invest after five
years, whereas a very low electricity price means that it is optimal never to invest.
Therefore, the value of the entire investment opportunity to the power company is
the upper envelope of the value functions as well as zero in Fig. 7.1. �

Suppose now that instead of having the option to invest in the power plant only
at certain discrete points in time, i.e., T = 0, 5, 10, the power company may start
the project at any point in time. In that case, the upper envelope in Fig. 7.1 reflecting
the value of the investment opportunity should become a smooth curve and indicate
the optimal investment threshold price. Using dynamic programming, we will derive
this function and threshold rigorously. We assume that there are two states of the
world: 0, in which the power company is waiting to invest, and 1, in which it has an
active power plant. Working backward from state 1, we know that its value function
is just the expected present value of an active power plant, i.e.:

W1(E) = E

ρ − α
− HF

ρ
. (7.3)

Now, in state 0, we begin with the Bellman equation in order to value W0(E) and to
determine the optimal investment threshold price, ξ :

ρW0(E)dt = EE [dW0] . (7.4)

This states that the instantaneous return on the option to invest is equal to its expected
appreciation. Intuitively, an external assessor’s required rate of return on the option
to build the power plant, ρ, must equal the expected value from owning the right to
build the power plant outright. Expanding the right-hand side of Eq. (7.4) via Itô’s
lemma and re-arranging, we obtain the following second-order ordinary differential
equation (ODE):

ρW0(E)dt = EE

[
W ′

0 (E)dE + 1

2
W ′′

0 (E) (dE)2
]

⇒ 1

2
σ 2E2W ′′

0 (E) + αEW ′
0 (E) − ρW0(E) = 0, (7.5)
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where we use the fact that EE [dE] = αEdt and (dE)2 = σ 2E2dt in going from the
first line to the second.

The general solution to the ODE in Eq. (7.5) is of the power form, i.e.:

W0(E) = a0E
β, (7.6)

which is subject to the following boundary conditions:

limE→0 W0(E) = 0 (7.7a)

W0(ξ) = W1(ξ) − I (7.7b)

W ′
0 (ξ) = W ′

1 (ξ). (7.7c)

Intuitively, Eq. (7.7a) states that the option to invest in the power plant becomes
worthless as the electricity price tends to zero. Since zero is an absorbing state
for the GBM, it follows that there will be no value from either waiting to invest
in such a plant or having an active one immediately. Next, Eq. (7.7b) is the value-
matching condition, which requires the value of the investment opportunity to equal
the expected NPV,W1(E) − I , at the optimal investment threshold price, ξ . Indeed,
the value lost from killing the option must equal the value gained from an active
power plant at this trigger price. Finally, Eq. (7.7c) is the smooth-pasting condition,
which is actually a first-order condition for optimization that reflects the fact that the
marginal benefit of waiting must equal the marginal cost of waiting at ξ .

Substituting the function from Eq. (7.6) and its derivatives into Eq. (7.5), we
obtain:

Q(β) ≡ 1

2
σ 2β(β − 1) + αβ − ρ = 0, (7.8)

where β is taken as a generic parameter andQ(β) is the fundamental characteristic
quadratic function, which implicitly defines β1 and β2 as its two roots. Although both
of these roots can be solved for explicitly, it becomes apparent from the geometry
of the problem that β1 > 1 and β2 < 0 as in Fig. 7.3. To observe this, note that
the expression in Eq. (7.8) is an upward-facing parabola with Q(0) = −ρ < 0 and
Q(1) = α − ρ < 0. The latter inequality implies that β1 > 1 because the parabola is
still negative at β = 1. Likewise, the former inequality implies that β2 < 0 because
the parabola is still negative at β = 0.

Now, if a0,1Eβ1 is a solution to the ODE in Eq. (7.5), then so is a0,2Eβ2 , where
a0,1 and a0,2 are endogenous coefficients that depend on ξ . Thus, we have:

W0(E) = a0,1E
β1 + a0,2E

β2 . (7.9)

Since the latter term in Eq. (7.9) goes to infinity as E goes to zero, it is inconsistent
with the boundary condition in Eq. (7.7a). Therefore, it must be the case that a0,2 = 0,
and, consequently, we obtain:
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Fig. 7.3 Characteristic quadratic function, Q(β), for α = 0.05, ρ = 0.10, and σ = 0.20

W0(E) = a0,1E
β1 . (7.10)

We now use the expression from Eq. (7.10) in Eqs. (7.7b) and (7.7c) to solve for ξ

and a0,1:

a0,1ξ
β1 = ξ

ρ − α
− HF

ρ
− I (7.11)

β1a0,1ξ
β1−1 = 1

ρ − α

⇒ a0,1 = ξ 1−β1

β1(ρ − α)
. (7.12)

Substituting the solution for a0,1 from Eq. (7.12) into Eq. (7.11), we obtain:

ξ

β1(ρ−α)
= ξ

ρ−α
− HF

ρ
− I

⇒ ξ =
(

β1

β1−1

) (
ρ−α

ρ

)
(HF + ρ I ). (7.13)

For comparison with the now-or-never NPV, we set the expression forW1(E) − I

to zero in Eq. (7.3) and solve for E to obtain ξN PV =
(

ρ−α

ρ

)
(HF + ρ I ). This

means that investment should occur only if the current price is high enough to
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cover the amortized operating and investment costs. By contrast, via the real options
approach, ξ in Eq. (7.13) results in a higher threshold price for investment because

β1

β1−1 > 1.5 This discretion to wait for a higher threshold vis-à-vis the now-or-never
NPVapproach stems froma combination of positive drift and volatility in the electric-
ity price. Note that even if σ = 0, then the optimal investment threshold in Eq. (7.13)
is greater than the now-or-never one. In particular, limσ→0 β1 = ρ

α
from Eq. (7.8),

which leads to limσ→0 ξ = HF + ρ I > ξN PV . Indeed, even without uncertainty in
the electricity price, as long as the power company has the discretion to wait for
a higher price at which to launch the power plant’s operations, it will do so until
the marginal benefit of waiting is just equal to the marginal cost of waiting, which
results from the forgone cash flows in the waiting period. With greater uncertainty,
the marginal benefit of waiting increases by more than the marginal cost because
the latter depends only on the opportunity cost of lost cash flows in the immediate
future. However, the marginal benefit of waiting is related to the possibility of a
higher starting price for the power plant in the future, which is affected to a greater
extent by uncertainty. Hence, with the deferral option, the value of the power plant
project is higher, yet this also increases the opportunity cost of killing the option to
wait, thereby leading to a higher investment threshold price.

Insights about investment under uncertainty may be facilitated via numerical
examples.We first consider the investment decision in Illustrative Example 7.3. Next,
we explore sensitivity analyses with respect to σ , α, and ρ in Illustrative Examples
7.4–7.6.

Illustrative Example 7.3 Investment under uncertainty with continuous time
Here, we use α = 0.05, ρ = 0.10, σ = 0.20, I = 100, H = 2.5, and F = 20 as

base parameters. First, we plot the expected NPV and value of the investment oppor-
tunity with respect to the electricity price, E , in Fig. 7.4. The expected NPV function,
W1(E) − I , is the same as the immediate investment NPV in Fig. 7.1. Recall that
when we allowed investment to occur only at discrete points in time, the value of
the investment opportunity comprised the upper envelope of the NPV functions. By
contrast, the real options approach enables such a comparison to be made at every
infinitesimal point in time. Thus, as the time intervals between alternative investment
opportunities go to zero, the kinked function in Fig. 7.1 becomes a smooth convex
one, as indicated in Fig. 7.4. Note that the expected NPV of immediate investment,
W1(E) − I , equals zero for ξN PV = 30. However, the value of the investment oppor-
tunity stemming from the real options approach,W0(E), is strictly above the expected
NPV, thereby revealing that there is positive value to waiting. In fact, it is optimal
to wait until the electricity price hits the threshold ξ = 79.30. In the parlance of
financial options, it is worthwhile retaining the option until it is deep “in the money.”
Furthermore, as the initial electricity price goes to zero, the value of the option to
invest also goes to zero because investment never occurs in that case. �

5To see this, note that β1
β1−1 = 1

1− 1
β1

. Since β1 > 1, the denominator of the latter expression is

strictly less than one.
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Illustrative Example 7.4 Sensitivity analysis of investment under uncertainty with
respect to volatility

Here,wevaryσ while holding all other parameters constant in order to examine the
sensitivity of ξ to uncertainty. In Fig. 7.5, we note that the now-or-never investment
threshold, ξN PV , is not affected by uncertainty and remains constant at $30/MWh.
However, the real options threshold, ξ , increases from a value of $60/MWh (for
σ = 0) to nearly $90/MWh (for σ = 0.25). Thus, greater uncertainty increases the
investment threshold as the value of waiting becomes larger.6 Consequently, the
“wedge” between the now-or-never and real options thresholds, β1

β1−1 , increases with

uncertainty as well.7

An example of the value functions for σ = 0 is given in Fig. 7.6 to illustrate that
there is a value inwaiting since the electricity price is still going to increase. However,
without the presence of uncertainty, its magnitude is reduced.

The effect of uncertainty on the value of the investment opportunity is summarized
in Fig. 7.7, in which the relative value of W0(E) to W1(E) − I at E = 50 is plotted.

6Although it may be appealing to think of a higher investment threshold price as “delaying” the
investment timing, in fact, as the volatility increases, so does the conditional probability that the
threshold price will be reached from a given initial price. Intuitively, the higher volatility also
increases the likelihood of extremely high (as well as extremely low) prices. Therefore, the overall
impact on timing is ambiguous. For a rigorous analysis, see [27].
7The formal proof of this is left as an exercise at the end of this chapter.
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Hence, higher uncertainty increases the discretion to wait, which leads to a higher
investment threshold. �

Illustrative Example 7.5 Sensitivity analysis of investment timing with respect to
the drift rate

In Fig. 7.8, we vary α while holding all other parameters constant. Intuitively,
we would postulate that an increase in the drift rate would increase the investment
threshold since it would be desirable to wait for a higher future electricity price
at which to launch the power plant’s operations. Somewhat surprisingly, ξ actually
decreaseswithα. In order to explain this seemingly counterintuitive outcome,we plot
ξN PV and note that it is also decreasing but at a faster rate. Indeed, from Eq. (7.13),
an increase in α leads to a decrease in the now-or-never threshold, ξN PV . But if
we look at the expected NPV of the power plant upon investment at ξ , we obtain(

β1

β1−1

) [
HF
ρ

+ I
]

− HF
ρ

− I . In other words, it is the “wedge” between ξ and ξN PV

that is affected by α. Plotting the wedge, i.e., β1

β1−1 in Fig. 7.8, we see that it is indeed
increasing with respect to α, i.e., a higher drift rate increases the expected NPV of
investment at the real options trigger. �

Illustrative Example 7.6 Sensitivity analysis of investment timing with respect to
the discount rate
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A similar breakdown of the behavior of ξ may be done with respect to ρ. Again,
intuitively, we would imagine that an increase in the discount rate would make the
future less important, thereby reducing the incentive to wait. Yet, Fig. 7.9 tells a story
that seems to belief our understanding since ξ actually increases with ρ. However, as
with the analysis with respect to α, it is important to note that the wedge, β1

β1−1 , is the
main driver of the result. Plotting it respect to ρ, we are able to reconcile the finding
with our intuition: a higher discount rate facilitates investment even as it lowers the
expected NPV of an operational power plant. �

7.3 Operational Flexibility

In Sect. 7.2, we focus on the optimal timing of the investment decision, assuming
that the power plant operates forever. In other words, the power company’s deci-
sion was completely irreversible. However, in many cases, there is at least partial
reversibility in the form of subsequent managerial discretion to abandon, modify, or
suspend temporarily the power plant. In this section, we focus on the latter aspect,
i.e., treatment of the so-called compound option to turn the power plant on and off
again after it has been constructed.

