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Preface

Rigorous analysis is essential for making informed decisions about the construction
of new electricity generation plants or transmission lines. This book provides a
number of relevant models that constitute a framework for such investment
analysis.

Since electricity generation and transmission assets last for many years,
investment decisions are challenging because they involve high costs, are often
made under high uncertainty, and generally require risk control on cost variability.
Moreover, given the required investment level, wrong decisions may prove catas-
trophic from a financial viewpoint. Also, investment decisions are dynamic in
nature since they are made by practitioners throughout a long-term planning
horizon as uncertainty unfolds. As a result of the uncertainty involved, the required
risk control, and the dynamic nature of investment decisions, appropriate mathe-
matical models are complex and often need tailored solution techniques.

Within a market framework, distinct agents with different and often conflicting
objectives are generally involved in making investment decisions, and thus a
multiobjective equilibrium approach is desirable. Moreover, market power is
common in electricity markets, and its representation entails nontrivial modeling
features. Consequently, the resulting game-theoretic models are complex enough to
require carefully crafted solution techniques.

By focusing on the application of the state-of-the-art mathematical tools for
decision-making, this book aims to convey the principles of investment analysis in
the electricity industry to students and practitioners alike. Initially, a social planning
viewpoint is adopted, and generation expansion, transmission expansion, and
generation plus transmission expansion problems are considered. Subsequently,
a market perspective is taken, and generation investment equilibria are analyzed.

This book consists of seven chapters and five appendices. Chapter 1 provides an
introduction to both electricity transmission and electricity generation expansion
planning problems, emphasizing their long-term nature, the high degree of uncer-
tainty involved, and the market framework in which electricity is produced,
transported, distributed, and supplied in most parts of the world. Next, the chapter
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describes specific decision-making problems involving electricity transmission
and/or generation facilities and introduces the computational tools needed to tackle
these problems. It concludes by stating the scope of the book.

Chapter 2 is devoted to electricity transmission expansion planning adopting the
viewpoint of a social planner. The rationale for this perspective is that the electricity
transmission network is undoubtedly a natural monopoly. A simple deterministic
model is first introduced to clarify the elements of this important decision-making
problem, followed by a detailed robust adaptive model to cope with uncertainty in a
secure yet economical manner.

Chapter 3 considers generation expansion planning also from a social planning
viewpoint. The optimal outcome is intended to guide private investment in gen-
eration facilities. The chapter describes a number of increasingly complex models.
The first model involves a single decision point, includes no network representa-
tion, and is deterministic. Subsequently, the single decision point is substituted by
multiple decision points, the network is represented, and short-term (demand and
renewable production variability within one year) and long-term (changes in
demand and investment/operational costs across years) uncertainties are incorpo-
rated via stochastic programming.

Chapter 4 similarly adopts a social planning viewpoint and considers the joint
generation and transmission expansion planning problem. Addressing the expan-
sion of generation and transmission facilities together yields a transmission–gen-
eration coordinated solution that is optimal. The transmission component of this
solution is to be built by the transmission operator, while its generation component
serves as a guide for private investment in generation facilities. The chapter
introduces models of increasing complexity: first, a deterministic single
decision-point model, followed by a deterministic multiple decision-point model.
Uncertainty is then introduced via stochastic programming, and finally, risk control
(on total cost variability) is incorporated into this stochastic model.

Chapter 5 considers a market viewpoint and describes the decision-making
problem of a private investor seeking to build electricity generation facilities from
which to sell its output in the market for a profit. We assume that this investor has
the capability to alter market outcomes, i.e., it has market power. This requires a
complementarity or bilevel model, which generally entails high modeling and
computational complexity. A single decision-point model is first introduced, fol-
lowed by a multiple decision-point model. Short-term uncertainty pertaining to
demand levels and renewable (solar- and wind-based) production is then intro-
duced, but for simplicity, long-term uncertainty (change in investment/fuel cost and
demand growth) is not considered. The chapter concludes by discussing compu-
tational techniques to tackle this type of large-scale complementarity problem.

Chapter 6 likewise takes a market viewpoint and considers a number of private
investors competing in building power plants and in selling their generated elec-
tricity in the market for a profit. We assume that these investors are able to exert
market power. The chapter describes models to identify the equilibria that are
eventually reached by these competing investors. For simplicity, short-term
uncertainty is represented, but long-term uncertainty is not. A number of solution
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methodologies to tackle these resulting equilibrium problems are discussed.
Identifying equilibria is also of interest to the industry regulator in order to ascertain
ways to improve market design and market rules.

Chapter 7 describes the real options methodology for identifying the timing,
sizing, and technological characteristics of a specific investment project in gener-
ation or transmission facilities. The uncertainty unfolding over time is carefully
represented to enable sequential decision analysis comprising features such as
operational flexibility, modularity, and capacity choice. Risk control via utility
functions is naturally embedded in the analysis.

Appendix A reviews the fundamentals of engineering economics. Appendix B
provides an introduction to optimization under uncertainty. Appendix C reviews
complementarity analysis, including equilibrium and hierarchical (bilevel) prob-
lems. Appendix D introduces the fundamentals of risk management. Appendix E
provides an introduction to dynamic programming.

The material in this book can be arranged in different ways to address the needs
of graduate teaching in a one-semester course. Chapters 1–4 and Appendices A, B,
and D constitute the core of a capacity expansion planning course with no market
focus. Chapters 1, 5, and 6 and Appendices A, B, C, and D include fundamental
material for a market-focused capacity expansion planning course. Chapters 1 and 7
and Appendices A, D, and E constitute the basis for a real options course.

The book provides an appropriate blend of theoretical background and practical
applications. This feature makes the book of interest to practitioners as well as to
researchers and students in engineering, operations research, and business. Practical
applications are developed up to working algorithms (coded in the GAMS envi-
ronment) that can be readily used.

Reading this book provides a comprehensive understanding of current invest-
ment problems in electric energy systems, including the formulation of
decision-making models for both generation and transmission expansion planning,
the familiarization with efficient solution algorithms for such decision-making
models, and insights into these investment problems through the detailed analysis
of numerous illustrative examples.

This book opens the door to analyzing investment decisions in electricity gen-
eration and transmission facilities using the most advanced models available. Such
models are explained in a tutorial and simple manner with illustrations provided by
many worked examples. Hence, the concepts and insights can be accessible to
practitioners and students.

To conclude, we would like to thank our colleagues and students for insightful
observations, pertinent corrections, and helpful comments.

December 2015 Antonio J. Conejo
Luis Baringo

S. Jalal Kazempour
Afzal S. Siddiqui
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Chapter 1
Investment in Generation and Transmission
Facilities

This introductory chapter provides an overview of the investment decision-making
process in electric energy systems, and it spans both transmission and generation
investment. Transmission investment is regulated because it critically influences the
operation of the system as a whole, while generation investment is generally the
concern of private entities. The distribution reinforcement and expansion planning
problem is outside the scope of this book, which focuses on generation and transmis-
sion. We adopt an electricity market viewpoint since this is the prevalent paradigm
throughout the world. This chapter seeks to provide an insightful general overview,
while other chapters provide precise models and detailed descriptions.

We first describe the three main characteristics of the decision-making process
for planning electric energy systems, namely, long-term view, uncertainty, and high
dimensionality. We then summarize the basic features of current electricity markets
since expansion planning decisions are made within a market framework. Next, we
specifically focus on the transmission expansion planning problem, the generation
investment problem, and the problem of valuation and timing of generation invest-
ment alternatives. Subsequently, we adopt the regulator’s viewpoint to consider the
joint transmission and generation expansion problem.

We conclude the chapter by clarifying what we do and what we do not do in this
book.

1.1 Long-Term Decision Making Under Uncertainty

Electricity generation facilities have effective operation lives of 30–50 years, while
transmission facilities stay in service even longer. Therefore, reinforcing or expand-
ing the transmission system and investing in generation facilities are long-term exer-
cises leading to decisions that influence the future operation of the system up to fifty
years and beyond. These investments are capital intensive, which generally involves
complex financial arrangements, and building periods range from six months to two
years for transmission lines and from two to five years for generation facilities.

The models required to make informed decisions in transmission expansion
and generation investment are necessarily large-scale since they should include

© Springer International Publishing Switzerland 2016
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Multi-year large-scale model
Data for many 

years
Alternative 

investment plans

Uncertainties

Fig. 1.1 Long-term decision-making under uncertainty

many variables and constraints to represent a large number of different operating
conditions [7]. Moreover, the description of such conditions includes both continu-
ous and binary variables. Binary variables are needed to represent the selection of
discrete facilities, while continuous variables are needed to represent operating deci-
sions. These models push available computational hardware and software to their
limits since they typically entail millions of constraints and variables, many of them
binary.

In summary, investment in electricity transmission and generation facilities
requires:

• Taking a long-term view.
• Accounting carefully and comprehensively for uncertainty.
• Dealing with large-scale optimization problems.

Figure1.1 illustrates the nature of long-term reinforcement and expansion problems
in power systems along with the associated uncertainty.

In particular, modeling the uncertainty involved is critical to the decision-making
process for investment in electric energy systems. Long-term expansion and rein-
forcement planning involve the following uncertainties:

1. Future evolution of the loads consumed by the demands located throughout the
transmission network.

2. Future evolution of investment costs of the different production technologies con-
sidered as investment alternatives throughout the planning horizon, particularly
renewable power units. This is contingent on the level of maturity of each tech-
nology.

3. Future evolution of the operation costs of the different production technologies
throughout the planning horizon, particularly fuel costs. This is contingent on the
time evolution of fuel costs.

4. Future investment decisions in production facilities, stochastic or not, made by
producers. Such decisions are unknown to market agents other than the one
involved in the specific investment decision.

Investment in electric energy systems is generally a multistage process. That is,
expansion and reinforcement interventions are carried out sequentially at different
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Fig. 1.2 Long-term
decision making under
uncertainty: multistage
decision framework

Decision 1 Decision 3

Decision 2

Decision   n

Uncertainty unfolding

Data

points in time. Therefore, a full-fledged model to assist the decision maker in invest-
ment decisions needs to embody this dynamic multistage framework. Figure1.2
illustrates this multistage decision framework.

However, embedding such a dynamic framework in a decision-making tool may
render it computationally intractable and therefore useless. Therefore, if a dynamic
framework is considered, then a number of simplifying assumptions in the description
of the system are generally needed.

Alternatively, a rolling-window approximate static framework might be used,
within which decisions are made at a given point in time, considering all future
uncertainties but disregarding the fact that future investment decisions will be made
afterward. In turn, the rolling window is moved forward to the next decision point
in time and the process repeated. Such a simplified framework results generally in
computational tractability even if a very detailed representation of the components
of the system is incorporated. Figure1.3 illustrates this rolling-window single-stage
decision framework.

The decision to use a multistage or a rolling-window single-stage model is con-
tingent on the size of the specific electric energy system under study, the required

Decision 1

Uncertainty 1

Decision 2

Uncertainty 2

Decision n

Uncertainty n

Rolling window 

Data 1

Data 2

Data n

Fig. 1.3 Long-term decision making under uncertainty: rolling-window single-stage decision
framework
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detail in uncertainty description, and the software and computational machinery
available. Decomposition techniques [13] that solve a given large-scale problem by
decomposing it into smaller and/or simpler subproblems and using an iterative
scheme are generally able to handle nearly intractable expansion planning problems.

1.2 Electricity Markets

In most parts of the world, the production, transmission, distribution, and supply
of electric energy revolves around an electricity market, which typically includes
severalmarketplaces, notably the day-aheadmarket and the balancingmarket. These
two marketplaces constitute what is known as the pool [20, 31]. The day-ahead
market closes at around noon and spans the 24h of the next day, while the balancing
market closes several minutes prior to power delivery on an hourly basis. Generally,
a medium-term contracting framework is available as well and is typically known
as the futures market. The futures market allows trading energy from one week to
several years in advance at rather stable prices compared to day-ahead and balancing
prices. Figure1.4 illustrates the trading timeline.

In these marketplaces, producers submit offers in the form of production blocks
(MWh) and their corresponding prices ($/MWh), while consumers submit bids in
the form of consumption blocks (MWh) and their corresponding prices ($/MWh).
In turn, the independent system operator (ISO), called the market operator in some
jurisdictions, matches supply and demand using an appropriatemarket-clearing tool
that results in accepted production levels per generating unit and hour, accepted
consumption levels per demand and hour, and hourly clearing prices. Clearing prices

Pool 1 Pool 2 Pool 3 Pool n

Weekly forward contracts

Monthly forward contracts

Quarterly forward contracts

Yearly forward contracts

Pool 4 Pool 5 Pool 6 Pool 7

Futures
market 

Pool

Fig. 1.4 Trading timeline
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are generally marginal prices, which might be supplemented with uplifts if needed.
Uplifts may be needed to ensure cost recovery to some critical production units, e.g.,
peakers.

Market-clearing tools in the pool generally include a network representation,
which results in clearing prices differentiated by location if the network is congested,
i.e., if some transmission lines are working at capacity.We call such prices locational
marginal prices, or simply LMPs. Each consumer pays the LMP at its location
multiplied by its consumption level, while each producer receives the LMP at its
location multiplied by its production level. Some critical production units may not
recover their corresponding costs with such a price scheme due to nonlinearities (e.g.,
lumped startup costs or minimum production levels) and market imperfections (e.g.,
the participation of a few large producers). If this is the case, then uplifts might be
established to ensure cost recovery by these critical units.

The regulator is an independent entity in charge of ensuring an efficient and
competitiveworking of the electricitymarket. The regulator in theUnited States (US)
is the Federal Energy Regulatory Commission (FERC), while in the European Union
(EU), regulators are country-based and have heterogeneous powers of oversight.

The key agents in an electricity market are the following:

1. Flexible producers with units that provide energy and reserve (backup power),
e.g., combined-cycle gas turbines.

2. Inflexible producers with units that provide just energy, e.g., nuclear power units,
which lack the flexibility to adapt their respective productions to real-time oper-
ating conditions.

3. Stochastic producers with units that provide energy on a stochastic basis, e.g.,
wind-power units.

4. Consumers that require energy and that may or may not have the capability of
adapting to real-time operating conditions, e.g., a large aluminum factory.

5. Retailers that buy energy in the market to sell it to their respective clients for a
profit.

6. The ISO that runs themarket and uses an appropriatemarket-clearing procedure to
derive reserve levels, production, and consumption quantities andmarket-clearing
prices.

It is important to recognize that to make informed investment decisions, the oper-
ation of the market under many plausible future working conditions needs to be
represented carefully. This is generally done using operating scenarios that capture
most load/production market conditions.

A given operating scenario in the market can be represented by an optimization
problem of the form [11]:

minx f (x)
s.t. h(x) = 0 : λ

g(x) ≤ 0
x ∈ X .

(1.1)
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Vector x ∈ X includes the variables that characterize the market outcome, including
the production allocated to each generating unit and the consumption level assigned
to each demand, as well as reserves allocated to both production units and demands.
Constraints h(x) = 0 describe the market-equilibrium conditions. If problem (1.1) is
continuous, then vector λ contains the dual variables related to market-equilibrium
conditions h(x) = 0, which are marginal prices. Constraints g(x) ≤ 0 are used to
state production and consumption bounds as well as equipment limits.

If vector x in (1.1) includes binary variables to represent the on/off status of
production units, then problem (1.1) becomes a mixed-integer problem [11]:

minx,y f (x, y)
s.t. h(x, y) = 0

g(x, y) ≤ 0
x ∈ B
Y ∈ Y .

(1.2)

In problem (1.2), vector x ∈ B includes binary variables, while vector y ∈ Y
includes continuous ones.

In theEU,market-clearing algorithms are generally linear programmingproblems,
while in the US they are mixed-integer linear programing problems. Therefore, in
EUmarkets, marginal clearing prices are directly obtained from the solution of (1.1),
while in US markets, a relaxation of (1.2) needs to be used to derive marginal clear-
ing prices, which have to be supplemented with uplifts [34]. Long-term expansion
planning models should embody all operational constraints that influence planning
decisions. However, an excess of operational details may result in an intractable
model. Thus, an appropriate tradeoff should be achieved between modeling accuracy
and computational tractability.

Uncertainty plagues decision-making in electricity markets. Particularly, the fol-
lowing uncertainties are most likely to be present in short-term market operation:

1. Producer offering behavior in terms of both offered quantities and prices. Any
particularmarket agent (producer, consumer, or retailer) has noprecise knowledge
of the offering/bidding behavior of other agents in the market.

2. Consumer/retailer bid behavior in terms of both bid quantities and prices. Any
particularmarket agent has no precise knowledge of the offering/bidding behavior
of other agents in the market.

3. Production levels by stochastic production units, such as wind power units or
concentrating solar power units. Stochastic producers owning stochastic units,
e.g., wind farms or solar power units, have no precise knowledge of the future
production levels of such units.

4. Equipment failures involving both production and transmission facilities. Both
generation facilities and transmission equipment fail with a nonnegligible failure
rate, and thus their availabilities at a future point in time are uncertain.

Finally, it is important to state that as stochastic power units (wind- and solar-
based) increasingly penetrate the generation mix, market-clearing procedures based
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Fig. 1.5 Electricity market: agents, input, and outcomes

on stochastic programing might be advisable [30]. In such a case, instead of deter-
ministic model (1.1) or (1.2), a stochastic model similar to (1.7) needs to be used.

Figure1.5 illustrates the functioning of an electricity market.

1.3 Transmission Expansion Planning

The transmission network is a natural monopoly (i.e., an infrastructure not to be
duplicated and over which no competition makes sense) and is used by all producers
and consumers to trade electric energy. Its relative cost as compared to the cost of
production facilities is small, but its impact on the functioning of the system is huge.
Congestion prevents the transport of cheap energy from some production areas to
areas of consumption, and line outages may endanger the stability of the system as
a whole. It is therefore crucial to have a transmission network that in most cases is
invisible to the system, i.e., energy trading is carried out without the presence of the
network being noticed. Under these considerations, we adopt a social welfare and
infrastructure viewpoint to plan the reinforcement and expansion of the transmission
network.

It is important to realize that infrastructure is generally designed to be able to
operate correctly under theworst plausible conditions, e.g., a bridge shouldwithstand
a maximum weight under adverse climate conditions, and a sea breakwater should
withstand the strongest plausible wave. Thus, traditionally, every infrastructure is
designed by considering the worst plausible conditions of future operation. In fact,
this is also common practice regarding electricity transmission expansion planning.

However, theworst future condition is a priori unknown, andwehave to cope prop-
erly with this uncertainty, which entails real reliability and economic consequences.
If we are too conservative and design a transmission network around a worse-than-
actual condition, thenwe end up building a stronger transmission system than needed
at higher cost. If we, conversely, design a transmission system around a better-than-
actual worst case, then we build a transmission system unable to withstand the actual
worst condition, thereby leading to losses or collapse. To confront this challenge,
we need to describe carefully the uncertain parameters involved in the transmission
expansion planning problem.
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Additionally, we need to ensure that the future transmission system will be able
to withstand the worst operating condition. Consequently, we will work on robust
optimization approaches, i.e., those that guarantee worst-case protection within a
plausible uncertainty set. Moreover, since the uncertainty description that we use is
parameterized through a set of conservatism parameters, we are able to characterize
the critical tradeoff security versus cost and generate an array of efficient design
solutions from which the decision-maker can choose.

Within the electric power industry, transmission expansion planning (TEP) refers
to the decision-making process faced by a transmission system operator (TSO) to
resolve the best way to expand or to reinforce an existing electricity transmission
network. Reference [15] provides an industry perspective of this important decision-
making problem. The TSO is the publicly controlled entity in charge of operating,
maintaining, reinforcing, and expanding the electricity transmission network within
a given jurisdiction and with the objective of maximizing social welfare. TSOs in
the different European countries are coordinated through ENTSO-E [18]. In the US,
TSOs have generally more limited roles than those in Europe and are generally
referred to as regional transmission organizations (RTO). European TSOs generally
own their respective transmission networks, which is not generally the case in the
US. Prominent regional transmission organizations in the US include PJM [32] and
the Midcontinent Independent System Operator, MISO [29].

Adaptive robust optimization (ARO) [9] allows modeling decision-making under
uncertainty with recourse. For transmission expansion problems, ARO involves three
steps:

1. Making investment decisions to maximize social welfare (or to minimize social
cost).

2. Outlining the worst uncertainty realizations within a plausible uncertainty set that
respects the physical constraints of the problem.

3. Making operational decisions to mitigate the negative effect of the uncertainty
realization and to achieve maximum social welfare. These are recourse decisions.

Traditional robust optimization techniques [36] do not allow for controlling the
level of robustness, i.e., conservatism, of the solution attained, which is a major
drawback; however, the theoretical work in [9] introduces formulations that make it
possible to control the level of robustness of the solutions attained. Such formulations
allow developing valuable planning tools, which are relevant in practice.

AROhas two advantageswith respect to stochastic programmingmodels that gen-
erally require a large number of scenarios to represent the uncertainty involved [19].
First, scenarios do not need to be generated, and since generating scenarios, based on
probability distributions or others, may entail an approximation of the description of
the uncertain parameters, not needing scenarios is an advantage. Instead, robust sets
are used in ARO models [10], and constructing such sets is generally simpler than
generating scenarios. Second, an ARO model typically has a moderate size, which
does not grow with the number of scenarios, and thus computational tractability is
not generally at stake.
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An ARO model has the general form below:

minx maxu miny f (x,u, y)
s.t.
hO(x,u, y) = 0
gO(x,u, y) ≤ 0
y ∈ Y

s.t.
u ∈ U

s.t.
hI(x) = 0
gI(x) ≤ 0
x ∈ X .

(1.3)

The objective function f (x,u, y) represents the minimization of the total system
costs, including transmission line investment costs and operating costs. The trans-
mission investment decision variables are gathered in vector x. Note that the entries of
vector x are binary variables that represent the build/not-build nature of each invest-
ment decision. Similarly, the entries of vector y are the operating decision variables,
which are assumed to be continuous. These operating variables include power pro-
duction from each generating unit, load shedding per node, and power line flows.
The worst-case realization of the uncertainty and the successive adaptive actions are
considered in the max–min right-hand-side problem, while the min left-hand-side
problem seeks minimum total social cost. Constraints hI(x) = 0 and gI(x) ≤ 0
represent investment conditions and limits (budget, capacity, locations, and others).
Constraints hO(x,u, y) = 0 and gO(x,u, y) ≤ 0 include equality constraints related
to the systems operations, e.g., the power balance at each node of the network, and
inequality constraints, e.g., upper and lower power outputs for each generating unit,
related to system limits, respectively. It should be emphasized that the operational
constraints depend on both x and y, which implies that the transmission investment
decisions alter the configuration of the transmission network and thus the operation
of the system. Finally, u ∈ U defines the uncertainty set. Uncertainty parameters
are modeled as decision variables so that the worst realization of such parameters
can be represented.

Figure1.6 illustrates the AROmethodology to address the transmission reinforce-
ment and expansion planning problem.

1.4 Generation Investment

Investment in generating facilities is generally a competitive endeavor. Specifically,
producers compete among each other to build and to operate their respective produc-
tion facilities with the objective of maximizing profit. However, building electricity
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production facilities is capital-intensive and plagued with a number of administra-
tive “hurdles” (e.g., siting permissions, authorizations by different but overlapping
administrative bodies with conflicting interests, and others), which highly compli-
cates the actual construction of power units. As a result, and more often than not,
different types of subsidies (e.g., a price guarantee or an increase in price over the
market-clearing price) are available to encourage private investors to build electricity
production facilities.

Among the array of technologies available to produce electricity, power units
based on natural gas and renewable energy (solar- and wind-based) are nowadays
most prominent [22]. Combined-cycle gas turbines, based on natural gas, are highly
efficient, burn an environmentally friendly fossil fuel, and involve moderate invest-
ment and operational costs. Moreover, such units are highly flexible from the opera-
tional point of view andmake possible the operation of systems evenwith a high level
of penetration of stochastic renewable sources, such as wind- or solar-based power
units. Mature renewable technologies include wind power, concentrated solar power,
and photovoltaic power. Biomass units employ standard thermal-based technology,
and thus they are technologically mature as well. Coal units with carbon capture and
sequestration (CCS) are also considered as future alternatives as are a new generation
of nuclear power units. Considering environmental impact, a possible and desirable
(from the perspective of achieving a sustainable planet Earth) future generation mix
will include natural gas units with high operating flexibility and renewable units
including wind and concentrated solar units.

In decidingon investments in production facilities, two types of uncertain phenom-
ena should be carefully modeled: short-term and long-term. Short-term uncertainty
includes:

1. Demand uncertainty throughout the hours of the day and the days of the week.
2. Production uncertainty from stochastic (solar- and wind-based) units throughout

the hours of the day.
3. Equipment failures including both production units and transmission lines.
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Long-term uncertainty includes:

1. Yearly increase/decrease in demand.
2. Change in geographical demand distribution.
3. Yearly change in investment and operation costs.
4. Yearly change in the interest rate.

Mathematically, investment models in electricity production facilities are naturally
formulated as optimization problems constrained by other optimization problems,
which may also be reformulated as mathematical programs with equilibrium con-
straints (MPECs) [20]. A rather general instance of such a model is provided below:

maxx f (x, y(1), . . . , y(n),λ(1), . . . ,λ(n)) (1.4a)

s.t.

h(x, y(1), . . . , y(n)) = 0 (1.4b)

g(x, y(1), . . . , y(n)) ≤ 0 (1.4c)
⎧
⎪⎪⎨

⎪⎪⎩

maxy(1) f (1)(x, y(1), . . . , y(n))

s.t.
h(1)(x, y(1), . . . , y(n)) = 0 : λ(1)

g(1)(x, y(1), . . . , y(n)) ≤ 0

(1.4d)

...
⎧
⎪⎪⎨

⎪⎪⎩

maxy(n) f (n)(x, y(1), . . . , y(n))

s.t.
h(n)(x, y(1), . . . , y(n)) = 0 : λ(n)

g(n)(x, y(1), . . . , y(n)) ≤ 0.

(1.4e)

Problem (1.4a)–(1.4c) is the upper-level problem, while problems (1.4d)–(1.4e) are
the constraining lower-level problems. It is important to note that the objective func-
tions of the upper-level problem and of the lower-level problems are different and
generally conflicting; otherwise, problem (1.4) reduces to a single-level problem.
The upper-level problem is the investment problem, which seeks to identify the
investment decisions that maximize profit, while the lower-level problems represent
market-clearing conditions.Vector x includes the set of optimization variables specif-
ically belonging to the upper-level problem, i.e., investment decisions, while vector
y(i) includes the set of optimization variables of constraining lower-level problem
(i), i.e., the market-clearing outcomes of market condition (i). Vector λ(i) is the dual
variable vector pertaining to the equality constraints of the constraining lower-level
problem (i). Such a vector contains market-clearing prices.

Note the hierarchical structure of problem (1.4) above, i.e., an optimization prob-
lem (identifying the investment that results in maximum profit) constrained by its
own constraints and a set of other optimization problems (market-clearing condi-
tions). Note also that some dual variables, indicated following a colon after the
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corresponding constraints, of the constraining lower-level problems, which are clear-
ing prices, affect the upper-level problem, but not the other way around. That is, the
dual variables of the upper-level problem do not directly affect the lower-level prob-
lems. In a stochastic multistage decision-making framework, upper-level problem
(1.4a)–(1.4c) should include nonanticipativity constraints, i.e., those that prevent
anticipating future information.

Model (1.4) allows representation of strategic behavior from the power investor’s
point of view. This is realized by “manipulating” both offer power levels and offer
prices, which are input to the lower-level problems (1.4d)–(1.4e), to alter market-
clearing prices for the benefit of the producer, which are inputs to the upper-level
problem (1.4a)–(1.4c). Model (1.4) also allows representation of the investment
decision-making in stochastic (e.g., solar- andwind-based) power units. This requires
including a large number of lower-level problems (1.4d)–(1.4e) representing many
operational conditions describing different production levels and demand levels.
Moreover, if a producer has a generating mix dominated by stochastic units, then
model (1.4) can also be used to represent the investment strategies of such a strategic
stochastic producer.

Figure1.7 illustrates the investment problem in generation facilities.

1.5 Generation and Transmission Expansion Planning

Since investment in transmission facilities is the responsibility of the independent
system operator (or the transmission system operator) and is carried out in the pursuit
of social welfare maximization, while investment in generation facilities is a private
profit-oriented endeavor, the following question arises: who is interested in the joint
expansion planning of both generation and transmission facilities?

The regulator is the independent entity that pursues the harmonious expansion
and reinforcement of both the transmission infrastructure and the generation
facilities. Its objective is to maximize social welfare or to minimize social costs.
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Regarding the transmission system, the outcomes of this planning exercise are trans-
ferred to the transmission system operator to be analyzed further and eventually
implemented, while the outcomes pertaining to generation investment are provided
to private investors as guiding plans. These generation investment guiding plans are
often used by governmental agencies to design subsidies to promote investment in
certain generation facilities, e.g., renewable power units.

A natural modeling approach to addressing investment problems in transmission
and production facilities is stochastic programming [14]. Stochastic programming
allows the representation of sequential decisions in time alongwith a precise descrip-
tion of uncertain phenomena and the unfolding of uncertainty over time. Moreover,
in contrast to robust optimization, stochastic programming incorporates many of
the future operating conditions of the transmission and production facilities under
consideration, which is a requirement in making economically meaningful build/not-
build decisions [7]. However, the size of a stochastic programmingmodel grows with
the number of scenarios, which may result in intractability, and a large number of
scenarios is often needed to represent the uncertain parameters accurately. Therefore,
it is important to reach an appropriate tradeoff between accuracy and computational
complexity. Decomposition techniques [13] are helpful in achieving high modeling
accuracy while preserving computational tractability.

With respect to a single investment point in time, the transmission and generation
investment problem above can be represented by the two-stage stochastic program-
ming problem below:

minx f I(x) + Ew{zOw}
s.t. hI(x) = 0 : λ

gI(x) ≤ 0
x ∈ X ,

(1.5)

where
zOw = {minyw f O(yw)

s.t. hO
w(x, yw) = 0 : λw

gOw(x, yw) ≤ 0
yw ∈ Y } ∀w ∈ W .

(1.6)

Problem (1.5) seeks to minimize the total cost, including investment costs, f I(x),
pertaining to investment variables x in both transmission and generation facilities,
and expected operational costs, Ew{zSw}, pertaining to operational variables yw,∀w.
Problem (1.6), which constrains problem (1.5), represents operational decisions per
scenario w ∈ W .

Under mild mathematical assumptions, the expectation and minimization opera-
tors can be interchanged in problems (1.5)–(1.6), thereby rendering the single-level
problem below:
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minx;yw,∀w f I(x) + Ew{f O(yw)}
s.t. hI(x) = 0 : λ

gI(x) ≤ 0
x ∈ X
hO
w(x, yw) = 0 : λw, ∀w ∈ W

gOw(x, yw) ≤ 0, ∀w ∈ W
yw ∈ Y , ∀w ∈ W .

(1.7)

In problems (1.5)–(1.7), the superscript “I” denotes the investment (first) stage, while
the superscript “O” denotes the operation (second) stage. The subscriptw denotes the
scenario, and W represents the set of all possible scenarios. Constraints hI(x) = 0
and gI(x) ≤ 0 pertain to investment decisions, while constraints hO

w(x, yw) = 0 and
gOw(x, yw) ≤ 0 pertain to operational decisions in scenario w. Extending the above
optimization framework to a multistage setting can be done in a straightforward
manner, as explained in [14], but at the cost of greater computational complexity and
potential intractability.

Figure1.8 illustrates the investment problem in both transmission and generation
facilities.

1.6 Investment Valuation and Timing

The investment decision pertaining to a particular facility, i.e., a power plant or a
transmission line, can be deferred in time and may be subject to modification in its
capacity. This happens frequently since power companies generally prefer to defer
the refurbishment of existing production facilities or the building of new ones until
it is strictly necessary. Moreover, they often try to identify the best point in time to
undertake new construction or refurbishment.

Real options analysis (ROA) is a methodology tailored to this, i.e., to identifying
the best time to undertake the building of a new facility or the refurbishment of an
existing one, and/or to ascertain the best capacity (size) of such a facility. Moreover,
ROA precisely represents the uncertainty plaguing this decision-making process.

ROA models are naturally formulated using a dynamic programming framework
[17, 33], which has the form:
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f (s0) = maxx0,x1,... Eu

{ ∞∑

t=0

β tg(st, xt,u)

}

s.t.
st+1 = h(st, xt,u), ∀t = 0, 1, 2, . . .
xt ∈ X (st), ∀t = 0, 1, 2, . . .

(1.8)

At time period t, vector st represents the state of the system, and xt is the vec-
tor of investment decisions. Vector u contains the uncertain parameters. Function
h(st, xt,u) gives the state of the system at t + 1 if investment decision vector xt
is implemented at state st , i.e., st+1 = h(st, xt,u). The set of feasible investment
decisions at state st is contained in set X (st), which depends on the state st , i.e.,
xt ∈ X (st). Function g(st, xt,u) gives the profit at time period t for state st if invest-
ment decision xt is implemented, while f (s0) is the discounted expected profit, where
s0 is the initial state. Furthermore, Eu{·} is the expectation operator conditional on u,
and β is the discount factor. In addition to investment decisions, xt can also include
decisions on capacity sizing, operations, and abandonment of power plants. Thus,
model (1.8) may be generalized to incorporate discretion over not only timing and
sizing of the initial investment, but also subsequent operational levels and capacity
modifications. Hence, (1.8) consists of nested (or compound) options, which may be
valued quasi-analytically given assumptions about the underlying stochastic process
and an infinite time horizon.

Figure1.9 illustrates the valuation and timing of a specific investment project.

1.7 What We Do and What We Do Not Do

Investment decision-making requires identifying the best possible alternative plans
using a suitable computational model and then testing those alternative plans, con-
sidering all practical details that are absent from the decision-making model but are
relevant in practice. This book provides detailed computational models to identify
alternative investments plans that are optimal with respect to the objectives and lim-
itations of those models. This is what we specifically do in this book. Some of these
models are reported as indicated below:
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• Transmission reinforcement and expansion: [1, 2, 4, 12, 16, 21, 23, 35].
• Investment in conventional units: [24–28].
• Investment in renewable stochastic units: [3, 5, 6, 8].

In turn, alternative investment plans need to be tested for all the practical details
not present in the models. This important second step, “testing for all the practical
details not present in the models,” is not addressed in this book. Thus, this is what
we specifically do not do in this book. A description of this complementary analysis
is provided in [15] for transmission expansion planning. In short, this book focuses
on the development of mathematical models to produce investment plans that are
optimal with respect to the objective of the models.

Regarding transmission investment planning, alternative investment plans in trans-
mission lines need to be tested for their impact on system stability, voltage profile, and
others factors [15]. Regarding investment in production facilities, the plans obtained
need to be screened for environmental impact, appropriate location, network impact,
and other factors.

Figure1.10 illustrates what we do and what we do not do in this book.

1.8 End-of-Chapter Exercises

1.1 What are the main uncertainties that plague investment in electricity production
units? Are all uncertainties of a long-term nature?

1.2 Why are electric energy investment problems large-scale? Do they include only
continuous variables? Or do they also include binary variables? Do they include
many constraints? If so, then why?

1.3 What is the main marketplace in which to trade electricity in most electricity
markets around the world? Besides the main marketplace, list other other relevant
markets for trading electricity.
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1.4 Why would a mixed-integer linear programming model be needed to clear the
day-ahead market? Can marginal prices be derived using such a clearing tool? If so,
then how are the marginal prices obtained? Why might uplifts be needed?

1.5 Who is the entity in charge of reinforcing and expanding the transmission net-
work within a given jurisdiction? What are the main differences between the US and
the EU in this respect?

1.6 Why is adaptive robust optimization a good option for infrastructure expansion
planning? Would it not be more appropriate to use stochastic programming? If not,
then why?

1.7 Who is responsible for investing in power units? Has any public entity the
obligation of investing in power units? How canwe guarantee that enough generating
capacity is added to the system? What is the role played by the regulator in ensuring
that enough capacity is added to the system?

1.8 Why is a mathematical program with equilibrium constraints (MPEC) needed
to represent decision-making problems pertaining to generation investment? What
is the main difference between an optimization problem and an MPEC?

1.9 Which is the institution interested in the joint expansion of transmission and
generation facilities? Why? Are the plans derived by such an institution directly
implemented?

1.10 Why is stochastic programming appropriate for the joint expansion of the trans-
mission and generation facilities? Does stochastic programming allow representa-
tion of multiple decision points in time? Are stochastic programming models easy
to solve? If not, then why?
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Chapter 2
Transmission Expansion Planning

A critical issue in the operation of electric energy systems is the capacity of the trans-
mission lines that enable energy flows from generation nodes to demand nodes. In
this chapter, we analyze the transmission expansion planning (TEP) problem, which
allows a transmission planner to identify the optimal transmission reinforcements
to be carried out with the aim of facilitating energy exchange among producers and
consumers, e.g., by reducing generation or load-shedding costs. With this purpose,
two models are described and analyzed: first, a deterministic model that solves the
TEP problem based on a future demand forecast, and second, an adaptive robust
optimization (ARO) model that takes into account the influence of different sources
of uncertainty, such as future demand growth and the availability of generating units
in the TEP problem. These two models are formulated using a static approach in
which transmission expansion plans are made at a single point in time and for a
future planning horizon.

2.1 Introduction

This chapter analyzes the transmission expansion planning (TEP) problem, which
refers to the decision-making problemof determining the best transmission reinforce-
ments to bemade in an existing electric energy system.TEP ismotivated, amongother
reasons, by the aging of the current infrastructure [20], expected demand growth, and
the building of new renewable production facilities, usually located far away from
demand centers. These issuesmake it essential to reinforce and to expand the existing
transmission network in order to facilitate energy exchanges among producers and
consumers as well as to guarantee supply–demand balance.

TEP is a critical issue in modern electric energy systems because transmission
lines allow energy flows from generating to demand nodes. These demands must be
supplied even in the worst situations, e.g., those corresponding to a peak load or the
failure of a generating unit. Thus, transmission expansion plans should be decided
in such a way that demands are efficiently supplied even if one of these situations
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occurs. Note that the transmission expansion has twin objectives: on the one hand,
facilitating economic trade, and on the other hand, engineering reliability.

TheTEPproblem is generally tackled under two different frameworks: centralized
and competitive. In a centralized framework, an entity controls both generation and
transmission facilities and is in charge of performing generation and transmission
planning jointly. In a competitive environment, an independent and regulated entity
is generally in charge of operating and expanding the transmission network with
the aim of maximizing energy trade opportunities among producers and consumers.
There is a third option that consists in considering the scope for a merchant investor
that is profit-motivated in expanding the transmission system.

The first view, i.e., a central planner deciding both generation and transmission
expansion, is analyzed inChap.4 of this book.Here,we adopt the secondview, i.e.,we
consider that a single regulated entity decides the transmission expansion plans. The
existence of this entity, known as the transmission systemoperator (TSO), is common
in most European countries [14, 25]. In the US, TSOs have comparatively more
limited attributes, and they are usually in charge of a specific region and therefore,
are referred to as regional transmission organizations (RTOs) [19, 24].

The TSO (or RTO) decides the best way to reinforce and expand the existing trans-
mission network with the goal of facilitating energy trade opportunities of the market
players, e.g., by minimizing generation costs or by reducing load-shedding costs.
Note that a joint economic and engineering objective is considered. By expanding the
transmission network we reduce the generation and load-shedding costs (economic
objective), but at the same time, we improve the reliability in the supply of demands
(engineering objective).

The relevance of the TEP problem in electric energy systems hasmotivated signif-
icant research effort in this area over the past few decades. Pioneering work is due to
Garver [12],who in 1970 proposed a linear programming problem that determines the
transmission expansion plans based on the location of overloads. Since then, many
relevant contributions have been published based on mathematical programming [1,
21, 23].

TEP is a complex decision-making problem since it generally involves a mul-
tiattribute objective, nonlinear constraints, and a nonconvex feasible region. As a
result, different approaches have been proposed to deal with this complexity. These
approaches are based on the application of decomposition techniques such asBenders
decomposition [5, 18, 26, 27] or on the use of heuristics [5, 9, 22, 28].

An important observation is that the TEP problem is usually considered for a long-
term planning horizon. When the TSO decides about the transmission expansion
plan to be carried out, it should take into account the future demand growth, the
availability of existing generating units, and the building of new generating facilities.
This means that transmission expansion decisions are made within an uncertain
environment, and such uncertainties must be properly represented in order to achieve
informed expansion decisions. To do so, stochastic programming [11, 30] and robust
optimization (RO) [7, 16, 29] have been used in a TEP context. On the one hand,
stochastic programming is based on the generation of scenarios that describe the
uncertain parameters [8].However, this scenario generation usually requires knowing

http://dx.doi.org/10.1007/978-3-319-29501-5_4
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Fig. 2.1 Static and dynamic TEP models

the probability distribution functions of the uncertain parameters, which is generally
a hard task. Moreover, a large enough number of scenarios must be generated to
represent the uncertainty accurately, which increases the computational complexity
of the problem. On the other hand, RO does not need scenarios to be generated
but robust sets, which are generally simpler to obtain [2]. Additionally, RO models
have a moderate size, which reduces the computational complexity compared with
stochastic programming models. A general disadvantage of RO is that the results are
usually too conservative. However, this is not a disadvantage for the TEP problem,
in which a reliable supply of demands is required.

As previouslymentioned, theTEPproblem is generally considered for a long-term
planning horizon, e.g., 30years. In this sense, there are two expansion strategies. The
first is to make the transmission expansion plans, i.e., to build the new transmission
lines, at a single point in time (usually at the beginning of the planning horizon). The
model that results from this strategy is known as a static or a single-stage model. The
second one is tomake the transmission expansion decisions at different points in time
of the planning horizon. In this case, the model is known as a dynamic or a multistage
model. This dynamic approach usually provides more accurate solutions since it
allows the transmission planner to adapt to future changes in the system. However,
it further increases the complexity of the TEP problem. Figure2.1 illustrates the
differences between these two expansion strategies. For the sake of simplicity, in
this chapter we focus on a static approach. The use of dynamic models for making
expansion decisions is described and analyzed in the following chapters of this book.

The remainder of this chapter is organized as follows. Section2.2 provides a
TEP-problem model considering a deterministic approach, in which transmission
expansion decisions are made considering a future demand forecast. In this case,
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the transmission expansion plan is determined so that the transmission network is
capable of dealing with the worst expected demand realization in the future. The
model in Sect. 2.2 is extended in Sect. 2.3 to consider the uncertainties faced by the
TSO in carrying out the TEP-problem exercise. The model is formulated in this
case using an adaptive robust optimization (ARO) approach. Both Sects. 2.2 and
2.3 include clarifying examples. Section2.4 summarizes the chapter and discusses
the main conclusions of the models and results reported in the chapter. Section2.5
proposes some exercises to enable a deeper understanding of themodels and concepts
described in the chapter. Finally, Sect. 2.6 includes the GAMS code for one of the
illustrative examples.

2.2 Deterministic Approach

The transmission infrastructure is a critical point in electric energy systems.Demands
should be supplied even in the worst possible situations, e.g., during a peak demand
period or during the failure of an important generating unit. Thus, transmission
expansion plans should take into account such situations. For the sake of simplicity,
we consider as theworst case a single-load scenario that corresponds to themaximum
load demand expected in the planning horizon for which the TEP analysis is carried
out. This assumption is usually made in the technical literature [1, 5, 18, 31].

In order to formulate the TEP problem, it is necessary to use binary variables
to model whether a prospective transmission line is built. In systems of hundreds
or thousands of nodes, there is a large number of transmission expansion options
that need to be considered. This requires the use of a very large number of binary
variables, which increases the complexity of the problem. To avoid formulating a
very complex problem, we consider a static approach in which TEP decisions are
made now for a future long-term planning horizon, e.g., 20years. This assumption
is typical in TEP problems because it allows us to formulate a comparatively easier
problem to solve. However, note that under a deterministic assumption, it is also
generally possible to formulate the TEP problem considering a dynamic approach.

The problem is formulated from the perspective of a TSO that aims at facilitating
energy trade opportunities among producers and consumers. Therefore, the objective
function of the TSO’s problem is the minimization of generation and load-shedding
costs. Since the TSO is responsible for building transmission lines, we also include
their construction costs in the objective function.

The following sections provide the formulation of the TEP problem under a deter-
ministic approach. This problem can be formulated as a mixed-integer nonlinear pro-
gramming (MINLP) problem since it includes the products of continuous and binary
variables. These kinds of problems are generally hard to solve, and the convergence
of the MINLP problem to the optimum is not guaranteed [6]. However, it is possible
to formulate an exact equivalent mixed-integer linear programming (MILP) problem,
which allows us to solve the TEP problem by applying conventional branch-and-cut
solvers [6, 15].
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2.2.1 Notation

The main notation used in this chapter is provided below for quick reference. Other
symbols are defined as needed throughout the chapter.

Indices

d Demands.
g Generating units.
� Transmission lines.
n Nodes.
ν Iterations.

Sets

r(�) Receiving-end node of transmission line �.
s(�) Sending-end node of transmission line �.
ΩD

n Demands located at node n.
ΩE

n Generating units located at node n.
ΩL+ Prospective transmission lines.

Parameters

B� Susceptance of transmission line � [S].
CLS
d Load-shedding cost of demand d [$/MWh].

CE
g Production cost of generating unit g [$/MWh].

Fmax
� Capacity of transmission line � [MW].

Ĩ L� Annualized investment cost of prospective transmission line � [$/MW].
Ĩ L,max Annualized investment budget for buildingprospective transmission lines [$].
PDmax

d Load of demand d [MW].
PDmax

d Lower bound of the load of demand d [MW].

P
Dmax

d Upper bound of the load of demand d [MW].
PEmax

g Production capacity of generating unit g [MW].

P
Emax

g Upper bound of the production capacity of generating unit g [MW].
Γ D Uncertainty budget for load demand.
Γ G Uncertainty budget for production capacity.

Binary Variables

xL� Binary variable that is equal to 1 if prospective transmission line � is built and
0 otherwise.

Continuous Variables

pEg Power produced by generating unit g [MW].
pL� Power flow through transmission line � [MW].
pLSd Load shed by demand d [MW].
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η Auxiliary variable to reconstruct objective function of the ARO problem grad-
ually [$].

θn Voltage angle at node n [rad].

2.2.2 MINLP Model Formulation

The deterministic TEP problem can be formulated as the followingMINLP problem:

minΔ

∑

�∈ΩL+
Ĩ L� x

L
� + σ

[
∑

g

CE
g p

E
g +

∑

d

CLS
d pLSd

]

(2.1a)

subject to

∑

�∈ΩL+
Ĩ L� x

L
� ≤ Ĩ L,max (2.1b)

xL� = {0, 1} ∀� ∈ ΩL+ (2.1c)
∑

g∈ΩE
n

pEg −
∑

�|s(�)=n

pL� +
∑

�|r(�)=n

pL� =
∑

d∈ΩD
n

(
PDmax

d − pLSd
) ∀n (2.1d)

pLl = B�

(
θs(�) − θr(�)

) ∀� \ � ∈ ΩL+ (2.1e)

pLl = xL� B�

(
θs(�) − θr(�)

) ∀� ∈ ΩL+ (2.1f)

− Fmax
� ≤ pL� ≤ Fmax

� ∀� (2.1g)

0 ≤ pEg ≤ PEmax

g ∀g (2.1h)

0 ≤ pLSd ≤ PDmax

d ∀d (2.1i)

− π ≤ θn ≤ π ∀n (2.1j)

θn = 0 n: ref., (2.1k)

where variables in set Δ=
{
xL� , p

L
� , p

G
g , p

D
d , θn

}
are the optimization variables of

problem (2.1).
The aim of the TSO is to facilitate energy trading and at the same time, tominimize

the costs incurred in building new transmission lines. On the other hand, the TSO is
constrained by the requirements for maintaining grid reliability.

Therefore, objective function (2.1a) comprises the three terms below:

1.
∑

�∈ΩL+
I L� x

L
� is the annualized cost of building new transmission lines.

2.
∑

g

CE
g p

E
g is the operating cost of generating units.

3.
∑

d

CLS
d pLSd is the load-shedding cost.
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Fig. 2.2 Illustrative Example2.1: two-node system (one stage)

The terms in 2 and 3 above are multiplied by the factor σ to make them comparable
with investment costs. Since we consider that Ĩ L� are annualized investment costs,
then σ is equal to 8760 h, i.e., the total number of hours in a year.

Objective function (2.1a) is constrained by Eqs. (2.1b)–(2.1k). Constraint (2.1b)
ensures that the cost of building new transmission lines is below the available budget
when it exists. Constraints (2.1c) define binary variables xL� that indicate whether a
prospective line is built (xL� = 1) or not (xL� = 0). Constraints (2.1d) impose the
generation–demand balance at each node of the system. Equations (2.1e) and (2.1f)
define the power flows through existing and prospective transmission lines, respec-
tively, which are limited by the corresponding capacity limits by constraints (2.1g).
Note that subscripts s(�) and r(�) denote the sending-end and receiving-end nodes of
transmission line �, respectively. Constraints (2.1h) and (2.1i) impose bounds for the
power produced by generating units and the unserved demand, respectively. Finally,
constraints (2.1j) and (2.1k) impose bounds on voltage angles and fix to zero the
voltage angle at the reference node, respectively.

The network is represented using a dc model without losses. This assumption is
usually made in the technical literature and consists in considering that voltage mag-
nitudes are approximately constant in the system and that voltage angle differences
are small enough between two connected nodes [13]. This allows us to formulate the
power-flow Eqs. (2.1e)–(2.1f) using linear expressions.

Illustrative Example 2.1 Deterministic TEP: Static solution

The deterministic TEP model (2.1) is applied to the two-node system depicted in
Fig. 2.2. There is a generating unit located at node 1. Its production cost is C , and it
has a very large capacity (for the sake of simplicity, we consider that its capacity is
infinite). There is also a demand located at node 2 with a peak load equal to PDmax

and a very large load-shedding cost (also considered infinite, i.e., load shedding is
not possible).

Nodes 1 and 2 are connected through a transmission line �1 of capacity equal to
Fmax and susceptance equal to 1 p.u. It is possible to build two additional transmission
lines (�2 and �3) between these nodes with the same characteristics as the existing
one and an annualized investment cost equal to I with an unlimited budget. Node 2
is the reference node.
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Considering the above data, model (2.1) results in the following optimization
problem:

minxL�2 ,x
L
�3

,pE,θ I xL�2 + I xL�3 + σCpE

subject to

xL�2 , x
L
�3

= {0, 1}
pE − pL�1 − pL�2 − pL�3 = 0

pL�1 + pL�2 + pL�3 = PDmax

pL�1 = θ

pL�2 = xL�2θ

pL�3 = xL�3θ

− Fmax ≤ pL�1 ≤ Fmax

− Fmax ≤ pL�2 ≤ Fmax

− Fmax ≤ pL�3 ≤ Fmax

0 ≤ pE ≤ ∞
− π ≤ θ ≤ π.

Note that if 0 ≤ PDmax ≤ Fmax, the capacity of the existing transmission line
allows the power to flow from the generating unit at node 1 to the demand at node
2. Therefore, we do not need to build any additional transmission lines. However,
for values of PDmax

> Fmax, the capacity of the existing transmission line �1 is not
enough. If Fmax < PDmax ≤ 2Fmax, then it is necessary to build one additional
transmission line between nodes 1 and 2, while if 2Fmax < PDmax ≤ 3Fmax, then we
need to build two additional transmission lines. Note that for PDmax

> 3Fmax, the
problem is infeasible, and additional expansion options must be considered.

That is, the optimal solution of the TEP problem for this illustrative example
depends on the value of PDmax

: we build zero, one, or two additional transmission
lines depending on the value of the expected largest demand in the planning
horizon. �
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Illustrative Example 2.2 Deterministic TEP: Dynamic solution

In Illustrative Example 2.1, we solve the TEP problem considering a static
approach, in which transmission expansion plans are decided and made now for a
future planning horizon. For illustration purposes, let us now consider that this plan-
ning horizon is divided into two time periods, t1 and t2. The expected largest demands
in these two time periods are different and equal to PDmax

t1 and PDmax

t2 , respectively.
Instead of considering a static approach, we consider that the transmission planner
can build additional lines at the beginning of each of the two considered time periods,
i.e., we consider a dynamic approach. Figure2.3 illustrates the TEP problem in this
case. Note that the remaining data are obtained from Illustrative Example 2.1.

Considering the above data, the TEP problem considering a dynamic approach
results in the following optimization problem:

minxL�2 t1 ,x
L
�3 t1

,xL�2 t2 ,x
L
�3 t2

,pEt1 ,p
E
t2

,θt1 ,θt2
2I xL�2t1 + 2I xL�3t1 + I xL�2t2 + I xL�3t2

+ σC
(
pEt1 + pEt2

)

subject to

Fig. 2.3 Illustrative Example 2.2: two-node system (two stages)
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xL�2t1 , x
L
�3t1 , x

L
�2t2 , x

L
�3t2 = {0, 1}

xL�2t1 + xL�2t2 ≤ 1

xL�3t1 + xL�3t2 ≤ 1

pEt1 − pL�1t1 − pL�2t1 − pL�3t1 = 0

pL�1t1 + pL�2t1 + pL�3t1 = PDmax

t1

pL�1t1 = θt1

pL�2t1 = xL�2t1θt1

pL�3t1 = xL�3t1θ

− Fmax ≤ pL�1t1 ≤ Fmax

− Fmax ≤ pL�2t1 ≤ Fmax

− Fmax ≤ pL�3t1 ≤ Fmax

0 ≤ pEt1 ≤ ∞
− π ≤ θt1 ≤ π

pEt2 − pL�1t2 − pL�2t2 − pL�3t2 = 0

pL�1t2 + pL�2t2 + pL�3t2 = PDmax

t2

pL�1t2 = θt2

pL�2t2 = (
xL�2t1 + xL�2t2

)
θt2

pL�3t2 = (
xL�3t1 + xL�3t2

)
θt2

− Fmax ≤ pL�1t2 ≤ Fmax

− Fmax ≤ pL�2t2 ≤ Fmax

− Fmax ≤ pL�3t2 ≤ Fmax

0 ≤ pEt2 ≤ ∞
− π ≤ θt2 ≤ π.

The main differences between this model and that used in Illustrative Example
2.1 are as follows:

1. The subscripts t1 and t2 are used to denote the values of variables and parameters
at time periods 1 and 2, respectively.

2. Prospective transmission lines built in the first time period remain built in the
second time period.

3. Prospective transmission lines can be built only once.
4. The investment costs of transmission lines built in the first time period are twice

the investment costs of transmission lines built in the second one since they are
used (and thus amortized) twice.

5. Constraints are considered for both time periods.
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As in Illustrative Example 2.1, the optimal transmission expansion plan depends
on the value of PDmax

t1 and PDmax

t2 :

1. In the first time period:

• If 0 ≤ PDmax

t1 ≤ Fmax, then we build no prospective transmission line.
• If Fmax < PDmax

t1 ≤ 2Fmax, then we build one additional transmission line.
• If 2Fmax < PDmax

t1 ≤ 3Fmax, then we build two additional transmission lines.

2. In the second time period, the expansion plan depends on PDmax

t2 and also on
the expansion plan considered in the first time period. Assuming that PDmax

t2 ≥
PDmax

t1 (which is generally true since the demand growth in a system is usually
positive), the transmission expansion plan in the second time period is as
follows:

• If no prospective transmission line is built in the first time period, then we
build no additional transmission line if 0 ≤ PDmax

t2 ≤ Fmax, we build one
additional transmission line if Fmax < PDmax

t2 ≤ 2Fmax, and we build two
additional transmission lines if 2Fmax < PDmax

t2 ≤ 3Fmax.
• If one prospective transmission line is built in the first time period, then we
build no additional transmission line if Fmax < PDmax

t2 ≤ 2Fmax, and we build
one additional transmission line if 2Fmax < PDmax

t2 ≤ 3Fmax.
• If two prospective transmission lines are built in the first time period, then no
additional transmission line is built.

3. If PDmax

t1 > 3Fmax or PDmax

t2 > 3Fmax, then the problem is infeasible, and additional
expansion options should be considered.

Note that Illustrative Example 2.2 is comparativelymore complex than Illustrative
Example 2.1 since the number of binary variables and constraints is approximately
twice. However, considering a dynamic approach as in Illustrative Example2.2, we
can adapt to future changes in the system, and therefore, its solution is usually better
than that obtained considering a static approach. �

Illustrative Examples 2.1 and 2.2 are very simple, and their solutions are trivial.
However, as the number of nodes of the system under study and the number of
prospective transmission lines increase, the TEP problem becomes complex, and its
solution is no longer trivial. Note also that problem (2.1) includes binary variables,
as well as products of binary and continuous variables in constraints (2.1f), i.e.,
problem (2.1) is an MINLP problem. These problems are usually hard to solve.
Nevertheless, it is possible to remove the nonlinearities, as explained in the following
section.
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2.2.3 Linearization of Products of Binary
and Continuous Variables

MINLPmodel (2.1) provided in the previous section is nonlinear, due to the products
of binary (x�) and continuous (θn) variables in constraints (2.1f). However, it is pos-
sible to replace these nonlinear constraints by the following sets of exact equivalent
mixed-integer linear constraints:

− xL� F
max
� ≤ pL� ≤ xL� F

max
� ∀� (2.2a)

− (
1 − xL�

)
M ≤ pL� − B�

(
θs(�) − θr(�)

) ≤ (
1 − xL�

)
M ∀�, (2.2b)

where M is a large enough positive constant [5, 31].
The working of Eqs. (2.2) is explained below.
On the one hand, let us consider that prospective transmission line � is built, i.e.,

binary variable xL� is equal to 1. In such a case, Eqs. (2.2) impose that −Fmax
� ≤

pL� ≤ Fmax
� and pL� − B�

(
θs(�) − θr(�)

) = 0. Note that these equations are equivalent
to constraints (2.1f) and (2.1g) when xL� = 1.

On the other hand, let us consider that prospective transmission line � is not built,
i.e., binary variable xL� is equal to 0. In such a case, Eqs. (2.2) impose that pL� = 0
and −M ≤ pL� − B�

(
θs(�) − θr(�)

) ≤ M . First, we impose that the power flow
through this transmission line is null. Second, we consider large enough bounds on
the difference between the voltage angles at two nodes that are not connected through
the disjunctive parameter M . These equations are equivalent to constraints (2.1f) and
(2.1g) when xL� = 0. The interested reader is referred to [5, 31], which provide a
discussion on how to select the value of parameter M effectively.

2.2.4 MILP Model Formulation

Using the linearization procedure described in the previous section, it is possible to
reformulate the TEP problem considering a deterministic static approach as in the
MILP problem below:

minΔ

∑

�∈ΩL+
Ĩ L� x

L
� + σ

[
∑

g

CE
g p

E
g +

∑

d

CLS
d pLSd

]

(2.3a)

subject to

∑

�∈ΩL+
Ĩ L� x

L
� ≤ Ĩ L,max (2.3b)

xL� = {0, 1} ∀� ∈ ΩL+ (2.3c)
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∑

g∈ΩG
n

pGg −
∑

�|s(�)=n

pL� +
∑

�|r(�)=n

pL� =
∑

d∈ΩD
n

(
PDmax

d − pLSd
) ∀n (2.3d)

pL� = B�

(
θs(�) − θr(�)

) ∀� \ � ∈ ΩL+ (2.3e)

− Fmax
� ≤ pL� ≤ Fmax

� ∀� \ � ∈ ΩL+ (2.3f)

− xL� F
max
� ≤ pL� ≤ xL� F

max
� ∀� ∈ ΩL+ (2.3g)

− (
1 − xL�

)
M ≤ pL� − B�

(
θs(�) − θr(�)

) ≤ (
1 − xL�

)
M

∀� ∈ ΩL+ (2.3h)

0 ≤ pEg ≤ PGmax

g ∀g (2.3i)

0 ≤ pLSd ≤ PDmax

d ∀d (2.3j)

− π ≤ θn ≤ π ∀n (2.3k)

θn = 0 n: ref. (2.3l)

Illustrative Example 2.3 Deterministic TEP: Six-node system

The deterministic TEP model (2.3) is applied to the six-node system depicted in
Fig. 2.4. This system comprises six nodes, five generating units, four demands, and
three transmission lines. The system is divided in two zones: region A (nodes 1–3)
and region B (nodes 4–6), which are initially not connected. Note also that node
six is initially isolated, and thus the demand at this node can be supplied only by
generating unit g5.

Fig. 2.4 Illustrative Example2.3: six-node system
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Table 2.1 Illustrative
Example 2.3: data for
generating units

Generating
unit

Node PEmax

g [MW] CE
g [$/MWh]

g1 n1 300 18

g2 n2 250 25

g3 n3 400 16

g4 n5 300 32

g5 n6 150 35

Table 2.2 Illustrative
Example 2.3: data for
demands

Demand Node PDmax

d [MW] CLS
d

[$/MWh]

d1 n1 200 40

d2 n4 150 52

d3 n5 100 55

d4 n6 200 65

Table 2.3 Illustrative
Example 2.3: data for existing
transmission lines

Line From node To node B� [S] Fmax
�

[MW]

�1 n1 n2 500 150

�2 n1 n3 500 150

�3 n4 n5 500 150

Table2.1 provides data for the generating units. The second column identifies
the node allocation, while the third and fourth columns provide the capacity and
production cost of each generating unit, respectively.

Table2.2 provides data for the demands. The second column identifies the node
allocation,while the third and fourth columns provide themaximum load demand and
the load-shedding cost of each demand, respectively. Note that the optimal expansion
plan is obtained based on a future demand forecast. Thus, these demands represent
the worst realization of the demand at each node in the future, which corresponds to
the largest expected demand at each node in the considered planning horizon.

Table2.3 provides data for the existing transmission lines. The second and third
columns identify the sending-end and receiving-end nodes, respectively, while the
fourth and fifth columns provide the susceptance and capacity of each existing trans-
mission line, respectively.

We consider that it is possible to build six different transmission lines, whose
data are provided in Table2.4. The second and third columns identify the sending-
end and receiving-end nodes, respectively, while the fourth and fifth columns provide
the susceptance and capacity of each prospective transmission line, respectively. The
sixth column gives the annualized investment cost. The annualized investment budget
is considered equal to $3,000,000, which limits the number and type of prospective
lines to be built.
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Table 2.4 Illustrative Example 2.3: data for prospective transmission lines

Line From node To node B� [S] Fmax
� [MW] ĨL� [$]

�4 n2 n3 500 150 700,000

�5 n2 n4 500 200 1,400,000

�6 n3 n4 500 200 1,800,000

�7 n3 n6 500 200 1,600,000

�8 n4 n6 500 150 800,000

�9 n5 n6 500 150 700,000

Investment costs and investment budget are provided as annualized values. There-
fore, factor σ is equal to 8760 (i.e., the number of hours in a year) to make the
annualized costs and the load-shedding/generating costs comparable.

Finally, the reference node is node 1, the base power is 1MW, and the base voltage
is 1 kV.

The above data are used to solve the TEP problem (2.3). The optimal solution
consists in building prospective lines �5 and �7, i.e., lines connecting nodes 2–4 and
3–6, respectively. Note that the system is divided into two regions, A andB,which are
originally independent. While most of the generation capacity is located in region
A, most of the demand is located in region B. Moreover, the cheapest generating
units are located in region A. This means that without building any prospective line,
demands in region B are supplied by expensive generating units, and load-shedding
occurs, resulting in load-shedding costs. Therefore, it is optimal to build prospective
lines �5 and �7, which connect regions A and B, and thus part of the demand in region
B can be supplied by the cheap generating units in region A, which contributes to
reducing generation and load-shedding costs. �

Illustrative Example 2.4 Deterministic TEP: Impact of investment budget

The expansion decisions obtained in Illustrative Example 2.3 are conditioned
by the available investment budget. Note that building transmission lines �5 and �7
requires an annualized investment cost of $3,000,000, i.e., the considered investment
budget. A larger investment budget may allow the TSO, i.e., the planner, to reduce
further the generation and load-shedding costs, as analyzed next.

