Chapter 6
Investment Equilibria

Investment equilibrium analysis constitutes a useful framework for regulators to
gain insights into the behavior of strategic producers and the evolution of generation
investment in an electricity market. Such a perspective enables regulators to design
better market rules, which in turn may contribute to increasing the competitiveness of
the market and to stimulating investment in generation capacity. This chapter provides
amethodology based on optimization and complementarity modeling for identifying
generation investment equilibria in a network-constrained electricity market.

6.1 Introduction

The objective of a producer competing in an electricity market is to maximize its
profit. To this purpose, such a producer makes its own decisions through its investment
strategies (long-term decisions) and operational strategies (short-term decisions).
However, the strategic decisions of each producer are related to those of other pro-
ducers (rivals) due to market interactions. In fact, decisions made by each producer
may influence the strategies of other producers. Within this framework, a number
of investment equilibria generally exist, whereby each producer cannot increase its
profit by changing its strategies unilaterally [7, 8, 10, 11, 23, 25]. The objective of
this chapter is to identify such investment equilibria mathematically.

Investment equilibrium analysis is particularly useful for a regulator to gain
insights into the investment behavior of producers and the evolution of the total
production capacity. As a result, the regulator may be able to design better market
rules, which in turn may enhance the competitiveness of the market and stimulate
investment in production capacity.

In contrast to Chap.5, in which a single strategic producer is considered, all
producers considered in this chapter are strategic, thereby creating an oligopoly.
This means that all producers can alter the market outcomes, i.e., market-clearing
prices and production quantities, through their strategies. One important observation
is that the feasibility region for the investment decision-making problem of each
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producer is interrelated with those of other producers. Thus, the production capacity
investment equilibria problem is a generalized Nash equilibrium (GNE) problem
[2, 4, 12].

Several treatments of operational and investment equilibria in the extant literature
address oligopolistic energy markets, e.g., [1, 3, 9—11, 13-15, 19, 21, 23, 24].

The remainder of this chapter is organized as follows. Section 6.2 describes the
available approaches for solving an equilibrium problem. Section 6.3 presents mod-
eling features and assumptions. Section 6.4 provides a bilevel model for a single
producer to make its investment decisions, which renders to a mathematical program
with equilibrium constraint (MPEC). Section 6.5 presents the investment decision-
making problem of multiple producers, which results in an equilibrium problem with
equilibrium constraints (EPEC). Section 6.6 summarizes the chapter and discusses
the main conclusions of the models and results reported in the chapter. Section6.7
proposes some exercises to enable a deeper understanding of the models and concepts
described in the chapter. Finally, Sect. 6.8 includes the GAMS code for an illustrative
example.

6.2 Solution Approach

Similar to Chap. 5, in which a bilevel model is considered to represent the invest-
ment and offering decisions of a strategic producer, we consider in this chapter such
a model for each strategic producer. Within the bilevel model of each strategic pro-
ducer, the upper-level problem determines its optimal investment and strategic offer
prices with the aim of maximizing its profit. In addition, a number of lower-level
problems represent the clearing of the market under different operating conditions.
As in Chap. 5, each lower-level problem is replaced by its optimality conditions,
which yields an MPEC. This transformation is schematically illustrated in Fig. 6.1.

Bilevel model Bilevel model Bilevel model
of producer 1 of producer 2 of producer G

MPEC of MPEC of MPEC of
producer 1 producer 2 producer G

Fig. 6.1 Transforming the bilevel models into MPECs in an oligopolistic market with several
strategic producers


http://dx.doi.org/10.1007/978-3-319-29501-5_5
http://dx.doi.org/10.1007/978-3-319-29501-5_5

6.2 Solution Approach 231

MPEC of MPEC of MPEC of

producer 1 producer 2 producerG

Fig. 6.2 MPECs and EPEC

Note that since several strategic producers are considered in this chapter, several
MPEC:s are obtained, one per strategic producer. The joint consideration of all these
MPEC:s constitutes an EPEC, as depicted in Fig. 6.2. The general mathematical struc-
ture of an EPEC is explained in Appendix C. Note that the EPEC solution identifies
the market equilibria.

In general, two solution alternatives are available to solve an EPEC and thus to
identify the market equilibria:

1. Diagonalization (iterative) approach [18, 22].
2. Simultaneous (noniterative) approach [9-11, 19].

The first solution alternative, i.e., the diagonalization approach, is an iterative
technique, in which a single MPEC is solved in each iteration, while the strategic
decisions of other producers are fixed. For example, consider a duopoly with two
strategic producers 1 and 2, whose bilevel models are transformed into two MPECs
1 and 2, respectively. In the first iteration, MPEC 1 is solved, while the strategic
decisions of producer 2 are fixed to some initial guesses. Then, in the second iteration,
MPEC 2 is solved, while the strategic decisions of producer 1 are fixed to those
obtained in the first iteration. This iterative process is continued until no decision is
changed in the two subsequent iterations. The solution obtained is a Nash equilibrium
since no producer desires to deviate from its decisions. Note that this approach is
generally inefficient since it is iterative and provides, if convergence is achieved, at
most a single equilibrium point. In addition, it may require a large number of iterations
in the case of markets with many producers. Besides, it is not straightforward to find
appropriate initial guesses, and suboptimal guesses may greatly affect the functioning
of this approach.

The second solution alternative, i.e., the simultaneous approach, is a noniterative
technique, in which all producers” MPECs are solved together. Therefore, it generally
yields a complex mathematical problem. In this approach, each MPEC is replaced
by its Karush—Kuhn—Tucker (KKT) conditions, which provide its strong stationary
conditions. A collection of all those conditions for all producers results in the strong
stationary conditions of the EPEC, whose solutions identify the market equilibria.
This latter approach is the focus of this chapter.
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6.3 Modeling Features and Assumptions

The technical features and assumptions of the investment equilibria model presented
in this chapter are stated below:

1. An electricity pool is considered in which the market operator clears the pool
once a day, one day ahead, and on an hourly basis.

2. A dc transmission network representation is considered.

3. Pursuing simplicity, a static investment model is used, i.e., a single target year is
considered. The target year represents the final stage of the planning horizon, and
the model uses annualized costs for this target year. Further details on investment
models are available in Chap. 5. Note that a dynamic (multistage) model can also
be considered within the investment equilibria problem [23] but at the cost of
increased computational complexity.

4. A set of operating conditions is considered to represent the potential levels of
the consumers’ demands and the production of stochastic units during the target
year. Accordingly, we define a set of demand and power capacity factors. Further
details on operating conditions are available in Chap. 5.

5. For the sake of simplicity, uncertainties are not considered in this chapter. How-
ever, note that the investment equilibria problem is generally subject to several
uncertainties, e.g., demand growth, investment costs for different technologies,
and regulatory changes, which may be modeled through a set of plausible sce-
narios [3, 8, 21].

The notation used in this chapter is defined below:

Indices

g Index for producers.

n,m Indices for nodes.

0 Index for operating conditions.
Sets

£2, Set of nodes connected to node n.
Parameters

B, Susceptance of the transmission line connecting nodes n and m [S].

an Production cost of the candidate conventional unit of producer g located at
node n [$/MWh].

CgEn Production cost of the existing conventional unit of producer g located at
node n [$/MWHh].

F#  Transmission capacity of the line connecting nodes n and m [MW].

K gn Annualized investment cost of the candidate conventional unit of producer
g located at node n [$/MW].

K ;n Annualized investment cost of the candidate stochastic unit of producer g
located at node n [$/MW].
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K Available annualized investment budget of producer g [$].
PE™  Capacity of the existing conventional unit of producer g located at node n
[MW].
P,Pmdx Maximum load of the consumer located at node n [MW].
Q3 Power capacity factor of the candidate stochastic unit located at node n in
operating condition o [p.u.].
D Demand factor of the consumer located at node n in operating condition o
[p.u.].
uP Bid price of the consumer located at node n in operating condition o
[$/MWh].
XE™  Maximum production capacity of the candidate conventional unit located at
node n [MW].
X5™  Maximum production capacity of the candidate stochastic unit located at
node n [MW].
Do Number of hours (weight) corresponding to operating condition o [h].
Variables
pg,m Power produced by the candidate conventional unit of producer g located at
node n in operating condition o [MW].
p2 Power consumed by the consumer located at node n in operating condition o
[MW].
ano Power produced by the existing conventional unit of producer g located at
node n in operating condition o [MW].
pgno Power produced by the candidate stochastic unit of producer g located at
node n in operating condition o [MW].
xgn Capacity of the candidate conventional unit of producer g located at node n
[MW].
xgsn Capacity of the candidate stochastic unit of producer g located at node n
[MW].
ag,w Offer price by the candidate conventional unit of producer g located at node
n in operating condition o [$/MWh].
a};:no Offer price by the existing conventional unit of producer g located at node n
in operating condition o [$/MWh].
Ano  Market-clearing price at node n in operating condition o [$/MWh].
0,0  Voltage angle at node n in operating condition o [rad].

6.4 Single-Producer Problem

The bilevel model for each single strategic producer is similar to one presented
in Chap.5. We consider two types of generating units: candidate (conventional and
stochastic) and existing (conventional) units. These units belong to different strategic
producers (i.e., producers g = 1,..., G) and offer at strategic prices, except the
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candidate stochastic units, which always offer at zero. It is also assumed that all
existing units (available at the initial year) are conventional, i.e., there is no stochastic
production unit within the initial production portfolio of the producers.

The formulation of the bilevel model for a particular strategic producer, e.g.,
producer G, is given by (6.1). Note that (6.1a)—(6.1f) refer to the upper-level problem
of producer G, whereas (6.1g) pertains to the lower-level problems, one per operating
condition o. Note that a similar bilevel problem can be considered for any other
producers, i.e., producers g = 1, ..., G — 1. The bilevel problem for producer G is
formulated below:

: c . C S S
imlngpr U ghrimal ) gDul E [Kgn Xg, + Kpy X

n

- Z Po |:)L”0 (pgno + pgs’no + pg];:no) - pgno an - pgnu C;,]::n:“ (618.)

subject to
0< xg <X, Vn (6.1b)
0<xj, <Xy Vn (6.1¢)
D (KS, x5, + K5, x5,) < Kp (6.1d)
§no >0 Yo,Vn (6.1¢)
g,w >0 Vo,Vn (6.1f)
Lower-level problems (6.1h)—(6.1p) Vo (6.1g)
] g=0G.