Given the volatile nature of energy prices, such flexibility may be highly valuable.
Indeed, [9] showed that by accounting for the option value of such flexibility, plants
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being sold in California after deregulation in the late 1990s were valued at higher
than their book values as indicated by the NPV approach. In particular, gas-fired
power plants have the flexibility to ramp up and down relatively quickly, although
this occurs at a cost and may be constrained by minimum uptimes. For example, a
gas-fired power plant with a maximum power capacity of 431 MW requires 1200 GJ
of fuel (or approximately 333 MWhth) for a “hot start” (immediately one hour after
the plant is shut down), which leads to a startup cost of almost $7000, assuming a fuel
price of $20/MWhth . These calculations are based on a combined-cycle gas turbine
(CCGT) plant installed in 2010 in Aghada, Republic of Ireland [41]. Furthermore,
according to the same source, CCGT plants have constraints on minimum uptimes
and downtimes (typically four hours each).

Using the real options approach, we can analyze how the availability of such
partial flexibility in the plant’s operations influences not only the value of the invest-
ment opportunity but also the initial investment decision. Intuitively, any power plant
operator would value a flexible power plant more. However, the value of this flexi-
bility is difficult to quantify via a now-or-never NPV approach. For example, at what
threshold electricity price would it be optimal to suspend or to resume operations?
If the value of operational flexibility increases with electricity price volatility, then
how does it affect the investment threshold vis-à-vis that from Sect. 7.2?
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Fig. 7.10 State-transition diagram for a power plant with operational flexibility

In order to focus on the implications of operational flexibility, we assume that
after investment, the plant may be in one of two states: on (state 1) or off (state 2).8

Transitioning between these two states incurs fixed resumption and suspension costs,
S2,1 and S1,2, respectively, as indicated in Fig. 7.10. Associated with these transitions
are threshold prices, ξ 2,1 and ξ 1,2, which will be determined endogenously.9 Thus,
we abstract from technical constraints of actual power plants such as finite ramping
rates and minimum uptimes and downtimes. Instead, we assume that these features
may be captured via fixed switching costs.

Although the sequence of decisions depicted in Fig. 7.10 begins in state 0 with
the option to invest and progresses to state 1 with the valuation of an active power
plant with the suspension option, we solve the problem using backward induction.
Specifically, we start by considering the operational decisions of the power plant
given that the investment decision with associated threshold, ξ , has already been
undertaken. We define Wi (E) as the value of the power plant in state i and use
dynamic programming to find not only the value functions but also the optimal
switching thresholds. First, we consider state 1 and note that the value of the plant
should comprise both the expected PV of cash flows from indefinite operations and
the option value to shut down. Intuitively, the latter component should increase in
value as the electricity price decreases.Wenow formally determine the value function
in state 1 by setting up the Bellman equation while keeping in mind that it should be
adjusted from that in Eq. (7.4) to reflect cash flows from ongoing operations:

ρW1(E)dt = EE [dW1] + (E − HF) dt. (7.14)

8Instead of two discrete on–off states, it may also be possible to have several operating states ranging
from zero to full capacity. Alternatively, continuous adjustment of the plant’s output may be handled
by specifying a production function as in Chap.6 of [12].
9In the limit as these fixed transition costs go to zero, the problem collapses to one of costless
switching, e.g., as in [30]. The optimal switching thresholds then converge to the operating cost
of the plant, i.e., HF . Intuitively, it is optimal to shut down (restart) the plant when the electricity
price drops below (increases above) the operating cost.
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The second term on the right-hand side of Eq. (7.14) is precisely the instantaneous
cash flow from operations. Next, we expand dW1 via Itô’s lemma as in Sect. 7.2 and
rearrange it to obtain a second-order ODE similar to that in Eq. (7.5):

1

2
σ 2E2W ′′

1 (E) + αEW ′
1 (E) − ρW1(E) + E − HF = 0. (7.15)

The solution to the ODE in Eq. (7.15) is similar to that in Eq. (7.9) but with an extra
term reflecting the expected PV of cash flows from a perpetually operating power
plant:

W1(E) = a1,1E
β1 + a1,2E

β2 + E

ρ − α
− HF

ρ
, (7.16)

where β1 and β2 are still the positive and negative roots, respectively, of the character-
istic quadratic function from Eq. (7.8). Here, E

ρ−α
− HF

ρ
represents the expected PV

of a power plant that operates forever, and a1,1Eβ1 + a1,2Eβ2 is the value of the option
to suspend operations. Economically, we require limE→∞ W1(E) = E

ρ−α
− HF

ρ
, i.e.,

the value of a power plant at very high electricity prices should be simply that of one
that never shuts down. Indeed, it is only for relatively low electricity prices that the
plant would ever shut down. Hence, we must have a1,1 = 0, thereby resulting in:

W1(E) = a1,2E
β2 + E

ρ − α
− HF

ρ
. (7.17)

Second,we similarly tackle the value of a suspended power plant, i.e., one that is in
state 2. Since there are no instantaneous cash flows, the Bellman equation becomes:

ρW2(E)dt = EE [dW2] . (7.18)

Again, by applying Itô’s lemma to the right-hand side and rearranging, we obtain a
second-order ODE:

1

2
σ 2E2W ′′

2 (E) + αEW ′
2 (E) − ρW2(E) = 0. (7.19)

The solution is W2(E) = a2,1Eβ1 + a2,2Eβ2 , which becomes the following after
application of the boundary condition limE→0 W2(E) = 0:

W2(E) = a2,1E
β1 . (7.20)

Hence, the value of the power plant in state 2 is simply the value of the option to
resume operations in the future, which is increasing with the electricity price.

From Eqs. (7.17) and (7.20), we have two endogenous variables, a1,2 and a2,1,
as well as two thresholds, ξ 1,2 and ξ 2,1, to solve for. Thus, we need a total of four
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equations. We obtain these by writing a pair of value-matching and smooth-pasting
conditions for each of the two operational transitions. First, in shutting down the
power plant, i.e., going from state 1 to 2, we obtain:

W1(ξ
1,2) = W2(ξ

1,2) − S1,2

⇒ a1,2
(
ξ 1,2

)β2 + ξ 1,2

ρ − α
− HF

ρ
= a2,1

(
ξ 1,2

)β1 − S1,2 (7.21a)

W ′
1 (ξ 1,2) = W ′

2 (ξ 1,2)

⇒ β2a1,2
(
ξ 1,2

)β2−1 + 1

ρ − α
= β1a2,1

(
ξ 1,2

)β1−1
. (7.21b)

Second, we have a pair of such equations for the transition from state 2 to 1:

W2(ξ
2,1) = W1(ξ

2,1) − S2,1

⇒ a2,1
(
ξ 2,1

)β1 = a1,2
(
ξ 2,1

)β2 + ξ 2,1

ρ − α
− HF

ρ
− S2,1 (7.22a)

W ′
2 (ξ 2,1) = W ′

1 (ξ 2,1)

⇒ β1a2,1
(
ξ 2,1)β1−1 = β2a1,2

(
ξ 2,1)β2−1 + 1

ρ − α
. (7.22b)

Intuitively, Eqs. (7.21a)–(7.22b) state that the value gained must equal the value lost
from switching operating modes and that the marginal benefit must equal the mar-
ginal cost from delaying any operational transitions. However, unlike Eqs. (7.11)–
(7.12), the system of equations here with operational flexibility is highly nonlinear.
Therefore, in general, it is not possible to obtain closed-form solutions for the four
unknowns. Instead, wemust resort to numerical methods to find solutions for specific
parameter values. Most computational software packages like Mathematica, MAT-
LAB, and Octave have functions, e.g., fsolve in MATLAB, that solve nonlinear
systems if a guess for the solution is available.

We provide MATLAB code in Sect. 7.10 for solving the nonlinear system result-
ing from Illustrative Example 7.7. But, how should the guess for the solution be
calculated? One way to proceed is to find analytical solutions to a simpler system,
e.g., with a one-time abandonment option from state 1 or a one-time resumption
option from state 2. Considering such a simplified model from state 1, we note that
the resumption option from state 2 will not be available. Thus, the following system
of two equations can be easily solved for guesses ã1,2 and ξ̃ 1,2:

ã1,2
(
ξ̃ 1,2

)β2 + ξ̃ 1,2

ρ − α
− HF

ρ
= −S1,2 (7.23a)
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β2ã1,2
(
ξ̃ 1,2

)β2−1 + 1

ρ − α
= 0. (7.23b)

Solving Eqs. (7.23a)–(7.23b), we obtain ξ̃ 1,2 =
(

β2

β2−1

)
(ρ − α)

[
HF
ρ

− S1,2
]
and

ã1,2 = − (ξ̃ 1,2)
1−β2

β2(ρ−α)
as the guesses for ξ 1,2 and a1,2, respectively. By similarly sim-

plifying Eqs. (7.22a) and (7.22b) to remove the
(
ξ 2,1

)β2 terms, we obtain ξ̃ 2,1 =(
β1

β1−1

)
(ρ − α)

[
HF
ρ

+ S2,1
]
and ã2,1 = − (ξ̃ 2,1)

1−β1

β1(ρ−α)
as the guesses for ξ 2,1 and a2,1,

respectively. Indeed, even without solving the nonlinear system numerically, we
obtain the insight that with uncertainty and the option to make operational changes,
the switching thresholds lead the decision-maker to be more cautious than the
now-or-never NPV rule in which the plant would be shut down when the elec-
tricity price dropped below

