
Chapter 6
Investment Equilibria

Investment equilibrium analysis constitutes a useful framework for regulators to
gain insights into the behavior of strategic producers and the evolution of generation
investment in an electricity market. Such a perspective enables regulators to design
better market rules, which in turnmay contribute to increasing the competitiveness of
themarket and to stimulating investment in generation capacity. This chapter provides
a methodology based on optimization and complementarity modeling for identifying
generation investment equilibria in a network-constrained electricity market.

6.1 Introduction

The objective of a producer competing in an electricity market is to maximize its
profit. To this purpose, such aproducermakes its owndecisions through its investment
strategies (long-term decisions) and operational strategies (short-term decisions).
However, the strategic decisions of each producer are related to those of other pro-
ducers (rivals) due to market interactions. In fact, decisions made by each producer
may influence the strategies of other producers. Within this framework, a number
of investment equilibria generally exist, whereby each producer cannot increase its
profit by changing its strategies unilaterally [7, 8, 10, 11, 23, 25]. The objective of
this chapter is to identify such investment equilibria mathematically.

Investment equilibrium analysis is particularly useful for a regulator to gain
insights into the investment behavior of producers and the evolution of the total
production capacity. As a result, the regulator may be able to design better market
rules, which in turn may enhance the competitiveness of the market and stimulate
investment in production capacity.

In contrast to Chap.5, in which a single strategic producer is considered, all
producers considered in this chapter are strategic, thereby creating an oligopoly.
This means that all producers can alter the market outcomes, i.e., market-clearing
prices and production quantities, through their strategies. One important observation
is that the feasibility region for the investment decision-making problem of each
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producer is interrelated with those of other producers. Thus, the production capacity
investment equilibria problem is a generalized Nash equilibrium (GNE) problem
[2, 4, 12].

Several treatments of operational and investment equilibria in the extant literature
address oligopolistic energy markets, e.g., [1, 3, 9–11, 13–15, 19, 21, 23, 24].

The remainder of this chapter is organized as follows. Section6.2 describes the
available approaches for solving an equilibrium problem. Section6.3 presents mod-
eling features and assumptions. Section6.4 provides a bilevel model for a single
producer to make its investment decisions, which renders to a mathematical program
with equilibrium constraint (MPEC). Section6.5 presents the investment decision-
making problem of multiple producers, which results in an equilibrium problemwith
equilibrium constraints (EPEC). Section6.6 summarizes the chapter and discusses
the main conclusions of the models and results reported in the chapter. Section6.7
proposes some exercises to enable a deeper understanding of themodels and concepts
described in the chapter. Finally, Sect. 6.8 includes the GAMS code for an illustrative
example.

6.2 Solution Approach

Similar to Chap.5, in which a bilevel model is considered to represent the invest-
ment and offering decisions of a strategic producer, we consider in this chapter such
a model for each strategic producer. Within the bilevel model of each strategic pro-
ducer, the upper-level problem determines its optimal investment and strategic offer
prices with the aim of maximizing its profit. In addition, a number of lower-level
problems represent the clearing of the market under different operating conditions.
As in Chap.5, each lower-level problem is replaced by its optimality conditions,
which yields an MPEC. This transformation is schematically illustrated in Fig. 6.1.

Bilevel model
of producer 1 of producer 2 of producerG

MPEC of
producer 1

MPEC of
producer 2

MPEC of
producer G

Bilevel model Bilevel model

Fig. 6.1 Transforming the bilevel models into MPECs in an oligopolistic market with several
strategic producers
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Fig. 6.2 MPECs and EPEC

Note that since several strategic producers are considered in this chapter, several
MPECs are obtained, one per strategic producer. The joint consideration of all these
MPECs constitutes an EPEC, as depicted in Fig. 6.2. The general mathematical struc-
ture of an EPEC is explained in Appendix C. Note that the EPEC solution identifies
the market equilibria.

In general, two solution alternatives are available to solve an EPEC and thus to
identify the market equilibria:

1. Diagonalization (iterative) approach [18, 22].
2. Simultaneous (noniterative) approach [9–11, 19].

The first solution alternative, i.e., the diagonalization approach, is an iterative
technique, in which a single MPEC is solved in each iteration, while the strategic
decisions of other producers are fixed. For example, consider a duopoly with two
strategic producers 1 and 2, whose bilevel models are transformed into two MPECs
1 and 2, respectively. In the first iteration, MPEC 1 is solved, while the strategic
decisions of producer 2 are fixed to some initial guesses. Then, in the second iteration,
MPEC 2 is solved, while the strategic decisions of producer 1 are fixed to those
obtained in the first iteration. This iterative process is continued until no decision is
changed in the two subsequent iterations. The solution obtained is aNash equilibrium
since no producer desires to deviate from its decisions. Note that this approach is
generally inefficient since it is iterative and provides, if convergence is achieved, at
most a single equilibriumpoint. In addition, itmay require a large number of iterations
in the case of markets with many producers. Besides, it is not straightforward to find
appropriate initial guesses, and suboptimal guessesmay greatly affect the functioning
of this approach.

The second solution alternative, i.e., the simultaneous approach, is a noniterative
technique, inwhich all producers’MPECs are solved together. Therefore, it generally
yields a complex mathematical problem. In this approach, each MPEC is replaced
by its Karush–Kuhn–Tucker (KKT) conditions, which provide its strong stationary
conditions. A collection of all those conditions for all producers results in the strong
stationary conditions of the EPEC, whose solutions identify the market equilibria.
This latter approach is the focus of this chapter.
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6.3 Modeling Features and Assumptions

The technical features and assumptions of the investment equilibria model presented
in this chapter are stated below:

1. An electricity pool is considered in which the market operator clears the pool
once a day, one day ahead, and on an hourly basis.

2. A dc transmission network representation is considered.
3. Pursuing simplicity, a static investment model is used, i.e., a single target year is

considered. The target year represents the final stage of the planning horizon, and
the model uses annualized costs for this target year. Further details on investment
models are available in Chap.5. Note that a dynamic (multistage) model can also
be considered within the investment equilibria problem [23] but at the cost of
increased computational complexity.

4. A set of operating conditions is considered to represent the potential levels of
the consumers’ demands and the production of stochastic units during the target
year. Accordingly, we define a set of demand and power capacity factors. Further
details on operating conditions are available in Chap. 5.

5. For the sake of simplicity, uncertainties are not considered in this chapter. How-
ever, note that the investment equilibria problem is generally subject to several
uncertainties, e.g., demand growth, investment costs for different technologies,
and regulatory changes, which may be modeled through a set of plausible sce-
narios [3, 8, 21].

The notation used in this chapter is defined below:

Indices

g Index for producers.
n,m Indices for nodes.
o Index for operating conditions.

Sets

Ωn Set of nodes connected to node n.

Parameters

Bnm Susceptance of the transmission line connecting nodes n and m [S].
CC

gn Production cost of the candidate conventional unit of producer g located at
node n [$/MWh].

CE
gn Production cost of the existing conventional unit of producer g located at

node n [$/MWh].
Fmax
nm Transmission capacity of the line connecting nodes n and m [MW].

KC
gn Annualized investment cost of the candidate conventional unit of producer

g located at node n [$/MW].
K S

gn Annualized investment cost of the candidate stochastic unit of producer g
located at node n [$/MW].

http://dx.doi.org/10.1007/978-3-319-29501-5_5
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Kmax
g Available annualized investment budget of producer g [$].

PEmax

gn Capacity of the existing conventional unit of producer g located at node n
[MW].

PDmax

n Maximum load of the consumer located at node n [MW].
QS

no Power capacity factor of the candidate stochastic unit located at node n in
operating condition o [p.u.].

QD
no Demand factor of the consumer located at node n in operating condition o

[p.u.].
UD

no Bid price of the consumer located at node n in operating condition o
[$/MWh].

XCmax

n Maximum production capacity of the candidate conventional unit located at
node n [MW].

XSmax

n Maximum production capacity of the candidate stochastic unit located at
node n [MW].

ρo Number of hours (weight) corresponding to operating condition o [h].

Variables

pCgno Power produced by the candidate conventional unit of producer g located at
node n in operating condition o [MW].

pDno Power consumed by the consumer located at node n in operating condition o
[MW].

pEgno Power produced by the existing conventional unit of producer g located at
node n in operating condition o [MW].

pSgno Power produced by the candidate stochastic unit of producer g located at
node n in operating condition o [MW].

xCgn Capacity of the candidate conventional unit of producer g located at node n
[MW].

xSgn Capacity of the candidate stochastic unit of producer g located at node n
[MW].

αC
gno Offer price by the candidate conventional unit of producer g located at node

n in operating condition o [$/MWh].
αE
gno Offer price by the existing conventional unit of producer g located at node n

in operating condition o [$/MWh].
λno Market-clearing price at node n in operating condition o [$/MWh].
θno Voltage angle at node n in operating condition o [rad].

6.4 Single-Producer Problem

The bilevel model for each single strategic producer is similar to one presented
in Chap.5. We consider two types of generating units: candidate (conventional and
stochastic) and existing (conventional) units. These units belong to different strategic
producers (i.e., producers g = 1, . . . ,G) and offer at strategic prices, except the

http://dx.doi.org/10.1007/978-3-319-29501-5_5


234 6 Investment Equilibria

candidate stochastic units, which always offer at zero. It is also assumed that all
existing units (available at the initial year) are conventional, i.e., there is no stochastic
production unit within the initial production portfolio of the producers.

The formulation of the bilevel model for a particular strategic producer, e.g.,
producerG, is given by (6.1). Note that (6.1a)–(6.1f) refer to the upper-level problem
of producerG, whereas (6.1g) pertains to the lower-level problems, one per operating
condition o. Note that a similar bilevel problem can be considered for any other
producers, i.e., producers g = 1, . . . ,G − 1. The bilevel problem for producer G is
formulated below:

{
minΞUL

g ∪ ΞPrimal
o ∪ ΞDual

o

∑
n

{
KC

gn x
C
gn + K S

gn x
S
gn

−
∑
o

ρo

[
λno

(
pCgno + pSgno + pEgno

) − pCgno C
C
gn − pEgno C

E
gn

]}
(6.1a)

subject to

0 ≤ xCgn ≤ XCmax

n ∀n (6.1b)

0 ≤ xSgn ≤ XSmax

n ∀n (6.1c)∑
n

(
KC

gn x
C
gn + K S

gn x
S
gn

) ≤ Kmax
g (6.1d)

αC
gno ≥ 0 ∀o,∀n (6.1e)

αE
gno ≥ 0 ∀o,∀n (6.1f)

Lower-level problems (6.1h)−(6.1p) ∀o (6.1g)}
g = G.

The primal variables of the upper-level problem (6.1a)–(6.1f) are those in set
ΞUL

g = {αC
gno, α

E
gno, x

C
gn, x

S
gn} plus all primal and dual variables of the lower-level

problems (6.1g), which are defined after their formulation through sets ΞPrimal
o and

ΞDual
o .
The objective function (6.1a) refers to minus the expected annual profit of the

considered producer, i.e., annualized investment cost minus expected annual opera-
tional profit. Note that the market-clearing price λno is the dual variable of the power
balance constraint at node n and operating condition o obtained endogenously from
the corresponding lower-level problem. The objective function (6.1a) comprises the
following terms:

•
∑
n

KC
gn xCgn is the annualized investment cost of candidate conventional units of

producer g.
•

∑
n

K S
gn xSgn is the annualized investment cost of candidate stochastic units of

producer g.



6.4 Single-Producer Problem 235

•
∑
n

∑
o

ρo pCgno λno is the annualized revenue of producer g obtained from selling

the production of candidate conventional units (production quantity multiplied by
market-clearing price).

•
∑
n

∑
o

ρo pEgno λno is the annualized revenue of producer g obtained from selling

the production of existing conventional units (production quantity multiplied by
market-clearing price).

•
∑
n

∑
o

ρo pSgno λno is the annualized revenue of producer g obtained from selling

the production of candidate stochastic units (production quantity multiplied by
market-clearing price).

•
∑
n

∑
o

ρo pCgno C
C
gn is the annualized production cost of candidate conventional

units of producer g (production quantity multiplied by marginal cost).
•

∑
n

∑
o

ρo pEgno CE
gn is the annualized production cost of existing conventional

units of producer g (production quantity multiplied by marginal cost).