The primal variables of the upper-level problem (6.1a)—(6.1f) are those in set

EJN = {ag,,» gpr X0 X5, ) Plus all primal and dual variables of the lower-level

problems (6.1g), which are defined after their formulation through sets =
HDual

:7 Primal and

The objective function (6.1a) refers to minus the expected annual profit of the
considered producer, i.e., annualized investment cost minus expected annual opera-
tional profit. Note that the market-clearing price 1,, is the dual variable of the power
balance constraint at node n and operating condition o obtained endogenously from
the corresponding lower-level problem. The objective function (6.1a) comprises the
following terms:

Z K -, 1s the annualized investment cost of candidate conventional units of
producer g
Z K gn is the annualized investment cost of candidate stochastic units of

producer g.
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° Z Z 0o pgm} Ano 18 the annualized revenue of producer g obtained from selling

n o
the production of candidate conventional units (production quantity multiplied by

market-clearing price).
° Z Z Do p}:,w Ano 18 the annualized revenue of producer g obtained from selling

n o
the production of existing conventional units (production quantity multiplied by
market-clearing price).
° z Z Do p;w Ano 18 the annualized revenue of producer g obtained from selling

n o
the production of candidate stochastic units (production quantity multiplied by

market-clearing price).

. Z Z Po Pgno C,y 1s the annualized production cost of candidate conventional

n o
units of producer g (production quantity multiplied by marginal cost).
. Z Z Lo pE,w C::n is the annualized production cost of existing conventional

units of producer g (production quantity multiplied by marginal cost).

The production cost of stochastic units is assumed to be zero. Note that the market-
clearing prices (X,,) and the production quantities (pS,,, Pg,,» and pg,,) belong to
the feasible region defined by lower-level problems (6.1g).

For the sake of simplicity, the capacity options for investing in both conventional
and stochastic units are assumed continuous. The capacity bounds for such options
are enforced by (6.1b) and (6.1c). In addition, a cap on the available annualized
investment budget of producer g is enforced by (6.1d). Finally, the upper-level con-
straints (6.1e)—(6.1f) enforce the nonnegativity of the offer prices associated with the
candidate and existing conventional units, respectively, of producer G.

Each lower-level problem, one per operating condition o, is formulated below.
The dual variable of each lower-level constraint is indicated following a colon:

{minsfﬂm' > [Z (Ao Pono + gao Poro) = Uny P,?o} (6.1h)
n g

subject to
Pt D B Ouo — o) — D 0S00 = D Do

mes2, 2 p

—> . =0 thy  Vn 6.1i)

8

0= pgrw = xg(z:n : /’“Eg:::! Mgc,:zx Vg, Vn (6.1j)
0= P50 SO0 X5 Mo Hany Y8, VR (6.1K)
0= Pl < Pon Moo My V2, Vn 6.11)

O S pr]l)o E QEO PDmax . MDmm MDmux Vn (61m)

n ° no no
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Bnm (‘9110 - emo) =< F,?,::x . /“(’Ema Vn,Vm € Qn (61n)
-7 = 9110 = Z‘;’“" /J/Z:ax vn (610)
Oo=0 :p?"  n=ref. (6.1p)

| vo

The primal optimization Variables of each lower—level problem (6.1h)—(6.1p) are
included in set ZFimal = { pgno, pg,m, pg,m, pL . 6,,}. Additionally, the dual opti-
mization variables of each lower-level problem (6.1h)—(6.1p) are those included in set

’_‘Dual Cmm Cm\x Sl‘nill Smax min Em\x Dlﬂln ax gmm emax
= {Dnos oo + oo + Hgmo » Wano » Pgno + o » Ko A L VS T

eref

My}

Lower-level problems (6.1h)—(6.1p) represent the clearing of the market for each
operating condition and for given investment and offering decisions made in the
upper-level problems by different producers. Accordingly, x gn, gn, gno, and ag,w
are variables in the upper-level problem (6.1a)—(6.1f), but they are fixed values (para-
meters) in the lower-level problems (6.1h)—(6.1p). This makes the lower-level prob-
lems (6.1h)—(6.1p) linear and convex since there is no term containing the product
of variables within the lower-level problems. The objective function (6.1h) mini-
mizes minus the social welfare considering the offer prices of all strategic producers
g=1,...,G, and bid prices of all demands. The power balance at every node is
enforced by (6.11), and its dual variable provides the market-clearing price at that
node under operating condition o. Equations (6.1j), (6.1k), and (6.11) impose pro-
duction capacity limits for candidate conventional, candidate stochastic, and exist-
ing units, respectively. In addition, Eqs. (6.1m) bounds the power consumption of
each demand. Equations (6.1n) enforce the transmission capacity limits of each line.
Finally, Egs. (6.10) enforce voltage angle bounds for each node, and constraints (6.1p)
fix the voltage angle to zero at the reference node.

Note that the market-clearing problems, i.e., the lower-level problems (6.1h)—
(6.1p), are common to all producers g = 1, ..., G. Thus, the investment equilibria
model presented in this chapter is in fact a GNE problem with shared constraints.

Ilustrative Example 6.1 A rwo-node electricity market with two strategic produc-
ers (duopoly)

A power system with two nodes (7| and n,) is considered as illustrated in Fig. 6.3.
The capacity of transmission line n; — n, is 400 MW, and its susceptance is 1000 S.
Node n; is the reference node. Two strategic producers (g; and g,) compete together,
creating a duopoly. Producer g; owns an existing unit located at node n; with capacity
of 150 MW and production cost of $10/MWh. On the other hand, producer g, owns
an existing unit located at node n, with capacity of 100 MW and production cost of
$15/MWh.

Both producers g; and g, desire to build new production units. The available
annualized investment budget for each producer is $20 million. In addition, the
investment options for each producer are identical and stated below:
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Line nyno
Node ny Node n,
Consumer Existing unit of Existing unit of
producer gy producer g»

Fig. 6.3 Illustrative Example 6.1: two-node network

e A conventional unit to be built at node 7. The maximum capacity of this candidate
unit is 200 MW, and its annualized investment cost is $55,000/MW. The production
cost of this candidate conventional unit is $12/MWh.

e A stochastic (wind-power) unit to be built at node n,. The maximum capacity
of this candidate stochastic unit is 200 MW, and its annualized investment cost is
$66,000/MW.

As depicted in Fig. 6.3, a single consumer is considered at node n, whose maxi-
mum load is equal to 400 MW.

In addition, two operating conditions (0; and 0;) are considered, whose charac-
teristics are stated below:

e 0;: Demand factor equals 1.00 p.u. and wind power capacity factor equals 0.35

p.u.
e 0,: Demand factor equals 0.80 p.u. and wind power capacity factor equals 0.70

p.u.
The weight of condition o; is 3530 h and that of condition o0, is 5230 h. The consumer
bids in conditions 0 and 0, at $35/MWh and $32/MWh, respectively.

According to the data above, two bilevel problems, one per producer, are formu-
lated. The bilevel problem for producer g; is given by (6.2) including upper-level
problem (6.2a)—(6.2e) and lower-level problems (6.2f):

. C S
mlnE;JlL,Ex U Es].Ex U E{])){Ex U E(E’Z.Ex U E%Ex 55000 Xgny + 66000 Xgin,

C E S
- 3530 )“nlUl (pglnlol + pglnlol) + )L"201 pglnzol

C E
- 12 pglnlol —10 pglnlﬂl]

(¢ E S
— 5230 | Anjo, (pglmr)z + pgmmz) + Ansoy Peinzo

— 12 pgclnloz - 10 p§|n|02:| (623.)

subject to
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0<xg, <200
1ny
0<x;, <200
1n2
55000 x{,, 4 66000 x3, <2 x 107
C E C E
agl”]()]’ agl”l”l’ ag1"102’ aglnloz >0

Lower-level problems (6.4)—(6.5).

(6.2b)
(6.2¢)
(6.2d)
(6.2¢)
(6.2f)

Similarly, the bilevel problem for producer g is given by (6.3) including upper-

level problem (6.3a)—(6.3e) and lower-level problems (6.3f):

1 . § N . C S
mlnEgUzL,hx U E(l;’l,l:x U E{})I,I:x U E{!’z,hx U E%h‘ 55000 )ngn] —+ 66000 ngnz

C S E
=330 |:)Ln101 Pgno + )L'W’l (pgznzﬂl + pgzﬂzol)
C E
- 12 pgznll)l —15 pgz"201:|
— 5230 |:)‘«n102 p;nIOZ + )\’”202 (pés’zﬂzvz + psznzoz)

C E
— 12 pg2n102 =15 pgznzoz]

subject to
0 < xg, <200
0<x;,, <200
C S 7
55000 x$,, + 66000 x5, <2 x 10
C E C E
agznlol’ agznzﬂl’ agz'1102’ agznwz — 0

Lower-level problems (6.4)—(6.5).

(6.32)

(6.3b)
(6.3¢)
(6.3d)
(6.3¢)
(6.31)

Within bilevel problems (6.2) and (6.3) associated with producers g; and g,
lower-level problems (one per operating condition) are common. The lower-level

problem referring to the operating condition o, is given by (6.4) below:

: . C C E E
mlnEr!)]'hx ¥einior Pginioy +ag|n101 Pginio,

C C E E D
+ agZ"lol pgz"lol + agznzl)l pgz"zl)l - 35 p"l”l

subject to
D E C
p"lol + 1000 (9”101 - 9"201) - pglnlol - pgl’l101
- szn,o, =0 : )"nlol
1000 (B0, — Onior) = Promsor — Paimor — Pomeor =0 1A
n201 npoy pgznzo] pgmo] pgznzol n201

C C Cmin Cmax
< < .
0 - pglnlol - xgl"l : H’glnlol’ H’glnlol

(6.4a)

(6.4b)
(6.4¢)
(6.4d)
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C C Cmin Cmax
< < :
0 — pgzﬂlf)l — xgzﬂl * Mganjoyr? 'u'gznll)l
S S Smin gmax
< < :
0 — pglﬂzﬂl — 0.35 xglﬂz s gm0 'uglﬂzlll
S S Smin gmax
< < :
0 — pgzﬂzvl — 0.35 xgz"z * Mgampor? H’gznzvl
Emin Emax

E
0< Pomor = 150

! glnlol’uglnlal

0= ngznzm =100 : MEmm

* Mganp01? 'ugznzﬂl
D . Dmin pmax
0 S pI‘L]O] S 1 X 400 ° I‘Lnlol’ I'Ln]O]

1000 (B,0, — Onyo,) <400t puh
1000 (6,0, — Onyo,) <400 :pah

Emax

. gmin gmax
-7 = 9”101 =7 niop? H’nlol
. gmin gmax
-7 = 9’1201 =r . ano] s Mnjo,
gref
Onop, =0 o -
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(6.4e)
(6.4f)
(6.42)
(6.4h)
(6.41)
(6.4))
(6.4k)
(6.41)
(6.4m)
(6.4n)
(6.40)

In addition, the lower-level problem referring to the operating condition o, (com-

mon to both producers) is given by (6.5) below:

: C C E E
mlnEfz'EX ¥gini0, Pginyon + ¥gini0, Pginyon

C C E E D
+ O582"1102 pgzllloz + agznzOz pgznzOz 32 pnloz

subject to

D E C
pnmg + 1000 (9”102 - 9"2”2) - pglnloz - pglnloz

C _ .
- pg2n102 =0 . )"’1102

E S S
1000 (9'12”2 - 9"102) ~ Ponor, ~ Pginzoy — Poansoy = 0

C Cmin Cmax

0 = pgclnlf)z = xglnl : Mgl”loz’ Mglnloz
0 = pgz"loz = ngZ”l : Mgz‘:“loz’ Mg‘::oz
0 = pgmzo; = 0.70 xgslnz : MZT’ZOZ’ MZT;);"Z
0= p1§2"202 =0.70 x!ihz : Mi;nrltnzog’ sz;Zoz
0 = p§1"102 = 150 : ME:“V‘lnlOz’ H’E:HV:TUZ