(
HF − ρS1,2

)
> ξ̃ 1,2 and restarted when the elec-

tricity price increased above
(
HF + ρS2,1

)
< ξ̃ 2,1. These results follow because(

β1

β1−1

) (
ρ−α

ρ

)
> 1and

(
β2

β2−1

) (
ρ−α

ρ

)
< 1 forσ > 0.To see this, note that

(
β2

β2−1

)
<

1 and
(

ρ−α

ρ

)
< 1. Thus,

(
β2

β2−1

) (
ρ−α

ρ

)
< 1. On the other hand,

(
β1

β1−1

)
> 1 but(

ρ−α

ρ

)
< 1. Since

(
β1

β1−1

)
is the lowest when σ = 0, we can show that even in this

case, we have limσ→0

(
β1

β1−1

)
= ρ

ρ−α
. Hence the product

(
β1

β1−1

) (
ρ−α

ρ

)
must be

greater than 1 for all σ > 0.
As in Sect. 7.2, the optimal investment threshold, ξ 0,1, may be found via value-

matching and smooth-pasting conditions betweenW0(E) andW1(E) − I .We remark
that the optimization must occur in going from state 0 to state 1 rather than state 2
because it would not make sense for the power company to invest I only to have
an idle power plant. For this reason, the thresholds should have the ordering ξ 1,2 <

ξ 2,1 < ξ 0,1. In order to obtain W0(E), we follow the same procedure as in Eq. (7.5)
to obtain:

W0(E) = a0,1E
β1 . (7.24)

Next, value-matching and smooth-pasting conditions yield the following system of
equations:

W0
(
ξ 0,1) = W1

(
ξ 0,1) − I

⇒ a0,1
(
ξ 0,1

)β1 = (
ξ 0,1

)β2 + ξ

ρ − α
− HF

ρ
− I (7.25a)

W ′
0

(
ξ 0,1

) = W ′
1

(
ξ 0,1

)
⇒ β1a0,1

(
ξ 0,1

)β1−1 = β2
(
ξ 0,1

)β2−1 + 1

ρ − α
. (7.25b)



7.3 Operational Flexibility 289

In contrast to Eqs. (7.11)–(7.12), here an analytical solution is impossible. However,
it is possible to reduce Eqs. (7.25a)–(7.25b) to one nonlinear equation for ξ 0,1:

(β1 − β2) a1,2
(
ξ 0,1)β2 + (β1 − 1)

ξ 0,1

ρ − α
− β1

(
HF

ρ
+ I

)
= 0. (7.26)

Using ξ from Eq. (7.13) as a guess, we can solve numerically for ξ 0,1 and conse-
quently for a0,1. Yet even without an analytical solution, it is possible to prove that
ξ 0,1 < ξ by comparing the implicit definition of ξ 0,1 in Eq. (7.26) with the following
for ξ :

(β1 − 1)
ξ

ρ − α
− β1

(
HF

ρ
+ I

)
= 0. (7.27)

The two equations are identical except for the presence of the (β1 − β2) a1,2
(
ξ 0,1

)β2

term inEq. (7.26), which is strictly positive. This adds to the linear term (β1 − 1) ξ 0,1

ρ−α
,

thereby ensuring that its intersection with the constant β1

(
HF
ρ

+ I
)
is for a lower

threshold price. In Illustrative Examples 7.7 and 7.8, we demonstrate the shapes of
the value functions, perform sensitivity analyses on the thresholds with respect to the
volatility, and provide MATLAB code in Sect. 7.10 for solving the nonlinear system
of equations.

Illustrative Example 7.7 Investment timing with operational flexibility

Using α = 0.05, ρ = 0.10, σ = 0.20, I = 100, S1,2 = S2,1 = 10, H = 2.5, and
F = 20 as base parameters, we plot the value functions as in Fig. 7.11. Note that
the functions W1(E) and W2(E) are defined over the ranges (ξ 1,2,∞) and (0, ξ 2,1),
respectively. Thus, W2(E) is a convex function that has the same gradient asW1(E)

at ξ 2,1 and differs from it by exactly S2,1 at that point. Meanwhile, W1(E) has a
pronounced convex shape only for relatively low values of E , whereas it becomes
asymptotically linear as E → ∞. Indeed, for extremely high electricity prices, the
value of the option to shut down the plant is nearly zero. Consequently, an active
power plant’s value converges to that of a plant that operates forever. However, for
low electricity prices, it becomes optimal to suspend operations and switch to state 2.
Therefore, at ξ 1,2,W1(E) has the same gradient asW2(E) and differs from it by S1,2

at that point. Moreover, the suspension and resumption thresholds at $37.99/MWh
and $61.38/MWh, respectively, are lower and higher, respectively, than the now-
or-never NPV thresholds of $49/MWh and $51/MWh, respectively. Finally, the
value function in state 0 satisfies the value-matching and smooth-pasting conditions
with W1(E) − I at ξ 0,1, which at $76.23/MWh is lower than that of $79.30/MWh
for ξ . �

Illustrative Example 7.8 Sensitivity analysis of operational flexibility with respect
to volatility
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Fig. 7.11 Value functions with operational flexibility for α = 0.05, ρ = 0.10, σ = 0.20, I = 100,
S1,2 = 10, S2,1 = 10, H = 2.5, and F = 20

By varying the volatility parameter, e.g., between 0.15 and 0.35, we investigate
the sensitivity of the thresholds and the relative value of flexibility. In Fig. 7.12,
we show that higher volatility causes the thresholds to spread wider apart. Indeed,
greater uncertainty induces more hesitancy as the value of suspension from an active
state increases, but this value stems from the option value of keeping the discretion
to suspend alive. Likewise, from state 2, higher volatility increases the value of the
option to resume operations by moving to state 1. However, this also increases the
opportunity cost of exercising the option to resume operations, and, as a result, the
power company ismore cautious inmaking the operational change.As for the relative
value of flexibility, we plot in Fig. 7.13 the ratio of a0,1 from Eq. (7.24) to that from
Eq. (7.10) with respect to σ . It increases with volatility because, intuitively, more
uncertainty gives more value to the flexibility option. Here, the power company
would be willing to pay about 3% more for a power plant with such flexibility.
A similar analysis for a California-based distributed generation unit may be found
in [39]. �

7.4 Modularity and Capacity Expansion

Rather than investing in a power plant all at once, it may be desirable to make
incremental capacity additions. One motivation for modularizing adoption of the
power plant is that the power company may prefer to observe how the electricity
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Fig. 7.12 Sensitivity of ξ0,1, ξ1,2, and ξ2,1 with respect to σ with operational flexibility for α =
0.05, ρ = 0.10, I = 100, S1,2 = 10, S2,1 = 10, H = 2.5, and F = 20

price is unfolding and to match capacity to the needs to the market. For example,
technological advances have made it possible for small-scale modules, i.e., less than
300 MW, to be developed even for nuclear power plants [44]. By proceeding to add
capacity in an incremental manner, the power company may benefit from starting
cash flows sooner while adding larger modules later on [16]. Hence, although the
total investment costs of modular units may be higher than that of a single large
unit, these diseconomies of scale may be outweighed by the benefit from optimizing
capacity additions.

In order to explore such modular capacity expansion, we assume that the power
companymay invest in a power plant of total capacity K = K 1 + K 2 either directly or
sequentially.Without loss of generality, we assume that the capital cost from “lumpy”
investment, I , will be the same as the total capital cost from the modular approach,
i.e., I 1 + I 2, where I j is the capital cost of module j . This may be extended to treat
an arbitrary number of modules as well as operational flexibility. Thus, although
we ignore total economies of scale, we nevertheless have I 1

K 1 < I 2

K 2 , i.e., relative
diseconomies of scale in integrating the second module, which reflect difficulties
associated with modifying fixed infrastructure. This is similar to the assumption
made by [25, 40].

Figure7.14 illustrates the sequence of decisions that are possible under the direct
and modular investment strategies. In the former, the only possible transition is
between states 0 and 2. Proceeding backward, state 2 is one in which both modules
are active, i.e., the power company has a perpetually operating plant that outputs
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Fig. 7.13 Sensitivity of relative value of flexibility with respect to σ with operational flexibility
for α = 0.05, ρ = 0.10, I = 100, S1,2 = 10, S2,1 = 10, H = 2.5, and F = 20

K MWh of electricity per year and costs I to install. Thus, the value in state 2,
assuming that the electricity price follows a GBM as in Eq. (7.1), a heat rate of H , a
fuel price of F , and an exogenous discount rate of ρ, is:

W2(E) = K E

ρ − α
− KHF

ρ
. (7.28)

In state 0, the value function reflects simply the option to invest directly in such a
power plant. Consequently, by following the same argument as in Eqs. (7.4)–(7.5),
we have:

W d
0 (E) = ad0,1E

β1 . (7.29)

We let the d denote a “direct” investment strategywith the corresponding endogenous
ad0,1. Via value-matching and smooth-pasting conditions between the functions in
Eqs. (7.28) and (7.29), we obtain the optimal investment threshold price by following
the direct investment strategy:

ξ 0,2 =
(

β1

β1 − 1

)
(ρ − α)

[
I

K
+ HF

ρ

]
. (7.30)

Analogously, we have:
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Fig. 7.14 State-transition diagram for a power plant with two modules

ad0,1 = K
(
ξ 0,2

)1−β1

β1 (ρ − α)
. (7.31)

By contrast, with a modular investment strategy, the power company first invests
in a module of annual output K 1, i.e., going from state 0 to state 1. In state 1, its
value function includes not only the expected PV of cash flows from a module that
operates forever but also the option to upgrade to the second module. Thus, the value
function in state 1 is:

W1(E) = a1,1E
β1 + K 1E

ρ − α
− K 1HF

ρ
. (7.32)

Finally, the value function in state 0 reflects the option value to invest in the first
module with the subsequent option to acquire the second one:

W0(E) = a0,1E
β1 . (7.33)

Under the modular strategy, we need to solve for two investment thresholds, ξ 1,2 and
ξ 0,1, as well as a1,1 and a0,1. We obtain these via four value-matching and smooth-
pasting conditions:

W1
(
ξ 1,2

) = W2
(
ξ 1,2

) − I 2

⇒ a1,1ξ
1,2β1 + K 1ξ 1,2

ρ − α
− K 1HF

ρ
= K ξ 1,2

ρ − α
− K HF

ρ
− I 2 (7.34a)

W ′
1

(
ξ 1,2

) = W ′
2

(
ξ 1,2

)

⇒ β1a1,1ξ
1,2β1−1 + K 1

ρ − α
= K

ρ − α
(7.34b)
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W0
(
ξ 0,1

) = W1
(
ξ 0,1

) − I 1

⇒ a0,1ξ
0,1β1 = a1,1ξ

0,1β1 + K 1ξ 0,1

ρ − α
− K 1HF

ρ
− I 1 (7.34c)

W ′
0

(
ξ 0,1

) = W ′
1

(
ξ 0,1

)

⇒ β1a0,1ξ
0,1β1−1 = β1a1,1ξ

0,1β1−1 + K 1

ρ − α
. (7.34d)

The analytical solutions are:

ξ 1,2 =
(

β1

β1 − 1

)
(ρ − α)

[
I 2

K 2
+ HF

ρ

]
(7.35)

a1,1 = K 2
(
ξ 1,2

)1−β1

β1 (ρ − α)
(7.36)

ξ 0,1 =
(

β1

β1 − 1

)
(ρ − α)

[
I 1

K 1
+ HF

ρ

]
(7.37)

a0,1 = a1,1 + K 1
(
ξ 0,1

)1−β1

β1 (ρ − α)
. (7.38)

In comparing the solutions, we note that ξ 0,1 is independent of ξ 1,2. Indeed,
although the value in state 0 is affected by that of state 1 (since a0,1 depends on a1,1),
the timing of the investment in the first module is myopic, i.e., it is as if the second
module did not exist. This is due to the structure of the sequential decision-making
problem. Recall that the investment is delayed up to the point that the marginal ben-
efit of waiting equals the marginal cost of waiting. From Sect. 7.2, we know that the
former quantity is related to starting the plant at a higher price and reducing the dis-
counted investment cost. Meanwhile, the marginal cost of waiting is the opportunity
cost of not earning cash flows from an active power plant. Now with a subsequent
module, themarginal benefit ofwaiting additionally includes the discounted expected
marginal benefit (from having to wait less until the second module is installed after
the first one is adopted) and the discounted expected marginal cost (from having to
wait longer from the initial point until the option to install the secondmodule is avail-
able). These two extra marginal values cancel out, thereby rendering the effect of the
second module on the timing inconsequential. In order to examine the properties of
modularity, we next perform Illustrative Examples 7.9 and 7.10.