The production cost of stochastic units is assumed to be zero. Note that themarket-
clearing prices (λno) and the production quantities (pCgno, p

E
gno, and pSgno) belong to

the feasible region defined by lower-level problems (6.1g).
For the sake of simplicity, the capacity options for investing in both conventional

and stochastic units are assumed continuous. The capacity bounds for such options
are enforced by (6.1b) and (6.1c). In addition, a cap on the available annualized
investment budget of producer g is enforced by (6.1d). Finally, the upper-level con-
straints (6.1e)–(6.1f) enforce the nonnegativity of the offer prices associated with the
candidate and existing conventional units, respectively, of producer G.

Each lower-level problem, one per operating condition o, is formulated below.
The dual variable of each lower-level constraint is indicated following a colon:

{
minΞPrimal

o

∑
n

[ ∑
g

(
αC
gno pCgno + αE

gno pEgno
) −UD

no pDno

]
(6.1h)

subject to

pDno +
∑
m∈Ωn

Bnm (θno − θmo) −
∑
g

pCgno −
∑
g

pSgno

−
∑
g

pEgno = 0 : λno ∀n (6.1i)

0 ≤ pCgno ≤ xCgn : μCmin

gno , μCmax

gno ∀g,∀n (6.1j)

0 ≤ pSgno ≤ QS
no x

S
gn : μSmin

gno , μ
Smax

gno ∀g,∀n (6.1k)

0 ≤ pEgno ≤ PEmax

gn : μEmin

gno , μEmax

gno ∀g,∀n (6.1l)

0 ≤ pDno ≤ QD
no PDmax

n : μDmin

no , μDmax

no ∀n (6.1m)
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Bnm (θno − θmo) ≤ Fmax
nm : μF

nmo ∀n,∀m ∈ Ωn (6.1n)

− π ≤ θno ≤ π : μθmin

no , μθmax

no ∀n (6.1o)

θno = 0 : μθ ref

o n = ref. (6.1p)}
∀o.

The primal optimization variables of each lower-level problem (6.1h)–(6.1p) are
included in set ΞPrimal

o = {pCgno, pSgno, pEgno, pDno, θno}. Additionally, the dual opti-
mization variables of each lower-level problem (6.1h)–(6.1p) are those included in set
ΞDual

o = {λno, μ
Cmin

gno , μCmax

gno , μSmin

gno , μ
Smax

gno , μEmin

gno , μEmax

gno , μDmin

no , μDmax

no , μF
nmo, μ

θmin

no ,μθmax

no ,

μθ ref

o }.
Lower-level problems (6.1h)–(6.1p) represent the clearing of the market for each

operating condition and for given investment and offering decisions made in the
upper-level problems by different producers. Accordingly, xCgn , x

S
gn , αC

gno, and αE
gno

are variables in the upper-level problem (6.1a)–(6.1f), but they are fixed values (para-
meters) in the lower-level problems (6.1h)–(6.1p). This makes the lower-level prob-
lems (6.1h)–(6.1p) linear and convex since there is no term containing the product
of variables within the lower-level problems. The objective function (6.1h) mini-
mizes minus the social welfare considering the offer prices of all strategic producers
g = 1, . . . ,G, and bid prices of all demands. The power balance at every node is
enforced by (6.1i), and its dual variable provides the market-clearing price at that
node under operating condition o. Equations (6.1j), (6.1k), and (6.1l) impose pro-
duction capacity limits for candidate conventional, candidate stochastic, and exist-
ing units, respectively. In addition, Eqs. (6.1m) bounds the power consumption of
each demand. Equations (6.1n) enforce the transmission capacity limits of each line.
Finally, Eqs. (6.1o) enforce voltage angle bounds for each node, and constraints (6.1p)
fix the voltage angle to zero at the reference node.

Note that the market-clearing problems, i.e., the lower-level problems (6.1h)–
(6.1p), are common to all producers g = 1, . . . ,G. Thus, the investment equilibria
model presented in this chapter is in fact a GNE problem with shared constraints.

Illustrative Example 6.1 A two-node electricity market with two strategic produc-
ers (duopoly)

A power systemwith two nodes (n1 and n2) is considered as illustrated in Fig. 6.3.
The capacity of transmission line n1 − n2 is 400MW, and its susceptance is 1000S.
Node n1 is the reference node. Two strategic producers (g1 and g2) compete together,
creating a duopoly. Producer g1 owns an existing unit located at node n1 with capacity
of 150MW and production cost of $10/MWh. On the other hand, producer g2 owns
an existing unit located at node n2 with capacity of 100MW and production cost of
$15/MWh.

Both producers g1 and g2 desire to build new production units. The available
annualized investment budget for each producer is $20 million. In addition, the
investment options for each producer are identical and stated below:
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1nNode Node n2

Existing unit of
producer g1

Consumer Existing unit of
producer g2

Line n1 n2

Fig. 6.3 Illustrative Example 6.1: two-node network

• A conventional unit to be built at node n1. Themaximum capacity of this candidate
unit is 200MW, and its annualized investment cost is $55,000/MW.The production
cost of this candidate conventional unit is $12/MWh.

• A stochastic (wind-power) unit to be built at node n2. The maximum capacity
of this candidate stochastic unit is 200MW, and its annualized investment cost is
$66,000/MW.

As depicted in Fig. 6.3, a single consumer is considered at node n1, whose maxi-
mum load is equal to 400MW.

In addition, two operating conditions (o1 and o2) are considered, whose charac-
teristics are stated below:

• o1: Demand factor equals 1.00 p.u. and wind power capacity factor equals 0.35
p.u.

• o2: Demand factor equals 0.80 p.u. and wind power capacity factor equals 0.70
p.u.

The weight of condition o1 is 3530h and that of condition o2 is 5230 h. The consumer
bids in conditions o1 and o2 at $35/MWh and $32/MWh, respectively.

According to the data above, two bilevel problems, one per producer, are formu-
lated. The bilevel problem for producer g1 is given by (6.2) including upper-level
problem (6.2a)–(6.2e) and lower-level problems (6.2f):

minΞ
UL,Ex
g1 ∪ Ξ

P,Ex
o1 ∪ Ξ

D,Ex
o1 ∪ Ξ

P,Ex
o2 ∪ Ξ

D,Ex
o2

55000 xCg1n1 + 66000 xSg1n2

− 3530

[
λn1o1

(
pCg1n1o1 + pEg1n1o1

) + λn2o1 pSg1n2o1

− 12 pCg1n1o1 − 10 pEg1n1o1

]

− 5230

[
λn1o2

(
pCg1n1o2 + pEg1n1o2

) + λn2o2 pSg1n2o2

− 12 pCg1n1o2 − 10 pEg1n1o2

]
(6.2a)

subject to
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0 ≤ xCg1n1 ≤ 200 (6.2b)

0 ≤ xSg1n2 ≤ 200 (6.2c)

55000 xCg1n1 + 66000 xSg1n2 ≤ 2 × 107 (6.2d)

αC
g1n1o1 , αE

g1n1o1 , αC
g1n1o2 , αE

g1n1o2 ≥ 0 (6.2e)

Lower-level problems (6.4)−(6.5). (6.2f)

Similarly, the bilevel problem for producer g2 is given by (6.3) including upper-
level problem (6.3a)–(6.3e) and lower-level problems (6.3f):

minΞ
UL,Ex
g2 ∪ Ξ

P,Ex
o1 ∪ Ξ

D,Ex
o1 ∪ Ξ

P,Ex
o2 ∪ Ξ

D,Ex
o2

55000 xCg2n1 + 66000 xSg2n2

− 3530

[
λn1o1 pCg2n1o1 + λn2o1

(
pSg2n2o1 + pEg2n2o1

)

− 12 pCg2n1o1 − 15 pEg2n2o1

]

− 5230

[
λn1o2 pCg2n1o2 + λn2o2

(
pSg2n2o2 + pEg2n2o2

)

− 12 pCg2n1o2 − 15 pEg2n2o2

]
(6.3a)

subject to

0 ≤ xCg2n1 ≤ 200 (6.3b)

0 ≤ xSg2n2 ≤ 200 (6.3c)

55000 xCg2n1 + 66000 xSg2n2 ≤ 2 × 107 (6.3d)

αC
g2n1o1 , αE

g2n2o1 , αC
g2n1o2 , αE

g2n2o2 ≥ 0 (6.3e)

Lower-level problems (6.4)−(6.5). (6.3f)

Within bilevel problems (6.2) and (6.3) associated with producers g1 and g2,
lower-level problems (one per operating condition) are common. The lower-level
problem referring to the operating condition o1 is given by (6.4) below:

minΞ
P,Ex
o1

αC
g1n1o1 pCg1n1o1 + αE

g1n1o1 pEg1n1o1

+ αC
g2n1o1 pCg2n1o1 + αE

g2n2o1 pEg2n2o1 − 35 pDn1o1 (6.4a)

subject to

pDn1o1 + 1000
(
θn1o1 − θn2o1

) − pEg1n1o1 − pCg1n1o1
− pCg2n1o1 = 0 : λn1o1 (6.4b)

1000
(
θn2o1 − θn1o1

) − pEg2n2o1 − pSg1n2o1 − pSg2n2o1 = 0 : λn2o1 (6.4c)

0 ≤ pCg1n1o1 ≤ xCg1n1 : μCmin

g1n1o1 , μ
Cmax

g1n1o1 (6.4d)
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0 ≤ pCg2n1o1 ≤ xCg2n1 : μCmin

g2n1o1 , μ
Cmax

g2n1o1 (6.4e)

0 ≤ pSg1n2o1 ≤ 0.35 xSg1n2 : μSmin

g1n2o1 , μ
Smax

g1n2o1 (6.4f)

0 ≤ pSg2n2o1 ≤ 0.35 xSg2n2 : μSmin

g2n2o1 , μ
Smax

g2n2o1 (6.4g)

0 ≤ pEg1n1o1 ≤ 150 : μEmin

g1n1o1 , μ
Emax

g1n1o1 (6.4h)

0 ≤ pEg2n2o1 ≤ 100 : μEmin

g2n2o1 , μ
Emax

g2n2o1 (6.4i)

0 ≤ pDn1o1 ≤ 1 × 400 : μDmin

n1o1 , μ
Dmax

n1o1 (6.4j)

1000
(
θn1o1 − θn2o1

) ≤ 400 : μF
n1n2o1 (6.4k)

1000
(
θn2o1 − θn1o1

) ≤ 400 : μF
n2n1o1 (6.4l)

− π ≤ θn1o1 ≤ π : μθmin

n1o1 , μ
θmax

n1o1 (6.4m)

− π ≤ θn2o1 ≤ π : μθmin

n2o1 , μ
θmax

n2o1 (6.4n)

θn1o1 = 0 : μθ ref

o1 . (6.4o)

In addition, the lower-level problem referring to the operating condition o2 (com-
mon to both producers) is given by (6.5) below:

minΞ
P,Ex
o2

αC
g1n1o2 pCg1n1o2 + αE

g1n1o2 pEg1n1o2

+ αC
g2n1o2 pCg2n1o2 + αE

g2n2o2 pEg2n2o2 − 32 pDn1o2 (6.5a)

subject to

pDn1o2 + 1000
(
θn1o2 − θn2o2

) − pEg1n1o2 − pCg1n1o2
− pCg2n1o2 = 0 : λn1o2 (6.5b)

1000
(
θn2o2 − θn1o2

) − pEg2n2o2 − pSg1n2o2 − pSg2n2o2 = 0 : λn2o2 (6.5c)

0 ≤ pCg1n1o2 ≤ xCg1n1 : μCmin

g1n1o2 , μ
Cmax

g1n1o2 (6.5d)

0 ≤ pCg2n1o2 ≤ xCg2n1 : μCmin

g2n1o2 , μ
Cmax

g2n1o2 (6.5e)

0 ≤ pSg1n2o2 ≤ 0.70 xSg1n2 : μSmin

g1n2o2 , μ
Smax

g1n2o2 (6.5f)

0 ≤ pSg2n2o2 ≤ 0.70 xSg2n2 : μSmin

g2n2o2 , μ
Smax

g2n2o2 (6.5g)

0 ≤ pEg1n1o2 ≤ 150 : μEmin

g1n1o2 , μ
Emax

g1n1o2 (6.5h)