The lower plot of Fig. 2.5 depicts the investment and load-shedding costs, while
the upper plot of Fig. 2.5 depicts the generation and the total, i.e., the value of objective
function (2.3a), costs for different values of the investment budget. On the other hand,
the expansion decisions for different investment budgets are provided in Table2.5.

For values of the annualized investment budget lower than $700,000, it is impos-
sible to build any transmission lines since the cheapest transmission line has an
annualized cost of $700,000. In such a case, demands in region B are supplied by
expensive generating units, and/or load-shedding occurswith the corresponding load-
shedding cost, as can be observed in the lower plot of Fig. 2.5. As the investment
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Fig. 2.5 Illustrative
Example2.4: costs versus
investment budget

budget increases, it becomes possible to build some of the prospective transmission
lines. Moreover, building some of the prospective transmission lines is most appro-
priate since this contributes to reducing the total costs by reducing the generation
and/or the load-shedding costs. Note that for some values of the investment budget,
the cost of load-shedding increases, and the generation cost decreases, i.e., load-
shedding substitutes generation, and vice versa. Note also that the cost of building
new transmission lines is significantly lower than the generation costs. Finally, we
observe that there is no incremental progression in the building of new transmission
lines as the investment budget increases, i.e., the optimal solution of the TEP problem
does not consist in building additional transmission lines as the investment budget
increases, but in considering different transmission expansion plans. �
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Table 2.5 Illustrative Example2.4: expansion decisions for different investment budgets

Annualized investment budget [M$] Transmission lines builta

[0, 0.7) –

[0.7, 1.4)
�9

[1.4, 1.6)
�5

[1.6, 2.3)
�7

[2.3, 3.0)
�4 and �7

[3.0, 3.4)
�5 and �7

[3.4, 4.8)
�6 and �7

[4,∞)

�5, �6 and �7

a�4: 2–3, �5: 2–4, �6: 3–4, �7: 3–6, �8: 4–6, �9: 5–6

Table 2.6 Illustrative Example 2.5: expansion decisions for different values of the total demand in
the system

Total demand in the system [MW] Transmission lines builta

100 �5 and �9

200 �7 and �9

More than 300 �5 and �7
a �4: 2–3, �5: 2–4, �6: 3–4, �7: 3–6, �8: 4–6, �9: 5–6

Illustrative Example 2.5 Deterministic TEP: Impact of demand

Illustrative Example 2.3 considers a deterministic approach in which expansion
decisions are obtained for a given value of the demand. The problem is solved for the
worst case, i.e., the largest expected demand in the considered planning horizon.
However, expansion decisions are conditioned by this demand level, as can be
observed in Table2.6, which provides the transmission expansion decisions for
different values of the demand in the system and a fixed annualized investment
budget of $3,000,000.

We observe that no matter what the demand in the system is, it is optimal to
connect regions A and B using some of the prospective transmission lines.Moreover,
initially isolated node 6 is always connected to the system since the generating unit
and demand at this node are the most expensive (in terms of generation and load-
shedding costs, respectively). However, note that there is no incremental progression
in the expansion decisions.
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Fig. 2.6 Illustrative
Example 2.5: costs versus
total demand

On the other hand, as the future demand forecast increases, expansion deci-
sions change, as do the investment, load-shedding, and generation costs as well.
These costs for different values of the total demand in the system are depicted in
Fig. 2.6. �

2.3 Robust Approach

In the previous section, we described a deterministic model in which the TEP is
parameterized based on the largest future demand forecast. We assume that we know
this demand as well as the remaining data of the system, i.e., given all the informa-
tion, it is possible to find the optimal transmission expansion plan that minimizes
objective function (2.3a). However, the future is uncertain. It is difficult to forecast
the maximum demand in the future if the planning horizon is long enough. More-
over, there are other sources of uncertainty that could contribute to the so-calledworst
case, e.g., availability of generating units, availability of transmission lines, or newly
built generating units. Thus, it is necessary to consider an appropriate approach that
takes into account the influence of these uncertainties on decision-making in the TEP
problem. This is analyzed in this section.

As explained in the introductory chapter, there are generally twoways of handling
this uncertainty. The first is to use stochastic programming,which requires generating
scenarios of uncertain parameters whose probability distribution functions we need
[8], which are generally not available. Additionally, stochastic programming usually
leads to computationally complex problems. Therefore, we use in this chapter the
second option, which is based on RO [2]. RO allows us to represent the uncertain
parameters through robust sets, which are generally easier to obtain than probability
distribution functions. Moreover, RO models are comparatively less complex than
stochastic programming models.
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2.3.1 Adaptive Robust Optimization Formulation

For the sake of simplicity, we assume that the uncertain parameters in the TEP
problem (2.3) are (i) demand–load levels and (ii) available generating resources,
i.e., we assume that uncertainty affects only parameters PDmax

d , ∀d, and PEmax

g , ∀g,
respectively. Given this, we aim to determine the optimal transmission expansion
plan, i.e., the optimal values of variables xL� , ∀�, which optimizes objective function
(2.3a), but anticipating the worst possible realizations of the uncertain parameters. To
do so, we formulate an ARO problem, whose main characteristics are summarized
below:

1. The optimal transmission expansion plan is sought by minimizing objective func-
tion (2.3a).

2. This optimal transmission expansion plan is sought by anticipating that once
transmission expansion decisions are made, the worst uncertainty case will occur,
i.e., assuming a given transmission expansion plan, uncertain parameters will take
the values that maximize objective function (2.3a).

3. The worst-case realization of uncertain parameters is considered by anticipating
that once this worst case is realized, the system adapts to it. That is, assuming
that the transmission expansion decisions and uncertain parameters are fixed, we
select the optimal values of the remaining variables (i.e., the operating decision
variables) that minimize objective function (2.3a).

Note that the above decision sequence is consistentwith reality. First, the transmis-
sion planner (the TSO) decides the transmission expansion plan to be implemented.
Then, a worst case occurs, e.g., an unexpected peak demand in the system and/or
the failure of some generating units. Finally, the system operator decides the best
actions in order to minimize the operating costs.

The hierarchical structure described above can be represented using the three-level
optimization problem below:

minxL�
∑

�∈ΩL+
Ĩ L� x

L
�

+ maxPDmax
d ,PEmax

g ∈Ξ minΔ\xL� ∈Ω(xL� ,PDmax
d ,PEmax

g ) σ

[
∑

g

CE
g p

G
g +

∑

d

CLS
d pLSd

]

(2.4a)

subject to

∑

�∈ΩL+
I L� x

L
� ≤ I L,max (2.4b)

xL� = {0, 1} ∀� ∈ ΩL+ (2.4c)
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In problem (2.4) we include set Ξ , which defines the uncertainty set and set
Ω

(
xL� , PDmax

d , PEmax

g

)
,which ensures the feasibility of the operatingdecisionvariables

given the expansion decisions and the realizations of the uncertain parameters.
Further details of these two sets are provided in the sections below.

2.3.2 Definition of Uncertainty Sets

In order to represent the uncertainty that appears in the TEP problem effectively,
it is necessary to have an accurate definition of the uncertainty set Ξ . To do so,
we consider a polyhedral uncertainty set, such as the one used in [2, 3, 29]. This
uncertainty set is characterized by the following equations:

PEmax

g ∈
[
0, P

Emax

g

]
∀g (2.5a)

∑
g

(
P
Emax

g − PEmax

g

)

∑
g P

Emax

g

≤ Γ G (2.5b)

PDmax

d ∈
[
PDmax

d , P
Dmax

d

]
∀d (2.5c)

∑
d

(
PDmax

d − PDmax

d

)

∑
d

(
P
Dmax

d − PDmax

d

) ≤ Γ D. (2.5d)

Constraints (2.5a) and (2.5c) impose upper and lower bounds for PEmax

g and PDmax

d ,
respectively. We consider that the lower bound of the available generating capacity
is zero to represent the uncertainty in the availability of a generating unit or the
uncertainty in building new generating units. On the other hand, constraints (2.5b)
and (2.5d) limit the variability of uncertain variables PEmax

g and PDmax

d , respectively,
through the so-called uncertainty budgets Γ G and Γ D, as explained below.

Uncertainty budget Γ G can take values between 0 and 1. If Γ G is chosen equal

to 0, then PGmax

g = P
Emax

g , ∀g, i.e., uncertainty in the available capacity of generating
units is not considered. On the other hand, if Γ G is chosen equal to 1, then PEmax

g ,

∀g, can take any value within the interval
[
0, P

Emax

g

]
. This can be seen as the case

of maximum uncertainty. Similarly, Γ D can also take values between 0 and 1. If
Γ D is chosen equal to 0, then PDmax

d = PDmax

d , ∀d, i.e., uncertainty in demand is not
considered. However, if Γ D is chosen equal to 1, then PDmax

d , ∀d, can take any value
within the interval

[
PDmax

d , P
Dmax

d

]
. By choosing different values of Γ G and Γ D, we

can analyze the impact of different levels of uncertainty on transmission expansion
decisions.
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2.3.3 Feasibility of Operating Decision Variables

Given the expansion decision variables, xL� , and the realizations of the uncertain para-
meters, PDmax

d and PEmax

g , we define set Ω
(
xL� , PDmax

d , PEmax

g

)
to ensure the feasibility

of the operating decision variables Δ \ xL� as follows:

Ω
(
xL� , PDmax

d , PEmax

g

) = {Δ \ xL� :
∑

g∈ΩE
n

pEg −
∑

�|s(�)=n

pL� +
∑

�|r(�)=n

pL�

=
∑

d∈ΩD
n

(
PDmax

d − pLSd
) : λn ∀n (2.6a)

pL� = B�

(
θs(�) − θr(�)

) : φL
� ∀� \ � ∈ ΩL+ (2.6b)

pL� = xL� B�

(
θs(�) − θr(�)

) : φL+
� ∀� ∈ ΩL+ (2.6c)

− Fmax
� ≤ pL� ≤ Fmax

� : φ
L,min
� , φ

L,max
� ∀� (2.6d)

0 ≤ pEg ≤ PEmax

g : φE,min
g , φE,max

g ∀g (2.6e)

0 ≤ pLSd ≤ PDmax

d : φ
D,min
d , φ

D,max
d ∀d (2.6f)

− π ≤ θn ≤ π : φN,min
n , φN,max

n ∀n (2.6g)

θn = 0 : χ ref n: ref. } . (2.6h)

Note that the dual variable associated to each constraint is provided following a
colon.

Equations (2.6a) ensures the generation–demand balance at each node of the
system. Equations (2.6b) and (2.6c) define the power flows through existing and
prospective transmission lines, respectively, which are bounded by the corresponding
capacity limits by Eqs. (2.6d). Equations (2.6e) and (2.6f) impose bounds on the
power of generating units and on the load-shedding, respectively. Finally, Eqs. (2.6g)
and (2.6h) define bounds on voltage angles and fix to zero the voltage angle at the
reference node, respectively.

2.3.4 Detailed Formulation

Given the definitions of the uncertainty sets and the operating feasibility region
provided in the previous sections, the TEP problem considering an ARO approach
can be formulated using the following model:
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minxL� maxPEmax
g ,PDmax

d
minpEg ,pDd ,pL� ,θn

∑

�∈ΩL+
Ĩ L� x

L
�

+ σ

[
∑

g

CE
g p

E
g +

∑

d

CLS
d pLSd

]

(2.7a)

subject to

∑

g∈ΩE
n

pEg −
∑

�|s(�)=n

pL� +
∑

�|r(�)=n

pL� =
∑

d∈ΩD
n

(
PDmax

d − pLSd
) ∀n (2.7b)

pL� = B�

(
θs(�) − θr(�)

) ∀� \ � ∈ ΩL+ (2.7c)

pL� = xL� B�

(
θs(�) − θr(�)

) ∀� ∈ ΩL+ (2.7d)

− Fmax
� ≤ pL� ≤ Fmax

� ∀� (2.7e)

0 ≤ pEg ≤ PEmax

g ∀g (2.7f)

0 ≤ pLSd ≤ PDmax

d ∀d (2.7g)

− π ≤ θn ≤ π ∀n (2.7h)

θn = 0 n: ref. (2.7i)

subject to

PEmax

g ∈
[
0, P

Emax

g

]
∀g (2.7j)

∑
g

(
P
Emax

g − PEmax

g

)

∑
g P

Emax

g

≤ Γ G (2.7k)

PDmax

d ∈
[
PDmax

d , P
Dmax

d

]
∀d (2.7l)

∑
d

(
PDmax

d − PDmax

d

)

∑
d

(
P
Dmax

d − PDmax

d

) ≤ Γ D (2.7m)

subject to
∑

�∈ΩL+
I L� x

L
� ≤ I L,max (2.7n)

xL� = {0, 1} ∀� ∈ ΩL+. (2.7o)

Note that the above problem (2.7) has a three-level structure whose three opti-
mization problems include as optimization variables the expansion decision variables
xL� , the worst realizations of uncertain parameters PEmax

g , PDmax

d , and the operating
decision variables pEg , p

D
d , p

L
� , θn , respectively. Constraints (2.7b)–(2.7i) define the

feasibility of the operating decision variables. Constraints (2.7j)–(2.7m) define the
uncertainty sets. Finally, constraints (2.7n) and (2.7o) define the investment budget
and the binary variables that representwhich transmission lines are built, respectively.
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Fig. 2.7 Adaptive robust optimization approach: interactions between master problem and sub-
problem

2.3.5 Solution Procedure

The ARO (2.7) is difficult to solve since its multilevel structure renders an NP-hard
problem. In order to solve this kind of problem, several algorithms are available in
the technical literature based on extended versions of Benders decomposition [4,
16, 17] and on constraint-and-column generation methods [17, 29, 32]. In Benders-
based methods, dual information from the so-called subproblem is used to build the
objective function of the so-called master problem gradually. On the other hand, the
constraint-and-column generation methods use cutting-plane strategies based solely
on primal cuts that involve only primal decision variables. These methods generally
perform computationally better than Benders’ methods.

The three-level optimization problem (2.7) is decomposed into a master problem
and a subproblem that exchange information on primal decision variables and that
are iteratively solved until convergence to an optimal solution is achieved. Figure2.7
schematically represents the interactions between these two problems.

The sections below provide detailed formulations of the master problem and the
subproblem.

2.3.5.1 Master Problem

Considering a Benders framework, themaster problem associatedwith problem (2.7)
is formulated below:

minxL� ,pG
g,ν′ ,pDd,ν′ ,pL�,ν′ ,θn,ν′ ,η

∑

�∈ΩL+
Ĩ L� x

L
� + η (2.8a)

subject to

∑

�∈ΩL+
I L� x

L
� ≤ I L,max (2.8b)

xL� = {0, 1} ∀� ∈ ΩL+ (2.8c)
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∑

g∈ΩE
n

pEg,ν ′ −
∑

�|s(�)=n

pL�,ν ′ +
∑

�|r(�)=n

pL�,ν ′ =
∑

d∈ΩD
n

(
PDmax,∗
d,ν ′ − pLSd,ν ′

) ∀n,∀ν ′ ≤ ν

(2.8d)

pL�,ν ′ = B�

(
θs(�),ν ′ − θr(�),ν ′

) ∀� \ � ∈ ΩL+,∀ν ′ ≤ ν (2.8e)

pL�,ν ′ = xL� B�

(
θs(�),ν ′ − θr(�),ν ′

) ∀� ∈ ΩL+,∀ν ′ ≤ ν (2.8f)

− Fmax
� ≤ pL�,ν ′ ≤ Fmax

� ∀�,∀ν ′ ≤ ν (2.8g)

0 ≤ pEg,ν ′ ≤ PEmax,∗
g,ν ′ ∀g,∀ν ′ ≤ ν (2.8h)

0 ≤ pLSd,ν ′ ≤ PDmax,∗
d,ν ′ ∀d,∀ν ′ ≤ ν (2.8i)

− π ≤ θn,ν ′ ≤ π ∀n,∀ν ′ ≤ ν (2.8j)

θn,ν ′ = 0 n: ref. ∀ν ′ ≤ ν (2.8k)

η ≥ σ

[
∑

g

CG
g pGg,ν ′ +

∑

d

CLS
d pLSd,ν ′

]

∀ν ′ ≤ ν, (2.8l)

where ν is the iteration index and ν ′ = 1, . . . , ν.
The optimization variables of this master problem are the expansion decision

variables xL� , the operating decision variables p
E
g,ν ′ , pDd,ν ′ , pL�,ν ′ , θn,ν ′ (one per iteration

of the algorithm), and auxiliary variable η, which is used to reconstruct objective
function (2.7a) gradually. Uncertain parameters PEmax,∗

g and PDmax,∗
d are fixed to their

optimal values obtained from the subproblem solution at each iteration and used as
input data of the master problem.

The size of master problem (2.8) increases with the iteration counter ν since a new
set of constraints (2.8d)–(2.8l) is incorporated at each iteration of the algorithm. Note
that if ν = 0, then constraints (2.8d)–(2.8l) are not included in the master problem.

Master problem (2.8) is an MINLP problem since it includes binary variables xL�
and nonlinearities in constraints (2.8f). However, these nonlinear constraints can be
replaced by equivalent mixed-integer linear Eqs. (2.2), as explained in Sect. 2.2.3.
Therefore, the master problem is recast as anMILP problem that can be solved using
conventional branch-and-cut solvers [6, 15].

2.3.5.2 Subproblem

The subproblem associated with (2.7) is given below:

maxPDmax
d ,PEmax

g ∈Ξ min
Δ\xL� ∈Ω

(
xL,∗
� ,PDmax

d ,PEmax
g

) σ

[
∑

g

CE
g p

E
g +

∑

d

CLS
d pLSd

]

,

(2.9a)

where the expansion decisions are considered to be fixed to xL,∗
� . These expansion

decisions are obtained from the solution of master problem (2.8) at each iteration of
the algorithm.
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Subproblem (2.9) is a bilevel problem that can be converted into an equivalent
single-level problem as explained below. The lower-level problem in (2.9) is contin-

uous and linear (and thus convex) in its decision variables Δ \ xL� ∈ Ω
(
xL,∗

� , PDmax

d ,

PEmax

g

)
. Therefore, it can be replaced by its Karush–Kuhn–Tucker (KKT) conditions,

which are necessary and sufficient conditions for optimality. These KKT conditions
are included as constraints of the upper-level problem, rendering a single-level prob-
lem as follows:

maxΔSUB σ

[
∑

g

CE
g p

E
g +

∑

d

CLS
d pLSd

]

(2.10aa)

subject to

PEmax

g ∈
[
0, P

Emax

g

]
∀g (2.10ab)

∑
g

(
P
Emax

g − PEmax

g

)

∑
g P

Emax

g

≤ Γ G (2.10ac)

PDmax

d ∈
[
PDmax

d , P
Dmax

d

]
∀d (2.10ad)

∑
d

(
PDmax

d − PDmax

d

)

∑
d P

Dmax

d − PDmax

d

≤ Γ D (2.10ae)

∑

g∈ΩE
n

pEg −
∑

�|s(�)=n

pL� +
∑

�|r(�)=n

pL� =
∑

d∈ΩD
n

(
PDmax

d − pLSd
) ∀n (2.10af)

pL� = B�

(
θs(�) − θr(�)

) ∀� \ � ∈ ΩL+ (2.10ag)

pL� = xL,∗
� B�

(
θs(�) − θr(�)

) ∀� ∈ ΩL+ (2.10ah)

− Fmax
� ≤ pL� ≤ Fmax

� ∀� (2.10ai)

0 ≤ pGg ≤ PEmax

g ∀g (2.10aj)

0 ≤ pLSd ≤ PDmax

d ∀d (2.10ak)

− π ≤ θn ≤ π ∀n (2.10al)

θn = 0 n: ref. (2.10am)

σCG
g − λn(g) + φE,max

g − φE,min
g = 0 ∀g (2.10an)

σCD
d − λn(d) + φ

D,max
d − φ

D,min
d = 0 ∀d (2.10ao)

λs(�) − λr(�) − φL
� + φ

L,max
� − φ

L,min
� = 0 ∀� \ � ∈ ΩL+ (2.10ap)

λs(�) − λr(�) − φL+
� + φ

L,max
� − φ

L,min
� = 0 ∀� ∈ ΩL+ (2.10aq)

∑

�\�∈ΩL+|s(�)=n

B�φ
L
� +

∑

�∈ΩL+|s(�)=n

xL,∗
� B�φ

L+
� −

∑

�\�∈ΩL+|r(�)=n

B�φ
L
�

−
∑

�∈ΩL+|r(�)=n

xL,∗
� B�φ

L+
� + φN,max

n − φN,min
n = 0 ∀n \ n: ref. (2.10ar)
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∑

�\�∈ΩL+|s(�)=n

B�φ
L
� +

∑

�∈ΩL+|s(�)=n

xL,∗
� B�φ

L+
� −

∑

�\�∈ΩL+|r(�)=n

B�φ
L
�

−
∑

�∈ΩL+|r(�)=n

xL,∗
� B�φ

L+
� + φN,max

n − φN,min
n − χ ref = 0 n: ref. (2.10as)

0 ≤ φ
L,max
� ⊥ Fmax

� − pL� ≥ 0 ∀� (2.10at)

0 ≤ φ
L,min
� ⊥ pL� + Fmax

� ≥ 0 ∀� (2.10au)

0 ≤ φE,max
g ⊥ PEmax

g − pEg ≥ 0 ∀g (2.10av)

0 ≤ φE,min
g ⊥ pEg ≥ 0 ∀g (2.10aw)

0 ≤ φ
D,max
d ⊥ PDmax

d − pLSd ≥ 0 ∀d (2.10ax)

0 ≤ φ
D,min
d ⊥ pLSd ≥ 0 ∀d (2.10ay)

0 ≤ φN,max
n ⊥ π − θn ≥ 0 ∀n (2.10az)

0 ≤ φN,min
n ⊥ θn + π ≥ 0 ∀n, (2.10ba)

where variables in set ΔSUB = {
PDmax

d , PEmax

g , pEg , pDd , p
L
� , θn , λn , φL

� , φ
L+
� , φL,max

� ,

φ
L,min
� , φE,max

g , φE,min
g , φD,max

d , φD,min
d , φN,max

n , φN,min
n , χ ref

}
are the optimization vari-

ables of subproblem (2.10). These optimization variables are the worst realizations
of the uncertain parameters PDmax

d and PEmax

g , the operating decision variables pEg ,

pDd , p
L
� , and θn , as well as the dual variables λn , φL

� , φ
L,max
� , φL,min

� , φE,max
g , φE,min

g ,

φ
D,max
d , φD,min

d , φN,max
n , φN,min

n , and χ ref . Note that expansion decision variables xL,∗
�

are considered to be given parameters of subproblem (2.10) with values fixed to
their optimal values obtained from the solution of the master problem (2.8) at the
corresponding iteration.

Constraints (2.10ab)–(2.10ae) represent the uncertainty sets, constraints (2.10af)–
(2.10am) are the primal constraints of the lower-level problem in (2.9), constraints
(2.10an)–(2.10as) result from differentiating the Lagrangian of the lower-level prob-
lem in (2.9) with respect to lower-level variables, and constraints (2.10at)–(2.10ba)
are the complementarity conditions.

Note that dual variables λn in constraints (2.10an)–(2.10ap) include different
subscripts, namely n(g), n(d), s(�), r(�), which indicate the node inwhich generating
unit g is located, the node in which demand d is located, the sending-end node of
transmission line �, and the receiving-end node of transmission line �, respectively.

Subproblem (2.10) is nonlinear, due to the complementarity constraints (2.10at)–
(2.10ba). Complementarity constraints have the form 0 ≤ a ⊥ b ≥ 0, which is
equivalent to nonlinear constraints a ≥ 0, b ≥ 0, and ab = 0. However, these
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constraints can be replaced by the following exact equivalent mixed-integer linear
expressions, as explained in [10]:

a ≥ 0 (2.11a)

b ≥ 0 (2.11b)

a ≤ Mu (2.11c)

b ≤ M (1 − u) , (2.11d)

where u is an auxiliary binary variable and M is a large enough positive constant.
The working of Eqs. (2.11) is explained below. The complementarity constraints

impose that either a or b must be equal to zero. On one hand, if binary variable
u is equal to 0, then a = 0 by Eqs. (2.11a) and (2.11c), and 0 ≤ b ≤ M by
Eqs. (2.11b) and (2.11d). On the other hand, if binary variable u is equal to 1, then
b = 0 by Eqs. (2.11b) and (2.11d) and 0 ≤ a ≤ M by Eqs. (2.11a) and (2.11c).
Using Eqs. (2.11), we impose that either a or b is equal to zero and that the other one
can take any value in a large enough interval defined by the disjunctive parameter
M . Reference [10] discusses how to select the values of this parameter.

2.3.5.3 Algorithm

The master problem and the subproblem defined in the previous sections are solved
iteratively. The optimal solution of the master problem at each iteration is used to
solve the subproblem and vice versa. The iterative algorithm continues until conver-
gence is attained. The detailed steps of this iterative algorithm are provided below:

Step 1 Set lower (LB) and upper (UB) bounds to −∞ and ∞, respectively.
Step 2 Set the iteration counter to ν = 0.
Step 3 Solve master problem (2.8). Obtain the optimal solution of variables xL,∗

� ,
pE,∗
g,ν ′ , pD,∗

d,ν ′ , pL,∗
�,ν ′ , θ∗

n,ν ′ , and η∗. Note that if ν = 0, then constraints (2.8d)–
(2.8l) are not considered in the master problem.

Step 4 Update the lower bound using Eq. (2.12) below:

LB =
∑

�∈ΩL+
Ĩ L� x

L,∗
� + η∗. (2.12)

Note that the master problem is a relaxed version of the original problem in
which variable η is used to reconstruct the original problem progressively
at each iteration. Therefore, the value of the lower bound increases with the
iteration counter as the master problem approximates the original problem.

Step 5 Solve subproblem (2.10) by considering the optimal values of variables
xL,∗

� obtained in Step 3 to be given parameters. Obtain the optimal solution
of variables in the set ΔSUB,∗.

Step 6 Update the upper bound using Eq. (2.13) below:
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UB = min

{

UB,
∑

�∈ΩL+
Ĩ L� x

L,∗
� + σ

[
∑

g

CG
g pG,∗

g +
∑

d

CLS
d pLS,∗

d

]}

.

(2.13)

Note that the subproblem is a more constrained version of the original
problem since variables xL� are fixed to given values. Thus, the upper bound
decreaseswith the iteration counter as variables xL� change and approximate
their optimal values.

Step 7 IfUB−LB is lower than a predefined tolerance ε, the algorithm terminates.
The optimal solution is xL,∗

� . If not, then continue with the following step.
Step 8 Update the iteration counter, ν ← ν + 1, and set PDmax,∗

d,ν = PDmax,∗
d and

PEmax,∗
g,ν = PEmax,∗

g , where PDmax,∗
d and PEmax,∗

g are the optimal values obtained
from the solution of the subproblem in Step 5.

Step 9 Continue with Step 3.
For the sake of clarity, the algorithm flowchart is depicted in Fig. 2.8.

Illustrative Example 2.6 Two-stage ARO TEP

We consider the six-node system analyzed in Illustrative Example 2.3. The techni-
cal data of generating units, demands, and both existing and prospective transmission

Fig. 2.8 TEP flowchart of
the ARO algorithm
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Table 2.7 Illustrative Example 2.6: data for uncertainty sets of demands

Demand PDmax

d [MW] P
Dmax

d [MW]

d1 180 220

d2 135 165

d3 90 110

d4 180 220

lines, as well as the available investment budget are obtained from Illustrative Exam-
ple 2.3.

Here, we consider an ARO approach for the TEP problem, and therefore, we
consider uncertainty in the available capacity of generating units and the maximum
demand at each node of the system, as explained below:

1. We consider that PEmax

g is uncertain and can take values between 0 and the gener-
ating capacity values provided in the third column of Table2.1.

2. We consider that PDmax

d is uncertain and can take values between PDmax

d and P
Dmax

d ,
which are provided in the second and third columns of Table2.7, respectively.

We consider that the uncertainty budgets for demands and generating units are
Γ D = 0.5 and Γ G = 0.2, respectively. This means that the level of uncertainty is
higher in the demand than in the capacity of generating units. For example, with
the considered uncertainty budgets, up to 20% of the generating capacity may be
unavailable.

With these data, we solve the TEP problem with an ARO approach using the
algorithm described in Sect. 2.3.5.3. For the sake of clarity, the steps and results of
each iteration of the algorithm are provided below:

Step 1 We set the lower bound to LB = −∞ and the upper bound to UB = ∞.
Step 2 We set the iteration counter to ν = 0.
Step 3 We solve master problem (2.8). We obtain the optimal solution of variables

xL,∗
� = 0, � = 4, . . . , 9; and η∗ = −∞. Note that since ν = 0, constraints
(2.8d)–(2.8l) are not included in the master problem at this iteration.

Step 4 We update the lower bound using Eq. (2.12), LB = −∞.
Step 5 We solve subproblem (2.10) by considering the optimal value of variables

xL,∗
� obtained in Step 3 as given parameters.We obtain the optimal solution
of variables PEmax,∗

g and PDmax,∗
d ,which are provided inTable2.8.Thefirst and

second columns respectively give the generating unit and the corresponding
PEmax,∗
g , while the third and fourth columns provide the demand and the

corresponding PDmax,∗
d , respectively.

Subproblem (2.10) corresponds to theworst realization (in terms of generation and
load-shedding costs) of uncertain parameters once the expansion decision variables,
i.e., variables xL,∗

� , are fixed. As observed from the results provided in Table2.8, the
worst realization corresponds to the case in which a peak load occurs for demands
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Table 2.8 Illustrative Example2.6: solution of subproblem (2.10) for iteration ν = 0

Generating unit PEmax,∗
g [MW] Demand PDmax,∗

d [MW]

g1 300 d1 180

g2 250 d2 160

g3 400 d3 90

g4 170 d4 220

g5 60

d2 and d4 (located at nodes 4 and 6, respectively, both in Region B) and when
the generation capacity of generating units g4 and g5 (located at nodes 5 and 6,
respectively, both in Region B) is limited. If we look at the data for generating units
and demands provided in Tables2.1 and 2.2, thenwe observe that most of the demand
is located in Region B. Moreover, Region B is initially not connected to Region A,
and node 6 is isolated. Therefore, a critical situation would be the case of a peak
demand in Region B (and mainly at node 6) and the failure of generating units in the
same region. This is consistent with the results achieved for the subproblem.

In this step, we also obtain solutions for operating decision variables pE,∗
g , pD,∗

d ,

pL,∗
� , and θ∗

n . However, these variables are not used in the following steps of the
algorithm.

Step 6 We update the upper bound using Eq. (2.13), UB = 2.351 × 108.
Step 7 We compute UB − LB = ∞. Since this difference is not small enough,

we continue with the following step.
Step 8 We update the iteration counter, ν = 1, and set PEmax,∗

g,ν1 = PEmax,∗
g and

PDmax,∗
d,ν1

= PDmax,∗
d , where PEmax,∗

g and PDmax,∗
d are obtained from the solution

of subproblem in Step 5.
Step 9 Continue with Step 3.
Step 3 We solve master problem (2.8). We obtain the optimal solution of variables

xL,∗
� = 1, � = 5, 7; xL,∗

� = 0, � = 4, 6, 8, 9; and η∗ = 1.169 × 108.
Master problem (2.8) corresponds to the response of the TSO to the worst
situation, i.e., given the worst realization of uncertain parameters obtained
in subproblem in Step 5 above, the TSO decides the optimal transmission
expansion plans to minimize generation and load-shedding costs, as well
as its investment costs.

Step 4 We update the lower bound using Eq. (2.12), LB = 1.199 · 108.
Step 5 We solve subproblem (2.10) by considering the optimal value of variables

xL,∗
� obtained in Step 3 as given parameters.We obtain the optimal solution
of variables PEmax,∗

g and PDmax,∗
d ,which are provided inTable2.9.Thefirst and

second columns respectively give the generating unit and the corresponding
PEmax,∗
g , while the third and fourth columns provide the demand and the

corresponding PDmax,∗
d , respectively.
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Table 2.9 Illustrative Example 2.6: solution of subproblem (2.10) for iteration ν = 1

Generating unit PEmax,∗
g [MW] Demand PDmax,∗

d [MW]

g1 300 d1 195

g2 250 d2 165

g3 400 d3 110

g4 20 d4 180

g5 150

As previously explained, subproblem (2.10) corresponds to the worst realization
(in terms of generation and load-shedding costs) of uncertain parameters once the
expansion decision variables (i.e., xL,∗

� ) are fixed. However, now we consider the
updated values of expansion decision variables obtained in the master problem for
iteration ν = 1. As a consequence, the worst realization of uncertain parameters is
different from that obtained in the previous iteration. For example, considering the
updated expansion decisions, initially isolated node 6 is now connected to node 3.
Therefore, the worst realization that in the previous iteration was a peak load and the
failure of the generating unit at this node is not that harmful in this case.

Step 6 We update the upper bound using Eq. (2.13), UB = 1.334 × 108.
Step 7 We compute UB − LB = 0.135 × 108. Since this difference is not small

enough, we continue with the following step.
Step 8 We update the iteration counter, ν = 2, and set PEmax,∗

g,ν1 = PEmax,∗
g and

PDmax,∗
d,ν1

= PDmax,∗
d .

Step 9 Continue with Step 3.
Step 3 We solve master problem (2.8). We obtain the optimal solution of variables

xL,∗
� = 1, � = 5, 7; xL,∗

� = 0, � = 4, 6, 8, 9; and η∗ = 1.304 × 108.
Step 4 We update the lower bound using Eq. (2.12), LB = 1.334 × 108.
Step 5 We solve subproblem (2.10) by considering the optimal value of variables

xL,∗
� obtained in Step 3 as given parameters. Since the expansion decisions
are the sameas those obtained for ν = 1, the optimal solutionof subproblem
(2.10) corresponds with that provided in Table2.9.

Step 6 We update the upper bound using Eq. (2.13), UB = 1.334 × 108.
Step 7 We computeUB− LB = 0. This means that the algorithm has converged,

and so it terminates.
The optimal solution of the TEP problem using anARO approach that takes
into account the uncertainty in demands and the availability of generating
units consists in building transmission lines �5 and �7, i.e., transmission
lines connecting nodes 2 and 4 and nodes 2 and 6, respectively. �
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Table 2.10 Illustrative Example 2.7: investment decisions for different uncertainty budgetsa

Γ G

0 0.25 0.5 0.75 1

Γ D 0 �5, �7 �5, �7 �4, �7, �9 �4, �5, �9 -

0.25 �5, �7 �5, �7 �5, �7 �4, �7, �9 -

0.5 �5, �7 �5, �7 �5, �7 �4, �7, �9 -

0.75 �5, �7 �5, �7 �5, �7 �4, �7, �9 -

1 �5, �7 �5, �7 �5, �7 �4, �7, �9 -
a �4: 2–3, �5: 2–4, �6: 3–4, �7: 3–6, �8: 4–6, �9: 5–6

Illustrative Example 2.7 Two-stage ARO TEP: Impact of uncertainty budgets

In Illustrative Example 2.6 we consider that uncertainty budgets Γ D and Γ G are
equal to 0.5 and 0.2, respectively. Now we analyze its influence on the expansion
decisions. Table2.10 provides the optimal transmission expansion decisions for dif-
ferent values of these uncertainty budgets.

We obtain different expansion decisions depending on the considered uncertainty
budgets. These expansion decisions are mainly conditioned by the value of Γ G, as
explained below:

1. For low values of Γ G, it is optimal to build �5 and �7. These values of the uncer-
tainty budget represent the case in which the uncertainty in the available capacity
of generating units is not very high.

2. For values of Γ G larger than or equal to 0.5, it becomes optimal to build �4, �5,
�7, or �9, depending on the considered values of Γ D. These values of Γ G may
represent the case of a system with high uncertainty in the available capacity of
generating units, e.g., in a system inwhich building new generating units is highly
uncertain.

3. The value of Γ G = 1 represents the case in which PG,max
g can take any value

between 0 and P
G,max
g , i.e., all units may be unavailable. Therefore, this case is

not realistic.

The optimal expansion plan if no uncertainty is considered (i.e., ifΓ G = Γ D = 0)
consists in building transmission lines �5 and �7. This solution corresponds to solving

the deterministic TEP problem (2.3) with PDmax

d = PDmax

d , ∀d, and PEmax

g = P
Emax

g , ∀g.
This expansion plan is significantly different from that obtained for a high level of
uncertainty (e.g., ifΓ G = 0.75 andΓ D = 1), which consists in building transmission
lines �4, �7, and �9. This highlights the importance of modeling the uncertainty when
the TEP is decided. If the deterministic solution is implemented, and then one of the
worst situations considered in the ARO model occurs, the system may experience
significant costs. �
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2.4 Summary

This chapter analyzes the TEP problem. TEP consists in deciding on the optimal
reinforcement of the transmission capacity of an existing electric energy network by
appropriately selecting the type and number of transmission lines to be built. TEP is
a relevant problem in electric energy systems that require a secure, economic, and
reliable supply of demand.

We adopt the perspective of a TSO that decides a transmission expansion plan
with the aim of facilitating energy trading among producers and consumers, by
reducing the generation and load-shedding costs. To do so, two different approaches
are developed:

1. A deterministic approach in which optimal transmission plans are obtained by
considering the largest expected demand in the planning horizon.

2. AnARO approach inwhich optimal transmission expansion plans are obtained by
taking into account the uncertainty in the demand and the capacity of generating
units.

Different illustrative examples are provided to show the working and applicability
of the two models described. From these examples, as well as from the theoretical
framework described in this chapter, we obtain the following conclusions:

1. Investment costs in transmission lines are comparatively lower than the generation
and load-shedding costs. Therefore, it is possible to reduce generation and load-
shedding costs by employing limited resources in building new transmission lines.

2. TEP is carried out within an uncertain environment. RO is a practical tool that
allows us to represent uncertain parameters by robust sets at a reduced computa-
tional cost.

3. TEP is a computationally complex problem. Therefore, it requires implementing
some simplifications, e.g., a static approach or a dc power flow, especially if the
system under study is very large.

4. The TEP problem is analyzed in this chapter by considering that the generation
capacity of the system under study is fixed. The extension of the TEP problem
to considering the joint expansion of transmission and generation capacity is
analyzed in Chap.4.

2.5 End-of-Chapter Exercises

2.1 Why is TEP needed? Who decides about it? What is its main purpose?

2.2 Describe the advantages and disadvantages of using a static approach such as
that used in this chapter (not a dynamic one) for the formulation of the TEP problem.

2.3 Determine the optimal transmission expansion plan in the modified Garver’s
system using the deterministic model (2.3). This system is depicted in Fig. 2.9, and

http://dx.doi.org/10.1007/978-3-319-29501-5_4
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Fig. 2.9 Exercise 2.3: modified Garver’s system

Table 2.11 Exercise 2.3: data for generating units of the modified Garver’s system

Generating unit Node PGmax

g [MW] CG
g [$/MWh]

g1 n1 200 24

g2 n3 200 28

g3 n6 300 16

Table 2.12 Exercise 2.3: data for demands of the modified Garver’s system

Demand Node PDmax

d [MW] CLS
d [$/MWh]

d1 n1 110 49

d2 n2 132 51

d3 n3 88 80

d4 n4 132 65

d5 n5 88 39

its data are provided in Tables2.11, 2.12, 2.13, and 2.14. Consider an annualized
investment budget equal to $12 million, a base power of 1 MW, and a base voltage
of 1 kV.
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Table 2.13 Exercise 2.3: data for existing transmission lines of the modified Garver’s system

Line From node To node B� [S] Fmax
� [MW]

�1 n1 n2 250 100

�2 n1 n4 133 80

�3 n1 n5 500 100

�4 n2 n3 500 100

�5 n2 n4 250 100

�6 n3 n5 250 100

Table 2.14 Exercise 2.3: data for prospective transmission lines of the modified Garver’s system

Line From node To node B� [S] Fmax
� [MW] IL� [$]

�7 n2 n5 323 100 3,491,000

�8 n2 n6 333 100 3,379,000

�9 n3 n6 500 100 5,406,000

�10 n4 n6 333 100 3,379,000

2.4 Expand the deterministic TEP model (2.3) to consider a dynamic approach
whereby expansion decisions can be made at different points in time. Then apply
this dynamic problem to obtain the optimal TEP decisions in Illustrative Example2.3,
considering three time periods and assuming a constant demand growth of 5% at
each time period.

2.5 Expand the deterministic TEP model (2.3) to consider losses through transmis-
sion lines, as done in [1].

2.6 Expand the deterministic TEP model (2.3) to consider the uncertainty in the
maximum demand through a set of scenarios, i.e., obtain a stochastic programming
model from the deterministic TEPmodel (2.3). Is this stochasticmodelmore efficient
than the ARO model provided in Sect. 2.3? Why or why not?

2.7 Write the equivalent mixed-integer linear expressions corresponding to com-
plementarity constraints (2.10at)–(2.10ba) using the Fortuny–Amat transformation
described by Eqs. (2.11).

2.8 Determine the optimal transmission expansionplan in themodifiedGarver’s sys-
temusing theAROapproachdescribed inSect. 2.3. This system is depicted inFig. 2.9,
and its data are provided in Tables2.11, 2.13, 2.14, and 2.15. Consider an annualized
investment budget equal to $12 million and uncertainty budgets for demands and
generating units equal to Γ D = 0.5 and Γ G = 0.2, respectively.

2.9 In the ARO approach described in Sect. 2.3, the so-called uncertainty budgets,
Γ G and Γ D, are used to model the level of uncertainty in generating units and
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Table 2.15 Exercise 2.8: data for uncertainty sets of demands of the modified Garver’s system

Demand PDmax

d [MW] P
Dmax

d [MW]

d1 100 120

d2 120 144

d3 80 96

d4 120 144

d4 80 96

demands, respectively. However, uncertainty in generating units and demands may
be different in different regions of a system. It is possible to define uncertainty
budgets for different regions, i.e., Γ G

r and Γ D
r , where r indicates the region of the

system, as explained in [29]. Solve Illustrative Example2.6, considering that the
uncertainties in Regions A and B are different. Region A has significant uncertainty
on the available capacity of generating units (Γ G

A = 0.5), but no uncertainty on
demand levels (Γ D

B = 0), while RegionB has no uncertainty on the available capacity
of generating units (Γ G

B = 0), but high uncertainty on demand levels (Γ D
B = 0.5).

How different are the results from those obtained in Illustrative Example 2.6? Why?

2.6 GAMS Code

A GAMS code for solving problem Illustrative Example2.3 is provided below:

1 SETS
2 n /n1*n6/
3 g /g1*g5/
4 d /d1*d4/
5 l /l1*l9/
6 pros(l) /l4*l9/
7 ex(l) /l1*l3/
8 mapG(g,n) /g1.n1 ,g2.n2 ,g3.n3,g4.n5 ,g5.n6/
9 mapD(d,n) /d1.n1 ,d2.n4 ,d3.n5,d4.n6/

10 ref(n) /n1/
11 mapSL(l,n) /l1.n1 ,l2.n1 ,l3.n4,l4.n2 ,l5.n2 ,l6.

n3 ,l7.n3 ,l8.n4 ,l9.n5/
12 mapRL(l,n) /l1.n2 ,l2.n3 ,l3.n5,l4.n3 ,l5.n4 ,l6.

n4 ,l7.n6 ,l8.n6 ,l9.n6/;

15 TABLE LDATA(L,*)
16 B FLmax IC
17 l1 500 150 0
18 l2 500 150 0
19 l3 500 150 0
20 l4 500 150 700000
21 l5 500 150 1400000
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22 l6 500 200 1800000
23 l7 500 200 1600000
24 l8 500 150 800000
25 l9 500 150 700000;

27 SCALAR ILmax
28 /3000000/;

30 TABLE DDATA(d,*)
31 PDmax LScost
32 d1 200 40
33 d2 150 52
34 d3 100 55
35 d4 200 65;

37 TABLE GDATA(g,*)
38 PEmax Gcost
39 g1 300 18
40 g2 250 25
41 g3 400 16
42 g4 300 32
43 g5 150 35;

45 SCALAR SIGMA
46 /8760/;

48 SCALAR M
49 /5000/;

51 VARIABLES
52 Z
53 PL(l)
54 THETA(n);

56 POSITIVE VARIABLES
57 PG(g)
58 PLS(d);

60 BINARY VARIABLES
61 x(l);

63 EQUATIONS EQ3A , EQ3B , EQ3D , EQ3E , EQ3Fa , EQ3Fb ,
EQ3Ga , EQ3Gb , EQ3Ha , EQ3Hb , EQ3I , EQ3J , EQ3Ka ,
EQ3Kb , EQ3L;

65 EQ3A.. Z=E=SUM(l$pros(l),LDATA(l,
’IC’)*x(l))+SIGMA*(SUM(g,GDATA(g,’Gcost’)*PG(G)
)+SUM(d,DDATA(d,’LSCOST’)*PLS(d)));

66 EQ3B.. SUM(l$pros(l),LDATA(L,’IC’
)*x(l))=L=ILmax;

67 * EQUATIONS 3C ARE DEFINITION OF BINARY VARIABLES
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68 EQ3D(n).. SUM(g$mapG(g,n),PG(G))-SUM
(l$mapSL(l,n),PL(l))+SUM(l$mapRL(l,n),PL(l))=E=
SUM(d$mapD(d,n),DDATA(d,’PDMAX’)-PLS(d));

69 EQ3E(l)$EX(l).. PL(l)=E=LDATA(l,’B’)*(SUM(
n$mapSL(l,n),THETA(n))-SUM(n$mapRL(l,n),THETA(n
)));

70 EQ3Fa(l)$EX(l).. -LDATA(l,’FLmax’)=L=PL(l);
71 EQ3Fb(l)$EX(l).. PL(l)=L=LDATA(l,’FLmax’);
72 EQ3Ga(l)$PROS(l).. -x(l)*LDATA(l,’FLmax’)=L=

PL(l);
73 EQ3Gb(l)$PROS(l).. PL(l)=L=x(l)*LDATA(l,’

FLmax’);
74 EQ3Ha(l)$PROS(l).. -(1-x(l))*M=L=PL(l)-LDATA(

l,’B’)*(SUM(n$mapSL(l,n),THETA(n))-SUM(n$mapRL(
l,n),THETA(n)));

75 EQ3Hb(l)$PROS(l).. PL(l)-LDATA(l,’B’)*(SUM(
n$mapSL(l,n),THETA(n))-SUM(N$mapRL(l,n),THETA(n
)))=l=(1-X(l))*M;

76 EQ3I(g).. PG(g)=L=GDATA(g,’PEmax’);
77 EQ3J(d).. PLS(d)=L=DDATA(d,’PDmax’);
78 EQ3Ka(n).. -3.14=L=THETA(n);
79 EQ3Kb(n).. THETA(n)=L=3.14;
80 EQ3L(n)$REF(n).. THETA(n)=L=0;

82 MODEL TEP_DET /ALL/;

84 SOLVE TEP_DET USING MIP MINIMIZING Z;
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Chapter 3
Generation Expansion Planning

This chapter describes the generation expansion planning (GEP) problem in a given
electric energy system. Here, we take the perspective of a central planner that deter-
mines the generation expansion plan that is most beneficial for the operation of the
electric energy system as a whole. The central planner does not actually build the
generating units; however, it encourages private investors to build the electricity pro-
duction facilities, e.g., by using different types of incentives. Considering such a
central view, we provide and describe different models for the GEP problem: from
a very basic model based on a deterministic, static, and single-node approach to
more complex models that consider the impact of investment timing, transmission
constraints, and uncertainty on the GEP problem.

3.1 Introduction

One of the most relevant problems in the planning of electric energy systems is
guaranteeing that demands are efficiently and reliably supplied. On the one hand,
demands should be supplied by economic, flexible, and efficient generating units.
On the other hand, it is necessary to guarantee that demands will be supplied even in
the worst situations, e.g., if there is an unexpected peak demand or if an important
generating unit fails. Note that there is a twin economic and engineering objective.

In order to tackle such a complex problem, two important issues arise. One is
analyzing the transmission network, which allows the energy flows between produc-
ers and consumers. The capacity of the transmission network should be enough for
demands to be met in an efficient and reliable manner. The problem of analyzing
whether it is necessary to reinforce the transmission network in a given electric energy
system, known as the transmission expansion planning (TEP) problem, is described
in Chap.2. The second issue is the adequacy of the generating units that are used
to supply demands, i.e., analyzing whether it is necessary to invest in building new
electricity production facilities. This problem, known as the generation expansion
planning (GEP) problem, is the topic of this chapter.
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The GEP problem is motivated by the aging of available electricity production
facilities, as well as by growth in demand with the passing of time. These two issues
make it essential to analyze whether it is necessary to expand the capacity of the
existing generating units and/or to build new generating units.

The GEP problem is generally tackled in two different ways: (i) considering a
market framework [15, 16] and (ii) adopting a centralized approach [7, 20]. On the
one hand, a market framework assumes that profit-oriented agents determine their
own generation expansion plans with the aim of maximizing their expected profits.
To do so, once the production facilities are built, they recover their investment costs
by selling their production in a market. The GEP problem considering a market
approach is the topic of Chap.5. On the other hand, considering a centralized
approach, we assume that a central planner [e.g., the independent system opera-
tor (ISO)] determines the generation expansion plan that is most efficient for the
system as a whole. This is the approach considered in this chapter.

The central planner determines the generation expansion plan that results in an
optimal operation of the electric energy system and in an efficient supply of demands.
With this purpose, different objective functions can be considered, e.g., minimiz-
ing network bottlenecks, maximizing social welfare, minimizing generation costs.
Among these different objectives, we select the maximization of social welfare.
Moreover, we also consider the investment costs incurred in building new electricity
production facilities since they are relevant for the agents in charge of building the
new generating units. This way of tackling the GEP problem is also known in the
technical literature as a command-and-control approach.

The expansion planner considered in this chapter determines the optimal gener-
ation expansion plan to be carried out. However, it does not usually build the new
electricity production facilities. It encourages private investors to build them, e.g., by
using different types of incentives [24]. These private investors will, in turn, recover
their investment costs by selling their production in the market and, if applicable, by
subsidies.

The generation expansion decisions have several aspects, as explained below.
The most important one is deciding about the type and sizing of the candidate

generating units to be built in the system. Given the existing generation portfolio of
an electric energy system aswell as its future needs (e.g., its future demand and future
changes in the system topology), we determine the optimal type and capacity of the
generating units to build. These decisions are also affected by the decommissioning
of old generating units as well as by the investment and production costs of the
candidate generating units.

The capacities of the candidate units to build in the system constitute the basic
and essential generation expansion decisions. However, it is also possible to decide
on the best location to build the new generating units. Many systems have most of the
demand concentrated in a given region. Moreover, with the increasing penetration
of renewable energy generating units, the transmission network is usually congested
[6], so that it is generally important to decide where to build the new generating
units in order to alleviate system congestion. To do so, it is necessary to represent
the network in the GEP problem [14, 16].

http://dx.doi.org/10.1007/978-3-319-29501-5_5
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Besides deciding the optimal sizing and location of the new generating units,
it is generally important to determine the optimal timing to build these electricity
production facilities. In this sense, it is common to consider that the generation
expansion plans aremade at a single point in time, i.e., to consider a static approach [9,
23]. This allows us to formulate a relatively simple problem.However, it is sometimes
required to make the generation expansion plans at different points in time, i.e., to
consider a dynamic approach [3, 7]. These dynamic generation expansion decisions
are generally more accurate; however, we pay the cost of formulating and solving a
more complex and possibly intractable problem.

Finally, another important issue in the GEP decision-making problem is that the
expansion decisions are usuallymadewithin an uncertain environment, which further
complicates the problem.

Within this framework, we provide and analyze different GEPmodels that include
the main characteristics described above.

The remainder of this chapter is organized as follows. Section3.2 describes the
main characteristics of the models described in this chapter. Section3.3 provides
a basic model for the GEP problem based on a deterministic single-node static
approach. This model is extended in the following sections in order to represent
the impact of different aspects on the GEP problem. Section3.4 describes a dynamic
approach in which the generation expansion plans can be made at different points in
time. Section3.5 provides a network-constrained approach in which network con-
straints are modeled in the GEP decision-making problem. Section3.6 describes a
stochastic approach, in which we model the impact of uncertain parameters on the
GEP problem. Sections3.3–3.6 include clarifying examples that illustrate the work-
ing and characteristics of the reportedmodels. Section3.7 summarizes the chapter and
discusses the main conclusions stemming from the models and results. Section3.8
provides some exercises to enable a deeper understanding of themodels and concepts
presented in the chapter. Finally, Sect. 3.9 provides theGAMScodes for solving some
of the illustrative examples.

3.2 Problem Description

In this chapter, we describe and formulate the GEP problem, considering different
approaches. However, all of them have some common characteristics, which are
described in this section for the sake of clarity.

3.2.1 Notation

The main notation used in this chapter is provided below for quick reference. Other
symbols are defined as needed throughout the chapter. The observations below are
in order:
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1. A subscript o in the symbols below indicate their values in the oth operating
condition.

2. A subscript t in the symbols below indicate their values in the tth time period.
3. A subscript ω in the symbols below indicate their values in the ωth scenario.

Indices:

c Candidate generating units.
d Demands.
g Existing generating units.
� Transmission lines.
n Nodes.
o Operating conditions.
t Time periods.
ω Scenarios.

Sets:

r(�) Receiving-end node of transmission line �.
s(�) Sending-end node of transmission line �.
ΩC

n Candidate generating units located at node n.
ΩD

n Demands located at node n.
ΩE

n Existing generating units located at node n.

Parameters:

A Amortization rate [%].
B� Susceptance of transmission line � [S].
CC
c Production cost of candidate generating unit c [$/MWh].

CE
g Production cost of existing generating unit g [$/MWh].

CLS
d Load-shedding cost of demand d [$/MWh].

Fmax
� Capacity of transmission line � [MW].

ICc Investment cost of candidate generating unit c [$/MW].
ĨCc Annualized investment cost of candidate generating unit c [$/MW].

P
Cmax

c Maximum production capacity investment of candidate generating unit c
[MW].

POption
cq Production capacity of investment option q of candidate generating unit c

[MW].
PD
d Load of demand d [MW].

PEmax

g Production capacity of existing generating unit g [MW].
ϕω Probability of scenario ω [p.u.].
ρo Weight of operating condition o [h].

Binary Variables:

uOptioncq Binary variable that is equal to 1 if option q determines the capacity to be
built of candidate generating unit c and 0 otherwise.
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Continuous Variables:

pCc Power produced by candidate generating unit c [MW].
pC

max

c Capacity of candidate generating unit c [MW].
pEg Power produced by existing generating unit g [MW].
pL� Power flow through transmission line � [MW].
θn Voltage angle at node n [rad].

3.2.2 Aim and Assumptions

We consider a central planner (e.g., the ISO) that aims to determine the generation
expansion plan that is most beneficial for the electric energy system as a whole. Sub-
sequently, this central planner incentivizes private investors to build these electricity
production facilities, e.g., by using different types of incentives.

In order to determine the generation expansion plan that is most beneficial for
the system as a whole, it is possible to consider different objective functions. In this
chapter, we consider that the expansion planner determines the generation expan-
sion plan that maximizes the overall social welfare. Since building new electricity
production facilities has a cost, we also include the investment costs in the objective
function.

For the sake of simplicity in the formulation and description of the models, in
the following we consider that demands are inelastic, and thus the social welfare is
equivalent to minus the generation cost.

Finally, we assume that during the considered planning horizon, there are no
changes in the system topology, i.e., the existing transmission lines remain the same.
The joint generation and transmission expansion planning (G&TEP) problem is the
topic of Chap. 4. Moreover, we do not consider the commissioning of old units for
the sake of simplicity.

3.2.3 Time Framework

The generation expansion plan is determined for a long-term planning horizon, e.g.,
20years. In this sense, there are two different ways of tackling the GEP problem
depending on when the electricity production facilities are built:

1. A static model in which the generation expansion decisions are made only at the
beginning of the planning horizon, i.e., at a single point in time.

2. A dynamic model in which the generation expansion decisions are made at dif-
ferent points in time.

The modeling of the planning horizon depends on whether a static or a dynamic
model is considered.

http://dx.doi.org/10.1007/978-3-319-29501-5_4
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Considering a static model, we represent the whole planning horizon by a single
year, which is considered the reference or target year. The system needs (e.g., the
demand in the system) are represented for this target year, and the generation expan-
sion decisions aremade for this reference year. Since the generation expansion plan is
mainly conditioned by the demand in the system, which usually increases over time,
the reference year is usually selected as the last year of the planning horizon. This
is so because the generation expansion plans must be made for the whole planning
horizon, and thus we should consider the largest expected demand.

If a dynamic approach is considered, then the planning horizon is divided into
different time periods, each one comprising a specific number of years. In turn, each
time period is represented by a single year (generally, the last year of each time
period), which is considered the reference or target year of the whole time period.
In this case, we assume that the generation expansion decisions can be made at the
beginning of each time period.

Figure3.1 illustrates the differences between the static and dynamic approaches
in the GEP problem.

The advantage of using a static approach for the GEP problem is that the resulting
model is relatively simple. However, it has some disadvantages. One is that the
generation expansion plan is made for the last year of the planning horizon (the
reference year). Since the GEP problem is solved for a long-term planning horizon,
the demand in the system in this reference year will be probably much higher than
the demand in the system at the present or in the short term. Therefore, the generation
expansion plan will probably result in an overcapacity that is not needed until the
last years of the planning horizon. Another disadvantage of using such a static model

Fig. 3.1 Static and dynamic GEP models
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is that for a long-term planning horizon, it is difficult to obtain an accurate forecast
of the system conditions (e.g., the demand) in the future. Thus, if an unexpected
change in the system occurs (e.g., if the future demand is lower than expected when
the generation expansion plan is decided), then it is not possible to adapt to these
changes since the generating units have already been built.

The above problems are solved by considering a dynamic approach, which allows
us to increase the capacity as needed instead of building all the capacity at the
beginning of the planning horizon. This also allows us to adapt to possible changes
in the system conditions throughout the planning horizon.

3.2.4 Operating Conditions

We consider that the generation expansion planner determines the expansion plan
that maximizes the overall social welfare and minimizes the investment costs. Thus,
in order to compute the social welfare, it is necessary to model the different operating
conditions that will take place in the system under study in the considered planning
horizon. These operating conditions can represent different demand realizations,
different renewable production conditions, or different system conditions (e.g., the
failure of a transmission line).

For the sake of clarity, in the following we assume that only the demand affects
the different operating conditions.

To model demand operating conditions, one alternative is to consider historical
data in the system under study to predict the operating conditions in the considered
planning horizon. For example, let us consider historical data of the demand in the
system. If we divide these demand values by the peak demand in the system, then we
obtain a set of historical values of demand levels.While the demand in the systemwill
probably increase in the future, we can assume that the demand levels will remain
approximately the same. Thus, we can use historical demand levels multiplied by
the future expected peak demand to predict future operating conditions.

However, note that historical data of demand usually comprise thousands of hourly
demandvalues. Thus, it is impractical toworkwith such a large data set.Nevertheless,
many of these historical hourly values are similar. Thus, it is possible to obtain
a reduced data set from the historical data that groups similar historical data. For
this purpose, there are several techniques available in the technical literature, e.g.,
methods based on the load–duration curve and clustering methods [4].

These methods use as input historical data of demand levels, e.g., hourly demand
levels throughout a year (i.e., 8760 demand level values). Then, the clustering meth-
ods check the similarities among the historical demand levels andgroup those demand
levels that are similar. The output of these methods is a reduced set of operating
conditions, each one defined by a demand level and the relative weight of this oper-
ating condition in the historical data analyzed. This reduced data set is used to
represent the operating conditions in the considered planning horizon.
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Note that these methods allow us to maintain the information of the historical
data as well as possible correlations in the historical data, e.g., correlation among
demands in different locations.

Illustrative Example 3.1 Operating conditions

Historical data of demand in an electric energy system are used as input for
the K-means clustering technique [4]. The output of this method are two operating
conditions. The first is characterized by a demand level of 0.4833 p.u. and a relative
weight of 0.6849 p.u. The second is characterized by a demand level of 0.9167 p.u.
and a relative weight of 0.3151 p.u.

Let us consider that the GEP problem involves a 20-year planning horizon. This
planning horizon is represented by a single target year, whose expected peak demand
is 600MW. The two operating conditions in this target year have the following
characteristics:

1. Operating condition o1 is characterized by a demand of 290MW (600MW ×
0.4833) and a weight of 6000h (8760h × 0.6849).

2. Operating condition o2 is characterized by a demand of 550MW (600MW ×
0.9167) and a weight of 2760h (8760h × 0.3151).

�
An important issue is selecting the number of operating conditions that are used in

theGEPproblem. This number should be large enough to represent the different oper-
ating conditions throughout the year accurately. However, if the number of operating
conditions considered is very large, then the GEP problem may become computa-
tionally intractable. Thus, we should select a number of operating conditions that
constitutes an appropriate tradeoff between modeling accuracy and computational
tractability.

Note that in this chapter, we use the output of the clustering methods as an input
to the GEP problem. We do not describe in detail the working of these clustering
methods. The interested reader is referred to [4] for further details on clustering
techniques to derive operating conditions.

3.2.5 Uncertainty Characterization

Under the uncertainty characterization point of view, it is possible to formulate two
different GEP models:

1. A deterministic model: We consider that the generation expansion planner has
perfect information at the time it determines the generation expansion plan, e.g.,
the planner knows the future demand in the system perfectly.

2. A stochasticmodel:We consider that the generation expansion decisions aremade
within an uncertain environment, and thus this uncertainty should be considered in
the GEP decision-making problem in order to obtain informed decisions. Among
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the different techniques available to deal with uncertainty, in this chapter we
consider a stochastic programming framework [10] in which uncertainties are
modeled through a set of scenarios indexed by ω.

Although considering a deterministic approach allows us to formulate a relatively
simple problem, in the real world the generation expansion plans are decided for
a long-term planning horizon, and thus it is hard to obtain a good forecast of the
system conditions for the whole planning horizon. This lack of perfect information
generally conditions the generation expansion plans.

For the sake of simplicity, in the following, we assume that uncertainty affects
only the demand in the system. However, additional sources of uncertainty may be
considered through additional scenarios.

3.2.6 Modeling of the Transmission Network

Representing the transmission network leads to two different GEP models:

1. A single-node model: In this case, we do not model the network constraints, i.e.,
we solve the GEP problem considering that all demands and generating units are
connected to a single virtual node. Therefore, the solution of this GEP problem is
the optimal sizing of the generating units to be built in the system, but not where
to build them.

2. A network-constrained model: In this case, we explicitly model the network
constraints. Therefore, the solution of the GEP problem in this case is the optimal
sizing as well as the optimal location of the generating units to be built in the
system.

Considering a single-node approach for the GEP problem allows us to formu-
late a relatively simple problem. However, it is important to consider the network
constraints, especially in systems with congested transmission lines.

3.2.7 Complementarity Model

As previously explained, the generation expansion planner aims to determine the
generation expansion plan that maximizes the overall social welfare and that min-
imizes the investment costs. On the one hand, the social welfare can be computed
from the result of market clearing. On the other hand, the clearing of the market
is affected by the generation expansion plan decided by the generation expansion
planner. Thus, it is necessary to represent explicitly the clearing of the market in the
GEP decision-making problem. Moreover, we should represent the market clearing
for different operating conditions, time periods, and scenarios.
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Fig. 3.2 Complementarity GEP model

However, the clearing of the market is itself an optimization problem in which
the market operator (MO) receives offers and bids from producers and consumers,
respectively, and determines the scheduled power quantities to be supplied by produc-
ers and consumed by demands that maximize the overall social welfare. As a result,
the GEP problem becomes an optimization problem subject to other optimization
problems (the market-clearing problem for each operating condition, time period,
and scenario). This kind of problem is usually known in the technical literature as a
bilevel, hierarchical, or complementarity model [11].