7.4 Modularity and Capacity Expansion 295

0 10 20 30 40 50 60 70 80 90 100
−600

−400

−200

0

200

400

600

800

1000

1200

1400

E [$/MWh]

V
al
ue

fu
nc

ti
on

s
[$
]

W2(E)− I1 − I2

Wd
0 (E)

Fig. 7.15 Value functions with direct investment strategy for α = 0.05, ρ = 0.10, σ = 0.20, I =
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Illustrative Example 7.9 Investment timing with modularity
Let α = 0.05, ρ = 0.10, I 1 = 40, I 2 = 60, K 1 = 0.5, K 2 = 0.5, H = 2.5, and

F = 20. Thus, I = 100 and K = 1.0, and σ is allowed to vary between 0 and 0.35.
First, Fig. 7.15 indicates the value functions with a direct investment strategy. Here,
investment occurs when the electricity price reaches a threshold of $79.30/MWh.
Second, in Fig. 7.16, we have the modular investment strategy. As expected, the
first module is adopted at a lower threshold, i.e., $78.31/MWh, than in the direct
investment strategy.A subsequent price increase to $81.95/MWh is required to trigger
adoption of the second module. �

Illustrative Example 7.10 Sensitivity analysis of modularity with respect to volatil-
ity

In performing sensitivity analysis, we examine how the thresholds change with
uncertainty in Fig. 7.17. As anticipated, all thresholds increase with uncertainty,
with those related to the modular investment strategy sandwiching the one for the
direct investment strategy. The relative value of flexibility from following a modular
approach is sketched out in Fig. 7.18. For the base case of α = 0.05, this relative
value is barely 0.1%. However, with a lower annualized percentage growth rate, it
can comprise nearly 5% of the project’s value. The reason is that a modular strategy
enables the power company to take advantage of revenues from the more economic
module even at relatively low prices before waiting for the right time to complete the
project. Finally, this relative value of modularity decreases with uncertainty since
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an increase in σ warrants delaying investment of any type. Hence, there is less dis-
crepancy between the direct and modular investment strategies. See [31, 38] for
applications of the modular investment approach to gas-fired power plants and dis-
tributed generation facilities, respectively. �

7.5 Continuous Capacity Sizing

Up to now, we have examined managerial discretion with respect to investment tim-
ing, operations, and modularity while assuming that the size of the completed power
plant is simply a constant parameter, K . In reality, the size of the power plant itself
may be a decision variable. Subject to land, permitting, and resource constraints, the
power companymay scale the plant’s capacity in order tomaximize profit.Depending
on the type of plant, the sizing decisionmay be considered continuous or discrete. For
example, in an analysis of distributed generation investment, [29] models gas-fired
units as having discrete capacity sizes with batteries and solar photovoltaic panels
having capacities that are continuous decision variables. Likewise, [2] examines the
optimal investment timing and capacity sizing problem of a run-of-river hydropower
plant inNorway by assuming that the scaling decision variable is continuous. By con-
trast, [14] treats the capacity sizing decision of a wind farm as a discrete one. Thus,
either assumption may be valid depending on the characteristics of the technology
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and siting constraints. In this section, we assume that the endogenous sizing deci-
sion is continuous and follow in the spirit of [6]. A discrete treatment of the sizing
decision is implemented in the next section.

As in previous sections, we assume that the power company has the discretion to
invest in a power plant at a time of its choosing after which it will earn a profit flow
that equals the stochastic revenue from electricity sales and a deterministic operating
cost. Now, in addition, the power company may also determine the size of the plant,
κ(E), which depends on the electricity price and is the solution to the following
now-or-never expected NPV maximization problem:

κ(E) ≡ argmax
K

[
E

ρ − α
− HF

ρ

]
K − I (K ). (7.39)

We assume increasing marginal construction costs because of land and material
restrictions, for example. Thus, the investment cost is:

I (K ) = AK B, (7.40)

where A > 0 and B > 1 are deterministic parameters.Consequently,with this convex
investment cost, the optimal capacity size is obtained by differentiating the right-hand
side of equation (7.39) with respect to K and setting it equal to zero:

E
ρ−α

− HF
ρ

− ABκ(E)B−1 = 0

⇒ κ(E) = max

{[
1
AB

(
E

ρ−α
− HF

ρ

)] 1
B−1

, 0

}
. (7.41)

Hence, the maximized expected now-or-never NPV is obtained via substitution of
Eq. (7.41) into the right-hand side of Eq. (7.39):

W1(E; κ(E)) − I (κ(E)) =

⎧⎪⎨
⎪⎩
0, if κ(E) = 0[

1
AB

(
E

ρ−α
− HF

ρ

)B
] 1

B−1 ( B−1
B

)
, otherwise.

(7.42)

W1(E; κ(E)) − I (κ(E)) indicates the maximized expected NPV of the power
plant given that it is optimal to construct immediately. However, besides this
sizing flexibility, the power company also has discretion over the investment timing.
As in previous sections, it is possible to show that the value of the option to invest
is:

W0(E) = a0,1E
β1 . (7.43)

We next determine the optimal investment threshold via value-matching and smooth-
pasting conditions between the functions in Eqs. (7.42) and (7.43):
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a0,1ξ
β1 =

[
ξ

ρ − α
− HF

ρ

] B
B−1

(
1

AB

) 1
B−1

(
B − 1

B

)
(7.44a)

β1a0,1ξ
β1−1 =

(
1

ρ − α

) [
ξ

ρ − α
− HF

ρ

] 1
B−1

(
1

AB

) 1
B−1

. (7.44b)

Although Eqs. (7.44a) and (7.44b) are highly nonlinear, it is possible to solve them
analytically for ξ :

ξ = (ρ − α)HFβ1(B − 1)

ρ (β1(B − 1) − B)
. (7.45)

Finally, by substituting ξ fromEq. (7.45) into Eq. (7.41), we obtain the optimal capac-
ity size at the investment threshold price:

κ(ξ) =
[

1

AB

HF

ρ

(
B

β1(B − 1) − B

)] 1
B−1

, (7.46)

where we must ensure that β1(B − 1) − B > 0.

Illustrative Example 7.11 Investment with continuous capacity sizing

In order to gainmore intuition about havingflexibility over capacity sizing,weper-
form numerical examples with the following parameter values: α = 0.01, ρ = 0.10,
A = 2.65 × 10−5, B = 2, H = 2.5, and F = 20. We allow the volatility, σ , to vary
between 0.01 and 0.10. The parameter A corresponds approximately to the invest-
ment cost of a typical gas-fired power plant. For example, the 430 MW CCGT
plant built in Aghada [41] cost $371 million. Since this is close to the capacity
cost of $876/kW assumed in Sect. 7.2, we use it to calculate a total investment cost
for this plant to be $377 million. By inserting this value into Eq. (7.40), we obtain
A = 377×106

(430×8760)2
= 2.65 × 10−5. Using these parameters, we obtain the value func-

tions given in Fig. 7.19. Here, the function W1(E; κ(E)) − I (κ(E)) represents the
maximized expected NPV of the power plant from Eq. (7.42). In other words, this
nonlinear function assumes that there is no discretion over the timing of the invest-
ment, but the capacity of the plant may be determined optimally as a function of the
current electricity price, E . This now-or-never capacity size, κ(E)

8760 , is illustrated in
Fig. 7.23 for different values of E and is linearly increasing as long as the electric-
ity price is high enough to cover the discounted operating costs. A doubling of A
simply reduces the optimal now-or-never capacity level. For this reason, the maxi-
mized expected NPV in Fig. 7.19 is bounded by zero. Taking the value of waiting
into account means that it is optimal to invest in the plant only when the price of
electricity hits the threshold ξ , which is $90/MWh in this case. Thus, the difference
between the functionsW0(E) andW1(E; κ(E)) − I (κ(E)) reflects the value of this
deferral option. Finally, the linear functionW1(E; κ(ξ)) − I (κ(ξ)) is one in which
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Fig. 7.19 Value functions with capacity sizing, σ = 0.10, and A = 2.65 × 10−5

there is no discretion over either investment timing or capacity sizing. As such, it
reflects the now-or-never expected NPV of investing in a power plant of optimal
capacity κ(ξ)

8760 = 1075 MW immediately. Consequently, since the firm has no subse-
quent flexibility over its decision-making, it is exposed to losses if the electricity price
decreases. Figure7.20 repeats this figure for a doubled marginal cost of investment,
i.e., A = 5.31 × 10−5. �

Illustrative Example 7.12 Sensitivity analysis of investmentwith continuous capac-
ity sizing with respect to volatility

We next conduct sensitivity analysis with respect to the volatility, σ . In Fig. 7.21,
we plot the optimal investment threshold price, ξ , and note that it increases monoton-
ically. Interestingly, it is independent of the A parameter, i.e., a higher marginal cost
of capacity will not affect the optimal timing of investment. This is also evident
analytically from Eq. (7.45). The explanation for this result is provided by what hap-
pens to the optimal capacity size. In Fig. 7.22, we plot both the optimal capacity
size, κ(ξ)

8760 , and the now-or-never capacity size,
κ(E)

8760 , at the current electricity price of
$50/MWh as given in Eqs. (7.46) and (7.41), respectively, for two levels of A. Since
the now-or-never decision is independent of the volatility, it is constant for all values
of σ at 119.45 MW (and 59.72 MW for the higher value of A). By contrast, optimal
capacity sizing is based on waiting until the electricity price hits ξ and building a
power plant of the appropriate size. For σ = 0.10, this is 1075 MW (and 537.50
MW for the higher value of A). Hence, as uncertainty increases, it is optimal to
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Fig. 7.22 Optimal capacity size as a function of volatility, σ

wait longer and to build a larger plant, but the impact of a higher marginal cost of
capacity expansion is absorbed into the sizing decision only and leaves the optimal
investment threshold unchanged. Finally, Fig. 7.23 plots the now-or-never capacity
size, κ(E)

8760 , from Eq. (7.41) as a function of the current electricity price to indicate the
linear dependence as long as the price is high enough to cover operating costs. �

7.6 Mutually Exclusive Technologies

In the previous section, we assumed that it is possible to determine the size of the
power plant endogenously as a continuous variable. While this supposition may be
valid for certain types of facilities, it does not hold for those that are available only
in discrete capacity sizes. For example, wind turbines and nuclear reactors cannot
be scaled continuously. Likewise, even smaller gas-fired generators are typically
optimized for performance and are available in discrete sizes [29]. Thus, in choosing
capacities [14] or between different technologies [37, 43], it is also desirable to
consider mutually exclusive discrete alternatives from the viewpoint of real options.