0 ≤ pEg2n2o2 ≤ 100 : μEmin

g2n2o2 , μ
Emax

g2n2o2 (6.5i)

0 ≤ pDn1o2 ≤ 0.8 × 400 : μDmin

n1o2 , μ
Dmax

n1o2 (6.5j)

1000
(
θn1o2 − θn2o2

) ≤ 400 : μF
n1n2o2 (6.5k)

1000
(
θn2o2 − θn1o2

) ≤ 400 : μF
n2n1o2 (6.5l)

− π ≤ θn1o2 ≤ π : μθmin

n1o2 , μ
θmax

n1o2 (6.5m)
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− π ≤ θn2o2 ≤ π : μθmin

n2o2 , μ
θmax

n2o2 (6.5n)

θn1o2 = 0 : μθ ref.

o2 . (6.5o)

The primal optimization variables of lower-level problem (6.4) associated with
operating condition o1 are included in set ΞP,Ex

o1 = {pCg1n1o1 , pEg1n1o1 , pSg1n2o1 , pCg2n1o1 ,
pEg2n2o1 , p

S
g2n2o1 , p

D
n1o1 , θn1o1 , θn2o1}. Additionally, its dual variables are those included

in set ΞD,Ex
o1 = {λn1o1 , λn2o1 , μ

Cmin

g1n1o1 , μ
Cmax

g1n1o1 , μ
Cmin

g2n1o1 , μ
Cmax

g2n1o1 , μ
Smin

g1n2o1 , μ
Smax

g1n2o1 ,

μSmin

g2n2o1 , μ
Smax

g2n2o1 , μ
Emin

g1n1o1 , μ
Emax

g1n1o1 , μ
Emin

g2n2o1 , μ
Emax

g2n2o1 , μ
Dmin

n1o1 , μ
Dmax

n1o1 , μ
F
n1n2o1 , μ

F
n2n1o1 ,μ

θmin

n1o1,

μθmax

n1o1 , μ
θmin

n2o1 , μ
θmax

n2o1 , μ
θ ref

o1 }. In addition, the primal optimization variables of lower-
level problem (6.5) associatedwith operating condition o2 are included in setΞP,Ex

o2 =
{pCg1n1o2 , pEg1n1o2 , pSg1n2o2 , pCg2n1o2 , pEg2n2o2 , pSg2n2o2 , pDn1o2 , θn1o2 , θn2o2}. Likewise, its

dual variables are those included in setΞD,Ex
o2 ={λn1o2 , λn2o2 , μ

Cmin

g1n1o2 , μ
Cmax

g1n1o2 , μ
Cmin

g2n1o2 ,

μCmax

g2n1o2 , μ
Smin

g1n2o2 , μ
Smax

g1n2o2 , μ
Smin

g2n2o2 , μ
Smax

g2n2o2 , μ
Emin

g1n1o2 , μ
Emax

g1n1o2 , μ
Emin

g2n2o2 , μ
Emax

g2n2o2 , μ
Dmin

n1o2 ,

μDmax

n1o2 , μ
F
n1n2o2 , μ

F
n2n1o2 , μ

θmin

n1o2 , μ
θmax

n1o2 , μ
θmin

n2o2 , μ
θmax

n2o2 , μ
θ ref

o2 }. Theprimal optimizationvari-
ables of upper-level problem (6.2a)–(6.2e) pertaining to producer g1 are included in
setΞUL,Ex

g1 = {xCg1n1 , xSg1n2 , αC
g1n1o1 , α

E
g1n1o1 , α

C
g1n1o2 , α

E
g1n1o2} plusΞP,Ex

o1 ,ΞD,Ex
o1 ,ΞP,Ex

o2 ,
and ΞD,Ex

o2 . Finally, the primal optimization variables of upper-level problem (6.3a)–
(6.3e) pertaining to producer g2 are included in set ΞUL,Ex

g2 = {xCg2n1 , xSg2n2 , αC
g2n1o1 ,

αE
g2n2o1 , α

C
g2n1o2 , α

E
g2n2o2} plus ΞP,Ex

o1 , ΞD,Ex
o1 , ΞP,Ex

o2 , and ΞD,Ex
o2 . �

6.4.1 MPEC

As stated in the previous section, each strategic producer solves its own bilevel model
to derive the most beneficial investment and offering decisions. To this end, each
lower-level problem within the bilevel model of each producer needs to be replaced
by its equivalent optimality conditions. In general, two alternative approaches are
available to derive those conditions for a continuous and linear problem: (i) the KKT
conditions and (ii) the primal–dual transformation [7].

In contrast to Chap.5, in which the first approach, i.e., KKT conditions, is used,
we use in this chapter the second approach, i.e., primal–dual transformation, which
includes the strong duality equality instead of all complementarity conditions. How-
ever, the primal–dual transformation introduces some nonlinearities due to bilinear
terms within the strong duality equality.

Pursuing further clarity, we derive the MPECs corresponding to the strategic
producers g1 and g2 in Illustrative Example 6.1 presented in the previous section.
Recall that lower-level problems (market-clearing problems for different operating
conditions) are common within the bilevel models of both producers. Thus, we
derive the optimality conditions corresponding to the lower-level problems (6.4) and
(6.5) using the primal–dual transformation. Figure6.4 schematically illustrates this
transformation.

http://dx.doi.org/10.1007/978-3-319-29501-5_5
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Minimize (6.2a)

1) ULC(6.2b)-(6.2e)

2.1)PC(6.6)
2.2)DC(6.7)
2.3)SDE(6.8)

MPEC corresponding to producer g1

P
rim

al
- d

ua
lt

ra
ns

fo
rm

at
io

n

Minimize (6.2a)
subject to:

1) ULC(6.2b)-(6.2e)

g1

2) LLP(6.4)

3) LLP(6.5)

3.1)PC (6.9)
3.2)DC(6.10)
3.3)SDE(6.11)

Minimize (6.3a)

1) ULC (6.3b)-(6.3e)

2.1)PC (6.6)
2.2)DC (6.7)
2.3)SDE (6.8)

MPEC corresponding to producer g2

P
rim

al-dual transform
ation

Minimize (6.3a)

1) ULC (6.3b)-(6.3e)

g2

2) LLP (6.4)

3) LLP (6.5)

ULC: Upper-level constraints
LLP: Lower-level problem 
PC: Primal constraints
DC: Dual constraints
SDE: Strong duality equality

3.1)PC (6.9)
3.2)DC (6.10)
3.3)SDE (6.11)

Bilevel model of producer Bilevel model of producer

subject to:

subject to:subject to:

Fig. 6.4 Illustrative Example 6.1: transformation of the bilevel models of strategic producers g1
and g2 into their corresponding MPECs (primal–dual transformation)

First, we derive the optimality conditions corresponding to the lower-level prob-
lem (6.4), which include the primal constraints (6.6), the dual constraints (6.7), and
the strong duality equality (6.8). The primal constraints of lower-level problem (6.4)
are given by (6.6) below:

pDn1o1 + 1000
(
θn1o1 − θn2o1

) − pEg1n1o1 − pCg1n1o1 − pCg2n1o1 = 0 (6.6a)

1000
(
θn2o1 − θn1o1

) − pEg2n2o1 − pSg1n2o1 − pSg2n2o1 = 0 (6.6b)

0 ≤ pCg1n1o1 ≤ xCg1n1 (6.6c)

0 ≤ pCg2n1o1 ≤ xCg2n1 (6.6d)

0 ≤ pSg1n2o1 ≤ 0.35 xSg1n2 (6.6e)

0 ≤ pSg2n2o1 ≤ 0.35 xSg2n2 (6.6f)

0 ≤ pEg1n1o1 ≤ 150 (6.6g)
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0 ≤ pEg2n2o1 ≤ 100 (6.6h)

0 ≤ pDn1o1 ≤ 1 × 400 (6.6i)

1000
(
θn1o1 − θn2o1

) ≤ 400 (6.6j)

1000
(
θn2o1 − θn1o1

) ≤ 400 (6.6k)

− π ≤ θn1o1 ≤ π (6.6l)

− π ≤ θn2o1 ≤ π (6.6m)

θn1o1 = 0. (6.6n)

The dual constraints of lower-level problem (6.4) are given by (6.7) below:

αC
g1n1o1 − λn1o1 + μCmax

g1n1o1 − μCmin

g1n1o1 = 0 (6.7a)

αE
g1n1o1 − λn1o1 + μEmax

g1n1o1 − μEmin

g1n1o1 = 0 (6.7b)

αC
g2n1o1 − λn1o1 + μCmax

g2n1o1 − μCmin

g2n1o1 = 0 (6.7c)

αE
g2n2o1 − λn2o1 + μEmax

g2n2o1 − μEmin

g2n2o1 = 0 (6.7d)

− λn2o1 + μSmax

g1n2o1 − μSmin

g1n2o1 = 0 (6.7e)

− λn2o1 + μSmax

g2n2o1 − μSmin

g2n2o1 = 0 (6.7f)

− 35 + λn1o1 + μDmax

n1o1 − μDmin

n1o1 = 0 (6.7g)

1000
(
λn1o1 − λn2o1 + μF

n1n2o1 − μF
n2n1o1

) + μθmax

n1o1 − μθmin

n1o1 + μθ ref

o1 = 0 (6.7h)

1000
(
λn2o1 − λn1o1 + μF

n2n1o1 − μF
n1n2o1

) + μθmax

n2o1 − μθmin

n2o1 = 0 (6.7i)

μCmin

g1n1o1 , μCmax

g1n1o1 ≥ 0 (6.7j)

μCmin

g2n1o1 , μCmax

g2n1o1 ≥ 0 (6.7k)

μEmin

g1n1o1 , μEmax

g1n1o1 ≥ 0 (6.7l)

μEmin

g2n2o1 , μEmax

g2n2o1 ≥ 0 (6.7m)

μSmin

g1n2o1 , μSmax

g1n2o1 ≥ 0 (6.7n)

μSmin

g2n2o1 , μSmax

g2n2o1 ≥ 0 (6.7o)

μDmin

n1o1 ≥ 0, μDmax

n1o1 ≥ 0 (6.7p)

μF
n1n2o1 , μF

n2n1o1 ≥ 0 (6.7q)

μθmin

n1o1 , μθmax

n1o1 ≥ 0 (6.7r)

μθmin

n2o1 , μθmax

n2o1 ≥ 0. (6.7s)

Finally, the strong duality equality corresponding to lower-level problem (6.4) is
(6.8), which enforces the equality of its primal and dual objective function values at
the optimal solution:
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αC
g1n1o1 pCg1n1o1 + αE

g1n1o1 pEg1n1o1 + αC
g2n1o1 pCg2n1o1 + αE

g2n2o1 pEg2n2o1
− 35 pDn1o1 = −xCg1n1 μCmax

g1n1o1 − xCg2n1 μCmax

g2n1o1 − 0.35 xSg1n2 μSmax

g1n2o1

− 0.35 xSg2n2 μSmax

g2n2o1 − 150 μEmax

g1n1o1 − 100 μEmax

g2n2o1 − 400 μDmax

n1o1

− 400
(
μF
n1n2o1 + μF

n2n1o1

) − π
(
μθmin

n1o1 + μθmax

n1o1 + μθmin

n2o1 + μθmax

n2o1

)
. (6.8)

Next, we derive the optimality conditions corresponding to lower-level problem
(6.5), which consist of primal constraints (6.9), dual constraints (6.10), and strong
duality equality (6.11). The primal constraints of lower-level problem (6.5) are given
by (6.9) below:

pDn1o2 + 1000
(
θn1o2 − θn2o2

) − pEg1n1o2 − pCg1n1o2 − pCg2n1o2 = 0 (6.9a)

1000
(
θn2o2 − θn1o2

) − pEg2n2o2 − pSg1n2o2 − pSg2n2o2 = 0 (6.9b)

0 ≤ pCg1n1o2 ≤ xCg1n1 (6.9c)

0 ≤ pCg2n1o2 ≤ xCg2n1 (6.9d)

0 ≤ pSg1n2o2 ≤ 0.70 xSg1n2 (6.9e)

0 ≤ pSg2n2o2 ≤ 0.70 xSg2n2 (6.9f)

0 ≤ pEg1n1o2 ≤ 150 (6.9g)