The structure of this complementarity model is schematically depicted in Fig. 3.2.
The generation expansion planner decides the optimal generation expansion plan to
be carried out, i.e., it determines the optimal generating units to be built in the
system. On the one hand, the information about the generation expansion plan is
used in market-clearing problems. On the other hand, the output of these market-
clearing problems is the scheduled power quantities to be produced by the existing
and candidate generating units, which are used in turn by the generation expansion
planner to compute the social welfare. Additional details of these two problems are
provided in the sections below.

Among the different market settings, we represent only the clearing of the day-
ahead market since it is generally the market with the largest volume of energy
trading.

3.3 Deterministic Single-Node Static GEP

In this section we describe the GEP problem, considering a deterministic single-node
static approach that has the following characteristics:

1. We consider a deterministic approach:We assume that there is no uncertainty, i.e.,
the generation expansion planner has perfect information on all the parameters
that affect the GEP problem.
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2. We consider a single-node approach:We do not represent the network constraints.
As a result, we determine the sizing of the generating units to be built but not
where to build them.

3. We consider a static approach: We consider that the generation expansion plan
can be made only at the beginning of the planning horizon.

The above modeling framework allows us to formulate a simple problem that
will be used to illustrate the main characteristics of the GEP problem. This simple
problem will be progressively enhanced in the following sections.

The next section provides the formulation of the complementarity model used
for the GEP problem considering a deterministic single-node static approach. This
complementarity model can be reformulated as a nonlinear programming (NLP)
model,which can be in turn recast as an equivalentmixed-integer linear programming
(MILP) model.

3.3.1 Complementarity Model

The GEP problem considering a deterministic single-node static approach can be
formulated using the following complementarity model:

minpCmax
c ,ΔD1SM

o

∑

o

ρo

[
∑

g

CE
g p

E
go +

∑

c

CC
c p

C
co

]

+
∑

c

ĨCc p
Cmax

c (3.1a)

subject to

0 ≤ pC
max

c ≤ P
Cmax

c ∀c (3.1b)

pEgo, p
C
co ∈ Ωo

(
PD
do,P

Emax

g , pC
max

c

) ∀g, c, o, (3.1c)

where pC
max

c and variables in set ΔD1SM
o = {

pEgo , p
C
co

}
are the optimization variables

of problem (3.1).
Objective function (3.1a) comprises two terms:

1.
∑

g

CE
g p

E
go +

∑

c

CC
c p

C
co, ∀o, are the generation costs (of both the existing and the

candidate generating units) for each operating condition o.
2.
∑

c

ĨCc p
Cmax

c is the annualized investment cost incurred in building new generating

units.

The terms in 1 above are multiplied by the weight of the corresponding operating
condition in the target year in order to make the generation costs and the annualized
investment cost comparable.
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Note that we consider as objective function of the GEP problem the overall social
welfare (the generation cost is equivalent to minus the social welfare since demands
are considered inelastic) and the investment cost.

Constraints of the GEP problem (3.1) include constraints (3.1b), which impose
bounds on the capacity of the candidate generating units to be built, and constraints
(3.1c), which state that the scheduled production of the existing and the candidate
generating units is obtained from the clearing of the market, represented by sets
Ωo
(
PD
do,P

Emax

g , pC
max

c

)
, ∀o.

The clearing of the market is itself another optimization problem, whose detailed
formulation is provided below:

Ωo
(
PD
do,P

Emax

g , pC
max

c

) =
{

minΔD1SM
o

∑

g

CE
g p

E
go +

∑

c

CC
c p

C
co (3.2a)

subject to

∑

g

pEgo +
∑

c

pCco =
∑

d

PD
do : λo (3.2b)

0 ≤ pEgo ≤ PEmax

g : μE
go ∀g (3.2c)

0 ≤ pCco ≤ pC
max

c : μC
co ∀c (3.2d)

}

,∀o,

where the variables in sets ΔD1SM
o = {

pEgo , p
C
co

}
, ∀o, are the optimization variables

of problems (3.2), ∀o. The dual variables associated to constraints of problem (3.2)
are provided following a colon.

Objective function (3.2a) represents the generation cost, which is equivalent in this
case to minus the social welfare. Constraints (3.2b) define the generation–demand
balance. Finally, constraints (3.2c) and (3.2d) impose bounds on the power quantities
to be supplied by the existing and the candidate generating units, respectively. Note
that the upper bounds for the existing generating units are the already built capacities,
while the upper bounds for the candidate generating units are the capacities to be
built. These capacities are decision variables of the GEP problem (3.1).

We consider a competitive market in which producers offer their capacities at
their marginal costs. The strategic behavior of producers is analyzed in Chap.5.

http://dx.doi.org/10.1007/978-3-319-29501-5_5
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Illustrative Example 3.2 Deterministic single-node static GEP problem: Comple-
mentarity model formulation

Let us consider an electric energy system with the following characteristics:

1. There is one generating unit g̃with capacity of 400MWand production cost equal
to $35/MWh.

2. It is possible to build a new generating unit c̃ with capacity up to 500MW and
production cost equal to $25/MWh. The annualized investment cost is $70,000
per MW.

3. Demand conditions in the system are represented through two operating condi-
tions. The first one, o1, is defined by a demand of 290MWand a weight of 6000h,
while the second one, o2, is defined by a demand of 550MW and a weight of
2760h.

Given the above data, the GEP problem (3.1) results in the following complemen-
tarity model:

minpEg̃o1 ,p
C
c̃o1

,pEg̃o2 ,p
C
c̃o2

,pC
max

c̃
6000

[
35pEg̃o1 + 25pCc̃o1

]
+ 2760

[
35pEg̃o2 + 25pCc̃o2

]

+ 70000pC
max

c̃

subject to

0 ≤ pC
max

c̃ ≤ 500
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 ,p
C
c̃o1

35pEg̃o1 + 25pCc̃o1
s.t.

pEg̃o1 + pCc̃o1 = 290

0 ≤ pEg̃o1 ≤ 400

0 ≤ pCc̃o1 ≤ pC
max

c̃
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 ,p
C
c̃o2

35pEg̃o2 + 25pCc̃o2
s.t.

pEg̃o2 + pCc̃o2 = 550

0 ≤ pEg̃o2 ≤ 400

0 ≤ pCc̃o2 ≤ pC
max

c̃ .

�
Note that the complementarity model comprises problems (3.1) and (3.2), ∀o,

which are jointly solved following the procedure described in the section below.
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3.3.2 Equivalent NLP Formulation

Each market-clearing problem (3.2) (one for each operating condition o) is a lin-
ear programming (LP) problem. Thus, it is possible to replace each of these prob-
lems by its first-order optimality conditions, which are in turn used to replace sets
Ωo
(
PD
do,P

Emax

g , pC
max

c

)
, ∀o, in problem (3.1). Thus, complementarity model (3.1)

results in a single-level problem, generally known in the technical literature as a
mathematical program with equilibrium constraints (MPEC) [11].

The first-order optimality conditions can be formulated using one of the two
approaches below:

1. Karush–Kuhn–Tucker (KKT) formulation: In this case, each market-clearing
problem (3.2) is replaced by its KKT conditions [11, 17].

2. Primal–dual formulation: In this case, each market-clearing problem (3.2) is
replaced by its primal constraints, its dual constraints, and its strong duality
equality [11, 18].

The formulations of theMPEC based on the above two approaches are equivalent.
However, using the KKT conditions requires handling complementarity constraints,
which are nonlinear. Thus, it is generally easier to solve the MPEC that results
from the primal–dual formulation, which does not include such complementarity
conditions. Thus, the primal–dual formulation is the approach used in this chapter.

The dual problem of the market-clearing problem (3.2) is provided below:

Ωo
(
PD
do,P

Emax

g , pC
max

c

) =
{

maxΔ
D1SM,D
o

λo

∑

d
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do −

∑
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go PEmax

g −
∑

c

μCmax

co pC
max

c (3.3a)

subject to

CE
g − λo + μEmax

go ≥ 0 ∀g (3.3b)

CC
c − λo + μCmax

co ≥ 0 ∀c (3.3c)

μEmax

go ≥ 0 ∀g (3.3d)

μCmax

co ≥ 0 ∀c (3.3e)
}

,∀o,

where variables in sets ΔD1SM,D
o = {λo , μEmax

go , μCmax

co

}
, ∀o, are the optimization

variables of problems (3.3), ∀o.
Then we replace the market-clearing problem (3.2), ∀o, by its primal constraints,

its dual constraints, and its strong duality equality, rendering an MPEC whose for-
mulation is as follows:
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minΔD1S,MPEC
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where variables in set ΔD1S,MPEC = {
pC

max

c ,ΔD1SM
o ,ΔD1SM,D

o

}
are the optimization

variables of problem (3.4).
Constraints (3.4b) are the constraints of problem (3.1), constraints (3.4c)–(3.4e)

are the primal constraints of the market-clearing problems (3.2), ∀o, constraints
(3.4f)–(3.4h) are the dual constraints of the market-clearing problems (3.2), ∀o, and
constraints (3.4i) are the strong duality equalities, which impose that the primal and
the dual objective functions of the market-clearing problems (3.2), ∀o, have the same
value at the optimum [8].

Illustrative Example 3.3 Deterministic single-node static GEP problem: MPEC
formulation

Considering Illustrative Example3.2, the corresponding MPEC formulation is
provided below:

minΔ 6000
[
35pEg̃o1 + 25pCc̃o1

]
+ 2760

[
35pEg̃o2 + 25pCc̃o2

]

+ 70000pC
max

c̃
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subject to

0 ≤ pC
max
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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Note that problem (3.4) is an NLP problem since it includes nonlinear terms
μCmax

co pC
max

c , ∀c, o, in constraints (3.4j), ∀o. NLP problems are generally hard to solve,
and convergence to the optimum is not guaranteed [8]. However, it is possible to
transform problem (3.4) into an equivalent MILP problem, as explained in the fol-
lowing section.

3.3.3 Equivalent MILP Formulation

In theGEP problem (3.4), the capacity of the candidate generating units to build in the
system is defined by variables pC

max

c , ∀c, which can take any value between zero and
P
Cmax

c , i.e., we consider that pC
max

c is a nonnegative continuous variable. However, this
capacity is generally a discrete decision variable since generating units are usually
built in blocks of a predetermined size. Therefore, it is necessary to reformulate
constraints (3.4b), ∀c, in order to take into account such a fact. These constraints can
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be reformulated as follows:

pC
max

c =
∑

q

uOptioncq POption
cq ∀c (3.5a)

∑

q

uOptioncq = 1 ∀c (3.5b)

uOptioncq ∈ {0, 1} ∀c, q. (3.5c)

The working of constraints (3.5) is illustrated with the following example. Let
us consider that it is possible to build up to 300MW of new capacity in 100MW
blocks for a candidate generating unit ĉ. Thus, we define parameters POption

ĉq , ∀q, as
POption
ĉq1

= 0, POption
ĉq2

= 100, POption
ĉq3

= 200, and POption
ĉq4

= 300. If the optimal capacity

to be built in the system is, for example, 200MW, then binary variables uOptionĉq , ∀q,
are uOptionĉq3

= 1 and uOptionĉq = 0, q = q1, q2, q4, so that pC
max

ĉ = 200 by constraints
(3.5).

Using Eqs. (3.5), it is possible to reformulate nonlinear terms μCmax

co pC
max

c , ∀c, o,
as μCmax

co

∑

q

uOptioncq POption
cq , ∀c, o. That is, using this reformulation we have products

of a continuous variable and a binary variable, which can be transformed into exact
equivalent mixed-integer linear expressions as explained below [1, 5, 12].

Let us consider μCmax

co

∑

q

uOptioncq POption
cq =

∑

q

μCmax

co uOptioncq POption
cq =

∑

q

zAUXcqo ,

where zAUXcqo = μCmax

co uOptioncq POption
cq , ∀c, q, o, are auxiliary variables equal to the prod-

ucts of a continuous variable, a binary variable, and a constant. These auxiliary
variables can be rewritten as follows:

zAUXcqo = μCmax

co POption
cq − ẑAUXcqo ∀c, q, o (3.6a)

0 ≤ zAUXcqo ≤ uOptioncq M ∀c, q, o (3.6b)

0 ≤ ẑAUXcqo ≤ (
1 − uOptioncq

)
M ∀c, q, o, (3.6c)

where ẑAUXcqo , ∀c, q, o, are auxiliary variables andM is a large enough positive constant
[5, 22].

The working of Eqs. (3.6) is explained next. On the one hand, let us consider that
option q̂ does not determine the optimal capacity of candidate generating unit ĉ,
i.e., variable uOptionĉq̂ = 0. In such a case, we have the following values of variables:

zAUXĉq̂o = μCmax

ĉo uOptionĉq̂ POption
ĉq̂ = 0, ∀o. This is guaranteed by Eq. (3.6b), which impose

0 ≤ zAUXĉq̂o ≤ 0, ∀o, i.e., zAUXĉq̂o = 0, ∀o, if uOptionĉq̂ = 0. On the other hand, if option q̃
does determine the optimal capacity of candidate generating unit c̃, i.e., if variable
uOptionc̃q̃ is equal to 1, then variables zAUXc̃q̃o = μCmax

c̃o POption
c̃q̃ , ∀o. This is guaranteed by

Eq. (3.6a), which impose zAUXc̃q̃o = μCmax

co POption
cq − ẑAUXcqo , ∀o, and by Eq. (3.6c), which
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impose ẑAUXc̃q̃o = 0, ∀o, if uOptionc̃q̃ = 1. Note that Eq. (3.6b) impose in this case that

0 ≤ zAUXc̃q̃o ≤ M, ∀o, i.e., that nonnegative variables zAUXc̃q̃o , ∀o, are below large enough
bounds.

ConstantM impose bounds for auxiliary variables zAUXcqo and ẑAUXcqo . These variables

are used to compute non-linear terms μCmax

co uOptioncq POption
cq so that positive constantM

must have a value larger thanμCmax

co POption
cq . However, note that the values of variables

μCmax

co are not known in advance. Additional details on how to select positive constant
M are provided in [5, 22].

Note that using Eqs. (3.6) we get rid of non-linear terms μCmax

co pC
max

c , ∀c, o, and the
GEP problem considering a deterministic single-node static approach can be finally
formulated using the MILP model below:
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)
M ∀c, q (3.7o)

}

,∀o,
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where variables in set ΔD1S,MILP = {
pC

max

c , uOptioncq , ΔD1SM
o , ΔD1SM,D

o , Δ1SM,DUAL
o ,

Δ1SM,AUX
o

}
are the optimization variables of problem (3.7), ΔD1S,AUX =

{
zAUXcqo ,

ẑAUXcqo

}
, and M is a large enough positive constant.

Illustrative Example 3.4 Deterministic single-node static GEP problem: Solution

Let us consider Illustrative Example3.2. The capacity of the candidate unit is
available in 100MW blocks, up to 5 blocks.

By solving problem (3.7) for these data, we obtain that the optimal generation
expansion plan consists of building 300MW of the candidate generating unit, i.e.,
variable uOptionc̃q4

= 1 and variables uOptionc̃q = 0, ∀q �= q4.
The power produced by the existing generating unit is 0 and 250MWfor operating

conditions o1 and o2, respectively. As the generation costs of the candidate generating
unit built are cheaper than those of the existing one, the power produced by the
candidate generating unit is 290 and 300MW for operating conditions o1 and o2,
respectively. �

3.3.4 Meaning of Dual Variables λo

Variables λo are the dual variables associated to the generation-demand balance
Eqs. (3.2b), ∀o. Since the market-clearing problems (3.2), ∀o, represent the mini-
mization of the generation cost (or the maximization of social welfare since demands
are considered inelastic), these dual variables represent the generation cost increment
in the market that results from a marginal increment of the demand in the system.
Thus, these dual variables are usually referred to as the marginal market prices, i.e.,
the prices that demands pay for their load consumptions and the price that generating
units receive for their productions.

Illustrative Example 3.5 Deterministic single-node static GEP problem: Market
prices

The values of variables λo, ∀o, in Illustrative Example3.4 are λo1 = $25/MWh
and λo2 = $35/MWh. The meaning of these variables is explained next.

Operating condition 1 is characterized by a demand of 290MW. As 300MW
of capacity of the candidate generating unit c̃ are built and the production cost of
this unit is cheaper than that of the existing generating unit g̃, only the newly built
generating unit is used to supply the demand in the first operating condition. More-
over, the newly built generating unit is able to provide an additional 10MW. Thus,
a marginal increment in the demand would result in a marginal increment of the
generation cost of $25/MWh (i.e., λo1 ). On the other hand, operating condition 2 is
characterized by a demand of 550MW. As only 300MW of the candidate generating
unit c̃ are built, the remaining 250MW have to be provided by the existing generat-
ing unit g̃ in this case. Here, the newly built unit is used at full capacity, and thus,
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a marginal increment in the demand should be satisfied by the existing generating
unit, which would result in a marginal increment of the generation cost of $35/MWh
(i.e., λo2 ). �

3.4 Deterministic Single-Node Dynamic GEP

The GEP problem described in the previous section considers a static approach, i.e.,
the generation expansion decisions for a given planning horizon are made at a single
point in time (usually at the beginning of the planning horizon). In this section, we
describe the GEP problem considering a dynamic approach, in which the generation
expansion decisions can be made at different points in time.

For the sake of simplicity, we also consider a deterministic single-node approach.
Considering this framework, the GEP problem using a deterministic single-node

dynamic approach can be formulated using the following complementarity model:
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∑
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pEgot, p
C
cot ∈ Ωot

(
PD
dt,P

Emax

g , pC
max

ct

) ∀g, c, o, t, (3.8e)

where Ωot
(
PD
dt, p

Emax

g , pC
max

ct

) =
{

minΔD1DM
ot

∑

g

CE
gtp

E
got +

∑

c

CC
ctp

C
cot (3.9a)

subject to

∑

g

pEgot +
∑

c

pCcot =
∑

d

PD
dot (3.9b)

0 ≤ pEgot ≤ PEmax

g ∀g (3.9c)



3.4 Deterministic Single-Node Dynamic GEP 81

0 ≤ pCcot ≤
∑

τ≤t

pC
max

cτ ∀c (3.9d)

}

,∀o, t,

variables in sets ΔD1S =
{
uOptioncqt , pC

max

ct

}
and ΔD1DM

ot , ∀o, t, are the optimization

variables of problem (3.8), and variables in sets ΔD1DM
ot = {

pEgot , p
C
cot

}
,∀o, t, are the

optimization variables of problems (3.9), ∀o, t.
Problem (3.8) is similar to the GEP problem considering a deterministic single-

node static approach (3.1) described in Sect. 3.3. The main differences are summa-
rized below:

1. The capacities to build of each candidate generating unit (i.e., variables pC
max

ct , ∀c,
∀t) can take different values at different time periods indexed by t.

2. The investment costs at each time period in the objective function (3.8a) are
multiplied by the corresponding amortization rates,which represent the equivalent
amount of money to be paid for the investments at each time period.

3. Constraints (3.9d) impose that the available capacity of the candidate generating
units at time period t is equal to the capacity built at that time period plus the
capacities built in the previous ones.

4. The market-clearing problems (3.9) are formulated for each operating condition
o and time period t.

For the sake of simplicity, we assume that all monetary values are referred to the
same point in time, and thus, it is not necessary to multiply by discount rates.

In order to solve complementarity model (3.8), we re-formulate it as a MILP
problem as explained in Sect. 3.3.3.

Illustrative Example 3.6 Deterministic single-node dynamic GEP problem

Let us consider Illustrative Example3.4. Here, we consider that the planning hori-
zon is divided in two time periods, each one represented by two operating conditions.

In the first time period, operating conditions o1 and o2 are characterized by
demands of 246.5 and 467.5MW, and weights of 6000h and 2760h, respectively. In
the second time period, operating conditions o1 and o2 are characterized by demands
of 290 and 550MW, and weights of 6000h and 2760h, respectively.

The investment cost is equal to $700,000 per MW, and the amortization rates are
equal to 0.2 and 0.1 for the first and second time periods, respectively.

Considering the above data, theGEPproblemconsidering a deterministic dynamic
approach results in the complementarity model below:

minΔ 6000
[
35pEg̃o1t1 + 25pCc̃o1t1

]
+ 2760

[
35pEg̃o2t1 + 25pCc̃o2t1

]

+ 6000
[
35pEg̃o1t2 + 25pCc̃o1t2

]
+ 2760

[
35pEg̃o2t2 + 25pCc̃o2t2

]

+ 140000pC
max

c̃t1 + 70000pC
max

c̃t2
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subject to

pC
max

c̃t1 = 0uOptionc̃q1t1
+ 100uOptionc̃q2t1

+ 200uOptionc̃q3t1
+ 300uOptionc̃q4t1

+ 400uOptionc̃q5t1
+ 500uOptionc̃q6t1

pC
max

c̃t2 = 0uOptionc̃q1t2
+ 100uOptionc̃q2t2

+ 200uOptionc̃q3t2
+ 300uOptionc̃q4t2

+ 400uOptionc̃q5t2
+ 500uOptionc̃q6t2

uOptionc̃q1t1
+ uOptionc̃q2t1

+ uOptionc̃q3t1
+ uOptionc̃q4t1

+ uOptionc̃q5t1
+ uOptionc̃q6t1

= 1

uOptionc̃q1t2
+ uOptionc̃q2t2

+ uOptionc̃q3t2
+ uOptionc̃q4t2

+ uOptionc̃q5t2
+ uOptionc̃q6t2

= 1

uOptionc̃q1t1
, uOptionc̃q2t1

, uOptionc̃q3t1
, uOptionc̃q4t1

, uOptionc̃q5t1
, uOptionc̃q6t1

, uOptionc̃q1t2
, uOptionc̃q2t2

, uOptionc̃q3t2
,

uOptionc̃q4t2
, uOptionc̃q5t2

, uOptionc̃q6t2
∈ {0, 1}

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t1 ,p
C
c̃o1 t1

35pEg̃o1t1 + 25pCc̃o1t1
s.t.

pEg̃o1t1 + pCc̃o1t1 = 246.5

0 ≤ pEg̃o1t1 ≤ 400

0 ≤ pCc̃o1t1 ≤ pC
max

c̃t1
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t1 ,p
C
c̃o2 t1

35pEg̃o2t1 + 25pCc̃o2t1
s.t.

pEg̃o2t1 + pCc̃o2t1 = 467.5

0 ≤ pEg̃o2t1 ≤ 400

0 ≤ pCc̃o2t1 ≤ pC
max

c̃t1
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t2 ,p
C
c̃o1 t2

35pEg̃o1t2 + 25pCc̃o1t2
s.t.

pEg̃o1t2 + pCc̃o1t2 = 290

0 ≤ pEg̃o1t2 ≤ 400

0 ≤ pCc̃o1t2 ≤ pC
max

c̃t1
+ pC

max

c̃t2
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t2 ,p
C
c̃o2 t2

35pEg̃o2t2 + 25pCc̃o2t2
s.t.

pEg̃o2t2 + pCc̃o2t2 = 550

0 ≤ pEg̃o2t2 ≤ 400

0 ≤ pCc̃o2t2 ≤ pC
max

c̃t1
+ pC

max

c̃t2
,
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where Δ =
{
pEg̃o1t1 , p

C
c̃o1t1

, pEg̃o2t1 , p
C
c̃o2t1

, pC
max

c̃t1
, pEg̃o1t2 , p

C
c̃o1t2

, pEg̃o2t2 , p
C
c̃o2t2

, pC
max

c̃t2
, uOptionc̃q1t1

,

uOptionc̃q2t1
, uOptionc̃q3t1

, uOptionc̃q4t1
, uOptionc̃q5t1

, uOptionc̃q6t1
, uOptionc̃q1t2

, uOptionc̃q2t2
, uOptionc̃q3t2

, uOptionc̃q4t2
, uOptionc̃q5t2

, uOptionc̃q6t2

}
.

We obtain that it is optimal to build 200MW of new capacity at the beginning of
the planning horizon (i.e., at the beginning of the first time period) and an additional
100MW at the beginning of the second time period.

In the first time period, the 200MW of the newly built generating unit are used in
both operating conditions since it is cheaper than the existing generating unit, from
which 46.5 and 267.5MW are used in operating conditions o1 and o2, respectively,
to satisfy the demand. In the second time period, additional 100MWof the candidate
generating unit are built and, thus, it is possible to satisfy the demand in operating
condition o1 with this unit, while 250MW of the existing generating unit are needed
to satisfy the demand in operating condition o2.

Note that the operating conditions in the second time period are equal to those
considered in Illustrative Example3.4. This is so because if a static approach is
considered, then the generation expansion plan is determined considering the whole
time period, and thus, the largest expected demand should be considered.

If we compare the solution of this example and the solution of Illustrative Exam-
ple3.4, we observe that the total capacity installed in the system in thewhole planning
horizon is the same (300MW). However, considering that investment decisions can
be made at two points in time, i.e., considering a dynamic approach, has the advan-
tage that, if the operating conditions in the second time period are finally different
than those considered, then it is possible to adapt by changing the generation expan-
sion decisions. For example, let us consider that the demand in the system does not
increase as expected and the operating conditions in the second time period remain
the same as in the first time period. If a static approach is considered, the 300MW
of the candidate generating unit are already built at the beginning of the planning
horizon, so it is not possible to adapt. However, if a dynamic approach is considered,
then only 200MW of the candidate generating unit are built at the beginning of the
planning horizon, and it is possible not to build additional capacity in the second
time period if these unexpected changes occur. �

3.5 Deterministic Network-Constrained Static GEP

The GEP problems described in the previous sections consider a single-node
approach, i.e., an approach that does not take into account the network constraints.
Thus, the generation expansion planner determines the optimal capacity of the candi-
date units to build in the system, i.e., their optimal sizes, but not where to build these
generating units, i.e., their optimal locations. Using such a single-node approach
allows us to formulate a relatively simple problem since real-world electric energy
systems usually have thousands of nodes and transmission lines, whose modeling
may lead to very complex problems.
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Although the single-node approach is generally valid for electric energy systems
whose transmission network is not congested, in those systems whose transmission
lines usually become congested, it is necessary to consider the effect of network
constraints on the GEP problem since generation expansion decisions may be sig-
nificantly different under network congestion. Even in uncongested systems in the
present, the transmission network may become an issue in the future, e.g., if the
demand in the system increases or a significant amount of renewable capacity is
installed, so modeling the transmission network constraints in the GEP problem is
generally important. This is analyzed in this section.

For the sake of simplicity, a deterministic static approach is considered.

3.5.1 Complementarity Model

The GEP problem considering a deterministic network-constrained static approach
can be formulated using the complementarity model below:

minΔDNS,ΔDNSM
o ,Δ

DNSM,D
o

∑

o

ρo

[
∑

g

CE
g p

E
go +

∑

c

CC
c p

C
co

]

+
∑

c

ĨCc p
Cmax

c (3.10a)

subject to

pC
max

c =
∑

q

uOptioncq POption
cq ∀c (3.10b)

∑

q

uOptioncq = 1 ∀c (3.10c)

uOptioncq ∈ {0, 1} ∀c, q (3.10d)

pEgo, p
C
co ∈ Ωo

(
PD
do,P

Emax

g , pC
max

c

) ∀g, c, o, (3.10e)

where Ωo
(
PD
do,P

Emax

g , pC
max

c

) =
{

minΔDNSM
o

∑

g

CE
g p

E
go +

∑

c

CC
c p

C
co (3.11a)

subject to

∑

g∈ΩE
n

pEgo +
∑

c∈ΩC
n

pCco −
∑

�|s(�)=n

pL�o +
∑

�|r(�)=n

pL�o =
∑

d∈ΩD
n

PD
do : λno ∀n (3.11b)

pL�o = B�

(
θs(�)o − θr(�)o

) : μL
�o ∀� (3.11c)

− Fmax
� ≤ pL�o ≤ Fmax

� : μLmin

�o , μLmax

�o ∀� (3.11d)
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0 ≤ pEgo ≤ PEmax

g : μEmax

go ∀g (3.11e)

0 ≤ pCco ≤ pC
max

c : μCmax

co ∀c (3.11f)

− π ≤ θno ≤ π : μAmin

no , μAmax

no ∀n (3.11g)

θno = 0 : μA,ref.
no n: ref. (3.11h)

}

,∀o,

variables in sets ΔDNS =
{
uOptioncq , pC

max

c

}
, ΔDNSM

o , ∀o, and ΔDNSM,D
o , ∀o, are the

optimization variables of problem (3.10), variables in sets ΔDNSM
o =

{
pEgo , p

C
co, p

L
�o,

θno

}
, ∀o, are the primal optimization variables of problems (3.11), ∀o, and variables

in sets ΔDNSM,D
o =

{
λno , μEmax

go , μCmax

co , μLmax

lo , μLmin

lo , μAmax

no , μAmin

no , μA,ref.
no

}
, ∀o, are the

dual optimization variables of problems (3.11), ∀o. The dual variables associated to
constraints of problems (3.11), ∀o, are provided following a colon.

The differences betweenmodel (3.10) and the equivalent one considering a single-
node approach (3.1) are summarized below:

1. Constraints (3.2b) are replaced by constraints (3.11b) that impose the generation-
demand balance at each node of the system.

2. Constraints (3.11c) that define the power flows through transmission lines are
included.

3. Constraints (3.11d) that impose bounds on the power flows through transmission
lines are included.

4. Constraints (3.11g) that impose bounds on voltage angles are included.
5. Constraints (3.11h) that define the voltage angle at the reference node are included.

Note that the transmission network constraints are explicitly modeled in the
market-clearing problems (3.11), ∀o. In doing so, we use a dc power flow model
without losses for the sake of simplicity. This allows us to formulate the market-
clearing problems (3.11), ∀o, as LP problems [13].

Illustrative Example 3.7 Deterministic network-constrained GEP problem: Com-
plementarity model formulation

Let us consider Illustrative Example3.4. We consider that the existing generating
unit g̃ and the demand d̃ are located in a two-node electric energy system. Generating
unit g̃ is located at node 1, while demand d̃ is located at node 2. Nodes 1 and 2 are
connected through a transmission line �̃ with a susceptance equal to 500 p.u. and a
transmission capacity of 500MW. Moreover, the candidate generating unit c̃ can be
built only at node 2. This is schematically depicted in Fig. 3.3.

Given the above data and considering a base power of 1MW and a base voltage
of 1 kV, the GEP problem (3.10) results in the following complementarity model:
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Fig. 3.3 Illustrative Example3.7: two-node electric energy system

minΔ 6000
[
35pEg̃o1 + 25pCc̃o1

]
+ 2760

[
35pEg̃o2 + 25pCc̃o2

]

+ 70000pC
max

c̃

subject to

pC
max

c̃ = 0uOptionc̃q1
+ 100uOptionc̃q2

+ 200uOptionc̃q3
+ 300uOptionc̃q4

+ 400uOptionc̃q5

+ 500uOptionc̃q6

u
Option
c̃q1

+ u
Option
c̃q2

+ u
Option
c̃q3

+ u
Option
c̃q4

+ u
Option
c̃q5

+ u
Option
c̃q6

= 1

u
Option
c̃q1

, u
Option
c̃q2

, u
Option
c̃q3

, u
Option
c̃q4

, u
Option
c̃q5

, u
Option
c̃q6

∈ {0, 1}
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1
,pCc̃o1

35pEg̃o1
+ 25pCc̃o1

s.t.

pEg̃o1
− pL

�̃o1
= 0

pCc̃o1
+ pL

�̃o1
= 290

pL
�̃o1

= 500
(
θn1o1 − θn2o1

)

−500 ≤ pL
�̃o1

≤ 500

0 ≤ pEg̃o1
≤ 400

0 ≤ pCc̃o1
≤ pC

max

c̃

−π ≤ θn2o1 ≤ π

θn1o1 = 0
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1
,pCc̃o1

35pEg̃o1
+ 25pCc̃o1

s.t.

pEg̃o2
− pL

�̃o2
= 0

pCc̃o2
+ pL

�̃o2
= 550

pL
�̃o2

= 500
(
θn1o2 − θn2o2

)

−500 ≤ pL
�̃o2

≤ 500

pEg̃o2
+ pCc̃o2

= 550

0 ≤ pEg̃o2
≤ 400

0 ≤ pCc̃o2
≤ pC

max

c̃

−π ≤ θn2o2 ≤ π

θn1o2 = 0,
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where Δ =
{
pEg̃o1 , p

C
c̃o1

, pEg̃o2 , p
C
c̃o2

, pL
�̃o1

, pL
�̃o2

, pC
max

c̃ , uOptionc̃q1
, uOptionc̃q2

, uOptionc̃q3
, uOptionc̃q4

,

uOptionc̃q5
, uOptionc̃q6

}
. �

3.5.2 Equivalent MILP Formulation

Complementarity model (3.10) is recast as the MILP problem (3.12) following the
procedure explained in Sect. 3.3:

minΔDNS,MILP

∑

o

ρo

[
∑

g

CE
g p

E
go +

∑

c

CC
c p

C
co

]

+
∑

c

ĨCc p
Cmax

c (3.12a)

subject to

pC
max

c =
∑

q

uOptioncq POption
cq ∀c (3.12b)

∑

q

uOptioncq = 1 ∀c (3.12c)

uOptioncq ∈ {0, 1} ∀c, q (3.12d)
{ ∑

g∈ΩE
n

pEgo +
∑

c∈ΩC
n

pCco −
∑

�|s(�)=n

pL�o +
∑

�|r(�)=n

pL�o =
∑

d∈ΩD
n

PD
do ∀n (3.12e)

pL�o = B�

(
θs(�)o − θr(�)o

) ∀� (3.12f)

− Fmax
� ≤ pL�o ≤ Fmax

� ∀� (3.12g)

0 ≤ pEgo ≤ PEmax

g ∀g (3.12h)

0 ≤ pCco ≤ PCmax

c ∀c (3.12i)

− π ≤ θno ≤ π ∀n (3.12j)

θno = 0 n: ref. (3.12k)

CE
g − λn(g)o + μEmax

go ≥ 0 ∀g (3.12l)

CC
c − λn(g)o + μCmax

co ≥ 0 ∀c (3.12m)

λs(�)o − λr(�)o − μL
�o + μLmax

�o − μLmin

�o = 0 ∀� (3.12n)
∑

�|s(�)=n

B�μ
L
�o −

∑

�|r(�)=n

B�μ
L
�o + μAmax

no − μAmin

no = 0 ∀n \ n: ref. (3.12o)

∑

�|s(�)=n

B�μ
L
�o −

∑

�|r(�)=n

B�μ
L
�o + μA,ref.

no = 0 n: ref. (3.12p)

μEmax

go ≥ 0 ∀g (3.12q)

μCmax

co ≥ 0 ∀c (3.12r)
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μLmax

�o , μLmin

�o ≥ 0 ∀� (3.12s)

μAmax

no , μAmin

no ≥ 0 ∀n \ n: ref. (3.12t)
∑

g

CE
g p

E
go +

∑

c

CC
c p

C
co =

∑

n

λno

∑

d∈ΩD
n

PD
do −

∑

g

μEmax

go PEmax

g −
∑

c

∑

q

zAUXcqo

−
∑

�

(
μLmax

�o + μLmin

�o

)
Fmax

� −
∑

n\n:ref.

(
μAmax

no + μAmin

no

)
π (3.12u)

zAUXcqo = μCmax

co POption
cq − ẑAUXcqo ∀c, q (3.12v)

0 ≤ zAUXcqo ≤ uOptioncq M ∀c, q (3.12w)

0 ≤ ẑAUXcqo ≤ (
1 − uOptioncq

)
M ∀c, q (3.12x)

}

,∀o,

where variables in set ΔDNS,MILP =
{
uOptioncq , pC

max

c , ΔDNSM
o , ΔDNSM,D

o , ΔDNSM,AUX
o

}

are the optimization variables of problem (3.12) and variables in sets ΔDNSM,AUX
o ={

zAUXcqo , ẑAUXcqo

}
, ∀o, are auxiliary variables.

Note that the differences between MILP problem (3.12) and that used for the
single-node case (3.7) are:

1. New primal constraints (3.12e)–(3.12g) and (3.12j)–(3.12k) are included.
2. New dual constraints (3.12n)–(3.12p) are included.
3. As a result of 1 and 2 above, the strong duality equalities (3.12u) are different.

Illustrative Example 3.8 Deterministic network-constrained GEP problem: MILP
formulation and solution

Let us consider the data of Illustrative Example3.7.
Given the above data, the GEP problem (3.12) results in the following MILP

model:

minΔ 6000
[
35pEg̃o1 + 25pCc̃o1

]
+ 2760

[
35pEg̃o2 + 25pCc̃o2

]

+ 70000pC
max

c̃

subject to

pC
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c̃ = 0uOptionc̃q1
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+ 400uOptionc̃q5
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⎧
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− ẑAUXc̃q1o1

zAUXc̃q2o1
= 100μCmax

c̃o1
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where Δ =
{
pEg̃o1 , p

C
c̃o1

, pL
�̃o1

, pEg̃o2 , p
C
c̃o2

, pL
�̃o2

, pC
max

c̃ , uOptionc̃q1
, uOptionc̃q2

, uOptionc̃q3
, uOptionc̃q4

,

uOptionc̃q5
, uOptionc̃q6

, λn1o1 ,μ
L
�̃o1

,μEmax

g̃o1
,μCmax

c̃o1
,μLmax

�̃o1
,μLmin

�̃o1
,μAmax

n1o1 ,μ
Amin

n2o1 ,μ
A,ref.
n1o1 , zAUXc̃q1o1

, zAUXc̃q2o1
,

zAUXc̃q3o1
, zAUXc̃q4o1

, zAUXc̃q5o1
, zAUXc̃q6o1
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}
.

We obtain that the optimal solution consists of building 300MWof capacity of the
candidate generating unit, i.e., we obtain exactly the same solution as in Illustrative
Example3.4. This is so because the transmission line connecting the two nodes is not
congested, and thus, it is immaterial if the transmission constraints are considered
or not.

However, let us now consider that the capacity of the transmission line connecting
nodes 1 and 2 is equal to 200MW. If we solve the GEP problem (3.12) again, then we
obtain that it is optimal to build 400MW of capacity of the candidate generating unit
c̃, i.e., the solution differs from that obtained in IllustrativeExample3.4. In Illustrative
Example3.4, the existing generating unit g̃, located at node 1, produces 250MW in
the second operating condition that are used to supply the demand d̃, located at node
2. This means that the power flow through the transmission line is 250MW in this
case. However, as the capacity of the transmission line is only 200MW, it is possible
to use only 200MW of the existing generating unit g̃ to supply the demand d̃, and
thus, it is needed to build 100MW of additional capacity of the candidate generating
unit c̃, which is located at the same node as the demand d̃. �

3.5.3 Meaning of Dual Variables λno

In this case, variables λno, ∀n, o, are the dual variables associated to the nodal
generation-demand balance Eq. (3.11b), ∀n, o. As explained in Sect. 3.3.4, these vari-
ables are generally used as the market prices. However, note that in this case these
variables may take different values at different nodes. Therefore, they are usually
referred to as locational marginal prices (LMPs).

3.6 Stochastic Single-Node GEP

The models described in the previous sections consider a deterministic approach,
i.e., these models assume that the expansion planner has perfect information at the
time it determines the optimal generation expansion plan. Although considering
such a deterministic approach allows us to formulate a relatively simple model, and
comprehend its assumptions, its formulation and its outcomes, in reality generation
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expansion decisions aremadewithin an uncertain environment that, if not adequately
represented, may lead to a sub-optimal generation expansion plan.

This issue is analyzed in this section. We describe the GEP problem considering
a stochastic approach in which uncertainties are modeled through a set of scenarios
indexed by ω. For the sake of simplicity, we assume that uncertainty only affects the
future demand conditions, e.g., the demand growth. However, additional sources of
uncertainty may be considered through additional scenarios [3].

Considering such a stochastic framework, we describe the GEP problem using
both a static approach and a dynamic one. In both cases, we consider a single-node
approach for the sake of simplicity.

3.6.1 Static Model Formulation

Considering a static approach, the generation expansion plan is made at the begin-
ning of the planning horizon. At this point in time, the generation expansion planner
does not know the future scenario that will materialize. Thus, these optimal gen-
eration expansion decisions are here-and-now decisions since they do not depend
on the scenario realizations. Figure3.4 depicts the corresponding scenario tree. The
generation expansion planner determines the expansion plans at the beginning of the
planning horizon and, then, one of the scenarios used to represent the uncertainty in
the decision-making problem is realized. The wait-and-see decisions are in this case
those corresponding to the power produced by existing and candidate generating
units, which do depend on the scenario realization.

Considering such a stochastic single-node stochastic framework, theGEPproblem
can be formulated using the following complementarity model:

Fig. 3.4 Scenario tree for the stochastic single-node static GEP problem
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minΔS1S,Δ1SSM
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∑
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∑
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∑
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,∀o, ω,

variables in sets ΔS1S =
{
pC
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c , uOptioncq

}
and ΔS1SM

oω , ∀o, ω, are the optimization

variables of problem (3.13), and variables in sets ΔS1SM
oω =

{
pEgoω , p

C
coω

}
are the

optimization variables of problems (3.14), ∀o, ω.
The differences betweenGEP problem (3.13) and the equivalent (3.1) considering

a deterministic approach are summarized below:

1. In the objective function (3.13a), we compute the expected generation cost. To

do so, the generation cost for each scenario,
∑

o

ρo

[
∑

g

CE
g p

E
goω +

∑

c

CC
c p

C
coω

]

,

is multiplied by the probability of the corresponding scenario, ϕω.
2. The market-clearing problems (3.14), ∀o, ω, are formulated for each operating

condition o and for each scenario ω.
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Note that nonanticipativity conditions are implicitly imposed since the generation
expansion decision variables, i.e., variables pC

max

c , do not depend on the scenario
realization ω.

Finally, complementarity model (3.13) is recast as a MILP problem using the
procedure explained in Sect. 3.3.3.

Illustrative Example 3.9 Stochastic GEP problem using a static approach

Considering the data of Illustrative Example3.4, we assume that demand d̃ is
subject to uncertainty as explained below.

The demand for each operating condition can be 30% lower than and 30% higher
than the demands considered in Illustrative Example3.4 with equal probability (0.5),
i.e., we consider two scenarios. Scenario 1 is characterized by demand conditions of
203 and 385MW for operating conditions o1 and o2, respectively, while scenario 2
is characterized by demand conditions of 377 and 715MW for operating conditions
o1 and o2, respectively.

Figure3.5 depicts the scenario tree for this illustrative example.
Considering the above data, the GEP problem considering a stochastic static

approach (3.13) results in the following complementarity model:

minΔ 0.5
{
6000

[
35pEg̃o1ω1

+ 25pCc̃o1ω1

]
+ 2760

[
35pEg̃o2ω1

+ 25pCc̃o2ω1

]}

+ 0.5
{
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[
35pEg̃o1ω2

+ 25pCc̃o1ω2

]
+ 2760

[
35pEg̃o2ω2

+ 25pCc̃o2ω2

]}

+ 70000pC
max

c̃

subject to

pC
max

c̃ = 0uOptionc̃q1
+ 100uOptionc̃q2

+ 200uOptionc̃q3
+ 300uOptionc̃q4

+ 400uOptionc̃q5

+ 500uOptionc̃q6

uOptionc̃q1
+ uOptionc̃q2

+ uOptionc̃q3
+ uOptionc̃q4

+ uOptionc̃q5
+ uOptionc̃q6

= 1

uOptionc̃q1
, uOptionc̃q2

, uOptionc̃q3
, uOptionc̃q4

, uOptionc̃q5
, uOptionc̃q6

∈ {0, 1}

Fig. 3.5 Scenario tree for
Illustrative Example 3.9
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.

We obtain that the optimal GEP plan consists of building 400MWof the candidate
generating unit.

Note that in both this illustrative example and in Illustrative Example3.4, the
average demand for each operating condition is the same. However, the generation
expansion decisions are different. This means that using the average value of the
uncertain parameters to formulate a deterministic problem does not always result in
the optimal solution. For example, in this case, building 300MW of the candidate
generating unit, i.e., the solution of the deterministic static problem in Illustrative
Example3.4, would not be enough to supply the demand in the case that scenario
2 is finally realized. Therefore, it is important to represent the uncertainties on the
GEP decision-making problem in order to obtain an informed generation expansion
plan.
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The disadvantage of using such a stochastic framework is that the size of the
problem increases. For example, in this illustrative example, the number of variables
considered in themarket-clearing problems is twice the number of variables needed in
Illustrative Example3.4. Moreover, in order to represent the uncertainties accurately,
it is usually necessary to consider a large enough number of scenarios, which may
lead to very large problems. It is, therefore, a tradeoff between modeling accuracy
and tractability. �

3.6.2 Dynamic Model Formulation

The stochastic single-node static GEP model described in the previous section is
extended here to consider a dynamic approach.

As explained in Sect. 3.2.3, we consider that the planning horizon is divided into
a set of time periods and that the generation expansion decisions can be made at the
beginning of each time period.

Uncertainty in the demand conditions at each time period is represented by a set
of discrete scenarios. We assume that the generation expansion planner knows the
demand scenario realization of each time period when it concludes so that it can
adapt the generation expansion plan for the future time periods according to this.

Given the above framework, we consider the following decision-making sequence
and corresponding scenario tree depicted in Fig. 3.6:

1. At the beginning of the planning horizon, i.e., at the beginning of the first
time period, the generation expansion planner determines the optimal generation
expansion plan to be carried out at this point in time. These expansion decisions
are here-and-know decisions since they do not depend on the future scenario real-
izations as the generation expansion planner does not know at this point in time
the future scenario realizations.

2. The first time period concludes, and the generation expansion planner knows the
actual scenario realization for the first time period.

3. The generation expansion planner determines the generation expansion plan to be
made at the beginning of the second time period. These expansion decisions are
wait-and-see decisions with respect to the first time period since they do depend
on the scenario realization of the first time period. However, they are here-and-
now decisions with respect to the second and future time periods since they do
not depend on the future scenario realizations.

Then, steps 2–3 above are repeated until the last time period of the planning horizon.
Considering the above framework, the GEP problem considering a stochastic

single-node dynamic approach can be formulated using the complementarity model
below:

min
ΔS1D,ΔS1DM

otω

∑

ω

ϕω

∑

t

⎧
⎨

⎩

⎡

⎣
∑

o
ρo

⎛

⎝
∑

g
CE
g p

E
gotω +

∑

c
CC
c p

C
cotω

⎞

⎠+ at
∑

c
ICc p

Cmax
ctω

⎤

⎦

⎫
⎬

⎭

(3.15a)
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Fig. 3.6 Scenario tree for the stochastic single-node dynamic GEP problem

subject to

pC
max

ctω =
∑

q

uOptioncqtω POption
cqt ∀c, t, ω (3.15b)

∑

q

uOptioncqtω = 1 ∀c, t, ω (3.15c)

uOptioncqtω ∈ {0, 1} ∀c, q, t, ω (3.15d)

pC
max

ctω = pC
max

ctω̃ ∀c, t, ω, ω̃|PD
doτω = PD

doτ ω̃ ∀d, o, τ < t (3.15e)

pEgotω, pCcotω ∈ Ωotω
(
PD
dotω,PEmax

g , pC
max

ctω

) ∀g, c, o, t, ω, (3.15f)

where Ωotω
(
PD
dotω,PEmax

g , pC
max

ctω

) =
{

minΔS1DM
otω

∑

g

CE
g p

E
gotω +

∑

c

CC
c p

C
cotω (3.16a)

subject to

∑

g

pEgotω +
∑

c

pCcotω =
∑

d

PD
dotω (3.16b)
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0 ≤ pEgotω ≤ PEmax

g ∀g (3.16c)

0 ≤ pCcotω ≤
∑

τ≤t

pC
max

cτω ∀c (3.16d)

}

,∀o, t, ω,

variables in sets ΔS1D =
{
pC

max

ctω , uOptioncqtω

}
and ΔS1DM

otω , ∀o, t, ω, are the optimization

variables of problem (3.15), and variables in sets ΔS1DM
otω =

{
pEgotω , p

C
cotω

}
, ∀o, t, ω,

are the optimization variables of problems (3.16), ∀o, t, ω.
The main differences between model (3.15) and the equivalent one using a sto-

chastic static approach (3.13) are summarized below:

1. In the objective function (3.15a), the investment costs at each time period are
multiplied by the corresponding amortization rates.

2. We include nonanticipativity constraints (3.15e), i.e., constraints that avoid antic-
ipating information. These constraints impose that for a given time period t, if
the characteristics of two scenarios ω and ω̃ in the previous time periods τ < t
are the same, i.e., if PD

doτω = PD
doτ ω̃

, ∀d, o, τ < t, then the generation expansion
plans of these two scenarios for time period t are also the same.

3. Constraints (3.16d) impose that the available capacity of the candidate generating
units at time period t is equal to the capacity built at that time period and in the
previous ones.

4. The market-clearing problems (3.16), ∀o, t, ω, are formulated for each operating
condition o, time period t, and scenario ω.

Finally, the GEP problem considering a stochastic dynamic approach is recast as
an MILP problem by following the procedure described in Sect. 3.3.3.

Illustrative Example 3.10 Stochastic GEP problem using a dynamic approach

Let us consider the data of Illustrative Example3.4. The planning horizon is
divided in this case into two time periods, so that generation expansion decisions can
be made at the beginning of both time periods.

There are two possible scenario realizations in the first time period, a and b.
Realizations a and b consider that operating conditions o1 and o2 in the first time
period are characterized by a low and high demand, respectively. Specifically, sce-
nario a considers that operating conditions o1 and o2 are defined by demands equal to
212MW and 402MW, respectively, while scenario b considers that operating condi-
tions o1 and o2 are defined by demands equal to 281MW and 533MW, respectively,
The probability of each of scenario realizations a and b is equal to 0.5.

On the other hand, there are also two possible scenario realizations in the second
time period, c and d. Realizations c and d consider that operating conditions o1 and o2
in the second time period are characterized by a low and high demand, respectively.
The operating conditions for these two scenarios in the second time period depend
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on the scenario realization in the first time period, as explained next and illustrated
using the corresponding scenario tree depicted in Fig. 3.7:

1. If scenario a is realized in the first time period, then (i) scenario c considers that
operating conditions o1 and o2 in the second time period are defined by demands
equal to 214MW and 407MW, respectively, while (ii) scenario d considers that
operating conditions o1 and o2 in the second time period are defined by demands
equal to 284MW and 539MW, respectively.

2. If scenario b is realized in the first time period, then (i) scenario c considers that
operating conditions o1 and o2 in the second time period are defined by demands
equal to 284MW and 539MW, respectively, while (ii) scenario d considers that
operating conditions o1 and o2 in the second time period are defined by demands
equal to 377MW and 715MW, respectively.

The probability of each of realizations c and d is equal to 0.5.
The weights of operating conditions o1 and o2 in both time periods are 6000h and

2760h, respectively.
This results in four scenarios for all time periods (combinations of possible real-

izations in both time periods), whose data are summarized in Table3.1. Note that the
data of scenarios and operating conditions have been selected so that the results of
this illustrative example can be compared with the results of the previous ones.

Considering the above data, the GEP problem considering a stochastic dynamic
approach (3.15) results in the following complementarity model:

Fig. 3.7 Scenario tree for Illustrative Example 3.10
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Table 3.1 Illustrative Example3.10: data for scenarios

Scenario Period 1 Period 2 Probability

Scenario 1 (a and c) PD
o1t1ω1

= 212 MW PD
o1t2ω1

= 214 MW 0.5 × 0.5 = 0.25

PD
o2t1ω1

= 402 MW PD
o2t2ω1

= 407 MW

Scenario 2 (a and d) PD
o1t1ω2

= 212 MW PD
o1t2ω2

= 284 MW 0.5 × 0.5 = 0.25

PD
o2t1ω2

= 402 MW PD
o2t2ω2

= 539 MW

Scenario 3 (b and c) PD
o1t1ω3

= 281 MW PD
o1t2ω3

= 284 MW 0.5 × 0.5 = 0.25

PD
o2t1ω3

= 533 MW PD
o2t2ω3

= 539 MW

Scenario 4 (b and d) PD
o1t1ω4

= 281 MW PD
o1t2ω4

= 377 MW 0.5 × 0.5 = 0.25

PD
o2t1ω4

= 533 MW PD
o2t2ω4

= 715 MW

minΔ 0.25
{
6000

[
35pEg̃o1t1ω1

+ 25pCc̃o1t1ω1

]
+ 2760

[
35pEg̃o2t1ω1

+ 25pCc̃o2t1ω1

]

+ 6000
[
35pEg̃o1t2ω1

+ 25pCc̃o1t2ω1

]
+ 2760

[
35pEg̃o2t2ω1

+ 25pCc̃o2t2ω1

]

+140000pC
max

c̃t1ω1
+ 70000pC

max

c̃t2ω1

}

+ 0.25
{
6000

[
35pEg̃o1t1ω2

+ 25pCc̃o1t1ω2

]
+ 2760

[
35pEg̃o2t1ω2

+ 25pCc̃o2t1ω2

]

+ 6000
[
35pEg̃o1t2ω2

+ 25pCc̃o1t2ω2

]
+ 2760

[
35pEg̃o2t2ω2

+ 25pCc̃o2t2ω2

]

+140000pC
max

c̃t1ω2
+ 70000pC

max

c̃t2ω2

}

+ 0.25
{
6000

[
35pEg̃o1t1ω3

+ 25pCc̃o1t1ω3

]
+ 2760

[
35pEg̃o2t1ω3

+ 25pCc̃o2t1ω3

]

+ 6000
[
35pEg̃o1t2ω3

+ 25pCc̃o1t2ω3

]
+ 2760

[
35pEg̃o2t2ω3

+ 25pCc̃o2t2ω3

]

+140000pC
max

c̃t1ω3
+ 70000pC

max

c̃t2ω3

}

+ 0.25
{
6000

[
35pEg̃o1t1ω4

+ 25pCc̃o1t1ω4

]
+ 2760

[
35pEg̃o2t1ω4

+ 25pCc̃o2t1ω4

]

+ 6000
[
35pEg̃o1t2ω4

+ 25pCc̃o1t2ω4

]
+ 2760

[
35pEg̃o2t2ω4

+ 25pCc̃o2t2ω4

]

+140000pC
max

c̃t1ω4
+ 70000pC

max

c̃t2ω4

}

subject to

pC
max

c̃t1ω1
= 0uOptionc̃q1t1ω1

+ 100uOptionc̃q2t1ω1
+ 200uOptionc̃q3t1ω1

+ 300uOptionc̃q4t1ω1
+ 400uOptionc̃q5t1ω1

+ 500uOptionc̃q6t1ω1

pC
max

c̃t2ω1
= 0uOptionc̃q1t2ω1

+ 100uOptionc̃q2t2ω1
+ 200uOptionc̃q3t2ω1

+ 300uOptionc̃q4t2ω1
+ 400uOptionc̃q5t2ω1

+ 500uOptionc̃q6t2ω1
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pC
max

c̃t1ω2
= 0uOptionc̃q1t1ω2

+ 100uOptionc̃q2t1ω2
+ 200uOptionc̃q3t1ω2

+ 300uOptionc̃q4t1ω2
+ 400uOptionc̃q5t1ω2

+ 500uOptionc̃q6t1ω2

pC
max

c̃t2ω2
= 0uOptionc̃q1t2ω2

+ 100uOptionc̃q2t2ω2
+ 200uOptionc̃q3t2ω2

+ 300uOptionc̃q4t2ω2
+ 400uOptionc̃q5t2ω2

+ 500uOptionc̃q6t2ω2

pC
max

c̃t1ω3
= 0uOptionc̃q1t1ω3

+ 100uOptionc̃q2t1ω3
+ 200uOptionc̃q3t1ω3

+ 300uOptionc̃q4t1ω3
+ 400uOptionc̃q5t1ω3

+ 500uOptionc̃q6t1ω3

pC
max

c̃t2ω3
= 0uOptionc̃q1t2ω3

+ 100uOptionc̃q2t2ω3
+ 200uOptionc̃q3t2ω3

+ 300uOptionc̃q4t2ω3
+ 400uOptionc̃q5t2ω3

+ 500uOptionc̃q6t3ω1

pC
max

c̃t1ω4
= 0uOptionc̃q1t1ω4

+ 100uOptionc̃q2t1ω4
+ 200uOptionc̃q3t1ω4

+ 300uOptionc̃q4t1ω4
+ 400uOptionc̃q5t1ω4

+ 500uOptionc̃q6t1ω4

pC
max

c̃t2ω4
= 0uOptionc̃q1t2ω4

+ 100uOptionc̃q2t2ω4
+ 200uOptionc̃q3t2ω4

+ 300uOptionc̃q4t2ω4
+ 400uOptionc̃q5t2ω4

+ 500uOptionc̃q6t2ω4

uOptionc̃q1t1ω1
+ uOptionc̃q2t1ω1

+ uOptionc̃q3t1ω1
+ uOptionc̃q4t1ω1

+ uOptionc̃q5t1ω1
+ uOptionc̃q6t1ω1

= 1

uOptionc̃q1t2ω1
+ uOptionc̃q2t2ω1

+ uOptionc̃q3t2ω1
+ uOptionc̃q4t2ω1

+ uOptionc̃q5t2ω1
+ uOptionc̃q6t2ω1

= 1

uOptionc̃q1t1ω2
+ uOptionc̃q2t1ω2

+ uOptionc̃q3t1ω2
+ uOptionc̃q4t1ω2

+ uOptionc̃q5t1ω2
+ uOptionc̃q6t1ω2

= 1

uOptionc̃q1t2ω2
+ uOptionc̃q2t2ω2

+ uOptionc̃q3t2ω2
+ uOptionc̃q4t2ω2

+ uOptionc̃q5t2ω2
+ uOptionc̃q6t2ω2

= 1

uOptionc̃q1t1ω3
+ uOptionc̃q2t1ω3

+ uOptionc̃q3t1ω3
+ uOptionc̃q4t1ω3

+ uOptionc̃q5t1ω3
+ uOptionc̃q6t1ω3

= 1

uOptionc̃q1t2ω3
+ uOptionc̃q2t2ω3

+ uOptionc̃q3t2ω3
+ uOptionc̃q4t2ω3

+ uOptionc̃q5t2ω3
+ uOptionc̃q6t2ω3

= 1

uOptionc̃q1t1ω4
+ uOptionc̃q2t1ω4

+ uOptionc̃q3t1ω4
+ uOptionc̃q4t1ω4

+ uOptionc̃q5t1ω4
+ uOptionc̃q6t1ω4

= 1

uOptionc̃q1t2ω4
+ uOptionc̃q2t2ω4

+ uOptionc̃q3t2ω4
+ uOptionc̃q4t2ω4

+ uOptionc̃q5t2ω4
+ uOptionc̃q6t2ω4

= 1

uOptionc̃q1t1ω1
, uOptionc̃q2t1ω1

, uOptionc̃q3t1ω1
, uOptionc̃q4t1ω1

, uOptionc̃q5t1ω1
, uOptionc̃q6t1ω1

∈ {0, 1}
pC

max

c̃t1ω1
= pC

max

c̃t1ω2
= pC

max

c̃t1ω3
= pC

max

c̃t1ω4

pC
max

c̃t2ω1
= pC

max

c̃t2ω2

pC
max

c̃t2ω3
= pC

max

c̃t2ω3
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t1ω1
,pCc̃o1 t1ω1

35pEg̃o1t1ω1
+ 25pCc̃o1t1ω1

s.t.

pEg̃o1t1ω1
+ pCc̃o1t1ω1

= 212

0 ≤ pEg̃o1t1ω1
≤ 400

0 ≤ pCc̃o1t1ω1
≤ pC

max

c̃t1ω1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t1ω1
,pCc̃o2 t1ω1

35pEg̃o2t1ω1
+ 25pCc̃o2t1ω1

s.t.

pEg̃o2t1ω1
+ pCc̃o2t1ω1

= 402

0 ≤ pEg̃o2t1ω1
≤ 400

0 ≤ pCc̃o2t1ω1
≤ pC

max

c̃t1ω1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t2ω1
,pCc̃o1 t2ω1

35pEg̃o1t2ω1
+ 25pCc̃o1t2ω1

s.t.

pEg̃o1t2ω1
+ pCc̃o1t2ω1

= 214

0 ≤ pEg̃o1t2ω1
≤ 400

0 ≤ pCc̃o1t2ω1
≤ pC

max

c̃t1ω1
+ pC

max

c̃t2ω1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t2ω1
,pCc̃o2 t2ω1

35pEg̃o2t2ω1
+ 25pCc̃o2t2ω1

s.t.

pEg̃o2t2ω1
+ pCc̃o2t2ω1

= 407

0 ≤ pEg̃o2t2ω1
≤ 400

0 ≤ pCc̃o2t2ω1
≤ pC

max

c̃t1ω1
+ pC

max

c̃t2ω1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t1ω2
,pCc̃o1 t1ω2

35pEg̃o1t1ω2
+ 25pCc̃o1t1ω2

s.t.

pEg̃o1t1ω2
+ pCc̃o1t1ω2

= 212

0 ≤ pEg̃o1t1ω2
≤ 400

0 ≤ pCc̃o1t1ω2
≤ pC

max

c̃t1ω2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t1ω2
,pCc̃o2 t1ω2

35pEg̃o2t1ω2
+ 25pCc̃o2t1ω2

s.t.

pEg̃o2t1ω2
+ pCc̃o2t1ω2

= 402

0 ≤ pEg̃o2t1ω2
≤ 400

0 ≤ pCc̃o2t1ω2
≤ pC

max

c̃t1ω2
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t2ω2
,pCc̃o1 t2ω2

35pEg̃o1t2ω2
+ 25pCc̃o1t2ω2

s.t.

pEg̃o1t2ω2
+ pCc̃o1t2ω2

= 284

0 ≤ pEg̃o1t2ω2
≤ 400

0 ≤ pCc̃o1t2ω2
≤ pC

max

c̃t1ω2
+ pC

max

c̃t2ω2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t2ω2
,pCc̃o2 t2ω2

35pEg̃o2t2ω2
+ 25pCc̃o2t2ω2

s.t.

pEg̃o2t2ω2
+ pCc̃o2t2ω2

= 539

0 ≤ pEg̃o2t2ω2
≤ 400

0 ≤ pCc̃o2t2ω2
≤ pC

max

c̃t1ω2
+ pC

max

c̃t2ω2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t1ω3
,pCc̃o1 t1ω3

35pEg̃o1t1ω3
+ 25pCc̃o1t1ω3

s.t.

pEg̃o1t1ω3
+ pCc̃o1t1ω3

= 281

0 ≤ pEg̃o1t1ω3
≤ 400

0 ≤ pCc̃o1t1ω3
≤ pC

max

c̃t1ω3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t1ω3
,pCc̃o2 t1ω3

35pEg̃o2t1ω3
+ 25pCc̃o2t1ω3

s.t.

pEg̃o2t1ω3
+ pCc̃o2t1ω3

= 533

0 ≤ pEg̃o2t1ω3
≤ 400

0 ≤ pCc̃o2t1ω3
≤ pC

max

c̃t1ω3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t2ω3
,pCc̃o1 t2ω3

35pEg̃o1t2ω3
+ 25pCc̃o1t2ω3

s.t.

pEg̃o1t2ω3
+ pCc̃o1t2ω3

= 284

0 ≤ pEg̃o1t2ω3
≤ 400

0 ≤ pCc̃o1t2ω3
≤ pC

max

c̃t1ω3
+ pC

max

c̃t2ω3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t2ω3
,pCc̃o2 t2ω3

35pEg̃o2t2ω3
+ 25pCc̃o2t2ω3

s.t.

pEg̃o2t2ω3
+ pCc̃o2t2ω3

= 593

0 ≤ pEg̃o2t2ω3
≤ 400

0 ≤ pCc̃o2t2ω3
≤ pC

max

c̃t1ω3
+ pC

max

c̃t2ω3
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t1ω4
,pCc̃o1 t1ω4

35pEg̃o1t1ω4
+ 25pCc̃o1t1ω4

s.t.

pEg̃o1t1ω4
+ pCc̃o1t1ω4

= 281

0 ≤ pEg̃o1t1ω4
≤ 400

0 ≤ pCc̃o1t1ω4
≤ pC

max

c̃t1ω4

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t1ω4
,pCc̃o2 t1ω4

35pEg̃o2t1ω4
+ 25pCc̃o2t1ω4

s.t.

pEg̃o2t1ω4
+ pCc̃o2t1ω4

= 533

0 ≤ pEg̃o2t1ω4
≤ 400

0 ≤ pCc̃o2t1ω4
≤ pC

max

c̃t1ω4

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o1 t2ω4
,pCc̃o1 t2ω4

35pEg̃o1t2ω4
+ 25pCc̃o1t2ω4

s.t.

pEg̃o1t2ω4
+ pCc̃o1t2ω4

= 377

0 ≤ pEg̃o1t2ω4
≤ 400

0 ≤ pCc̃o1t2ω4
≤ pC

max

c̃t1ω4
+ pC

max

c̃t2ω4

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minpEg̃o2 t2ω4
,pCc̃o2 t2ω4

35pEg̃o2t2ω4
+ 25pCc̃o2t2ω4

s.t.

pEg̃o2t2ω4
+ pCc̃o2t2ω4

= 715

0 ≤ pEg̃o2t2ω4
≤ 400

0 ≤ pCc̃o2t2ω4
≤ pC

max

c̃t1ω4
+ pC

max

c̃t2ω4
,

where Δ =
{
pEg̃o1t1ω1

, pCc̃o1t1ω1
, pEg̃o2t1ω1

, pCc̃o2t1ω1
, pEg̃o1t2ω1

, pCc̃o1t2ω1
, pEg̃o2t2ω1

, pCc̃o2t2ω1
,

pEg̃o1t1ω2
, pCc̃o1t1ω2

, pEg̃o2t1ω2
, pCc̃o2t1ω2

, pEg̃o1t2ω2
, pCc̃o1t2ω2

, pEg̃o2t2ω2
, pCc̃o2t2ω2

, pEg̃o1t1ω3
, pCc̃o1t1ω3

,

pEg̃o2t1ω3
, pCc̃o2t1ω3

, pEg̃o1t2ω3
, pCc̃o1t2ω3

, pEg̃o2t2ω3
, pCc̃o2t2ω3

, pEg̃o1t1ω4
, pCc̃o1t1ω4

, pEg̃o2t1ω4
, pCc̃o2t1ω4

,

pEg̃o1t2ω4
, pCc̃o1t2ω4

, pEg̃o2t2ω4
, pCc̃o2t2ω4

, uOptionc̃q1t1ω1
, uOptionc̃q2t1ω1

, uOptionc̃q3t1ω1
, uOptionc̃q4t1ω1

, uOptionc̃q5t1ω1
, uOptionc̃q6t1ω1

,

uOptionc̃q1t2ω1
, uOptionc̃q2t2ω1

, uOptionc̃q3t2ω1
, uOptionc̃q4t2ω1

, uOptionc̃q5t2ω1
, uOptionc̃q6t2ω1

, uOptionc̃q1t1ω2
, uOptionc̃q2t1ω2

, uOptionc̃q3t1ω2
, uOptionc̃q4t1ω2

,

uOptionc̃q5t1ω2
, uOptionc̃q6t1ω2

, uOptionc̃q1t2ω2
, uOptionc̃q2t2ω2

, uOptionc̃q3t2ω2
, uOptionc̃q4t2ω2

, uOptionc̃q5t2ω2
, uOptionc̃q6t2ω2

, uOptionc̃q1t1ω3
, uOptionc̃q2t1ω3

,

uOptionc̃q3t1ω3
, uOptionc̃q4t1ω3

, uOptionc̃q5t1ω3
, uOptionc̃q6t1ω3

, uOptionc̃q1t2ω3
, uOptionc̃q2t2ω3

, uOptionc̃q3t2ω3
, uOptionc̃q4t2ω3

, uOptionc̃q5t2ω3
, uOptionc̃q6t2ω3

,

uOptionc̃q1t1ω4
, uOptionc̃q2t1ω4

, uOptionc̃q3t1ω4
, uOptionc̃q4t1ω4

, uOptionc̃q5t1ω4
, uOptionc̃q6t1ω4

, uOptionc̃q1t2ω4
, uOptionc̃q2t2ω4

, uOptionc̃q3t2ω4
, uOptionc̃q4t2ω4

,

uOptionc̃q5t2ω4
, uOptionc̃q6t2ω4

}
.