E . Emin Emax
0 = pgz"zaz = 100 : Mgznzllz’ Mg2"202

0<pl, <0.8x400 :pul% 2™

npoy? 'nioz

1000 (9}11()2 - 9}12()2) S 400 : M51n202
1000 (1,0, — Ony0,) <400 : gl

min max
.0 6

-7 S9"102 =7 noy° /'Lnloz

(6.5a)

(6.5b)

P Amyo,  (6.5¢)

(6.5d)
(6.5¢)
(6.5%)
(6.5g)
(6.5h)
(6.51)
(6.5)
(6.5k)
(6.51)
(6.5m)
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gmin gmax

-7 = 911202 =7 H’nzuz /"l’nzoz (65n)

Opoy =0 =0 (6.50)

02

The primal optimization variables of lower-level problem (6.4) associated with
operatlng condition o, are included in set £"** = ={Pgin01> Painyor® P;nzon Pgnors

sznzo,f sznzo, s PR o Oniors Onsoy }- Addmonally, its dual variables are those included

HD EX _ le“ Cmax Cn]lﬂ Cn]ZIX Sn]lﬂ Smax
in set o, - {)Lnl”l ’ )"”2"1 ’ H’glnlol ’ H’glnlol ’ H’g’znw] ’ H’gmlol ’ 'u’glnzl)l ’ 'u'glnzol
Smm Sm ax Eﬂ'\ln Emax EIT\H'I Emzl)( Dmm DITl;lX F 0“’““

&2n201° H’gznzol ’bLglnlol ’ ’bLg]”]ol ’ 'ugznzol ’ I’Lgmzm ’ I'L”lol I’Lnlol > Mnynjoy? I’anﬂlol ’I'Lnlol’
max emm gmax gret I dd t th 1 t . t bl f 1
H’Hl()l s 'U“nzul s [anol , ,LLOI } n aadition, (& prlma optimization variables of lower-

level problem (6. 5) associated with operatlng condition o0, are included in set = "'P Bx —

{pglnloz’ pglnloz’ pglnzm’ pg7n1()2’ pgznzoz’ pgznwz’ pnluz’ 0"102’ 9’1202} leerSC, 1ts

,,D Ex Cmin Cmax Cmin
dual variables are those included in set = = {An102s Asos s Pimors Hginiors Hgomios
Cﬂ!ﬂX Sﬂ!lﬂ SmﬂX Slﬂln max Eml“ EI“aX Elﬂln Emax Dﬂ!lﬂ
8211027 g1n202° g1n202° "ganz02° Mgznztlz g1n102? g1”102 821202 7"gonz07° "njoy?
Dmax gmin  pmax . pmin  gmax Th Lot .
l"nﬂ)o ? l'Lnﬂlez’ I'annloz’ I'Ln|02’ Mnlﬂz’ /an()z’ I’Lnoﬂo’ M()z } eprlma Op lmlza lonvarl-
ables of upper-level problem (6.2a)—(6.2e) pertaining to producer g; are included in
,,UL Ex N C E C HP Ex r-D Ex =P Ex
set & {xglnl Keiny> Yginiors Fginior ¥ginjop glnnoz} plus & Zoy oy s

and & D EX_ Finally, the primal optimization variables of upper-level problem (6.3a)-

7 UL.Ex _ S ¢
(6.3¢) pertalmng to producer g are included in set &, ™" = € Xen> Xounss Xgonions
E C =P Ex ©DEx PEx = D,Ex
agzﬂzol ’ agzﬂlvz’ agmzoz} plus o “01 ’ "’02 ’ and & o, - U

6.4.1 MPEC

As stated in the previous section, each strategic producer solves its own bilevel model
to derive the most beneficial investment and offering decisions. To this end, each
lower-level problem within the bilevel model of each producer needs to be replaced
by its equivalent optimality conditions. In general, two alternative approaches are
available to derive those conditions for a continuous and linear problem: (i) the KKT
conditions and (ii) the primal—dual transformation [7].

In contrast to Chap. 5, in which the first approach, i.e., KKT conditions, is used,
we use in this chapter the second approach, i.e., primal-dual transformation, which
includes the strong duality equality instead of all complementarity conditions. How-
ever, the primal—dual transformation introduces some nonlinearities due to bilinear
terms within the strong duality equality.

Pursuing further clarity, we derive the MPECs corresponding to the strategic
producers g; and g, in Illustrative Example 6.1 presented in the previous section.
Recall that lower-level problems (market-clearing problems for different operating
conditions) are common within the bilevel models of both producers. Thus, we
derive the optimality conditions corresponding to the lower-level problems (6.4) and
(6.5) using the primal—dual transformation. Figure 6.4 schematically illustrates this
transformation.
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Bilevel model of producerg;

Minimize (6.2a)
subject to:
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1) ULC (6.2b)-(6.2¢)

MPEC corresponding to producer gy

ULC: Upper-level constraints
LLP: Lower-level problem

PC: Primal constraints

DC: Dual constraints
SDE: Strong duality equality

Bilevel model of producer g,

Minimize (6.3a)
subject to:

1) ULC (6.3b)-(6.3€)

é Minimize (6.3a)
subject to:
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1) ULC (6.3b)-(6.3¢)

-3.3)SDE (6.11) :
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MPEC corresponding to producer g»

Fig. 6.4 Illustrative Example 6.1: transformation of the bilevel models of strategic producers g1
and g into their corresponding MPECs (primal—dual transformation)

First, we derive the optimality conditions corresponding to the lower-level prob-

lem (6.4), which include the primal constraints (6.6), the dual constraints (6.7), and
the strong duality equality (6.8). The primal constraints of lower-level problem (6.4)
are given by (6.6) below:

PP, 4 1000 (6,0,
1000 (60,

C C
0 = pglnll’l =x

811

C C
O = pg2n101 = xgznl

0 < p§ e <035x

0 < P30 <035x
E

0 < pgino =150

N
812
N
8212

E C C _
- 9”2”1) ~ Painior ~ Pginio; — Pgunjo = 0

E S S —
- 0"101) ~ Ponsor — Pgimpor — Peanzoy = 0

(6.6a)
(6.6b)
(6.6¢)
(6.6d)
(6.6¢)
(6.6f)
(6.6g)
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0 < Py o, < 100 (6.6h)
0<pp, <1x400 (6.61)
1000 (61,0, — Ony0,) < 400 (6.6))
1000 (6,0, — Onyo,) < 400 (6.6k)
— 7 ZOno =T (6.61)
— 7 <o, < (6.6m)
Onio, = 0. (6.6n)

The dual constraints of lower-level problem (6.4) are given by (6.7) below:

azgnnlol ~ Mo Mg,":fm - :l‘(’(g:::;r:ol =0 (6.7a)
A o = Aoy My — HE = (6.7b)
S 100 = Moy + Womgs = Homg =0 6.7¢)
N S T T | (6.7d)
= nsor + Womsor = Hgrmoy =0 (6.7¢)
— sy + Wamsor = Hiomsor =0 (6.7f)
=35+ Anor + gy — iy =0 6.72)
1000 (Aaoy = Josor Mo = Bhomo,) ity = Hity + 1, =0 (6.7h)
1000 ()‘"201 = Anjoy + l‘l’Eznlol - ME,nzol) + MZZ]:, - MZZ]: =0 (6.71)
Komors Koo, = 0 6.7j)
Homors Kooy = 0 6.7%)
Ko Mo, = 0 6.71)
Womsons Famsor = 0 (6.7m)

oo Wy = 0 (6.7n)

o Wy 20 (6.70)
M Z 0, gy = 0 (6.7p)
Hamors Moo = 0 (6.79)

mors oy =0 (6.7r)

s Wy > (6.75)

Finally, the strong duality equality corresponding to lower-level problem (6.4) is
(6.8), which enforces the equality of its primal and dual objective function values at
the optimal solution:
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C C E E C C E E
ag1"101 pgl"lvl + aglnlt)l pglﬂlvl + agzﬂwl pg2ﬂ101 + 0182"201 pgzﬂzol
D _ __C cmx ¢ cmx S gmax
35 Prioy = xgln] H“glnlm xgznl MgZ"I”I 0.35 xglnz M81n201
S Smax Emax Emax DmﬂX
—0.35 xgznz I'ngnzﬂl - 150 Mglnlol — 100 Mgznzol — 400 'bL”lUl

F F gmin fgmax gmin fpmax
- 400 (Mﬂlnzﬂl + M”anol) -7 (/'an] + lunlol + I’anm + /'anﬂl) . (68)

Next, we derive the optimality conditions corresponding to lower-level problem
(6.5), which consist of primal constraints (6.9), dual constraints (6.10), and strong
duality equality (6.11). The primal constraints of lower-level problem (6.5) are given
by (6.9) below:

Phroy + 1000 (810, = Ons0,) = Pk oy = Plmior — Plamion =0 (6.92)
1000 (60, = Onio2) = Psor = Povmaor — Pinzor = 0 (6.9b)
0= Pemor = X, (6.9¢)
0= Ponior < Yo, (6.9d)
0 < Pie, <0705, (6.9¢)
0 < P, <0705, (6.9f)
0<pt,, <150 (6.92)
0<pt,.,, <100 (6.9h)
0<p,, <0.8x400 (6.91)
1000 (61,0, — Bnsor) < 400 (6.9))
1000 (By0p — Bnyor) < 400 (6.9K)
— 7 < Opo, <7 (6.91)
— T < Opo, =T (6.9m)
Onio, = 0. (6.9n)

The dual constraints of lower-level problem (6.5) are given by (6.10) below:

aé(':mloz = Anjo, + Mg:roz - Mg::oz =0 (6.10a)
af o = Ao+, —uEN =0 (6.10b)
“;nmz — Anjo, + Mgc;d?@ - Mg;‘:m =0 (6.10¢)
a?ﬂlzoz = Anyo, + M?;::m - /1’?:::202 =0 (6.10d)
= hsor F B = Mmooy =0 (6.10¢)
— sy Uy = 1S =0 (6.10f)
= 324 doy + gy — Hprgy =0 (6.10g)

9min

max ref
1000 ()””102 — Anyo, + Mslnzoz - Mgznloz) + lu?zloz ~ Mo, + u’gz =0 (6.10h)
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1000 (Asor = Anror F+ Hhnior = Hhvnson) T Moy — Moy = 0 (6.10i)
Hemors g = 0 (6.10))
Kmors Fmor = 0 (6.10K)

oo Mo, = 0 (6.101)
Higmmor Fomos = 0 (6.10m)
Kmons Homos = 0 (6.10n)

oommozs Womos = 0 (6.100)
Woes Hroy =0 (6.10p)
Hninsons Mo, = 0 (6.10q)
W Moy 2 0 (6.10r)

s gy = 0. (6.10s)

Finally, the strong duality equality corresponding to lower-level problem (6.5) is
(6.11) below:

C C E E C C E E
agln102 pglnlvz + aglﬂloz pglnloz + agzﬂloz pgznlvz + agzn202 pgz'lzoz
D _ C Cmax _ C Cmax _ S Smax
32 p”]UZ - xglnl 'uglnloz x82n1 Mgzﬂlﬂz 0.70 xgl"Z Mgl”ZOZ
S gmax Emax Emax Dmax
—0.70 xgznz 'u“gznzoz — 150 Mgl”l”z — 100 Mgznzoz —320 'u'lloz

emin gmax

F F gmax Omin
o 400 (Mﬂlnzﬂz + M”Z"loz) -7 ('u“nloz + H’nloz + /’anoz + /’anoz) . (611)

Accordingly, the MPEC corresponding to the strategic producer g; includes the
upper-level problem (6.2a)—(6.2e) and the optimality conditions (6.6)—(6.11). Here-
inafter, this MPEC will be called MPEC 1. Similarly, the MPEC corresponding to
the strategic producer g, comprises the upper-level problem (6.3a)—(6.3e) and the
optimality conditions (6.6)—(6.11). Hereinafter, this MPEC will be called MPEC 2.