0 ≤ pEg2n2o2 ≤ 100 (6.9h)

0 ≤ pDn1o2 ≤ 0.8 × 400 (6.9i)

1000
(
θn1o2 − θn2o2

) ≤ 400 (6.9j)

1000
(
θn2o2 − θn1o2

) ≤ 400 (6.9k)

− π ≤ θn1o2 ≤ π (6.9l)

− π ≤ θn2o2 ≤ π (6.9m)

θn1o2 = 0. (6.9n)

The dual constraints of lower-level problem (6.5) are given by (6.10) below:

αC
g1n1o2 − λn1o2 + μCmax

g1n1o2 − μCmin

g1n1o2 = 0 (6.10a)

αE
g1n1o2 − λn1o2 + μEmax

g1n1o2 − μEmin

g1n1o2 = 0 (6.10b)

αC
g2n1o2 − λn1o2 + μCmax

g2n1o2 − μCmin

g2n1o2 = 0 (6.10c)

αE
g2n2o2 − λn2o2 + μEmax

g2n2o2 − μEmin

g2n2o2 = 0 (6.10d)

− λn2o2 + μSmax

g1n2o2 − μSmin

g1n2o2 = 0 (6.10e)

− λn2o2 + μSmax

g2n2o2 − μSmin

g2n2o2 = 0 (6.10f)

− 32 + λn1o2 + μDmax

n1o2 − μDmin

n1o2 = 0 (6.10g)

1000
(
λn1o2 − λn2o2 + μF

n1n2o2 − μF
n2n1o2

) + μθmax

n1o2 − μθmin

n1o2 + μθ ref

o2 = 0 (6.10h)
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1000
(
λn2o2 − λn1o2 + μF

n2n1o2 − μF
n1n2o2

) + μθmax

n2o2 − μθmin

n2o2 = 0 (6.10i)

μCmin

g1n1o2 , μCmax

g1n1o2 ≥ 0 (6.10j)

μCmin

g2n1o2 , μCmax

g2n1o2 ≥ 0 (6.10k)

μEmin

g1n1o2 , μEmax

g1n1o2 ≥ 0 (6.10l)

μEmin

g2n2o2 , μEmax

g2n2o2 ≥ 0 (6.10m)

μSmin

g1n2o2 , μSmax

g1n2o2 ≥ 0 (6.10n)

μSmin

g2n2o2 , μSmax

g2n2o2 ≥ 0 (6.10o)

μDmin

n1o2 , μDmax

n1o2 ≥ 0 (6.10p)

μF
n1n2o2 , μF

n2n1o2 ≥ 0 (6.10q)

μθmin

n1o2 , μθmax

n1o2 ≥ 0 (6.10r)

μθmin

n2o2 , μθmax

n2o2 ≥ 0. (6.10s)

Finally, the strong duality equality corresponding to lower-level problem (6.5) is
(6.11) below:

αC
g1n1o2 pCg1n1o2 + αE

g1n1o2 pEg1n1o2 + αC
g2n1o2 pCg2n1o2 + αE

g2n2o2 pEg2n2o2
− 32 pDn1o2 = −xCg1n1 μCmax

g1n1o2 − xCg2n1 μCmax

g2n1o2 − 0.70 xSg1n2 μSmax

g1n2o2

− 0.70 xSg2n2 μSmax

g2n2o2 − 150 μEmax

g1n1o2 − 100 μEmax

g2n2o2 − 320 μDmax

n1o2

− 400
(
μF
n1n2o2 + μF

n2n1o2

) − π
(
μθmin

n1o2 + μθmax

n1o2 + μθmin

n2o2 + μθmax

n2o2

)
. (6.11)

Accordingly, the MPEC corresponding to the strategic producer g1 includes the
upper-level problem (6.2a)–(6.2e) and the optimality conditions (6.6)–(6.11). Here-
inafter, this MPEC will be called MPEC 1. Similarly, the MPEC corresponding to
the strategic producer g2 comprises the upper-level problem (6.3a)–(6.3e) and the
optimality conditions (6.6)–(6.11). Hereinafter, this MPEC will be called MPEC 2.

One important observation is that bothMPECs 1 and 2 are continuous, but nonlin-
ear. The reason for nonlinearities is the existence of bilinear terms within objective
functions (6.2a) and (6.3a) and strong duality equalities (6.8) and (6.11).

Note that the dual variables associated with the constraints of MPECs 1 and 2 are
needed in the next section. Pursuing notational clarity, we use the equation numbers
to indicate the dual variables of the MPECs. The following notional examples are
provided:

1. InMPEC 1 corresponding to producer g1, the dual variable associated with strong
duality equality (6.8) is η(6.8)

g1 . However, the dual variable of that equality within
MPEC 2 corresponding to producer g2 is η(6.8)

g2 .
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2. InMPEC 1 corresponding to producer g1, the dual variables associatedwith lower
and upper bounds in inequality (6.9c) are η(6.9c)

g1
and η(6.9c)

g1 , respectively.
3. In MPEC 2 corresponding to producer g2, the dual variables associated with

nonnegativity conditions (6.10j) are η(6.10j)
g2

and η(6.10j)
g2 , respectively.

6.5 Multiple-Producer Problem: EPEC

The joint consideration of all MPECs, one per producer, constitutes an EPEC.
Figure6.5 illustrates the EPEC corresponding to Illustrative Example 6.1 presented
in Sect. 6.4. Accordingly, this EPEC includes both MPECs 1 and 2 corresponding to
the strategic producers g1 and g2, respectively. Note that the EPEC solution identifies
the market equilibria.

6.5.1 EPEC Solution

To obtain the EPEC solution, we first need to derive the KKT conditions associated
with each MPEC. However, it is important to recall that MPECs are continuous,
nonlinear, and thus nonconvex. Therefore, the KKT conditions associated with each
MPEC provide its strong stationarity conditions. A collection of all those conditions
corresponding to all MPECs constitutes the strong stationarity conditions associated
with the EPEC, whose solution identifies the equilibria. For Illustrative Example 6.1
of Sect. 6.4, this transformation is depicted in Fig. 6.6.

It is important to note that the solutions obtained from this procedure can be Nash
equilibria, local equilibria, and saddle points. To detect the Nash equilibria among

Fig. 6.5 Illustrative
Example 6.1: EPEC

Minimize (6.2a)
subject to:

1) The upper-level constraints (6.2b)-(6.2e)
2) The optimality conditions (6.6)-(6.11)

MPEC corresponding to producer g1 :

MPEC 1

Minimize (6.3a)
subject to:

1) The upper-level constraints (6.3b)-(6.3e)
2) The optimality conditions (6.6)-(6.11)

MPEC corresponding to producer g2 :

MPEC 2
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MPEC 1 

MPEC 2 

EPEC

KKTs of MPEC 1

Strong stationarity conditions 
of the EPEC

KKTs of MPEC 2

Fig. 6.6 Illustrative Example 6.1: strong stationarity conditions of the EPEC

the solutions obtained, an ex-post algorithm is provided in Sect. 6.5.3. The next two
sections present the KKT conditions of both MPECs.

6.5.1.1 KKT Conditions of MPEC 1

TheKKT conditions ofMPEC1 corresponding to producer g1 include the constraints
below:

1. Primal equality constraints of MPEC 1 including (6.6a)–(6.6b), (6.6n), (6.7a)–
(6.7i), (6.8), (6.9a)–(6.9b), (6.9n), (6.10a)–(6.10i), and (6.11). We refer to these
equality constraints as the set Γ1.

2. Equality constraints obtained from differentiating the corresponding Lagrangian
associated with MPEC 1 with respect to its variables. We refer to these equality
constraints as the set Γ2. Four examples of the members of this set are stated
below. Note that L MPEC1

g1 is the Lagrangian function of the MPEC 1 pertaining
to the strategic producer g1:

∂L MPEC1
g1

∂xCg1n1
= 55000 + η(6.2b)

g1 − η(6.2b)
g1

+ 55000 η(6.2d)
g1 − η(6.6c)

g1

+ μCmax

g1n1o1 η(6.8)
g1 − η(6.9c)

g1 + μCmax

g1n1o2 η(6.11)
g1 = 0 (6.12a)

∂L MPEC1
g1

∂xCg2n1
= −η(6.6d)

g1 + μCmax

g2n1o1 η(6.8)
g1 − η(6.9d)

g1

+ μCmax

g2n1o2 η(6.11)
g1 = 0 (6.12b)

∂L MPEC1
g1

∂αE
g1n1o2

= − η(6.2e)
g1 + η(6.10b)

g1 + pEg1n1o2 η(6.11)
g1 = 0 (6.12c)

∂L MPEC1
g1

∂μSmax

g2n2o1

= η(6.7f)
g1 − η(6.7o)

g1 + 0.35 xSg2n2 η(6.8)
g1 = 0. (6.12d)
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3. Complementarity conditions related to the inequality constraints of MPEC 1. We
refer to these inequality constraints as the Γ3. Four examples of the members of
this set are as follows:

0 ≤ xCg1n1 ⊥ η(6.2b)
g1

≥ 0 (6.13a)

0 ≤ [
200 − xCg1n1

] ⊥ η(6.2b)
g1 ≥ 0 (6.13b)

0 ≤ pCg2n1o2 ⊥ η(6.9d)
g1

≥ 0 (6.13c)

0 ≤ [
xCg2n1 − pCg2n1o2

] ⊥ η(6.9d)
g1 ≥ 0. (6.13d)

6.5.1.2 KKT Conditions of MPEC 2

The KKT conditions of MPEC 2 corresponding to producer g2 consist of the follow-
ing three sets of constraints:

1. Primal equality constraints of MPEC 2 that are identical to those included in the
constraint set Γ1.

2. Equality constraints resulting from differentiating the corresponding Lagrangian
of MPEC 2 with respect to its variables. These equality constraints are referred to
as the set Γ4. Four examples of the members of this set are stated below, in which
L MPEC2

g2 is the Lagrangian function of the MPEC 2 pertaining to the strategic
producer g2:

∂L MPEC2
g2

∂xSg2n2
= 66000 + η(6.3c)

g2 − η(6.3c)
g2

+ 66000 η(6.3d)
g2 − 0.35 η(6.6f)

g2

+ 0.35 μSmax

g2n2o1 η(6.8)
g2 − 0.70 η(6.9f)

g2

+ 0.70 μSmax

g2n2o2 η(6.11)
g2 = 0 (6.14a)

∂L MPEC2
g2

∂xSg1n2
= − 0.35 η(6.6e)

g2 + 0.35 μSmax

g1n2o1 η(6.8)
g2

− 0.70 η(6.9e)
g2 + 0.70 μSmax

g1n2o2 η(6.11)
g2 = 0 (6.14b)

∂L MPEC2
g2

∂pEg2n2o2
= − 5230 λn2o2 − η(6.9b)

g2 + η(6.9h)
g2 − η(6.9h)

g2

+ αE
g2n2o2 η(6.11)

g2 = 0 (6.14c)

∂L MPEC2
g2

∂μDmax

n1o1

= η(6.7g)
g2 − η(6.7p)

g2 + 400 η(6.8)
g2 = 0. (6.14d)

3. Complementarity conditions related to the inequality constraints of MPEC 2. We
refer to these inequality constraints as the set Γ5. Four examples of the members
of this set are as follows:
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0 ≤ xSg2n2 ⊥ η(6.3c)
g2

≥ 0 (6.15a)

0 ≤ [
200 − xSg2n2

] ⊥ η(6.3c)
g2 ≥ 0 (6.15b)

0 ≤ pEg2n2o2 ⊥ η(6.9h)
g2

≥ 0 (6.15c)

0 ≤ [
100 − pEg2n2o2

] ⊥ η(6.9h)
g2 ≥ 0. (6.15d)

6.5.1.3 Strong Stationarity Conditions of the EPEC: Linearization

The strong stationarity conditions of the EPEC (the right-hand box of Fig. 6.6) is a
system of equalities and inequalities included in Γ1–Γ5. Although the solution to this
system identifies the investment equilibria, this system includes the following three
nonlinearities:

1. The complementarity conditions included in Γ3 and Γ5. Such conditions can
be exactly linearized through the approach explained in Chap.5 using auxiliary
binary variables and large enough positive constants [6]. For example, the mixed-
integer linear equivalent of complementarity condition (6.15a) is provided by
(6.16) below:

xSg2n2 ≥ 0 (6.16a)

η(6.3c)
g2

≥ 0 (6.16b)

xSg2n2 ≤ ψ Mx (6.16c)

η(6.3c)
g2

≤ (1 − ψ) Mη (6.16d)

ψ ∈ {0, 1}, (6.16e)

where Mx and Mη are large enough positive constants. A method for appropriate
value selection for those constants is provided in Chap. 5.