In this context, [11] proposes a simple adjustment to the standard real options
treatment of investment under uncertainty when considering any finite number of
discrete investment opportunities under uncertainty. For example, with two projects,
j = 1, 2, of discrete size as given in Fig. 7.24, [11] would proceed as follows:
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1. Find the optimal investment thresholds, ξ j , along with the endogenous coeffi-
cients, a j

0,1, from independent real options analysis of each alternative.

2. Let j∗ ≡ argmax
j

{
a j
0,1

}
be the project with the higher option value coefficient.

3. If the current price, E , is less than project j∗’s threshold, ξ j∗ , then wait for the
threshold ξ j∗ to be hit and invest in project j∗; otherwise, if E > ξ j∗ , then invest
immediately in the project with the highest expected NPV, W j (E) − I j .

This procedure seems sensible, but it can break down when the option value coeffi-
cient for the smaller project is higher than that for the larger project, i.e., a10,1 > a20,1,
and the initial electricity price is equal to the indifference level between the two
NPVs. In such a situation, [11] would suggest tossing a coin to break the tie. How-
ever, given the uncertainty in the electricity price, it seems intuitive that waiting for
more information would be optimal in such a situation.

Following this line of reasoning, [7] allows for the value of the option to invest to be
discontinuous, i.e., dichotomous with an upper branch that straddles the indifference
point, Ẽ , at which the two projects’ expected NPVs are equal. Specifically, if we let
the now-or-never expected NPV of project j = 1, 2 be defined as:

W j
1 (E) − I j = K j E

ρ − α
− K j H j F

ρ
− I j . (7.47)

In order to have a tradeoff between the two projects, we assume that K 2 > K 1 and
I 2 > I 1 such that I 1/K 1 < I 2/K 2. Without loss of generality, we set H 1 = H 2.
Thus, the power company has a mutually exclusive choice between a smaller but
relatively less costly (plant 1) or a large but relatively more costly (plant 2) option
along with the right to determine the timing of the investment decision. By setting
the expected NPVs of the two projects equal to each other, we find the indifference
point:

Ẽ = (ρ − α)

ρ

[
ρ

(
I 1 − I 2

) + F
(
K 1H 1 − K 2H 2

)
K 1 − K 2

]
. (7.48)

If we do a real options analysis of each project j independently, i.e., assuming
that the other project does not exist, then we obtain the usual optimal investment
threshold prices and endogenous coefficients via value-matching and smooth-pasting
conditions:

ξ j =
(

β1

β1 − 1

)
(ρ − α)

ρ

[
H j F + I j

K j

]
(7.49)

a j
0,1 = K j

(
ξ j

)1−β1

β1 (ρ − α)
. (7.50)
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Hence, the independent value of the option to invest in project j is simply

W j
0 (E) = a j

0,1E
β1 . (7.51)

The procedure in [7] for dealing with such mutually exclusive investment oppor-
tunities is as follows:

1. Order the projects by their capacities.
2. Find a j

0,1 for each project j .
3. If a10,1 ≤ a20,1, then the value of the option to invest will not be dichotomous

because the larger project dominates the smaller one. In this case, the value of the
investment opportunity is simplyW0(E) = W 2

0 (E), i.e., project 1 can effectively
be ignored.

4. If a10,1 > a20,1, then the value of the option to invest will have two waiting regions:

a. E ∈ [0, ξ 1), which involves waiting for the price to increase until it is optimal
to invest in project 1.

b. E ∈ (ξ L , ξ R), which involves waiting for the price to decrease (increase)
until it is optimal to invest in project 1 (2).

The value of the investment opportunity is thus:

W0(E) =
{
a10,1E

β1 , if E ∈ [0, ξ 1)

aREβ1 + aL Eβ2 , if E ∈ (ξ L , ξ R).
(7.52)

Thus, the dichotomous value function in Eq. (7.52) is defined over two ranges.
Although ξ 1 and a10,1 are known, the thresholds, ξ

L and ξ R , as well as the coefficients,
aL and aR , must be found endogenously via value-matching and smooth-pasting
conditions between the second branch of W0(E) in Eq. (7.52) and W j

1 (E) − I j as
follows:

W0(ξ
L) = W 1

1 (ξ L) − I 1

⇒ aR
(
ξ L

)β1 + aL
(
ξ L

)β2 = K 1ξ L

ρ−α
− K 1H 1F

ρ
− I 1 (7.53a)

dW0(E)

dE

∣∣∣
E=ξ L

= dW 1
1 (E)

dE

∣∣∣
E=ξ L

⇒ β1aR
(
ξ L

)β1−1 + β2aL
(
ξ L

)β2−1 = K 1

ρ−α
(7.53b)

W0(ξ
R) = W 2

1 (ξ R) − I 2

⇒ aR
(
ξ R

)β1 + aL
(
ξ R

)β2 = K 2ξ R

ρ−α
− K 2H 2F

ρ
− I 2 (7.53c)
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dW0(E)

dE

∣∣∣
E=ξ R

= dW 2
1 (E)

dE

∣∣∣
E=ξ R

⇒ β1aR
(
ξ R

)β1−1 + β2aL
(
ξ R

)β2−1 = K 2

ρ−α
. (7.53d)

The system in Eqs. (7.53a)–(7.53d) is highly nonlinear and must be solved numeri-
cally. As in Sect. 7.3, guesses for the four unknowns are required. Reasonable guesses

for ξ L and ξ R are ξ 1+Ẽ
2 and ξ 2, respectively. Likewise, a guess for aR may be obtained

by dropping the β2aL
(
ξ R

)β2−1
term in smooth-pasting Eq. (7.53d) to solve explicitly

for the remaining option value coefficient. This may be substituted into the remaining
smooth-pasting Eq. (7.53b) to obtain a guess for aL .

Illustrative Example 7.13 Mutually exclusive investment with high volatility

In order to illustrate how the waiting region may be dichotomous, we perform a
numerical example with ρ = 0.04, α = 0, K 1 = 1, K 2 = 2.9, I 1 = 100, and I 2 =
900.Without loss of generality, we set F = 0 and allow σ to range from 0.05 to 0.30.
In other words, plant 2 is almost three times as large but has an investment cost that is
nine times as high as that of plant 1.Note that these parameter values are different from
those in Sect. 7.2 in order to obtain a nontrivial result with a10,1 > a20,1 for low values
of volatility. Figure7.24 illustrates that the two projects may be analyzed separately
for a relatively high value of σ , i.e., 0.30. Here, it is clear that a10,1 < a20,1, because
W 2

0 (E) > W 1
0 (E). Thus, the optimal strategy is simple: the power company should

disregard plant 1 and wait for the electricity price to hit the threshold ξ 2 = 34.30.
The corresponding value functions are indicated in Fig. 7.25. �

Illustrative Example 7.14 Mutually exclusive investment with low volatility

With a relatively low level of volatility, e.g., σ = 0.15, we have a10,1 > a20,1.
Consequently, the waiting region becomes dichotomous with an upper region
around the indifference price, Ẽ = 16.84. This upper waiting region, reflected by
aREβ1 + aL Eβ2 , extends from ξ L = 11.89 to ξ R = 21.71. For comparison, we have
ξ 1 = 6.76 and ξ 2 = 20.97. Figure7.26 shows that the lower portion of the W0(E)

function is precisely W 1
0 (E). �

Illustrative Example 7.15 Sensitivity analysis of mutually exclusive investment
with respect to volatility

As σ is varied, we obtain waiting and immediate investment regions for the two
plants considered together in Fig. 7.27. For σ ≤ 0.21, it is impossible to disregard
plant 1, and the dichotomous value of waiting must be considered. For example,
with σ = 0.15, there are lower and upper waiting regions. In the former, the power
company shouldwait until the electricity price increases to ξ 1 before investing imme-
diately in plant 1. By contrast, in the latter, the power company may end up investing
in either plant 1 (if the price drops to ξ L ) or plant 2 (if the price increases to ξ R).
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However, if the current electricity price is in the range [ξ 1, ξ L ] or [ξ R,∞), then it
is optimal to invest immediately in plant 1 or 2, respectively. The MATLAB code in
Sect. 7.10 solves the nonlinear system inEqs. (7.53a)–(7.53d) andgenerates Fig. 7.27.
As [7] illustrates using a similar numerical example, the percentage gain from opti-
mally delaying investment at the indifference price relative to investing immediately
as suggested by [11] may be substantial. In our example, it will be 18.31% for
σ = 0.15. Finally, this mutually exclusive analysis may be extended to allow for
switching options as in Sect. 7.4, i.e., having the right to switch from plant 1 to 2
[14], or allowing for subsequent improvement in the performance of one of the two
plants [37]. �

7.7 Risk Aversion

In previous sections of this chapter, we assumed that the decisionmaker, i.e., typically
a power company, is risk neutral because its objective is to maximize expected profit.
While this may be justified if the standard assumptions of finance, viz., complete
markets, hold and risk may be diversified by holding a portfolio of freely traded
assets, such a suppositionmay not hold in practice. For example, besides market risk,
power companies in the electric power industry may be exposed to heterogenous
risk stemming from technological uncertainty associated with R&D in renewable
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energy technologies or the possibility of a change in policy support. Moreover, some
municipally owned power companies may be inherently risk averse since they are
answerable to a more conservative class of investor. Either way, it would be desirable
to expand the framework for analysis to permit the decision maker to be risk averse
when solving optimal timing or technology choice problems.