One important observation is that both MPECs 1 and 2 are continuous, but nonlin-
ear. The reason for nonlinearities is the existence of bilinear terms within objective
functions (6.2a) and (6.3a) and strong duality equalities (6.8) and (6.11).

Note that the dual variables associated with the constraints of MPECs 1 and 2 are
needed in the next section. Pursuing notational clarity, we use the equation numbers
to indicate the dual variables of the MPECs. The following notional examples are
provided:

1. In MPEC 1 corresponding to producer gi, the dual variable associated with strong
duality equality (6.8) is n{>®. However, the dual variable of that equality within

MPEC 2 corresponding to producer g; is 772,62'8).



6.4 Single-Producer Problem 245

2. InMPEC 1 corresponding to producer gi, the dual variables associated with lower
and upper bounds in inequality (6.9¢c) are QS%) and 707, respectively.
3. In MPEC 2 corresponding to producer g, the dual variables associated with

nonnegativity conditions (6.10j) are nfloj) and ﬁg'loj), respectively.
—&82

6.5 Multiple-Producer Problem: EPEC

The joint consideration of all MPECs, one per producer, constitutes an EPEC.
Figure 6.5 illustrates the EPEC corresponding to Illustrative Example 6.1 presented
in Sect. 6.4. Accordingly, this EPEC includes both MPECs 1 and 2 corresponding to
the strategic producers g; and g,, respectively. Note that the EPEC solution identifies
the market equilibria.

6.5.1 EPEC Solution

To obtain the EPEC solution, we first need to derive the KKT conditions associated
with each MPEC. However, it is important to recall that MPECs are continuous,
nonlinear, and thus nonconvex. Therefore, the KKT conditions associated with each
MPEC provide its strong stationarity conditions. A collection of all those conditions
corresponding to all MPECs constitutes the strong stationarity conditions associated
with the EPEC, whose solution identifies the equilibria. For Illustrative Example 6.1
of Sect. 6.4, this transformation is depicted in Fig. 6.6.

It is important to note that the solutions obtained from this procedure can be Nash
equilibria, local equilibria, and saddle points. To detect the Nash equilibria among

Fig. 6.5 TIllustrative e N
Example 6.1: EPEC MPEC 1

MPEC corresponding to producer g;:
Minimize (6.2a)
subject to:

1) The upper-level constraints (6.2b)-(6.2¢e)
2) The optimality conditions (6.6)-(6.11)

MPEC 2
MPEC corresponding to producer g»:
Minimize (6.3a)
subject to:

1) The upper-level constraints (6.3b)-(6.3e)
2) The optimality conditions (6.6)-(6.11)
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Strong stationarity conditions
EPEC of the EPEC

MPEC 1 _— KKTs of MPEC 1
MPEC 2 _— KKTs of MPEC 2

Fig. 6.6 Illustrative Example 6.1: strong stationarity conditions of the EPEC

the solutions obtained, an ex-post algorithm is provided in Sect.6.5.3. The next two
sections present the KKT conditions of both MPECs.

6.5.1.1 KKT Conditions of MPEC 1

The KKT conditions of MPEC 1 corresponding to producer g; include the constraints
below:

1. Primal equality constraints of MPEC 1 including (6.6a)—(6.6b), (6.6n), (6.7a)—
(6.71), (6.8), (6.92)—(6.9b), (6.9n), (6.10a)—(6.10i), and (6.11). We refer to these
equality constraints as the set I7.

2. Equality constraints obtained from differentiating the corresponding Lagrangian
associated with MPEC 1 with respect to its variables. We refer to these equality
constraints as the set I>. Four examples of the members of this set are stated
below. Note that ﬁgl\l’[PEa is the Lagrangian function of the MPEC 1 pertaining
to the strategic producer g;:

agMPECl
81 = 55000 + ﬁ(6l.2b) _ n(6A2b) + 55000 rl((:Zd) _ ﬁ(ﬁlﬁc)
3ng]”1 g e g g
Ccmax 6.8 —(6.9 Ccmax 6.11
T Rginior '7;1 = rli’l 9+ Hginio, n;l '=0 (6.12a)
8$MPEC1
81 __ __ —(6.6d) Ccmax (6.8) —(6.9d)
9xC = g, + Hgniop Mgy~ — Mg,
8an
Ccmax 6.11
+ gy Mo =0 (6.12b)
agMPECl
81 _ (6.2e) (6.10b) E (6.11) __
daE =T T, + Mg, + Pginior Mg, =0 (6.12¢)
811102
agMPECl
5 S =0 =07 4035 x5, 18P =0. (6.12d)

821201
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3. Complementarity conditions related to the inequality constraints of MPEC 1. We
refer to these inequality constraints as the 3. Four examples of the members of
this set are as follows:

0<xg, Lo =0 (6.132)
0= [200 - xg, ] L7 =0 (6.13b)
0= ps(’:znloz L Q(g(: =0 (6.13¢)
0 < [Xg, = Plomon] L 50 = 0. (6.13d)

6.5.1.2 KKT Conditions of MPEC 2

The KKT conditions of MPEC 2 corresponding to producer g, consist of the follow-
ing three sets of constraints:

1. Primal equality constraints of MPEC 2 that are identical to those included in the
constraint set I7.

2. Equality constraints resulting from differentiating the corresponding Lagrangian
of MPEC 2 with respect to its variables. These equality constraints are referred to
as the set I'4. Four examples of the members of this set are stated below, in which
LMPEC2 5 the Lagrangian function of the MPEC 2 pertaining to the strategic
producer g»:

agMPEcz
— 55— = 66000 + 77 — 5 4+ 66000 Y — 0.35 7L
x5, e, 8
smax (6.8) —(6.9f)
+ 035 g2n201 ngz —0.70 ngz
+0.70 py N0t =0 (6.14a)
agMPECZ )
— 77(6.6¢) st (6.8)
axs =—0.3570% 4+0.35 3, 1%
8112
— 07075 +0.70 u,, 0> =0 (6.14b)
8$MPEC2
—ngz == 5230 huyo, — 0™ + 7" — O
821202
g0 1o =0 (6.14¢)
agMPEC2
—a S = g — TP +400 Y = 0. (6.14d)
n|0|

3. Complementarity conditions related to the inequality constraints of MPEC 2. We
refer to these inequality constraints as the set I's. Four examples of the members
of this set are as follows:
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0 <xg, Lng?=0 (6.15a)
0<[200—-x3,] L7 >0 (6.15b)
0 = p§2"202 L 2262-9}1) = 0 (615C)
0 <[100 - pf,,.] L 7S > 0. (6.15d)

6.5.1.3 Strong Stationarity Conditions of the EPEC: Linearization

The strong stationarity conditions of the EPEC (the right-hand box of Fig.6.6) is a
system of equalities and inequalities included in I1—I5. Although the solution to this
system identifies the investment equilibria, this system includes the following three
nonlinearities:

1. The complementarity conditions included in /3 and Is. Such conditions can
be exactly linearized through the approach explained in Chap.5 using auxiliary
binary variables and large enough positive constants [6]. For example, the mixed-
integer linear equivalent of complementarity condition (6.15a) is provided by
(6.16) below:

x5, =0 (6.16a)
10 >0 (6.16b)
X, <YM (6.16¢)
Qi’i&) <(1=y)M" (6.16d)
¥ € {0, 13, (6.16¢)

where M* and M" are large enough positive constants. A method for appropriate
value selection for those constants is provided in Chap. 5.

2. The products of variables involved in the strong duality equalities (6.8) and (6.11)
included in I7. Unlike the complementarity conditions included in I3 and [5,
which can be exactly linearized through auxiliary binary variables, the strong
duality equalities (6.8) and (6.11) included in I} cannot be linearized straight-
forwardly due to the nature of the nonlinearities, i.e., the product of continuous
variables. However, we take advantage of the fact that the strong duality equality
resulting from the primal—dual transformation is equivalent to the set of com-
plementarity conditions obtained from the KKT conditions [7]. Hence, pursuing
linearity, the strong duality equality (6.8) is replaced by its equivalent comple-
mentarity conditions (6.17) below:

C Cmin

0= Pginio 1 Hginio >0 (6.17a)
C C Cmax

0 = (xglnl B pglﬂlol) 1 Mglnlol = 0 (617b)

0= p§2"101 + ngn]o] >0 (6.17¢)
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0 < (XG0, = Peunior) L Koo, =0 (6.17d)
0= Py L Mi?ﬁla, 0 6.17¢)
0= (03555, = P5 o) L Himo, = 0 (6.17f)
0= P, L #2';;01 >0 6.172)
0= (0.35x5,,, = Phoy) L ooy = 0 (6.17h)
0= Pty Lub, >0 (6.17i)
0= (150 = pg0) L Binyo, = 0 (6.17))
0 = Phoy L Koo, 2 0 (6.17k)
0 < (100 = p} o) L Hhpo, =0 (6.171)
0= ppo L g 20 (6.17m)
0 < (400 — pip,,) L s, =0 (6.17n)
0 < [400 — 1000 (6,0, = Osoy)] L 1h 0 =0 (6.170)
0 < [400 = 1000 (6,0, — Onyo)] Lty 010, = 0 (6.17p)
0= (7 +60u0,) Ll >0 (6.17q)

< (T = bu0) L sy, =0 (6.17r)

< (T +600,) L sy, =0 (6.175)

< (T = 0u0,) Ll >0. (6.17%)

Similarly, the strong duality equality (6.11) can be replaced by its equivalent
complementarity conditions. Recall that these complementarity conditions can be
linearized using the auxiliary binary variables and large enough positive constants.
3. The ones arising from the product of variables in I and Iy, e.g., the bilinear
term Mg“;:m n$¥ in condition (6.12a). Observe that the common variables of
such nonlinear terms are either dual variables 7®® and nS* or dual variables
O and n>!". From a mathematical point of view, the nonconvex nature of the
MPECs 1 and 2 implies that the Mangasarian—Fromovitz constraint qualification
(MFCQ) [5] does not hold at any feasible solution, i.e., the set of dual variables
associated with the MPECs (all dual variables denoted by 7) is unbounded. In
other words, the values of these dual variables are not unique, and thus there
are some degrees of freedom in the choice of values for those dual variables at
any solution [5, 19, 20]. This redundancy allows the parameterization of dual
variables ng: 8) ng 8), r]g”), and ng‘”). Hence, the bilinear terms in I and I}
become linear if the strong stationarity conditions of the EPEC are parameterized
in dual variables n®®, n®®, n©1, and n&'V.
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6.5.2 Searching for Multiple Solutions

The mixed-integer linear form of the strong stationarity conditions of the EPEC,
i.e., condition sets Ij—Is, constitutes a system of mixed-integer linear equalities and
inequalities that involves continuous and binary variables. This system generally
has multiple solutions; however, recall that these solutions can be Nash equilibria,
local equilibria, and saddle points. To detect the Nash equilibria among the solutions
obtained, an ex-post algorithm is provided in Sect.6.5.3.