2. The products of variables involved in the strong duality equalities (6.8) and (6.11)
included in Γ1. Unlike the complementarity conditions included in Γ3 and Γ5,
which can be exactly linearized through auxiliary binary variables, the strong
duality equalities (6.8) and (6.11) included in Γ1 cannot be linearized straight-
forwardly due to the nature of the nonlinearities, i.e., the product of continuous
variables. However, we take advantage of the fact that the strong duality equality
resulting from the primal–dual transformation is equivalent to the set of com-
plementarity conditions obtained from the KKT conditions [7]. Hence, pursuing
linearity, the strong duality equality (6.8) is replaced by its equivalent comple-
mentarity conditions (6.17) below:

0 ≤ pCg1n1o1 ⊥ μCmin

g1n1o1 ≥ 0 (6.17a)

0 ≤ (
xCg1n1 − pCg1n1o1

) ⊥ μCmax

g1n1o1 ≥ 0 (6.17b)

0 ≤ pCg2n1o1 ⊥ μCmin

g2n1o1 ≥ 0 (6.17c)

http://dx.doi.org/10.1007/978-3-319-29501-5_5
http://dx.doi.org/10.1007/978-3-319-29501-5_5
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0 ≤ (
xCg2n1 − pCg2n1o1

) ⊥ μCmax

g2n1o1 ≥ 0 (6.17d)

0 ≤ pSg1n2o1 ⊥ μSmin

g1n2o1 ≥ 0 (6.17e)

0 ≤ (
0.35 xSg1n2 − pSg1n2o1

) ⊥ μSmax

g1n2o1 ≥ 0 (6.17f)

0 ≤ pSg2n2o1 ⊥ μSmin

g2n2o1 ≥ 0 (6.17g)

0 ≤ (
0.35 xSg2n2 − pSg2n2o1

) ⊥ μSmax

g2n2o1 ≥ 0 (6.17h)

0 ≤ pEg1n1o1 ⊥ μEmin

g1n1o1 ≥ 0 (6.17i)

0 ≤ (
150 − pEg1n1o1

) ⊥ μEmax

g1n1o1 ≥ 0 (6.17j)

0 ≤ pEg2n2o1 ⊥ μEmin

g2n2o1 ≥ 0 (6.17k)

0 ≤ (
100 − pEg2n2o1

) ⊥ μEmax

g2n2o1 ≥ 0 (6.17l)

0 ≤ pDn1o1 ⊥ μDmin

n1o1 ≥ 0 (6.17m)

0 ≤ (
400 − pDn1o1

) ⊥ μDmax

n1o1 ≥ 0 (6.17n)

0 ≤ [
400 − 1000

(
θn1o1 − θn2o1

)] ⊥ μF
n1n2o1 ≥ 0 (6.17o)

0 ≤ [
400 − 1000

(
θn2o1 − θn1o1

)] ⊥ μF
n2n1o1 ≥ 0 (6.17p)

0 ≤ (
π + θn1o1

) ⊥ μθmin

n1o1 ≥ 0 (6.17q)

0 ≤ (
π − θn1o1

) ⊥ μθmax

n1o1 ≥ 0 (6.17r)

0 ≤ (
π + θn2o1

) ⊥ μθmin

n2o1 ≥ 0 (6.17s)

0 ≤ (
π − θn2o1

) ⊥ μθmax

n2o1 ≥ 0. (6.17t)

Similarly, the strong duality equality (6.11) can be replaced by its equivalent
complementarity conditions. Recall that these complementarity conditions can be
linearized using the auxiliary binary variables and large enoughpositive constants.

3. The ones arising from the product of variables in Γ2 and Γ4, e.g., the bilinear
term μCmax

g1n1o1 η(6.8)
g1 in condition (6.12a). Observe that the common variables of

such nonlinear terms are either dual variables η(6.8)
g1 and η(6.8)

g2 or dual variables
η(6.11)
g1 and η(6.11)

g2 . From a mathematical point of view, the nonconvex nature of the
MPECs 1 and 2 implies that the Mangasarian–Fromovitz constraint qualification
(MFCQ) [5] does not hold at any feasible solution, i.e., the set of dual variables
associated with the MPECs (all dual variables denoted by η) is unbounded. In
other words, the values of these dual variables are not unique, and thus there
are some degrees of freedom in the choice of values for those dual variables at
any solution [5, 19, 20]. This redundancy allows the parameterization of dual
variables η(6.8)

g1 , η(6.8)
g2 , η(6.11)

g1 , and η(6.11)
g2 . Hence, the bilinear terms in Γ2 and Γ4

become linear if the strong stationarity conditions of the EPEC are parameterized
in dual variables η(6.8)

g1 , η(6.8)
g2 , η(6.11)

g1 , and η(6.11)
g2 .
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6.5.2 Searching for Multiple Solutions

The mixed-integer linear form of the strong stationarity conditions of the EPEC,
i.e., condition sets Γ1–Γ5, constitutes a system of mixed-integer linear equalities and
inequalities that involves continuous and binary variables. This system generally
has multiple solutions; however, recall that these solutions can be Nash equilibria,
local equilibria, and saddle points. To detect the Nash equilibria among the solutions
obtained, an ex-post algorithm is provided in Sect. 6.5.3.

To explore multiple solutions, it is straightforward to formulate an auxiliary opti-
mization problem considering the mixed-integer linear condition sets Γ1–Γ5 as con-
straints. In addition, several auxiliary objective functions canbe considered to identify
different solutions [19]. For example, the following objectives can be maximized:

1. Total profit (TP).
2. Annual true social welfare (ATSW) considering the actual production costs of

the generation units.
3. Annual social welfare considering the strategic offer prices of the generation

units.
4. Minus the payment of the demands.
5. Profit of a given producer.
6. Minus the payment of a given demand.

In this chapter, the first two objectives are selected because (i) they can be for-
mulated linearly and (ii) they refer to general market measures. Thus, the auxiliary
optimization problem to find multiple solutions is formulated as follows:

max TP or ATSW (6.18a)

subject to the mixed-integer linear system Γ1 − Γ5. (6.18b)

The two linear objective functions selected, i.e., TP and ATSW, to be included in
(6.18a) are described in the following two sections.

6.5.2.1 Objective Function (6.18a): TP Maximization

The summation of the MPEC’s objective function for all producers provides minus
the total profit of all producers, but this expression is nonlinear due to the products
of continuous variables (i.e., production quantities and clearing prices). An identical
linearization approach to one presented in Chap.5 is used to linearize these bilinear
terms. For Illustrative Example 6.1 presented in Sect. 6.4, the following exact linear
expression can be obtained as an equivalent for the total profit of strategic producers
g1 and g2:

http://dx.doi.org/10.1007/978-3-319-29501-5_5
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TP = 3530

[
35 pDn1o1 − 400 μDmax

n1o1 − 400
(
μF
n1n2o1 + μF

n2n1o1

)

− π
(
μθmin

n1o1 + μθmax

n1o1 + μθmin

n2o1 + μθmax

n2o1

)

− 12 pCg1n1o1 − 10 pEg1n1o1 − 12 pCg2n1o1 − 15 pEg2n2o1

]

+ 5230

[
32 pDn1o2 − 320 μDmax

n1o2 − 400
(
μF
n1n2o2 + μF

n2n1o2

)

− π
(
μθmin

n1o2 + μθmax

n1o2 + μθmin

n2o2 + μθmax

n2o2

)

− 12 pCg1n1o2 − 10 pEg1n1o2 − 12 pCg2n1o2 − 15 pEg2n2o2

]

− 55000 xCg1n1 − 66000 xSg1n2 − 55000 xCg2n1 − 66000 xSg2n2 . (6.19)

6.5.2.2 Objective Function (6.18a): ATSW Maximization

For Illustrative Example 6.1 presented in Sect. 6.4, the linear formulation of the
ATSW to be included in (6.18a) is given by (6.20) below:

ATSW = 3530

[
35 pDn1o1 − 12 pCg1n1o1 − 10 pEg1n1o1 − 12 pCg2n1o1 − 15 pEg2n2o1

]

+ 5230

[
32 pDn1o2 − 12 pCg1n1o2 − 10 pEg1n1o2 − 12 pCg2n1o2 − 15 pEg2n2o2

]
.

(6.20)

Note that to formulate the ATSW in (6.20), instead of the strategic offers of the
generating units, their true production costs are considered.

6.5.3 Ex-Post Algorithm for Detecting Nash Equilibria

In this section, we provide an ex-post algorithm [10] based on a single-iteration
diagonalization approach, which is the next step after solving problem (6.18). This
algorithm allows us to check whether each solution of problem (6.18) obtained is,
in fact, a Nash equilibrium. Note that if under the diagonalization framework, no
producer desires to deviate from its actual strategy, then the set of strategies of all
producers satisfies the definition of a Nash equilibrium [16, 17].

Let us consider the duopoly introduced in Illustrative Example 6.1 in Sect. 6.4with
two strategic producers g1 and g2. The strategic decisions of producer g1 include its
investment decisions, i.e., xCg1n1 and xSg1n2 , and its offering decisions, i.e., αC

g1n1o1 ,
αE
g1n1o1 , αC

g1n1o2 , and αE
g1n1o2 . We refer to these strategic decisions of producer g1
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as decision set Sg1 . A similar set can be defined including the strategic decisions
of producer g2, denoted by Sg2 . In order to verify that each solution obtained for
problem (6.18) constitutes a Nash equilibrium, the following four steps are carried
out:

1. Consider the mixed-integer linear form of MPEC 1 pertaining to producer g1.
2. Set the investment decisions of producer g2, i.e., Sg2 , to those obtained by the

equilibrium model through solving problem (6.18). Then, solve MPEC 1. Note
that its solution provides the strategic decisions of producer g1, which we denote
by Ŝg1 .

3. Repeat the two steps above for producer g2 through solvingMPEC 2, while strate-
gic decisions Sg1 are fixed to those values obtained from the equilibrium model.
This step results in deriving the strategic decisions Ŝg2 pertaining to producer g2.

4. Compare the results obtained from the previous steps of the diagonalization algo-
rithm, i.e., Ŝg1 and Ŝg2 , with those achieved from the equilibrium model, i.e., Sg1
and Sg2 . If the investment results of each strategic producer obtained from the
single-iteration diagonalization algorithm are identical to those attained by the
equilibrium model, i.e., Ŝg1=Sg1 and Ŝg2=Sg2 , then such a solution is a Nash equi-
librium because each producer cannot increase its profit by changing its strategy
unilaterally.

6.5.4 Numerical Results

This section provides the numerical results corresponding to Illustrative Example
6.1 presented in Sect. 6.4. Table6.1 presents the investment equilibrium results. Note
that these results are obtained by solving the auxiliary optimization problem (6.18)
considering two different terms as objective function (6.18a), i.e., (i) maximizing
TP and (ii) maximizing ATSW. The GAMS code for solving this MILP problem
maximizing TP is provided in Sect. 6.8. Note that all results reported in Table6.1 are
verified to be Nash equilibria through the ex-post algorithm provided in Sect. 6.5.3.

As described in Sect. 6.5.1.3, the equilibrium model is parameterized in dual
variables η(6.8)

g1 , η(6.8)
g2 , η(6.11)

g1 , and η(6.11)
g2 , which makes it a linear problem. The value

considered for those parameterized variables, i.e., η(6.8)
g1 , η(6.8)

g2 , η(6.11)
g1 , and η(6.11)

g2 ,
are equal to the weights of the corresponding operating conditions, that is, 3530,
3530, 5230, and 5230, respectively. We have checked a variety of values for those
parameterized dual variables, e.g., half of those values considered, but the numerical
results obtained do not change.