We obtain that the optimal generation expansion plan consists in building 200MW
of capacity at the beginning of the planning horizon. This decision does not depend
on the future scenario realizations. Then, if scenario a is realized in the first time
period, i.e., the demand in the first time period is low, it is optimal not to build
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additional capacity at the beginning of the second time period. However, if scenario
b is realized in thefirst timeperiod, i.e., the demand in thefirst timeperiod is high, then
it is optimal to build 200MW of additional capacity at the beginning of the second
time period. Note that the generation expansion decisions for the second time period
depend on the scenario realization in the first time period but are independent of the
scenario realizations in the second time period.

On the one hand, if we compare these results with those obtained in Illustrative
Example3.6 (considering a deterministic single-node dynamic approach), then we
observe that the optimal generation expansion plan is the same in the first time period
but not in the second one. Although the average values of operating conditions in the
second time period in both examples are the same, by using a stochastic approach we
have the option of making different generation expansion plans for different scenario
realizations in the first time period. Building 200MW in the first time period and
100MWin the second timeperiod, i.e., the optimal results of IllustrativeExample3.6,
would have the result that the demand in the second time period could not be satisfied
if scenario 4 is realized.

On the other hand, if we compare the results with those obtained in Illustrative
Example3.9 (considering a stochastic single-node static approach), then we observe
that using a static approach results in building a larger capacity at the beginning of
the planning horizon, which in reality is not always needed but is needed only if
some of the scenarios are realized in the future. �

Note that the stochastic dynamicGEPproblemdescribed in this section is themost
complex model described in this chapter since it considers a multiperiod framework
and uncertainty in the system variables. It can be further complicated by including
transmission constraints, but themain problem in such a completemodel is its size. In
this chapter, themodels have been solved for a very simple system,which allows us to
illustrate themain characteristics of themodels described.However, in reality, electric
energy systems are much more complex, with thousands of nodes and transmission
lines. Moreover, if a large enough number of scenarios is considered in order to
represent the uncertain parameters adequately and the planning horizon is divided
into a large enough number of time periods, then the GEP problem may become
intractable. Therefore, in solving these kinds of problems, it is necessary to achieve
a tradeoff between modeling accuracy and computational tractability.

In order to solve this kind of problem for real-world systems, the recommendations
below are generally useful:

1. To use scenario-reduction methods that retain most of the information of the
original scenarios but reduce significantly the number of scenarios [19, 21].

2. Touse decomposition techniques, e.g., Benders decomposition, to solve the result-
ing MILP models [2, 3, 15].
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3.7 Summary and Conclusions

In this chapter, we describe and analyze the GEP problem in a given electric energy
system. We adopt a central perspective in which a central planner (e.g., the ISO)
determines the generation expansion plan that is most appropriate for the system
as a whole, e.g., by determining the generation expansion plan that maximizes the
overall social welfare and minimizes the investment costs. To do so, we develop
different models that increasingly complicate the problem by considering the impact
of different aspects on the GEP problem. Once the generation expansion planner has
determined the optimal expansion plan, it encourages private investors to build the
generating units.

The models described in this chapter are complementarity models that can be
reformulated as MILP problems, which can be solved using branch-and-cut solvers.

Considering the theoretical framework described in the chapter and the numerical
results of the illustrative examples, the conclusions below are in order:

1. As different details are incorporated in the GEP problem, the size and complexity
of the problem increases. Thismay result in intractability issues for very large sys-
tems. Therefore, it is necessary to achieve a tradeoff between modeling accuracy
and computational tractability.

2. Considering a dynamic approach for the GEP problem allows the generation
expansion planner to build generating units at different points in time. This results
in more flexibility to adapt to possible future changes in the system under study.

3. In uncongested systems, the modeling of the transmission network in the GEP
problem is immaterial. However, in systems whose transmission lines are usually
(or may become in the future) congested, it is necessary to model the transmission
network in order to determine the optimal generation expansion plan.

4. Generation expansion plans are made for a long-term planning horizon, which
means that these decisions are usually made with uncertain data. Therefore, it is
necessary to represent this uncertainty in the GEP decision-making problem in
order to obtain informed generation expansion plans.

3.8 End-of-Chapter Exercises

3.1 Why is GEP needed? Who decides about it?

3.2 List the advantages and disadvantages of the different GEP models described
in this chapter.

3.3 Expand the GEP problem considering a stochastic single-node dynamic
approach approach [model (3.15)] to include also network constraints. Then solve
the problem using the data of Illustrative Examples 3.8 and 3.10.
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3.4 Determine the optimal generation expansion plan for the six-node system
depicted in Fig. 3.8. This system comprises three existing generating units, four
demands, six transmission lines, and it is possible to build two new generating units.
The data for the existing generating units, demands, transmission lines, and can-
didate generating units are provided in Tables3.2, 3.3, 3.4, and 3.5. The reference
node is node 1. Apply the different models analyzed in this chapter and compare the
solutions achieved by them.

3.5 Robust optimization is used in Chap.2 to address the uncertainty in the TEP
problem, while stochastic programming is used in this chapter to represent the uncer-
tainty in the GEP problem. What are the advantages and disadvantages of both

Fig. 3.8 Exercise3.4: six-node system

Table 3.2 Exercise3.4: data for generating units

Generating unit Node PGmax

g [MW] CE
g [$/MWh]

g1 n1 300 18

g2 n2 250 25

g3 n3 400 16

Table 3.3 Exercise3.4: data for demands

Demand Node PD
do1

[MW] PD
do2

[MW]

d1 n1 200 300

d2 n4 150 250

d3 n5 100 200

d4 n6 200 300

http://dx.doi.org/10.1007/978-3-319-29501-5_2
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Table 3.4 Exercise3.4: data for transmission lines

Line From node To node B� [p.u.] Fmax
� [MW]

�1 n1 n2 500 150

�2 n1 n3 500 150

�3 n2 n4 500 200

�4 n3 n6 500 200

�5 n4 n5 500 150

�9 n5 n6 500 150

Table 3.5 Exercise3.4: data for candidate generating units

Generating unit Node POption
cq [MW] CC

c [$/MWh]

c1 n5 0, 100, 200, 300 32

c2 n6 0, 50, 100, 150 35

techniques? Based on the adaptive robust optimization approach used in Sect. 2.3
of Chap.2, formulate the GEP problem (3.1) using an adaptive robust optimization
approach and considering that uncertainty affects only PD

do.

3.6 Consider the model developed in Exercise3.5. Solve Illustrative Example3.4,
considering that demands can vary within ±10% of their values.

3.9 GAMS Codes

A GAMS code for solving Illustrative Example3.4 is provided below:

1 SETS
2 g /g1*g1/
3 c /c1*c1/
4 d /d1*d1/
5 o /o1*o2/
6 q /q1*q6/;

8 PARAMETER IC(c)
9 /C1 70000/;

11 TABLE PD(d,o)
12 o1 o2
13 d1 290 550;

15 TABLE EDATA(g,*)
16 PEmax Ecost
17 g1 400 35;

http://dx.doi.org/10.1007/978-3-319-29501-5_2
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19 TABLE CandidateData(c,q)
20 q1 q2 q3 q4 q5 q6
21 c1 0 100 200 300 400

500;

23 TABLE CDATA(c,*)
24 Ccost
25 c1 25;

27 PARAMETER RHO(o)
28 /o1 6000
29 o2 2760/;

31 SCALAR M
32 /300000/;

34 VARIABLES
35 Z;

37 POSITIVE VARIABLES
38 PGE(g,o)
39 PGC(c,o)
40 PCmax(c)
41 LAMBDA(o);

43 BINARY VARIABLES
44 uOp(c,q);

46 POSITIVE VARIABLES
47 MU_EMAX(g,o)
48 MU_CMAX(c,o);

50 VARIABLES
51 ZAUX(c,q,o)
52 ZAUX2(c,q,o);

54 EQUATIONS EQ7A , EQ7B , EQ7C , EQ7E , EQ7F , EQ7G , EQ7H ,
EQ7I , EQ7L , EQ7M , EQ7Na , EQ7NB , EQ7Oa , EQ7OB;

56 EQ7A.. Z=E=SUM(o,RHO(o)*(SUM(g,EDATA(g,’
Ecost’)*PGE(g,o))+SUM(c,CDATA(c,’Ccost’)*PGC(c,
o))))+SUM(c,IC(c)*PCmax(c));

57 EQ7B(c).. PCmax(c)=E=SUM(q,uOp(c,q)*
CandidateData(c,q));

58 EQ7C(c).. SUM(q,uOp(c,q))=E=1;
59 *EQ7D IS BINARY VARIABLE DECLARATION
60 EQ7E(o).. SUM(g,PGE(g,o))+SUM(c,PGC(c,o))=E=

SUM(d,PD(d,o));
61 EQ7F(g,o).. PGE(g,o)=L=EDATA(G,’PEmax’);
62 EQ7G(c,o).. PGC(c,o)=L=PCmax(c);
63 EQ7H(g,o).. EDATA(g,’Ecost’)-LAMBDA(o)+MU_EMAX

(g,o)=G=0;
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64 EQ7I(c,o).. CDATA(c,’Ccost’)-LAMBDA(o)+MU_CMAX
(c,o)=G=0;

65 *EQ7J AND EQ7K ARE NON -NEGATIVE VARIABLE
DEFINITIONS

66 EQ7L(o).. SUM(g,EDATA(g,’Ecost’)*PGE(g,o))+
SUM(c,CDATA(c,’Ccost’)*PGC(c,o))=E=LAMBDA(o)*
SUM(d,PD(d,o))-SUM(g,MU_EMAX(g,o)*EDATA(g,’
PEmax’))-SUM(c,SUM(q,ZAUX(c,q,o)));

67 EQ7M(c,q,o).. ZAUX(c,q,o)=E=MU_CMAX(c,o)*
CandidateData(c,q)-ZAUX2(c,q,o);

68 EQ7Na(c,q,o).. 0=L=ZAUX(c,q,o);
69 EQ7Nb(c,q,o).. ZAUX(c,q,o)=L=uOp(c,q)*M;
70 EQ7Oa(c,q,o).. 0=L=ZAUX2(c,q,o);
71 EQ7Ob(c,q,o).. ZAUX2(c,q,o)=L=(1-uOp(c,q))*M;

73 MODEL GEP_DetSta1N /ALL/;

75 SOLVE GEP_DetSta1N USING MIP MINIMIZING Z;

A GAMS code for solving Illustrative Example3.8 is provided below:

1 SETS
2 n /n1*n2/
3 g /g1*g1/
4 c /c1*c1/
5 d /d1*d1/
6 o /o1*o2/
7 q /q1*q6/
8 l /l1*l1/
9 mapE(g,n) /g1.n1/

10 mapC(c,n) /c1.n2/
11 mapD(d,n) /d1.n2/
12 ref(n) /n1/
13 mapSL(l,n) /l1.n1/
14 mapRL(l,n) /l1.n2/;

16 TABLE LDATA(l,*)
17 B FLmax
18 l1 500 500;

20 PARAMETER IC(c)
21 /C1 70000/;

23 TABLE PD(d,o)
24 o1 o2
25 d1 290 550;

27 TABLE EDATA(g,*)
28 PEmax Ecost
29 g1 400 35;

31 TABLE CandidateData(c,q)
32 q1 q2 q3 q4 q5 q6
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33 c1 0 100 200 300 400
500;

35 TABLE CDATA(c,*)
36 Ccost
37 C1 25;

39 PARAMETER RHO(o)
40 /o1 6000
41 o2 2760/;

43 SCALAR M
44 /300000/;

46 VARIABLES
47 Z
48 PL(l,o)
49 THETA(n,o);

51 POSITIVE VARIABLES
52 PGE(g,o)
53 PGC(c,o)
54 PCmax(c);

56 BINARY VARIABLES
57 uOp(c,q);

59 VARIABLE
60 LAMBDA(n,o)
61 MU_L(l,o)
62 MU_AREF(n,o);

64 POSITIVE VARIABLES
65 MU_EMAX(g,o)
66 MU_CMAX(c,o)
67 MU_LMAX(l,o)
68 MU_AMAX(n,o)
69 MU_EMIN(g,o)
70 MU_CMIN(c,o)
71 MU_LMIN(l,o)
72 MU_AMIN(n,o);

74 VARIABLES
75 ZAUX(c,q,o)
76 ZAUX2(c,q,o);

78 EQUATIONS EQ12A , EQ12B , EQ12C , EQ12E , EQ12F , EQ12Ga
, EQ12Gb , EQ12H , EQ12I , EQ12Ja , EQ12Jb , EQ12K ,
EQ12L , EQ12M , EQ12N , EQ120 , EQ12P , EQ12U , EQ12V
, EQ12Wa , EQ12Wb , EQ12Xa , EQ12XB;
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80 EQ12A.. Z=E=SUM(o,RHO(o)*(
SUM(g,EDATA(g,’Ecost’)*PGE(g,o))+SUM(c,CDATA(c,
’Ccost’)*PGC(c,o))))+SUM(c,IC(c)*PCmax(c));

81 EQ12B(c).. PCmax(c)=E=SUM(q,
uOp(c,q)*CandidateData(c,q));

82 EQ12C(c).. SUM(q,uOp(c,q))=E
=1;

83 *EQ12D IS BINARY VARIABLE DECLARATION
84 EQ12E(n,o).. SUM(g$mapE(g,n),

PGE(g,o))+SUM(c$mapC(c,n),PGC(c,o))-SUM(l$mapSL
(l,n),PL(l,o))+SUM(L$mapRL(l,n),PL(l,o))=E=SUM(
d$mapD(d,n),PD(d,o));

85 EQ12F(l,o).. PL(l,o)=E=LDATA(l,
’B’)*(SUM(n$mapSL(l,n),THETA(n,o))-SUM(n$mapRL(
l,n),THETA(n,o)));

86 EQ12Ga(l,o).. -LDATA(l,’FLmax’)=
L=PL(l,o);

87 EQ12Gb(l,o).. PL(l,o)=L=LDATA(l,
’FLmax’);

88 EQ12H(g,o).. PGE(g,o)=L=EDATA(g
,’PEmax’);

89 EQ12I(c,o).. PGC(c,o)=L=PCmax(c
);

90 EQ12Ja(n,o).. -3.14=L=THETA(n,o)
;

91 EQ12Jb(n,o).. THETA(n,o)=L=3.14;
92 EQ12K(n,o)$REF(n).. THETA(n,o)=E=0;
93 EQ12L(g,o).. EDATA(g,’Ecost’)-

SUM(n$mapE(g,n),LAMBDA(n,o))+MU_EMAX(g,o)=G=0;
94 EQ12M(c,o).. CDATA(c,’Ccost’)-

SUM(n$mapC(c,n),LAMBDA(n,o))+MU_CMAX(c,o)=G=0;

95 EQ12N(l,o)..
96 SUM(n$mapSL(l,n),LAMBDA(n,o))-SUM(n$mapRL(l,n),

LAMBDA(n,o))-MU_L(l,o)+MU_LMAX(l,o)-MU_LMIN(l,o
)=E=0;

97 EQ120(n,o)$(NOT REF(n))..
98 SUM(l$mapSL(l,n),LDATA(l,’B’)*MU_L(l,o))-SUM(

l$mapRL(l,n),LDATA(l,’B’)*MU_L(l,o))+MU_AMAX(n,
o)-MU_AMIN(n,o)=E=0;

99 EQ12P(n,o)$REF(n)..
100 SUM(l$mapSL(l,n),LDATA(l,’B’)*MU_L(l,o))-SUM(

l$mapRL(l,n),LDATA(l,’B’)*MU_L(l,o))+MU_AREF(n,
o)=E=0;

101 *EQ12Q -EQ12T ARE NON -NEGATIVE VARIABLE DEFINITIONS
EQ12U(o)..

102 SUM(g,EDATA(g,’Ecost’)*PGE(g,O))+SUM(c,CDATA(c,’
Ccost’)*PGC(c,o))=E=SUM(n,LAMBDA(n,o)*SUM(
d$mapD(d,n),PD(d,o)))-SUM(g,MU_EMAX(g,o)*EDATA(
g,’PEmax’))-SUM(c,SUM(q,ZAUX(c,q,o)))-SUM(l,(
MU_LMAX(l,o)+MU_LMIN(l,o))*LDATA(l,’FLmax’))-
SUM(n$(NOT
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103 REF(n)) ,(MU_AMAX(n,o)-MU_AMIN(n,o))*3.14); EQ12V(c,
q,o)..

104 ZAUX(c,q,o)=E=MU_CMAX(c,o)*CandidateData(c,q)-ZAUX2
(c,q,o);

105 EQ12Wa(c,q,o).. 0=L=ZAUX(c,q,o);
EQ12Wb(c,q,o)..

106 ZAUX(c,q,o)=L=uOp(c,q)*M; EQ12Xa(c,q,o).. 0=L=ZAUX2
(c,q,o);

107 EQ12Xb(c,q,o).. ZAUX2(c,q,o)=L=(1-uOp(c,q))*M;

109 MODEL GEP_DetStaNetwork /ALL/;

111 SOLVE GEP_DetStaNetwork USING MIP MINIMIZING Z;
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Chapter 4
Generation and Transmission Expansion
Planning

The two previous chapters describe and analyze the transmission expansion plan-
ning problem (TEP, Chap. 2) and the generation expansion planning problem (GEP,
Chap. 3). These two problems are critical for the optimal expansion planning of
electric energy systems. However, these chapters analyze the GEP and TEP prob-
lems independently. In this chapter, we describe the joint generation and transmission
expansion planning (G&TEP) problem in a given electric energy system. The G&TEP
problem is analyzed from the perspective of a central planner that determines the
generation and transmission expansion plan that is most beneficial for the system
as a whole. To do so, we provide and analyze different models that progressively
incorporate additional details within the G&TEP problem with a special emphasis
on the modeling of the risk associated with expansion plans.

4.1 Introduction

Chapters 2 and 3 describe the transmission expansion planning problem (TEP) and the
generation expansion problem (GEP), respectively. These two problems allow deci-
sion makers to determine the optimal transmission and generation-capacity expansion
plans, respectively, to be carried out in a given electric energy system. In these two
chapters, these two different expansion plans are analyzed independently, i.e., the
transmission expansion plan is determined by considering that it is not possible to
build new generating units and vice versa.

However, generation and transmission expansion plans are clearly interrelated.
For example, if we solved the GEP problem by considering that the transmission
capacity is fixed, then we would be restricted to building new generating units at
those locations with sufficient transmission capacity. This is especially important
in deciding where to build new renewable generating units since the locations with
optimal characteristics for building such units, e.g., the locations with the best wind
or solar conditions, are usually located far away from demand centers and poorly
connected through the transmission system. Similarly, if we solved the TEP problem
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by considering that it is impossible to build new generating units, then we would
decide the transmission expansion plan based mainly on current network bottlenecks
and expected future demand, but we would not take into account the impact of a
possible expansion of the generation capacity of the system.

Therefore, although the GEP and TEP problems are relevant for the optimal plan-
ning of electric energy systems, their outputs are usually suboptimal since generation
and transmission expansion plans are derived independently. These plans are derived
independently because the involved planners are different market agents: GEP per-
tains to profit-focused producers, while TEP pertains to a welfare-focused agent, i.e.,
the independent system operator (ISO). To overcome such a drawback, we describe in
this chapter the generation and transmission expansion planning (G&TEP) problem,
which allows us to determine generation and transmission expansion plans jointly.

To do so, we consider the perspective of a central planner, e.g., the ISO, that
determines the generation and transmission expansion plan that is optimal for the
operation of the electric energy system as a whole. Note that although the ISO deter-
mines the optimal expansion plans, the actual building of the facilities is generally
carried out by other market agents, e.g., by private investors that build the generation-
capacity facilities with the aim of maximizing profits. Therefore, after determining
optimal generation and transmission expansion plans, the ISO may set incentives to
stimulate the building of these facilities.

The generation and transmission expansion plans are generally made for a long-
term planning horizon, e.g., 20 years. Thus, it is important to represent in the decision-
making problem the system conditions throughout this planning horizon, e.g., future
demand, decommissioning of old generating units and increasing penetration of
renewable generating units. However, these future conditions are generally uncertain
at the time the expansion plans are decided. Therefore, it is important to represent this
uncertainty in the decision-making framework accurately. To do so, in this chapter we
use a set of scenarios that model the future realization of the uncertain parameters in
the considered planning horizon, i.e., we consider a stochastic programming approach
[6].

Making expansion decisions within an uncertain environment is usually a risky
endeavor. We decide the expansion plan that is optimal for all scenarios as a whole,
e.g., we select the expansion plan that minimizes the expected cost. However, this
expansion plan is decided before the actual scenario realization is known. Thus the
expansion plan that minimizes the expected cost may have a very high cost for
some scenarios. This constitutes a risk for the decision maker since such a high cost
may not be admissible for the system. Thus, it is generally important to consider
in the G&TEP problem the management of the risk associated with the expansion
plan. This is done in this chapter using the conditional value-at-risk (CVaR) metric
[14, 15].

The relevance of the G&TEP problem has recently generated research in this
area [1, 3, 7, 9, 13, 16, 17]. The work [1] proposes a stochastic model with prob-
abilistic constraints for the generation and transmission expansion plan considering
uncertainties in demand, availability of generating units, and transmission capacity.
Considering the G&TEP problem within a market framework, it is worthwhile to



4.1 Introduction 117

mention references [9, 16, 17]. Also, considering market issues, [13] addresses the
G&TEP problem using a three-level equilibrium model. Finally, [3, 7] consider joint
investment in renewable generating units and transmission facilities.

The remainder of this chapter is organized as follows. Section 4.2 describes the
main features of the G&TEP problem described in this chapter. Sections 4.3–4.6
provide and analyze the formulation of the G&TEP problem considering different
approaches. Section 4.3 describes the G&TEP problem considering a deterministic
static approach. This basic model is extended in Sect. 4.4 to consider a dynamic
framework, in Sect. 4.5 to represent the impact of uncertain parameters using a
stochastic approach, and in Sect. 4.6 to incorporate risk management. Sections 4.3–
4.6 include clarifying examples. Section 4.7 summarizes the chapter and discusses
the main conclusions of the models and results reported. Section 4.8 proposes some
exercises to gain a deeper understanding of the G&TEP problem. Finally, Sect. 4.9
includes the GAMS code for one of the illustrative examples.

4.2 Problem Description

This section describes the main characteristics of the G&TEP problem analyzed in
this chapter. In addition to these characteristics, we consider the operating conditions,
time framework, and uncertainty characterization described in Sect. 3.2 of Chap. 3
to develop the proposed models.

4.2.1 Notation

The main notation used in this chapter is provided below for quick reference. Other
symbols are defined as needed throughout the chapter. The observations below are
in order:

1. A subscript o in the symbols below indicates their values in the oth operating
condition.

2. A subscript t in the symbols below indicates their values in the tth time period.
3. A subscript ω in the symbols below indicates their values in the ωth scenario.

Indices

c Candidate generating units.
d Demands.
g Existing generating units.
� Transmission lines.
n Nodes.
o Operating conditions.
t Time periods.

http://dx.doi.org/10.1007/978-3-319-29501-5_3
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ω Scenarios.

Sets

r(�) Receiving-end node of transmission line �.
s(�) Sending-end node of transmission line �.
ΩC

n Candidate generating units located at node n.
ΩD

n Demands located at node n.
ΩE

n Existing generating units located at node n.
ΩL+ Prospective transmission lines n.

Parameters

A Amortization rate [%].
B� Susceptance of transmission line � [S].
CC
c Production cost of candidate generating unit c [$/MWh].

CLS
d Load-shedding cost of demand d [$/MWh].

CE
g Production cost of existing generating unit g [$/MWh].

Fmax
� Capacity of transmission line � [MW].

IC
c Investment cost of candidate generating unit c [$/MW].
IC,max Investment budget for building candidate generating units [$].
IL
� Investment cost of prospective transmission line � [$].
IL,max Investment budget for building prospective transmission lines [$].
ĨC
c Annualized investment cost of candidate generating unit c [$/MW].
ĨL
� Annualized investment cost of prospective transmission line � [$].

P
Cmax

c Maximum production capacity of candidate generating unit c [MW].
PDmax

d Load of demand d [MW].
PEmax

g Production capacity of existing generating unit g [MW].
α Confidence level used to compute the CVaR.
η Weighting parameter used to model the tradeoff between expected cost and

CVaR.
ϕω Probability of scenario ω [p.u.].
ρo Weight of operating condition o [h].

Binary Variables

xL
� Binary variable that is equal to 1 if prospective transmission line � is built and

0 otherwise.

Continuous Variables

pC
c Power produced by candidate generating unit c [MW].
pCmax

c Capacity of candidate generating unit c [MW].
pE
g Power produced by existing generating unit g [MW].
pL

� Power flow through transmission line � [MW].
pLS
d Load shed of demand d [MW].
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θn Voltage angle at node n [rad].
ςω Auxiliary variable used to compute the CVaR [$].
ϑ Value-at-risk [$].

4.2.2 Approach

We consider the perspective of a central planner that aims to determine the generation
and transmission expansion plan that results in the optimal operation of the electric
energy system under study throughout the planning horizon. With this purpose, dif-
ferent objective functions may be selected, e.g., minimization of generation costs,
maximization of social welfare, minimization of load-shedding costs. Among them,
we select the minimization of both generation and load-shedding costs. However,
the models described in this chapter are general, and alternative objective functions
may be considered. We also include in the objective function of the G&TEP problem
the minimization of the investment costs in both generating units and transmission
facilities since they are relevant to the G&TEP decision-making problem.

In order to determine the optimal expansion plan, it is necessary to consider
different constraints that influence the generation and transmission expansion plan,
namely:

1. Investment budgets in building new generating units and transmission facilities.
2. Power balance at all nodes of the electric energy system under study.
3. Power flow limits through both existing and prospective transmission lines.
4. Capacity of both candidate and existing generating units.
5. Load-demand characteristics.
6. Voltage angle limits.

By considering the above framework, the G&TEP problem is formulated as a
mathematical programming problem. This problem includes binary variables that
represent whether a prospective transmission line is built or not. Moreover, it includes
products of these binary variables and continuous variables. As a result, the G&TEP
model is a mixed-integer nonlinear programming (MINLP) problem. However, it
is possible to recast this MINLP problem as a mixed-integer linear programming
(MILP) problem that can be solved by traditional branch-and-cut solvers.

4.2.3 Risk Management

Generation and transmission expansion decisions involve a long-term planning hori-
zon. This implies that the expansion plan has to be derived under uncertainty. In
this chapter, we model the uncertain parameters through a set of scenarios. Then we
decide the generation and transmission expansion plans that minimize the expected
generation, load-shedding, and investment costs.



120 4 Generation and Transmission Expansion Planning

However, selecting the expansion plan that minimizes the expected costs is not
always the best alternative since this expansion plan may be harmful if some of the
extreme scenarios are realized. This means that the expansion plan that minimizes
the expected costs may be too risky for the central planner.

In order to deal with this, the risk associated with the expansion plan needs to be
controlled. With this purpose, we incorporate the conditional value-at-risk (CVaR)
in the G&TEP decision-making problem. Further details on this issue are provided
in [14, 15], in Appendix D of this book, and in Sect. 4.6 of this chapter.

4.3 Deterministic Static G&TEP

In this section we provide and describe a very simple model to determine the optimal
generation and transmission expansion plan. It is based on a deterministic static
approach with the following characteristics:

1. No uncertainties are considered in the decision-making problem. We assume that
the central planner has a perfect forecast of the future system demand.

2. Expansion decisions are made at a single point in time, in particular, at the begin-
ning of the planning horizon.

This basic model allows us to illustrate the working of the G&TEP problem and
will be progressively enriched in the following sections by incorporating different
details in the G&TEP problem.

4.3.1 MINLP Formulation

The G&TEP problem considering a deterministic static approach can be formulated
using the MINLP model below:

minΔDS

∑

o

ρo

[
∑

g

CE
g p

E
go +

∑

c

CC
c p

C
co +

∑

d

CLS
d pLS

do

]

+
∑

c

ĨC
c p

Cmax

c +
∑

�∈ΩL+
ĨL
� x

L
� (4.1a)

subject to

0 ≤ pCmax

c ≤ P
Cmax

c ∀c (4.1b)

xL
� ∈ {0, 1} ∀� ∈ ΩL+ (4.1c)
∑

c

IC
c p

Cmax

c ≤ IC,max (4.1d)
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∑

�∈ΩL+
IL
� x

L
� ≤ IL,max (4.1e)

{ ∑
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do − pLS
do

) ∀n (4.1f)

pL
�o = B�

(
θs(�)o − θr(�)o

) ∀� \ � ∈ ΩL+ (4.1g)

pL
�o = xL

� B�

(
θs(�)o − θr(�)o

) ∀� ∈ ΩL+ (4.1h)

− Fmax
� ≤ pL

�o ≤ Fmax
� ∀� (4.1i)

0 ≤ pE
go ≤ PEmax

g ∀g (4.1j)

0 ≤ pC
co ≤ pCmax

c ∀c (4.1k)

0 ≤ pLS
do ≤ PDmax

do ∀d (4.1l)

− π ≤ θno ≤ π ∀n (4.1m)

θno = 0 n: ref. (4.1n)
}

,∀o,

where variables in set ΔDS =
{
pE
go , pLS

do , pC
co, pL

�o, θno, pCmax

c , xL
�

}
are the optimization

variables of problem (4.1).
The objective function (4.1a) comprises the four terms below:

1.
∑

g

CE
g p

E
go+

∑

c

CC
c p

C
co, ∀o, are the generation costs of both existing and candidate

generating units.
2.

∑

d

CLS
d pLS

d , ∀o, are the load-shedding costs.

3.
∑

c

ĨC
c p

Cmax

c is the annualized investment cost in new generating units.

4.
∑

�∈ΩL+
ĨL
� x

L
� is the annualized investment cost in new transmission lines.

Note that the terms in items 1 and 2 above are multiplied by the weight of the
corresponding operating condition, ρo, in order to make the generation/load-shedding
costs and the annualized investment costs comparable.

There are two groups of constraints, namely investment constraints (4.1b)–(4.1e)
and operational constraints (4.1f)–(4.1n).

On the one hand, investment constraints comprise constraints (4.1b), which
impose bounds on the production capacity of each candidate generating unit to be
built; constraints (4.1c), which define binary variables xL

� , which indicate whether
prospective transmission line � ∈ ΩL+ is built (xL

� = 1) or not (xL
� = 0); and con-

straints (4.1d) and (4.1e), which impose investment budgets for building candidate
generating units and prospective transmission lines, respectively.

On the other hand, operational constraints comprise constraints (4.1f), which
impose the generation–demand balance at each node; constraints (4.1g) and (4.1h),
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which define the power flows through existing and prospective transmission lines,
respectively; constraints (4.1i), which limit the power flows through transmission
lines by the corresponding transmission capacities; constraints (4.1j), (4.1k), and
(4.1l), which impose bounds on the power quantities of existing generating units, can-
didate generating units, and load shed of demands, respectively; constraints (4.1m),
which impose bounds for voltage angles; and constraints (4.1n), which define the
voltage angle at the reference node. Note that we define operational constraints
(4.1f)–(4.1n) for each operating condition o.

Note that the network constraints are explicitly represented in the G&TEP problem
using a dc model without loss for the sake of simplicity [8].

Illustrative Example 4.1 2-node system: Deterministic static G&TEP problem
(MINLP Formulation)

Let us consider the two-node electric energy system depicted in Fig. 4.1, which
has the following characteristics:

1. There is one generating unit g̃ located at node 1 with an installed capacity of
400 MW and a production cost equal to $35/MWh.

2. It is possible to build a new generating unit c̃ at node 2 with a maximum capacity
of 300 MW and a production cost equal to $25/MWh. The investment cost is
$700,000 per MW. The annualized investment cost is 10 % of the total cost.

3. There is one demand d̃ located at node 2, whose demand conditions are repre-
sented by two operating conditions. The first one, o1, is defined by a demand of
290 MW and a weight of 6000 h, while the second one, o2, is defined by a demand
of 550 MW and a weight of 2760 h. The load-shedding cost is $80/MWh.

4. Nodes 1 and 2 are connected through a transmission line �1 with a susceptance
equal to 500 S and a transmission capacity of 200 MW.

5. It is possible to build an additional transmission line �2 between nodes 1 and 2
with a susceptance equal to 500 S, a transmission capacity of 200 MW, and an
investment cost of $1 million. The annualized investment cost is 10 % of the total
cost.

6. The investment budgets in building new generating units and new transmission
lines are equal to $400 million and $2 million, respectively.

7. Node 1 is the reference node, and the base power and voltage are 1 MW and 1 kV,
respectively.

Fig. 4.1 Illustrative Example 4.1: two-node electric energy system
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Given the above data, the G&TEP problem (4.1) results in the following MINLP
model:

minΔ̃DS 6000
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4.3.2 MILP Formulation

The G&TEP problem (4.1) is an MINLP problem since it includes the products of
binary variables xL

� and continuous variables θno, i.e., terms xL
� B�

(
θs(�)o − θr(�)o

)
,

in constraints (4.1h). Such MINLP problems are usually hard to solve, and their
convergence to an optimum is not guaranteed [5]. However, it is possible to replace
these nonlinear terms by the following set of exact equivalent mixed-integer linear
expressions:

− xL
� F
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� F
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where M is a large enough positive constant [4, 18]. The working of the above
Eq. (4.2) is explained in Sect. 2.2.3 of Chap. 2.

Note that if Eq. (4.2) are used to replace constraints (4.1h) in the G&TEP problem
(4.1), the resulting model is an MILP problem, which can be solved using branch-
and-cut solvers, and its convergence to an optimum is guaranteed [5].

Illustrative Example 4.2 2-node system: Deterministic static G&TEP problem
(MILP formulation)

Let us consider the MINLP problem formulation from Illustrative Example 4.1.
There are two nonlinear constraints, namely pL

�2o1
= 500xL

�2(
θn1o1 − θn2o1

)
and pL

�2o2
= 500xL

�2

(
θn1o2 − θn2o2

)
. These two constraints can be recast
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where M is a large enough positive constant.
If these equations are used to replace the two nonlinear constraints in the MINLP

problem formulation obtained from Illustrative Example 4.1, then we obtain an
MILP problem, whose solution is provided and analyzed in the following illustrative
example. �

Illustrative Example 4.3 2-node system: Deterministic static G&TEP problem
(solution)

Let us consider the data of Illustrative Example 4.1. First, we assume that the
investment budget in building candidate generating units is $400 million and that the
investment budget in building prospective transmission lines is zero, i.e., we assume
that it is possible to expand only the generation capacity of the system. In such a
case, the optimal solution consists in building 300 MW of the candidate generating

http://dx.doi.org/10.1007/978-3-319-29501-5_2
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unit. Since there is a peak demand of 550 MW at node 2 and it is possible to use
only 200 MW of the existing generating unit due to the capacity of the existing
transmission line �1, it is necessary to build 350 MW of the candidate generating unit
to satisfy the demand. However, there are only 300 MW of the candidate generating
unit available, and, thus, 50 MW of the load demand cannot be supplied, and it is shed
in operating condition o2. Note that it would also be possible to shed a larger load
demand in operating condition o2 while building a lower capacity of the candidate
generating unit; however, this would result in a higher cost. The total annualized cost
(generation, load-shedding, and investment costs) is equal to $115.56 million.

Second, we assume that the investment budget in building prospective transmis-
sion lines is $2 million and that the investment budget in building candidate generating
units is zero, i.e., we assume that it is possible to expand only the transmission capac-
ity of the system. In this case, the optimal solution consists in building the additional
transmission line �2. By building this transmission line, it is possible to use 400 MW
of the existing generating unit to supply the demand. Note that in operating condition
o2, 150 MW of load demand cannot be supplied, and, therefore, it is shed. The total
annualized cost is equal to $132.76 million in this case.

Third, we assume that the investment budgets in building candidate generating
units and prospective transmission lines are $400 million and $2 million, respectively,
i.e., we assume that it is possible to expand both the generation capacity and the
transmission capacity of the system. In such a case, the optimal solution consists in
building 290 MW of the candidate generating unit and building transmission line �2.
In this case, all the load demand can be supplied in both operating conditions. The
total annualized cost is equal to $109.03 million.

Note that in the three different cases analyzed, the lowest total cost corresponds
to the third one, i.e., the case in which it is possible to expand both the generation
and transmission capacity. �

4.4 Deterministic Dynamic G&TEP

In the G&TEP problem described in the previous section, we consider that the genera-
tion and transmission expansion decisions are made at a single point in time (generally
at the beginning of the planning horizon), i.e., we consider a static approach. Note
that when we decide about expansion plans, it is necessary to model the future needs
of the system under study throughout the planning horizon. However, the expansion
decisions are usually made for a long-term planning horizon, and thus the conditions
of the system at the end of the planning horizon are generally different from those at
the present. If it is possible to make expansion plans only at a single point in time,
then these expansion decisions need to be made for a worst-case scenario, e.g., the
largest expected demand in the planning horizon. This usually corresponds to the last
years of the planning horizon. As a result, if a static approach is considered for the
G&TEP problem, then the optimal solution generally consists in an overexpansion
at the beginning of the planning horizon that is not needed until the last years of the
planning horizon.
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Considering such a static approach has some problems. On the one hand, it requires
a large investment at the beginning of the planning horizon and thus a high investment
budget, which may not be available. On the other hand, if investment changes are
required throughout the planning horizon, then it might not be possible to adapt
expansion decisions to these changes.

To overcome this, in this section we model the G&TEP problem considering
a dynamic approach that allows the ISO to make expansion decisions regarding
the generation and transmission facilities at different points in time. This gives the
expansion planner the flexibility to adapt the system to changing future conditions
as needed throughout the planning horizon. For the sake of simplicity, we consider
a deterministic approach.

The G&TEP problem considering a deterministic dynamic approach can be for-
mulated using the MILP model below:
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t ∀t (4.3f)

{ ∑

g∈ΩE
n

pE
got +

∑

c∈ΩC
n

pC
cot −

∑

�|s(�)=n

pL
�ot +

∑

�|r(�)=n

pL
�ot =

∑

d∈ΩD
n

(
PDmax

dot − pLS
dot

) ∀n

(4.3g)

pL
�ot = B�

(
θs(�)ot − θr(�)ot

) ∀� \ � ∈ ΩL+ (4.3h)

−
∑

τ≤t

xL
�τF

max
� ≤ pL

�ot ≤
∑

τ≤t

xL
�τF

max
� ∀� ∈ ΩL+ (4.3i)

−
(

1 −
∑

τ≤t

xL
�τ

)

M ≤ pL
�ot − B�

(
θs(�)ot − θr(�)ot

) ≤
(

1 −
∑

τ≤t

xL
�τ

)

M

∀� ∈ ΩL+ (4.3j)
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− Fmax
� ≤ pL

�ot ≤ Fmax
� ∀� (4.3k)

0 ≤ pE
got ≤ PEmax

g ∀g (4.3l)

0 ≤ pC
cot ≤

∑

τ≤t

pCmax

cτ ∀c (4.3m)

0 ≤ pLS
dot ≤ PDmax

dot ∀d (4.3n)

− π ≤ θnot ≤ π ∀n (4.3o)

θnot = 0 n: ref. (4.3p)
}

,∀o, t,

where variables in setΔDS =
{
pE
got ,p

LS
dot ,p

C
cot ,p

L
�ot , θnot ,p

Cmax

ct , xL
�t

}
are the optimization

variables of problems (4.3).
The main differences between problem (4.3) and the G&TEP problem considering

a deterministic static approach (4.1) are summarized below:

1. The capacities of each candidate generating unit to be built (i.e., variables pCmax

ct ,
∀c, t) can take different values in different time periods indexed by t.

2. Binary variables defining whether a prospective line is built or not (i.e., variables
xL
�t , ∀� ∈ ΩL+, t) can take different values in different time periods indexed by t.

3. The investment costs at each time period in the objective function (4.3a) are
multiplied by the corresponding amortization rates, which represent the equivalent
amount of money to be paid for the expansions made at each time period.

4. We include constraints (4.3b), which bound the capacity of each candidate gen-
erating unit built over the whole planning horizon.

5. We include constraints (4.3d), which impose that a prospective transmission line
can be built only once for the whole planning horizon.

6. The investment budget constraints (4.3e)–(4.3f) are imposed for each time
period t.

7. Constraints (4.3i)–(4.3j) define the power flows through prospective transmission
lines and impose that a prospective transmission line must be available at time
period t if it has been built at the beginning of that time period or in the previous
ones.

8. Constraints (4.3m) impose that the available capacity of the candidate generating
units at time period t must be equal to the capacity built at the beginning of that
time period plus the capacities built in the previous ones.

9. The operational constraints (4.3g)–(4.3p) are formulated for each operating con-
dition o and also for each time period t.

Note that for the sake of clarity, we assume that all monetary values are referred
to the same point in time, so that it is not necessary to multiply by discount factors.

Illustrative Example 4.4 2-node system: Deterministic dynamic G&TEP problem

Let us consider the two-node electric energy system described in Illustrative
Example 4.1. Now we consider that the planning horizon is split into two 10-year
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time periods and that it is possible to build both the candidate generating unit and the
prospective transmission line at the beginning of either of these two time periods,
i.e., at the beginning of the first or eleventh years.

The operating conditions in the two considered time periods have the following
characteristics:

1. There are two operating conditions o1 and o2 in the first time period defined by
load demands of 246.5 and 467.5 MW, respectively.

2. There are two operating conditions o1 and o2 in the second time period defined
by load demands of 290 and 550 MW, respectively.

The weights of operating conditions o1 and o2 in both time periods are equal to 6000
and 2760 h, respectively.

The investment budgets for building additional generation capacity and additional
transmission lines are $400 million and $2 million, respectively, in both time periods.
Finally, the amortization rates for the first and second time periods are equal to 0.2
and 0.1, respectively.

Considering the above data, the G&TEP problem considering a deterministic
dynamic approach results in the following MILP model:

minΔ̃DS 6000
[
35pE

g̃o1t1 + 25pC
c̃o1t1 + 80pLS

d̃o1t1

]
+ 2760

[
35pE

g̃o2t1 + 25pC
c̃o2t1

+ 80pLS
d̃o2t1

]
+ 6000

[
35pE

g̃o1t2 + 25pC
c̃o1t2 + 80pLS

d̃o1t2

]

+ 2760
[
35pE

g̃o2t2 + 25pC
c̃o2t2 + 80pLS

d̃o2t2

]
+ 140000pCmax

c̃t1

+ 200000xL
�2t1 + 70000pCmax

c̃t2 + 100000xL
�2t2

subject to

0 ≤ pCmax

c̃t1 + pCmax

c̃t2 ≤ 300

xL
�2t1 , x

L
�2t2 ∈ {0, 1}

xL
�2t1 + xL

�2t2 ≤ 1

700000pCmax

c̃t1 ≤ 400000000

700000pCmax

c̃t2 ≤ 400000000

1000000xL
�2t1 ≤ 2000000

1000000xL
�2t2 ≤ 2000000
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pE
g̃o1t1

− pL
�1o1t1

− pL
�2o1t1

= 0

pC
c̃o1t1

+ pL
�1o1t1

+ pL
�2o1t1

= 246.5 − pLS
d̃o1t1

pL
�1o1t1

= 500
(
θn1o1t1 − θn2o1t1

)

−200xL
�2t1

≤ pL
�2o1t1

≤ 200xL
�2t1

− (
1 − xL

�2t1

)
M ≤ pL

�2o1t1
− 500

(
θn1o1t1 − θn2o1t1

) ≤ (
1 − xL

�2t1

)
M

−200 ≤ pL
�1o1t1

≤ 200

−200 ≤ pL
�2o1t1

≤ 200

0 ≤ pE
c̃o1t1

≤ 400

0 ≤ pC
c̃o1t1

≤ pCmax

c̃t1

0 ≤ pLS
d̃o1t1

≤ 246.5

−π ≤ θn2o1t1 ≤ π

θn1o1t1 = 0
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pE
g̃o2t1

− pL
�1o2t1

− pL
�2o2t1

= 0

pC
c̃o2t1

+ pL
�1o2t1

+ pL
�2o2t1

= 467.5 − pLS
d̃o1t1

pL
�1o2t1

= 500
(
θn1o2t1 − θn2o2t1

)

−200xL
�2t1

≤ pL
�2o2t1

≤ 200xL
�2t1

− (
1 − xL

�2t1

)
M ≤ pL

�2o2t1
− 500

(
θn1o2t1 − θn2o2t1

) ≤ (
1 − xL

�2t1

)
M

−200 ≤ pL
�1o2t1

≤ 200

−200 ≤ pL
�2o2t1

≤ 200

0 ≤ pE
c̃o2t1

≤ 400

0 ≤ pC
c̃o2t1

≤ pCmax

c̃t1

0 ≤ pLS
d̃o2t1

≤ 467.5

−π ≤ θn2o2t1 ≤ π

θn1o2t1 = 0
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pE
g̃o1t2

− pL
�1o1t2

− pL
�2o1t2

= 0

pC
c̃o1t2

+ pL
�1o1t2

+ pL
�2o1t2

= 290 − pLS
d̃o1t2

pL
�1o1t2

= 500
(
θn1o1t2 − θn2o1t2

)

−200
(
xL
�2t1

+ xL
�2t2

) ≤ pL
�2o1t2

≤ 200
(
xL
�2t1

+ xL
�2t2

)

− [
1 − (

xL
�2t1

+ xL
�2t2

)]
M ≤ pL

�2o1t2
− 500

(
θn1o1t2 − θn2o1t2

)

pL
�2o1t1

− 500
(
θn1o1t2 − θn2o1t2

) ≤ [
1 − (

xL
�2t1

+ xL
�2t2

)]
M

−200 ≤ pL
�1o1t2

≤ 200

−200 ≤ pL
�2o1t2

≤ 200

0 ≤ pE
c̃o1t2

≤ 400

0 ≤ pC
c̃o1t2

≤ pCmax

c̃t1
+ pCmax

c̃t2

0 ≤ pLS
d̃o1t2

≤ 290

−π ≤ θn2o1t2 ≤ π

θn1o1t2 = 0
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pE
g̃o2t2

− pL
�1o2t2

− pL
�2o2t2

= 0

pC
c̃o2t2

+ pL
�1o2t2

+ pL
�2o2t2

= 550 − pLS
d̃o1t2

pL
�1o2t2

= 500
(
θn1o2t2 − θn2o2t2

)

−200
(
xL
�2t1

+ xL
�2t2

) ≤ pL
�2o2t2

≤ 200
(
xL
�2t1

+ xL
�2t2

)

− [
1 − (

xL
�2t1

+ xL
�2t2

)]
M ≤ pL

�2o2t2
− 500

(
θn1o2t2 − θn2o2t2

)

pL
�2o1t1

− 500
(
θn1o2t2 − θn2o2t2

) ≤ [
1 − (

xL
�2t1

+ xL
�2t2

)]
M

−200 ≤ pL
�1o2t2

≤ 200

−200 ≤ pL
�2o2t2

≤ 200

0 ≤ pE
c̃o2t2

≤ 400

0 ≤ pC
c̃o2t2

≤ pCmax

c̃t1
+ pCmax

c̃t2

0 ≤ pLS
d̃o2t2

≤ 550

−π ≤ θn2o2t2 ≤ π

θn1o2t2 = 0,
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where Δ̃DS =
{
pE
g̃o1t1

, pE
g̃o2t1

, pC
c̃o1t1

, pC
c̃o2t1

, pLS
d̃o1t1

, pLS
d̃o2t1

, pL
�1o1t1

, pL
�1o2t1

, pL
�2o1t1

, pL
�2o2t1

,

θn1o1t1 , θn1o2t1 , θn2o1t1 , θn2o2t1 , pCmax

c̃t1
, xL

l2t1
, pE

g̃o1t2
, pE

g̃o2t2
, pC

c̃o1t2
, pC

c̃o2t2
, pLS

d̃o1t2
, pLS

d̃o2t2
, pL

�1o1t2
,

pL
�1o2t2

, pL
�2o1t2

, pL
�2o2t2

, θn1o1t2 , θn1o2t2 , θn2o1t2 , θn2o2t2 , pCmax

c̃t2
, xL

�2t1
, xL

�2t2

}
and M is a large

enough number.
We obtain that it is optimal to build �2 in the first time period. Regarding the

candidate generating unit, it is optimal to build 246.5 MW at the beginning of the
first time period and an additional 43.5 MW at the beginning of the second time
period.

If we compare the optimal solution of this illustrative example with that of Illus-
trative Example 4.3, then we obtain that the optimal solutions for the whole planning
horizon are the same. However, here, instead of building 290 MW of the candidate
generating unit at the beginning of the planning horizon, we first build 246.5 MW
and then we add capacity as required in the second time period. This has some
advantages:

1. The investment budget required at the beginning of the planning horizon is lower.
2. We build additional capacity depending on the needs of the system. For example,

if the demand of the system in the second time period is lower than expected,
then we have the option of not building additional capacity if we are considering
a dynamic approach.

Despite the above advantages of considering a dynamic approach, note that this
approach involves solving a more complex problem with a larger number of variables
than if a static approach is considered. For example, in this simple illustrative example
with only two time periods, the number of variables is twice the number of variables
needed in Illustrative Example 4.3.

4.5 Stochastic G&TEP

Sections 4.3 and 4.4 describe the G&TEP problem considering a deterministic
approach, i.e., the generation and transmission expansion plans are determined by the
ISO considering that it has perfect information about the future needs of the system
under study. However, this perfect information is generally not available since the
expansion plans are made for a long-term planning horizon. Therefore, the expan-
sion plans obtained from the models considering a deterministic approach may be
not optimal if the future conditions of the system differ from those considered.

In this section, we analyze the G&TEP problem considering a stochastic approach
that enables the expansion planner to model the uncertain nature of the future needs of
the system under study in the decision-making problem. Uncertainties are represented
through a set of scenarios [6]. For the sake of simplicity and clarity in the development
of the models, we assume that uncertainty affects only the future demand of the
system. However, other sources of uncertainty (e.g., production cost or investment
cost) may also be considered through additional scenarios.
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The sections below describe two models, namely a stochastic static model that
considers that the expansion plan can be made only at the beginning of the planning
horizon and a stochastic dynamic one that considers that expansion plans can be
made at different points in time throughout the planning horizon. Further details
about the characteristics of these two models are provided in Sect. 3.6 of Chap. 3.

4.5.1 Static Approach

The G&TEP problem considering a stochastic static approach can be formulated
using the MILP model below:

minΔSS

∑

ω

ϕω

{
∑

o

ρo

[
∑

g

CE
g p

E
goω +

∑

c

CC
c p

C
coω +

∑

d

CLS
d pLS

doω

]}

+
∑

c

ĨC
c p

Cmax

c +
∑

�∈ΩL+
ĨL
� x

L
� (4.4a)

subject to

0 ≤ pCmax

c ≤ P
Cmax

c ∀c (4.4b)

xL
� ∈ {0, 1} ∀� ∈ ΩL+ (4.4c)
∑

c

IC
c p

Cmax

c ≤ IC,max (4.4d)

∑

�∈ΩL+
IL
� x

L
� ≤ IL,max (4.4e)

{ ∑

g∈ΩE
n

pE
goω +

∑

c∈ΩC
n

pC
coω −

∑

�|s(�)=n

pL
�oω

+
∑

�|r(�)=n

pL
�oω =

∑

d∈ΩD
n

(
PDmax

doω − pLS
doω

) ∀n (4.4f)

pL
�oω = B�

(
θs(�)oω − θr(�)oω

) ∀� \ � ∈ ΩL+ (4.4g)

− xL
� F

max
� ≤ pL

�oω ≤ xL
� F

max
� ∀� ∈ ΩL+ (4.4h)

− (
1 − xL

�

)
M ≤ pL

�ω − B�

(
θs(�)oω − θr(�)oω

) ≤ (
1 − xL

�

)
M

∀� ∈ ΩL+ (4.4i)

− Fmax
� ≤ pL

�oω ≤ Fmax
� ∀� (4.4j)

0 ≤ pE
goω ≤ PEmax

g ∀g (4.4k)

0 ≤ pC
coω ≤ pCmax

c ∀c (4.4l)

0 ≤ pLS
doω ≤ PDmax

doω ∀d (4.4m)

http://dx.doi.org/10.1007/978-3-319-29501-5_3
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− π ≤ θnoω ≤ π ∀n (4.4n)

θnoω = 0 n: ref. (4.4o)
}

,∀o, ω,

where the variables in set ΔSS =
{
pE
goω , pLS

doω, pC
coω, pL

�oω, θnoω, pCmax

c , xL
�

}
are the

optimization variables of problem (4.4).
The main differences between problem (4.4) and problem (4.1) considering a

deterministic static approach are summarized below:

1. In the objective function (4.4a), we compute the expected generation and load-
shedding costs. To do so, the generation and load-shedding costs for each sce-

nario,
∑

o

ρo

[
∑

g

CE
g p

E
goω +

∑

c

CC
c p

C
coω +

∑

d

CLS
d pLS

doω

]

, are multiplied by the

probability of the corresponding scenario, ϕω.
2. The operation constraints (4.4f)–(4.4o), ∀o, ω, are formulated for each operating

condition o and for each scenario ω.

Finally, note that generation and transmission expansion decisions do not depend
on the scenario realization since these decisions are made before the actual scenario
realization is known. Therefore, they are denoted by here-and-now expansion deci-
sions. On the other hand, operation decisions, e.g., productions of candidate and
existing generating units, depend on the scenario realization, and, therefore, they are
called wait-and-see operation decisions.

Illustrative Example 4.5 2-node system: Stochastic static G&TEP problem (for-
mulation)

Considering the data of Illustrative Example 4.1, we assume that demand d̃ is
subject to uncertainty, explained as follows. The demand for each operating condi-
tion can be 30 % lower or 30 % higher than the demands considered in Illustrative
Example 4.1 with equal probability (0.5), i.e., we consider two scenarios. Scenario 1
is characterized by demand conditions of 203 and 385 MW for operating conditions
o1 and o2, respectively, while scenario 2 is characterized by demand conditions of

Fig. 4.2 Scenario tree for
Illustrative Example 4.5
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377 and 715 MW for operating conditions o1 and o2, respectively. Figure 4.2 depicts
the scenario tree for this illustrative example.

Considering the above data, the G&TEP problem considering a stochastic static
approach (4.4) results in the following MILP model:

minΔ̃SS 0.5
{

6000
[
35pE

g̃o1ω1
+ 25pC

c̃o1ω1
+ 80pLS

d̃o1ω1

]
+ 2760

[
35pE

g̃o2ω1

+ 25pC
c̃o2ω1

+ 80pLS
d̃o2ω1

]}
+ 0.5

{
6000

[
35pE

g̃o1ω2
+ 25pC

c̃o1ω2

+ 80pLS
d̃o1ω2

]
+ 2760

[
35pE

g̃o2ω2
+ 25pC

c̃o2ω2
+ 80pLS

d̃o2ω2

]}

+ 70000pCmax

c̃ + 100000xL
�2

subject to

0 ≤ pCmax

c̃ ≤ 300

xL
�2

∈ {0, 1}
700000pCmax

c̃ ≤ 400000000

1000000xL
�2

≤ 2000000
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− pL
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pC
c̃o1ω1

+ pL
�1o1ω1

+ pL
�2o1ω1

= 203 − pLS
d̃o1ω1

pL
�1o1ω1

= 500
(
θn1o1ω1 − θn2o1ω1

)

−200 ≤ pL
�1o1ω1

≤ 200

−200xL
�2

≤ pL
�2o1ω1

≤ 200xL
�2

− (
1 − xL

�2

)
M ≤ pL

�2o1ω1
− 500

(
θn1o1ω1 − θn2o1ω1

) ≤ (
1 − xL

�2

)
M

0 ≤ pE
c̃o1ω1

≤ 400

0 ≤ pC
c̃o1ω1

≤ pCmax

c̃

0 ≤ pLS
d̃o1ω1

≤ 203

−π ≤ θn2o1ω1 ≤ π

θn1o1ω1 = 0
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−200xL
�2

≤ pL
�2o2ω1

≤ 200xL
�2

− (
1 − xL

�2

)
M ≤ pL

�2o2ω1
− 500

(
θn1o2ω1 − θn2o2ω1

) ≤ (
1 − xL

�2

)
M

0 ≤ pE
c̃o2ω1

≤ 400

0 ≤ pC
c̃o2ω1

≤ pCmax

c̃

0 ≤ pLS
d̃o2ω1

≤ 385

−π ≤ θn2o2ω1 ≤ π

θn1o2ω1 = 0

⎧
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pE
g̃o1ω2

− pL
�1o1ω2

− pL
�2o1ω2

= 0

pC
c̃o1ω2

+ pL
�1o1ω2

+ pL
�2o1ω2

= 377 − pLS
d̃o1ω2

pL
�1o1ω2

= 500
(
θn1o1ω2 − θn2o1ω2

)

−200 ≤ pL
�1o1ω2

≤ 200

−200xL
�2

≤ pL
�2o1ω2

≤ 200xL
�2

− (
1 − xL

�2

)
M ≤ pL

�2o1ω2
− 500

(
θn1o1ω2 − θn2o1ω2

) ≤ (
1 − xL

�2

)
M

0 ≤ pE
c̃o1ω2

≤ 400

0 ≤ pC
c̃o1ω2

≤ pCmax

c̃

0 ≤ pLS
d̃o1ω2

≤ 377

−π ≤ θn2o1ω2 ≤ π

θn1o1ω2 = 0
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pE
g̃o2ω2

− pL
�1o2ω2

− pL
�2o2ω2

= 0

pC
c̃o2ω2

+ pL
�1o2ω2

+ pL
�2o2ω2

= 715 − pLS
d̃o1ω2

pL
�1o2ω2

= 500
(
θn1o2ω2 − θn2o2ω2

)

−200 ≤ pL
�1o2ω2

≤ 200

−200xL
�2

≤ pL
�2o2ω2

≤ 200xL
�2

− (
1 − xL

�2

)
M ≤ pL

�2o2ω2
− 500

(
θn1o2ω2 − θn2o2ω2

) ≤ (
1 − xL

�2

)
M

0 ≤ pE
c̃o2ω2

≤ 400

0 ≤ pC
c̃o2ω2

≤ pCmax

c̃

0 ≤ pLS
d̃o2ω2

≤ 715

−π ≤ θn2o2ω2 ≤ π

θn1o2ω2 = 0,

where Δ̃SS =
{
pE
g̃o1ω1

, pE
g̃o2ω1

, pC
c̃o1ω1

, pC
c̃o2ω1

, pLS
d̃o1ω1

, pLS
d̃o2ω1

, pL
�1o1ω1

, pL
�1o2ω1

, pL
�2o1ω1

,

pL
�2o2ω1

, θn1o1ω1 , θn1o2ω1 , θn2o1ω1 , θn2o2ω1 , pE
g̃o1ω2

, pE
g̃o2ω2

, pC
c̃o1ω2

, pC
c̃o2ω2

, pLS
d̃o1ω2

, pLS
d̃o2ω2

,

pL
�1o1ω2

, pL
�1o2ω2

, pL
�2o1ω2

, pL
�2o2ω2

, θn1o1ω2 , θn1o2ω2 , θn2o1ω2 , θn2o2ω2 , pCmax

c̃ , xL
�2

}
.

We obtain that the optimal generation and transmission expansion plan consists
in building transmission line �2 and 300 MW of the candidate generating unit.

For each operating condition, the average demand over the two considered sce-
narios is equal to the demand values considered in Illustrative Example 4.3, the
equivalent problem considering a deterministic approach. However, the results of
the deterministic and the stochastic approaches are different. By considering a
stochastic approach, we take into account the possible future realizations of the
demand, which is ignored by the deterministic approach. As a result, considering the
average value of the uncertain parameters for solving a relatively simpler problem
does not always provide the optimal solution.