To explore multiple solutions, it is straightforward to formulate an auxiliary opti-
mization problem considering the mixed-integer linear condition sets 17—/ as con-
straints. In addition, several auxiliary objective functions can be considered to identify
different solutions [19]. For example, the following objectives can be maximized:

1. Total profit (TP).

2. Annual true social welfare (ATSW) considering the actual production costs of
the generation units.

3. Annual social welfare considering the strategic offer prices of the generation
units.

4. Minus the payment of the demands.

. Profit of a given producer.

6. Minus the payment of a given demand.

9,1

In this chapter, the first two objectives are selected because (i) they can be for-
mulated linearly and (ii) they refer to general market measures. Thus, the auxiliary
optimization problem to find multiple solutions is formulated as follows:

max TP or ATSW (6.18a)
subject to the mixed-integer linear system 7 — I. (6.18b)

The two linear objective functions selected, i.e., TP and ATSW, to be included in
(6.18a) are described in the following two sections.

6.5.2.1 Objective Function (6.18a): TP Maximization

The summation of the MPEC’s objective function for all producers provides minus
the total profit of all producers, but this expression is nonlinear due to the products
of continuous variables (i.e., production quantities and clearing prices). An identical
linearization approach to one presented in Chap. 5 is used to linearize these bilinear
terms. For Illustrative Example 6.1 presented in Sect. 6.4, the following exact linear
expression can be obtained as an equivalent for the total profit of strategic producers

g1 and go:
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D Dmax E F
TP = 3530 |:35 Pnioy — 400 Muop — 400 (I'Lnlnzol + /’annm])
Hmin gmax Omin gmax
-7 (/’Lnlo] + /’Lnlol + anm + I’anol)

C E C E
—12 Pginjoy — 10 Peinior — 12 Pernioy — 15 pgznzm]

nioz

* 2230 [32 plaoz —320 I’LDmﬂx — 400 (I’Lsmzﬂz + MEz"loz)
gmin gmax emin gmax

-7 (lu“n]uz + 'unloz + /"anoz + M"zﬂz)
C E C E

—12 Peinioy — 10 Peino, ~ 12 Pernioy ~ 15 pgzﬂzvz:|

— 55000 x¢  — 66000 x5  —55000 xC — 66000 x5 (6.19)

gin ginz 821 gona”

6.5.2.2 Objective Function (6.18a): ATSW Maximization

For Illustrative Example 6.1 presented in Sect.6.4, the linear formulation of the
ATSW to be included in (6.18a) is given by (6.20) below:

D C E C E
ATSW = 3530 |:35 Puoy 12 Pginio, =10 g0, =12 Pgo, — 15 pgznzol]

+ 5230 [32 prlljloz —12 pgl”lﬂz =10 pgﬂllﬂz —12 pgznloz =15 p§2n202i|'
(6.20)

Note that to formulate the ATSW in (6.20), instead of the strategic offers of the
generating units, their true production costs are considered.

6.5.3 Ex-Post Algorithm for Detecting Nash Equilibria

In this section, we provide an ex-post algorithm [10] based on a single-iteration
diagonalization approach, which is the next step after solving problem (6.18). This
algorithm allows us to check whether each solution of problem (6.18) obtained is,
in fact, a Nash equilibrium. Note that if under the diagonalization framework, no
producer desires to deviate from its actual strategy, then the set of strategies of all
producers satisfies the definition of a Nash equilibrium [16, 17].

Letus consider the duopoly introduced in Illustrative Example 6.1 in Sect. 6.4 with
two strategic producers g; and g;. The strategic decisions of producer g; include its

. . . . C S . . . . . C
1ngfestmenct decisions, I15.e., Xg,, and x;, . and its offering decisions, i.e., &g, ,
gm0 Xgimo» aNd &y, . We refer to these strategic decisions of producer g
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as decision set S,,. A similar set can be defined including the strategic decisions
of producer g, denoted by S,,. In order to verify that each solution obtained for
problem (6.18) constitutes a Nash equilibrium, the following four steps are carried
out:

1. Consider the mixed-integer linear form of MPEC 1 pertaining to producer g;.

2. Set the investment decisions of producer g5, i.e., S,, to those obtained by the
equilibrium model through solving problem (6.18). Then, solve MPEC 1. Note
that its solution provides the strategic decisions of producer g, which we denote
by S, .

3. Repeat the two steps above for producer g, through solving MPEC 2, while strate-
gic decisions S, are fixed to those values obtained from the equilibrium model.
This step results in deriving the strategic decisions §g2 pertaining to producer g».

4. Compare the results obtained from the previous steps of the diagonalization algo-
rithm, i.e., §g1 and §g2, with those achieved from the equilibrium model, i.e., S,,
and S,,. If the investment results of each strategic producer obtained from the
single-iteration diagonalization algorithm are identical to those attained by the
equilibrium model, i.e., 3;,1 =S,, and §g2=S ¢,» then such a solution is a Nash equi-
librium because each producer cannot increase its profit by changing its strategy
unilaterally.

6.5.4 Numerical Results

This section provides the numerical results corresponding to Illustrative Example
6.1 presented in Sect. 6.4. Table 6.1 presents the investment equilibrium results. Note
that these results are obtained by solving the auxiliary optimization problem (6.18)
considering two different terms as objective function (6.18a), i.e., (i) maximizing
TP and (ii) maximizing ATSW. The GAMS code for solving this MILP problem
maximizing TP is provided in Sect. 6.8. Note that all results reported in Table 6.1 are
verified to be Nash equilibria through the ex-post algorithm provided in Sect. 6.5.3.

As described in Sect.6.5.1.3, the equilibrium model is parameterized in dual
variables n&¥, n>®, n®!D and n&'Y, which makes it a linear problem. The value
considered for those parameterized variables, i.e., n(g?'g), ng‘g), ng'“), and 7750,62'”),
are equal to the weights of the corresponding operating conditions, that is, 3530,
3530, 5230, and 5230, respectively. We have checked a variety of values for those
parameterized dual variables, e.g., half of those values considered, but the numerical
results obtained do not change.

According to the results presented in Table 6.1, several observations can be made,
as stated below:

1. In the TP maximization case, the strategic producers g; and g, invest in both
conventional and stochastic units. However, the total capacity of newly built
units (280 MW) is comparatively lower than that in the ATSW maximization case
(400 MW).
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Table 6.1 Illustrative Example 6.1: production capacity investment equilibrium results

Objective function (6.18a) max TP max ATSW
Newly built conventional units 80MW (node ny) No investment
Newly built stochastic units 200MW (node ny) 400 MW (node nj)
Total newly built units [MW] 280 400

Total investment cost of the 17.60 26.40

producers [$ million]

TP of the producers [$ million] 61.67 58.06

ATSW of the market [$ million] 79.27 84.46

2. As expected, the TP of producers g; and g, in the TP maximization case ($61.67
million) is comparatively higher than that in the ATSW maximization case ($58.06
million). However, the ATSW in the TP maximization case ($79.27 million) is
comparatively lower than that in the ATSW maximization case ($84.46 million).

3. Since the stochastic units with zero offer prices lead to a higher ATSW, only those
units are built in the ATSW maximization case.

Regarding the investment results for each producer in the TP maximization case,
the new units can be built by each of the two producers. In other words, all new
units (280 MW) may be built by producer g; or producer g;. In addition, those units
may be built by both producers, e.g., 80 MW conventional unit by producer g; and
200 MW stochastic unit by producer g,. Therefore, several equilibrium points can
be found in this case.

Regarding the investment results for each producer in the ATSW maximization
case, the only possible equilibrium point is to invest in a 200-MW stochastic unit by
each producer (i.e., 400 MW all together) since producers g; and g, cannot invest in
such a unit with a capacity greater than 200 MW.

Regarding the LMPs obtained, as expected, at least one of the producers strategi-
cally offers at a price identical to the bid price of the demand. Therefore, the LMPs
obtained in operation conditions 0y and 0, are $35 and $32/MWh, respectively. Note
that in each condition, the LMPs at both nodes are the same since the transmission
line is not congested.

6.6 Summary

This chapter provides a methodology to characterize generation investment equilibria
in a pool-based network-constrained electricity market in which all producers behave
strategically. To this end, the following steps are carried out:

Step (1) The investment problem of each strategic producer is represented using
a bilevel model, whose upper-level problem determines the optimal
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Step (2)

Step (3)

Step (4)

Step (5)

Step (6)

Step (7)

Step (8)

6 Investment Equilibria

production investment (capacity and location) and the offer prices to
maximize its profit, and whose several lower-level problems represent
the clearing of the market for different operating conditions.

The single-producer bilevel models formulated in Step 1 are transformed
into single-level MPECs by replacing the lower-level problems with their
optimality conditions resulting from the primal—dual transformation. The
resulting MPECs are continuous but nonlinear, due to the product of
variables in the objective function and strong duality equalities.

The joint consideration of all producer MPECs, one per producer, consti-
tutes an EPEC, whose solution identifies the market equilibria.

To identify EPEC solutions, the strong stationarity conditions associ-
ated with the EPEC, i.e., the strong stationarity conditions of all pro-
ducer MPECs, are derived. To this end, each MPEC obtained in Step 2
is replaced by its KKT conditions. The set of resulting strong stationarity
conditions of all MPECs, which are the strong stationarity conditions of
the EPEC, is a collection of nonlinear systems of equalities and inequal-
ities.