According to the results presented in Table6.1, several observations can be made,
as stated below:

1. In the TP maximization case, the strategic producers g1 and g2 invest in both
conventional and stochastic units. However, the total capacity of newly built
units (280MW) is comparatively lower than that in the ATSWmaximization case
(400MW).
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Table 6.1 Illustrative Example 6.1: production capacity investment equilibrium results

Objective function (6.18a) max TP max ATSW

Newly built conventional units 80MW (node n1) No investment

Newly built stochastic units 200MW (node n2) 400MW (node n2)

Total newly built units [MW] 280 400

Total investment cost of the
producers [$ million]

17.60 26.40

TP of the producers [$ million] 61.67 58.06

ATSW of the market [$ million] 79.27 84.46

2. As expected, the TP of producers g1 and g2 in the TP maximization case ($61.67
million) is comparatively higher than that in theATSWmaximization case ($58.06
million). However, the ATSW in the TP maximization case ($79.27 million) is
comparatively lower than that in the ATSW maximization case ($84.46 million).

3. Since the stochastic units with zero offer prices lead to a higher ATSW, only those
units are built in the ATSW maximization case.

Regarding the investment results for each producer in the TP maximization case,
the new units can be built by each of the two producers. In other words, all new
units (280MW) may be built by producer g1 or producer g2. In addition, those units
may be built by both producers, e.g., 80MW conventional unit by producer g1 and
200MW stochastic unit by producer g2. Therefore, several equilibrium points can
be found in this case.

Regarding the investment results for each producer in the ATSW maximization
case, the only possible equilibrium point is to invest in a 200-MW stochastic unit by
each producer (i.e., 400MW all together) since producers g1 and g2 cannot invest in
such a unit with a capacity greater than 200MW.

Regarding the LMPs obtained, as expected, at least one of the producers strategi-
cally offers at a price identical to the bid price of the demand. Therefore, the LMPs
obtained in operation conditions o1 and o2 are $35 and $32/MWh, respectively. Note
that in each condition, the LMPs at both nodes are the same since the transmission
line is not congested.

6.6 Summary

This chapter provides amethodology to characterize generation investment equilibria
in a pool-based network-constrained electricitymarket in which all producers behave
strategically. To this end, the following steps are carried out:

Step (1) The investment problem of each strategic producer is represented using
a bilevel model, whose upper-level problem determines the optimal
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production investment (capacity and location) and the offer prices to
maximize its profit, and whose several lower-level problems represent
the clearing of the market for different operating conditions.

Step (2) The single-producer bilevel models formulated in Step 1 are transformed
into single-level MPECs by replacing the lower-level problems with their
optimality conditions resulting from the primal–dual transformation. The
resulting MPECs are continuous but nonlinear, due to the product of
variables in the objective function and strong duality equalities.

Step (3) The joint consideration of all producer MPECs, one per producer, consti-
tutes an EPEC, whose solution identifies the market equilibria.

Step (4) To identify EPEC solutions, the strong stationarity conditions associ-
ated with the EPEC, i.e., the strong stationarity conditions of all pro-
ducer MPECs, are derived. To this end, each MPEC obtained in Step 2
is replaced by its KKT conditions. The set of resulting strong stationarity
conditions of all MPECs, which are the strong stationarity conditions of
the EPEC, is a collection of nonlinear systems of equalities and inequal-
ities.

Step (5) The strong stationarity conditions associated with the EPEC obtained in
Step 4 are linearized without approximation through three procedures: (i)
linearizing the complementarity conditions, (ii) parameterizing the result-
ing conditions in the dual variables corresponding to the strong duality
equalities, and (iii) replacing the strong duality equalities with their equiv-
alent complementarity conditions. This linearization results in a mixed-
integer and linear system of equalities and inequalities characterizing the
EPEC.

Step (6) To explore multiple solutions, an auxiliary mixed-integer linear optimiza-
tion problem is formulated, whose constraints are themixed-integer linear
conditions obtained in Step 5 and whose objective function is either a lin-
ear form of the total profit of all producers or a linear form of the annual
true social welfare.

Step (7) The auxiliary mixed-integer linear optimization problem formulated in
Step 6 is solved and a number of solutions are obtained.

Step (8) To detect Nash equilibria among the solutions achieved in Step 7, an
ex-post algorithm based on a single-iteration diagonalization approach is
provided. This algorithm checks whether each solution achieved in Step
7 is, in fact, a Nash equilibrium.

To validate numerically the methodology provided in this chapter, a two-node
illustrative example with two strategic producers is examined and the equilibrium
results obtained are reported and discussed.
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6.7 End-of-Chapter Exercises

6.1 Reformulate the production capacity investment equilibrium model (6.1) to
include several units per node and piecewise linear production costs.

6.2 Reformulate the production capacity investment equilibrium model (6.1) con-
sidering a multistage investment model instead of a static one.

6.3 Reformulate the production capacity investment equilibrium model (6.1) con-
sidering uncertainty in demand bid prices and investment costs of different technolo-
gies.

6.4 Solve Illustrative Example 6.1 presented in Sect. 6.4 considering the capacity
of transmission line to be 200MW (congested case) and then interpret the investment
equilibrium results obtained.

6.5 Solve Illustrative Example 6.1 presented in Sect. 6.4 considering a single pro-
ducer owning the entire production capacity portfolio (monopoly case) and then
interpret the investment equilibrium results obtained.

6.6 Solve Illustrative Example 6.1 presented in Sect. 6.4 considering three strategic
producers f1, f2, and f3 (triopoly case), in which the capacity portfolio of each
producer f1 and f3 is equal to half that of producer g1 in the original example, while
the capacity portfolio of producer f2 is identical to that of producer g2 is the original
example. Then interpret the investment equilibrium results obtained.

6.7 Compare the investment equilibrium results obtained from the monopoly case
(Exercise 6.5), the duopoly case (Illustrative Example 6.1 in Sect. 6.4), and the tri-
opoly case (Exercise 6.6).

6.8 GAMS Code

This section provides the GAMS code for solving theMILP problemmaximizing TP
corresponding to Illustrative Example 6.1. Note that this code is written in a general
form, and thus it is straightforward to adapt it to any investment equilibrium example.

1 SETS
2 o operating conditions /o1*o2/
3 g producers /g1*g2/
4 n nodes /n1*n2/
5 s(n) reference node /n1/
6 Omega(n,n) transmission lines /n1.n2 ,n2.n1/
7 ALIAS (n,m)
8 ALIAS (g,y);

10 PARAMETERS
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11 Kmax(g) available annualized investment budget of
the producers /

12 g1 2e7
13 g2 2e7/

15 P_Dmax(n) maximum load of the consumers /
16 n1 400
17 n2 0/

19 X_Cmax(n) maximum capacity investment of the
candidate conventional units /

20 n1 200/

22 X_Smax(n) maximum capacity investment of the
candidate stochastic units /

23 n2 200/

25 rho(o) weighting factor of operating conditions /
26 o1 3530
27 o2 5230/
28 ;

30 TABLE B(n,n) susceptance of the transmission lines
31 n1 n2
32 n1 0 1e3
33 n2 1e3 0;

35 Table C_C(g,n) production cost of the candidate
conventional units

36 n1
37 g1 12
38 g2 12;

40 Table C_E(g,n) production cost of the existing
conventional units

41 n1 n2
42 g1 10 0
43 g2 0 15;

45 TABLE Fmax(n,n) capacity of the transmission lines
46 n1 n2
47 n1 0 400
48 n2 400 0;

50 TABLE K_C(g,n) annualized investment cost of the
candidate conventional units

51 n1
52 g1 55000
53 g2 55000;

55 TABLE K_S(g,n) annualized investment cost of the
candidate stochastic units

56 n2
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57 g1 66000
58 g2 66000;

60 TABLE P_Emax(g,n) capacity of the existing
conventional units

61 n1 n2
62 g1 150 0
63 g2 0 100;

65 TABLE Q_S(n,o) power capacity factor of the
candidate stochastic units

66 o1 o2
67 n2 0.35 0.70;

69 TABLE Q_D(n,o) demand factor of the consumers
70 o1 o2
71 n1 1.0 0.8;

73 TABLE U_D(n,o) bid price of the consumers
74 o1 o2
75 n1 35 32;

77 SCALAR BigM1 a large value /1e4/
78 SCALAR BigM2 a large value /1e6/
79 SCALAR BigM3 a large value /5e7/
80 SCALAR PI pi /3.1416/;

82 PARAMETERS
83 eta_parameterized(y,o);
84 eta_parameterized(y,o)=rho(o);

86 FREE VARIABLES
87 TP total profit of the producers
88 linear_term(o) linear equivalent of the

bilinear term
89 lambda(n,o) locational marginal prices (

LMPs)
90 theta(n,o) nodal voltage angles
91 *dual variable associated with the lower -level

problems
92 mu_theta_ref(o)
93 *dual variables associated with the MPEC of

producer y
94 beta(y,n,o)
95 rho_C(y,g,n,o)
96 rho_S(y,g,n,o)
97 rho_E(y,g,n,o)
98 rho_D(y,n,o)
99 rho_theta(y,n,o)

100 eta_theta_ref(y,o);

102 POSITIVE VARIABLES
103 * primal variables
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104 p_C(g,n,o) power produced by the
candidate conventional units

105 p_D(n,o) power consumed by the
consumers

106 p_E(g,n,o) power produced by the
existing conventional units

107 p_S(g,n,o) power produced by the
candidate stochastic units

108 x_C(g,n) capacity of the candidate
conventional units

109 x_S(g,n) capacity of the candidate
stochastic units

110 alpha_C(g,n,o) offer price by the candidate
conventional units

111 alpha_E(g,n,o) offer price by the existing
conventional units

112 *dual variables associated with the lower -level
problems

113 mu_Cmin(g,n,o)
114 mu_Cmax(g,n,o)
115 mu_Dmin(n,o)
116 mu_Dmax(n,o)
117 mu_Emin(g,n,o)
118 mu_Emax(g,n,o)
119 mu_Smin(g,n,o)
120 mu_Smax(g,n,o)
121 mu_F(n,m,o)
122 mu_theta_min(n,o)
123 mu_theta_max(n,o)
124 *dual variables associated with the MPEC of

producer y
125 eta_Cmax(y,g,n,o)
126 eta_Cmin(y,g,n,o)
127 eta_Emax(y,g,n,o)
128 eta_Emin(y,g,n,o)
129 eta_Smax(y,g,n,o)
130 eta_Smin(y,g,n,o)
131 eta_Dmax(y,n,o)
132 eta_Dmin(y,n,o)
133 eta_x_C_max(y,g,n)
134 eta_x_C_min(y,g,n)
135 eta_x_S_max(y,g,n)
136 eta_x_S_min(y,g,n)
137 eta_budget(y,g)
138 eta_alpha_C(y,g,n,o)
139 eta_alpha_E(y,g,n,o)
140 eta_F(y,n,m,o)
141 eta_theta_max(y,n,o)
142 eta_theta_min(y,n,o)
143 gamma_Cmin(y,g,n,o)
144 gamma_Cmax(y,g,n,o)
145 gamma_Dmin(y,n,o)
146 gamma_Dmax(y,n,o)
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147 gamma_Emin(y,g,n,o)
148 gamma_Emax(y,g,n,o)
149 gamma_Smin(y,g,n,o)
150 gamma_Smax(y,g,n,o)
151 gamma_F(y,n,m,o)
152 gamma_theta_min(y,n,o)
153 gamma_theta_max(y,n,o);

155 BINARY VARIABLES
156 u_mu_Smin(g,n,o)
157 u_mu_Smax(g,n,o)
158 u_mu_Cmin(g,n,o)
159 u_mu_Cmax(g,n,o)
160 u_mu_Emin(g,n,o)
161 u_mu_Emax(g,n,o)
162 u_mu_Dmin(n,o)
163 u_mu_Dmax(n,o)
164 u_mu_F(n,m,o)
165 u_mu_theta_min(n,o)
166 u_mu_theta_max(n,o)
167 u_x_C_min(y,g,n)
168 u_x_C_max(y,g,n)
169 u_x_S_min(y,g,n)
170 u_x_S_max(y,g,n)
171 u_budget(y,g)
172 u_alpha_C(y,g,n,o)
173 u_alpha_E(y,g,n,o)
174 u_C_min(y,g,n,o)
175 u_C_max(y,g,n,o)
176 u_S_min(y,g,n,o)
177 u_S_max(y,g,n,o)
178 u_E_min(y,g,n,o)
179 u_E_max(y,g,n,o)
180 u_D_min(y,n,o)
181 u_D_max(y,n,o)
182 u_F(y,n,m,o)
183 u_theta_min(y,n,o)
184 u_theta_max(y,n,o)
185 u1(y,g,n,o)
186 u2(y,g,n,o)
187 u3(y,g,n,o)
188 u4(y,g,n,o)
189 u5(y,g,n,o)
190 u6(y,g,n,o)
191 u7(y,n,o)
192 u8(y,n,o)
193 u9(y,n,m,o)
194 u10(y,n,o)
195 u11(y,n,o);