Nevertheless, the number of variables and constraints in this illustrative example
is approximately twice the number of variables and constraints needed in Illustrative
Example 4.3. Moreover, here we use only two scenarios to model the uncertainty
in the demand for the sake of clarity. However, in order to correctly represent the
uncertain parameters, it is generally necessary to consider a large enough number
of scenarios, and, thus, the size and computation burden of the stochastic G&TEP
problem increase. �
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4.5.2 Dynamic Approach

The G&TEP problem described in the previous section is extended here to consider
a dynamic approach that enables making expansion decisions at different points in
time. This problem can be formulated using the MILP model below:

minΔSD

∑

ω

ϕω

{
∑

t

[
∑

o

ρo

(
∑

g

CE
g p

E
gotω +

∑

c

CC
c p

C
cotω +

∑

d

CLS
d pLS

dotω

)

+ at

(
∑

c

IC
c p

Cmax

ctω +
∑

�∈ΩL+
IL
� x

L
�tω

)]}

(4.5a)

subject to

0 ≤
∑

t

pCmax

ctω ≤ P
Cmax

c ∀c, ω (4.5b)

xL
�tω ∈ {0, 1} ∀� ∈ ΩL+, t, ω (4.5c)
∑

t

xL
�tω ≤ 1 ∀� ∈ ΩL+, ω (4.5d)

∑

c

IC
c p

Cmax

ctω ≤ IC,max
t ∀t (4.5e)

∑

�∈ΩL+
IL
� x

L
�tω ≤ IL,max

t ∀t (4.5f)

pCmax

ctω = pCmax

ctω̃ ∀c, t, ω, ω̃|PDmax

doτω = PDmax

doτ ω̃ ∀d, o, τ < t (4.5g)

xL
�tω = xL

�tω̃ ∀�, t, ω, ω̃|PDmax

doτω = PDmax

doτ ω̃ ∀d, o, τ < t (4.5h)
{ ∑

g∈ΩE
n

pE
gotω +

∑

c∈ΩC
n

pC
cotω −

∑

�|s(�)=n

pL
lotω

+
∑

�|r(�)=n

pL
�otω =

∑

d∈ΩD
n

(
PDmax

dotω − pLS
dotω

) ∀n (4.5i)

pL
�otω = B�

(
θs(�)otω − θr(�)otω

) ∀� \ � ∈ ΩL+ (4.5j)

−
∑

τ≤t

xL
�τωF

max
� ≤ pL

�otω ≤
∑

τ≤t

xL
�τωF

max
� ∀� ∈ ΩL+ (4.5k)

−
(

1 −
∑

τ≤t

xL
�τω

)

M ≤ pL
�otω − B�

(
θs(�)otω − θr(�)otω

) ≤
(

1 −
∑

τ≤t

xL
�τω

)

M

∀� ∈ ΩL+ (4.5l)

− Fmax
� ≤ pL

�otω ≤ Fmax
� ∀� (4.5m)

0 ≤ pE
gotω ≤ PEmax

g ∀g (4.5n)
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0 ≤ pC
cotω ≤

∑

τ≤t

pCmax

cτω ∀c (4.5o)

0 ≤ pLS
dotω ≤ PDmax

dotω ∀d (4.5p)

− π ≤ θnotω ≤ π ∀n (4.5q)

θnotω = 0 n: ref. (4.5r)
}

,∀o, t, ω,

where the variables in sets ΔSD =
{
pE
gotω , pLS

dotω, pC
cotω, pL

�otω, θnotω, pCmax

ctω , xL
�tω

}
are

the optimization variables of problem (4.5).
The main differences between problem (4.5) and problem (4.4) considering a

stochastic static approach are summarized below:

1. In the objective function (4.5a), the investment costs at each time period are
multiplied by the corresponding amortization rates.

2. We include nonanticipativity constraints (4.5g) and (4.5h), i.e., constraints that
avoid anticipating information. These constraints impose that for a given time
period t, if the characteristics of two scenarios ω and ω̃ in the previous time
periods τ < t are the same, then the generation and transmission expansion plans
of these two scenarios for time period t are also the same.

3. Constraints (4.5b), which impose bounds on the capacity of each candidate gen-
erating unit for the whole planning horizon, are included.

4. Constraints (4.5d), which impose that a prospective transmission line can be built
only once during the whole planning horizon, are included.

5. Constraints (4.5k)–(4.5l), which impose that a prospective transmission line must
be available at time period t if it has been built at the beginning of that time period
or in the previous time periods, are included.

6. Constraints (4.5o), which impose that the available capacity of the candidate
generating units at time period t must be equal to the capacity built at that time
period plus the capacities built in the previous periods, are included.

7. The operation constraints (4.5i)–(4.5r), ∀o, t, ω, are formulated for each operating
condition o, time period t, and scenario ω.

For the sake of clarity, the decision-making sequence is summarized below:

1. The generation and transmission expansion planner determines the expansion
plan to be made at the beginning of the planning horizon, i.e., at the beginning of
the first time period. This expansion plan does not depend on the future scenario
realizations since this information is not available for the planner at the time it
makes these expansion plans. Therefore, these expansion decisions are referred
to as here-and-now decisions.

2. One of the scenarios modeling the uncertainty in the first time period is realized.
This information becomes available to the expansion planner.

3. The expansion planner determines the expansion plan to be made at the beginning
of the second time period. This expansion plan depends on the scenario realization
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in the first time period since it depends on the scenario realization in that period.
However, this expansion plan does not depend on the future scenario realizations.
Therefore, these expansion decisions arewait-and-seewith respect to the scenario
realizations in the first time period but here-and-now with respect to the scenario
realizations in the second and following time periods.

4. One of the scenarios modeling the uncertainty in the second time period is realized.
This information becomes available for the expansion planner.

The above steps 3 and 4 are repeated until the last period of the planning horizon.

Illustrative Example 4.6 2-node system: Stochastic dynamic G&TEP problem

Let us consider the data of Illustrative Example 4.1. The planning horizon is
divided in this case into two time periods, so that generation and transmission expan-
sion plans can be made at the beginning of both time periods.

There are two possible scenario realizations in the first time period, a and b.
Realizations a and b consider that operating conditions o1 and o2 in the first time
period are characterized respectively by a low and high demand. Scenario a con-
siders that operating conditions o1 and o2 are defined by demands equal to 212 and
402 MW, respectively, while scenario b considers that operating conditions o1 and
o2 are defined by demands equal to 281 and 533 MW, respectively. The probability
of each scenario realization, a and b, is equal to 0.5.

On the other hand, there are also two possible scenario realizations in the second
time period, c and d. Realizations c and d consider that operating conditions o1 and
o2 in the second time period are characterized respectively by a low and high demand.
The operating conditions for these two scenarios in the second time period depend
on the scenario realization in the first time period, as explained next and illustrated
with the corresponding scenario tree depicted in Fig. 4.3:

1. If scenario a is realized in the first time period, then (i) realization c considers that
operating conditions o1 and o2 in the second time period are defined by demands
equal to 214 and 407 MW, respectively, while (ii) realization d considers that
operating conditions o1 and o2 in the second time period are defined by demands
equal to 284 and 539 MW, respectively.

2. If scenario b is realized in the first time period, then (i) realization c considers that
operating conditions o1 and o2 in the second time period are defined by demands
equal to 284 and 539 MW, respectively, while (ii) realization d considers that
operating conditions o1 and o2 in the second time period are defined by demands
equal to 377 and 715 MW, respectively.

The probability of each realization, c and d, is equal to 0.5.
The weights of operating conditions o1 and o2 in both time periods and for all

scenario realizations are 6000 and 2760 h, respectively. The above data result in
four scenarios for the whole planning horizon (combinations of possible realizations
in both time periods), whose data are summarized in Table 4.1. The second and
third columns provide the demand conditions in the first and second time periods,
respectively; finally, the fourth column gives the probability of each scenario. Note



140 4 Generation and Transmission Expansion Planning

Fig. 4.3 Scenario tree for Illustrative Example 4.6

Table 4.1 Illustrative Example 4.6: data for scenarios

Scenario Period 1 Period 2 Probability

Scenario 1 (a and c) PD
o1t1ω1

= 212 MW PD
o1t2ω1

= 214 MW 0.5 × 0.5 = 0.25

PD
o2t1ω1

= 402 MW PD
o2t2ω1

= 407 MW

Scenario 2 (a and d) PD
o1t1ω2

= 212 MW PD
o1t2ω2

= 284 MW 0.5 × 0.5 = 0.25

PD
o2t1ω2

= 402 MW PD
o2t2ω2

= 539 MW

Scenario 3 (b and c) PD
o1t1ω3

= 281 MW PD
o1t2ω3

= 284 MW 0.5 × 0.5 = 0.25

PD
o2t1ω3

= 533 MW PD
o2t2ω3

= 539 MW

Scenario 4 (b and d) PD
o1t1ω4

= 281 MW PD
o1t2ω4

= 377 MW 0.5 × 0.5 = 0.25

PD
o2t1ω4

= 533 MW PD
o2t2ω4

= 715 MW

that the data for scenarios and operating conditions have been selected so that the
results of this illustrative example can be compared with those of previous ones.

Considering the above data, the G&TEP problem taking a stochastic dynamic
approach (4.5) results in the following optimization model:

minΔ̃SD 0.25
{

6000
[
35pE

g̃o1t1ω1
+ 25pC

c̃o1t1ω1
+ 80pLS

d̃o1t1ω1

]
+ 2760

[
35pE

g̃o2t1ω1

+ 25pC
c̃o2t1ω1

+ 80pLS
d̃o2t1ω1

]
+ 6000

[
35pE

g̃o1t2ω1
+ 25pC

c̃o1t2ω1
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+ 80pLS
d̃o1t2ω1

]
+ 2760

[
35pE

g̃o2t2ω1
+ 25pC

c̃o2t2ω1
+ 80pLS

d̃o2t2ω1

]

+ 140000pCmax

c̃t1ω1
+ 200000xL

�2t1ω1
+ 70000pCmax

c̃t2ω1
+ 100000xL

�2t2ω1

}

0.25
{

6000
[
35pE

g̃o1t1ω2
+ 25pC

c̃o1t1ω2
+ 80pLS

d̃o1t1ω2

]
+ 2760

[
35pE

g̃o2t1ω2

+ 25pC
c̃o2t1ω2

+ 80pLS
d̃o2t1ω2

]
+ 6000

[
35pE

g̃o1t2ω2
+ 25pC

c̃o1t2ω2

+ 80pLS
d̃o1t2ω2

]
+ 2760

[
35pE

g̃o2t2ω2
+ 25pC

c̃o2t2ω1
+ 80pLS

d̃o2t2ω2

]

+ 140000pCmax

c̃t1ω2
+ 200000xL

�2t1ω2
+ 70000pCmax

c̃t2ω2
+ 100000xL

�2t2ω2

}

0.25
{

6000
[
35pE

g̃o1t1ω3
+ 25pC

c̃o1t1ω3
+ 80pLS

d̃o1t1ω3

]
+ 2760

[
35pE

g̃o2t1ω3

+ 25pC
c̃o2t1ω3

+ 80pLS
d̃o2t1ω3

]
+ 6000

[
35pE

g̃o1t2ω3
+ 25pC

c̃o1t2ω3

+ 80pLS
d̃o1t2ω3

]
+ 2760

[
35pE

g̃o2t2ω3
+ 25pC

c̃o2t2ω3
+ 80pLS

d̃o2t2ω3

]

+ 140000pCmax

c̃t1ω3
+ 200000xL

�2t1ω3
+ 70000pCmax

c̃t2ω3
+ 100000xL

�2t2ω3

}

0.25
{

6000
[
35pE

g̃o1t1ω4
+ 25pC

c̃o1t1ω4
+ 80pLS

d̃o1t1ω4

]
+ 2760

[
35pE

g̃o2t1ω4

+ 25pC
c̃o2t1ω4

+ 80pLS
d̃o2t1ω4

]
+ 6000

[
35pE

g̃o1t2ω4
+ 25pC

c̃o1t2ω4

+ 80pLS
d̃o1t2ω4

]
+ 2760

[
35pE

g̃o2t2ω4
+ 25pC

c̃o2t2ω4
+ 80pLS

d̃o2t2ω4

]

+ 140000pCmax

c̃t1ω4
+ 200000xL

�2t1ω4
+ 70000pCmax

c̃t2ω4
+ 100000xL

�2t2ω4

}

subject to

0 ≤ pCmax

c̃t1ω1
+ pCmax

c̃t2ω1
≤ 300

0 ≤ pCmax

c̃t1ω2
+ pCmax

c̃t2ω2
≤ 300

0 ≤ pCmax

c̃t1ω3
+ pCmax

c̃t2ω3
≤ 300

0 ≤ pCmax

c̃t1ω4
+ pCmax

c̃t2ω4
≤ 300

xL
�2t1ω1

, xL
�2t1ω2

, xL
�2t1ω3

, xL
�2t4ω1

∈ {0, 1}
xL
�2t2ω1

, xL
�2t2ω2

, xL
�2t2ω3

, xL
�2t2ω1

∈ {0, 1}
xL
�2t1ω1

+ xL
�2t2ω1

≤ 1

xL
�2t1ω2

+ xL
�2t2ω2

≤ 1

xL
�2t1ω3

+ xL
�2t2ω3

≤ 1

xL
�2t1ω4

+ xL
�2t2ω4

≤ 1
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700000pCmax

c̃t1ω1
≤ 400000000

700000pCmax

c̃t1ω2
≤ 400000000

700000pCmax

c̃t1ω3
≤ 400000000

700000pCmax

c̃t1ω4
≤ 400000000

700000pCmax

c̃t2ω1
≤ 400000000

700000pCmax

c̃t2ω2
≤ 400000000

700000pCmax

c̃t2ω3
≤ 400000000

700000pCmax

c̃t2ω4
≤ 400000000

1000000xL
�2t1ω1

≤ 2000000

1000000xL
�2t1ω2

≤ 2000000

1000000xL
�2t1ω3

≤ 2000000

1000000xL
�2t1ω4

≤ 2000000

1000000xL
�2t2ω1

≤ 2000000

1000000xL
�2t2ω2

≤ 2000000

1000000xL
�2t2ω3

≤ 2000000

1000000xL
�2t2ω4

≤ 2000000

pCmax

c̃t1ω1
= pCmax

c̃t1ω2
= pCmax

c̃t1ω3
= pCmax

c̃t1ω4

pCmax

c̃t2ω1
= pCmax

c̃t2ω3

pCmax

c̃t2ω3
= pCmax

c̃t2ω4

xL
�2t1ω1

= xL
�2t1ω2

= xL
�2t1ω3

= xL
�2t4ω1

xL
�2t2ω1

= xL
�2t2ω2

xL
�2t2ω3

= xL
�2t2ω4
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pE
g̃o1t1ω1

− pL
�1o1t1ω1

− pL
�2o1t1ω1

= 0

pC
c̃o1t1ω1

+ pL
�1o1t1ω1

+ pL
�2o1t1ω1

= 212 − pLS
d̃o1t1ω1

pL
�1o1t1ω1

= 500
(
θn1o1t1ω1 − θn2o1t1ω1

)

−200 ≤ pL
�1o1t1ω1

≤ 200

−200xL
�2t1ω1

≤ pL
�2o1t1ω1

≤ 200xL
�2t1ω2

− (
1 − xL

�2t1ω1

)
M ≤ pL

�2o1t1ω1
− 500

(
θn1o1t1ω1 − θn2o1t1ω1

) ≤ (
1 − xL

�2t1ω1

)
M

0 ≤ pE
c̃o1t1ω1

≤ 400

0 ≤ pC
c̃o1t1ω1

≤ pCmax

c̃t1ω1

0 ≤ pLS
d̃o1t1ω1

≤ 212

−π ≤ θn2o1t1ω1 ≤ π

θn1o1t1ω1 = 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pE
g̃o2t1ω1

− pL
�1o2t1ω1

− pL
�2o2t1ω1

= 0

pC
c̃o2t1ω1

+ pL
�1o2t1ω1

+ pL
�2o2t1ω1

= 402 − pLS
d̃o1t1ω1

pL
�1o2t1ω1

= 500
(
θn1o2t1ω1 − θn2o2t1ω1

)

−200 ≤ pL
�1o2t1ω1

≤ 200

−200xL
�2t1ω1

≤ pL
�2o2t1ω1

≤ 200xL
�2t1ω1

− (
1 − xL

�2t1ω1

)
M ≤ pL

�2o2t1ω1
− 500

(
θn1o2t1ω1 − θn2o2t1ω1

) ≤ (
1 − xL

�2t1ω1

)
M

0 ≤ pE
c̃o2t1ω1

≤ 400

0 ≤ pC
c̃o2t1ω1

≤ pCmax

c̃t1ω1

0 ≤ pLS
d̃o2t1ω1

≤ 402

−π ≤ θn2o2t1ω1 ≤ π

θn1o2t1ω1 = 0
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pE
g̃o1t2ω1

− pL
�1o1t2ω1

− pL
�2o1t2ω1

= 0

pC
c̃o1t2ω1

+ pL
�1o1t2ω1

+ pL
�2o1t2ω1

= 214 − pLS
d̃o1t2ω1

pL
�1o1t2ω1

= 500
(
θn1o1t2ω1 − θn2o1t2ω1

)

−200 ≤ pL
�1o1t2ω1

≤ 200

−200
(
xL
�2t1ω1

+ xL
�2t2ω1

) ≤ pL
�2o1t2ω1

≤ 200
(
xL
�2t1ω1

+ xL
�2t2ω1

)

− [
1 − (

xL
�2t1ω1

+ xL
�2t2ω1

)]
M ≤ pL

�2o1t2ω1
− 500

(
θn1o1t2ω1 − θn2o1t2ω1

)

pL
�2o1t2ω1

− 500
(
θn1o1t2ω1 − θn2o1t2ω1

) ≤ [
1 − (

xL
�2t1ω1

+ xL
�2t2ω1

)]
M

0 ≤ pE
c̃o1t2ω1

≤ 400

0 ≤ pC
c̃o1t2ω1

≤ pCmax

c̃t1ω1
+ pCmax

c̃t2ω1

0 ≤ pLS
d̃o1t2ω1

≤ 214

−π ≤ θn2o1t2ω1 ≤ π

θn1o1t2ω1 = 0
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pE
g̃o2t2ω1

− pL
�1o2t2ω1

− pL
�2o2t2ω1

= 0

pC
c̃o2t2ω1

+ pL
�1o2t2ω1

+ pL
�2o2t2ω1

= 407 − pLS
d̃o2t2ω1

pL
�1o2t2ω1

= 500
(
θn1o2t2ω1 − θn2o2t2ω1

)

−200 ≤ pL
�1o2t2ω1

≤ 200

−200
(
xL
�2t1ω1

+ xL
�2t2ω1

) ≤ pL
�2o2t2ω1

≤ 200
(
xL
�2t1ω1

+ xL
�2t2ω1

)

− [
1 − (

xL
�2t1ω1

+ xL
�2t2ω1

)]
M ≤ pL

�2o2t2ω1
− 500

(
θn1o2t2ω1 − θn2o2t2ω1

)

pL
�2o2t2ω1

− 500
(
θn1o2t2ω1 − θn2o2t2ω1

) ≤ [
1 − (

xL
�2t1ω1

+ xL
�2t2ω1

)]
M

0 ≤ pE
c̃o2t2ω1

≤ 400

0 ≤ pC
c̃o2t2ω1

≤ pCmax

c̃t1ω1
+ pCmax

c̃t2ω1

0 ≤ pLS
d̃o2t2ω1

≤ 407

−π ≤ θn2o2t2ω1 ≤ π

θn1o2t2ω1 = 0
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pE
g̃o1t1ω2

− pL
�1o1t1ω2

− pL
�2o1t1ω2

= 0

pC
c̃o1t1ω2

+ pL
�1o1t1ω2

+ pL
�2o1t1ω2

= 212 − pLS
d̃o1t1ω2

pL
�1o1t1ω2

= 500
(
θn1o1t1ω2 − θn2o1t1ω2

)

−200 ≤ pL
�1o1t1ω2

≤ 200

−200xL
�2t1ω2

≤ pL
�2o1t1ω2

≤ 200xL
�2t1ω2

− (
1 − xL

�2t1ω2

)
M ≤ pL

�2o1t1ω2
− 500

(
θn1o1t1ω2 − θn2o1t1ω2

) ≤ (
1 − xL

�2t1ω2

)
M

0 ≤ pE
c̃o1t1ω2

≤ 400

0 ≤ pC
c̃o1t1ω2

≤ pCmax

c̃t1ω2

0 ≤ pLS
d̃o1t1ω2

≤ 212

−π ≤ θn2o1t1ω2 ≤ π

θn1o1t1ω2 = 0
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pE
g̃o2t1ω2

− pL
�1o2t1ω2

− pL
�2o2t1ω2

= 0

pC
c̃o2t1ω2

+ pL
�1o2t1ω2

+ pL
�2o2t1ω2

= 402 − pLS
d̃o1t1ω2

pL
�1o2t1ω2

= 500
(
θn1o2t1ω2 − θn2o2t1ω2

)

−200 ≤ pL
�1o2t1ω2

≤ 200

−200xL
�2t1ω2

≤ pL
�2o2t1ω2

≤ 200xL
�2t1ω2

− (
1 − xL

�2t1ω2

)
M ≤ pL

�2o2t1ω2
− 500

(
θn1o2t1ω2 − θn2o2t1ω2

) ≤ (
1 − xL

�2t1ω2

)
M

0 ≤ pE
c̃o2t1ω2

≤ 400

0 ≤ pC
c̃o2t1ω2

≤ pCmax

c̃t1ω2

0 ≤ pLS
d̃o2t1ω2

≤ 402

−π ≤ θn2o2t1ω2 ≤ π

θn1o2t1ω2 = 0
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pE
g̃o1t2ω2

− pL
�1o1t2ω2

− pL
�2o1t2ω2

= 0

pC
c̃o1t2ω2

+ pL
�1o1t2ω2

+ pL
�2o1t2ω2

= 284 − pLS
d̃o1t2ω2

pL
�1o1t2ω2

= 500
(
θn1o1t2ω2 − θn2o1t2ω2

)

−200 ≤ pL
�1o1t2ω2

≤ 200

−200
(
xL
�2t1ω2

+ xL
�2t2ω2

) ≤ pL
�2o1t2ω1

≤ 200
(
xL
�2t1ω2

+ xL
�2t2ω2

)

− [
1 − (

xL
�2t1ω2

+ xL
�2t2ω2

)]
M ≤ pL

�2o1t2ω2
− 500

(
θn1o1t2ω1 − θn2o1t2ω2

)

pL
�2o1t2ω2

− 500
(
θn1o1t2ω1 − θn2o1t2ω2

) ≤ [
1 − (

xL
�2t1ω2

+ xL
�2t2ω2

)]
M

0 ≤ pE
c̃o1t2ω2

≤ 400

0 ≤ pC
c̃o1t2ω2

≤ pCmax

c̃t1ω2
+ pCmax

c̃t2ω2

0 ≤ pLS
d̃o1t2ω2

≤ 284

−π ≤ θn2o1t2ω2 ≤ π

θn1o1t2ω2 = 0
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pE
g̃o2t2ω2

− pL
�1o2t2ω2

− pL
�2o2t2ω2

= 0

pC
c̃o2t2ω2

+ pL
�1o2t2ω2

+ pL
�2o2t2ω2

= 539 − pLS
d̃o2t2ω2

pL
�1o2t2ω2

= 500
(
θn1o2t2ω2 − θn2o2t2ω2

)

−200 ≤ pL
�1o2t2ω2

≤ 200

−200
(
xL
�2t1ω2

+ xL
�2t2ω2

) ≤ pL
�2o2t2ω2

≤ 200
(
xL
�2t1ω2

+ xL
�2t2ω2

)

− [
1 − (

xL
�2t1ω2

+ xL
�2t2ω2

)]
M ≤ pL

�2o2t2ω2
− 500

(
θn1o2t2ω2 − θn2o2t2ω2

)

pL
�2o2t2ω2

− 500
(
θn1o2t2ω2 − θn2o2t2ω2

) ≤ [
1 − (

xL
�2t1ω2

+ xL
�2t2ω2

)]
M

0 ≤ pE
c̃o2t2ω2

≤ 400

0 ≤ pC
c̃o2t2ω2

≤ pCmax

c̃t1ω2
+ pCmax

c̃t2ω2

0 ≤ pLS
d̃o2t2ω2

≤ 407

−π ≤ θn2o2t2ω2 ≤ π

θn1o2t2ω2 = 0
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pE
g̃o1t1ω3

− pL
�1o1t1ω3

− pL
�2o1t1ω3

= 0

pC
c̃o1t1ω3

+ pL
�1o1t1ω3

+ pL
�2o1t1ω3

= 281 − pLS
d̃o1t1ω3

pL
�1o1t1ω3

= 500
(
θn1o1t1ω3 − θn2o1t1ω3

)

−200 ≤ pL
�1o1t1ω3

≤ 200

−200xL
�2t1ω3

≤ pL
�2o1t1ω3

≤ 200xL
�2t1ω3

− (
1 − xL

�2t1ω3

)
M ≤ pL

�2o1t1ω3
− 500

(
θn1o1t1ω3 − θn2o1t1ω3

) ≤ (
1 − xL

�2t1ω3

)
M

0 ≤ pE
c̃o1t1ω3

≤ 400

0 ≤ pC
c̃o1t1ω3

≤ pCmax

c̃t1ω3

0 ≤ pLS
d̃o1t1ω3

≤ 281

−π ≤ θn2o1t1ω3 ≤ π

θn1o1t1ω3 = 0
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pE
g̃o2t1ω3

− pL
�1o2t1ω3

− pL
�2o2t1ω3

= 0

pC
c̃o2t1ω3

+ pL
�1o2t1ω3

+ pL
�2o2t1ω3

= 533 − pLS
d̃o2t1ω3

pL
�1o2t1ω3

= 500
(
θn1o2t1ω3 − θn2o2t1ω3

)

−200 ≤ pL
�1o2t1ω3

≤ 200

−200xL
�2t1ω3

≤ pL
�2o2t1ω3

≤ 200xL
�2t1ω3

− (
1 − xL

�2t1ω3

)
M ≤ pL

�2o2t1ω3
− 500

(
θn1o2t1ω3 − θn2o2t1ω3

) ≤ (
1 − xL

�2t1ω3

)
M

0 ≤ pE
c̃o2t1ω3

≤ 400

0 ≤ pC
c̃o2t1ω3

≤ pCmax

c̃t1ω3

0 ≤ pLS
d̃o2t1ω1

≤ 533

−π ≤ θn2o2t1ω3 ≤ π

θn1o2t1ω3 = 0
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pE
g̃o1t2ω3

− pL
�1o1t2ω3

− pL
�2o1t2ω3

= 0

pC
c̃o1t2ω3

+ pL
�1o1t2ω3

+ pL
�2o1t2ω3

= 284 − pLS
d̃o1t2ω3

pL
�1o1t2ω3

= 500
(
θn1o1t2ω3 − θn2o1t2ω3

)

−200 ≤ pL
�1o1t2ω3

≤ 200

−200
(
xL
�2t1ω3

+ xL
�2t2ω3

) ≤ pL
�2o1t2ω3

≤ 200
(
xL
�2t1ω3

+ xL
�2t2ω3

)

− [
1 − (

xL
�2t1ω3

+ xL
�2t2ω3

)]
M ≤ pL

�2o1t2ω3
− 500

(
θn1o1t2ω3 − θn2o1t2ω3

)

pL
�2o1t2ω3

− 500
(
θn1o1t2ω3 − θn2o1t2ω3

) ≤ [
1 − (

xL
�2t1ω3

+ xL
�2t2ω3

)]
M

0 ≤ pE
c̃o1t2ω3

≤ 400

0 ≤ pC
c̃o1t2ω3

≤ pCmax

c̃t1ω3
+ pCmax

c̃t2ω3

0 ≤ pLS
d̃o1t2ω3

≤ 214

−π ≤ θn2o1t2ω3 ≤ π

θn1o1t2ω3 = 0
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pE
g̃o2t2ω3

− pL
�1o2t2ω3

− pL
�2o2t2ω3

= 0

pC
c̃o2t2ω3

+ pL
�1o2t2ω3

+ pL
�2o2t2ω3

= 539 − pLS
d̃o2t2ω3

pL
�1o2t2ω3

= 500
(
θn1o2t2ω3 − θn2o2t2ω3

)

−200 ≤ pL
�1o2t2ω3

≤ 200

−200
(
xL
�2t1ω3

+ xL
�2t2ω3

) ≤ pL
�2o2t2ω3

≤ 200
(
xL
�2t1ω3

+ xL
�2t2ω3

)

− [
1 − (

xL
�2t1ω3

+ xL
�2t2ω3

)]
M ≤ pL

�2o2t2ω3
− 500

(
θn1o2t2ω3 − θn2o2t2ω3

)

pL
�2o2t2ω3

− 500
(
θn1o2t2ω3 − θn2o2t2ω3

) ≤ [
1 − (

xL
�2t1ω3

+ xL
�2t2ω3

)]
M

0 ≤ pE
c̃o2t2ω3

≤ 400

0 ≤ pC
c̃o2t2ω3

≤ pCmax

c̃t1ω3
+ pCmax

c̃t2ω3

0 ≤ pLS
d̃o2t2ω3

≤ 539

−π ≤ θn2o2t2ω3 ≤ π

θn1o2t2ω3 = 0
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pE
g̃o1t1ω4

− pL
�1o1t1ω4

− pL
�2o1t1ω4

= 0

pC
c̃o1t1ω4

+ pL
�1o1t1ω4

+ pL
�2o1t1ω4

= 281 − pLS
d̃o1t1ω4

pL
�1o1t1ω4

= 500
(
θn1o1t1ω4 − θn2o1t1ω4

)

−200 ≤ pL
�1o1t1ω4

≤ 200

−200xL
�2t1ω4

≤ pL
�2o1t1ω4

≤ 200xL
�2t1ω4

− (
1 − xL

�2t1ω4

)
M ≤ pL

�2o1t1ω4
− 500

(
θn1o1t1ω4 − θn2o1t1ω4

) ≤ (
1 − xL

�2t1ω4

)
M

0 ≤ pE
c̃o1t1ω4

≤ 400

0 ≤ pC
c̃o1t1ω4

≤ pCmax

c̃t1ω4

0 ≤ pLS
d̃o1t1ω4

≤ 281

−π ≤ θn2o1t1ω4 ≤ π

θn1o1t1ω4 = 0
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�2o2t1ω4

= 0
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c̃o2t1ω4

+ pL
�1o2t1ω4

+ pL
�2o2t1ω4

= 533 − pLS
d̃o2t1ω4

pL
�1o2t1ω4

= 500
(
θn1o2t1ω4 − θn2o2t1ω4

)

−200 ≤ pL
�1o2t1ω4

≤ 200

−200xL
�2t1ω4

≤ pL
�2o2t1ω4

≤ 200xL
�2t1ω4

− (
1 − xL

�2t1ω4

)
M ≤ pL

�2o2t1ω4
− 500

(
θn1o2t1ω4 − θn2o2t1ω4

) ≤ (
1 − xL

�2t1ω4

)
M

0 ≤ pE
c̃o2t1ω4

≤ 400

0 ≤ pC
c̃o2t1ω4

≤ pCmax

c̃t1ω4

0 ≤ pLS
d̃o2t1ω4

≤ 533

−π ≤ θn2o2t1ω4 ≤ π

θn1o2t1ω4 = 0
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pE
g̃o1t2ω4

− pL
�1o1t2ω4

− pL
�2o1t2ω4

= 0

pC
c̃o1t2ω4

+ pL
�1o1t2ω4

+ pL
�2o1t2ω4

= 377 − pLS
d̃o1t2ω4

pL
�1o1t2ω4

= 500
(
θn1o1t2ω4 − θn2o1t2ω4

)

−200 ≤ pL
�1o1t2ω4

≤ 200

−200
(
xL
�2t1ω4

+ xL
�2t2ω4

) ≤ pL
�2o1t2ω4

≤ 200
(
xL
�2t1ω4

+ xL
�2t2ω4
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}
and M is a large enough constant.

The optimal solution of the stochastic dynamic G&TEP problem formulated in
this illustrative example consists in building transmission line �2 in the first time
period. Regarding the expansion of the generation capacity, it is optimal to build
212 MW at the beginning of the planning horizon and then building an additional
2 MW if scenario a is realized in the first time period, i.e., for scenarios 1 and 2, and
building an additional 88 MW if scenario b is realized in the first time period, i.e.,
for scenarios 3 and 4.

The expansion decisions at the beginning of the planning horizon do not depend
on the scenario realization since this information is not available to the ISO. When
the first period concludes, the decision maker knows whether scenario a or b has
been realized, and thus it can make two different expansion plans at the beginning
of the second time period depending on this scenario realization.

Note that although the scenario data of this illustrative example have been selected
so that the average value of demands for each operating condition are the same
as those considered in the previous illustrative examples, the optimal results are
significantly different, which highlights the importance of an accurate modeling of
the uncertain parameters in the G&TEP problem. �

The stochastic dynamic G&TEP problem provided in this section has some advan-
tages over the previous models described in this chapter:

1. It allows us to model the uncertainty in the future conditions of the system under
study. This generally results in more informed expansion decisions.

2. It is a more flexible model than a static one since we have the option of building
new facilities at different points in time.

3. As a result of item 2 above, we can adapt to the conditions of the system.
4. The investment budget required at the beginning of the planning horizon is lower

than that needed if the expansion decisions can be made only at a single point in
time.

However, in real-world world applications it is important to note the following
aspects:

1. It is necessary to include additional sources of uncertainty through additional
scenarios.

2. A large enough number of scenarios is needed to represent the uncertain parame-
ters accurately.

3. It is important to consider more than two time periods in the decision-making
problem.

4. Systems have thousands of nodes and transmission lines.

The above facts make the stochastic dynamic G&TEP problem a complex prob-
lem in the real world. Therefore, it is generally necessary to achieve a tradeoff
between modeling accuracy and computation tractability. On the other hand, it is
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generally useful to use mathematical tools such as scenario reduction methods [11,
12] or decomposition techniques [2, 10] to deal with the computational burden of
the G&TEP problem.

4.6 Stochastic Dynamic Risk-Constrained G&TEP

Making generation and transmission expansion decisions generally requires investing
a large amount of money. Moreover, as explained in the previous section, these
expansion decisions are usually made under uncertainty. This means that making
expansion decisions may be risky if uncertainty is not adequately accounted for. Even
if uncertainty is well represented in the decision-making problem, the expansion plan
may be risky if certain of the scenarios are realized. The example below illustrates
the concept of risk in the G&TEP decision-making problem.

Illustrative Example 4.7 Risk modeling in the G&TEP problem

The ISO is considering two possible generation and transmission expansion plans
to be carried out, namely expansion plan A and expansion plan B. Uncertainty in the
system conditions in the considered planning horizon is modeled using five scenarios
each with the same probability (0.2). The ISO computes the cost (operation and
expansion costs) of each expansion plan for each of the five scenarios. These costs
are provided in Table 4.2.

With the cost data of Table 4.2, the ISO computes the expected costs of expansions
plans A and B:

E {CA} = 0.2 × 10 + 0.2 × 11 + 0.2 × 14 + 0.2 × 15 + 0.2 × 50 = $20 million

E {CB} = 0.2 × 19 + 0.2 × 20 + 0.2 × 21 + 0.2 × 22 + 0.2 × 23 = $21 million

Following the criterion considered in the previous sections of this chapter, i.e.,
selecting the expansion plan that minimizes the expected cost, this would result in
the ISO selecting expansion plan A. However, if we observe the costs provided in
Table 4.2, then we note that the cost of expansion plan A for one of the scenarios is
very high (in particular, for scenario 5). Since the expansion plans are made before
the actual scenario realization is known, if the ISO chooses expansion plan A and
scenario 5 is realized, then the ISO would have to face a very high cost, which it may
not be willing to assume.

Table 4.2 Illustrative Example 4.7: costs for expansion plans A and B [M$]

Expansion plan\Scenario 1 2 3 4 5

A 10 11 14 15 50

B 19 20 21 22 23
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On the other hand, the expected cost of expansion plan B is $21 million. However,
the largest cost is only $23 million (for scenario 5) in this case, i.e., less than half
of the largest cost for expansion plan A. This means that if expansion plan B is
carried out instead of expansion plan A, then the cost will likely be higher (the costs
for expansion plan B are higher than those for expansion plan A in four of the five
scenarios). Nevertheless, the ISO also knows that if it implements expansion plan
B, then the cost will be $23 million in the worst case (and not $50 million, as in the
case of choosing expansion plan A).

In other words, using expansion plan A is a risky decision since the actual cost
will be very high with probability 20 %. On the other hand, expansion plan B is a
more conservative solution since its expected cost is higher than that of expansion
plan A but with a much lower highest possible cost. �

The previous illustrative example highlights the importance of considering not
only the expected cost in the G&TEP decision-making problem but also the cost risk
associated with the expansion plans. This is analyzed below.

In order to model the cost risk associated with the generation and transmis-
sion expansion plans, we consider the conditional value-at-risk (CVaR). This risk
metric is incorporated in the stochastic dynamic G&TEP problem (4.5) described in
Sect. 4.5.2. Further details on the CVaR are provided in [14, 15] and in Appendix D
of this book.

4.6.1 Formulation

The G&TEP problem considering a stochastic dynamic risk-constrained approach
can be formulated using the MILP model below:
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are the optimization variables of problem (4.6).
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The main differences between problem (4.6) and problem (4.5) are summarized
below:

1. In the objective function (4.6a) we include an additional term (third line), which
is the CVaR.

2. The CVaR is multiplied in the objective function (4.6a) by the weighting parame-
ter η, which enables us to model the tradeoff between expected cost and CVaR,
and therefore to represent different expansion strategies. If η is equal to zero, we
minimize only the expected cost, i.e., we represent a risk-neutral expansion plan-
ner. This case is equivalent to problem (4.5), i.e., a problem where the expected
cost is minimized but the cost risk is neglected. On the other hand, increasing
values of η represent increasing risk-averse expansion strategies, i.e., strategies
that consider the minimization of the expected profit but also the CVaR.

3. We include constraints (4.6i) and (4.6j), which are used to compute the CVaR.

Illustrative Example 4.8 6-node system: Stochastic dynamic risk-constrained
G&TEP problem

The stochastic dynamic risk-constrained G&TEP problem (4.6) is applied to the
six-node system depicted in Fig. 4.4. This system comprises six nodes, five generating
units, four demands, and three transmission lines. It is possible to build up to six
additional transmission lines and two candidate generating units.

The system is divided in two zones: region A (nodes 1–3) and region B (nodes
4–6), which are initially not interconnected. Node six is initially isolated, and, thus,
demand at this node can be supplied only by generating unit g5.

Table 4.3 provides data for the existing generating units. The second column iden-
tifies the node location, while the third and fourth columns provide the capacity and
the production cost of each existing generating unit, respectively.

Fig. 4.4 Illustrative Example 4.8: six-node system
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Table 4.3 Illustrative Example 4.8: data for existing generating units

Generating unit Node PEmax

g [MW] CE
g [$/MWh]

g1 n1 300 18

g2 n2 250 25

g3 n3 400 16

g4 n5 300 32

g5 n6 150 35

Table 4.4 Illustrative Example 4.8: data for candidate generating units

Generating unit Node PCmax

c [MW] CC
c [$/MWh] IC

c [$/MW]

c1 n4 300 10 700,000

c2 n6 250 15 600,000

Table 4.5 Illustrative Example 4.8: data for demands

Demand Node PDmax

do1
[MW] PDmax

do2
[MW] CLS

d [$/MWh]

d1 n1 150 300 70

d2 n4 120 240 72

d3 n5 80 160 75

d4 n6 150 300 85

It is possible to build two additional generating units, whose data are provided
in Table 4.4. The second column identifies the node location, while the third, fourth,
and fifth columns provide the capacity, production cost, and investment cost of each
candidate generating unit, respectively. The investment budget per time period is
considered equal to $600 million.

Table 4.5 provides data for the demands. The second column identifies the node
location, the third and fourth columns provide the demand values for operating con-
ditions o1 and o2, respectively, and the fifth column gives the load-shedding cost. The
weights of operating conditions o1 and o2 are 5000 and 3760 h, respectively. Note
that these demand values are the expected values at the beginning of the planning
horizon. The evolution throughout the planning horizon and the modeling of the
uncertainty of these demand conditions are explained below.

Table 4.6 provides data for the existing transmission lines. The second and third
columns identify the sending-end and receiving-end nodes, respectively, while the
fourth and fifth columns provide the susceptance and capacity of each existing trans-
mission line, respectively.

We consider that it is possible to build up to six additional transmission lines,
whose data are provided in Table 4.7. The second and third columns identify
the sending-end and receiving-end nodes, respectively, while the fourth and fifth
columns provide the susceptance and capacity of each prospective transmission line,
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Table 4.6 Illustrative Example 4.8: data for existing transmission lines

Line From node To node B� [S] Fmax
� [MW]

�1 n1 n2 500 150

�2 n1 n3 500 150

�3 n4 n5 500 150

Table 4.7 Illustrative Example 4.8: data for prospective transmission lines

Line From node To node B� [S] Fmax
� [MW] IL

� [$]

�4 n2 n3 500 150 700,000

�5 n2 n4 500 200 1,400,000

�6 n3 n4 500 200 1,800,000

�7 n3 n6 500 200 1,600,000

�8 n4 n6 500 150 800,000

�9 n5 n6 500 150 700,000

respectively. The sixth column gives the investment cost. The investment budget per
time period is considered equal to $30 million.

The reference node is node 1, and the base power and voltage are 1 MW and 1 kV,
respectively.

The planning horizon comprises two 10-years time periods, so that the expansion
plans can be made at the beginning of each time period, i.e., at the beginning of the
first and eleventh time periods. The amortization rates are considered equal to 0.2
and 0.1 in the first and second time periods, respectively.

The uncertainties in the demand conditions are modeled through a set of scenarios
as explained below. The demand values of the two operating conditions in the first
time period can be 10 % lower than (realization LL1), 5 % lower than (realization L1),
equal to (realization M1), 10 % higher than (realization H1), and 20 % higher than
(realization HH1) the values provided in Table 4.5, with probabilities equal to 0.1,
0.2, 0.2, 0.3, and 0.2, respectively. On the other hand, the demand values of the two
operating conditions in the second time period can be 10 % lower than (realization
LL2), 5 % lower than (realization L2), equal to (realization M2), 10 % higher than
(realization H2), and 20 % higher than (realization HH2) the values in the first time
period, with probabilities equal to 0.05, 0.1, 0.15, 0.4, and 0.3, respectively. Figure 4.5
and Table 4.8 summarize these scenario data. For example, the demand values of
scenario 1 (realizations LL1 and LL2) for operating condition o1 are obtained as
150 × 0.9 = 135 MW and 150 × 0.9 × 0.9 = 121.5 MW for the first and second
time periods, respectively. On the other hand, the weight of scenario 1 is computed
as 0.1 × 0.05 = 0.005.

The confidence level α for computing the CVaR is fixed to 0.95. Then problem
(4.6) is solved for different values of the weighting parameter η. As previously
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Fig. 4.5 Illustrative
Example 4.8: scenario tree

explained, η allows us to model the tradeoff between expected costs and CVaR. As
a result of varying parameter η, the transmission and expansion plans are different.
Figure 4.6 depicts the so-called efficient frontier, which shows how the expected costs
and the CVaR vary as we vary the value of parameter η.

A value of η equal to 0 represents a risk-neutral expansion strategy, i.e., the
expansion strategy that minimizes the expected costs but neglects the risk associated
with it. Therefore, as noted in Fig. 4.6, this strategy results in the lowest expected
cost but in the largest CVaR, i.e., η = 0 is the riskiest strategy. On the other hand,
increasing values of η represent increasing risk-averse expansion strategies that result
in higher expected costs but also in a reduction of the CVaR, i.e., by considering
increasing values of η we reduce the cost risk associated with the expansion decisions.

Table 4.9 provides the transmission and expansion plans for different values of
the weighting parameter η. The second column indicates the scenarios, while the
third/fourth and fifth/sixth columns provide the transmission/generation expansion
decisions in the first and second time periods, respectively.

Regarding the results provided in Table 4.9, the observations below are in order:
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Table 4.8 Illustrative Example 4.8: scenario data

Scenario First time period Second time period Weight

1 (LL1+LL2) −10 % −10 % 0.005

2 (LL1+L2) −10 % −5 % 0.010

3 (LL1+M2) −10 % +0 % 0.015

4 (LL1+H2) −10 % +10 % 0.040

5 (LL1+HH2) −10 % +20 % 0.030

6 (L1+LL2) −5 % −10 % 0.010

7 (L1+L2) −5 % −5 % 0.020

8 (L1+M2) −5 % +0 % 0.030

9 (L1+H2) −5 % +10 % 0.080

10 (L1+HH2) −5 % +20 % 0.060

11 (M1+LL2) +0 % −10 % 0.010

12 (M1+L2) +0 % −5 % 0.020

13 (M1+M2) +0 % +0 % 0.030

14 (M1+H2) +0 % +10 % 0.080

15 (M1+HH2) +0 % +20 % 0.060

16 (H1+LL2) +10 % −10 % 0.015

17 (H1+L2) +10 % −5 % 0.030

18 (H1+M2) +10 % +0 % 0.045

19 (H1+H2) +10 % +10 % 0.120

20 (H1+HH2) +10 % +20 % 0.090

21 (HH1+LL2) +20 % −10 % 0.010

22 (HH1+L2) +20 % −5 % 0.020

23 (HH1+M2) +20 % +0 % 0.030

24 (HH1+H2) +20 % +10 % 0.080

25 (HH1+HH2) +20 % +20 % 0.060

1. The expansion decisions at the beginning of the planning horizon do not depend
on the scenario realizations.

2. There are five possible expansion decisions for the second time period, one for
each scenario realization in the first one (LL1, L1, M1, H1, HH1).

3. A risk-neutral expansion strategy considers a comparatively lower expansion of
the generation capacity at the beginning of the planning horizon. In this way,
the expected cost throughout the planning horizon is minimized since making a
larger investment in generation capacity may result in an overinvestment that is
not needed if some of the scenarios are realized.

4. Increasing risk-averse expansion strategies consider comparatively larger expan-
sions of the generation capacity at the beginning of the planning horizon. In
this way, the variability of the operation cost throughout the planning horizon is
reduced and also the CVaR.
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Fig. 4.6 Illustrative Example 4.8: efficient frontier

Table 4.9 Illustrative Example 4.8: generation and transmission expansion plans for different risk-
aversion strategiesa

η Scenarios First time period Second time period

Lines built Capacity built [MW] Lines built Capacity built [MW]

0 1–5 �6, �7, �8 300 (c1), 40.8 (c2) – –

6–10 – 23.1 (c2)

11–15 – 46.2 (c2)

16–20 – 92.4 (c2)

21–15 �5 89.4 (c2)

1.5 1–5 �6, �7 298 (c1), 130 (c2) – –

6–10 – –

11–15 – –

16–20 – 2 (c1), 33 (c2)

21–15 – 2 (c1), 102 (c2)

5 1–5 �6, �7 298 (c1), 160 (c2) – –

6–10 – –

11–15 – –

16–20 – 2 (c1), 3 (c2)

21–15 – 2 (c1), 72 (c2)
a�4: 2–3, �5: 2–4, �6: 3–4, �7: 3–6, �8: 4–6, �9: 5–6
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5. Regarding the transmission expansion decisions, it is optimal to build transmission
lines �6, �7, and �8, i.e., those prospective transmission lines that connect Region
A and node 6 with the rest of the system.

6. Regarding the generation-capacity expansion decisions, it is optimal to build first
candidate generating unit c1 and then, if needed, additional capacity of generating
unit c2.

�

4.7 Summary and Conclusions

In this chapter, we describe the joint expansion of the generation capacity and the
transmission network of a given electric energy system. This is done considering the
perspective of a central planner, the ISO, whose aim is maximizing the overall social
welfare. In particular, we determine the generation and transmission expansion plan
that minimizes the generation and load-shedding costs as well as the investment costs.
To do so, we provide different models that incorporate an increasing level of detail
on the G&TEP decision-making problem, namely a dynamic framework, stochastic
parameters, and risk management.

Considering the theoretical framework and the results of the examples reported
in this chapter, the conclusions below are in order:

1. A deterministic static approach allows us to formulate a simple model for the
G&TEP problem. However, the modeling accuracy of this model is modest.

2. Considering a dynamic approach enables us to make expansion decisions at dif-
ferent points in time, which increases the flexibility of the decision-maker and
reduces the investment budget required at the beginning of the planning horizon.

3. It is important to model the impact of uncertain parameters on the G&TEP prob-
lem. Using the expected values of these uncertain parameters to formulate an
equivalent deterministic problem usually results in suboptimal expansion plans.

4. Making generation and transmission expansion plans is a risky task. Therefore,
it is important to manage the cost risk associated with these expansion plans.

5. Different risk strategies result in different expansion plans.
6. It is important to model accurately different details in the G&TEP problem.

However, this generally results in a complex problem for real-world systems.
Therefore, it is necessary to establish a tradeoff between modeling accuracy and
computational complexity.
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4.8 End-of-Chapter Exercises

4.1 Why is G&TEP needed? Who decides about it?

4.2 Enumerate the advantages and disadvantages of the different approaches
described in this chapter for the G&TEP problem.

4.3 Determine the optimal generation and transmission expansion plan in the mod-
ified Garver’s system depicted in Fig. 4.7, whose data are provided in Tables 4.10,
4.11, 4.12, 4.13, and 4.14. Apply the deterministic static model (4.1).

4.4 Robust optimization is used in Chap. 2 to address the uncertainty in the TEP
problem, while stochastic programming is used in this chapter to represent the uncer-
tainty in the G&TEP problem. What are the advantages and disadvantages of both
techniques? Based on the adaptive robust optimization approach used in Sect. 2.3 of

Fig. 4.7 Exercise 4.3: modified Garver’s system

Table 4.10 Exercise 4.3:
data for existing generating
units of the modified Garver’s
system

Generating
unit

Node PEmax

g [MW] CE
g [$/MWh]

g1 n1 200 24

g2 n3 200 28

g3 n6 300 16

http://dx.doi.org/10.1007/978-3-319-29501-5_2
http://dx.doi.org/10.1007/978-3-319-29501-5_2
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Table 4.11 Exercise 4.3: data for candidate generating units of the modified Garver’s system

Generating unit Node PCmax

c [MW] CC
c [$/MWh] IC

c [$/MW]

c1 n1 300 10 600,000

c2 n3 300 15 400,000

Table 4.12 Exercise 4.3: data for demands of the modified Garver’s system

Demand Node PDmax

do1
[MW] PDmax

do2
[MW] CLS

d [$/MWh]

d1 n1 77 110 49

d2 n2 92 132 51

d3 n3 62 88 80

d4 n4 92 132 65

d5 n5 62 88 39

Table 4.13 Exercise 4.3: data for existing transmission lines of the modified Garver’s system

Line From node To node B� [S] Fmax
� [MW]

�1 n1 n2 250 100

�2 n1 n4 133 80

�3 n1 n5 500 100

�4 n2 n3 500 100

�5 n2 n4 250 100

�6 n3 n5 250 100

Table 4.14 Exercise 4.3: data for prospective transmission lines of the modified Garver’s system

Line From node To node B� [S] Fmax
� [MW] IL

� [$]

�7 n2 n5 323 100 3,491,000

�8 n2 n6 333 100 3,379,000

�9 n3 n6 500 100 5,406,000

�10 n4 n6 333 100 3,379,000

Chap. 2, formulate the G&TEP problem (4.1) using an adaptive robust optimization
approach and considering that uncertainty affects only PDmax

do .

4.5 Solve Illustrative Example 4.6 considering the robust model formulated in Exer-
cise 4.4. Consider that demands vary within ±10 % of their expected values. Compare
the results with those obtained considering a stochastic approach.

4.6 In this chapter, the CVaR is incorporated in the G&TEP problem to manage the
cost risk associated with the expansion plans. However, there are other risk metrics
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that may be used with the same purpose, e.g., the value-at-risk (VaR) and the variance.
Incorporate these two risk metrics in the stochastic dynamic G&TEP problem (4.5).

4.7 Solve Illustrative Example 4.8 considering the models formulated in Exercise
4.6 and compare their solutions with those of Illustrative Example 4.8.

4.9 GAMS Code

A GAMS code for solving Illustrative Example 4.3 is provided below:

1 SETS
2 n /n1*n2/
3 g /g1*g1/
4 c /c1*c1/
5 d /d1*d1/
6 o /o1*o2/
7 l /l1*l2/
8 pros(l) /l2*l2/
9 ex(l) /l1*l1/

10 mapE(g,n) /g1.n1/
11 mapC(c,n) /c1.n2/
12 mapD(d,n) /d1.n2/
13 ref(n) /n1/
14 mapSL(l,n) /l1.n1 ,l2.n1/
15 mapRL(l,n) /l1.n2 ,l2.n2/;

17 TABLE LDATA(l,*)
18 B FLmax
19 l1 500 200
20 l2 500 200;

22 PARAMETER IC(c)
23 /c1 70000/;

25 PARAMETER IC_L(l)
26 /l2 100000/;

28 SCALAR IB
29 /40000000/;

31 SCALAR IB_L
32 /200000/;

34 TABLE PDmax(d,o)
35 o1 o2
36 d1 290 550;

38 TABLE EDATA(g,*)
39 PEmax Ecost
40 g1 400 35;
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42 TABLE DDATA(d,*)
43 LSCost
44 d1 80;

46 TABLE CDATA(c,*)
47 Ccost PCmax
48 c1 25 300;

50 PARAMETER RHO(o)
51 /o1 6000
52 o2 2760/;

54 SCALAR M
55 /300000/;

57 VARIABLES
58 Z
59 PL(l,o)
60 THETA(n,o);

62 POSITIVE VARIABLES
63 PGE(g,o)
64 PGC(c,o)
65 PCmax(c)
66 PLS(d,o);

68 BINARY VARIABLES
69 XL(l);

71 EQUATIONS EQ1A , EQ1B , EQ1D , EQ1E , EQ1F , EQ1G , EQ2Aa ,
EQ2Ab , EQ2Ba , EQ2Bb , EQ1Ia , EQ1Ib , EQ1J , EQ1K , EQ1L
, EQ1Ma , EQ1Mb , EQ1N;

73 EQ1A.. Z=E=SUM(o,RHO(o)*(SUM(g,EDATA
(g,’Ecost’)*PGE(g,o))+SUM(c,CDATA(c,’Ccost’)*PGC(c,
o))+SUM(d,DDATA(d,’LSCOST’)*PLS(d,o))))+SUM(c,IC(c)
*PCmax(c))+SUM(l$pros(l),IC_L(l)*xL(l));

74 EQ1B(c).. PCmax(c)=L=CDATA(C,’PCmax’);
75 *EQ1C IS BINARY VARIABLE DECLARATION
76 EQ1D.. SUM(c,IC(c)*PCmax(c))=L=IB;
77 EQ1E.. SUM(l$pros(l),IC_L(L)*xL(l))=

L=IB_L;
78 EQ1F(n,o).. SUM(g$mapE(g,n),PGE(g,o))+SUM

(c$mapC(c,n),PGC(c,o))-SUM(l$mapSL(l,n),PL(l,o))+
SUM(l$mapRL(l,n),PL(l,o))=E=SUM(d$mapD(d,n) ,(PDmax(
d,o)-PLS(d,o)));

79 EQ1G(l,o)$EX(l).. PL(l,o)=E=LDATA(l,’B’)*(SUM(
n$mapSL(l,n),THETA(n,o))-SUM(n$mapRL(l,n),THETA(n,o
)));

80 EQ2Aa(l,o)$pros(l).. -XL(l)*LDATA(l,’FLmax’)=L=PL(
l,o);
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81 EQ2Ab(l,o)$pros(l).. PL(l,o)=L=XL(l)*LDATA(l,’
FLmax’);

82 EQ2Ba(l,o)$pros(l).. -(1-XL(l))*M=L=PL(l,o)-LDATA(
l,’B’)*(SUM(n$mapSL(l,n),THETA(n,o))-SUM(n$mapRL(l,
n),THETA(n,o)));

83 EQ2Bb(l,o)$pros(l).. PL(l,o)-LDATA(l,’B’)*(SUM(
n$mapSL(l,n),THETA(n,o))-SUM(n$mapRL(l,n),THETA(n,o
)))=l=(1-XL(l))*M;

84 EQ1Ia(l,o).. -LDATA(L,’FLmax’)=L=PL(l,o);
85 EQ1Ib(l,o).. PL(l,o)=L=LDATA(l,’FLmax’);
86 EQ1J(g,o).. PGE(g,O)=L=EDATA(g,’PEmax’);
87 EQ1K(c,o).. PGC(c,o)=L=PCmax(c);
88 EQ1L(d,o).. PLS(d,o)=L=PDmax(d,o);
89 EQ1Ma(n,o).. -3.14=L=THETA(n,o);
90 EQ1Mb(n,o).. THETA(n,o)=L=3.14;
91 EQ1N(n,o)$REF(n).. THETA(n,o)=E=0;

93 MODEL GaTEP_DetSta /ALL/;

95 option OPTCR =0;

97 option OPTCA =0;

99 SOLVE GaTEP_DetSta USING MIP MINIMIZING Z;
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Chapter 5
Investment in Production Capacity

The two previous chapters describe and analyze the generation expansion planning
(GEP) problem as well as the joint generation and transmission expansion planning
(G&TEP) problem, both from the perspective of a central planner that determines the
expansion plan that is most beneficial for the system as a whole. Unlike the problems
in those two chapters, referred to as centralized expansion problems, this chapter
addresses amarket-oriented generation investment problem, in which a single power
producer competing in an electricity pool seeks to maximize its own profit through
making the best generation investment decisions. It is important to note that amarket-
oriented decision-making problem is generally more complex than a centralized
one since the former is subject to additional uncertainty related to the behavior of
other producers (rivals). In this chapter, we provide and analyze different investment
models that progressively incorporate additional details with emphasis on solution
techniques.

5.1 Introduction

This chapter develops models for making production capacity investment decisions
by a producer that competes with other producers (rivals) in an electricity market.
We consider that this producer is strategic, i.e., it owns a significant share of the
production capacity in the industry, and therefore is able to exert market power. The
aim of this strategic producer is to maximize its own profit. To this end, it intends
to alter the market-clearing outcomes to its own benefit. Specifically, this producer
makes:

1. Strategic investment decisions, i.e., long-term investment decisions to build new
production units strategically including conventional (e.g., gas-based) and sto-
chastic (e.g., wind-based) facilities.

2. Strategic offering decisions, i.e., short-term operation decisions to offer the pro-
duction of conventional units at strategic prices. For simplicity, the offer price of
stochastic production units is assumed to be zero.

© Springer International Publishing Switzerland 2016
A.J. Conejo et al., Investment in Electricity Generation and Transmission,
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We assume that the investment and offering decisions of the rival producers are
given as exogenous data. An investment model considering multiple strategic pro-
ducers in which each producer makes its own decisions seeking its own profit is
addressed in Chap.6, which leads to an investment equilibrium problem.

The investment decision-making problem considered in this chapter allows the
strategic producer to select the best production technologies, to find the best invest-
ment years throughout the planning horizon, and to locate the new production units
optimally throughout the network. This is embodied in a bilevel model, which is
recast as a mixed-integer linear programming (MILP) problem, solvable using avail-
able branch-and-cut solvers.

The following sections explain in detail features of the bilevel models considered
in this chapter.

5.1.1 Electricity Pool

Weconsider a pool-based electricitymarket inwhich an independent system operator
(ISO) clears the pool once a day, one day ahead, and on an hourly basis. The market
operator seeks to maximize the social welfare of the pool considering the offering
curves submitted by producers and the bidding curves submitted by consumers. The
market-clearing results are hourly productions, consumptions, and clearing prices.
For the sake of simplicity, a single trading floor, i.e., the day-ahead market, is con-
sidered since it is generally the market with the largest volume of energy trading. A
more general formulation to include different trading floors (e.g., long-run futures
market, short-run real-time market, and bilateral contracting) is an extension to the
proposed model that does not change its nature.

5.1.2 Network Representation

A dc representation of the transmission network is embedded within the investment
model provided in this chapter since such a representation is linear, simple, and
appropriate for planning models. In this way, the effect of locating new units at dif-
ferent nodes and the impact of transmission congestion are adequately represented.
For simplicity, active power losses are neglected; however, they can be easily incor-
porated using piecewise linear approximations [29, 31]. Further details on network
modeling are available in [20]. We also assume that the network does not change
throughout the investment horizon.

http://dx.doi.org/10.1007/978-3-319-29501-5_6
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5.1.3 Static and Dynamic Investment Models

Two different models are generally considered in investment studies:

1. Static models [1, 6, 14, 22–26, 32, 33].
2. Dynamic (multistage) models [3, 11, 17–19, 35].

The characteristics of these two models are briefly explained next.
In the static investment model, the producer considers a single future year and

decides its optimal production portfolio for that target year. Note that the optimal
timing for building new units from the current year to the target year cannot be
obtained explicitly using this static model. However, it can be derived through an
ex-post analysis once the optimal portfolio of the strategic producer for the target year
has been obtained through a profit-maximization problem in which the generation
capacity portfolios in the current and target years are given (exogenous parameters),
but the optimal investment years are decision variables. This ex-post analysis is out-
side the scope of this chapter. Existing production units that will be decommissioned
over the planning horizon should not be included in the static analysis.

In contrast to the static model, in the dynamic model, the investment decisions
are endogenously made at several points in time throughout the planning horizon.
For example, let us consider three ten-year time periods within a thirty-year planning
horizon. Then the investment decisions aremade at the beginning of each time period,
i.e., at the beginning of years 1, 11, and 21. In this way, the time schedule for building
new units from the current year to the target year (year 30) is optimally derived. Note
that within each time period, e.g., the first time period spanning from the beginning
of year 1 to the end of year 10, a static investment model needs to be considered, i.e.,
year 10 is the target year for that time period. In general, the dynamic model results
in more accurate investment decisions with respect to the static model, but at the cost
of high computational burden and potential intractability. In this chapter, both static
and dynamic models are considered.

5.1.4 Operating Conditions: Demand Level and Stochastic
Production

Since the demand level and the production level in the case of stochastic units (e.g.,
windpower producers) varyover the target year of the staticmodel or during each time
period of the dynamicmodel, a number of operating conditions needs to be considered
to capture such variability. Each operating condition contains the following two
factors expressed in per unit (p.u.):

1. A demand factor for each consumer,
2. A power capacity factor for each stochastic production unit.

The demand factor of a consumer refers to its consumption level divided by its
peak demand. In addition, the power capacity factor of a stochastic unit corresponds
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to its production level divided by its installed capacity. For example, the following
items represent two different operating conditions for a system including a single
consumer and a single stochastic production unit:

• Condition 1: demand factor equal to 1.0 p.u. and power capacity factor equal to
0.3 p.u.

• Condition 2: demand factor equal to 0.7 p.u. and power capacity factor equal to
0.6 p.u.

Condition 1 above represents the peakdemand since the consumer’s demand factor
is 1.0 p.u., whereas the stochastic unit produces at 30% of its installed capacity. In
Condition 2, the stochastic production is comparatively higher than that in Condition
1, i.e., it generates at 60% of its installed capacity. However, the consumption level
of the consumer is comparatively lower than that in Condition 1, i.e., the consumer’s
demand in Condition 2 is 70% of its peak demand.

It is important to note that a weighting factor is associated with each operating
condition, indicating the number of hours during the target year that are represented
by that condition. Clearly, the summation of weighting factors corresponding to all
operating conditions is 8760, i.e., the number of hours in a year. For example, the
weighting factors ofConditions 1 and 2 abovemight be 1200 and 7560h, respectively.

In practice, the operating conditions of a given electric systemcan be appropriately
derived from historical data using a clustering technique, e.g., theK-means clustering
method [4]. In this way, the hours during the target year with similar demand and
stochastic production levels can be grouped in the same cluster. Then, these operating
conditions are projected into the future by appropriate growth factors. This technique
allows the representation of the possible temporal and/or spatial correlation between
demand and stochastic production.