The strong stationarity conditions associated with the EPEC obtained in
Step 4 are linearized without approximation through three procedures: (i)
linearizing the complementarity conditions, (ii) parameterizing the result-
ing conditions in the dual variables corresponding to the strong duality
equalities, and (iii) replacing the strong duality equalities with their equiv-
alent complementarity conditions. This linearization results in a mixed-
integer and linear system of equalities and inequalities characterizing the
EPEC.

To explore multiple solutions, an auxiliary mixed-integer linear optimiza-
tion problem is formulated, whose constraints are the mixed-integer linear
conditions obtained in Step 5 and whose objective function is either a lin-
ear form of the total profit of all producers or a linear form of the annual
true social welfare.

The auxiliary mixed-integer linear optimization problem formulated in
Step 6 is solved and a number of solutions are obtained.

To detect Nash equilibria among the solutions achieved in Step 7, an
ex-post algorithm based on a single-iteration diagonalization approach is
provided. This algorithm checks whether each solution achieved in Step
7 is, in fact, a Nash equilibrium.

To validate numerically the methodology provided in this chapter, a two-node
illustrative example with two strategic producers is examined and the equilibrium
results obtained are reported and discussed.
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6.7 End-of-Chapter Exercises

6.1 Reformulate the production capacity investment equilibrium model (6.1) to
include several units per node and piecewise linear production costs.

6.2 Reformulate the production capacity investment equilibrium model (6.1) con-
sidering a multistage investment model instead of a static one.

6.3 Reformulate the production capacity investment equilibrium model (6.1) con-
sidering uncertainty in demand bid prices and investment costs of different technolo-
gies.

6.4 Solve Illustrative Example 6.1 presented in Sect. 6.4 considering the capacity
of transmission line to be 200 MW (congested case) and then interpret the investment
equilibrium results obtained.

6.5 Solve Illustrative Example 6.1 presented in Sect. 6.4 considering a single pro-
ducer owning the entire production capacity portfolio (monopoly case) and then
interpret the investment equilibrium results obtained.

6.6 Solve Illustrative Example 6.1 presented in Sect. 6.4 considering three strategic
producers fi, f», and f3 (triopoly case), in which the capacity portfolio of each
producer fi and f3 is equal to half that of producer g; in the original example, while
the capacity portfolio of producer f, is identical to that of producer g, is the original
example. Then interpret the investment equilibrium results obtained.

6.7 Compare the investment equilibrium results obtained from the monopoly case
(Exercise 6.5), the duopoly case (Illustrative Example 6.1 in Sect.6.4), and the tri-
opoly case (Exercise 6.6).

6.8 GAMS Code

This section provides the GAMS code for solving the MILP problem maximizing TP
corresponding to Illustrative Example 6.1. Note that this code is written in a general
form, and thus it is straightforward to adapt it to any investment equilibrium example.

SETS

o operating conditions /ol*o2/
g producers /gl*g2/

n nodes /nl*n2/

s (n) reference node /nl/

s Omega (n,n) transmission lines /nl.n2,n2.nl/
7 ALIAS (n,m)
ALIAS (g,VY):

PARAMETERS
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Kmax (g) available annualized investment budget of
the producers /

gl 2e7

g2 2e7/

P_Dmax (n) maximum load of the consumers /
nl 400
n2 0/

X_Cmax (n) maximum capacity investment of the
candidate conventional units /
nl 200/

X_Smax (n) maximum capacity investment of the
candidate stochastic units /

n2 200/
rho (o) weighting factor of operating conditions /
ol 3530

o2 5230/

7

TABLE B(n,n) susceptance of the transmission lines

nl n2
nl 0 le3
n2 le3 0;

Table C_C(g,n) production cost of the candidate
conventional units

nl
gl 12
g2 12;

Table C_E(g,n) production cost of the existing
conventional units

nl n2
gl 10 0
g2 0 15;

TABLE Fmax (n,n) capacity of the transmission lines

nl n2
nl 0 400
n2 400 0;

TABLE K_C(g,n) annualized investment cost of the
candidate conventional units

nl
gl 55000
g2 55000 ;

TABLE K_S(g,n) annualized investment cost of the
candidate stochastic units
n2
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gl 66000
2 g2 66000 ;
0 TABLE P_Emax(g,n) capacity of the existing
conventional units
61 nl n2
2 gl 150 0
& g2 0 100;
s5s TABLE Q_S(n,o) power capacity factor of the
candidate stochastic units
66 ol 02
n2 0.35 0.70;
TABLE Q_D(n,o) demand factor of the consumers
0 ol o2
1 nl 1.0 0.8;
TABLE U_D(n,o) bid price of the consumers
4 ol o2
nl 35 32;
77  SCALAR BigM1 a large value /led/
SCALAR BigM2 a large value /leé6/
7 SCALAR BigM3 a large value /5e7/
20 SCALAR PI pi  /3.1416/;
82 PARAMETERS
eta_parameterized(y, o) ;
22 eta_parameterized(y,o)=rho (o) ;
ss FREE VARIABLES
7 TP total profit of the producers
s linear_term (o) linear equivalent of the
bilinear term
o lambda (n, o) locational marginal prices (
LMPs)
theta (n, o) nodal voltage angles

*dual variable associated with the lower-level
problems

mu_theta_ref (0)

*dual variables associated with the MPEC of
producer y

beta(y,n, o)

rho_C(y,g,n, o)

rho_S(y,g,n,o0)

rho_E(y,g,n, o)

rho_D(y,n, o)

rho_theta(y,n, o)

eta_theta_ref (y,o0);

POSITIVE VARIABLES
*primal variables

257
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p_C(g,n,o0) power produced by the
candidate conventional units

p_D(n,o0) power consumed by the
consumers

p_E(g,n,o0) power produced by the
existing conventional units

p_S(g,n,o) power produced by the
candidate stochastic units

x_C(g,n) capacity of the candidate
conventional units

x_S(g,n) capacity of the candidate
stochastic units

alpha_C(g,n, o) offer price by the candidate

conventional units
alpha_E(g,n, o) offer price by the existing

conventional units

*dual variables associated with the lower-level
problems

mu_Cmin(g,n, o)

mu_Cmax (g,n, o)
mu_Dmin (n, o)

mu_Dmax (n, o)

mu_Emin(g,n, o)
mu_Emax (g,n, o)
mu_Smin(g,n, o)
mu_Smax (g,n, o)

mu_F (n,m, o)

mu_theta_min(n, o)

mu_theta_max(n, o)

*dual variables associated with the MPEC of
producer y

eta_Cmax(y,g,n,o)
eta_Cmin(y,g,n,o0)
eta_Emax(y,g,n, o)
eta_Emin(y,g,n,o)
eta_Smax(y,g,n,o)
eta_Smin (y, g,n,O)
eta_Dmax (y,n, o)
eta_Dmin(y,n,o)
eta_x_C_max(y,g,n)
eta_x_C_min(y,g,n)
eta_x_S_max(y,g,n)
eta_x_S_min(y,g,n)
eta_budget (v, qg)
eta_alpha_C(y,g,n, o)
eta_alpha_E(y,g,n, o)
eta_F(y,n,m,0)
eta_theta_max(y,n, o)
eta_theta_min(y,n, o)
gamma_Cmin (y,g,n, o)
gamma_Cmax (y,g,n, o)
gamma_Dmin (y,n, o)
gamma_Dmax (y,n, o)
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14 gamma_Emin (
115 gamma_ Emax (
129 gamma_Smin (
150  gamma_ Smax (
51 gamma_F (y,n,m, o
152 gamma_theta_min
153 gamma_theta_max

’ ’ i

’ ’

y,g,n,0)
y,g,n,o)
y,g,n,o0)
y,g,n,o)
)
(y
(y

155 BINARY VARIABLES

164 u_mu_F(n,m,o)
u_mu_theta_min (
u_mu_theta_max (
16 u_x_C_min(y,g,n
165 U_X_C_max(y,g,n
n
n

159 u_xX_S_min(y,g,
0 u_x_S_max(y,g,
171 u_budget (v, g)
172 u_alpha_C(y,g,n,o)
173 u_alpha_E(y,g,n,o)
174 qufmll’l( +9,n,0
175 u_C_max (
176 u_S_min ( ,
177 u_S_max ( ,
( '
(
(
(

n,o

, n,o

, , 0
179 u_E_min o
179 u_E_max o
18 u_D_min
181 u_D_max
u_F(y,n,m,
u_theta_mi
154 Uu_theta_ma

ul(y,g,n,o

’ i

)
)
)
)
)
)

’

Y
Y. 9
Y., 9
Y. 9
Y., 9
Y. 9
y.n,
y.,n
(¢]
n
X
)
)
)
)
)
)

’

y g'n’o
Yy,9g,n,0
y,g,n,o0

,9,n,0
n,o
)
)
, M, 0)
,n,0)
n,o);

Yy
Y. 9.,
y,n,o
y,n,o
y,n
(
(

u2 (
u3 (
ud (
189 ub (
u6b (
u7 (
u8 (
s u9(y,
19 ulo0 Y
95 ull (y,
X_S P(g,n)=X_Smax (n) ;
x_C.UP(g,n)=X_Cmax (n) ;
p_E.UP(g,n,o0)=P_Emax (g,n) ;
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p_D.UP(n,o0)=P_Dmax (n)*Q_D(n, o) ;
theta.LO(n,o0)=-PI;
theta.UP(n,o0)=PI;
theta.FX('nl’,o0)=0;
EQUATIONS
OF , EQl, EQ2, EQ3, EQ4, EQ5, EQ6, EQ7, EQ8, EQ9,
EQ10, EQ11, EQ12, EQ13, EQl4, EQ15, EQl6, EQ17,
EQ18, EQ19, EQ20,
EQ21, EQ22, EQ23, EQ24, EQ25, EQ26, EQ27, EQ28,
EQ29, EQ30, EQ31, EQ32, EQ33, EQ34, EQ35, EQ36,
EQ37, EQ38, EQ39, EQ40,
EQ41, EQ42, EQ43, EQ44, EQ45, EQ46, EQ47, EQ48,
EQ49, EQ50, EQ51, EQ52, EQ53, EQ54, EQ55, EQ56,
EQ57, EQ58, EQ59, EQ60,
EQ61l, EQ62, EQ63, EQ64, EQ65, EQ66, EQ67, EQ68,
EQ69, EQ70, EQ71, EQ72, EQ73, EQ74, EQ75, EQ76,
EQ77, EQ78, EQ79, EQS80,
EQ81, EQ82, EQ83, EQ84, EQ85, EQ86, EQ87, EQ88,
EQ89, EQ90, EQ91, EQ92, EQ93, EQ94, EQ95, EQ96,
EQ97, EQ98, EQ99, EQ100,
EQ101, EQ102, EQ103, EQ104, EQ105, EQl1l06, EQ107,
EQ108, EQ109, EQ110, EQ111, EQ112, EQ113, EQ114
, EQ115, EQ116, EQ117,
EQ118, EQ119, EQ120;