197 x_S.UP(g,n)=X_Smax(n);
198 x_C.UP(g,n)=X_Cmax(n);
199 p_E.UP(g,n,o)=P_Emax(g,n);
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200 p_D.UP(n,o)=P_Dmax(n)*Q_D(n,o);
201 theta.LO(n,o)=-PI;
202 theta.UP(n,o)=PI;
203 theta.FX(’n1 ’,o)=0;
204 EQUATIONS
205 OF , EQ1 , EQ2 , EQ3 , EQ4 , EQ5 , EQ6 , EQ7 , EQ8 , EQ9 ,

EQ10 , EQ11 , EQ12 , EQ13 , EQ14 , EQ15 , EQ16 , EQ17 ,
EQ18 , EQ19 , EQ20 ,

206 EQ21 , EQ22 , EQ23 , EQ24 , EQ25 , EQ26 , EQ27 , EQ28 ,
EQ29 , EQ30 , EQ31 , EQ32 , EQ33 , EQ34 , EQ35 , EQ36 ,
EQ37 , EQ38 , EQ39 , EQ40 ,

207 EQ41 , EQ42 , EQ43 , EQ44 , EQ45 , EQ46 , EQ47 , EQ48 ,
EQ49 , EQ50 , EQ51 , EQ52 , EQ53 , EQ54 , EQ55 , EQ56 ,
EQ57 , EQ58 , EQ59 , EQ60 ,

208 EQ61 , EQ62 , EQ63 , EQ64 , EQ65 , EQ66 , EQ67 , EQ68 ,
EQ69 , EQ70 , EQ71 , EQ72 , EQ73 , EQ74 , EQ75 , EQ76 ,
EQ77 , EQ78 , EQ79 , EQ80 ,

209 EQ81 , EQ82 , EQ83 , EQ84 , EQ85 , EQ86 , EQ87 , EQ88 ,
EQ89 , EQ90 , EQ91 , EQ92 , EQ93 , EQ94 , EQ95 , EQ96 ,
EQ97 , EQ98 , EQ99 , EQ100 ,

210 EQ101 , EQ102 , EQ103 , EQ104 , EQ105 , EQ106 , EQ107 ,
EQ108 , EQ109 , EQ110 , EQ111 , EQ112 , EQ113 , EQ114
, EQ115 , EQ116 , EQ117 ,

211 EQ118 , EQ119 , EQ120;

214 OF..TP=E=SUM(o,rho(o)*linear_term(o))-SUM((n,g),x_C
(g,n)*K_C(g,n))-SUM((n,g),x_S(g,n)*K_S(g,n))-
SUM((g,n,o),rho(o)*p_C(g,n,o)*C_C(g,n))-SUM((g,
n,o),rho(o)*p_E(g,n,o)*C_E(g,n));

216 EQ1(o).. linear_term(o)=E=SUM(n,U_D(n,o)*p_D(n,o))-
SUM(n,mu_Dmax(n,o)*P_Dmax(n)*Q_D(n,o))-SUM((n,m
)$Omega(n,m),Fmax(n,m)*mu_F(n,m,o))-SUM(n,PI*[
mu_theta_max(n,o)+mu_theta_min(n,o)]);

218 EQ2(g)..SUM(n,x_C(g,n)*K_C(g,n))+SUM(n,x_S(g,n)*K_S
(g,n))=L=Kmax(g);

220 EQ3(n,o)..p_D(n,o)+SUM(m$Omega(n,m),B(n,m)*[theta(n
,o)-theta(m,o)])-SUM(g,p_C(g,n,o))-SUM(g,p_E(g,
n,o))-SUM(g,p_S(g,n,o))=E=0;

222 EQ4(g,n,o)..p_C(g,n,o)=L=x_C(g,n);

224 EQ5(g,n,o)..p_S(g,n,o)=L=Q_S(n,o)*x_S(g,n);

226 EQ6(n,m,o)$Omega(n,m)..B(n,m)*[ theta(n,o)-theta(m,o
)]=L=Fmax(n,m);

228 EQ7(g,n,o).. alpha_C(g,n,o)-lambda(n,o)+mu_Cmax(g,n,
o)-mu_Cmin(g,n,o)=E=0;
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230 EQ8(g,n,o).. alpha_E(g,n,o)-lambda(n,o)+mu_Emax(g,n,
o)-mu_Emin(g,n,o)=E=0;

232 EQ9(g,n,o)..-lambda(n,o)+mu_Smax(g,n,o)-mu_Smin(g,n
,o)=E=0;

234 EQ10(n,o)..-U_D(n,o)+lambda(n,o)+mu_Dmax(n,o)-
mu_Dmin(n,o)=E=0;

236 EQ11(n,o).. SUM(m$Omega(n,m),B(n,m)*[ lambda(n,o)-
lambda(m,o)])+SUM(m$Omega(n,m),B(n,m)*[mu_F(n,m
,o)-mu_F(m,n,o)])+mu_theta_max(n,o)-
mu_theta_min(n,o)+mu_theta_ref(o)$s(n)=E=0;

238 EQ12(g,n,o)..p_C(g,n,o)=L=u_mu_Cmin(g,n,o)*BigM1;
239 EQ13(g,n,o).. mu_Cmin(g,n,o)=L=[1- u_mu_Cmin(g,n,o)]*

BigM2;

241 EQ14(g,n,o)..[x_C(g,n)-p_C(g,n,o)]=L=u_mu_Cmax(g,n,
o)*BigM1;

242 EQ15(g,n,o).. mu_Cmax(g,n,o)=L=[1- u_mu_Cmax(g,n,o)]*
BigM2;

244 EQ16(g,n,o)..p_S(g,n,o)=L=u_mu_Smin(g,n,o)*BigM1;
245 EQ17(g,n,o).. mu_Smin(g,n,o)=L=[1- u_mu_Smin(g,n,o)]*

BigM2;

247 EQ18(g,n,o)..[( Q_S(n,o)*x_S(g,n))-p_S(g,n,o)]=L=
u_mu_Smax(g,n,o)*BigM1;

248 EQ19(g,n,o).. mu_Smax(g,n,o)=L=[1- u_mu_Smax(g,n,o)]*
BigM2;

250 EQ20(g,n,o)..p_E(g,n,o)=L=u_mu_Emin(g,n,o)*BigM1;
251 EQ21(g,n,o).. mu_Emin(g,n,o)=L=[1- u_mu_Emin(g,n,o)]*

BigM2;

253 EQ22(g,n,o)..[ P_Emax(g,n)-p_E(g,n,o)]=L=u_mu_Emax(g
,n,o)*BigM1;

254 EQ23(g,n,o).. mu_Emax(g,n,o)=L=[1- u_mu_Emax(g,n,o)]*
BigM2;

256 EQ24(n,o)..p_D(n,o)=L=u_mu_Dmin(n,o)*BigM1;
257 EQ25(n,o).. mu_Dmin(n,o)=L=[1- u_mu_Dmin(n,o)]* BigM2;

259 EQ26(n,o)..[( Q_D(n,o)*P_Dmax(n))-p_D(n,o)]=L=
u_mu_Dmax(n,o)*BigM1;

260 EQ27(n,o).. mu_Dmax(n,o)=L=[1- u_mu_Dmax(n,o)]* BigM2;

262 EQ28(n,m,o)$Omega(n,m)..Fmax(n,m) -[B(n,m)*( theta(n,
o)-theta(m,o))]=L=u_mu_F(n,m,o)*BigM1;

263 EQ29(n,m,o)$Omega(n,m)..mu_F(n,m,o)=L=[1- u_mu_F(n,m
,o)]* BigM2;
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265 EQ30(n,o)..PI+theta(n,o)=L=[1- u_mu_theta_min(n,o)]*
BigM1;

266 EQ31(n,o).. mu_theta_min(n,o)=L=u_mu_theta_min(n,o)*
BigM2;

268 EQ32(n,o)..PI -theta(n,o)=L=[1- u_mu_theta_max(n,o)]*
BigM1;

269 EQ33(n,o).. mu_theta_max(n,o)=L=u_mu_theta_max(n,o)*
BigM2;

271 EQ34(y,g,n,o)$[ORD(g) EQ ORD(y)]..-[rho(o)*( lambda(
n,o)-C_C(g,n))]-beta(y,n,o)+eta_Cmax(y,g,n,o)-
eta_Cmin(y,g,n,o)+[ eta_parameterized(y,o)*
alpha_C(g,n,o)]=E=0;

272 EQ35(y,g,n,o)$[ORD(g) NE ORD(y)]..-beta(y,n,o)+
eta_Cmax(y,g,n,o)-eta_Cmin(y,g,n,o)+[
eta_parameterized(y,o)*alpha_C(g,n,o)]=E=0;

274 EQ36(y,g,n,o)$[ORD(g) EQ ORD(y)]..-[rho(o)*( lambda(
n,o)-C_E(g,n))]-beta(y,n,o)+eta_Emax(y,g,n,o)-
eta_Emin(y,g,n,o)+[ eta_parameterized(y,o)*
alpha_E(g,n,o)]=E=0;

275 EQ37(y,g,n,o)$[ORD(g) NE ORD(y)]..-beta(y,n,o)+
eta_Emax(y,g,n,o)-eta_Emin(y,g,n,o)+[
eta_parameterized(y,o)*alpha_E(g,n,o)]=E=0;

277 EQ38(y,g,n,o)$[ORD(g) EQ ORD(y)]..-[rho(o)*lambda(n
,o)]-beta(y,n,o)+eta_Smax(y,g,n,o)-eta_Smin(y,g
,n,o)=E=0;

278 EQ39(y,g,n,o)$[ORD(g) NE ORD(y)]..-beta(y,n,o)+
eta_Smax(y,g,n,o)-eta_Smin(y,g,n,o)=E=0;

280 EQ40(y,n,o)..beta(y,n,o)+eta_Dmax(y,n,o)-eta_Dmin(y
,n,o) -[eta_parameterized(y,o)*U_D(n,o)]=E=0;

282 EQ41(y,g,n)$[ORD(g) EQ ORD(y)]..K_C(g,n)+
eta_x_C_max(y,g,n)-eta_x_C_min(y,g,n)+[K_C(g,n)
*eta_budget(y,g)]-SUM(o,eta_Cmax(y,g,n,o))+SUM(
o,eta_parameterized(y,o)*mu_Cmax(g,n,o))=E=0;

283 EQ42(y,g,n)$[ORD(g) NE ORD(y)]..-SUM(o,eta_Cmax(y,g
,n,o))+SUM(o,eta_parameterized(y,o)*mu_Cmax(g,n
,o))=E=0;

285 EQ43(y,g,n)$[ORD(g) EQ ORD(y)]..K_S(g,n)+
eta_x_S_max(y,g,n)-eta_x_S_min(y,g,n)+[K_S(g,n)
*eta_budget(y,g)]-SUM(o,Q_S(n,o)*eta_Smax(y,g,n
,o))+SUM(o,Q_S(n,o)*eta_parameterized(y,o)*
mu_Smax(g,n,o))=E=0;

286 EQ44(y,g,n)$[ORD(g) NE ORD(y)]..-SUM(o,Q_S(n,o)*
eta_Smax(y,g,n,o))+SUM(o,Q_S(n,o)*
eta_parameterized(y,o)*mu_Smax(g,n,o))=E=0;
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288 EQ45(y,g,n,o)$[ORD(g) EQ ORD(y)]..- eta_alpha_C(y,g,
n,o)+rho_C(y,g,n,o)+[ eta_parameterized(y,o)*p_C
(g,n,o)]=E=0;