Taking the perspective of [19], we embed a utility function into the real options
framework in order to examine how a risk-averse investor may make decisions under
uncertainty with the deferral option. In the economics literature, constant relative
risk aversion (CRRA) is a standard workhorse for both its analytical tractability and
its desirable property that the fraction of wealth placed in a risky (as opposed to risk-
free) asset by a decision-maker is independent of the initial level of wealth [33].10 In
particular, the CRRAutility functionwith relative risk aversion parameter 0 ≤ γ ≤ 1
has the form:

U (E) =
{

E1−γ

1−γ
, if 0 ≤ γ < 1

ln E, otherwise.
(7.54)

Hence, as a concave function, U (E) captures the risk aversion of a conservative
investor.

One difficulty with incorporating the CRRA utility function is the treatment of
the operating costs. This is because the function is not separable in E and HF, i.e.,
U (E − HF) �= U (E) − U (HF). Since we would like to avoid working with a
function of the form (E−HF)1−γ

1−γ
, we decompose the cash flows using the approach of

[4], in which operating costs are also included in a risk-averse analysis of real options
decision making. Suppose that at the current time, i.e., t = 0, the power company has
set aside all of the cash that it will need to pay for a power plant of nominal annual
output 1MWh thatwill cost I to build andwill incur operational costs ofHF perMWh
of electricity generated. If the power plant operates forever after construction, then
its discounted investment and operational costs are I + HF

ρ
(assuming a subjective

discount rateρ). This lump sum is assumed to be sitting in an interest-bearing account
earning the same discount rate until the plant is constructed at optimal time τ , which

implies an instantaneous cash flow of ρ
(
I + HF

ρ

)
. Consequently, the discounted

(to time 0) utility of the cash flows from this lump sum is
∫ τ

0 e−ρtU (HF + ρ I ) dt .
Given that the power plant starts to earn revenues, Et , at time τ that follow a GBM,
the time-zero discounted expected utility of the cash flows is:

∫ τ

0
e−ρtU (HF + ρ I ) dt + EE

[∫ ∞

τ

e−ρtU (Et ) dt

]
, (7.55)

where E is the electricity price at t = 0. Now, since the first term in Eq. (7.55) may
be reexpressed as

∫ ∞
0 e−ρtU (HF + ρ I ) dt − ∫ ∞

τ
e−ρtU (HF + ρ I ) dt , we can

10The CRRA utility function is itself a special case of the hyperbolic absolute risk aversion (HARA)
class employed in studies of investor behavior.



310 7 Deciding on Alternative Investments: A Real Options Approach

de facto decompose the cash flows as follows:

∫ ∞

0
e−ρtU (HF + ρ I ) dt + EE

[∫ ∞

τ

e−ρt {U (Et ) − U (HF + ρ I )} dt
]

.

(7.56)

From the law of iterated expectations and the strong Markov property of the
GBM,11 the conditional expectation in Eq. (7.56) may be rewritten as follows:

EE
[∫ ∞

τ
e−ρt {U (Et ) − U (HF + ρ I )} dt]

= EE
[
e−ρτ

EEτ

[∫ ∞
0 e−ρt {U (Et ) − U (HF + ρ I )} dt]] . (7.57)

Since the first term in Eq. (7.56) is a constant, it may be ignored in determining the
optimal time to invest. Thus, Eq. (7.57) is the discounted (to time t = 0) expected
utility of cash flows from a power plant that becomes active at τ and operates forever.
Intuitively, the inner conditional expectation’s independence from E means that the
two expectations may be separated as follows:

EE

[
e−ρτ

EEτ

[∫ ∞

0
e−ρt {U (Et ) − U (HF + ρ I )} dt

]]

=EE
[
e−ρτ

]
EEτ

[∫ ∞

0
e−ρt {U (Et ) − U (HF + ρ I )} dt

]

= EE
[
e−ρτ

] [
β1β2U (Eτ )

ρ (1 − β1 − γ ) (1 − β2 − γ )
− U (HF + ρ I )

ρ

]
. (7.58)

In moving from the second to the third line of Eq. (7.58), we use Theorem 9.18 from
[24], which finds a closed-form expression for the conditional expectation of an
integral of a function of a Brownian motion. Here, β1 > 1 and β2 < 0 are again the
positive and negative roots, respectively, of the characteristic quadratic function in
Eq. (7.8). Hence, the value of the investment opportunity for a risk-averse decision-
maker may be formulated as the solution to the following optimal stopping-time
problem:

W0(E) = sup
τ

EE
[
e−ρτ

] [
β1β2U (Eτ )

ρ (1 − β1 − γ ) (1 − β2 − γ )
− U (HF + ρ I )

ρ

]
. (7.59)

Using the fact that the conditional expectation of the stochastic discount factor is

of power form, i.e.,EE
[
e−ρτ

] =
(

E
Eτ

)β1

, as shown on page 315 of [12], and letting ξ

denote the optimal threshold price, we can recast the optimal stopping-time problem
in Eq. (7.59) as the following unconstrained nonlinear maximization problem:

11These effectively imply that price values after τ are independent of the values before τ and depend
only on the value of the process at τ .
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W0(E) = max
ξ≥E

(
E

ξ

)β1
[

β1β2U (ξ)

ρ (1 − β1 − γ ) (1 − β2 − γ )
− U (HF + ρ I )

ρ

]
.

(7.60)

Taking the first-order necessary conditionwith respect to ξ , we obtain the following:(
E
ξ

)β1
β1β2ξ

−γ

ρ(1−β1−γ )(1−β2−γ )

−β1

(
E
ξ

)β1
(
1
ξ

) [
β1β2ξ

1−γ

ρ(1−β1−γ )(1−β2−γ )(1−γ )
− (HF+ρ I )1−γ

ρ(1−γ )

]
= 0. (7.61)

Solving Eq. (7.61), we obtain the following optimal investment threshold price:

ξ =
(

β2 + γ − 1

β2

) 1
1−γ

(HF + ρ I ) . (7.62)

Note that although investment thresholds are typically expressed in terms of β1, e.g.,
as in Sect. 7.2, here it is more expedient to use β2. Using the fact that β1β2 = − 2ρ

σ 2 , it
can also be verified that ξ is the same as the investment threshold under risk neutrality
from Eq. (7.13) for γ = 0. Although we have a closed-form expression for the opti-
mal investment threshold under risk aversion, it is possible to prove analytically that
the threshold increases with both volatility and risk aversion as one would expect.
However, the proofs are tedious and are carried out in full in [4]. Intuitively, it is impor-
tant to stress that both volatility and risk aversion increase the optimal investment
threshold price but for vastly different reasons: greater uncertainty delays investment
because the value of waiting for more information increases, thereby also increasing
the opportunity cost of exercising the option to invest. By contrast, since greater
risk aversion lowers the inherent payoff of an active power plant, it also reduces the
marginal cost of delaying investment, which consists exclusively of stochastic cash
flows, by more than the marginal benefit (see [4] for a rigorous proof).

Illustrative Example 7.16 Investment under uncertainty with risk aversion

In order to illustrate the properties of optimal investment with a deferral option
from the perspective of a risk-averse power company, we perform numerical exam-
ples with the following parameter values: ρ = 0.1, α = 0.05, H = 2.5, F = 20,
I = 100, σ = 0.20, and γ ∈ [0, 1). These are the same values as in Sect. 7.2 for
ease of comparison. Indeed, when γ = 0, all results collapse to the risk-neutral
ones. In Figs. 7.28 and 7.29, we draw the expected utility functions for γ = 0.25
and γ = 0.75, respectively, corresponding to the expression in Eq. (7.58). Notice
that the curves denoted by β1β2U (E)

ρ(1−β1−γ )(1−β2−γ )
− U (HF+ρ I )

ρ
are concave, as is to be

expected for a risk-averse decision-maker. The value of the option to invest given
this attitude toward risk is reflected by the curves W0(E) as defined in Eq. (7.60).
Although they are convex and always nonnegative, compared to the corresponding
curve in Fig. 7.4, the value of the option to invest has been eroded. Furthermore, the
investment threshold is slightly higher, i.e., ξ = 80.04 and ξ = 81.76 for γ = 0.25
and γ = 0.75, respectively, compared with ξ = 79.30 for the risk-neutral case. �
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Fig. 7.28 Value of investment opportunity and expected utility of NPV for γ = 0.25

Illustrative Example 7.17 Sensitivity analysis of investment thresholdswith respect
to relative risk aversion and volatility

In Fig. 7.30, the optimal investment thresholds are indicated for various levels
of relative risk aversion and volatility. As discussed, greater risk aversion increases
the optimal investment threshold because of the lower valuation of the power plant.
Thus, in order to justify investment, a higher trigger price is required. Although
greater uncertainty also increases the optimal investment threshold price, it does so
for a different reason, i.e., the higher value of waiting. These two parameters interact
in order to increase the threshold yet further. �

Illustrative Example 7.18 Sensitivity analysis of the value of the investment invest-
ment opportunity with respect to relative risk aversion and volatility

Figure7.31 assesses the extent to which risk aversion affects the valuation of
the investment opportunity at some arbitrary common initial electricity price (here,
E = 50). In particular, we plot the ratio ofW0(E) fromEq. (7.60) (with risk aversion)
to that from Eq. (7.10). When γ = 0, the ratio is simply one, but it decreases rapidly
as γ increases. For example, this ratio becomes just 0.25 for γ = 0.25 and drops
thereafter to only 0.02 for γ = 0.75. A higher volatility exacerbates this reduction,
whereas a lower volatility has the opposite effect. �
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Fig. 7.31 Value of investment opportunity relative to a risk-neutral case as a function of relative
risk aversion, γ , and volatility, σ , at initial electricity price, E = 50

7.8 Summary and Extensions

In this chapter, we address discretion over investment timing, technology choice,
and capacity from the perspective of a single power company facing uncertainty in
the electricity price. We also investigate how the optimal decision would change if
the company were risk averse or could modularize its investment. Throughout, we
model uncertainty using a GBM and assume a simple proposition for investment in
order to facilitate analytical tractability from which we could formalize managerial
insights. For example, we show how operational flexibility is used to increase the
value of the investment opportunity while also lowering the optimal threshold price
vis-à-vis the case without operational flexibility. Assessment of such flexibilities,
and indeed others involving investment strategies or capacity sizing, would not be
possible from the traditional now-or-never NPV approach to decision making.