OF..TP=E=SUM (o, rho (o) *linear_term(o))-SUM((n,qg),x_C
(g,n)*K_C(g,n))-SUM((n,g),x_S(g,n)*K_S(g,n))-
SUM((g,n,o0),rho(o)*p_C(g,n,o0)*C_C(g,n))-SuM((g,

n,o),rho(o)*p_E(g,n,o0)*C_E(g,n)) ;

EQl (o) ..linear_term(o)=E=SUM(n,U_D(n,o0)*p_D(n,o0)) -
SUM (n, mu_Dmax (n,o) *P_Dmax(n)*Q_D(n,o0))-SUM((n,m
) SOmega (n,m) ,Fmax (n,m) *mu_F(n,m,o0))-SUM(n, PT*[

mu_theta_max (n,o)+mu_theta_min(n,o)]) ;

EQ2(g) ..SUM(n,x_C(g,n)*K_C(g,n))+SUM(n,x_S(g,n) *K_S
(g,n))=L=Kmax (g) ;

EQ3(n,o0)..p_D(n,o0)+SUM(mSOmega (n,m) ,B(n,m) *[theta (n
,0)-theta(m,0)])-SUM(g,p_C(g,n,0))-SUM(g,p_E (g,
n,o))-sSUM(g,p_S(g,n,0))=E=0;

EQ4(g,n,o0)..p_C(g,n,o0)=L=x_C(g,n) ;
EQ5(g,n,0)..p_S(g,n,o0)=L=Q_S(n,o0)*x_S(g,n);

EQ6 (n,m,o0) SOmega (n,m) ..B(n,m) *[theta(n,o0)-theta (m, o
) ]=L=Fmax (n,m) ;

EQ7(g,n,o0) ..alpha_C(g,n,o0)-lambda(n,o)+mu_Cmax (g, n,
o)-mu_Cmin(g,n,o)=E=0;
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23 EQ8(g,n,o0)..alpha_E(g,n,o)-lambda(n, o) +mu_Emax (g, n,
o)-mu_Emin(g,n,o)=E=0;

222 EQ9(g,n,o0)..-lambda(n,o)+mu_Smax(g,n,o)-mu_Smin (g,n
,0)=E=0;

EQl10(n,0)..-U_D(n,o)+lambda(n,o)+mu_Dmax(n, o) -

mu_Dmin(n,o)=E=0;

EQll(n,o0).. SUM(m$SOmega(n,m),B(n,m)*[lambda(n,o) -
lambda (m,0)])+SUM(m$SOmega (n,m) ,B(n,m) *[mu_F (n,m
,0)-mu_F(m,n,o)])+mu_theta_max(n, o) -

mu_theta_min(n,o)+mu_theta_ref (o) $s(n)=E=0;

EQl2(g,n,0)..p_C(g,n,o0)=L=u_mu_Cmin(g,n, o) *BigMl;
239 EQ13(g,n,o0)..mu_Cmin(g,n,o)=L=[1-u_mu_Cmin(g,n,o)]*
BigM2 ;
EQl4(g,n,0)..[x_C(g,n)-p_C(g,n,o0)]=L=u_mu_Cmax (g, n,
o) *BigM1 ;
EQ15(g,n,o0)..mu_Cmax(g,n,o)=L=[1-u_mu_Cmax(g,n,o)]*
BigM2 ;

222 EQl6(g,n,o0)..p_S(g,n,o)=L=u_mu_Smin (g,n, o) *BigMl;

EQl7(g,n,o0)..mu_Smin(g,n,o)=L=[1l-u_mu_Smin(g,n,o0)]*
BigM2 ;
207 EQL8(g,n,o0)..[(Q_S(n,0)*x_S(g,n))-p_S(g,n,o0)]l=L=
u_mu_Smax (g,n, o) *BigMl;
226 EQ19(g,n,o0)..mu_Smax(g,n,o)=L=[1l-u_mu_Smax(g,n,o)]*
BigM2 ;
EQ20(g,n,0) ..p_E(g,n,o0)=L=u_mu_Emin(g,n, o) *BigMl;
251 EQ21(g,n,o0)..mu_Emin(g,n,o)=L=[1l-u_mu_Emin(g,n,o)]*
BigM2 ;
EQ22(g,n,o0) ..[P_Emax(g,n)-p_E(g,n,o)]l=L=u_mu_Emax (g
,n,o0) *BigMl1;
EQ23 (g,n,o0)..mu_Emax(g,n,o)=L=[1l-u_mu_Emax(g,n,o) ]*
BigM2 ;
256 EQ24 (n,o0)..p_D(n,o)=L=u_mu_Dmin (n, o) *BigMl;
257 EQ25(n,o0) ..mu_Dmin(n,o)=L=[1l-u_mu_Dmin(n,o)]*BigM2;
250 EQ26 (n,o0) ..[(Q_D(n,o0)*P_Dmax(n))-p_D(n,o0)]l=L=
u_mu_Dmax (n, o) *BigM1 ;
26¢ EQ27 (n,o0) ..mu_Dmax(n,o)=L=[1l-u_mu_Dmax(n,o)]*BigM2;
262 EQ28(n,m,o0) $SOmega (n,m) ..Fmax(n,m)-[B(n,m) *(theta (n,
o)-theta(m,o0))]=L=u_mu_F(n,m,o) *BigMl;
263 EQ29(n,m,o0) $Omega(n,m) .. mu_F(n,m,o0)=L=[1l-u_mu_F(n,m

,0)1*BigM2;
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EQ30(n,o0)..PI+theta(n,o)=L=[1l-u_mu_theta_min(n,o)]*
BigM1l;

EQ31(n,o0)..mu_theta_min(n,o)=L=u_mu_theta_min(n,o)*
BigM2;

EQ32(n,o0)..PI-theta(n,o)=L=[1l-u_mu_theta_max(n,o)]*
BigM1l;

EQ33(n,0) ..mu_theta_max(n,o)=L=u_mu_theta_max(n,o)*
BigM2 ;

EQ34(y,g,n,0)S$[ORD(g) EQ ORD(y)]..-[rho(o)*(lambda (
n,o)-C_C(g,n))]-beta(y,n,o)+eta_Cmax(y,g,n,o) -

eta_Cmin(y,g,n,o)+[eta_parameterized(y, o) *
alpha_C(g,n,0)]1=E=0;

EQ35(y,g,n,o0)$[ORD(g) NE ORD(y)]..-beta(y,n,o)+
eta_Cmax(y,g,n,o)-eta_Cmin(y,g,n,o)+[
eta_parameterized(y,o0) *alpha_C(g,n,o0)]1=E=0;

EQ36(y,g,n,o0)$[ORD(g) EQ ORD(y)]..-[rho(o)*(lambda (
n,o)-C_E(g,n))]-beta(y,n,o)+eta_Emax(y,g,n,o) -
eta_Emin(y,g,n,o)+[eta_parameterized(y,o) *
alpha_E(g,n,o0)]=E=0;

EQ37(y,g,n,o0)S[ORD(g) NE ORD(y)]..-beta(y,n,o)+
eta_Emax(y,g,n,o)-eta_Emin(y,g,n,o) +[
eta_parameterized(y,o0) *alpha_E(g,n,o0)]=E=0;

EQ38(y,g,n,o0)S$S[ORD(g) EQ ORD(y)]..-[rho(o)*lambda (n
,0)]-beta(y,n,o)+eta_Smax(y,g,n,o)-eta_Smin(y,g
,n,0)=E=0;

EQ39(y,g,n,o0)$S[ORD(g) NE ORD(y)]..-beta(y,n,o)+

eta_Smax(y,g,n,o0)-eta_Smin(y,g,n,o)=E=0;

EQ40(y,n,0) ..beta(y,n,o0)+eta_Dmax(y,n,o)-eta_Dmin (y
,n,o0)-[eta_parameterized(y,o0)*U_D(n,o0)]=E=0;
EQ41(y,g,n)S[ORD(g) EQ ORD(y)]..K_C(g,n)+

eta_x_C_max(y,g,n)-eta_x_C_min(y,g,n)+[K_C(g,n)
*eta_budget (y,g)]1-SUM (0o, eta_Cmax(y,g,n, o)) +SUM(
o,eta_parameterized(y,o)*mu_Cmax(g,n,o0))=E=0;

EQ42 (y,g,n)$[ORD(g) NE ORD(y)]..-SUM(o,eta_Cmax(y,g
,n,0))+8UM (0o, eta_parameterized(y,o)*mu_Cmax (g, n
,0))=E=0;

EQ43 (y.,g.n)S[ORD(g) EQ ORD(y)]..K_S(g,n)+

eta_x_S_max(y,g,n)-eta_x_S_min(y,g,n)+[K_S(g,n)
*eta_budget (y,g)]1-SUM(0o,Q_S(n,o0)*eta_Smax(y,g,n
,0))+8SUM(0,Q_S(n,o0)*eta_parameterized(y,o)*
mu_Smax (g,n, o) )=E=0;

EQ44 (y,g,n)S[ORD(g) NE ORD(y)]..-SUM(0o,Q_S(n,o0)*
eta_Smax(y,g,n,o))+SUM(0o,Q_S(n,o0)*
eta_parameterized(y,o0) *mu_Smax(g,n,o))=E=0;
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288

EQ45(y,g,n,0)$[ORD(g) EQ ORD(y)]..-eta_alpha_C(y,g,
n,o)+rho_C(y,g,n,o)+[eta_parameterized(y,o)*p_C
(g,n,0) 1=E=0;

EQ46 (y,g,n,o0)$S[ORD(g) NE ORD(y)]..rho_C(y,g,n,o)+I[
eta_parameterized(y,o0)*p_C(g,n,o0)]1=E=0;

EQ47(y,g,n,o0)S[ORD(g) EQ ORD(y)]..-eta_alpha_E(y,g,
n,o)+rho_E(y,g,n,o)+[eta_parameterized(y,o) *p_E
(g,n,o0)1=E=0;

EQ48(y,g,n,o0)$S[ORD(g) NE ORD(y)]..rho_E(y,g,n,o)+[

eta_parameterized(y,o0)*p_E(g,n,o0)]1=E=0;

EQ49 (y,n,0) ..SUM (m$SOmega (n,m) ,B(n,m) *[beta(y,n, o) -
beta(y,m,0)])+SUM(m$Omega (n,m) ,B(n,m) *[eta_F (v,
n,m,o)-eta_F(y,m,n,o)])+eta_theta_max(y,n,o) -
eta_theta_min(y,n,o)+eta_theta_ref(y,o0)$s(n)=E
=0;

EQ50(y,n,o0)..-[rho(o)*(p_C(y,n,o0)+p_S(y,n,o)+p_E (v,
n,o))]-suM(g, rho_C(y,g,n,o0))-StM(g, rho_E(y,g,n,
0))-SUM (g, rho_S(y,g,n,o))+rho_D(y,n,o)+SUM

m$Omega (n,m) ,B(n,m) *[rho_theta(y,n,o0)-rho_theta
(y,m,0)])=E=0;