5.1.5 Uncertainty

The production capacity investment problem of a producer is subject to diverse
sources of uncertainty throughout the planning horizon, such as:

• Behavior of rival producers regarding investment decisions.
• Demand growth.
• Investment and operating costs of different production technologies.
• Regulatory changes.

For the sake of simplicity, among the uncertainties above, we consider the invest-
ment decisions of rival producers and the investment costs of different production
technologies (in the case of dynamic investment model) as uncertain parameters.
Other parameters, e.g., demand growth, operation costs, and regulatory changes, are
assumed to be known. However, it is not complex, but computationally costly, to
consider all potential uncertainties.
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In the literature, different approaches are available to model uncertainty within
an optimization problem, e.g., stochastic programming [10, 13], robust optimization
[9, 30], and interval optimization [21]. A comparison of those approaches applied
to a problem related to power systems is available in [30]. In this chapter, we use the
stochastic programming approach so that the uncertain parameters are represented
through a set of plausible scenarios. For example, the investment decisions of a rival
producer are represented by two scenarios: no investment (scenario 1) and investment
in a 100 MW coal unit (scenario 2). Each scenario embodies a probability, e.g.,
0.6 for scenario 1 and 0.4 for scenario 2. Note that an appropriate set of scenarios
corresponding to an uncertain parameter can be generated using historical data [4].
However, the scenario generation and/or reduction techniques are outside the scope
of this chapter.

5.1.6 Bilevel Model

In the context of an electricity market, the strategic producer sells its production
at the market-clearing price. However, the market-clearing price is affected by the
offering and investment decisions of the strategic producer. Therefore, the strategic
producer’s decisions are constrained by market-clearing problems. Note that each
market-clearing problem (one per operating condition and scenario) is itself an opti-
mization problem. Thus, the strategic producer needs to solve an optimization prob-
lem constrained by other optimization problems. These type of models are known in
the literature as bilevel models [16].

In this chapter, we use a bilevel model to represent the strategic behavior of a
producer competing with its rival producers in an electricity pool. This bilevel model
consists of an upper-level problem and a set of lower-level problems. The general
structure of bilevelmodels is explained inChap.1.Additionally,mathematical details
of bilevel models are provided in Appendix C.

Specifically, the upper-level problem of the bilevel model maximizes the expected
profit of the strategic producer and determines its strategic decisions, i.e., strategic
investment actions and strategic offer prices. Note that the offer prices of a strategic
producer are generally different from its actual production costs. The upper-level
problem is constrained by two sets of constraints as follows:

1. Upper-level constraints.
2. A collection of lower-level problems, one per operating condition and scenario.

Each lower-level problem represents the clearing of themarket by the Independent
System Operator (ISO) maximizing social welfare.

http://dx.doi.org/10.1007/978-3-319-29501-5_1
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5.1.7 Alternative Solution Approaches

To solve investment bilevel models, two alternative solution approaches are provided
in this chapter, namely:

1. Direct solution [1, 22, 23],
2. Benders decomposition [2, 26].

In the direct solution approach, all operating conditions and scenarios are simul-
taneously taken into account, and as such, the bilevel model is solved. In this solution
approach, a large number of operating conditions and scenarios may result in high
computational burden and eventual intractability, especially if a dynamic investment
model is considered.

In the second approach, the operating conditions and scenarios are considered
separately using a Benders decomposition technique [12]. The objective of this solu-
tion approach is to make the investment models computationally tractable even if
many operating conditions and scenarios are considered. Both solution approaches
are presented in this chapter.

The remainder of this chapter is organized as follows. Section5.2 provides a pro-
duction capacity investment model using the static investment model, while Sect. 5.3
refers to a similar problem but using the dynamic model. Section5.4 provides the
resulting mathematical program with equilibrium constraints (MPEC) and theMILP
problem corresponding to the investment models presented in Sects. 5.2 and 5.3.
Section5.5 provides a computationally efficient solution approach based on Ben-
ders decomposition to be applied to both static and dynamic investment models.
Section5.6 summarizes the chapter and discusses the main conclusions of the mod-
els and results reported in the chapter. Section5.7 proposes some exercises to enable
a deeper understanding of the models and concepts described in the chapter. Finally,
Sect. 5.8 includes the GAMS code for an illustrative example.

5.2 Static Production Capacity Investment Model

Figure5.1 shows the bilevel structure of a static production capacity investment
model. The upper-level problem represents the expected profit maximization (or
minus the expected profit minimization) of the strategic producer subject to upper-
level constraints and to the lower-level problems. The upper-level constraints per-
tain to investment options, available investment budget, and nonnegativity of strategic
offer prices.

Each lower-level problem, one per operating condition and scenario, represents
the market clearing with the target of maximizing the social welfare (or minimizing
minus the social welfare) and is subject to power balance at every node, power limits
for production and consumption levels, transmission line capacity limits, voltage
angle bounds, and reference node identification.
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Investment options
Available investment budget
Non‐negativity of strategic offers

Power balance at every bus
Production/consumption power bounds
Transmission line capacity limits
Voltage angle limits
Reference node identification

For a given operating condition & scenario

Minimize Minus social welfare
subject to:

Fig. 5.1 Bilevel structure of the static production capacity investment model

Note that the upper-level and lower-level problems are interrelated. On the one
hand, the lower-level problems determine the market-clearing prices and the power
production quantities, which directly influence the strategic producer’s expected
profit in the upper-level problem. On the other hand, the offering and investment
decisionsmade by the strategic producer in the upper-level problemaffect themarket-
clearing outcomes in the lower-level problems.

The notation used in this chapter is defined below:

Indices

h Production capacity investment options (conventional technologies).
n, m Nodes.
o Operating conditions.
ω Scenarios.

Sets

Ωn Set of nodes connected to node n.
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Parameters

Bnm Susceptance of the transmission line connecting node n to node m [S].
CC

n Production cost of the candidate conventional unit of the strategic producer
located at node n [$/MWh].

CE
n Production cost of the existing conventional unit of the strategic producer

located at node n [$/MWh].
CR

no Offer price of the rival unit located at node n in operating condition o
[$/MWh].

Fmax
nm Transmission capacity of the line connecting node n to node m [MW].

KC
n Annualized investment cost of the candidate conventional unit located at

node n [$/MW].
K S

n Annualized investment cost of the candidate stochastic unit located at node
n [$/MW].

Kmax Available annualized investment budget of the strategic producer [$].
PEmax

n Capacity of the existing conventional unit of the strategic producer located
at node n [MW].

PDmax

n Maximum load of the consumer located at node n [MW].
PRmax

nω Capacity of the rival unit located at node n under scenario ω [MW].
QS

no Power capacity factor of the candidate stochastic unit of the strategic pro-
ducer located at node n in operating condition o [p.u.].

QD
no Demand factor of the consumer located at node n in operating condition o

[p.u.].
UD

no Bid price of the consumer located at node n in operating condition o
[$/MWh].

XC
nh Option h for production capacity investment of the candidate conventional

unit located at node n [MW].
XSmax

n Maximum production capacity investment of the candidate stochastic unit
located at node n [MW].

ϕω Probability associated with scenario ω [p.u.].
ρo Weighting factor associated with operating condition o [h].

Binary Variables

uC
nh Binary variable that is equal to 1 if the conventional production investment

option h is selected to be built at node n.

Continuous Variables

pC
noω Power produced by the candidate conventional unit of the strategic producer

located at node n in operating condition o under scenario ω [MW].
pD

noω Power consumed by the consumer located at node n in operating condition
o under scenario ω [MW].

pE
noω Power produced by the existing conventional unit of the strategic producer

located at node n in operating condition o under scenario ω [MW].
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pR
noω Power produced by the rival unit located at node n in operating condition o

under scenario ω [MW].
pS

noω Power produced by the candidate stochastic unit of the strategic producer
located at node n in operating condition o under scenario ω [MW].

xC
n Capacity investment of the candidate conventional unit of the strategic pro-

ducer located at node n [MW].
xS

n Capacity investment of the candidate stochastic unit of the strategic producer
located at node n [MW].

αC
noω Offer price by the candidate conventional unit of the strategic producer

located at node n in operating condition o under scenario ω [$/MWh].
αE

noω Offer price by the existing conventional unit of the strategic producer located
at node n in operating condition o under scenario ω [$/MWh].

θnoω Voltage angle of node n in operating condition o under scenario ω [rad].
λnoω Market-clearing price at node n in operating condition o under scenario ω

[$/MWh].

The formulation of the static investment bilevel model is given by (5.1). Note that
(5.1a)–(5.1h) is the upper-level problem, and (5.1j)–(5.1s) included in (5.1i) pertains
to the lower-level problems, one per operating condition o and scenario ω. Note also
that lower-level problems (5.1j)–(5.1s) are actually constraints of the upper-level
problem. This bilevel problem is as follows:

minΞUL ∪ ΞPrimal
oω ∪ ΞDual

oω

∑

n

(
KC

n xC
n + K S

n xS
n

)

−
∑

ω

ϕω

∑

o

ρo

∑

n

[

λnoω

(
pC

noω + pE
noω + pS

noω

)

− pC
noω CC

n − pE
noω CE

n

]

(5.1a)

subject to

xC
n =

∑

h

uC
nh XC

nh ∀n (5.1b)

∑

h

uC
nh = 1 ∀n (5.1c)

uC
nh ∈ {0, 1} ∀n,∀h (5.1d)

0 ≤ xS
n ≤ XSmax

n ∀n (5.1e)
∑

n

(
KC

n xC
n + K S

n xS
n

) ≤ Kmax (5.1f)

αC
noω ≥ 0 ∀o,∀n,∀ω (5.1g)

αE
noω ≥ 0 ∀o,∀n,∀ω (5.1h)

Lower-level problems (5.1j)−(5.1s) ∀o,∀ω. (5.1i)
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The primal variables of the upper-level problem (5.1a)–(5.1h) are those in set
ΞUL = {αC

noω, αE
noω, xC

n , unh , xS
n } plus all primal and dual variables of lower-level

problems (5.1j)–(5.1s), which are defined after their formulation through setsΞPrimal
oω

and ΞDual
oω .

The objective function (5.1a) is minus the expected profit (investment cost minus
expected operational revenue) of the strategic producer. In detail, the objective func-
tion (5.1a) consists of the following terms:

•
∑

n

KC
n xC

n is the annualized investment cost of candidate conventional units of

the strategic producer.
•

∑

n

K S
n xS

n is the annualized investment cost of candidate stochastic units of the

strategic producer.
•

∑

n

pC
noω λnoω is the revenue of the strategic producer obtained from selling the

production of candidate conventional units.
•

∑

n

pE
noω λnoω is the revenue of the strategic producer obtained from selling the

production of existing conventional units.
•

∑

n

pS
noω λnoω is the revenue of the strategic producer obtained from selling the

production of candidate stochastic units.
•

∑

n

pC
noω CC

n is the production cost of candidate conventional units of the strategic

producer.
•

∑

n

pE
noω CE

n is the production cost of existing conventional units of the strategic

producer.

The production cost of stochastic units is assumed to be zero. Furthermore, other
potential incomes including capacity payments and incentives (e.g., feed-in tariff or
premium) are not considered. However, those incomes can be easily incorporated
into the model [28]. It is also assumed that all existing units available in the initial
year are conventional, i.e., there is no stochastic production unit within the initial
production capacity portfolio of the producers.

For each available conventional technology (e.g., nuclear, coal, gas), constraints
(5.1b)–(5.1d) allow the strategic producer to choose among the available investment
options including no investment, e.g., the set of investment options are 0, 200, 500,
and 1000 MW.

Unlike candidate conventional units that include discrete investment options, the
production capacity investment options for investing in stochastic production units
are assumed continuous for simplicity, and their bounds are enforced by (5.1e).
In addition, upper-level constraint (5.1f) imposes a cap on the available annualized
investment budget of the strategic producer that reflects its limitedfinancial resources.

Finally, upper-level constraints (5.1g) and (5.1h) enforce the nonnegativity of
offer prices associated with the candidate and existing conventional units of the
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strategic producer, respectively. For simplicity, the offering prices of stochastic units
are assumed to be zero. However, it is not complex to model strategic offering by
stochastic production units [5, 27, 36].

Specifically, the strategic producer makes the following decisions in the upper-
level problem (5.1a)–(5.1h):

1. Strategic production capacity investment decisions including investment in con-
ventional units (xC

n ,∀n) and investment in stochastic units (xS
n ,∀n).

2. Strategic offering decisions including offer prices of candidate conventional
units (αC

noω,∀n,∀o,∀ω) and offer prices of existing conventional units (αE
noω,

∀n,∀o,∀ω).

We consider that each conventional generating unit submits its installed capacity
as its offer quantity. Likewise, the quantity offer of each stochastic unit is equal to
its available stochastic production.

The market-clearing prices (λnoω) and the production quantities (pC
noω, pE

noω, and
pS

noω) belong to the feasible region defined by lower-level problems (5.1j)–(5.1s).
Each lower-level problem, oneper operating conditiono and scenarioω, is formulated
below. The dual variable of each lower-level constraint is indicated following a colon:

{

minΞPrimal
oω

∑

n

[

αC
noω pC

noω + αE
noω pE

noω + CR
no pR

noω − UD
no pD

noω

]

(5.1j)

subject to

pD
noω +

∑

m∈Ωn

Bnm (θnoω − θmoω) − pC
noω − pS

noω − pE
noω

− pR
noω = 0 : λnoω ∀n (5.1k)

0 ≤ pC
noω ≤ xC

n : μCmin

noω , μCmax

noω ∀n (5.1l)

0 ≤ pS
noω ≤ QS

no xS
n : μSmin

noω, μSmax

noω ∀n (5.1m)

0 ≤ pE
noω ≤ PEmax

n : μEmin

noω , μEmax

noω ∀n (5.1n)

0 ≤ pR
noω ≤ PRmax

nω : μRmin

noω , μRmax

noω ∀n (5.1o)

0 ≤ pD
noω ≤ QD

no PDmax

n : μDmin

noω , μDmax

noω ∀n (5.1p)

Bnm(θnoω − θmoω) ≤ Fmax
nm : μF

nmoω ∀n,∀m ∈ Ωn (5.1q)

− π ≤ θnoω ≤ π : μθmin

noω, μθmax

noω ∀n (5.1r)

θnoω = 0 : μθ ref

oω n = ref. (5.1s)
}

∀o,∀ω.

The primal optimization variables of each lower-level problem (5.1j)–(5.1s) are
in the setΞPrimal

oω = {pC
noω, pS

noω, pE
noω, pR

noω, pD
noω, θnoω}. Likewise, variable setΞDual

oω
contains the dual optimization variables of each lower-level problem (5.1j)–(5.1s),
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i.e., ΞDual
oω = {λnoω, μCmin

noω , μ
Cmax

noω , μSmin

noω , μ
Smax

noω , μ
Emin

noω , μ
Emax

noω , μ
Rmin

noω , μ
Rmax

noω , μDmin

noω , μ
Dmax

noω ,
μF

nmoω, μ
θmin

noω, μ
θmax

noω , μ
θ ref

oω }.
Each lower-level problem (5.1j)–(5.1s) represents the clearing of the market for

given investment and offering decisions made at the upper-level problem. Accord-
ingly, xC

n ,∀n, xS
n ,∀n, αC

noω,∀n,∀o,∀ω, and αE
noω,∀n,∀o,∀ω are variables in the upper-

level problem, while they are parameters (fixed values) in the lower-level problems
(5.1j)–(5.1s). This makes the lower-level problems (5.1j)–(5.1s) linear and thus con-
vex.

The minimization of minus the social welfare is expressed by (5.1j). Since we
assume that the stochastic production units always offer at zero price, there is no
term in (5.1j) related to the offer prices of those units.

Constraints (5.1k) enforce power balance at every node, and their dual variables
provide market-clearing prices.

Constraints (5.1l), (5.1m), and (5.1n) enforce production capacity limits for the
candidate conventional, candidate stochastic, and existing units of the strategic pro-
ducer, respectively, while equations (5.1o) enforce similar constraints for the units of
rival producers. Note that parameter QS

no included in the upper bound of Eq. (5.1m)
is the power capacity factor of the stochastic unit located at node n in operating
condition o (see Sect. 5.1.4). Furthermore, constraints (5.1m) implicitly allow the
stochastic productions to be spilled.

Constraints (5.1p) bound the power consumed by each consumer. Parameter QD
no

is the demand factor of the consumer located at node n in operating condition o (see
Sect. 5.1.4).

Constraints (5.1q) enforce the transmission capacity limits of each line. Note that
the left-hand side of constraints (5.1q) provides the power flow from node n to node
m. Constraints (5.1r) enforce voltage angle bounds for each node and constraints
(5.1s) identify the reference node, whose voltage angle is equal to zero.

Regarding uncertainty characterization, parameter PRmax

nω , i.e., the upper bound
of rival producers’ production levels in (5.1o), is indexed by ω. In this way, the
production capacity investment uncertainty of the rival producers is characterized.
Analogously, other sources of uncertainty can be represented through additional
scenarios.

Next, we present four illustrative examples for the static investment bilevel model:
from a very basic model based on a deterministic single-node example to more com-
plex examples considering transmission constraints, stochastic production invest-
ment options, and uncertainties. Note that their solution procedures are explained
later, in Sects. 5.4 and 5.5.

Illustrative Example 5.1 Deterministic single-node static investment bilevel model

The considered power system includes one single node (n1) and two generating
units. The first unit belongs to the strategic producer, while the second one is a
rival unit. The capacity and production cost of the strategic unit are 150 MW and
$10/MWh, respectively, while those of the rival unit are 100 MW and $15/MWh,
respectively. It is assumed that the rival unit offers its capacity to the market at its
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production cost. In addition, the rival producer does not invest in new production
units. Thus, no rival investment uncertainty needs to be taken into account.

As production capacity investment options, a single technology (conventional)
with two capacity options are considered: h1 = 0 MW and h2 = 100 MW. The
annualized investment cost of this technology is $55,000/MW, and its production
cost is $12/MWh.

A single consumer is considered, whose maximum load is equal to 300 MW. In
addition, a single operating condition (o1) is considered that embodies the consumer’s
demand factor, which is 1 p.u. The weighting factor corresponding to condition o1
is 8760. The consumer bids in this condition at $35/MWh.

Finally, the available annualized investment budget of the strategic consumer is
assumed to be $10 million.

The bilevel model below is formulated to derive the most beneficial investment
and offering decisions of the strategic producer:

minΞUL,Ex1 ∪ Ξ
P,Ex1
o1 ∪ Ξ

D,Ex1
o1

55000 xC
n1

− 8760

[

λn1o1

(
pC

n1o1 + pE
n1o1

) − 12 pC
n1o1 − 10 pE

n1o1

]

subject to

xC
n1

= 100 uC
n1h2

uC
n1h1

+ uC
n1h2

= 1

uC
n1h1

, uC
n1h2

∈ {0, 1}
55000 xC

n1
≤ 107

αC
n1o1 ≥ 0

αE
n1o1 ≥ 0

Lower-level problem associated with operating condition o1,

where the lower-level problem pertaining to the market clearing in operating condi-
tion o1 is:

minΞ
P,Ex1
o1

αC
n1o1 pC

n1o1 + αE
n1o1 pE

n1o1 + 15 pR
n1o1 − 35 pD

n1o1

subject to

pD
n1o1 − pC

n1o1 − pE
n1o1 − pR

n1o1 = 0 : λn1o1

0 ≤ pC
n1o1 ≤ xC

n1
: μCmin

n1o1 , μ
Cmax

n1o1

0 ≤ pE
n1o1 ≤ 150 : μEmin

n1o1 , μ
Emax

n1o1

0 ≤ pR
n1o1 ≤ 100 : μRmin

n1o1 , μ
Rmax

n1o1

0 ≤ pD
n1o1 ≤ 300 : μDmin

n1o1 , μ
Dmax

n1o1 .
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Node n1 Node n2

Existing unit of
the strategic

producer

Consumer Existing unit of the
rival producer

Line n1 n2

Fig. 5.2 Illustrative Example5.2: Two-node network

The primal optimization variables of the lower-level problem are included in set
ΞP,Ex1

o1 = {pC
n1o1 , pE

n1o1 , pR
n1o1 , pD

n1o1}, while the dual optimization variables of this

problem are in set ΞD,Ex1
o1 = {λn1o1 , μCmin

n1o1 , μCmax

n1o1 , μEmin

n1o1 , μEmax

n1o1 , μRmin

n1o1 , μRmax

n1o1 , μDmin

n1o1 ,
μDmax

n1o1 }. Finally, the primal variables of the upper-level problem are those in set
ΞU,Ex1 = {xC

n1
, uC

n1h1
, uC

n1h2
, αC

n1o1 , α
E
n1o1} plus ΞP,Ex1

o1 and ΞD,Ex1
o1 . �

Illustrative Example 5.2 Deterministic network-constrained static investment
bilevel model

Apower systemwith two nodes (n1 and n2), as illustrated in Fig. 5.2, is considered
in this example. These two nodes are connected by transmission line n1 − n2 with
a capacity of 200 MW and a susceptance of 1000 S. Node n1 is the reference node
and is considered the only candidate location for investing in new conventional units.
Stochastic units are not considered as investment options in this example. Other input
data are identical to those in Illustrative Example5.1.

The bilevel model below allows the derivation of the optimal investment and
offering decisions of the strategic producer:

minΞUL,Ex2 ∪ Ξ
P,Ex2
o1 ∪ Ξ

D,Ex2
o1

55000 xC
n1

− 8760

[

λn1o1

(
pE

n1o1 + pC
n1o1

) − 12 pC
n1o1 − 10 pE

n1o1

]

subject to

xC
n1

= 100 uC
n1h2

uC
n1h1

+ uC
n1h2

= 1

uC
n1h1

, uC
n1h2

∈ {0, 1}
55000 xC

n1
≤ 107

αC
n1o1 ≥ 0

αE
n1o1 ≥ 0

Lower-level problem associated with operating condition o1,
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where the lower-level problem pertaining to the market clearing in operating condi-
tion o1 is:

minΞ
P,Ex2
o1

αC
n1o1 pC

n1o1 + αE
n1o1 pE

n1o1 + 15 pR
n2o1 − 35 pD

n1o1

subject to

pD
n1o1 + 1000

(
θn1o1 − θn2o1

) − pE
n1o1 − pC

n1o1 = 0 : λn1o1

1000
(
θn2o1 − θn1o1

) − pR
n2o1 = 0 : λn2o1

0 ≤ pC
n1o1 ≤ xC

n1
: μCmin

n1o1 , μ
Cmax

n1o1

0 ≤ pE
n1o1 ≤ 150 : μEmin

n1o1 , μ
Emax

n1o1

0 ≤ pR
n2o1 ≤ 100 : μRmin

n2o1 , μ
Rmax

n2o1

0 ≤ pD
n1o1 ≤ 300 : μDmin

n1o1 , μ
Dmax

n1o1

1000
(
θn1o1 − θn2o1

) ≤ 200 : μF
n1n2o1

1000
(
θn2o1 − θn1o1

) ≤ 200 : μF
n2n1o1

− π ≤ θn1o1 ≤ π : μθmin

n1o1 , μ
θmax

n1o1

− π ≤ θn2o1 ≤ π : μθmin

n2o1 , μ
θmax

n2o1

θn1o1 = 0 : μθ ref

o1 .

The primal optimization variables of the lower-level problem are included in set
ΞP,Ex2

o1 = {pC
n1o1 , pE

n1o1 , pR
n2o1 , pD

n1o1 , θn1o1 , θn2o1}, while the dual optimization variables

of this problem are those included in set ΞD,Ex2
o1 = {λn1o1 , λn2o1 μCmin

n1o1 , μ
Cmax

n1o1 , μ
Emin

n1o1 ,

μEmax

n1o1 , μRmin

n2o1 , μRmax

n2o1 , μDmin

n1o1 , μDmax

n1o1 , μF
n1n2o1 , μF

n2n1o1 , μθmin

n1o1 , μθmax

n1o1 , μθmin

n2o1 , μθmax

n2o1 , μθ ref

o1 }.
Finally, the primal variables of the upper-level problem are those included in set
ΞU,Ex2 = {xC

n1
, uC

n1h1
, uC

n1h2
, αC

n1o1 , α
E
n1o1} plus ΞP,Ex2

o1 and ΞD,Ex2
o1 . �

Illustrative Example 5.3 Network-constrained static investment bilevel model con-
sidering stochastic units as investment options

This example is similar to Illustrative Example5.2, but in addition to the can-
didate conventional unit at node n1, a stochastic production unit (wind power) at
node n2 is considered as an investment option. The maximum capacity of the sto-
chastic production unit to be built is 200 MW and its annualized investment cost is
$66,000/MW.Twooperating conditions (o1 and o2) are consideredwith the following
characteristics:

• o1: demand factor equals 1.00 p.u. and wind power capacity factor equals 0.35 p.u.
• o2: demand factor equals 0.80 p.u. and wind power capacity factor equals 0.70 p.u.

The weighting factor associated with condition o1 is 3530, while that of condition o2
is 5230.Note that the summation of those two factors is 8760, i.e., the number of hours
in a year. The consumer bids in conditions o1 and o2 at $35/MWh and $32/MWh,
respectively. Other input data are identical to those in Illustrative Example5.2.
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Accordingly, we formulate below a bilevel problem including an upper-level
problem and two lower-level problems, one corresponding to the market clearing
in operating condition o1, and another pertaining to the market clearing in operating
condition o2:

minΞUL,Ex3 ∪ Ξ
P,Ex3
o1 ∪ Ξ

D,Ex3
o1 ∪ Ξ

P,Ex3
o2 ∪ Ξ

D,Ex3
o2

55000 xC
n1

+ 66000 xS
n2

− 3530

[

λn1o1

(
pE

n1o1 + pC
n1o1

) + λn2o1 pS
n2o1 − 12 pC

n1o1 − 10 pE
n1o1

]

− 5230

[

λn1o2

(
pE

n1o2 + pC
n1o2

) + λn2o2 pS
n2o2 − 12 pC

n1o2 − 10 pE
n1o2

]

subject to

xC
n1

= 100 uC
n1h2

uC
n1h1

+ uC
n1h2

= 1

uC
n1h1

, uC
n1h2

∈ {0, 1}
0 ≤ xS

n2
≤ 200

(
55000 xC

n1
+ 66000 xS

n2

) ≤ 107

αC
n1o1 ≥ 0

αE
n1o1 ≥ 0

αC
n1o2 ≥ 0

αE
n1o2 ≥ 0

Lower-level problems associated with operating conditions o1 and o2,

where the lower-level problem referring to the market clearing in operating condition
o1 is:

minΞ
P,Ex3
o1

αC
n1o1 pC

n1o1 + αE
n1o1 pE

n1o1 + 15 pR
n2o1 − 35 pD

n1o1

subject to

pD
n1o1 + 1000

(
θn1o1 − θn2o1

) − pE
n1o1 − pC

n1o1 = 0 : λn1o1

1000
(
θn2o1 − θn1o1

) − pS
n2o1 − pR

n2o1 = 0 : λn2o1

0 ≤ pC
n1o1 ≤ xC

n1
: μCmin

n1o1 , μ
Cmax

n1o1

0 ≤ pS
n2o1 ≤ 0.35 xS

n2
: μSmin

n2o1 , μ
Smax

n2o1

0 ≤ pE
n1o1 ≤ 150 : μEmin

n1o1 , μ
Emax

n1o1

0 ≤ pR
n2o1 ≤ 100 : μRmin

n2o1 , μ
Rmax

n2o1

0 ≤ pD
n1o1 ≤ 300 : μDmin

n1o1 , μ
Dmax

n1o1

1000
(
θn1o1 − θn2o1

) ≤ 200 : μF
n1n2o1
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1000
(
θn2o1 − θn1o1

) ≤ 200 : μF
n2n1o1

− π ≤ θn1o1 ≤ π : μθmin

n1o1 , μ
θmax

n1o1

− π ≤ θn2o1 ≤ π : μθmin

n2o1 , μ
θmax

n2o1

θn1o1 = 0 : μθ ref

o1 .

In addition, the lower-level problem pertaining to the market clearing in operating
condition o2 is:

minΞ
P,Ex3
o2

αC
n1o2 pC

n1o2 + αE
n1o2 pE

n1o2 + 15 pR
n2o2 − 32 pD

n1o2

subject to

pD
n1o2 + 1000

(
θn1o2 − θn2o2

) − pE
n1o2 − pC

n1o2 = 0 : λn1o2

1000
(
θn2o2 − θn1o2

) − pS
n2o2 − pR

n2o2 = 0 : λn2o2

0 ≤ pC
n1o2 ≤ xC

n1
: μCmin

n1o2 , μ
Cmax

n1o2

0 ≤ pS
n2o2 ≤ 0.70 xS

n2
: μSmin

n2o2 , μ
Smax

n2o2

0 ≤ pE
n1o2 ≤ 150 : μEmin

n1o2 , μ
Emax

n1o2

0 ≤ pR
n2o2 ≤ 100 : μRmin

n2o2 , μ
Rmax

n2o2

0 ≤ pD
n1o2 ≤ (0.80 × 300) : μDmin

n1o2 , μ
Dmax

n1o2

1000
(
θn1o2 − θn2o2

) ≤ 200 : μF
n1n2o2

1000
(
θn2o2 − θn1o2

) ≤ 200 : μF
n2n1o2

− π ≤ θn1o2 ≤ π : μθmin

n1o2 , μ
θmax

n1o2

− π ≤ θn2o2 ≤ π : μθmin

n2o2 , μ
θmax

n2o2

θn1o2 = 0 : μθ ref

o2 .

The primal optimization variables of the lower-level problem for operating con-
dition o1 are included in set ΞP,Ex3

o1 = {pC
n1o1 , pS

n2o1 , pE
n1o1 , pR

n2o1 , pD
n1o1 , θn1o1 , θn2o1},

while the dual optimization variables of this problem are in setΞD,Ex3
o1 = {λn1o1 , λn2o1

μCmin

n1o1 , μCmax

n1o1 , μSmin

n2o1 , μSmax

n2o1 , μEmin

n1o1 , μEmax

n1o1 , μRmin

n2o1 , μRmax

n2o1 , μDmin

n1o1 , μDmax

n1o1 , μF
n1n2o1 , μF

n2n1o1 ,

μθmin

n1o1 , μθmax

n1o1 , μθmin

n2o1 , μθmax

n2o1 , μθ ref

o1 }. Likewise, the primal optimization variables of the
lower-level problem for operating condition o2 are included in set ΞP,Ex3

o2 = {pC
n1o2 ,

pS
n2o2 , pE

n1o2 , pR
n2o2 , pD

n1o2 , θn1o2 , θn2o2}, while the dual optimization variables of this

problem are in set ΞD,Ex3
o2 = {λn1o2 , λn2o2 μCmin

n1o2 , μCmax

n1o2 , μSmin

n2o2 , μSmax

n2o2 , μEmin

n1o2 , μEmax

n1o2 ,

μRmin

n2o2 , μ
Rmax

n2o2 , μ
Dmin

n1o2 , μ
Dmax

n1o2 , μ
F
n1n2o2 , μ

F
n2n1o2 , μ

θmin

n1o2 , μ
θmax

n1o2 , μ
θmin

n2o2 , μ
θmax

n2o2 , μ
θ ref

o2 }. Finally,
the primal variables of the upper-level problem include those in set ΞU,Ex3 =
{xC

n1
, xS

n2
, uC

n1h1
, uC

n1h2
, αC

n1o1 , α
C
n1o2 , α

E
n1o1 , α

E
n1o2} plus ΞP,Ex3

o1 , ΞD,Ex3
o1 , ΞP,Ex3

o2 , and
ΞD,Ex3

o2 . �
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Illustrative Example 5.4 Stochastic network-constrained static investment bilevel
model considering stochastic production and rival producer’s investment uncertain-
ties

This example is similar to Illustrative Example5.3, but we consider two scenar-
ios (ω1 and ω2) to characterize the rival producer’s investment uncertainty. These
scenarios are listed below:

• ω1: the rival producer does not invest in new units. The probability of this scenario
is 0.6.

• ω2: the rival producer builds a 40-MW new conventional unit at node n1 and offers
its production at $13/MWh. The probability of this scenario is 0.4.

Other input data are identical to those in Illustrative Example5.3. Among Illustra-
tive Examples5.1–5.4, this example is the most general since different operating
conditions and scenarios are considered.

We formulate the bilevel model below including an upper-level problem and four
lower-level problems, one per operating condition and scenario:

minΞUL,Ex4 ∪ Ξ
P,Ex4
o1ω1 ∪ Ξ

D,Ex4
o1ω1 ∪ Ξ

P,Ex4
o2ω1 ∪ Ξ

D,Ex4
o2ω1 ∪ Ξ

P,Ex4
o1ω2 ∪ Ξ

D,Ex4
o1ω2 ∪ Ξ

P,Ex4
o2ω2 ∪ Ξ

D,Ex4
o2ω2

55000 xC
n1

+ 66000 xS
n2

− 0.6

{

3530

[

λn1o1ω1

(
pC

n1o1ω1
+ pE

n1o1ω1

) + λn2o1ω1 pS
n2o1ω1

− 12 pC
n1o1ω1

− 10 pE
n1o1ω1

]

− 5230

[

λn1o2ω1

(
pC

n1o2ω1
+ pE

n1o2ω1

) + λn2o2ω1 pS
n2o2ω1

− 12 pC
n1o2ω1

− 10 pE
n1o2ω1

]}

− 0.4

{

3530

[

λn1o1ω2

(
pC

n1o1ω2
+ pE

n1o1ω2

) + λn2o1ω2 pS
n2o1ω2

− 12 pC
n1o1ω2

− 10 pE
n1o1ω2

]

− 5230

[

λn1o2ω2

(
pC

n1o2ω2
+ pE

n1o2ω2

) + λn2o2ω2 pS
n2o2ω2

− 12 pC
n1o2ω2

− 10 pE
n1o2ω2

]}

subject to

xC
n1

= 100 uC
n1h2

uC
n1h1

+ uC
n1h2

= 1

uC
n1h1

, uC
n1h2

∈ {0, 1}
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0 ≤ xS
n2

≤ 200
(
55000 xC

n1
+ 66000 xS

n2

) ≤ 107

αC
n1o1ω1

≥ 0

αE
n1o1ω1

≥ 0

αC
n1o2ω1

≥ 0

αE
n1o2ω1

≥ 0

αC
n1o1ω2

≥ 0

αE
n1o1ω2

≥ 0

αC
n1o2ω2

≥ 0

αE
n1o2ω2

≥ 0

Four lower-level problems associated with operating conditions and scenarios,

where the first lower-level problem corresponds to the market clearing in operating
condition o1 under scenario ω1 and is given below:

minΞ
P,Ex4
o1ω1

[
αC

n1o1ω1
pC

n1o1ω1
+ αE

n1o1ω1
pE

n1o1ω1
+ 13 pR

n1o1ω1

+15 pR
n2o1ω1

− 35 pD
n1o1ω1

]

subject to

pD
n1o1ω1

+ 1000
(
θn1o1ω1 − θn2o1ω1

)

− pE
n1o1ω1

− pR
n1o1ω1

− pC
n1o1ω1

= 0 : λn1o1ω1

1000
(
θn2o1ω1 − θn1o1ω1

) − pS
n2o1ω1

− pR
n2o1ω1

= 0 : λn2o1ω1

0 ≤ pC
n1o1ω1

≤ xC
n1

: μCmin

n1o1ω1
, μCmax

n1o1ω1

0 ≤ pS
n2o1ω1

≤ 0.35 xS
n2

: μSmin

n2o1ω1
, μSmax

n2o1ω1

0 ≤ pE
n1o1ω1

≤ 150 : μEmin

n1o1ω1
, μEmax

n1o1ω1

0 ≤ pR
n1o1ω1

≤ 0 : μRmin

n1o1ω1
, μRmax

n1o1ω1

0 ≤ pR
n2o1ω1

≤ 100 : μRmin

n2o1ω1
, μRmax

n2o1ω1

0 ≤ pD
n1o1ω1

≤ 300 : μDmin

n1o1ω1
, μDmax

n1o1ω1

1000
(
θn1o1ω1 − θn2o1ω1

) ≤ 200 : μF
n1n2o1ω1

1000
(
θn2o1ω1 − θn1o1ω1

) ≤ 200 : μF
n2n1o1ω1

− π ≤ θn1o1ω1 ≤ π : μθmin

n1o1ω1
, μθmax

n1o1ω1

− π ≤ θn2o1ω1 ≤ π : μθmin

n2o1ω1
, μθmax

n2o1ω1

θn1o1ω1 = 0 : μθ ref

o1ω1
.
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In addition, the lower-level problem corresponding to the market clearing in oper-
ating condition o2 under scenario ω1 is:

minΞ
P,Ex4
o2ω1

[
αC

n1o2ω1
pC

n1o2ω1
+ αE

n1o2ω1
pE

n1o2ω1
+ 13 pR

n1o2ω1

+15 pR
n2o2ω1

− 32 pD
n1o2ω1

]

subject to

pD
n1o2ω1

+ 1000
(
θn1o2ω1 − θn2o2ω1

)

− pE
n1o2ω1

− pR
n1o2ω1

− pC
n1o2ω1

= 0 : λn1o2ω1

1000
(
θn2o2ω1 − θn1o2ω1

) − pS
n2o2ω1

− pR
n2o2ω1

= 0 : λn2o2ω1

0 ≤ pC
n1o2ω1

≤ xC
n1

: μCmin

n1o2ω1
, μCmax

n1o2ω1

0 ≤ pS
n2o2ω1

≤ 0.70 xS
n2

: μSmin

n2o2ω1
, μSmax

n2o2ω1

0 ≤ pE
n1o2ω1

≤ 150 : μEmin

n1o2ω1
, μEmax

n1o2ω1

0 ≤ pR
n1o2ω1

≤ 0 : μRmin

n1o2ω1
, μRmax

n1o2ω1

0 ≤ pR
n2o2ω1

≤ 100 : μRmin

n2o2ω1
, μRmax

n2o2ω1

0 ≤ pD
n1o2ω1

≤ (0.80 × 300) : μDmin

n1o2ω1
, μDmax

n1o2ω1

1000
(
θn1o2ω1 − θn2o2ω1

) ≤ 200 : μF
n1n2o2ω1

1000
(
θn2o2ω1 − θn1o2ω1

) ≤ 200 : μF
n2n1o2ω1

− π ≤ θn1o2ω1 ≤ π : μθmin

n1o2ω1
, μθmax

n1o2ω1

− π ≤ θn2o2ω1 ≤ π : μθmin

n2o2ω1
, μθmax

n2o2ω1

θn1o2ω1 = 0 : μθ ref

o2ω1
.

Additionally, the lower-level problem corresponding to the market clearing in
operating condition o1 under scenario ω2 is:

minΞ
P,Ex4
o1ω2

[
αC

n1o1ω2
pC

n1o1ω2
+ αE

n1o1ω2
pE

n1o1ω2
+ 13 pR

n1o1ω2

+15 pR
n2o1ω2

− 35 pD
n1o1ω2

]

subject to

pD
n1o1ω2

+ 1000
(
θn1o1ω2 − θn2o1ω2

)

− pE
n1o1ω2

− pR
n1o1ω2

− pC
n1o1ω2

= 0 : λn1o1ω2

1000
(
θn2o1ω2 − θn1o1ω2

) − pS
n2o1ω2

− pR
n2o1ω2

= 0 : λn2o1ω2

0 ≤ pC
n1o1ω2

≤ xC
n1

: μCmin

n1o1ω2
, μCmax

n1o1ω2

0 ≤ pS
n2o1ω2

≤ 0.35 xS
n2

: μSmin

n2o1ω2
, μSmax

n2o1ω2

0 ≤ pE
n1o1ω2

≤ 150 : μEmin

n1o1ω2
, μEmax

n1o1ω2

0 ≤ pR
n1o1ω2

≤ 40 : μRmin

n1o1ω2
, μRmax

n1o1ω2
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0 ≤ pR
n2o1ω2

≤ 100 : μRmin

n2o1ω2
, μRmax

n2o1ω2

0 ≤ pD
n1o1ω2

≤ 300 : μDmin

n1o1ω2
, μDmax

n1o1ω2

1000
(
θn1o1ω2 − θn2o1ω2

) ≤ 200 : μF
n1n2o1ω2

1000
(
θn2o1ω2 − θn1o1ω2

) ≤ 200 : μF
n2n1o1ω2

− π ≤ θn1o1ω2 ≤ π : μθmin

n1o1ω2
, μθmax

n1o1ω2

− π ≤ θn2o1ω2 ≤ π : μθmin

n2o1ω2
, μθmax

n2o1ω2

θn1o1ω2 = 0 : μθ ref

o1ω2
.

Finally, the lower-level problem corresponding to themarket clearing in operating
condition o2 under scenario ω2 is:

minΞ
P,Ex4
o2ω2

[
αC

n1o2ω2
pC

n1o2ω2
+ αE

n1o2ω2
pE

n1o2ω2
+ 13 pR

n1o2ω2

+15 pR
n2o2ω2

− 32 pD
n1o2ω2

]

subject to

pD
n1o2ω2

+ 1000
(
θn1o2ω2 − θn2o2ω2

)

− pE
n1o2ω2

− pR
n1o2ω2

− pC
n1o2ω2

= 0 : λn1o2ω2

1000
(
θn2o2ω2 − θn1o2ω2

) − pS
n2o2ω2

− pR
n2o2ω2

= 0 : λn2o2ω2

0 ≤ pC
n1o2ω2

≤ xC
n1

: μCmin

n1o2ω2
, μCmax

n1o2ω2

0 ≤ pS
n2o2ω2

≤ 0.70 xS
n2

: μSmin

n2o2ω2
, μSmax

n2o2ω2

0 ≤ pE
n1o2ω2

≤ 150 : μEmin

n1o2ω2
, μEmax

n1o2ω2

0 ≤ pR
n1o2ω2

≤ 40 : μRmin

n1o2ω2
, μRmax

n1o2ω2

0 ≤ pR
n2o2ω2

≤ 100 : μRmin

n2o2ω2
, μRmax

n2o2ω2

0 ≤ pD
n1o2ω2

≤ (0.80 × 300) : μDmin

n1o2ω2
, μDmax

n1o2ω2

1000
(
θn1o2ω2 − θn2o2ω2

) ≤ 200 : μF
n1n2o2ω2

1000
(
θn2o2ω2 − θn1o2ω2

) ≤ 200 : μF
n2n1o2ω2

− π ≤ θn1o2ω2 ≤ π : μθmin

n1o2ω2
, μθmax

n1o2ω2

− π ≤ θn2o2ω2 ≤ π : μθmin

n2o2ω2
, μθmax

n2o2ω2

θn1o2ω2 = 0 : μθ ref

o2ω2
.

Note that in Illustrative Example5.4, the production capacity investment decisions
(i.e., xC

n1
and xS

n2
) do not change over scenarios. In addition, similar to Illustrative

Example5.3, those decisions are unique for all operating conditions. �
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5.3 Dynamic Production Capacity Investment Model

The previous section describes a static model to determine the optimal capacity
investment by a strategic producer. As explained in Sect. 5.1.3, a static model consti-
tutes an appropriate tradeoff betweenmodeling accuracy and computational tractabil-
ity. However, a dynamic (multistage) model allows making investment decisions at
different points in time. Thus, this model generally results in better decisions since
the investments can be adapted to changes in future system conditions.

Unlike a static model, a dynamic model considers a planning horizon comprising
a specific number of time periods indexed by t and running from 1 to T . In turn, each
time period spans a specified number of years from Y1 to YN . The strategic producer
makes its capacity investment decisions at the initial year (i.e., year Y1) of each time
period t , as illustrated in Fig. 5.3.

The two main advantages of a dynamic investment model are as follows:

• It allows adapting the investment decisions to the uncertainty realizations over the
planning horizon. For example, the dynamic model provides different investment
decisions at the beginning of time period t = 2, one per uncertainty realization at
the end of time period t = 1.

• It allows considering how uncertainty unfolds over the planning period. For exam-
ple, it is possible to consider uncertain values for investment costs of production
technologies throughout the planning horizon.

Accordingly, the decision sequence for dynamic models is explained below, and
the corresponding scenario tree is depicted in Fig. 5.4.

1. At the beginning of the planning horizon, i.e., at the beginning of the first time
period (t = 1), the strategic producer makes its capacity investment decisions,
which are here-and-now decisions since they do not depend on any future scenario
realization.Note that these investment decisions affect thewhole planning horizon

...

Time period
t=1

Time period
t=2

Time period
t=T

...
Y1 Y2 YN

...
Y1 Y2 YN

...
Y1 Y2 YN

Year for
investment
decisions

in t=1

Year for
investment
decisions

in t=2

Year for
investment
decisions

in t=T

Fig. 5.3 Time model for dynamic production capacity investment
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...

Investment
decisions
for t=1

Investment
decisions
for t=2

Investment
decisions
for t=T

...
.. .

...

...
...

Fig. 5.4 Scenario tree for dynamic production capacity investment

because the installed units at this point in time are available throughout the entire
planning horizon.

2. For each scenario realization in period t = 1 and for each operating condition, the
pool is cleared, and the outcomes aremarket-clearing prices alongwith production
and consumption levels.

3. Once time period t = 1 concludes, the strategic producer knows which scenario
in this period is actually realized. Then, it makes its capacity investment decisions
for the second time period (t = 2), which are wait-and-see decisions with respect
to the first time period since they depend on the scenario realization throughout
t = 1. However, they are here-and-now decisions with respect to the second and
subsequent time periods.

4. For each potential scenario realization in time period t = 2 and for each operating
condition, the market is cleared.

Steps 3 and 4 above are repeated for each remaining time period of the planning
horizon.

The differences in formulation of a dynamic capacity investment model with
respect to a static one, i.e., bilevel model (5.1), are as follows:

1. All variables are time-dependent, i.e., they are indexed by t .
2. In addition to each operating condition o and scenario ω, the market needs to be

cleared for each time period t .
3. To avoid anticipating information, a set of nonanticipativity constraints are

required in the upper-level problem. These constraints impose that investments
depend on the scenario realizations in previous time periods but they are unique
for all scenario realizations in the future.
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4. Instead of the annualized investment costs, i.e., KC
n ,∀n, and K S

n ,∀n, the yearly
investment costs of candidate units need to be considered in the dynamic model,
i.e., ICtnω,∀t,∀n,∀ω, and I Stnω,∀t,∀n,∀ω since these investment costs are time-
variant (indexed by t). In addition, the values of such costs across time periods
are uncertain. Thus, index ω is also incorporated into parameters ICtnω and I Stnω.

5. Each investment cost is multiplied in each time period by an amortization rate
(at ,∀t) to make investment costs and profits comparable across time periods. The
approach for calculating the amortization rates of a production unit is explained
in Appendix A.

6. In addition to investment costs, the maximum demand is considered time-variant,
and index t is incorporated into parameter PDmax

tn .
7. For the sake of simplicity, other parameters are assumed time-invariant. For

example, the operating conditions including the demand factor of each consumer
(QD

no,∀o,∀n) and the power capacity factor of each stochastic unit (QS
no,∀o,∀n)

are considered not to change across time periods. In addition, the conventional
technologies to be built (XC

nh,∀n,∀h) are considered to be identical across time
periods.

8. For the sake of simplicity, we consider the investment costs of the candidate units
as the only source of uncertainty. Other potential sources of uncertainty, e.g.,
production capacity investment of rival producers and demand growth, can also
be incorporated into the model through additional scenarios.

9. The production level of a conventional candidate unit located at node n in time
period t and condition o under scenario ω is less than or equal to its cumulative
capacity added in that node during time periods τ ≤ t , i.e.,

∑

τ≤t

xC
τnω. Similarly,

the upper bound for the stochastic production at node n in time period t and
condition o under scenario ω is QS

no

∑

τ≤t

xS
τnω.

Considering the assumptions above, the dynamic investment bilevel model is
given by (5.2) below:

minΞUL ∪ ΞPrimal
toω ∪ ΞDual

toω

∑

t

∑

ω

ϕω

[

at

∑

n

(
ICtnω xC

tnω + I Stnω xS
tnω

)

−
∑

o

ρo

∑

n

λtnoω

(
pC

tnoω + pE
tnoω + pS

tnoω

)

− pC
tnoω CC

n − pE
tnoω CE

n

]

(5.2a)

subject to

xC
tnω =

∑

h

uC
tnωh XC

nh ∀t,∀n,∀ω (5.2b)

∑

h

uC
tnωh = 1 ∀t,∀n,∀ω (5.2c)
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uC
tnωh ∈ {0, 1} ∀t,∀n,∀ω,∀h (5.2d)

0 ≤
∑

τ≤t

xS
τnω ≤ XSmax

n ∀t,∀n,∀ω (5.2e)

∑

n

(
ICtnω xC

tnω + I Stnω xS
tnω

) ≤ Imax
t ∀t,∀ω (5.2f)

αC
tnoω ≥ 0 ∀t,∀n,∀o,∀ω (5.2g)

αE
tnoω ≥ 0 ∀t,∀n,∀o,∀ω (5.2h)

xC
tnω = xC

tnω̃ ∀t,∀n,∀ω,∀ω̃ : Θτω = Θτω̃ ∀τ ≤ t (5.2i)

xS
tnω = xS

tnω̃ ∀t,∀n,∀ω,∀ω̃ : Θτω = Θτω̃ ∀τ ≤ t (5.2j)

Lower-level problems (5.2l)−(5.2u) ∀t,∀o,∀ω. (5.2k)

The structure of the bilevel model (5.2) is similar to that of (5.1), except that
(5.2i)–(5.2j) are the nonanticipativity constraints. Note that Θtω is a set of those
parameters indexed by scenario ω in time period t , i.e., parameters ICtnω and I Stnω.
Nonanticipativity constraints impose that investment decisions in time period t and
node n are identical over those scenarios (e.g., scenarios ω and ω̃) in which the
values of parameters ICtnω and I Stnω did not change during the considered time period
and the previous ones. In other words, the nonanticipativity constraints enforce the
investment decisions in time t under scenarios ω and ω̃ to be identical if ICτnω = ICτnω̃

and I Sτnω = I Sτnω̃, ∀τ ≤ t , ∀n.
Each lower-level problem (5.2l)–(5.2u) included in (5.2k), one per time period

t , operating condition o, and scenario ω, is given below. The dual variable of each
lower-level constraint is indicated following a colon:

{

minΞPrimal
toω

∑

n

[

αC
tnoω pC

tnoω + αE
tnoω pE

tnoω + CR
no pR

tnoω − UD
no pD

tnoω

]

(5.2l)

subject to

pD
tnoω +

∑

m∈Ωn

Bnm (θtnoω − θtmoω) − pC
tnoω − pS

tnoω − pE
tnoω

− pR
tnoω = 0 : λtnoω ∀n (5.2m)

0 ≤ pC
tnoω ≤

∑

τ≤t

xC
τnω : μCmin

tnoω, μCmax

tnoω ∀n (5.2n)

0 ≤ pS
tnoω ≤ QS

no

∑

τ≤t

xS
τnω : μSmin

tnoω, μSmax

tnoω ∀n (5.2o)

0 ≤ pE
tnoω ≤ PEmax

n : μEmin

tnoω, μEmax

tnoω ∀n (5.2p)

0 ≤ pR
tnoω ≤ PRmax

n : μRmin

tnoω, μRmax

tnoω ∀n (5.2q)

0 ≤ pD
tnoω ≤ QD

no PDmax

tn : μDmin

tnoω, μDmax

tnoω ∀n (5.2r)

Bnm(θtnoω − θtmoω) ≤ Fmax
nm : μF

tnmoω ∀n,∀m ∈ Ωn (5.2s)
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− π ≤ θtnoω ≤ π : μθmin

tnoω, μθmax

tnoω ∀n (5.2t)

θtnoω = 0 : μθ ref

toω n = ref. (5.2u)
}

∀t,∀o,∀ω.

Next, we present an illustrative example for this dynamic investment bilevel
model. Note that its solution procedure is explained later, in Sects. 5.4 and 5.5.

Illustrative Example 5.5 Stochastic single-node dynamic investment bilevel model

This example is similar to Illustrative Example5.1, but it considers a dynamic
production capacity investment model instead of the static one. A ten-year planning
horizon including two five-year time periods (t1 and t2) is considered. Therefore,
new production units can be built at the beginning of the first and the sixth years.
Similar to Illustrative Example5.1, a single technology (conventional) is considered
as production capacity investment candidate, but three sizing options are available:
h1 = 0 MW, h2 = 50 MW, and h3 = 100 MW. The actual investment cost in the
first time period is $700,000/MW. However, there are two possible investment cost
realizations for the second time period, which are characterized by scenarios ω1 and
ω2. Based on scenario ω1 with probability 0.4, the investment cost in the second time
period is equal to that in the first time period. However, it is 20% higher in scenario
ω2 with probability 0.6. Recall that the strategic producer should make an investment
decision at the beginning of the first time period that does not depend on any scenario
realization in the future. On the other hand, it makes two alternative investment
decisions at the beginning of the second time period that depend on the investment
cost realization at the end of the first time period. Moreover, the amortization rates
(at ) are equal to 30% and 15% in the first and second time periods, respectively. In
addition, the maximum loads of the consumer in the first and second time periods are
300MW and 330MW, respectively. The available investment budget of the strategic
producer in each time period is $50 million. Other input data are identical to those
in Illustrative Example5.1.

The strategic producer solves the following bilevel model at the beginning of
time period t1 to make the most beneficial investment and offering decisions. This
bilevel model includes an upper-level problem, and four lower-level problems, one
per time period, operating condition, and scenario. Note that the number of lower-
level problems is equal to the number of time periods, operating conditions, and
scenarios, i.e., 2 × 1 × 2:

minΞUL,Ex5 ∪ Ξ
P,Ex5
t1o1ω1

∪ Ξ
D,Ex5
t1o1ω1

∪ Ξ
P,Ex5
t1o1ω2

∪ Ξ
D,Ex5
t1o1ω2

∪ Ξ
P,Ex5
t2o1ω1

∪ Ξ
D,Ex5
t2o1ω1

∪ Ξ
P,Ex5
t2o1ω2

∪ Ξ
D,Ex5
t2o1ω2

0.4

{

(0.30 × 700000) xC
t1n1ω1

− 8760

[

λt1n1o1ω1

(
pC

t1n1o1ω1
+ pE

t1n1o1ω1

)
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− 12 pC
t1n1o1ω1

− 10 pE
t1n1o1ω1

]}

+ 0.6

{

(0.30 × 700000) xC
t1n1ω2

− 8760

[

λt1n1o1ω2

(
pC

t1n1o1ω2
+ pE

t1n1o1ω2

)

− 12 pC
t1n1o1ω2

− 10 pE
t1n1o1ω2

]}

+ 0.4

{

(0.15 × 700000) xC
t2n1ω1

− 8760

[

λt2n1o1ω1

(
pC

t2n1o1ω1
+ pE

t2n1o1ω1

)

− 12 pC
t2n1o1ω1

− 10 pE
t2n1o1ω1

]}

+ 0.6

{

(0.15 × 840000) xC
t2n1ω2

− 8760

[

λt2n1o1ω2

(
pC

t2n1o1ω2
+ pE

t2n1o1ω2

)

− 12 pC
t2n1o1ω2

− 10 pE
t2n1o1ω2

]}

subject to

xC
t1n1ω1

= 50 uC
t1n1ω1h2

+ 100 uC
t1n1ω1h3

uC
t1n1ω1h1

+ uC
t1n1ω1h2

+ uC
t1n1ω1h3

= 1

uC
t1n1ω1h1

, uC
t1n1ω1,h2

, uC
t1n1ω1h3

∈ {0, 1}
xC

t1n1ω2
= 50 uC

t1n1ω2h2
+ 100 uC

t1n1ω2h3

uC
t1n1ω2h1

+ uC
t1n1ω2h2

+ uC
t1n1ω2h3

= 1

uC
t1n1ω2h1

, uC
t1n1ω2h2

, uC
t1n1ω2,h3

∈ {0, 1}
xC

t2n1ω1
= 50 uC

t2n1ω1h2
+ 100 uC

t2n1ω1h3

uC
t2n1ω1h1

+ uC
t2n1ω1h2

+ uC
t2n1ω1h3

= 1

uC
t2n1ω1h1

, uC
t2n1ω1h2

, uC
t2n1ω1h3

∈ {0, 1}
xC

t2n1ω2
= 50 uC

t2n1ω2h2
+ 100 uC

t2n1ω2h3

uC
t2n1ω2h1

+ uC
t2n1ω2h2

+ uC
t2n1ω2h3

= 1

uC
t2n1ω2h1

, uC
t2n1ω2h2

, uC
t2n1ω2h3

∈ {0, 1}
700000 xC

t1n1ω1
≤ 50 × 106

700000 xC
t1n1ω2

≤ 50 × 106

700000 xC
t2n1ω1

≤ 50 × 106
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840000 xC
t2n1ω2

≤ 50 × 106

αC
t1n1o1ω1

≥ 0

αC
t1n1o1ω2

≥ 0

αC
t2n1o1ω1

≥ 0

αC
t2n1o1ω2

≥ 0

αE
t1n1o1ω1

≥ 0

αE
t1n1o1ω2

≥ 0

αE
t2n1o1ω1

≥ 0

αE
t2n1o1ω2

≥ 0

Four lower − level problems

xC
t1n1ω1

= xC
t1n1ω2

.

Note that the amortization rates, i.e., 0.30 for the first time period and 0.15 for the
second one, are included in the objective function. Note also that the last equation
above is a nonanticipativity constraint and implies that the investment decision in
the first time period does not depend on any scenario realization in the second time
period.

The first lower-level problem referring to the market clearing at time period t1,
operating condition o1, and scenario ω1 is:

minΞ
P,Ex5
t1o1ω1

[

αC
t1n1o1ω1

pC
t1n1o1ω1

+ αE
t1n1o1ω1

pE
t1n1o1ω1

+ 15 pR
t1n1o1ω1

− 35 pD
t1n1o1ω1

]

subject to

pD
t1n1o1ω1

− pC
t1n1o1ω1

− pE
t1n1o1ω1

− pR
t1n1o1ω1

= 0 : λt1n1o1ω1

0 ≤ pC
t1n1o1ω1

≤ xC
t1n1ω1

: μCmin

t1n1o1ω1
, μCmax

t1n1o1ω1

0 ≤ pE
t1n1o1ω1

≤ 150 : μEmin

t1n1o1ω1
, μEmax

t1n1o1ω1

0 ≤ pR
t1n1o1ω1

≤ 100 : μRmin

t1n1o1ω1
, μRmax

t1n1o1ω1

0 ≤ pD
t1n1o1ω1

≤ 300 : μDmin

t1n1o1ω1
, μDmax

t1n1o1ω1
.
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In addition, the second lower-level problem pertaining to the market clearing at
time period t1, operating condition o1, and scenario ω2 is:

minΞ
P,Ex5
t1o1ω2

[

αC
t1n1o1ω2

pC
t1n1o1ω2

+ αE
t1n1o1ω2

pE
t1n1o1ω2

+ 15 pR
t1n1o1ω2

− 35 pD
t1n1o1ω2

]

subject to

pD
t1n1o1ω2

− pC
t1n1o1ω2

− pE
t1n1o1ω2

− pR
t1n1o1ω2

= 0 : λt1n1o1ω2

0 ≤ pC
t1n1o1ω2

≤ xC
t1n1ω2

: μCmin

t1n1o1ω2
, μCmax

t1n1o1ω2

0 ≤ pE
t1n1o1ω2

≤ 150 : μEmin

t1n1o1ω2
, μEmax

t1n1o1ω2

0 ≤ pR
t1n1o1ω2

≤ 100 : μRmin

t1n1o1ω2
, μRmax

t1n1o1ω2

0 ≤ pD
t1n1o1ω2

≤ 300 : μDmin

t1n1o1ω2
, μDmax

t1n1o1ω2
.

Likewise, the third lower-level problem referring to the market clearing at time
period t2, operating condition o1, and scenario ω1 is:

minΞ
P,Ex5
t2o1ω1

[

αC
t2n1o1ω1

pC
t2n1o1ω1

+ αE
t2n1o1ω1

pE
t2n1o1ω1

+ 15 pR
t2n1o1ω1

− 35 pD
t2n1o1ω1

]

subject to

pD
t2n1o1ω1

− pC
t2n1o1ω1

− pE
t2n1o1ω1

− pR
t2n1o1ω1

= 0 : λt2n1o1ω1

0 ≤ pC
t2n1o1ω1

≤ [
xC

t1n1ω1
+ xC

t2n1ω1

] : μCmin

t2n1o1ω1
, μCmax

t2n1o1ω1

0 ≤ pE
t2n1o1ω1

≤ 150 : μEmin

t2n1o1ω1
, μEmax

t2n1o1ω1

0 ≤ pR
t2n1o1ω1

≤ 100 : μRmin

t2n1o1ω1
, μRmax

t2n1o1ω1

0 ≤ pD
t2n1o1ω1

≤ 330 : μDmin

t2n1o1ω1
, μDmax

t2n1o1ω1
.

Finally, the fourth lower-level problem related to themarket clearing at time period
t2, operating condition o1, and scenario ω2 is:

minΞ
P,Ex5
t2o1ω2

[

αC
t2n1o1ω2

pC
t2n1o1ω2

+ αE
t2n1o1ω2

pE
t2n1o1ω2

+ 15 pR
t2n1o1ω2

− 35 pD
t2n1o1ω2

]

subject to

pD
t2n1o1ω2

− pC
t2n1o1ω2

− pE
t2n1o1ω2

− pR
t2n1o1ω2

= 0 : λt2n1o1ω2
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0 ≤ pC
t2n1o1ω2

≤ [
xC

t1n1ω2
+ xC

t2n1ω2

] : μCmin

t2n1o1ω2
, μCmax

t2n1o1ω2

0 ≤ pE
t2n1o1ω2

≤ 150 : μEmin

t2n1o1ω2
, μEmax

t2n1o1ω2

0 ≤ pR
t2n1o1ω2

≤ 100 : μRmin

t2n1o1ω2
, μRmax

t2n1o1ω2

0 ≤ pD
t2n1o1ω2

≤ 330 : μDmin

t2n1o1ω2
, μDmax

t2n1o1ω2
.

�

5.4 Direct Solution Approach

This section provides a direct solution approach, which is the first alternative solution
approachmentioned in Sect. 5.1.7. This approach is used to solve bilevelmodels (5.1)
and (5.2) presented in Sects. 5.2 and 5.3, respectively. To this end, the following two
steps are carried out:

1. In both bilevel models (5.1) and (5.2), all lower-level problems are linear, contin-
uous, and thus convex. Therefore, their Karush–Kuhn–Tucker (KKT) conditions
are necessary and sufficient for optimality. This allows replacing these problems
by their corresponding KKT conditions. In this way, each bilevel model is trans-
formed into a single-level optimization problem, called an MPEC.

2. Both MPECs resulting from bilevel models (5.1) and (5.2) are mixed-integer and
nonlinear. We recast each of these MPECs as an MILP problem through exact
linearization techniques.

InSect. 5.4.1,wederive theMPECassociatedwith bilevelmodel (5.1) correspond-
ing to the static investment problem as well as the MPEC associated with Illustrative
Example5.1. A similar approach can also be used to derive the MPEC for bilevel
model (5.2) corresponding to the dynamic production capacity investment problem
and Illustrative Examples5.2–5.5. In Sect. 5.4.2, the MILP problem equivalent to the
MPEC associated with Illustrative Example5.1 is derived. A similar approach can
also be used to derive the MILP formulations of the static and dynamic investment
models in Illustrative Examples5.2–5.5.