Specifically, we begin by discussing the limitations of the now-or-never NPV
approach in Sect. 7.1. When applied correctly, it can provide insights about opti-
mal investment timing since the maximized NPV is the upper envelope of several
mutually exclusive projects, each starting at a different point in time. However, since
only discrete time points are considered, it is cumbersome to analyze every conceiv-
able starting date for a given project. Furthermore, it is impossible to distinguish
between two power plants of the same capacity that have different levels of opera-
tional flexibility. In order to overcome these limitations with the now-or-never NPV
approach, the real options methodology is developed in Sect. 7.2. Using an elegant
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continuous-time approach, it solves the optimal investment timing problem as a sto-
chastic dynamic program. Under the assumption of a GBM for the electricity price,
a closed-form solution for the optimal investment threshold price is obtained, which
facilitates comparison with the now-or-never NPV threshold to show that the real
options approach recommends postponing investment precisely because of the value
of waiting. Thus, unlike the now-or-never NPV approach, the real options approach
detects the effect of increased uncertainty on the opportunity cost of killing the
discretion to wait for more information. Somewhat paradoxically, the real options
approach attributes a higher value to the investment opportunity even as it recom-
mends more caution in pulling the investment trigger. This so-called hysteresis in
making decisions involving fixed costs is present in many real-world decisions, e.g.,
farming and unemployment [5, 10]. Empirical work to detect its effects is relatively
new, but a study of small run-of-river hydropower plants in Norway tries to examine
how uncertainty in government subsidies for renewable energy technologies affected
investment timing [26].

Besides tackling the issue of investment timing,we consider operational flexibility
in Sect. 7.3. Such embedded options to change the operating status of the power
plant in response to fluctuations in market conditions after the initial investment
decision surely affects not only the value of the initial opportunity but also the
optimal investment threshold. We show how to handle such operational flexibility
by first using backward induction to value an active power plant that may switch
between active and idle states. Next, we use the value of an active plant to determine
the value of the investment opportunity and find that the added flexibility lowers the
investment threshold while increasing the option value of investing. Furthermore,
the value of this operational flexibility is shown to increase with volatility. Rather
than having two operating states, it may be possible to have an arbitrary number
or a continuous scale of output captured by a production function (see Chap.6 of
[12]). In a similar vein, Sect. 7.4 examines the possibility of building a power plant in
stages. Although the modular investment strategy is always worth more and results
in a lower initial threshold price for investment, somewhat surprisingly, the relative
value of modularity decreases with uncertainty. This is because greater uncertainty
makes it desirable to delay investment of any kind.

We also investigate the possibility of selecting the size of the power plant as
an endogenous variable while also considering the deferral option. In Sect. 7.5, the
capacity sizing decision is treated as continuous. Here, we again use backward induc-
tion to determine first the optimal size of the plant given that it was optimal to proceed
with investment. The optimal size is a monotonic function of the electricity price and
is subsequently substituted into the expected NPV function over which the opti-
mal timing analysis is performed. We find that greater uncertainty leads to higher
installed capacity simply because it is also beneficial to delay investment. By contrast,
in Sect. 7.6, we consider mutually exclusive plants of discrete sizes. These could also
be interpreted as competing technologies. Unlike the previous analyses, we show that
it may be optimal to have a second waiting region around the indifference point of
the two projects’ expected NPVs, thereby rendering the option value dichotomous.
This is particularly likely to occur for relatively low values of uncertainty. Finally,
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in Sect. 7.7, we relax the assumption of a risk-neutral power company to take the
perspective of a risk-averse decision maker, e.g., a municipal authority. We recast
the real options problem as an optimal stopping-time problem with a concave utility
function driving the investment decision. As expected, greater risk aversion makes
the investor more cautious and, thus, increases the investment threshold price.

Clearly, it is straightforward to develop real options models to analyze investment
projects in the electricity industry that have two or more of the aforementioned char-
acteristics. For example, [14] combines mutually exclusive wind turbine investment
opportunities with the possibility of a follow-on project after the initial installation
reaches the end of its lifetime. However, there are three areas for further analysis that
have not been covered in this chapter. First, we have used investment in a single power
plant (ormutually exclusive alternatives) as amotivating example. However, analysis
of investment in transmission lines from a real options perspective would also be suit-
able as long as their peculiarities are taken into account. One such complication is the
fact that transmission lines may take on the order of a decade to plan and construct
as opposed to two to three years for most fossil-fueled power plants. Thus, neither
the lead time nor the uncertainty involved in the planning process may be neglected.
Given this background, [36] models uncertainty in the initial regulatory decision as
a function of the market uncertainty. Their motivation is Hydro-Québec’s proposal
to construct an interconnection to the neighboring province of Ontario. In this work,
although higher benefits from constructing the line will result in a higher proba-
bility of regulatory approval, there is still uncertainty in the authorization process.
Another complication with assessing transmission investment is that the construc-
tion of an interconnection may change the very nature of the anticipated cash flows,
i.e., the transmission owner’s profit from collecting congestion rents on the new line
[18, 23]. In considering the mutually exclusive option to build interconnections of
various sizes between Norway and Germany, [13] addresses the impact that such
a link would have on the nodal price differences in the connecting regions of the
two countries. Consequently, these authors first run a bottom-up model to estimate
the impact that such transmission links will have on the electricity price differences
before incorporating them into the real options analysis.

A second facet that we have not covered in this chapter is real options analysis
with two or more sources of uncertainty. Such a consideration may be important
because in addition to the electricity, the cost of investment and the price of fuel may
be stochastic along with other parameters, e.g., government subsidies for renewable
energy technologies. Recall that with a single source of uncertainty, we end up solv-
ing an ODE. Analogously, with multiple uncertain factors, we can follow a similar
valuation procedure using stochastic dynamic programming to obtain a partial dif-
ferential equation (PDE). In general, PDEs are difficult to solve analytically because
a free boundary rather than an optimal trigger must be obtained endogenously. Under
certain conditions, e.g., when the payoff of the project is homogeneous in the under-
lying stochastic parameters, the resulting PDE may be reduced to an ODE through
the use of a numéraire. For example, if the expected NPV of a power plant effec-
tively depends on the relative value of the electricity price and investment cost, then
their ratio is what ultimately drives the investment strategy. This dimension-reducing
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technique is outlined in [12, 30] (see Chap. 6). However, in general, homogeneity
may not hold, e.g., when it is the electricity price and fuel price that are uncertain with
a deterministic investment cost. In that case, the expected NPV of the plant cannot
be expressed via a numéraire, and an analytical procedure to solve the resulting PDE
is required. By guessing at a solution of the power form (when the underlying uncer-
tainties followGBMs), [1] shows rigorously how to obtain quasi-analytically the free
boundary and related coefficients. This approach has been applied to problems in
the energy sector, e.g., investment in carbon capture and sequestration technologies
[17, 34].

A third and final main feature of real options analysis that we have not included
in this chapter is game-theoretic interactions. Indeed, given that most liberalized
electricity industries have a few large power companies, they can effectively exercise
market power through their investment and operational decisions. How does this
rivalry affect the timing of investment decisions? In a game-theoretic model without
uncertainty, [15] finds an equilibrium between two firms in which there is a strategic
incentive for one to preempt the other. This model is extended by [21] in the context
of a duopoly to the case with uncertainty in which the decision-analytic incentive to
delay investment interacts with the strategic incentive to preempt one’s rival. These
authors find that depending on parameter values, e.g., volatility, growth rate, and
the relative market share of the firm that moves first, either collusive or preemptive
equilibria may arise. In the context of electricity industries, [42] uses this framework
to analyze a game between a nuclear and a gas-fired power plant. They find that the
operational flexibility of the latter makes it more likely to be the leader, especially in
cases of high price volatility. In order to gain policy insights for the United Kingdom
electricity market, which has nearly 40% of its installed capacity based on natural
gas as of 2011, [3] sets up a similar duopoly model involving a renewable energy
plant and a gas-fired power plant. These authors find that the “natural hedge” of the
latter (in terms of being a price setter) gives it a built-in advantage over the former,
thereby stymieing policy objectives to increase the share of renewables. However,
they demonstrate that a policy measure such as a CO2 price floor can reduce the
value of the gas-fired power plant’s operational flexibility and, thus, make it more
likely for the renewable energy plant to be the leader.

7.9 End-of-Chapter Exercises

7.1 Prove that the optimal investment threshold in Eq. (7.13) increases with uncer-
tainty. It may be easier to prove implicitly that β1 decreases with uncertainty first,
i.e., ∂β1

∂σ
< 0. In order to do this, differentiate the characteristic quadratic function in

Eq. (7.8) totally and evaluate it at β = β1 to obtain ∂Q
∂β

∂β1

∂σ
+ ∂Q

∂σ

∣∣∣
β=β1

= 0.

7.2 Re-work the real options analysis of Sect. 7.2 by assuming that the profit flowcan
be modeled directly as Xt = Et − HF . Use a simple Brownian motion for the profit

http://dx.doi.org/10.1007/978-3-319-29501-5_6
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flow, i.e., dXt = αdt + σdzt . Show that the value of the investment opportunity
is W0(X) = a0,1eη1X , where η1 is the positive root of 1

2σ
2η2 + αη − ρ = 0, ξ =

1
η1

+ I − α
ρ
, and a0,1 = e−η1ξ

ρη1
.

7.3 In the model of operational flexibility from Sect. 7.3, prove that the optimal
switching thresholds, ξ 1,2 and ξ 2,1, from Eqs. (7.21a)–(7.22b) converge to HF as
S1,2 → 0 and S2,1 → 0.

7.4 After investment, an abandonment option can also be modeled. For example,
in the modular investment model of Sect. 7.4, state 3 may represent the value of an
abandoned plant, i.e., with W3(E) = 0 and fixed cost I 3 > 0. Set up and solve the
problem in which it is possible to abandon the power plant only from state 2 with
I 3 = 10. How does the solution change if it is possible to abandon the plant from
either state 1 or state 2?

7.5 With continuous capacity sizing, operational flexibilitymay also affect the initial
investment timing and scaling decisions. Re-work the model of Sect. 7.5 to allow for
costless operational flexibility. In particular, assume that an active power plantmay be
shut down and restarted at any time. Thus, the expected NPV of an active power plant

of size K isW1(E; K ) = K
[

E
ρ−α

− HF
ρ

]
+ a1,2(K )Eβ2 , whereas the expected NPV

of a suspended plant of size K isW2(E; K ) = a2,1(K )Eβ1 . Use value-matching and
smooth-pasting conditions between these two functions at E = HF to determine the
coefficients a1,2(K ) and a2,1(K ). Next, determine the optimal capacity size by max-
imizingW1(E; K ) − I (K )with respect to K . Finally, use this maximized expected
NPV, W1(E; κ(E)) − I (κ(E)), to determine the optimal investment threshold, ξ ,
and capacity, κ(ξ).

7.6 In the model of mutually exclusive technology choice from Sect. 7.6, how
would you modify the value function of technology 1 to allow for a subsequent
switching option to technology 2? Show that its value function will be of the
form W 1

1 (E) = K 1E
ρ−α

− K 1H 1F
ρ

+ a1,2Eβ1 , where ξ 1,2, the optimal switching thresh-
old from technology 1 to 2, and a1,2 will be determined via value-matching and
smooth-pasting conditions between W 1

1 (E) − I 1 − I 2 and W 2
1 (E) − I 2.