EQ51(y,g,n,o0)..-rho_C(y,g,n,o)-gamma_Cmin(y,g,n,o)=
E=0;
EQ52(y,g,n,0)..+rho_C(y,g,n,o)-gamma_Cmax (y,g,n, o)
+[eta_parameterized(y,o0)*x_C(g,n)]l=E=0;
EQ53(y,g,n,o0)..-rho_S(y,g,n,o)-gamma_Smin(y,g,n, o) =
E=0;
EQ54(y,g,n,0)..+rho_S(y,g,n,o)-gamma_Smax(y,g,n, o)
+[eta_parameterized(y,o)*Q_S(n,o0)*x_S(g,n)]=E
=0;
EQ55(y,g,n,o0)..-rho_E(y,g,n,o)-gamma_Emin(y,g,n, o) =
E=0;
EQ56(y,g,n,0)..+rho_E(y,g,n,o0)-gamma_Emax(y,g,n, o)
+[eta_parameterized(y,o)*P_Emax(g,n)]=E=0;
EQ57(y,n,o0) ..-rho_D(y,n,o0)-gamma_Dmin(y,n,o0)=E=0;
EQ58(y,n,o0)..+rho_D(y,n,o0)-gamma_Dmax(y,n, o) +[
eta_parameterized(y,o)*P_Dmax(n)*Q_D(n,o0)]=E=0;
EQ59(y,n,m,o0) $SOmega (n,m) .. [B(n,m) *(rho_theta(y,n, o)
-rho_theta(y,m,0))]-gamma_F (y,n,m, o) +[
eta_parameterized(y,o0) *Fmax (n,m) ]=E=0;
EQ60(y,n,o0)..-rho_theta(y,n,o)-gamma_theta_min(y,n,
o)+[eta_parameterized(y,o)*PI]1=E=0;
EQ61(y,n,o0) ..+rho_theta(y,n,o)-gamma_theta_max(y,n,
o)+[eta_parameterized(y,o)*PI]1=E=0;
EQ62(y,n,o0)..rho_theta(y, 'nl’,o0)=E=0;
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EQ63 (y,g,n)$[ORD(g) EQ ORD(y)]..x_C(g,n)=L=[1-
u_x_C_min(y,g,n)]1*BigMl;
EQ64 (y,g,n)$[ORD(g) EQ ORD(y)]..eta_x_C_min(y,g,n)=

L=u_x_C_min(y,g,n) *BigM2;

EQ65(y,g,n)$[ORD(g) EQ ORD(y)]..[X_Cmax(n)-x_C(g,n)
l1=L=[1-u_x_C_max(y,g,n)]*BigMl;

EQ66 (y,g,n)S[ORD(g) EQ ORD(y)]..eta_x_C_max(y,g,n)-=
L=u_x_C_max (y,g,n) *BigM2;

EQ67(y,g,n)S[ORD(g) EQ ORD(y)]..x_S(g,n)=L=[1-
u_x_S_ min(y,g,n)]1*BigMl;

EQ68(y,g,n)S$S[ORD(g) EQ ORD(y)]..eta_x_S_min(y,g,n)=

L=u_x_S_min(y,g,n) *BigM2;

EQ69(y,g,n)S[ORD(g) EQ ORD(y)]..[X_Smax(n)-x_S(g,n)
1=L=[1-u_x_S_max(y,g,n)]*BigMl;

EQ70(y,g,n)S$S[ORD(g) EQ ORD(y)]..eta_x_S max(y,g,n)=
L=u_x_S_max(y,g,n) *BigM2;

EQ71(g,y)S$S[ORD(g) EQ ORD(y)]..Kmax(g)-8SUM(n,x_C(g,n
)*K_C(g,n))-8SUM(n,x_S(g,n)*K_S(g,n))=L=[1-
u_budget (g,y) 1*BigM3;

EQ72(g,y)S[ORD(g) EQ ORD(y)]..eta_budget(y,g)=L=
u_budget (g,y) *BigM3;

EQ73(y,g,n,o0)$[ORD(g) EQ ORD(y)]..alpha_C(g,n,o)=L
=[l-u_alpha_C(y,g,n,o)]1*BigMl;

EQ74(y,g,n,o0)$S[ORD(g) EQ ORD(y)]..eta_alpha_C(y,g,n
,0)=L=u_alpha_C(y,g,n,o0) *BigM2;

EQ75(y,g,n,o0)$[ORD(g) EQ ORD(y)]..alpha_E(g,n,o)=L
=[1l-u_alpha_E(y,g,n,o0)]1*BigMl;

EQ76 (y,g,n,o0)$[ORD(g) EQ ORD(y)]..eta_alpha_E(y,g,n
,0)=L=u_alpha_E(y,g,n,o) *BigM2;

EQ77(y,g,n,0)..p_C(g,n,o0)=L=(1l-u_C_min(y,g,n,o0))*

BigM1 ;
EQ78(y,g,n,o0)..eta_Cmin(y,g,n,o)=L=u_C_min(y,g,n, o)
*BigM2 ;
EQ79(y,g,n,o0)..[x_C(g,n)-p_C(g,n,o0)]=L=(1-u_C_max(y
,g,n,o0) ) *BigMl;
EQ80(y,g,n,o0)..eta_Cmax(y,g,n,o)=L=u_C_max(y,g,n, o)
*BigM2 ;

EQ81(y,g,n,0)..p_S(g,n,o0)=L=(l-u_S_min(y,g,n,o0))*

BigM1 ;
EQ82(y,g,n,o0)..eta_Smin(y,g,n,o)=L=u_S_min(y,g,n, o)
*BigM2 ;
EQ83 (y,g,n,0) ..[(Q_S(n,0)*x_S(g,n))-p_S(g,n,o0)]=L

=(l-u_S_max(y,g,n,o)) *BigMl;
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EQ84 (y,g,n,o0) ..eta_Smax(y,g,n,o)=L=u_S_max(y,g,n,o)
*BigM2 ;
EQ85(y,g,n,0) ..p_E(g,n,o0)=L=(l-u_E_min(y,g,n,o0))*
BigM1 ;
50 EQ86(y,g,n,o)..eta_Emin(y,g,n,o)=L=u_E_min(y,g,n,o)
*BigM?2 ;
EQ87(y,g,n,o0)..[P_Emax(g,n)-p_E(g,n,o) ]l=L=(1-
u_E_max(y,g,n,o))*BigMl;
EQ88(y,g,n,o0)..eta_Emax(y,g,n,o)=L=u_E_max(y,g,n, o)
*BigM2 ;
EQ89(y,n,0)..p_D(n,o0)=L=(1l-u_D_min(y,n,o)) *BigMl;
EQ90(y,n,0) ..eta_Dmin(y,n,o0)=L=u_D_min(y,n, o) *BigM2
EQ91(y,n,o0) ..[(P_Dmax(n)*Q_D(n,0))-p_D(n,o0)l=L=(1-
u_D_max(y,n,o)) *BigMl;
EQ92 (y,n,0) ..eta_Dmax (y,n,o)=L=u_D_max (y,n, o) *BigM2
61 EQ93 (y,n,m,o0) $Omega (n,m) ..Fmax(n,m) -[B(n,m) *[theta (
n,o)-theta(m,o0)]l=L=[1-u_F(y,n,m,0)]*BigMl;
EQ94 (y,n,m,o0) $SOmega (n,m) ..eta_F(y,n,m,o0)=L=u_F(y,n,
m, o) *BigMl ;
62 EQ95(y,n,o)..[PI+theta(n,o0)]l=L=[1-u_theta_min(y,n,o
) 1*BigMl;
EQ96 (y,n,0) ..eta_theta_min(y,n,o)=L=u_theta_min(y,n
,0) *BigM2;
67 EQ97(y,n,o0)..[PI-theta(n,o0)]=L=[1-u_theta_max(y,n,o
) 1*BigMl;
EQ98 (y,n,o0) ..eta_theta_max(y,n,o)=L=u_theta_max(y,n
,0) *BigM2;

EQ99(y,g,n,o0)..mu_Cmin(g,n,o)=L=[1-ul(y,g,n,o0)]1*
BigM3;
;71 EQ100(y,g,n,o0)..gamma_Cmin(y,g,n,o)=L=ul(y,g,n,o)*
BigM3;

73 EQ101(y,g,n,o0)..mu_Cmax(g,n,o)=L=[1l-u2(y,g,n,o)]"*
BigM3;

72 EQ102(y,g,n,o0)..gamma_Cmax(y,g,n,o)=L=u2(y,g,n,o)*
BigM3;

EQ103(y,g,n,o0)..mu_Smin(g,n,o)=L=[1-u3(y,g,n,o0)1*
BigM3;

EQ104(y,g,n,o0)..gamma_Smin(y,g,n,o)=L=u3(y,g,n,o0)*
BigM3;
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EQ105(y,g,n,0)..mu_Smax(g,n,o)=L=[1-ud(y,g,n,o0)1*
BigM3;

EQl106(y,g,n,0)..gamma_Smax (y,g,n,o)=L=ud(y,g,n,o)*
BigM3;

382 EQ107(y,g,n,o0)..mu_Emin(g,n,o)=L=[1-u5(y,g,n,o0)]1*
BigM3;

383 EQ108(y,g,n,0)..gamma_Emin(y,g,n,o)=L=u5(y,g,n,o)*
BigM3;

EQ109(y,g,n,0)..mu_Emax(g,n,o)=L=[1-u6(y,g,n,o)]1*

BigM3;
EQ110(y,g,n,o0) ..gamma_Emax (y,g,n,o)=L=u6(y,g,n,o)*
BigM3;
s EQ111(y,n,o0)..mu_Dmin(n,o)=L=[1-u7(y,n,o)]*BigM3;
90 EQLl12(y,n,o0)..gamma_Dmin(y,n,o)=L=u7(y,n,o) *BigM3;
EQ113(y,n,o0) ..mu_Dmax (n,o0)=L=[1-u8(y,n,o0) ]*BigM3;
202 EQ114(y,n,o0)..gamma_Dmax (y,n,o)=L=u8(y,n, o) *BigM3;
200 EQ115(y,n,m,o0) $SOmega (n,m) .. mu_F (n,m,o0)=L=[1-u9 (y,n,
m,o)]*BigM3;
EQll6(y,n,m,0) $SOmega (n,m) ..gamma_F (y,n,m,o0)=L=u9 (y,
n,m,o)*BigM3;
EQ117(y,n,0)..mu_theta_min(n,o)=L=[1-ul0(y,n,o0)]1*
BigM3;
EQ118(y,n,0) ..gamma_theta_min(y,n,o)=L=ull0(y,n,o)*
BigM3;
EQ119(y,n,o0)..mu_theta_max(n,o)=L=[1-ull(y,n,o)]*
BigM3;
w1 EQ120(y,n,o)..gamma_theta_max(y,n,o)=L=ull(y,n,o)?*
BigM3;

203 MODEL EQUILIBRIA /ALL/;
202 OPTION OPTCR=0;
205 SOLVE EQUILIBRIA USING MIP MAXIMIZING TP;
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