289 EQ46(y,g,n,o)$[ORD(g) NE ORD(y)].. rho_C(y,g,n,o)+[
eta_parameterized(y,o)*p_C(g,n,o)]=E=0;

291 EQ47(y,g,n,o)$[ORD(g) EQ ORD(y)]..- eta_alpha_E(y,g,
n,o)+rho_E(y,g,n,o)+[ eta_parameterized(y,o)*p_E
(g,n,o)]=E=0;

292 EQ48(y,g,n,o)$[ORD(g) NE ORD(y)].. rho_E(y,g,n,o)+[
eta_parameterized(y,o)*p_E(g,n,o)]=E=0;

294 EQ49(y,n,o)..SUM(m$Omega(n,m),B(n,m)*[beta(y,n,o)-
beta(y,m,o)])+SUM(m$Omega(n,m),B(n,m)*[ eta_F(y,
n,m,o)-eta_F(y,m,n,o)])+eta_theta_max(y,n,o)-
eta_theta_min(y,n,o)+eta_theta_ref(y,o)$s(n)=E
=0;

296 EQ50(y,n,o)..-[rho(o)*(p_C(y,n,o)+p_S(y,n,o)+p_E(y,
n,o))]-SUM(g,rho_C(y,g,n,o))-SUM(g,rho_E(y,g,n,
o))-SUM(g,rho_S(y,g,n,o))+rho_D(y,n,o)+SUM(
m$Omega(n,m),B(n,m)*[ rho_theta(y,n,o)-rho_theta
(y,m,o)])=E=0;

298 EQ51(y,g,n,o)..-rho_C(y,g,n,o)-gamma_Cmin(y,g,n,o)=
E=0;

299 EQ52(y,g,n,o)..+ rho_C(y,g,n,o)-gamma_Cmax(y,g,n,o)
+[ eta_parameterized(y,o)*x_C(g,n)]=E=0;

301 EQ53(y,g,n,o)..-rho_S(y,g,n,o)-gamma_Smin(y,g,n,o)=
E=0;

302 EQ54(y,g,n,o)..+ rho_S(y,g,n,o)-gamma_Smax(y,g,n,o)
+[ eta_parameterized(y,o)*Q_S(n,o)*x_S(g,n)]=E
=0;

304 EQ55(y,g,n,o)..-rho_E(y,g,n,o)-gamma_Emin(y,g,n,o)=
E=0;

305 EQ56(y,g,n,o)..+ rho_E(y,g,n,o)-gamma_Emax(y,g,n,o)
+[ eta_parameterized(y,o)*P_Emax(g,n)]=E=0;

307 EQ57(y,n,o)..-rho_D(y,n,o)-gamma_Dmin(y,n,o)=E=0;
308 EQ58(y,n,o)..+ rho_D(y,n,o)-gamma_Dmax(y,n,o)+[

eta_parameterized(y,o)*P_Dmax(n)*Q_D(n,o)]=E=0;

310 EQ59(y,n,m,o)$Omega(n,m)..[B(n,m)*( rho_theta(y,n,o)
-rho_theta(y,m,o))]-gamma_F(y,n,m,o)+[
eta_parameterized(y,o)*Fmax(n,m)]=E=0;

312 EQ60(y,n,o)..-rho_theta(y,n,o)-gamma_theta_min(y,n,
o)+[ eta_parameterized(y,o)*PI]=E=0;

313 EQ61(y,n,o)..+ rho_theta(y,n,o)-gamma_theta_max(y,n,
o)+[ eta_parameterized(y,o)*PI]=E=0;

314 EQ62(y,n,o).. rho_theta(y,’n1 ’,o)=E=0;
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316 EQ63(y,g,n)$[ORD(g) EQ ORD(y)]..x_C(g,n)=L=[1-
u_x_C_min(y,g,n)]* BigM1;

317 EQ64(y,g,n)$[ORD(g) EQ ORD(y)].. eta_x_C_min(y,g,n)=
L=u_x_C_min(y,g,n)*BigM2;

319 EQ65(y,g,n)$[ORD(g) EQ ORD(y)]..[ X_Cmax(n)-x_C(g,n)
]=L=[1- u_x_C_max(y,g,n)]*BigM1;

320 EQ66(y,g,n)$[ORD(g) EQ ORD(y)].. eta_x_C_max(y,g,n)=
L=u_x_C_max(y,g,n)*BigM2;

322 EQ67(y,g,n)$[ORD(g) EQ ORD(y)]..x_S(g,n)=L=[1-
u_x_S_min(y,g,n)]* BigM1;

323 EQ68(y,g,n)$[ORD(g) EQ ORD(y)].. eta_x_S_min(y,g,n)=
L=u_x_S_min(y,g,n)*BigM2;

325 EQ69(y,g,n)$[ORD(g) EQ ORD(y)]..[ X_Smax(n)-x_S(g,n)
]=L=[1- u_x_S_max(y,g,n)]*BigM1;

326 EQ70(y,g,n)$[ORD(g) EQ ORD(y)].. eta_x_S_max(y,g,n)=
L=u_x_S_max(y,g,n)*BigM2;

328 EQ71(g,y)$[ORD(g) EQ ORD(y)].. Kmax(g)-SUM(n,x_C(g,n
)*K_C(g,n))-SUM(n,x_S(g,n)*K_S(g,n))=L=[1-
u_budget(g,y)]* BigM3;

329 EQ72(g,y)$[ORD(g) EQ ORD(y)].. eta_budget(y,g)=L=
u_budget(g,y)*BigM3;

331 EQ73(y,g,n,o)$[ORD(g) EQ ORD(y)].. alpha_C(g,n,o)=L
=[1- u_alpha_C(y,g,n,o)]* BigM1;

332 EQ74(y,g,n,o)$[ORD(g) EQ ORD(y)].. eta_alpha_C(y,g,n
,o)=L=u_alpha_C(y,g,n,o)*BigM2;

334 EQ75(y,g,n,o)$[ORD(g) EQ ORD(y)].. alpha_E(g,n,o)=L
=[1- u_alpha_E(y,g,n,o)]* BigM1;

335 EQ76(y,g,n,o)$[ORD(g) EQ ORD(y)].. eta_alpha_E(y,g,n
,o)=L=u_alpha_E(y,g,n,o)*BigM2;

337 EQ77(y,g,n,o)..p_C(g,n,o)=L=(1- u_C_min(y,g,n,o))*
BigM1;

338 EQ78(y,g,n,o).. eta_Cmin(y,g,n,o)=L=u_C_min(y,g,n,o)
*BigM2;

340 EQ79(y,g,n,o)..[x_C(g,n)-p_C(g,n,o)]=L=(1- u_C_max(y
,g,n,o))*BigM1;

341 EQ80(y,g,n,o).. eta_Cmax(y,g,n,o)=L=u_C_max(y,g,n,o)
*BigM2;

343 EQ81(y,g,n,o)..p_S(g,n,o)=L=(1- u_S_min(y,g,n,o))*
BigM1;

344 EQ82(y,g,n,o).. eta_Smin(y,g,n,o)=L=u_S_min(y,g,n,o)
*BigM2;

346 EQ83(y,g,n,o)..[( Q_S(n,o)*x_S(g,n))-p_S(g,n,o)]=L
=(1- u_S_max(y,g,n,o))*BigM1;
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347 EQ84(y,g,n,o).. eta_Smax(y,g,n,o)=L=u_S_max(y,g,n,o)
*BigM2;

349 EQ85(y,g,n,o)..p_E(g,n,o)=L=(1- u_E_min(y,g,n,o))*
BigM1;

350 EQ86(y,g,n,o).. eta_Emin(y,g,n,o)=L=u_E_min(y,g,n,o)
*BigM2;

352 EQ87(y,g,n,o)..[ P_Emax(g,n)-p_E(g,n,o)]=L=(1-
u_E_max(y,g,n,o))*BigM1;

353 EQ88(y,g,n,o).. eta_Emax(y,g,n,o)=L=u_E_max(y,g,n,o)
*BigM2;

355 EQ89(y,n,o)..p_D(n,o)=L=(1- u_D_min(y,n,o))*BigM1;
356 EQ90(y,n,o).. eta_Dmin(y,n,o)=L=u_D_min(y,n,o)*BigM2

;

358 EQ91(y,n,o)..[( P_Dmax(n)*Q_D(n,o))-p_D(n,o)]=L=(1-
u_D_max(y,n,o))*BigM1;

359 EQ92(y,n,o).. eta_Dmax(y,n,o)=L=u_D_max(y,n,o)*BigM2
;

361 EQ93(y,n,m,o)$Omega(n,m)..Fmax(n,m) -[B(n,m)*[ theta(
n,o)-theta(m,o)]]=L=[1-u_F(y,n,m,o)]* BigM1;

362 EQ94(y,n,m,o)$Omega(n,m).. eta_F(y,n,m,o)=L=u_F(y,n,
m,o)*BigM1;

364 EQ95(y,n,o)..[PI+theta(n,o)]=L=[1- u_theta_min(y,n,o
)]* BigM1;

365 EQ96(y,n,o).. eta_theta_min(y,n,o)=L=u_theta_min(y,n
,o)*BigM2;

367 EQ97(y,n,o)..[PI -theta(n,o)]=L=[1- u_theta_max(y,n,o
)]* BigM1;

368 EQ98(y,n,o).. eta_theta_max(y,n,o)=L=u_theta_max(y,n
,o)*BigM2;

370 EQ99(y,g,n,o).. mu_Cmin(g,n,o)=L=[1-u1(y,g,n,o)]*
BigM3;

371 EQ100(y,g,n,o).. gamma_Cmin(y,g,n,o)=L=u1(y,g,n,o)*
BigM3;

373 EQ101(y,g,n,o).. mu_Cmax(g,n,o)=L=[1-u2(y,g,n,o)]*
BigM3;

374 EQ102(y,g,n,o).. gamma_Cmax(y,g,n,o)=L=u2(y,g,n,o)*
BigM3;

376 EQ103(y,g,n,o).. mu_Smin(g,n,o)=L=[1-u3(y,g,n,o)]*
BigM3;

377 EQ104(y,g,n,o).. gamma_Smin(y,g,n,o)=L=u3(y,g,n,o)*
BigM3;
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379 EQ105(y,g,n,o).. mu_Smax(g,n,o)=L=[1-u4(y,g,n,o)]*
BigM3;

380 EQ106(y,g,n,o).. gamma_Smax(y,g,n,o)=L=u4(y,g,n,o)*
BigM3;

382 EQ107(y,g,n,o).. mu_Emin(g,n,o)=L=[1-u5(y,g,n,o)]*
BigM3;

383 EQ108(y,g,n,o).. gamma_Emin(y,g,n,o)=L=u5(y,g,n,o)*
BigM3;

385 EQ109(y,g,n,o).. mu_Emax(g,n,o)=L=[1-u6(y,g,n,o)]*
BigM3;

386 EQ110(y,g,n,o).. gamma_Emax(y,g,n,o)=L=u6(y,g,n,o)*
BigM3;

388 EQ111(y,n,o).. mu_Dmin(n,o)=L=[1-u7(y,n,o)]* BigM3;
389 EQ112(y,n,o).. gamma_Dmin(y,n,o)=L=u7(y,n,o)*BigM3;

391 EQ113(y,n,o).. mu_Dmax(n,o)=L=[1-u8(y,n,o)]* BigM3;
392 EQ114(y,n,o).. gamma_Dmax(y,n,o)=L=u8(y,n,o)*BigM3;

394 EQ115(y,n,m,o)$Omega(n,m)..mu_F(n,m,o)=L=[1-u9(y,n,
m,o)]*BigM3;

395 EQ116(y,n,m,o)$Omega(n,m).. gamma_F(y,n,m,o)=L=u9(y,
n,m,o)*BigM3;

397 EQ117(y,n,o).. mu_theta_min(n,o)=L=[1-u10(y,n,o)]*
BigM3;

398 EQ118(y,n,o).. gamma_theta_min(y,n,o)=L=u10(y,n,o)*
BigM3;

400 EQ119(y,n,o).. mu_theta_max(n,o)=L=[1-u11(y,n,o)]*
BigM3;

401 EQ120(y,n,o).. gamma_theta_max(y,n,o)=L=u11(y,n,o)*
BigM3;

403 MODEL EQUILIBRIA /ALL/;
404 OPTION OPTCR =0;
405 SOLVE EQUILIBRIA USING MIP MAXIMIZING TP;
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