7.7 Show that the optimal investment threshold price under risk aversion from
Eq. (7.62) converges to the risk-neutral threshold of Eq. (7.13) as γ → 0.

7.10 MATLAB Codes

Here, we present MATLAB codes for solving selected examples numerically. The
following code solves Illustrative Example 7.7 to analyze optimal investment timing
with operational flexibility.
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1 % Real options treatment of the investment timing
problem

2 % with operational flexibility
3 rho =0.1;
4 alpha =0.05;
5 H=2.5;
6 F=20;
7 I=100;
8 sigmastart =0.15;
9 E=50;
10 S12 =10; % Cost of switching from state 1 to state 2
11 S21 =10; % Cost of switching from state 2 to state 1
12 interplot=zeros (1,5);

14 for kk =1:+1:21;
15 sigma=sigmastart +0.01*(kk -1)
16 beta1 = 0.5 - alpha/sigma^2 + ...
17 sqrt ((0.5- alpha/sigma ^2) ^2+2* rho/sigma ^2);
18 beta2 = 0.5 - alpha/sigma^2 - ...
19 sqrt ((0.5- alpha/sigma ^2) ^2+2* rho/sigma ^2);
20 e =0:+0.001:100;
21 % Guesses for investment and switching

thresholds
22 xi010 = (beta1/(beta1 -1))*(rho -alpha)*(H*F+rho*

I)/rho;
23 xi120 = (beta2/(beta2 -1))*(rho -alpha)*(H*F/rho -

S12);
24 xi210 = (beta1/(beta1 -1))*(rho -alpha)*(H*F/rho+

S21);
25 a010=xi010^(1-beta1)/( beta1*(rho -alpha));
26 a120=-xi120^(1-beta2)/(beta2*(rho -alpha));
27 a210=xi210^(1-beta1)/( beta1*(rho -alpha));
28 % Initial guess for operational decisions
29 vars0 = [a120 a210 xi120 xi210];
30 % Specify options for fsolve
31 opts=optimset(’fsolve ’);
32 opts=optimset(opts ,’Maxiter ’,2000,’Tolx ’,...
33 1e-6,’tolfun ’,1e-6);
34 %***************************************
35 %* next instruction calls funtion fffROinvof.m*
36 %***************************************
37 vars = fsolve(@fffROinvof ,vars0 ,opts ,...
38 beta1 ,beta2 ,alpha ,H,F,rho ,S12 ,S21);
39 a12 = vars (1);
40 a21 = vars (2);
41 xi12 = vars (3);
42 xi21 = vars (4);
43 z=@(y)(beta1 -beta2)*a12*y.^ beta2 +...
44 (beta1 -1)*y/(rho -alpha)-beta1*(H*F/rho+I);
45 xi01=fzero(z, xi010);
46 a01=( beta2/beta1)*a12*xi01^(beta2 -beta1)+...
47 xi01^(1-beta1)/( beta1*(rho -alpha));
48 e1=xi12 :+0.001:100;
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49 e2 =0:0.001: xi21;
50 e0 =0:0.001: xi01;
51 W1=a12*e1.^ beta2+e1/(rho -alpha)-H*F/rho;
52 W2=a21*e2.^ beta1;
53 W0=a01*e0.^ beta1;
54 flexvalue=a01/a010;
55 interplot =[ interplot; sigma xi12 xi21 xi01

flexvalue ];
56 end

58 % delete first row leaving just calculated values
59 interplot (1,:) = [ ];

61 figure (1)
62 plot(e1 , W1 , ’--k’)
63 hold on
64 grid
65 plot(e2 , W2 , ’:k’)
66 plot(e0 , W0 , ’k’)

68 figure (2)
69 plot(interplot (:,1), interplot (:,2), ’:k’)
70 hold on
71 grid
72 plot(interplot (:,1), interplot (:,3), ’k’)
73 plot(interplot (:,1), interplot (:,4), ’--k’)

75 figure (3)
76 plot(interplot (:,1), interplot (:,5), ’k’)
77 grid

1 % Function file: fffROinvof.m
2 % Called to solve non -linear system for operational

decisions
3 function f=fffROinvof(vars ,beta1 ,beta2 ,alpha ,H,F,

rho ,S12 ,S21)
4 a12 = vars (1);
5 a21 = vars (2);
6 xi12 = vars (3);
7 xi21 = vars (4);
8 f=zeros (4,1);
9 f(1) = a12*xi12^beta2+xi12/(rho -alpha) -...
10 H*F/rho -a21*xi12^beta1+S12;
11 f(2)= beta2*a12*xi12^(beta2 -1) +...
12 1/(rho -alpha)-beta1*a21*xi12^(beta1 -1);
13 f(3)= -a21*xi21^beta1 +...
14 xi21/(rho -alpha)-H*F/rho+a12*xi21^beta2 -S21;
15 f(4) = -beta1*a21*xi21^(beta1 -1) +...
16 1/(rho -alpha)+beta2*a12*xi21^(beta2 -1);
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The following MATLAB code solves Illustrative Example 7.15 numerically to
determine optimal investment timing and sizing with mutually exclusive technology
options.

1 % Real options treatment of mutually exclusive
investment

2 % opportunity in discrete capacity sizes

4 rho =0.04;
5 alpha =0.0;
6 HA =2.5;
7 KA=1;
8 KB=2.9;
9 HB =2.5;
10 F=0;
11 IA =100;
12 IB =900;
13 sigmastart =0.05;
14 E=50;
15 num =251;

18 for kk =1:+1: num
19 sigma(kk) = sigmastart + (kk -1) *0.001;

21 % Option value parameters
22 beta1(kk) = 0.5 - alpha/sigma(kk)^2 + ...
23 sqrt ((0.5 - alpha/sigma(kk)^2) ^2+2* rho/sigma(kk)

^2);

25 beta2(kk) = 0.5 - alpha/sigma(kk)^2 - ...
26 sqrt ((0.5 - alpha/sigma(kk)^2) ^2+2* rho/sigma(kk)

^2);

28 % Indifference point of NPVs
29 xiind(kk)=(rho -alpha)*(rho*(IA -IB)+...
30 F*(KA*HA -KB*HB))/(rho*(KA -KB));

32 e =0:+0.001:35;

34 % Independent options analysis
35 WA1=KA*(e/(rho -alpha)-HA*F/rho);

37 WB1=KB*(e/(rho -alpha)-HB*F/rho);

40 xiA(kk) = (beta1(kk)/( beta1(kk) -1))*...
41 (rho -alpha)*(HA*F+rho*IA/KA)/rho;
42 xiAalt(kk) = xiA(kk);

44 xiA0(kk) = (rho -alpha)*(HA*F+rho*IA/KA)/rho;

46 xiB(kk) = (beta1(kk)/( beta1(kk) -1))*...
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47 (rho -alpha)*(HB*F+rho*IB/KB)/rho;

49 xiB0(kk) = (rho -alpha)*(HB*F+rho*IB/KB)/rho;

51 aA(kk)=KA*xiA(kk)^(1- beta1(kk))/( beta1(kk)*(rho -
alpha));

52 aB(kk)=KB*xiB(kk)^(1- beta1(kk))/( beta1(kk)*(rho -
alpha));

54 eA1 =0:+0.001: xiA(kk);
55 eB1 =0:+0.001: xiB(kk);

57 WA0=aA(kk)*eA1.^ beta1(kk);
58 WB0=aB(kk)*eB1.^ beta1(kk);

60 % Check whether project A is option -dominated
61 if (aB(kk) > aA(kk))
62 xiR(kk) = xiB(kk);
63 xiL(kk) = NaN;
64 xiAalt(kk) = NaN;
65 W = WB0;
66 % Otherwise , either project may be selected
67 else
68 % Form guesses as to the solution
69 % to the non -linear system
70 xiR0(kk) = xiB(kk);
71 aR0(kk) = (KB*xiR0(kk)^(1- beta1(kk)))...
72 /( beta1(kk)*(rho -alpha));
73 xiL0(kk) = (xiind(kk)+xiA(kk))/2;
74 aL0(kk) = (KA*xiL0(kk)^(1- beta2(kk)))...
75 /( beta2(kk)*(rho -alpha)) - ...
76 (beta1(kk)*aR0(kk)/beta2(kk))*...
77 xiL0(kk)^( beta1(kk)-beta2(kk));
78 % vars0is your guess
79 vars0 = [aR0(kk) xiR0(kk) aL0(kk) xiL0(kk)];
80 % OPTIMSET is recommended for setting options.
81 opts=optimset(’fsolve ’);
82 opts=optimset(opts ,’Maxiter ’ ,9000 ,...
83 ’Tolx ’,1e-4,’tolfun ’,1e-4);
84 %*********************************************
85 % next instruction calls fffdmv.m
86 %*********************************************
87 vars = fsolve(@fffdmv ,vars0 ,opts ,beta1(kk) ,...
88 beta2(kk),rho ,alpha ,KA ,KB ,IA ,IB ,HA ,HB ,F);
89 % The option value curve has three parts now
90 aR(kk)=vars (1);
91 xiR(kk)=vars (2);
92 aL(kk)=vars (3);
93 xiL(kk)=vars (4);
94 W1 = aA(kk)*eA1.^ beta1(kk);
95 edi = xiL(kk):+0.001: xiR(kk);
96 W2 = aL(kk)*edi.^ beta2(kk) + aR(kk)*edi.^ beta1

(kk);
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97 end

99 end

101 figure (1)
102 plot(sigma , xiAalt , ’--k’)
103 hold on
104 grid
105 plot(sigma , xiL , ’-.k’)
106 plot(sigma , xiR , ’k’)
107 plot(sigma , xiind , ’:k’)
108 xlabel(’$\sigma$ ’)
109 ylabel(’Optimal investment threshold prices [(\$/MWh

]’)

1 % Function file: fffdmv.m

2 % Called to solve non -linear system

3 % for mutually exclusive investment

4 function f=fffdmv(vars ,beta1 ,beta2 ,rho ,alpha ,KA,KB,IA,IB ,...

5 HA ,HB,F)

6 aR=vars (1);

7 xiR=vars (2);

8 aL=vars (3);

9 xiL=vars (4);

10 f=zeros (4,1);

11 f(1) = aR*xiL^beta1+aL*xiL^beta2 -xiL*KA/(rho -alpha)+...

12 KA*HA*F/rho+IA;

13 f(2) = beta1*aR*xiL^(beta1 -1)+beta2*aL*xiL^(beta2 -1) -...

14 KA/(rho -alpha);

15 f(3) = aR*xiR^beta1+aL*xiR^beta2 -xiR*KB/(rho -alpha)+...

16 KB*HB*F/rho+IB;

17 f(4) = beta1*aR*xiR^(beta1 -1)+beta2*aL*xiR^(beta2 -1) -...

18 KB/(rho -alpha);
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