5.4.1 MPEC

TheMPEC associatedwith bilevel model (5.1) corresponding to the static investment
problem is derived in this section. First, the KKT conditions associated with each
lower-level problem (5.1j)–(5.1s), one per operating condition o and scenario ω, are
obtained. To this end, the corresponding Lagrangian functionLoω is written below:
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Loω =
∑

n

[

αC
noω pC

noω + αE
noω pE

noω + CR
no pR

noω − UD
no pD

noω

+ λnoω

(

pD
noω +

∑

m∈Ωn

Bnm (θnoω − θmoω) − pC
noω − pS

noω − pE
noω − pR

noω

)

+ μCmax

noω

(
pC

noω − xC
n

) − μCmin

noω pC
noω + μSmax

noω

(
pS

noω − QS
no xS

n

) − μSmin

noω pS
noω

+ μEmax

noω

(
pE

noω − PEmax

n

) − μEmin

noω pE
noω + μRmax

noω

(
pR

noω − PRmax

nω

) − μRmin

noω pR
noω

+ μDmax

noω

(
pD

noω − QD
no PDmax

n

) − μDmin

noω pD
noω

+
∑

m∈Ωn

μF
nmoω

(

Bnm(θnoω − θmoω) − Fmax
nm

)

+ μθmax

noω (θnoω − π) − μθmin

noω (θnoω + π)

]

+ μθ ref

oω θ(n=ref.)oω ∀o,∀ω. (5.3)

Considering the Lagrangian function (5.3), the KKT conditions associated with
the lower-level problems (5.1j)–(5.1s) are given by (5.4). Note that equality con-
straints (5.4a)–(5.4f) are derived by differentiating the Lagrangian function Loω

with respect to the primal variables included in the set ΞPrimal
oω :

∂Loω

∂pC
noω

=

αC
noω − λnoω + μCmax

noω − μCmin

noω = 0 ∀n,∀o,∀ω (5.4a)

∂Loω

∂pS
noω

=

− λnoω + μSmax

noω − μSmin

noω = 0 ∀n,∀o,∀ω (5.4b)

∂Loω

∂pE
noω

=

αE
noω − λnoω + μEmax

noω − μEmin

noω = 0 ∀n,∀o,∀ω (5.4c)

∂Loω

∂pR
noω

=

CR
no − λnoω + μRmax

noω − μRmin

noω = 0 ∀n,∀o,∀ω (5.4d)

∂Loω

∂pD
noω

=

− UD
no + λnoω + μDmax

noω − μDmin

noω = 0 ∀n,∀o,∀ω (5.4e)

∂Loω

∂θnoω

=
∑

m∈Ωn

Bnm (λnoω − λmoω) +
∑

m∈Ωn

Bnm
(
μF

nmoω − μF
mnoω

)
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+ μθmax

noω − μθmin

noω +
(
μθ ref.

oω

)

n=ref.
= 0 ∀n,∀o,∀ω. (5.4f)

In addition, equality constraints (5.4g) and (5.4h) below are the primal equality
constraints (5.1k) and (5.1s) in the lower-level problems:

pD
noω +

∑

m∈Ωn

Bnm (θnoω − θmoω) − pC
noω − pS

noω − pE
noω

− pR
noω = 0 ∀n,∀o,∀ω (5.4g)

θonω = 0 n = ref. (5.4h)

Furthermore, complementarity conditions (5.4i)–(5.4u) below are part of the KKT
conditions associated with the lower-level problems (5.1j)–(5.1s), and are related to
the inequality constraints (5.1l)–(5.1r). Note that each complementarity condition of
the form 0 ≤ p ⊥ μ ≥ 0 is equivalent to p ≥ 0, μ ≥ 0, and pμ = 0:

0 ≤ pC
noω ⊥ μCmin

noω ≥ 0 ∀n,∀o,∀ω (5.4i)

0 ≤ (
xC

n − pC
noω

) ⊥ μCmax

noω ≥ 0 ∀n,∀o,∀ω (5.4j)

0 ≤ pS
noω ⊥ μSmin

noω ≥ 0 ∀n,∀o,∀ω (5.4k)

0 ≤ (
QS

no xS
n − pS

noω

) ⊥ μSmax

noω ≥ 0 ∀n,∀o,∀ω (5.4l)

0 ≤ pE
noω ⊥ μEmin

noω ≥ 0 ∀n,∀o,∀ω (5.4m)

0 ≤ (
PEmax

n − pE
noω

) ⊥ μEmax

noω ≥ 0 ∀n,∀o,∀ω (5.4n)

0 ≤ pR
noω ⊥ μRmin

noω ≥ 0 ∀n,∀o,∀ω (5.4o)

0 ≤ (
PRmax

nω − pR
noω

) ⊥ μRmax

noω ≥ 0 ∀n,∀o,∀ω (5.4p)

0 ≤ pD
noω ⊥ μDmin

noω ≥ 0 ∀n,∀o,∀ω (5.4q)

0 ≤ (
QD

no PDmax

n − pD
noω

) ⊥ μDmax

noω ≥ 0 ∀n,∀o,∀ω (5.4r)

0 ≤ [
Fmax

nm − Bnm(θnoω − θmoω)
] ⊥ μF

nmoω ≥ 0 ∀n,∀o,∀m ∈ Ωn,∀ω (5.4s)

0 ≤ (π + θnoω) ⊥ μθmin

noω ≥ 0 ∀n,∀o,∀ω (5.4t)

0 ≤ (π − θnoω) ⊥ μθmax

noω ≥ 0 ∀n,∀o,∀ω. (5.4u)

Finally, conditions (5.4v) and (5.4w) below state that the dual variables associated
with the equality constraints (5.1k) and (5.1s) are free:

λnoω ∈ free ∀n,∀o,∀ω (5.4v)

μθ ref

oω ∈ free ∀o,∀ω. (5.4w)
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Using KKT conditions (5.4) instead of lower-level problems (5.1j)–(5.1s) within
the bilevel model (5.1) yields the following MPEC:

minΞUL ∪ ΞPrimal
oω ∪ ΞDual

oω
(5.1a) (5.5a)

subject to

(5.1b)−(5.1h) (5.5b)

(5.4). (5.5c)

Note that the MPEC associated with dynamic bilevel model (5.2) can be analo-
gously derived. To this end, each lower-level problem (5.2l)–(5.2u) is replaced by
its equivalent KKT optimality conditions. The resulting single-level optimization
problem is an MPEC corresponding to the bilevel model (5.2).

Illustrative Example 5.6 MPEC corresponding to the bilevel model in Illustrative
Example5.1

TheMPEC corresponding to the bilevel model in Illustrative Example5.1 is given
by (5.6) below:

minΞUL,Ex1 ∪ Ξ
P,Ex1
o1 ∪ Ξ

D,Ex1
o1

55000 xC
n1

− 8760

[

λn1o1

(
pC

n1o1 + pE
n1o1

) − 12 pC
n1o1 − 10 pE

n1o1

]

(5.6a)

subject to

The upper-level constraints:

xC
n1

= 100 uC
n1h2

(5.6b)

uC
n1h1

+ uC
n1h2

= 1 (5.6c)

uC
n1h1

, uC
n1h2

∈ {0, 1} (5.6d)

55000 xC
n1

≤ 107 (5.6e)

αC
n1o1 ≥ 0 (5.6f)

αE
n1o1 ≥ 0 (5.6g)

The KKT conditions associated with the lower-level problems:

∂Lo1

∂pC
n1o1

= αC
n1o1 − λn1o1 + μCmax

n1o1 − μCmin

n1o1 = 0 (5.6h)

∂Lo1

∂pE
n1o1

= αE
n1o1 − λn1o1 + μEmax

n1o1 − μEmin

n1o1 = 0 (5.6i)

∂Lo1

∂pR
n1o1

= 15 − λn1o1 + μRmax

n1o1 − μRmin

n1o1 = 0 (5.6j)

∂Lo1

∂pD
n1o1

= −35 + λn1o1 + μDmax

n1o1 − μDmin

n1o1 = 0 (5.6k)
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pD
n1o1 − pC

n1o1 − pE
n1o1 − pR

n1o1 = 0 (5.6l)

0 ≤ pC
n1o1 ⊥ μCmin

n1o1 ≥ 0 (5.6m)

0 ≤ (
xC

n1
− pC

n1o1

) ⊥ μCmax

n1o1 ≥ 0 (5.6n)

0 ≤ pE
n1o1 ⊥ μEmin

n1o1 ≥ 0 (5.6o)

0 ≤ (
150 − pE

n1o1

) ⊥ μEmax

n1o1 ≥ 0 (5.6p)

0 ≤ pR
n1o1 ⊥ μRmin

n1o1 ≥ 0 (5.6q)

0 ≤ (
100 − pR

n1o1

) ⊥ μRmax

n1o1 ≥ 0 (5.6r)

0 ≤ pD
n1o1 ⊥ μDmin

n1o1 ≥ 0 (5.6s)

0 ≤ (
300 − pD

n1o1

) ⊥ μDmax

n1o1 ≥ 0 (5.6t)

λn1o1 ∈ free. (5.6u)
�

5.4.2 MPEC Linearization

This section describes theMILPproblemequivalent ofMPEC (5.6), obtained in Illus-
trative Example5.6 and derived from the bilevel model in Illustrative Example5.1.
Note that the same linearization approach can be applied to the MPEC formulation
of static and dynamic investment models (5.1) and (5.2). MPEC (5.6) includes the
following nonlinearities:

1. The nonlinear term λn1o1

(
pC

n1o1 + pE
n1o1

)
in the objective function (5.6a). The

reason for nonlinearity is the product of variables, i.e., production quantities
pC

n1o1 , pE
n1o1 and market-clearing price λn1o1 . An exact linear expression for this

nonlinear term can be obtained as explained in Sect. 5.4.2.1.
2. The complementarity conditions (5.6m)–(5.6t). Such conditions can be linearized

without approximation through the approach explained in Sect. 5.4.2.2, which
relies on auxiliary binary variables.

5.4.2.1 Linearizing the Nonlinear Term in the Objective Function

An exact linearization approach [34] is described in this section to obtain a linear
expression for the nonlinear term λn1o1

(
pC

n1o1 + pE
n1o1

)
in objective function (5.6a).

First, we derive the dual problem associated with the lower-level problem of the
bilevelmodel in Illustrative Example5.1. Thenwe formulate the strong duality equal-
ity, which states that the values of primal and dual objective functions are equal at
the optimal solution.

The dual problem associated with the lower-level problem in Illustrative
Example5.1 is given by (5.7) below:
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maxΞ
D,Ex1
o1

− xC
n1

μCmax

n1o1 − 150 μEmax

n1o1 − 100 μRmax

n1o1 − 300 μDmax

n1o1 (5.7a)

subject to

(5.6h) − (5.6k) (5.7b)

μCmin

n1o1 , μCmax

n1o1 ≥ 0 (5.7c)

μEmin

n1o1 , μEmax

n1o1 ≥ 0 (5.7d)

μRmin

n1o1 , μRmax

n1o1 ≥ 0 (5.7e)

μDmin

n1o1 , μDmax

n1o1 ≥ 0. (5.7f)

The strong duality equality is:

αC
n1o1 pC

n1o1 + αE
n1o1 pE

n1o1 + 15 pR
n1o1 − 35 pD

n1o1 =

− xC
n1

μCmax

n1o1 − 150 μEmax

n1o1 − 100 μRmax

n1o1 − 300 μDmax

n1o1 . (5.8)

In the second step of the linearization approach, we use some complementar-
ity conditions obtained in Illustrative Example5.6. The complementarity conditions
(5.6n) and (5.6p) imply:

xC
n1

μCmax

n1o1 = pC
n1o1 μCmax

n1o1 (5.9a)

150 μEmax

n1o1 = pE
n1o1 μEmax

n1o1 . (5.9b)

Substituting conditions (5.9a) and (5.9b) into (5.8) renders:

pC
n1o1

(
αC

n1o1 + μCmax

n1o1

) + pE
n1o1

(
αE

n1o1 + μEmax

n1o1

) =
− 15 pR

n1o1 + 35 pD
n1o1 − 100 μRmax

n1o1 − 300 μDmax

n1o1 . (5.9c)

One the other hand, KKT equality conditions (5.6h) and (5.6i) imply:

λn1o1 = αC
n1o1 + μCmax

n1o1 − μCmin

n1o1 (5.9d)

λn1o1 = αE
n1o1 + μEmax

n1o1 − μEmin

n1o1 . (5.9e)

Multiplying equalities (5.9d) and (5.9e) by variables pC
n1o1 and pE

n1o1 , respectively,
results in:

pC
n1o1 λn1o1 = pC

n1o1 αC
n1o1 + pC

n1o1 μCmax

n1o1 − pC
n1o1 μCmin

n1o1 (5.9f)

pE
n1o1 λn1o1 = pE

n1o1 αE
n1o1 + pE

n1o1 μEmax

n1o1 − pE
n1o1 μEmin

n1o1 . (5.9g)

From complementarity conditions (5.6m) and (5.6o), it can be concluded that
the last terms of equalities (5.9f) and (5.9g) are zero, i.e., pC

n1o1 μCmin

n1o1 = 0 and

pE
n1o1 μEmin

n1o1 = 0. Thus, summation of equalities (5.9f) and (5.9g) yields:
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λn1o1

(
pC

n1o1 + pE
n1o1

) = pC
n1o1

(
αC

n1o1 + μCmax

n1o1

) + pE
n1o1

(
αE

n1o1 + μEmax

n1o1

)
. (5.9h)

Finally, comparing (5.9c) and (5.9h) yields:

λn1o1

(
pC

n1o1 + pE
n1o1

) = −15 pR
n1o1 + 35 pD

n1o1 − 100 μRmax

n1o1 − 300 μDmax

n1o1 . (5.9i)

Note that all terms on the right-hand side of (5.9i) are linear. �

5.4.2.2 Linearizing Complementarity Conditions

Each complementarity condition (5.6m)–(5.6t) of the form 0 ≤ p ⊥ μ ≥ 0 can be
linearized without approximation using a set of auxiliary binary variables [15]. Note
that p is a primal variable, whereas μ is a dual one. The complementarity condition
0 ≤ p ⊥ μ ≥ 0 is equivalent to the following constraints:

p ≥ 0 (5.10a)

μ ≥ 0 (5.10b)

p ≤ ψ M P (5.10c)

μ ≤ (1 − ψ) Mμ (5.10d)

ψ ∈ {0, 1}, (5.10e)

where M P and Mμ are large enough positive constants, and ψ is an auxiliary binary
variable. The values of constants M P and Mμ need to be appropriately selected.
Note that values that are too large may result in complementarity not being satisfied,
while values that are too small may result in numerical ill-conditioning.

The following strategy is proposed to select appropriate values for M P and Mμ:

1. Arbitrarily select large values for M P and Mμ, e.g., 104 for M P and 105 for Mμ.
In general, a comparatively lower value is needed for M P than for Mμ because
M P limits the value of primal variable p in (5.10c), whose upper bound is usually
known, while Mμ limits the value of dual variable μ in (5.10d) with unknown
upper bound.

2. Solve the MILP problem and then obtain the optimal values for p and μ.
3. Check whether pμ = 0. If not, the values selected for M P and Mμ need to be

reduced.

Steps 1–3 are repeated until the complementarity condition holds. In an MILP
problemwith several complementarity conditions, wemay need to tune up separately
the values of the large constants of each complementarity condition.

For example, the mixed-integer linear equivalent of complementarity condition
(5.6m) is:
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pC
n1o1 ≥ 0 (5.11a)

μCmin

n1o1 ≥ 0 (5.11b)

pC
n1o1 ≤ ψCmin

n1o1 M P1 (5.11c)

μCmin

n1o1 ≤
(
1 − ψCmin

n1o1

)
Mμ1 (5.11d)

ψCmin

n1o1 ∈ {0, 1}, (5.11e)

where M P1 and Mμ1 are large enough positive constants.
In addition, the mixed-integer linear equivalent of complementarity condition

(5.6n) is:

(
xC

n1
− pC

n1o1

) ≥ 0 (5.12a)

μCmax

n1o1 ≥ 0 (5.12b)
(
xC

n1
− pC

n1o1

) ≤ ψCmax

n1o1 M P2 (5.12c)

μCmax

n1o1 ≤ (
1 − ψCmax

n1o1

)
Mμ2 (5.12d)

ψCmax

n1o1 ∈ {0, 1}, (5.12e)

where M P2 and Mμ2 are large enough positive constants.

5.4.3 Numerical Results

This section provides the numerical results corresponding to Illustrative Exam-
ples5.1–5.5 presented in Sects. 5.2 and 5.3.

5.4.3.1 Results for Illustrative Example5.1

In this static investment example, the strategic producer decides to build 100 MW
of conventional capacity, i.e., xC

n1
=100 MW. Thus, the annualized investment cost

is $5.5 million (i.e., 100 × 55000), which is lower than its annualized investment
budget, i.e., $10 million.

Tomaximize its profit, the strategic producer offers its two production units (exist-
ing and newly built) at a price of $35/MWh, which is identical to the consumer’s
bid price. The market-clearing outcomes are provided in Table5.1. Accordingly, the
market-clearing price (λn1o1 ) is $35/MWh, which is equal to the offer price of the last
production unit dispatched. In addition, the annual profit of the strategic producer is
minus the upper-level objective function value, which is equal to $37.42 million.

To highlight the impact of strategic behavior of the producer on investment results,
we consider a nonstrategic case in which the producer submits its actual production
costs as offer prices, i.e.,αC

n1o1 = CC
n1

=$12/MWhandαE
n1o1 = CE

n1
=$10/MWh.This
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Table 5.1 Illustrative Example5.1: Market-clearing outcomes

Market participant Offer/bid price [$/MWh] Production/consumption level
[MW]

Rival unit CR
n1o1 = 15 pR

n1o1 = 100

Existing unit of the strategic
producer

αE
n1o1 = 35 pE

n1o1 = 150

Newly built unit of the
strategic producer

αC
n1o1 = 35 pC

n1o1 = 50

Consumer UD
n1o1 = 35 pD

n1o1 = 300

case corresponds to a perfectly competitive market. In this case, no new production
unit is built by the producer, i.e., xC

n1
=0 MW, and its annual profit decreases to

$32.85 million, which is comparatively lower than that in the strategic case.

5.4.3.2 Results for Illustrative Example5.2

This example is similar to Illustrative Example5.1 butwith consideration of the trans-
mission line n1-n2. Since the transmission network is modeled, a market-clearing
price at each node of the network, i.e., n1 and n2, is obtained, the so-called loca-
tional marginal price (LMP) of that node. The LMP of a given node represents the
social welfare increment in the market as a result of a marginal demand increment
at that node.

Since the capacity of line n1 − n2 is assumed to be large enough (200 MW),
the transmission constraints do not change the market-clearing outcomes. Thus, the
results obtained for this example are identical to those in Illustrative Example5.1.
In particular, the LMPs at both nodes are identical, and equal to $35/MWh. Note
that the power flow in line n1 − n2 is 100 MW, which is equal to the rival unit’s
production, located at node n2.

To gain insight into the impact of transmission constraints on investment decisions
and profit, we consider a reduced transmission capacity of line n1 − n2; specifically,
we limit the capacity of this line to 80 MW. We refer to this problem as the con-
gested case. Similar to the uncongested case, the strategic producer invests in a 100
MW conventional unit at node n1 and offers its production units at price $35/MWh.
An important observation is that although the rival unit offers at a comparatively
lower price, i.e., $15/MWh, it is not dispatched at its maximum (100 MW) due to
transmission congestion. The market-clearing outcomes in this case are provided in
Table5.2. Accordingly, the production level of the rival unit decreases to 80 MW,
while that of the newly built conventional unit of the strategic producer increases to
70 MW. Thus, the strategic producer’s annual profit increases to $41.45 million.
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Table 5.2 Illustrative Example5.2: Market-clearing outcomes (congested case)

Market participant Offer/bid price [$/MWh] Production/consumption level
[MW]

Rival unit CR
n2o1 = 15 pR

n2o1 = 80

Existing unit of the strategic
producer

αE
n1o1 = 35 pE

n1o1 = 150

Newly built unit of the
strategic producer

αC
n1o1 = 35 pC

n1o1 = 70

Consumer U D
n1o1 = 35 pD

n1o1 = 300

Another important impact of transmission congestion is that the LMPs at nodes
n1 and n2 become different. In this case, the LMP at node n1 is $35/MWh, while that
of node n2 is $15/MWh.

5.4.3.3 Results for Illustrative Example5.3

In this example, two technologies as investment options are considered: conventional
and stochastic (wind power) units. The strategic producer decides to build only a
wind power unit at node n2 with a capacity equal to xS

n2
=142.86 MW. Thus, the

annualized investment cost of the strategic producer is $9.43 million (i.e., 142.86 ×
66000), which is lower than its annualized investment budget, i.e., $10 million. The
wind power capacity factors in operating conditions o1 and o2 are 0.35 and 0.70,
respectively. Therefore, the available wind power production in operating conditions
o1 and o2 are 50 MW (i.e., 142.86 × 0.35) and 100 MW (i.e., 142.86 × 0.70),
respectively.

In analogy to the results obtained in Illustrative Examples5.1 and 5.2, the strategic
producer offers its existing conventional unit in each operating condition at a price
identical to the consumer’s bid price in that condition, i.e., $35/MWh in condition
o1 and $32/MWh in condition o2. In this way, it forces the market to be cleared at a
higher price. The market-clearing outcomes in both operating conditions o1 and o2
are provided in Table5.3. The consumer is fully supplied in both conditions, and the
line flows in operating conditions o1 and o2 are 200 MW and 150 MW, respectively.
In this example, the transmission limit does not affect the market-clearing outcomes.
Therefore, theLMPs corresponding to nodes n1 and n2 in each condition are identical,
i.e., $35/MWh in operating condition o1 and $32/MWh in operating condition o2.
Finally, the annual profit of the strategic producer in this example is $31.32 million.
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Table 5.3 Illustrative Example5.3: Market-clearing outcomes

Market participant Production/consumption level
in condition o1 [MW]

Production/consumption level
in condition o2 [MW]

Rival unit pRn2o1 = 100 pRn2o2 = 100

Existing unit of the strategic
producer

pEn1o1 = 150 pEn1o2 = 40

Newly built wind unit of the
strategic producer

pSn2o1 = 50 pSn2o2 = 100

Consumer pDn1o1 = 300 pDn1o2 = 240

5.4.3.4 Results for Illustrative Example5.4

The investment and offering decisions of the strategic producer are identical to those
in IllustrativeExample5.3.However, its expected annual profit decreaseswith respect
to its annual profit in IllustrativeExample5.3 due to the rival’s investment uncertainty.
The expected annual profit of the strategic producer is $28.07 million.

Regarding market-clearing outcomes, the production/consumption levels under
scenario ω1 (no rival investment) are identical to those in Table5.3. However in
scenario ω2, the rival producer builds a 40-MW conventional unit. Thus, the pro-
duction of the strategic producer’s existing unit decreases to 110 MW in operating
condition o1 and to zero in condition o2. The LMPs in operating conditions o1 and
o2 are $35/MWh and $32/MWh, respectively. Note that although the strategic pro-
ducer’s existing unit is not dispatched in condition o2 under scenario ω2, the LMP at
both nodes is $32/MWh because all other units are fully dispatched. Thus, the cost
for increasing 1 MW demand is equal to the offer price of the strategic producer’s
existing unit, i.e., $32/MWh.

The GAMS code for solving the MILP problem corresponding to Illustrative
Example5.4 is provided in Sect. 5.8.

5.4.3.5 Results for Illustrative Example5.5

In this dynamic investment example, the decisions are made at the beginning of time
periods t1 and t2. The strategic producer builds a 50 MW conventional unit at the
beginning of time period t1, i.e., xC

t1n1ω1
= xC

t1n1ω2
= 50MW.This decision is identical

over scenarios ω1 and ω2 as enforced by the nonanticipativity constraint. However,
the investment decision at the beginning of time period t2 depends on the scenario
realized at the end of time period t1. If the investment cost in time period t2 remains
equal to that in period t1, i.e., if scenario ω1 is realized, then the strategic producer
builds an additional 50-MWconventional unit in time period t2, i.e., xC

t2n1ω1
=50MW.

Therefore, the conventional unit capacity increases to 100 MW. One the other hand,
if scenario ω2 is realized, then the strategic producer does not invest in time period
t2, i.e., xC

t2n1ω2
=0. Therefore, the capacity remains at 50 MW. The expected profit of
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the strategic producer to be obtained during the considered ten-year time horizon is
$75.66 million. Similarly to the static investment examples, the strategic producer
offers in each time period, operating condition, and scenario at a price identical to the
consumer’s bid price, which is assumed to be $35/MWh for both time periods under
any scenario. Thus, the market-clearing price in this example in both time periods
under any scenario is $35/MWh.

5.5 Benders Solution Approach

As explained in Sect. 5.1.7, the computational burden for solving bilevel models (5.1)
and (5.2) through a direct solution approach (Sect. 5.4) increases significantly with
the number of operating conditions and scenarios, which is in fact the main drawback
of this approach. To overcome this computational issue and eventual intractability,
another solution approach based on a Benders decomposition technique [7, 12] is
described in this section. This solution approach provides a computationally tractable
formulation that allows us to solve a problem with many operating conditions and
scenarios.

5.5.1 Complicating Variables

Solving the static investment model (5.1) presented in Sect. 5.2 and the dynamic
investment model (5.2) presented in Sect. 5.3 requires considering all involved oper-
ating conditions and scenarios simultaneously. Therefore, a large number of operat-
ing conditions and scenarios may result in high computational burden and eventual
intractability.

If production capacity investment decision variables within the static investment
model (5.1), i.e., xC

n and xS
n , are considered to be complicating variables, then model

(5.1) can be solved using aBenders decomposition approach. The reason for selecting
xC

n and xS
n as complicating variables is that fixing these variables to given values yields

one decomposed problem per operating condition o and scenario ω.
Analogously, the dynamic investment model (5.2) can be solved using Benders

decomposition, provided that the production capacity investment variables xC
tnω and

xS
tnω are fixed to given values. In this case, the original bilevelmodel (5.2) decomposes
into a number of smaller problems, one per time period t , operating condition o, and
scenario ω.

Illustrative Example 5.7 Decomposing Illustrative Example 5.4 through fixing
complicating variables to given values
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To clarify the idea behind Benders decomposition, we analyze Illustrative Exam-
ple5.4 in Sect. 5.2 and its corresponding bilevel model. This example refers to a
static production capacity investment model including two operating conditions, o1
and o2, and two scenarios, ω1 and ω2.

Note that if we consider the two investment variables xC
n1

and xS
n2

as complicat-
ing variables and fix them to given values xC,fixed

n1
and xS,fixed

n2
, respectively, then the

bilevel model of Illustrative Example5.4 decomposes into four smaller bilevel mod-
els, one per operating condition and scenario. The first decomposed bilevel model
corresponding to operating condition o1 and scenario ω1 is given below:

minΞ
P,Ex4
o1ω1 ,xC

n1
,xS

n2
− (3530 × 0.6)

[

λn1o1ω1

(
pC

n1o1ω1
+ pE

n1o1ω1

) + λn2o1ω1 pS
n2o1ω1

− 12 pC
n1o1ω1

− 10 pE
n1o1ω1

]

subject to

xC
n1

= xC,fixed
n1

xS
n2

= xS,fixed
n2

αC
n1o1ω1

≥ 0

αE
n1o1ω1

≥ 0

Lower-level problem for operating condition o1 and scenario ω1.

The second decomposed bilevel model corresponding to operating condition o2
and scenario ω1 is given below:

minΞ
P,Ex4
o2ω1 ,xC

n1
,xS

n2
− (5230 × 0.6)

[

λn1o2ω1

(
pC

n1o2ω1
+ pE

n1o2ω1

) + λn2o2ω1 pS
n2o2ω1

− 12 pC
n1o2ω1

− 10 pE
n1o2ω1

]

subject to

xC
n1

= xC,fixed
n1

xS
n2

= xS,fixed
n2

αC
n1o2ω1

≥ 0

αE
n1o2ω1

≥ 0

Lower-level problem for operating condition o2 and scenario ω1.

The third decomposed bilevel model corresponding to operating condition o1 and
scenario ω2 is given below:
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minΞ
P,Ex4
o1ω2 ,xC

n1
,xS

n2
− (3530 × 0.4)

[

λn1o1ω2

(
pC

n1o1ω2
+ pE

n1o1ω2

) + λn2o1ω2 pS
n2o1ω2

− 12 pC
n1o1ω2

− 10 pE
n1o1ω2

]

subject to

xC
n1

= xC,fixed
n1

xS
n2

= xS,fixed
n2

αC
n1o1ω2

≥ 0

αE
n1o1ω2

≥ 0

Lower-level problem for operating condition o1 and scenario ω2.

Finally, the fourth decomposed bilevel model corresponding to operating condi-
tion o2 and scenario ω2 is given below:

minΞ
P,Ex4
o2ω2 ,xC

n1
,xS

n2
− (5230 × 0.4)

[

λn1o2ω2

(
pC

n1o2ω2
+ pE

n1o2ω2

) + λn2o2ω2 pS
n2o2ω2

− 12 pC
n1o2ω2

− 10 pE
n1o2ω2

]

subject to

xC
n1

= xC,fixed
n1

xS
n2

= xS,fixed
n2

αC
n1o2ω2

≥ 0

αE
n1o2ω2

≥ 0

Lower-level problem for operating condition o2 and scenario ω2.

Note that each decomposed bilevel model is smaller than the original undecom-
posed bilevel model, and thus it is easier to solve. Each of these decomposed bilevel
models is called a subproblem. �

5.5.2 Convexity Analysis

For bilevelmodels (5.1) and (5.2), an effective implementation of theBenders decom-
position technique is possible if the expected profit of the strategic producer as a
function of the complicating variables (i.e., the production capacity investment vari-
ables) has a convex envelope. Although bilevel models are generally nonconvex and
do not meet such a requirement, if the number of operating conditions and scenarios
is large enough, then the objective function of such bilevel models as a function of
each complicating variable becomes sufficiently convex [8, 26]. In other words, the
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objective function of a stochastic programming problem becomes sufficiently convex
as the number of operating conditions and scenarios increases. The reason for this
is that the objective function represents the expectation over a number of operating
conditions and scenarios. Thus, as the number of operating conditions and scenarios
increases, the diversity of objective functions increases, while the weight of each
single operating condition and scenario decreases. This results in a smoothing effect
leading to the convexification of the expected value objective function. This convex-
ification generally allows a successful implementation of Benders decomposition.
Nevertheless, convergence cannot be generally guaranteed for the bilevel models
considered.

5.5.3 Functioning of Benders Decomposition

Conceptually, the Benders algorithm works as explained through the following three
steps:

1. Given fixed investment decisions, i.e., xC
n and xS

n in the static investment model
(5.1), and xC

tnω and xS
tnω in the dynamic investment model (5.2), the resulting

decomposed bilevel models (subproblems) are solved, and their solutions provide
(i) offering and operating decisions for the strategic producer and (ii) sensitivities
of the strategic producer’s expected profitwith respect to the investment decisions.
In general, these sensitivities are derived through the dual variables associated
with the constraints fixing the investment decisions.

2. The sensitivities obtained in step 1 above allow the formulation of a so-called
Benders master problem, whose solution provides updated investment decisions.

Steps 1 and 2 above are repeated until no improvement in expected profit is achieved.
In the case of the static production capacity investmentmodel (5.1), Fig. 5.5 further

illustrates the Benders algorithm. Box A corresponds to the original undecomposed
bilevel model (5.1). Fixing the complicating investment variables xC

n and xS
n (Box

B) renders one decomposed bilevel model (subproblem) per operating condition
and scenario (Box C), which can be recast as an MPEC (Box D). The sensitivities
obtained from the subproblems allow formulating the master problem (Box E) to
update the production capacity investment variables. The algorithm continues until
no improvement in expected profit is achieved. The detailed steps of the Benders
algorithm to solve the production capacity investment problem are presented in the
next section.

For the dynamic production capacity investment model (5.2), the Benders algo-
rithm is similar to that in Fig. 5.5; however, the original problem decomposes by time
period as well.
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S
ubproblem

s

No

Fig. 5.5 Flowchart of the Benders solution approach to solving the static production capacity
investment model

5.5.4 The Benders Algorithm

A detailed description of the Benders algorithm to solve the production capacity
investment problem is presented below:

Step 0 Input data for the Benders algorithm including a tolerance ε, initial guesses
for the complicating variables (e.g., no investment), operating conditions,
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and scenario data. In addition, this step sets Benders iteration v = 1 and
considers an initial lower bound for the strategic producer’s profit.

Step 1 Select the first operating condition and scenario (and time period in the case
of a dynamic investment model).

Step 2 Solve the subproblem for operating condition o and scenario ω (and time
period t in the case of a dynamic investment model).

Step 3 Repeat Steps 1 and 2 for all involved operating conditions and scenarios
(and time periods in the case of a dynamic investment model). This step
provides the values for sensitivities as well as an upper bound for the strategic
producer’s profit.

Step 4 Check convergence by comparing the values of the upper bound of the profit
obtained from the subproblems and the initial lower bound of the profit
as given in Step 0. Note that this lower bound in subsequent iterations (i.e.,
v > 1) is obtained from themaster problem (Step 5). If the difference between
these two bounds is smaller than the tolerance ε, then the solution at iteration
v is optimal with a level of accuracy ε. Otherwise, the iteration counter is
updated and the next iteration is considered.

Step 5 Solve the master problem based on the sensitivities obtained in the subprob-
lems. This problem updates the values of complicating variables and of the
lower bound profit.

The algorithm continues in Step 1.

Illustrative Example 5.8 Benders solution of Illustrative Example5.4

In this example, we consider Illustrative Example5.4 as presented in Sect. 5.2
and solve its corresponding bilevel model using Benders decomposition. Recall that
Illustrative Example5.4 has already been solved using a direct solution approach in
Sect. 5.4.3. Note also that four subproblems have already been derived in Illustra-
tive Example5.7 from the original bilevel model corresponding to Illustrative Exam-
ple5.4 through fixing the investment decisions xC

n1
and xS

n2
to given values xC,fixed

n1
and

xS,fixed
n2

, respectively. To solve this example through the Benders solution approach,
the following steps are examined:

Initialization: As an initial step (explained in Sect. 5.5.4), we set the tolerance
ε = 0.1, the initial guesses of the complicating variables xC

n1
= 0 and xS

n2
= 0, and

the Benders iteration v = v1. Finally, we consider −$1010 as the initial lower bound
for minus the strategic producer’s expected annual profit.

Benders iteration v = v1: According to the initial inputs, we need to solve sepa-
rately four decomposedbilevelmodels derived in IllustrativeExample5.7 as subprob-
lems. To this end, the MPEC and then the MILP equivalent of each subproblem are
formulated and solved. However, the binary variables in the mixed-integer subprob-
lems that are involved due to complementarity linearization may hinder obtaining
appropriate values for sensitivities. To overcome such a problem, we first solve the
MILP equivalent of each subproblem as an auxiliary problem. Then, a continuous
and linear form of each subproblem is formulated in which each complementarity
condition is replaced by its corresponding strong duality equality, and some variables
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Table 5.4 Illustrative Example5.8: Values obtained for sensitivities [$/MW] and the strategic
producer’s minus profit [$] in each subproblem (iteration v = v1)

Subproblem Variable The value
obtained

Subproblem 1 related to the operating
condition o1 and scenario ω1

Minus the strategic producer’s profit −7.94 × 106

Sensitivity with respect to xC(v1)
n1 0

Sensitivity with respect to xS(v1)
n2 −25945.5

Subproblem 2 related to the operating
condition o1 and scenario ω2

Minus the strategic producer’s profit −5.29 × 106

Sensitivity with respect to xC(v1)
n1 0

Sensitivity with respect to xS(v1)
n2 −17297.0

Subproblem 3 related to the operating
condition o2 and scenario ω1

Minus the strategic producer’s profit −9.67 × 106

Sensitivity with respect to xC(v1)
n1 0

Sensitivity with respect to xS(v1)
n2 −21966.0

Subproblem 4 related to the operating
condition o2 and scenario ω2

Minus the strategic producer’s profit −4.60 × 106

Sensitivity with respect to xC(v1)
n1 0

Sensitivity with respect to xS(v1)
n2 −14644.0

within the bilinear terms are substituted by their optimal values obtained from the
auxiliary problem. The outcomes of this step are operational decisions as well as
the values for sensitivities, which are dual variables associated with the constraints
fixing investment decisions. Further details on this approach can be found in [26].
The values obtained for sensitivities and minus the strategic producer’s annual profit
in each subproblem are provided in Table5.4. According to the values given in this
table, minus the strategic producer’s expected profit is −$27.50 × 106, which is the
summation of minus its profit over the four subproblems. In addition, the expected
values obtained for sensitivities in this iterationwith respect to complicating variables
xC(v1)

n1
and xS(v1)

n2
are 0 and −79852.5, respectively.

Convergence check: Thevalueobtained in thefirst iteration for the upper boundof
minus the strategic producer’s expected profit is−$27.50 × 106 plus the investment
cost, which is zero. On the other hand, the initial lower bound of minus the strategic
producer’s expected profit is −$1010. Thus, the absolute difference between these
two bounds is greater than the value ε considered for tolerance. Therefore, the next
iteration (i.e., v = v2) needs to be considered.

Iteration v = v2: As the first step in the second iteration, the Benders master
problem is formulated and solved. The aim of the master problem is to update the
values for complicating variables through sensitivities obtained in the first iteration.
The formulation of the Benders master problem in iteration v = v2 is given below.
Note that the superscript (v2) for the variables illustrates the Benders iteration:

minΞMP(v2)

(
55000 xC(v2)

n1
+ 66000 xS(v2)

n2

) + β(v2)

subject to



216 5 Investment in Production Capacity

xC(v2)
n1

= 100 uC(v2)
n1h2

uC(v2)
n1h1

+ uC(v2)
n1h2

= 1

uC(v2)
n1h1

, uC(v2)
n1h2

∈ {0, 1}
0 ≤ xS(v2)

n2
≤ 200

(
55000 xC(v2)

n1
+ 66000 xS(v2)

n2

) ≤ 107

β(v2) ≥ −1010

β(v2) ≥ (−27.50 × 106
) + 0

(
xC(v2)

n1
− 0

) − 79852.5
(
xS(v2)

n2
− 0

)
.

The optimization variables of the master problem above in iteration v = v2 are
those in the setΞMP(v2) = {xC(v2)

n1
, xS(v2)

n2
, β(v2), uC(v2)

n1h1
, uC(v2)

n1h2
}. This problem is mixed-

integer and linear.
Note that the variable β(v2) in the objective function represents minus the opera-

tional profit of the strategic producer. The first five constraints enforce the available
capacity options and the investment budget. The sixth constraint imposes a lower
bound on β(v2) to accelerate convergence. Finally, the last constraint is a Benders
cut, in which the values of minus the strategic producers’ operational profit and
sensitivities obtained in iteration v = v1 are used. This constraint provides feedback
to the master problem on the impact of the complicating variables’ values on the
outcomes of the subproblems in the previous iteration. Note that a new Benders cut
is incorporated into the master problem in every Benders iteration.

The solution of the master problem updates the values of the complicating vari-
ables as xC(v2)

n1
=100 MW and xS(v2)

n2
=68.182 MW. In addition, the value obtained

for the objective function provides the updated lower bound for minus the strategic
producer’s profit, which is −$31.07 × 106.

Then, the four subproblems are solved in iteration v = v2 based on the updated
values obtained for the complicating variables. Next, the convergence needs to be
checked. If required, iteration v = v3 is considered.

The next iterations: Table5.5 provides the Benders procedure for solving this
example, which converges in iteration 4. Note that the results obtained through the
Benders solution approach given in the last row of Table5.5 are identical to those
obtained through the direct solution approach.

�

5.6 Summary

This chapter provides a mathematical framework based on a stochastic bilevel model
to be used by a strategic producer to make production capacity investment decisions.
Both conventional and stochastic production units are considered as investment
candidates. Diverse sources of uncertainty, e.g., uncertainties on rival investment
and investment costs, are appropriately characterized through a set of scenarios. In
addition, the variability of demand and the production level of stochastic units are
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Table 5.5 Illustrative Example5.8: Benders iterations

Iteration 1 Iteration 2 Iteration 3 Iteration 4

The value
obtained for xCn1
[MW]

0 100 0 0

The value
obtained for xSn2
[MW]

0 68.182 94.838 142.857

The lower bound
for minus the
profit [$]

−1010 −31.07 × 106 −28.82 × 106 −28.07 × 106

The upper bound
for minus the
profit [$]

−27.50 × 106 −23.73 × 106 −28.00 × 106 −28.07 × 106

Convergence
error [$]

99.72 × 108 7.33 × 106 0.82 × 106 3.72 × 10−9

represented through a set of operating conditions. Then, two investment models are
studied: static and dynamic (multistage). In the static investment model, the strategic
producer considers a single future year and decides its optimal production capacity
portfolio for that target year. On the other hand, in the dynamicmodel, the investment
decisions are made at several points in time throughout the planning horizon. In gen-
eral, the dynamic model results in more accurate investment decisions than the static
model but at the cost of a high computational burden and potential intractability.

In addition, two solution approaches are described. The first is a direct solution,
which may result in intractability if a large number of operating conditions and
scenarios is used. Another solution approach based on Benders decomposition, valid
for very large problems, is provided as well.

5.7 End-of-Chapter Exercises

5.1 Reformulate the static investment model (5.1) and the dynamic investment
model (5.2) to include several units per node, piecewise production costs of units,
and piecewise bidding curves of consumers.

5.2 Reformulate the static investment model (5.1) and the dynamic investment
model (5.2) to include the strategic offering of candidate stochastic units (instead
of zero offer price).

5.3 Consider the lower-level problem of the static investment model (5.1). Write
the dual problem corresponding to this lower-level problem and its KKT conditions.
Verify that the solutions of the primal problem, the dual problem, and the optimality
conditions are identical.
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5.4 Derive the MPEC of the generic bilevel model (5.2) corresponding to the
dynamic investment model. Then recast this generic MPEC as an MILP problem.

5.5 Consider investment decisions as complicating variables in Illustrative Exam-
ple5.5 corresponding to the dynamic investment model. Write the decomposed
subproblems. Then, solve it by the Benders decomposition algorithm described in
Sect. 5.5 and compare the results to those obtained from the direct solution approach.

5.6 Determine the most beneficial investment decisions using the static investment
model (5.1) for a strategic producer competing in the power system depicted in
Fig. 5.6. Note that to solve this exercise, the reformulated form ofmodel (5.1) derived
in Exercise5.1 is needed, in which several units per node can be considered. This
power system includes three nodes (n1, n2, and n3) and three transmission lines
(n1 − n2, n1 − n3, and n2 − n3). The transmission capacity and susceptance of each
line are 900 MW and 1000 S, respectively.

According to Fig. 5.6, the strategic producer owns an existing unit at node n1 with
capacity of 400 MW and production cost of $15.00/MWh. In addition, two rival
production units (R1 and R2) are considered at node n3. One of the rival units (R1)
exists in the target year, while another one (R2) may or may not be built by the rival
producer. In fact, unit R2 characterizes the rival investment uncertainty. The capacity
of unit R1 is 450 MW, while that of unit R2 is uncertain and characterized by three
scenarios ω1, ω2, and ω3. The capacities of rival unit R2 corresponding to scenarios
ω1, ω2, and ω3 are 0, 300 MW, and 450 MW, respectively, and the corresponding

Node n2 Node n3

Existing units of the
rival producers

D3D2

1nNode

D1

Existing unit of
the strategic producer

Fig. 5.6 Exercise5.6: three-node test system
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probabilities are 0.3, 0.4, and 0.3, respectively. Note that the production cost of both
rival units R1 and R2 is $14.00/MWh.

Regarding the production capacity investment options, three different technolo-
gies are considered as follows:

1. Conventional base technology (e.g., nuclear) with high investment cost but low
production cost.

2. Conventional peak technology (e.g., CCGTs) with low investment cost but high
production cost.

3. Stochastic production technology (e.g., wind turbines) with high investment cost
but zero production cost.

Two potential locations are considered to build stochastic units, i.e., nodes n1 and
n2. On the other hand, nodes n1 and n3 are candidate locations to build new conven-
tional (base and peak) units. The characteristics of production capacity investment
candidates including their annualized investment costs and available capacity options
are presented in Table5.6. The investment budget is assumed to be unlimited. The
maximum consumption levels of consumers D1, D2, and D3 are 250 MW, 850 MW,
and 1000 MW, respectively. In addition, five operating conditions (o1 to o5) are con-
sidered, whose weighting factors are 1465, 1277, 2377, 2155, and 1486, respectively.
We assume that the demand factors of all consumers are identical. In addition, differ-
ent power capacity factors are considered for the two candidate stochastic production
units since their geographic locations are different. Table5.7 presents the values con-
sidered for demand and stochastic production factors. Finally, Table5.8 presents the
bid prices of consumers under different operating conditions.

Table 5.6 Exercise5.6: data for production capacity investment options

Candidate unit
(technology)

Annualized investment
cost [$/MW]

Available capacity for
investment options [MW]

Production cost
[$/MWh]

Conventional base 55000 0, 275, 500, 625, 750 12.00

Conventional peak 15000 0, 125, 250, 375, 500 20.00

Stochastic 78000 Continuous options
between 0 and 500

0.00

Table 5.7 Exercise5.6: data for operating conditions considered

Operating conditions Demand factor for
each consumer [p.u.]

Production factor for
candidate stochastic
unit located at node n1
[p.u.]

Production factor for
candidate stochastic
unit located at node n2
[p.u.]

o1 0.86 0.13 0.43

o2 0.78 0.13 0.82

o3 0.70 0.62 0.66

o4 0.63 0.10 0.13

o5 0.54 0.59 0.36
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Table 5.8 Exercise5.6: data for bid price of consumers in different operating conditions

Operating conditions Bid price of D1
[$/MWh]

Bid price of D2
[$/MWh]

Bid price of D3
[$/MWh]

o1 30.00 32.00 36.00

o2 27.00 30.00 35.00

o3 26.00 28.00 33.00

o4 23.00 25.00 30.00

o5 22.00 24.00 28.00

5.7 Solve Exercise5.6 for the case in which the capacity of each transmission line
is 300 MW. Interpret why transmission congestion alters the investment decisions of
the strategic producer.

5.8 Solve Exercise5.6 using the dynamic investment model (5.2). Consider a plan-
ning horizon comprising two five-year time periods (t1 and t2). Amortization rates
are 20% and 10% in the first and second periods, respectively. In addition, the invest-
ment technologies are identical to those in Table5.6; however, their actual investment
costs are $600,000/MW, $180,000/MW, and $800,000/MW, respectively. The max-
imum consumption levels of each consumer in the first and the second time periods
are 80% and 100% of those in Exercise5.6, respectively. We assume that the bid
prices of consumers (Table5.8) do not change across time periods.

5.8 GAMS Code

This section provides the GAMS code for solving the MILP problem corresponding
to Illustrative Example5.4, which is more complex than Illustrative Examples5.1–
5.3. Therefore, this code can be easily adapted to those examples. Likewise, it is
not difficult to change the code for use in a dynamic investment example, e.g.,
Illustrative Example5.5. Note that this code is written in a general form, and thus it
is straightforward to adapt it to any static production capacity investment case.

1 SETS
2 o operating conditions /o1*o2/
3 h conventional technologies /h1*h2/
4 w scenarios /w1*w2/
5 n nodes /n1*n2/
6 s(n) reference node /n1/
7 Omega(n,n) transmission lines /n1.n2 ,n2.n1/
8 ALIAS (n,m);

10 PARAMETERS
11 C_C(n) production cost of candidate conventional

units /
12 n1 12/
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14 C_E(n) production cost of existing conventional
units /

15 n1 10/

17 K_C(n) annualized investment cost of candidate
conventional units /

18 n1 55000/

20 K_S(n) annualized investment cost of candidate
stochastic units /

21 n2 66000/

23 P_Emax(n) capacity of existing conventional units /
24 n1 150/

26 P_Dmax(n) maximum load of consumers /
27 n1 300/

29 X_Smax(n) maximum capacity investment of candidate
stochastic units /

30 n2 200/

32 phi(w) probability of scenarios /
33 w1 0.6
34 w2 0.4/

36 rho(o) weighting factor of operating conditions /
37 o1 3530
38 o2 5230/;

40 TABLE B(n,n) susceptance of transmission lines
41 n1 n2
42 n1 0 1e3
43 n2 1e3 0;

45 TABLE C_R(n,o) offer price of rival units
46 o1 o2
47 n1 13 13
48 n2 15 15;

50 TABLE Fmax(n,n) transmission capacity of lines
51 n1 n2
52 n1 0 200
53 n2 200 0;

55 TABLE P_Rmax(n,w) capacity of rival units
56 w1 w2
57 n1 0 40
58 n2 100 100;

60 TABLE Q_S(n,o) power capacity factor of candidate
stochastic units
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61 o1 o2
62 n2 0.35 0.70;

64 TABLE Q_D(n,o) demand factor of consumers
65 o1 o2
66 n1 1.0 0.8;

68 TABLE U_D(n,o) bid price of consumers
69 o1 o2
70 n1 35 32;

72 TABLE X_Option(n,h) conventional investment
alternatives

73 h1 h2
74 n1 0 100;

76 SCALAR Kmax available investment budget /1e7/
77 SCALAR BigM1 a large value /1e4/
78 SCALAR BigM2 a large value /5e4/
79 SCALAR PI pi /3.1416/;

81 FREE VARIABLES
82 minus_profit minus expected profit of the

producer
83 linear_term(n,o,w) linear equivalent of the

revenue term
84 theta(n,o,w) nodal voltage angles
85 lambda(n,o,w) locational marginal prices (

LMPs);

87 POSITIVE VARIABLES
88 p_C(n,o,w) production of candidate

conventional units
89 p_D(n,o,w) Consumption of consumers
90 p_E(n,o,w) production of existing

conventional units
91 p_R(n,o,w) production of rival units
92 p_S(n,o,w) production of candidate

stochastic units
93 x_C(n) capacity investment in

conventional units
94 x_S(n) capacity investment in

stochastic units
95 alpha_C(n,o,w) offer price by candidate

conventional units
96 alpha_E(n,o,w) offer price by existing

conventional units

97 mu_Cmin(n,o,w) dual
98 mu_Cmax(n,o,w) dual
99 mu_Dmin(n,o,w) dual

100 mu_Dmax(n,o,w) dual
101 mu_Emin(n,o,w) dual
102 mu_Emax(n,o,w) dual
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103 mu_F(n,m,o,w) dual
104 mu_Rmin(n,o,w) dual
105 mu_Rmax(n,o,w) dual
106 mu_Smin(n,o,w) dual
107 mu_Smax(n,o,w) dual
108 mu_theta_min(n,o,w) dual
109 mu_theta_max(n,o,w) dual
110 mu_theta_ref(o,w) dual

112 BINARY VARIABLES
113 u_C(n,h) conventional investment

decisions
114 u_mu_Smin(n,o,w) auxiliary
115 u_mu_Smax(n,o,w) auxiliary
116 u_mu_Cmin(n,o,w) auxiliary
117 u_mu_Cmax(n,o,w) auxiliary
118 u_mu_Rmin(n,o,w) auxiliary
119 u_mu_Rmax(n,o,w) auxiliary
120 u_mu_Emin(n,o,w) auxiliary
121 u_mu_Emax(n,o,w) auxiliary
122 u_mu_Dmin(n,o,w) auxiliary
123 u_mu_Dmax(n,o,w) auxiliary
124 u_mu_F(n,m,o,w) auxiliary
125 u_mu_theta_min(n,o,w) auxiliary
126 u_mu_theta_max(n,o,w) auxiliary;

128 x_S.up(n)=X_Smax(n);
129 p_E.up(n,o,w)=P_Emax(n);
130 p_R.up(n,o,w)=P_Rmax(n,w);
131 p_D.up(n,o,w)=P_Dmax(n)*Q_D(n,o);
132 theta.lo(n,o,w)=-PI;
133 theta.up(n,o,w)=PI;
134 theta.fx(s,o,w)=0;

136 EQUATIONS
137 OF , EQ1 , EQ2 , EQ3 , EQ4 , EQ5 , EQ6 , EQ7 , EQ8 , EQ9 ,

EQ10 , EQ11 , EQ12 , EQ13 , EQ14 , EQ15 , EQ16 , EQ17 ,
EQ18 , EQ19 , EQ20 ,

138 EQ21 , EQ22 , EQ23 , EQ24 , EQ25 , EQ26 , EQ27 , EQ28 ,
EQ29 , EQ30 , EQ31 , EQ32 , EQ33 , EQ34 , EQ35 , EQ36 ,
EQ37 , EQ38 , EQ39 , EQ40;

140 OF.. minus_profit=E=SUM(n,K_C(n)*x_C(n)+K_S(n)*x_S(n
)-SUM(w,phi(w)*(SUM(o,rho(o)*[ linear_term(n,o,w
)-p_C(n,o,w)*C_C(n)-p_E(n,o,w)*C_E(n)]))));

142 EQ1(n,o,w).. linear_term(n,o,w)=E=-[C_R(n,o)*p_R(n,o
,w)]+[U_D(n,o)*p_D(n,o,w)]-[mu_Rmax(n,o,w)*
P_Rmax(n,w)]-[mu_Dmax(n,o,w)*P_Dmax(n)*Q_D(n,o)
]-SUM(m$Omega(n,m),Fmax(n,m)*mu_F(n,m,o,w))-PI
*[ mu_theta_max(n,o,w)+mu_theta_min(n,o,w)];

144 EQ2(n)..x_C(n)=E=SUM(h,u_C(n,h)*X_Option(n,h));
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146 EQ3(n)..SUM(h,u_C(n,h))=E=1;

148 EQ4..SUM(n,x_C(n)*K_C(n)+x_S(n)*K_S(n))=L=Kmax;

150 EQ5(n,o,w)..p_D(n,o,w)+SUM(m$Omega(n,m),B(n,m)*[
theta(n,o,w)-theta(m,o,w)])-p_C(n,o,w)-p_S(n,o,
w)-p_E(n,o,w)-p_R(n,o,w)=E=0;

152 EQ6(n,o,w)..p_C(n,o,w)=L=x_C(n);

154 EQ7(n,o,w)..p_S(n,o,w)=L=Q_S(n,o)*x_S(n);

156 EQ8(n,m,o,w)$Omega(n,m)..B(n,m)*[ theta(n,o,w)-theta
(m,o,w)]=L=Fmax(n,m);

158 EQ9(n,o,w).. alpha_C(n,o,w)-lambda(n,o,w)+mu_Cmax(n,
o,w)-mu_Cmin(n,o,w)=E=0;

160 EQ10(n,o,w).. alpha_E(n,o,w)-lambda(n,o,w)+mu_Emax(n
,o,w)-mu_Emin(n,o,w)=E=0;

162 EQ11(n,o,w)..C_R(n,o)-lambda(n,o,w)+mu_Rmax(n,o,w)-
mu_Rmin(n,o,w)=E=0;

164 EQ12(n,o,w)..-lambda(n,o,w)+mu_Smax(n,o,w)-mu_Smin(
n,o,w)=E=0;

166 EQ13(n,o,w)..-U_D(n,o)+lambda(n,o,w)+mu_Dmax(n,o,w)
-mu_Dmin(n,o,w)=E=0;

168 EQ14(n,o,w)..SUM(m$Omega(n,m),B(n,m)*[ lambda(n,o,w)
-lambda(m,o,w)])+SUM(m$Omega(n,m),B(n,m)*[mu_F(
n,m,o,w)-mu_F(m,n,o,w)])-mu_theta_min(n,o,w)+
mu_theta_max(n,o,w)+[ mu_theta_ref(o,w)$s(n)]=E
=0;

170 EQ15(n,o,w)..p_C(n,o,w)=L=u_mu_Cmin(n,o,w)*BigM1;
171 EQ16(n,o,w).. mu_Cmin(n,o,w)=L=[1- u_mu_Cmin(n,o,w)]*

BigM2;

173 EQ17(n,o,w)..x_C(n)-p_C(n,o,w)=L=u_mu_Cmax(n,o,w)*
BigM1;

174 EQ18(n,o,w).. mu_Cmax(n,o,w)=L=[1- u_mu_Cmax(n,o,w)]*
BigM2;

176 EQ19(n,o,w)..p_S(n,o,w)=L=u_mu_Smin(n,o,w)*BigM1;
177 EQ20(n,o,w).. mu_Smin(n,o,w)=L=[1- u_mu_Smin(n,o,w)]*

BigM2;

179 EQ21(n,o,w)..(Q_S(n,o)*x_S(n))-p_S(n,o,w)=L=
u_mu_Smax(n,o,w)*BigM1;
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180 EQ22(n,o,w).. mu_Smax(n,o,w)=L=[1- u_mu_Smax(n,o,w)]*
BigM2;

181 EQ23(n,o,w)..p_E(n,o,w)=L=u_mu_Emin(n,o,w)*BigM1;
182 EQ24(n,o,w).. mu_Emin(n,o,w)=L=[1- u_mu_Emin(n,o,w)]*

BigM2;

184 EQ25(n,o,w).. P_Emax(n)-p_E(n,o,w)=L=u_mu_Emax(n,o,w
)*BigM1;

185 EQ26(n,o,w).. mu_Emax(n,o,w)=L=[1- u_mu_Emax(n,o,w)]*
BigM2;

187 EQ27(n,o,w)..p_R(n,o,w)=L=u_mu_Rmin(n,o,w)*BigM1;
188 EQ28(n,o,w).. mu_Rmin(n,o,w)=L=[1- u_mu_Rmin(n,o,w)]*

BigM2;

190 EQ29(n,o,w).. P_Rmax(n,w)-p_R(n,o,w)=L=u_mu_Rmax(n,o
,w)*BigM1;

191 EQ30(n,o,w).. mu_Rmax(n,o,w)=L=[1- u_mu_Rmax(n,o,w)]*
BigM2;

193 EQ31(n,o,w)..p_D(n,o,w)=L=u_mu_Dmin(n,o,w)*BigM1;
194 EQ32(n,o,w).. mu_Dmin(n,o,w)=L=[1- u_mu_Dmin(n,o,w)]*

BigM2;

196 EQ33(n,o,w)..(Q_D(n,o)*P_Dmax(n))-p_D(n,o,w)=L=
u_mu_Dmax(n,o,w)*BigM1;

197 EQ34(n,o,w).. mu_Dmax(n,o,w)=L=[1- u_mu_Dmax(n,o,w)]*
BigM2;

199 EQ35(n,m,o,w)$Omega(n,m)..Fmax(n,m) -[B(n,m)*( theta(
n,o,w)-theta(m,o,w))]=L=u_mu_F(n,m,o,w)*BigM1;

200 EQ36(n,m,o,w)$Omega(n,m)..mu_F(n,m,o,w)=L=[1- u_mu_F
(n,m,o,w)]* BigM2;

202 EQ37(n,o,w)..PI+theta(n,o,w)=L=[1- u_mu_theta_min(n,
o,w)]*BigM1;

203 EQ38(n,o,w).. mu_theta_min(n,o,w)=L=u_mu_theta_min(n
,o,w)*BigM2;

205 EQ39(n,o,w)..PI -theta(n,o,w)=L=[1- u_mu_theta_max(n,
o,w)]*BigM1;

206 EQ40(n,o,w).. mu_theta_max(n,o,w)=L=u_mu_theta_max(n
,o,w)*BigM2;

208 MODEL EXAMPLE4 /ALL/ ;
209 SOLVE EXAMPLE4 USING MIP MINIMIZING minus_profit;
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Chapter 6
Investment Equilibria

Investment equilibrium analysis constitutes a useful framework for regulators to
gain insights into the behavior of strategic producers and the evolution of generation
investment in an electricity market. Such a perspective enables regulators to design
better market rules, which in turnmay contribute to increasing the competitiveness of
themarket and to stimulating investment in generation capacity. This chapter provides
a methodology based on optimization and complementarity modeling for identifying
generation investment equilibria in a network-constrained electricity market.

6.1 Introduction

The objective of a producer competing in an electricity market is to maximize its
profit. To this purpose, such aproducermakes its owndecisions through its investment
strategies (long-term decisions) and operational strategies (short-term decisions).
However, the strategic decisions of each producer are related to those of other pro-
ducers (rivals) due to market interactions. In fact, decisions made by each producer
may influence the strategies of other producers. Within this framework, a number
of investment equilibria generally exist, whereby each producer cannot increase its
profit by changing its strategies unilaterally [7, 8, 10, 11, 23, 25]. The objective of
this chapter is to identify such investment equilibria mathematically.

Investment equilibrium analysis is particularly useful for a regulator to gain
insights into the investment behavior of producers and the evolution of the total
production capacity. As a result, the regulator may be able to design better market
rules, which in turn may enhance the competitiveness of the market and stimulate
investment in production capacity.

In contrast to Chap.5, in which a single strategic producer is considered, all
producers considered in this chapter are strategic, thereby creating an oligopoly.
This means that all producers can alter the market outcomes, i.e., market-clearing
prices and production quantities, through their strategies. One important observation
is that the feasibility region for the investment decision-making problem of each
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producer is interrelated with those of other producers. Thus, the production capacity
investment equilibria problem is a generalized Nash equilibrium (GNE) problem
[2, 4, 12].

Several treatments of operational and investment equilibria in the extant literature
address oligopolistic energy markets, e.g., [1, 3, 9–11, 13–15, 19, 21, 23, 24].

The remainder of this chapter is organized as follows. Section6.2 describes the
available approaches for solving an equilibrium problem. Section6.3 presents mod-
eling features and assumptions. Section6.4 provides a bilevel model for a single
producer to make its investment decisions, which renders to a mathematical program
with equilibrium constraint (MPEC). Section6.5 presents the investment decision-
making problem of multiple producers, which results in an equilibrium problemwith
equilibrium constraints (EPEC). Section6.6 summarizes the chapter and discusses
the main conclusions of the models and results reported in the chapter. Section6.7
proposes some exercises to enable a deeper understanding of themodels and concepts
described in the chapter. Finally, Sect. 6.8 includes the GAMS code for an illustrative
example.

6.2 Solution Approach

Similar to Chap.5, in which a bilevel model is considered to represent the invest-
ment and offering decisions of a strategic producer, we consider in this chapter such
a model for each strategic producer. Within the bilevel model of each strategic pro-
ducer, the upper-level problem determines its optimal investment and strategic offer
prices with the aim of maximizing its profit. In addition, a number of lower-level
problems represent the clearing of the market under different operating conditions.
As in Chap.5, each lower-level problem is replaced by its optimality conditions,
which yields an MPEC. This transformation is schematically illustrated in Fig. 6.1.

Bilevel model
of producer 1 of producer 2 of producerG

MPEC of
producer 1

MPEC of
producer 2

MPEC of
producer G

Bilevel model Bilevel model

Fig. 6.1 Transforming the bilevel models into MPECs in an oligopolistic market with several
strategic producers

http://dx.doi.org/10.1007/978-3-319-29501-5_5
http://dx.doi.org/10.1007/978-3-319-29501-5_5
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MPEC of
producer 1

MPEC of
producer 2

MPEC of
producerG

EPEC

Fig. 6.2 MPECs and EPEC

Note that since several strategic producers are considered in this chapter, several
MPECs are obtained, one per strategic producer. The joint consideration of all these
MPECs constitutes an EPEC, as depicted in Fig. 6.2. The general mathematical struc-
ture of an EPEC is explained in Appendix C. Note that the EPEC solution identifies
the market equilibria.

In general, two solution alternatives are available to solve an EPEC and thus to
identify the market equilibria:

1. Diagonalization (iterative) approach [18, 22].
2. Simultaneous (noniterative) approach [9–11, 19].

The first solution alternative, i.e., the diagonalization approach, is an iterative
technique, in which a single MPEC is solved in each iteration, while the strategic
decisions of other producers are fixed. For example, consider a duopoly with two
strategic producers 1 and 2, whose bilevel models are transformed into two MPECs
1 and 2, respectively. In the first iteration, MPEC 1 is solved, while the strategic
decisions of producer 2 are fixed to some initial guesses. Then, in the second iteration,
MPEC 2 is solved, while the strategic decisions of producer 1 are fixed to those
obtained in the first iteration. This iterative process is continued until no decision is
changed in the two subsequent iterations. The solution obtained is aNash equilibrium
since no producer desires to deviate from its decisions. Note that this approach is
generally inefficient since it is iterative and provides, if convergence is achieved, at
most a single equilibriumpoint. In addition, itmay require a large number of iterations
in the case of markets with many producers. Besides, it is not straightforward to find
appropriate initial guesses, and suboptimal guessesmay greatly affect the functioning
of this approach.

The second solution alternative, i.e., the simultaneous approach, is a noniterative
technique, inwhich all producers’MPECs are solved together. Therefore, it generally
yields a complex mathematical problem. In this approach, each MPEC is replaced
by its Karush–Kuhn–Tucker (KKT) conditions, which provide its strong stationary
conditions. A collection of all those conditions for all producers results in the strong
stationary conditions of the EPEC, whose solutions identify the market equilibria.
This latter approach is the focus of this chapter.
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6.3 Modeling Features and Assumptions

The technical features and assumptions of the investment equilibria model presented
in this chapter are stated below:

1. An electricity pool is considered in which the market operator clears the pool
once a day, one day ahead, and on an hourly basis.

2. A dc transmission network representation is considered.
3. Pursuing simplicity, a static investment model is used, i.e., a single target year is

considered. The target year represents the final stage of the planning horizon, and
the model uses annualized costs for this target year. Further details on investment
models are available in Chap.5. Note that a dynamic (multistage) model can also
be considered within the investment equilibria problem [23] but at the cost of
increased computational complexity.

4. A set of operating conditions is considered to represent the potential levels of
the consumers’ demands and the production of stochastic units during the target
year. Accordingly, we define a set of demand and power capacity factors. Further
details on operating conditions are available in Chap. 5.

5. For the sake of simplicity, uncertainties are not considered in this chapter. How-
ever, note that the investment equilibria problem is generally subject to several
uncertainties, e.g., demand growth, investment costs for different technologies,
and regulatory changes, which may be modeled through a set of plausible sce-
narios [3, 8, 21].

The notation used in this chapter is defined below:

Indices

g Index for producers.
n,m Indices for nodes.
o Index for operating conditions.

Sets

Ωn Set of nodes connected to node n.

Parameters

Bnm Susceptance of the transmission line connecting nodes n and m [S].
CC

gn Production cost of the candidate conventional unit of producer g located at
node n [$/MWh].

CE
gn Production cost of the existing conventional unit of producer g located at

node n [$/MWh].
Fmax
nm Transmission capacity of the line connecting nodes n and m [MW].

KC
gn Annualized investment cost of the candidate conventional unit of producer

g located at node n [$/MW].
K S

gn Annualized investment cost of the candidate stochastic unit of producer g
located at node n [$/MW].

http://dx.doi.org/10.1007/978-3-319-29501-5_5
http://dx.doi.org/10.1007/978-3-319-29501-5_5
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Kmax
g Available annualized investment budget of producer g [$].

PEmax

gn Capacity of the existing conventional unit of producer g located at node n
[MW].

PDmax

n Maximum load of the consumer located at node n [MW].
QS

no Power capacity factor of the candidate stochastic unit located at node n in
operating condition o [p.u.].

QD
no Demand factor of the consumer located at node n in operating condition o

[p.u.].
UD

no Bid price of the consumer located at node n in operating condition o
[$/MWh].

XCmax

n Maximum production capacity of the candidate conventional unit located at
node n [MW].

XSmax

n Maximum production capacity of the candidate stochastic unit located at
node n [MW].

ρo Number of hours (weight) corresponding to operating condition o [h].

Variables

pCgno Power produced by the candidate conventional unit of producer g located at
node n in operating condition o [MW].

pDno Power consumed by the consumer located at node n in operating condition o
[MW].

pEgno Power produced by the existing conventional unit of producer g located at
node n in operating condition o [MW].

pSgno Power produced by the candidate stochastic unit of producer g located at
node n in operating condition o [MW].

xCgn Capacity of the candidate conventional unit of producer g located at node n
[MW].

xSgn Capacity of the candidate stochastic unit of producer g located at node n
[MW].

αC
gno Offer price by the candidate conventional unit of producer g located at node

n in operating condition o [$/MWh].
αE
gno Offer price by the existing conventional unit of producer g located at node n

in operating condition o [$/MWh].
λno Market-clearing price at node n in operating condition o [$/MWh].
θno Voltage angle at node n in operating condition o [rad].

6.4 Single-Producer Problem

The bilevel model for each single strategic producer is similar to one presented
in Chap.5. We consider two types of generating units: candidate (conventional and
stochastic) and existing (conventional) units. These units belong to different strategic
producers (i.e., producers g = 1, . . . ,G) and offer at strategic prices, except the

http://dx.doi.org/10.1007/978-3-319-29501-5_5
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candidate stochastic units, which always offer at zero. It is also assumed that all
existing units (available at the initial year) are conventional, i.e., there is no stochastic
production unit within the initial production portfolio of the producers.

The formulation of the bilevel model for a particular strategic producer, e.g.,
producerG, is given by (6.1). Note that (6.1a)–(6.1f) refer to the upper-level problem
of producerG, whereas (6.1g) pertains to the lower-level problems, one per operating
condition o. Note that a similar bilevel problem can be considered for any other
producers, i.e., producers g = 1, . . . ,G − 1. The bilevel problem for producer G is
formulated below:

{

minΞUL
g ∪ ΞPrimal

o ∪ ΞDual
o

∑

n

{

KC
gn x

C
gn + K S

gn x
S
gn

−
∑

o

ρo

[

λno
(
pCgno + pSgno + pEgno

) − pCgno C
C
gn − pEgno C

E
gn

]}

(6.1a)

subject to

0 ≤ xCgn ≤ XCmax

n ∀n (6.1b)

0 ≤ xSgn ≤ XSmax

n ∀n (6.1c)
∑

n

(
KC

gn x
C
gn + K S

gn x
S
gn

) ≤ Kmax
g (6.1d)

αC
gno ≥ 0 ∀o,∀n (6.1e)

αE
gno ≥ 0 ∀o,∀n (6.1f)

Lower-level problems (6.1h)−(6.1p) ∀o (6.1g)
}

g = G.

The primal variables of the upper-level problem (6.1a)–(6.1f) are those in set
ΞUL

g = {αC
gno, α

E
gno, x

C
gn, x

S
gn} plus all primal and dual variables of the lower-level

problems (6.1g), which are defined after their formulation through sets ΞPrimal
o and

ΞDual
o .
The objective function (6.1a) refers to minus the expected annual profit of the

considered producer, i.e., annualized investment cost minus expected annual opera-
tional profit. Note that the market-clearing price λno is the dual variable of the power
balance constraint at node n and operating condition o obtained endogenously from
the corresponding lower-level problem. The objective function (6.1a) comprises the
following terms:

•
∑

n

KC
gn xCgn is the annualized investment cost of candidate conventional units of

producer g.
•

∑

n

K S
gn xSgn is the annualized investment cost of candidate stochastic units of

producer g.
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•
∑

n

∑

o

ρo pCgno λno is the annualized revenue of producer g obtained from selling

the production of candidate conventional units (production quantity multiplied by
market-clearing price).

•
∑

n

∑

o

ρo pEgno λno is the annualized revenue of producer g obtained from selling

the production of existing conventional units (production quantity multiplied by
market-clearing price).

•
∑

n

∑

o

ρo pSgno λno is the annualized revenue of producer g obtained from selling

the production of candidate stochastic units (production quantity multiplied by
market-clearing price).

•
∑

n

∑

o

ρo pCgno C
C
gn is the annualized production cost of candidate conventional

units of producer g (production quantity multiplied by marginal cost).
•

∑

n

∑

o

ρo pEgno CE
gn is the annualized production cost of existing conventional

units of producer g (production quantity multiplied by marginal cost).

The production cost of stochastic units is assumed to be zero. Note that themarket-
clearing prices (λno) and the production quantities (pCgno, p

E
gno, and pSgno) belong to

the feasible region defined by lower-level problems (6.1g).
For the sake of simplicity, the capacity options for investing in both conventional

and stochastic units are assumed continuous. The capacity bounds for such options
are enforced by (6.1b) and (6.1c). In addition, a cap on the available annualized
investment budget of producer g is enforced by (6.1d). Finally, the upper-level con-
straints (6.1e)–(6.1f) enforce the nonnegativity of the offer prices associated with the
candidate and existing conventional units, respectively, of producer G.

Each lower-level problem, one per operating condition o, is formulated below.
The dual variable of each lower-level constraint is indicated following a colon:

{

minΞPrimal
o

∑

n

[ ∑

g

(
αC
gno pCgno + αE

gno pEgno
) −UD

no pDno

]

(6.1h)

subject to

pDno +
∑

m∈Ωn

Bnm (θno − θmo) −
∑

g

pCgno −
∑

g

pSgno

−
∑

g

pEgno = 0 : λno ∀n (6.1i)

0 ≤ pCgno ≤ xCgn : μCmin

gno , μCmax

gno ∀g,∀n (6.1j)

0 ≤ pSgno ≤ QS
no x

S
gn : μSmin

gno , μ
Smax

gno ∀g,∀n (6.1k)

0 ≤ pEgno ≤ PEmax

gn : μEmin

gno , μEmax

gno ∀g,∀n (6.1l)

0 ≤ pDno ≤ QD
no PDmax

n : μDmin

no , μDmax

no ∀n (6.1m)
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Bnm (θno − θmo) ≤ Fmax
nm : μF

nmo ∀n,∀m ∈ Ωn (6.1n)

− π ≤ θno ≤ π : μθmin

no , μθmax

no ∀n (6.1o)

θno = 0 : μθ ref

o n = ref. (6.1p)
}

∀o.

The primal optimization variables of each lower-level problem (6.1h)–(6.1p) are
included in set ΞPrimal

o = {pCgno, pSgno, pEgno, pDno, θno}. Additionally, the dual opti-
mization variables of each lower-level problem (6.1h)–(6.1p) are those included in set
ΞDual

o = {λno, μ
Cmin

gno , μCmax

gno , μSmin

gno , μ
Smax

gno , μEmin

gno , μEmax

gno , μDmin

no , μDmax

no , μF
nmo, μ

θmin

no ,μθmax

no ,

μθ ref

o }.
Lower-level problems (6.1h)–(6.1p) represent the clearing of the market for each

operating condition and for given investment and offering decisions made in the
upper-level problems by different producers. Accordingly, xCgn , x

S
gn , αC

gno, and αE
gno

are variables in the upper-level problem (6.1a)–(6.1f), but they are fixed values (para-
meters) in the lower-level problems (6.1h)–(6.1p). This makes the lower-level prob-
lems (6.1h)–(6.1p) linear and convex since there is no term containing the product
of variables within the lower-level problems. The objective function (6.1h) mini-
mizes minus the social welfare considering the offer prices of all strategic producers
g = 1, . . . ,G, and bid prices of all demands. The power balance at every node is
enforced by (6.1i), and its dual variable provides the market-clearing price at that
node under operating condition o. Equations (6.1j), (6.1k), and (6.1l) impose pro-
duction capacity limits for candidate conventional, candidate stochastic, and exist-
ing units, respectively. In addition, Eqs. (6.1m) bounds the power consumption of
each demand. Equations (6.1n) enforce the transmission capacity limits of each line.
Finally, Eqs. (6.1o) enforce voltage angle bounds for each node, and constraints (6.1p)
fix the voltage angle to zero at the reference node.

Note that the market-clearing problems, i.e., the lower-level problems (6.1h)–
(6.1p), are common to all producers g = 1, . . . ,G. Thus, the investment equilibria
model presented in this chapter is in fact a GNE problem with shared constraints.

Illustrative Example 6.1 A two-node electricity market with two strategic produc-
ers (duopoly)

A power systemwith two nodes (n1 and n2) is considered as illustrated in Fig. 6.3.
The capacity of transmission line n1 − n2 is 400MW, and its susceptance is 1000S.
Node n1 is the reference node. Two strategic producers (g1 and g2) compete together,
creating a duopoly. Producer g1 owns an existing unit located at node n1 with capacity
of 150MW and production cost of $10/MWh. On the other hand, producer g2 owns
an existing unit located at node n2 with capacity of 100MW and production cost of
$15/MWh.

Both producers g1 and g2 desire to build new production units. The available
annualized investment budget for each producer is $20 million. In addition, the
investment options for each producer are identical and stated below:
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1nNode Node n2

Existing unit of
producer g1

Consumer Existing unit of
producer g2

Line n1 n2

Fig. 6.3 Illustrative Example 6.1: two-node network

• A conventional unit to be built at node n1. Themaximum capacity of this candidate
unit is 200MW, and its annualized investment cost is $55,000/MW.The production
cost of this candidate conventional unit is $12/MWh.

• A stochastic (wind-power) unit to be built at node n2. The maximum capacity
of this candidate stochastic unit is 200MW, and its annualized investment cost is
$66,000/MW.

As depicted in Fig. 6.3, a single consumer is considered at node n1, whose maxi-
mum load is equal to 400MW.

In addition, two operating conditions (o1 and o2) are considered, whose charac-
teristics are stated below:

• o1: Demand factor equals 1.00 p.u. and wind power capacity factor equals 0.35
p.u.

• o2: Demand factor equals 0.80 p.u. and wind power capacity factor equals 0.70
p.u.

The weight of condition o1 is 3530h and that of condition o2 is 5230 h. The consumer
bids in conditions o1 and o2 at $35/MWh and $32/MWh, respectively.

According to the data above, two bilevel problems, one per producer, are formu-
lated. The bilevel problem for producer g1 is given by (6.2) including upper-level
problem (6.2a)–(6.2e) and lower-level problems (6.2f):

minΞ
UL,Ex
g1 ∪ Ξ

P,Ex
o1 ∪ Ξ

D,Ex
o1 ∪ Ξ

P,Ex
o2 ∪ Ξ

D,Ex
o2

55000 xCg1n1 + 66000 xSg1n2

− 3530

[

λn1o1

(
pCg1n1o1 + pEg1n1o1

) + λn2o1 pSg1n2o1

− 12 pCg1n1o1 − 10 pEg1n1o1

]

− 5230

[

λn1o2

(
pCg1n1o2 + pEg1n1o2

) + λn2o2 pSg1n2o2

− 12 pCg1n1o2 − 10 pEg1n1o2

]

(6.2a)

subject to
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0 ≤ xCg1n1 ≤ 200 (6.2b)

0 ≤ xSg1n2 ≤ 200 (6.2c)

55000 xCg1n1 + 66000 xSg1n2 ≤ 2 × 107 (6.2d)

αC
g1n1o1 , αE

g1n1o1 , αC
g1n1o2 , αE

g1n1o2 ≥ 0 (6.2e)

Lower-level problems (6.4)−(6.5). (6.2f)

Similarly, the bilevel problem for producer g2 is given by (6.3) including upper-
level problem (6.3a)–(6.3e) and lower-level problems (6.3f):

minΞ
UL,Ex
g2 ∪ Ξ

P,Ex
o1 ∪ Ξ

D,Ex
o1 ∪ Ξ

P,Ex
o2 ∪ Ξ

D,Ex
o2

55000 xCg2n1 + 66000 xSg2n2

− 3530

[

λn1o1 pCg2n1o1 + λn2o1

(
pSg2n2o1 + pEg2n2o1

)

− 12 pCg2n1o1 − 15 pEg2n2o1

]

− 5230

[

λn1o2 pCg2n1o2 + λn2o2

(
pSg2n2o2 + pEg2n2o2

)

− 12 pCg2n1o2 − 15 pEg2n2o2

]

(6.3a)

subject to

0 ≤ xCg2n1 ≤ 200 (6.3b)

0 ≤ xSg2n2 ≤ 200 (6.3c)

55000 xCg2n1 + 66000 xSg2n2 ≤ 2 × 107 (6.3d)

αC
g2n1o1 , αE

g2n2o1 , αC
g2n1o2 , αE

g2n2o2 ≥ 0 (6.3e)

Lower-level problems (6.4)−(6.5). (6.3f)

Within bilevel problems (6.2) and (6.3) associated with producers g1 and g2,
lower-level problems (one per operating condition) are common. The lower-level
problem referring to the operating condition o1 is given by (6.4) below:

minΞ
P,Ex
o1

αC
g1n1o1 pCg1n1o1 + αE

g1n1o1 pEg1n1o1

+ αC
g2n1o1 pCg2n1o1 + αE

g2n2o1 pEg2n2o1 − 35 pDn1o1 (6.4a)

subject to

pDn1o1 + 1000
(
θn1o1 − θn2o1

) − pEg1n1o1 − pCg1n1o1
− pCg2n1o1 = 0 : λn1o1 (6.4b)

1000
(
θn2o1 − θn1o1

) − pEg2n2o1 − pSg1n2o1 − pSg2n2o1 = 0 : λn2o1 (6.4c)

0 ≤ pCg1n1o1 ≤ xCg1n1 : μCmin

g1n1o1 , μ
Cmax

g1n1o1 (6.4d)
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0 ≤ pCg2n1o1 ≤ xCg2n1 : μCmin

g2n1o1 , μ
Cmax

g2n1o1 (6.4e)

0 ≤ pSg1n2o1 ≤ 0.35 xSg1n2 : μSmin

g1n2o1 , μ
Smax

g1n2o1 (6.4f)

0 ≤ pSg2n2o1 ≤ 0.35 xSg2n2 : μSmin

g2n2o1 , μ
Smax

g2n2o1 (6.4g)

0 ≤ pEg1n1o1 ≤ 150 : μEmin

g1n1o1 , μ
Emax

g1n1o1 (6.4h)

0 ≤ pEg2n2o1 ≤ 100 : μEmin

g2n2o1 , μ
Emax

g2n2o1 (6.4i)

0 ≤ pDn1o1 ≤ 1 × 400 : μDmin

n1o1 , μ
Dmax

n1o1 (6.4j)

1000
(
θn1o1 − θn2o1

) ≤ 400 : μF
n1n2o1 (6.4k)

1000
(
θn2o1 − θn1o1

) ≤ 400 : μF
n2n1o1 (6.4l)

− π ≤ θn1o1 ≤ π : μθmin

n1o1 , μ
θmax

n1o1 (6.4m)

− π ≤ θn2o1 ≤ π : μθmin

n2o1 , μ
θmax

n2o1 (6.4n)

θn1o1 = 0 : μθ ref

o1 . (6.4o)

In addition, the lower-level problem referring to the operating condition o2 (com-
mon to both producers) is given by (6.5) below:

minΞ
P,Ex
o2

αC
g1n1o2 pCg1n1o2 + αE

g1n1o2 pEg1n1o2

+ αC
g2n1o2 pCg2n1o2 + αE

g2n2o2 pEg2n2o2 − 32 pDn1o2 (6.5a)

subject to

pDn1o2 + 1000
(
θn1o2 − θn2o2

) − pEg1n1o2 − pCg1n1o2
− pCg2n1o2 = 0 : λn1o2 (6.5b)

1000
(
θn2o2 − θn1o2

) − pEg2n2o2 − pSg1n2o2 − pSg2n2o2 = 0 : λn2o2 (6.5c)

0 ≤ pCg1n1o2 ≤ xCg1n1 : μCmin

g1n1o2 , μ
Cmax

g1n1o2 (6.5d)

0 ≤ pCg2n1o2 ≤ xCg2n1 : μCmin

g2n1o2 , μ
Cmax

g2n1o2 (6.5e)

0 ≤ pSg1n2o2 ≤ 0.70 xSg1n2 : μSmin

g1n2o2 , μ
Smax

g1n2o2 (6.5f)

0 ≤ pSg2n2o2 ≤ 0.70 xSg2n2 : μSmin

g2n2o2 , μ
Smax

g2n2o2 (6.5g)

0 ≤ pEg1n1o2 ≤ 150 : μEmin

g1n1o2 , μ
Emax

g1n1o2 (6.5h)

0 ≤ pEg2n2o2 ≤ 100 : μEmin

g2n2o2 , μ
Emax

g2n2o2 (6.5i)

0 ≤ pDn1o2 ≤ 0.8 × 400 : μDmin

n1o2 , μ
Dmax

n1o2 (6.5j)

1000
(
θn1o2 − θn2o2

) ≤ 400 : μF
n1n2o2 (6.5k)

1000
(
θn2o2 − θn1o2

) ≤ 400 : μF
n2n1o2 (6.5l)

− π ≤ θn1o2 ≤ π : μθmin

n1o2 , μ
θmax

n1o2 (6.5m)
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− π ≤ θn2o2 ≤ π : μθmin

n2o2 , μ
θmax

n2o2 (6.5n)

θn1o2 = 0 : μθ ref.

o2 . (6.5o)

The primal optimization variables of lower-level problem (6.4) associated with
operating condition o1 are included in set ΞP,Ex

o1 = {pCg1n1o1 , pEg1n1o1 , pSg1n2o1 , pCg2n1o1 ,
pEg2n2o1 , p

S
g2n2o1 , p

D
n1o1 , θn1o1 , θn2o1}. Additionally, its dual variables are those included

in set ΞD,Ex
o1 = {λn1o1 , λn2o1 , μ

Cmin

g1n1o1 , μ
Cmax

g1n1o1 , μ
Cmin

g2n1o1 , μ
Cmax

g2n1o1 , μ
Smin

g1n2o1 , μ
Smax

g1n2o1 ,

μSmin

g2n2o1 , μ
Smax

g2n2o1 , μ
Emin

g1n1o1 , μ
Emax

g1n1o1 , μ
Emin

g2n2o1 , μ
Emax

g2n2o1 , μ
Dmin

n1o1 , μ
Dmax

n1o1 , μ
F
n1n2o1 , μ

F
n2n1o1 ,μ

θmin

n1o1,

μθmax

n1o1 , μ
θmin

n2o1 , μ
θmax

n2o1 , μ
θ ref

o1 }. In addition, the primal optimization variables of lower-
level problem (6.5) associatedwith operating condition o2 are included in setΞP,Ex

o2 =
{pCg1n1o2 , pEg1n1o2 , pSg1n2o2 , pCg2n1o2 , pEg2n2o2 , pSg2n2o2 , pDn1o2 , θn1o2 , θn2o2}. Likewise, its

dual variables are those included in setΞD,Ex
o2 ={λn1o2 , λn2o2 , μ

Cmin

g1n1o2 , μ
Cmax

g1n1o2 , μ
Cmin

g2n1o2 ,

μCmax

g2n1o2 , μ
Smin

g1n2o2 , μ
Smax

g1n2o2 , μ
Smin

g2n2o2 , μ
Smax

g2n2o2 , μ
Emin

g1n1o2 , μ
Emax

g1n1o2 , μ
Emin

g2n2o2 , μ
Emax

g2n2o2 , μ
Dmin

n1o2 ,

μDmax

n1o2 , μ
F
n1n2o2 , μ

F
n2n1o2 , μ

θmin

n1o2 , μ
θmax

n1o2 , μ
θmin

n2o2 , μ
θmax

n2o2 , μ
θ ref

o2 }. Theprimal optimizationvari-
ables of upper-level problem (6.2a)–(6.2e) pertaining to producer g1 are included in
setΞUL,Ex

g1 = {xCg1n1 , xSg1n2 , αC
g1n1o1 , α

E
g1n1o1 , α

C
g1n1o2 , α

E
g1n1o2} plusΞP,Ex

o1 ,ΞD,Ex
o1 ,ΞP,Ex

o2 ,
and ΞD,Ex

o2 . Finally, the primal optimization variables of upper-level problem (6.3a)–
(6.3e) pertaining to producer g2 are included in set ΞUL,Ex

g2 = {xCg2n1 , xSg2n2 , αC
g2n1o1 ,

αE
g2n2o1 , α

C
g2n1o2 , α

E
g2n2o2} plus ΞP,Ex

o1 , ΞD,Ex
o1 , ΞP,Ex

o2 , and ΞD,Ex
o2 . �

6.4.1 MPEC

As stated in the previous section, each strategic producer solves its own bilevel model
to derive the most beneficial investment and offering decisions. To this end, each
lower-level problem within the bilevel model of each producer needs to be replaced
by its equivalent optimality conditions. In general, two alternative approaches are
available to derive those conditions for a continuous and linear problem: (i) the KKT
conditions and (ii) the primal–dual transformation [7].

In contrast to Chap.5, in which the first approach, i.e., KKT conditions, is used,
we use in this chapter the second approach, i.e., primal–dual transformation, which
includes the strong duality equality instead of all complementarity conditions. How-
ever, the primal–dual transformation introduces some nonlinearities due to bilinear
terms within the strong duality equality.

Pursuing further clarity, we derive the MPECs corresponding to the strategic
producers g1 and g2 in Illustrative Example 6.1 presented in the previous section.
Recall that lower-level problems (market-clearing problems for different operating
conditions) are common within the bilevel models of both producers. Thus, we
derive the optimality conditions corresponding to the lower-level problems (6.4) and
(6.5) using the primal–dual transformation. Figure6.4 schematically illustrates this
transformation.

http://dx.doi.org/10.1007/978-3-319-29501-5_5
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Minimize (6.2a)

1) ULC(6.2b)-(6.2e)

2.1)PC(6.6)
2.2)DC(6.7)
2.3)SDE(6.8)

MPEC corresponding to producer g1

P
rim

al
- d

ua
lt

ra
ns

fo
rm

at
io

n

Minimize (6.2a)
subject to:

1) ULC(6.2b)-(6.2e)

g1

2) LLP(6.4)

3) LLP(6.5)

3.1)PC (6.9)
3.2)DC(6.10)
3.3)SDE(6.11)

Minimize (6.3a)

1) ULC (6.3b)-(6.3e)

2.1)PC (6.6)
2.2)DC (6.7)
2.3)SDE (6.8)

MPEC corresponding to producer g2

P
rim

al-dual transform
ation

Minimize (6.3a)

1) ULC (6.3b)-(6.3e)

g2

2) LLP (6.4)

3) LLP (6.5)

ULC: Upper-level constraints
LLP: Lower-level problem 
PC: Primal constraints
DC: Dual constraints
SDE: Strong duality equality

3.1)PC (6.9)
3.2)DC (6.10)
3.3)SDE (6.11)

Bilevel model of producer Bilevel model of producer

subject to:

subject to:subject to:

Fig. 6.4 Illustrative Example 6.1: transformation of the bilevel models of strategic producers g1
and g2 into their corresponding MPECs (primal–dual transformation)

First, we derive the optimality conditions corresponding to the lower-level prob-
lem (6.4), which include the primal constraints (6.6), the dual constraints (6.7), and
the strong duality equality (6.8). The primal constraints of lower-level problem (6.4)
are given by (6.6) below:

pDn1o1 + 1000
(
θn1o1 − θn2o1

) − pEg1n1o1 − pCg1n1o1 − pCg2n1o1 = 0 (6.6a)

1000
(
θn2o1 − θn1o1

) − pEg2n2o1 − pSg1n2o1 − pSg2n2o1 = 0 (6.6b)

0 ≤ pCg1n1o1 ≤ xCg1n1 (6.6c)

0 ≤ pCg2n1o1 ≤ xCg2n1 (6.6d)

0 ≤ pSg1n2o1 ≤ 0.35 xSg1n2 (6.6e)

0 ≤ pSg2n2o1 ≤ 0.35 xSg2n2 (6.6f)

0 ≤ pEg1n1o1 ≤ 150 (6.6g)
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0 ≤ pEg2n2o1 ≤ 100 (6.6h)

0 ≤ pDn1o1 ≤ 1 × 400 (6.6i)

1000
(
θn1o1 − θn2o1

) ≤ 400 (6.6j)

1000
(
θn2o1 − θn1o1

) ≤ 400 (6.6k)

− π ≤ θn1o1 ≤ π (6.6l)

− π ≤ θn2o1 ≤ π (6.6m)

θn1o1 = 0. (6.6n)

The dual constraints of lower-level problem (6.4) are given by (6.7) below:

αC
g1n1o1 − λn1o1 + μCmax

g1n1o1 − μCmin

g1n1o1 = 0 (6.7a)

αE
g1n1o1 − λn1o1 + μEmax

g1n1o1 − μEmin

g1n1o1 = 0 (6.7b)

αC
g2n1o1 − λn1o1 + μCmax

g2n1o1 − μCmin

g2n1o1 = 0 (6.7c)

αE
g2n2o1 − λn2o1 + μEmax

g2n2o1 − μEmin

g2n2o1 = 0 (6.7d)

− λn2o1 + μSmax

g1n2o1 − μSmin

g1n2o1 = 0 (6.7e)

− λn2o1 + μSmax

g2n2o1 − μSmin

g2n2o1 = 0 (6.7f)

− 35 + λn1o1 + μDmax

n1o1 − μDmin

n1o1 = 0 (6.7g)

1000
(
λn1o1 − λn2o1 + μF

n1n2o1 − μF
n2n1o1

) + μθmax

n1o1 − μθmin

n1o1 + μθ ref

o1 = 0 (6.7h)

1000
(
λn2o1 − λn1o1 + μF

n2n1o1 − μF
n1n2o1

) + μθmax

n2o1 − μθmin

n2o1 = 0 (6.7i)

μCmin

g1n1o1 , μCmax

g1n1o1 ≥ 0 (6.7j)

μCmin

g2n1o1 , μCmax

g2n1o1 ≥ 0 (6.7k)

μEmin

g1n1o1 , μEmax

g1n1o1 ≥ 0 (6.7l)

μEmin

g2n2o1 , μEmax

g2n2o1 ≥ 0 (6.7m)

μSmin

g1n2o1 , μSmax

g1n2o1 ≥ 0 (6.7n)

μSmin

g2n2o1 , μSmax

g2n2o1 ≥ 0 (6.7o)

μDmin

n1o1 ≥ 0, μDmax

n1o1 ≥ 0 (6.7p)

μF
n1n2o1 , μF

n2n1o1 ≥ 0 (6.7q)

μθmin

n1o1 , μθmax

n1o1 ≥ 0 (6.7r)

μθmin

n2o1 , μθmax

n2o1 ≥ 0. (6.7s)

Finally, the strong duality equality corresponding to lower-level problem (6.4) is
(6.8), which enforces the equality of its primal and dual objective function values at
the optimal solution:
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αC
g1n1o1 pCg1n1o1 + αE

g1n1o1 pEg1n1o1 + αC
g2n1o1 pCg2n1o1 + αE

g2n2o1 pEg2n2o1
− 35 pDn1o1 = −xCg1n1 μCmax

g1n1o1 − xCg2n1 μCmax

g2n1o1 − 0.35 xSg1n2 μSmax

g1n2o1

− 0.35 xSg2n2 μSmax

g2n2o1 − 150 μEmax

g1n1o1 − 100 μEmax

g2n2o1 − 400 μDmax

n1o1

− 400
(
μF
n1n2o1 + μF

n2n1o1

) − π
(
μθmin

n1o1 + μθmax

n1o1 + μθmin

n2o1 + μθmax

n2o1

)
. (6.8)

Next, we derive the optimality conditions corresponding to lower-level problem
(6.5), which consist of primal constraints (6.9), dual constraints (6.10), and strong
duality equality (6.11). The primal constraints of lower-level problem (6.5) are given
by (6.9) below:

pDn1o2 + 1000
(
θn1o2 − θn2o2

) − pEg1n1o2 − pCg1n1o2 − pCg2n1o2 = 0 (6.9a)

1000
(
θn2o2 − θn1o2

) − pEg2n2o2 − pSg1n2o2 − pSg2n2o2 = 0 (6.9b)

0 ≤ pCg1n1o2 ≤ xCg1n1 (6.9c)

0 ≤ pCg2n1o2 ≤ xCg2n1 (6.9d)

0 ≤ pSg1n2o2 ≤ 0.70 xSg1n2 (6.9e)

0 ≤ pSg2n2o2 ≤ 0.70 xSg2n2 (6.9f)

0 ≤ pEg1n1o2 ≤ 150 (6.9g)

0 ≤ pEg2n2o2 ≤ 100 (6.9h)

0 ≤ pDn1o2 ≤ 0.8 × 400 (6.9i)

1000
(
θn1o2 − θn2o2

) ≤ 400 (6.9j)

1000
(
θn2o2 − θn1o2

) ≤ 400 (6.9k)

− π ≤ θn1o2 ≤ π (6.9l)

− π ≤ θn2o2 ≤ π (6.9m)

θn1o2 = 0. (6.9n)

The dual constraints of lower-level problem (6.5) are given by (6.10) below:

αC
g1n1o2 − λn1o2 + μCmax

g1n1o2 − μCmin

g1n1o2 = 0 (6.10a)

αE
g1n1o2 − λn1o2 + μEmax

g1n1o2 − μEmin

g1n1o2 = 0 (6.10b)

αC
g2n1o2 − λn1o2 + μCmax

g2n1o2 − μCmin

g2n1o2 = 0 (6.10c)

αE
g2n2o2 − λn2o2 + μEmax

g2n2o2 − μEmin

g2n2o2 = 0 (6.10d)

− λn2o2 + μSmax

g1n2o2 − μSmin

g1n2o2 = 0 (6.10e)

− λn2o2 + μSmax

g2n2o2 − μSmin

g2n2o2 = 0 (6.10f)

− 32 + λn1o2 + μDmax

n1o2 − μDmin

n1o2 = 0 (6.10g)

1000
(
λn1o2 − λn2o2 + μF

n1n2o2 − μF
n2n1o2

) + μθmax

n1o2 − μθmin

n1o2 + μθ ref

o2 = 0 (6.10h)
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1000
(
λn2o2 − λn1o2 + μF

n2n1o2 − μF
n1n2o2

) + μθmax

n2o2 − μθmin

n2o2 = 0 (6.10i)

μCmin

g1n1o2 , μCmax

g1n1o2 ≥ 0 (6.10j)

μCmin

g2n1o2 , μCmax

g2n1o2 ≥ 0 (6.10k)

μEmin

g1n1o2 , μEmax

g1n1o2 ≥ 0 (6.10l)

μEmin

g2n2o2 , μEmax

g2n2o2 ≥ 0 (6.10m)

μSmin

g1n2o2 , μSmax

g1n2o2 ≥ 0 (6.10n)

μSmin

g2n2o2 , μSmax

g2n2o2 ≥ 0 (6.10o)

μDmin

n1o2 , μDmax

n1o2 ≥ 0 (6.10p)

μF
n1n2o2 , μF

n2n1o2 ≥ 0 (6.10q)

μθmin

n1o2 , μθmax

n1o2 ≥ 0 (6.10r)

μθmin

n2o2 , μθmax

n2o2 ≥ 0. (6.10s)

Finally, the strong duality equality corresponding to lower-level problem (6.5) is
(6.11) below:

αC
g1n1o2 pCg1n1o2 + αE

g1n1o2 pEg1n1o2 + αC
g2n1o2 pCg2n1o2 + αE

g2n2o2 pEg2n2o2
− 32 pDn1o2 = −xCg1n1 μCmax

g1n1o2 − xCg2n1 μCmax

g2n1o2 − 0.70 xSg1n2 μSmax

g1n2o2

− 0.70 xSg2n2 μSmax

g2n2o2 − 150 μEmax

g1n1o2 − 100 μEmax

g2n2o2 − 320 μDmax

n1o2

− 400
(
μF
n1n2o2 + μF

n2n1o2

) − π
(
μθmin

n1o2 + μθmax

n1o2 + μθmin

n2o2 + μθmax

n2o2

)
. (6.11)

Accordingly, the MPEC corresponding to the strategic producer g1 includes the
upper-level problem (6.2a)–(6.2e) and the optimality conditions (6.6)–(6.11). Here-
inafter, this MPEC will be called MPEC 1. Similarly, the MPEC corresponding to
the strategic producer g2 comprises the upper-level problem (6.3a)–(6.3e) and the
optimality conditions (6.6)–(6.11). Hereinafter, this MPEC will be called MPEC 2.

One important observation is that bothMPECs 1 and 2 are continuous, but nonlin-
ear. The reason for nonlinearities is the existence of bilinear terms within objective
functions (6.2a) and (6.3a) and strong duality equalities (6.8) and (6.11).

Note that the dual variables associated with the constraints of MPECs 1 and 2 are
needed in the next section. Pursuing notational clarity, we use the equation numbers
to indicate the dual variables of the MPECs. The following notional examples are
provided:

1. InMPEC 1 corresponding to producer g1, the dual variable associated with strong
duality equality (6.8) is η(6.8)

g1 . However, the dual variable of that equality within
MPEC 2 corresponding to producer g2 is η(6.8)

g2 .
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2. InMPEC 1 corresponding to producer g1, the dual variables associatedwith lower
and upper bounds in inequality (6.9c) are η(6.9c)

g1
and η(6.9c)

g1 , respectively.
3. In MPEC 2 corresponding to producer g2, the dual variables associated with

nonnegativity conditions (6.10j) are η(6.10j)
g2

and η(6.10j)
g2 , respectively.

6.5 Multiple-Producer Problem: EPEC

The joint consideration of all MPECs, one per producer, constitutes an EPEC.
Figure6.5 illustrates the EPEC corresponding to Illustrative Example 6.1 presented
in Sect. 6.4. Accordingly, this EPEC includes both MPECs 1 and 2 corresponding to
the strategic producers g1 and g2, respectively. Note that the EPEC solution identifies
the market equilibria.

6.5.1 EPEC Solution

To obtain the EPEC solution, we first need to derive the KKT conditions associated
with each MPEC. However, it is important to recall that MPECs are continuous,
nonlinear, and thus nonconvex. Therefore, the KKT conditions associated with each
MPEC provide its strong stationarity conditions. A collection of all those conditions
corresponding to all MPECs constitutes the strong stationarity conditions associated
with the EPEC, whose solution identifies the equilibria. For Illustrative Example 6.1
of Sect. 6.4, this transformation is depicted in Fig. 6.6.

It is important to note that the solutions obtained from this procedure can be Nash
equilibria, local equilibria, and saddle points. To detect the Nash equilibria among

Fig. 6.5 Illustrative
Example 6.1: EPEC

Minimize (6.2a)
subject to:

1) The upper-level constraints (6.2b)-(6.2e)
2) The optimality conditions (6.6)-(6.11)

MPEC corresponding to producer g1 :

MPEC 1

Minimize (6.3a)
subject to:

1) The upper-level constraints (6.3b)-(6.3e)
2) The optimality conditions (6.6)-(6.11)

MPEC corresponding to producer g2 :

MPEC 2
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MPEC 1 

MPEC 2 

EPEC

KKTs of MPEC 1

Strong stationarity conditions 
of the EPEC

KKTs of MPEC 2

Fig. 6.6 Illustrative Example 6.1: strong stationarity conditions of the EPEC

the solutions obtained, an ex-post algorithm is provided in Sect. 6.5.3. The next two
sections present the KKT conditions of both MPECs.

6.5.1.1 KKT Conditions of MPEC 1

TheKKT conditions ofMPEC1 corresponding to producer g1 include the constraints
below:

1. Primal equality constraints of MPEC 1 including (6.6a)–(6.6b), (6.6n), (6.7a)–
(6.7i), (6.8), (6.9a)–(6.9b), (6.9n), (6.10a)–(6.10i), and (6.11). We refer to these
equality constraints as the set Γ1.

2. Equality constraints obtained from differentiating the corresponding Lagrangian
associated with MPEC 1 with respect to its variables. We refer to these equality
constraints as the set Γ2. Four examples of the members of this set are stated
below. Note that L MPEC1

g1 is the Lagrangian function of the MPEC 1 pertaining
to the strategic producer g1:

∂L MPEC1
g1

∂xCg1n1
= 55000 + η(6.2b)

g1 − η(6.2b)
g1

+ 55000 η(6.2d)
g1 − η(6.6c)

g1

+ μCmax

g1n1o1 η(6.8)
g1 − η(6.9c)

g1 + μCmax

g1n1o2 η(6.11)
g1 = 0 (6.12a)

∂L MPEC1
g1

∂xCg2n1
= −η(6.6d)

g1 + μCmax

g2n1o1 η(6.8)
g1 − η(6.9d)

g1

+ μCmax

g2n1o2 η(6.11)
g1 = 0 (6.12b)

∂L MPEC1
g1

∂αE
g1n1o2

= − η(6.2e)
g1 + η(6.10b)

g1 + pEg1n1o2 η(6.11)
g1 = 0 (6.12c)

∂L MPEC1
g1

∂μSmax

g2n2o1

= η(6.7f)
g1 − η(6.7o)

g1 + 0.35 xSg2n2 η(6.8)
g1 = 0. (6.12d)
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3. Complementarity conditions related to the inequality constraints of MPEC 1. We
refer to these inequality constraints as the Γ3. Four examples of the members of
this set are as follows:

0 ≤ xCg1n1 ⊥ η(6.2b)
g1

≥ 0 (6.13a)

0 ≤ [
200 − xCg1n1

] ⊥ η(6.2b)
g1 ≥ 0 (6.13b)

0 ≤ pCg2n1o2 ⊥ η(6.9d)
g1

≥ 0 (6.13c)

0 ≤ [
xCg2n1 − pCg2n1o2

] ⊥ η(6.9d)
g1 ≥ 0. (6.13d)

6.5.1.2 KKT Conditions of MPEC 2

The KKT conditions of MPEC 2 corresponding to producer g2 consist of the follow-
ing three sets of constraints:

1. Primal equality constraints of MPEC 2 that are identical to those included in the
constraint set Γ1.

2. Equality constraints resulting from differentiating the corresponding Lagrangian
of MPEC 2 with respect to its variables. These equality constraints are referred to
as the set Γ4. Four examples of the members of this set are stated below, in which
L MPEC2

g2 is the Lagrangian function of the MPEC 2 pertaining to the strategic
producer g2:

∂L MPEC2
g2

∂xSg2n2
= 66000 + η(6.3c)

g2 − η(6.3c)
g2

+ 66000 η(6.3d)
g2 − 0.35 η(6.6f)

g2

+ 0.35 μSmax

g2n2o1 η(6.8)
g2 − 0.70 η(6.9f)

g2

+ 0.70 μSmax

g2n2o2 η(6.11)
g2 = 0 (6.14a)

∂L MPEC2
g2

∂xSg1n2
= − 0.35 η(6.6e)

g2 + 0.35 μSmax

g1n2o1 η(6.8)
g2

− 0.70 η(6.9e)
g2 + 0.70 μSmax

g1n2o2 η(6.11)
g2 = 0 (6.14b)

∂L MPEC2
g2

∂pEg2n2o2
= − 5230 λn2o2 − η(6.9b)

g2 + η(6.9h)
g2 − η(6.9h)

g2

+ αE
g2n2o2 η(6.11)

g2 = 0 (6.14c)

∂L MPEC2
g2

∂μDmax

n1o1

= η(6.7g)
g2 − η(6.7p)

g2 + 400 η(6.8)
g2 = 0. (6.14d)

3. Complementarity conditions related to the inequality constraints of MPEC 2. We
refer to these inequality constraints as the set Γ5. Four examples of the members
of this set are as follows:
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0 ≤ xSg2n2 ⊥ η(6.3c)
g2

≥ 0 (6.15a)

0 ≤ [
200 − xSg2n2

] ⊥ η(6.3c)
g2 ≥ 0 (6.15b)

0 ≤ pEg2n2o2 ⊥ η(6.9h)
g2

≥ 0 (6.15c)

0 ≤ [
100 − pEg2n2o2

] ⊥ η(6.9h)
g2 ≥ 0. (6.15d)

6.5.1.3 Strong Stationarity Conditions of the EPEC: Linearization

The strong stationarity conditions of the EPEC (the right-hand box of Fig. 6.6) is a
system of equalities and inequalities included in Γ1–Γ5. Although the solution to this
system identifies the investment equilibria, this system includes the following three
nonlinearities:

1. The complementarity conditions included in Γ3 and Γ5. Such conditions can
be exactly linearized through the approach explained in Chap.5 using auxiliary
binary variables and large enough positive constants [6]. For example, the mixed-
integer linear equivalent of complementarity condition (6.15a) is provided by
(6.16) below:

xSg2n2 ≥ 0 (6.16a)

η(6.3c)
g2

≥ 0 (6.16b)

xSg2n2 ≤ ψ Mx (6.16c)

η(6.3c)
g2

≤ (1 − ψ) Mη (6.16d)

ψ ∈ {0, 1}, (6.16e)

where Mx and Mη are large enough positive constants. A method for appropriate
value selection for those constants is provided in Chap. 5.

2. The products of variables involved in the strong duality equalities (6.8) and (6.11)
included in Γ1. Unlike the complementarity conditions included in Γ3 and Γ5,
which can be exactly linearized through auxiliary binary variables, the strong
duality equalities (6.8) and (6.11) included in Γ1 cannot be linearized straight-
forwardly due to the nature of the nonlinearities, i.e., the product of continuous
variables. However, we take advantage of the fact that the strong duality equality
resulting from the primal–dual transformation is equivalent to the set of com-
plementarity conditions obtained from the KKT conditions [7]. Hence, pursuing
linearity, the strong duality equality (6.8) is replaced by its equivalent comple-
mentarity conditions (6.17) below:

0 ≤ pCg1n1o1 ⊥ μCmin

g1n1o1 ≥ 0 (6.17a)

0 ≤ (
xCg1n1 − pCg1n1o1

) ⊥ μCmax

g1n1o1 ≥ 0 (6.17b)

0 ≤ pCg2n1o1 ⊥ μCmin

g2n1o1 ≥ 0 (6.17c)

http://dx.doi.org/10.1007/978-3-319-29501-5_5
http://dx.doi.org/10.1007/978-3-319-29501-5_5
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0 ≤ (
xCg2n1 − pCg2n1o1

) ⊥ μCmax

g2n1o1 ≥ 0 (6.17d)

0 ≤ pSg1n2o1 ⊥ μSmin

g1n2o1 ≥ 0 (6.17e)

0 ≤ (
0.35 xSg1n2 − pSg1n2o1

) ⊥ μSmax

g1n2o1 ≥ 0 (6.17f)

0 ≤ pSg2n2o1 ⊥ μSmin

g2n2o1 ≥ 0 (6.17g)

0 ≤ (
0.35 xSg2n2 − pSg2n2o1

) ⊥ μSmax

g2n2o1 ≥ 0 (6.17h)

0 ≤ pEg1n1o1 ⊥ μEmin

g1n1o1 ≥ 0 (6.17i)

0 ≤ (
150 − pEg1n1o1

) ⊥ μEmax

g1n1o1 ≥ 0 (6.17j)

0 ≤ pEg2n2o1 ⊥ μEmin

g2n2o1 ≥ 0 (6.17k)

0 ≤ (
100 − pEg2n2o1

) ⊥ μEmax

g2n2o1 ≥ 0 (6.17l)

0 ≤ pDn1o1 ⊥ μDmin

n1o1 ≥ 0 (6.17m)

0 ≤ (
400 − pDn1o1

) ⊥ μDmax

n1o1 ≥ 0 (6.17n)

0 ≤ [
400 − 1000

(
θn1o1 − θn2o1

)] ⊥ μF
n1n2o1 ≥ 0 (6.17o)

0 ≤ [
400 − 1000

(
θn2o1 − θn1o1

)] ⊥ μF
n2n1o1 ≥ 0 (6.17p)

0 ≤ (
π + θn1o1

) ⊥ μθmin

n1o1 ≥ 0 (6.17q)

0 ≤ (
π − θn1o1

) ⊥ μθmax

n1o1 ≥ 0 (6.17r)

0 ≤ (
π + θn2o1

) ⊥ μθmin

n2o1 ≥ 0 (6.17s)

0 ≤ (
π − θn2o1

) ⊥ μθmax

n2o1 ≥ 0. (6.17t)

Similarly, the strong duality equality (6.11) can be replaced by its equivalent
complementarity conditions. Recall that these complementarity conditions can be
linearized using the auxiliary binary variables and large enoughpositive constants.

3. The ones arising from the product of variables in Γ2 and Γ4, e.g., the bilinear
term μCmax

g1n1o1 η(6.8)
g1 in condition (6.12a). Observe that the common variables of

such nonlinear terms are either dual variables η(6.8)
g1 and η(6.8)

g2 or dual variables
η(6.11)
g1 and η(6.11)

g2 . From a mathematical point of view, the nonconvex nature of the
MPECs 1 and 2 implies that the Mangasarian–Fromovitz constraint qualification
(MFCQ) [5] does not hold at any feasible solution, i.e., the set of dual variables
associated with the MPECs (all dual variables denoted by η) is unbounded. In
other words, the values of these dual variables are not unique, and thus there
are some degrees of freedom in the choice of values for those dual variables at
any solution [5, 19, 20]. This redundancy allows the parameterization of dual
variables η(6.8)

g1 , η(6.8)
g2 , η(6.11)

g1 , and η(6.11)
g2 . Hence, the bilinear terms in Γ2 and Γ4

become linear if the strong stationarity conditions of the EPEC are parameterized
in dual variables η(6.8)

g1 , η(6.8)
g2 , η(6.11)

g1 , and η(6.11)
g2 .
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6.5.2 Searching for Multiple Solutions

The mixed-integer linear form of the strong stationarity conditions of the EPEC,
i.e., condition sets Γ1–Γ5, constitutes a system of mixed-integer linear equalities and
inequalities that involves continuous and binary variables. This system generally
has multiple solutions; however, recall that these solutions can be Nash equilibria,
local equilibria, and saddle points. To detect the Nash equilibria among the solutions
obtained, an ex-post algorithm is provided in Sect. 6.5.3.

To explore multiple solutions, it is straightforward to formulate an auxiliary opti-
mization problem considering the mixed-integer linear condition sets Γ1–Γ5 as con-
straints. In addition, several auxiliary objective functions canbe considered to identify
different solutions [19]. For example, the following objectives can be maximized:

1. Total profit (TP).
2. Annual true social welfare (ATSW) considering the actual production costs of

the generation units.
3. Annual social welfare considering the strategic offer prices of the generation

units.
4. Minus the payment of the demands.
5. Profit of a given producer.
6. Minus the payment of a given demand.

In this chapter, the first two objectives are selected because (i) they can be for-
mulated linearly and (ii) they refer to general market measures. Thus, the auxiliary
optimization problem to find multiple solutions is formulated as follows:

max TP or ATSW (6.18a)

subject to the mixed-integer linear system Γ1 − Γ5. (6.18b)

The two linear objective functions selected, i.e., TP and ATSW, to be included in
(6.18a) are described in the following two sections.

6.5.2.1 Objective Function (6.18a): TP Maximization

The summation of the MPEC’s objective function for all producers provides minus
the total profit of all producers, but this expression is nonlinear due to the products
of continuous variables (i.e., production quantities and clearing prices). An identical
linearization approach to one presented in Chap.5 is used to linearize these bilinear
terms. For Illustrative Example 6.1 presented in Sect. 6.4, the following exact linear
expression can be obtained as an equivalent for the total profit of strategic producers
g1 and g2:

http://dx.doi.org/10.1007/978-3-319-29501-5_5
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TP = 3530

[

35 pDn1o1 − 400 μDmax

n1o1 − 400
(
μF
n1n2o1 + μF

n2n1o1

)

− π
(
μθmin

n1o1 + μθmax

n1o1 + μθmin

n2o1 + μθmax

n2o1

)

− 12 pCg1n1o1 − 10 pEg1n1o1 − 12 pCg2n1o1 − 15 pEg2n2o1

]

+ 5230

[

32 pDn1o2 − 320 μDmax

n1o2 − 400
(
μF
n1n2o2 + μF

n2n1o2

)

− π
(
μθmin

n1o2 + μθmax

n1o2 + μθmin

n2o2 + μθmax

n2o2

)

− 12 pCg1n1o2 − 10 pEg1n1o2 − 12 pCg2n1o2 − 15 pEg2n2o2

]

− 55000 xCg1n1 − 66000 xSg1n2 − 55000 xCg2n1 − 66000 xSg2n2 . (6.19)

6.5.2.2 Objective Function (6.18a): ATSW Maximization

For Illustrative Example 6.1 presented in Sect. 6.4, the linear formulation of the
ATSW to be included in (6.18a) is given by (6.20) below:

ATSW = 3530

[

35 pDn1o1 − 12 pCg1n1o1 − 10 pEg1n1o1 − 12 pCg2n1o1 − 15 pEg2n2o1

]

+ 5230

[

32 pDn1o2 − 12 pCg1n1o2 − 10 pEg1n1o2 − 12 pCg2n1o2 − 15 pEg2n2o2

]

.

(6.20)

Note that to formulate the ATSW in (6.20), instead of the strategic offers of the
generating units, their true production costs are considered.

6.5.3 Ex-Post Algorithm for Detecting Nash Equilibria

In this section, we provide an ex-post algorithm [10] based on a single-iteration
diagonalization approach, which is the next step after solving problem (6.18). This
algorithm allows us to check whether each solution of problem (6.18) obtained is,
in fact, a Nash equilibrium. Note that if under the diagonalization framework, no
producer desires to deviate from its actual strategy, then the set of strategies of all
producers satisfies the definition of a Nash equilibrium [16, 17].

Let us consider the duopoly introduced in Illustrative Example 6.1 in Sect. 6.4with
two strategic producers g1 and g2. The strategic decisions of producer g1 include its
investment decisions, i.e., xCg1n1 and xSg1n2 , and its offering decisions, i.e., αC

g1n1o1 ,
αE
g1n1o1 , αC

g1n1o2 , and αE
g1n1o2 . We refer to these strategic decisions of producer g1
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as decision set Sg1 . A similar set can be defined including the strategic decisions
of producer g2, denoted by Sg2 . In order to verify that each solution obtained for
problem (6.18) constitutes a Nash equilibrium, the following four steps are carried
out:

1. Consider the mixed-integer linear form of MPEC 1 pertaining to producer g1.
2. Set the investment decisions of producer g2, i.e., Sg2 , to those obtained by the

equilibrium model through solving problem (6.18). Then, solve MPEC 1. Note
that its solution provides the strategic decisions of producer g1, which we denote
by Ŝg1 .

3. Repeat the two steps above for producer g2 through solvingMPEC 2, while strate-
gic decisions Sg1 are fixed to those values obtained from the equilibrium model.
This step results in deriving the strategic decisions Ŝg2 pertaining to producer g2.

4. Compare the results obtained from the previous steps of the diagonalization algo-
rithm, i.e., Ŝg1 and Ŝg2 , with those achieved from the equilibrium model, i.e., Sg1
and Sg2 . If the investment results of each strategic producer obtained from the
single-iteration diagonalization algorithm are identical to those attained by the
equilibrium model, i.e., Ŝg1=Sg1 and Ŝg2=Sg2 , then such a solution is a Nash equi-
librium because each producer cannot increase its profit by changing its strategy
unilaterally.

6.5.4 Numerical Results

This section provides the numerical results corresponding to Illustrative Example
6.1 presented in Sect. 6.4. Table6.1 presents the investment equilibrium results. Note
that these results are obtained by solving the auxiliary optimization problem (6.18)
considering two different terms as objective function (6.18a), i.e., (i) maximizing
TP and (ii) maximizing ATSW. The GAMS code for solving this MILP problem
maximizing TP is provided in Sect. 6.8. Note that all results reported in Table6.1 are
verified to be Nash equilibria through the ex-post algorithm provided in Sect. 6.5.3.

As described in Sect. 6.5.1.3, the equilibrium model is parameterized in dual
variables η(6.8)

g1 , η(6.8)
g2 , η(6.11)

g1 , and η(6.11)
g2 , which makes it a linear problem. The value

considered for those parameterized variables, i.e., η(6.8)
g1 , η(6.8)

g2 , η(6.11)
g1 , and η(6.11)

g2 ,
are equal to the weights of the corresponding operating conditions, that is, 3530,
3530, 5230, and 5230, respectively. We have checked a variety of values for those
parameterized dual variables, e.g., half of those values considered, but the numerical
results obtained do not change.

According to the results presented in Table6.1, several observations can be made,
as stated below:

1. In the TP maximization case, the strategic producers g1 and g2 invest in both
conventional and stochastic units. However, the total capacity of newly built
units (280MW) is comparatively lower than that in the ATSWmaximization case
(400MW).
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Table 6.1 Illustrative Example 6.1: production capacity investment equilibrium results

Objective function (6.18a) max TP max ATSW

Newly built conventional units 80MW (node n1) No investment

Newly built stochastic units 200MW (node n2) 400MW (node n2)

Total newly built units [MW] 280 400

Total investment cost of the
producers [$ million]

17.60 26.40

TP of the producers [$ million] 61.67 58.06

ATSW of the market [$ million] 79.27 84.46

2. As expected, the TP of producers g1 and g2 in the TP maximization case ($61.67
million) is comparatively higher than that in theATSWmaximization case ($58.06
million). However, the ATSW in the TP maximization case ($79.27 million) is
comparatively lower than that in the ATSW maximization case ($84.46 million).

3. Since the stochastic units with zero offer prices lead to a higher ATSW, only those
units are built in the ATSW maximization case.

Regarding the investment results for each producer in the TP maximization case,
the new units can be built by each of the two producers. In other words, all new
units (280MW) may be built by producer g1 or producer g2. In addition, those units
may be built by both producers, e.g., 80MW conventional unit by producer g1 and
200MW stochastic unit by producer g2. Therefore, several equilibrium points can
be found in this case.

Regarding the investment results for each producer in the ATSW maximization
case, the only possible equilibrium point is to invest in a 200-MW stochastic unit by
each producer (i.e., 400MW all together) since producers g1 and g2 cannot invest in
such a unit with a capacity greater than 200MW.

Regarding the LMPs obtained, as expected, at least one of the producers strategi-
cally offers at a price identical to the bid price of the demand. Therefore, the LMPs
obtained in operation conditions o1 and o2 are $35 and $32/MWh, respectively. Note
that in each condition, the LMPs at both nodes are the same since the transmission
line is not congested.

6.6 Summary

This chapter provides amethodology to characterize generation investment equilibria
in a pool-based network-constrained electricitymarket in which all producers behave
strategically. To this end, the following steps are carried out:

Step (1) The investment problem of each strategic producer is represented using
a bilevel model, whose upper-level problem determines the optimal
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production investment (capacity and location) and the offer prices to
maximize its profit, and whose several lower-level problems represent
the clearing of the market for different operating conditions.

Step (2) The single-producer bilevel models formulated in Step 1 are transformed
into single-level MPECs by replacing the lower-level problems with their
optimality conditions resulting from the primal–dual transformation. The
resulting MPECs are continuous but nonlinear, due to the product of
variables in the objective function and strong duality equalities.

Step (3) The joint consideration of all producer MPECs, one per producer, consti-
tutes an EPEC, whose solution identifies the market equilibria.

Step (4) To identify EPEC solutions, the strong stationarity conditions associ-
ated with the EPEC, i.e., the strong stationarity conditions of all pro-
ducer MPECs, are derived. To this end, each MPEC obtained in Step 2
is replaced by its KKT conditions. The set of resulting strong stationarity
conditions of all MPECs, which are the strong stationarity conditions of
the EPEC, is a collection of nonlinear systems of equalities and inequal-
ities.

Step (5) The strong stationarity conditions associated with the EPEC obtained in
Step 4 are linearized without approximation through three procedures: (i)
linearizing the complementarity conditions, (ii) parameterizing the result-
ing conditions in the dual variables corresponding to the strong duality
equalities, and (iii) replacing the strong duality equalities with their equiv-
alent complementarity conditions. This linearization results in a mixed-
integer and linear system of equalities and inequalities characterizing the
EPEC.

Step (6) To explore multiple solutions, an auxiliary mixed-integer linear optimiza-
tion problem is formulated, whose constraints are themixed-integer linear
conditions obtained in Step 5 and whose objective function is either a lin-
ear form of the total profit of all producers or a linear form of the annual
true social welfare.

Step (7) The auxiliary mixed-integer linear optimization problem formulated in
Step 6 is solved and a number of solutions are obtained.

Step (8) To detect Nash equilibria among the solutions achieved in Step 7, an
ex-post algorithm based on a single-iteration diagonalization approach is
provided. This algorithm checks whether each solution achieved in Step
7 is, in fact, a Nash equilibrium.

To validate numerically the methodology provided in this chapter, a two-node
illustrative example with two strategic producers is examined and the equilibrium
results obtained are reported and discussed.
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6.7 End-of-Chapter Exercises

6.1 Reformulate the production capacity investment equilibrium model (6.1) to
include several units per node and piecewise linear production costs.

6.2 Reformulate the production capacity investment equilibrium model (6.1) con-
sidering a multistage investment model instead of a static one.

6.3 Reformulate the production capacity investment equilibrium model (6.1) con-
sidering uncertainty in demand bid prices and investment costs of different technolo-
gies.

6.4 Solve Illustrative Example 6.1 presented in Sect. 6.4 considering the capacity
of transmission line to be 200MW (congested case) and then interpret the investment
equilibrium results obtained.

6.5 Solve Illustrative Example 6.1 presented in Sect. 6.4 considering a single pro-
ducer owning the entire production capacity portfolio (monopoly case) and then
interpret the investment equilibrium results obtained.

6.6 Solve Illustrative Example 6.1 presented in Sect. 6.4 considering three strategic
producers f1, f2, and f3 (triopoly case), in which the capacity portfolio of each
producer f1 and f3 is equal to half that of producer g1 in the original example, while
the capacity portfolio of producer f2 is identical to that of producer g2 is the original
example. Then interpret the investment equilibrium results obtained.

6.7 Compare the investment equilibrium results obtained from the monopoly case
(Exercise 6.5), the duopoly case (Illustrative Example 6.1 in Sect. 6.4), and the tri-
opoly case (Exercise 6.6).

6.8 GAMS Code

This section provides the GAMS code for solving theMILP problemmaximizing TP
corresponding to Illustrative Example 6.1. Note that this code is written in a general
form, and thus it is straightforward to adapt it to any investment equilibrium example.

1 SETS
2 o operating conditions /o1*o2/
3 g producers /g1*g2/
4 n nodes /n1*n2/
5 s(n) reference node /n1/
6 Omega(n,n) transmission lines /n1.n2 ,n2.n1/
7 ALIAS (n,m)
8 ALIAS (g,y);

10 PARAMETERS
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11 Kmax(g) available annualized investment budget of
the producers /

12 g1 2e7
13 g2 2e7/

15 P_Dmax(n) maximum load of the consumers /
16 n1 400
17 n2 0/

19 X_Cmax(n) maximum capacity investment of the
candidate conventional units /

20 n1 200/

22 X_Smax(n) maximum capacity investment of the
candidate stochastic units /

23 n2 200/

25 rho(o) weighting factor of operating conditions /
26 o1 3530
27 o2 5230/
28 ;

30 TABLE B(n,n) susceptance of the transmission lines
31 n1 n2
32 n1 0 1e3
33 n2 1e3 0;

35 Table C_C(g,n) production cost of the candidate
conventional units

36 n1
37 g1 12
38 g2 12;

40 Table C_E(g,n) production cost of the existing
conventional units

41 n1 n2
42 g1 10 0
43 g2 0 15;

45 TABLE Fmax(n,n) capacity of the transmission lines
46 n1 n2
47 n1 0 400
48 n2 400 0;

50 TABLE K_C(g,n) annualized investment cost of the
candidate conventional units

51 n1
52 g1 55000
53 g2 55000;

55 TABLE K_S(g,n) annualized investment cost of the
candidate stochastic units

56 n2
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57 g1 66000
58 g2 66000;

60 TABLE P_Emax(g,n) capacity of the existing
conventional units

61 n1 n2
62 g1 150 0
63 g2 0 100;

65 TABLE Q_S(n,o) power capacity factor of the
candidate stochastic units

66 o1 o2
67 n2 0.35 0.70;

69 TABLE Q_D(n,o) demand factor of the consumers
70 o1 o2
71 n1 1.0 0.8;

73 TABLE U_D(n,o) bid price of the consumers
74 o1 o2
75 n1 35 32;

77 SCALAR BigM1 a large value /1e4/
78 SCALAR BigM2 a large value /1e6/
79 SCALAR BigM3 a large value /5e7/
80 SCALAR PI pi /3.1416/;

82 PARAMETERS
83 eta_parameterized(y,o);
84 eta_parameterized(y,o)=rho(o);

86 FREE VARIABLES
87 TP total profit of the producers
88 linear_term(o) linear equivalent of the

bilinear term
89 lambda(n,o) locational marginal prices (

LMPs)
90 theta(n,o) nodal voltage angles
91 *dual variable associated with the lower -level

problems
92 mu_theta_ref(o)
93 *dual variables associated with the MPEC of

producer y
94 beta(y,n,o)
95 rho_C(y,g,n,o)
96 rho_S(y,g,n,o)
97 rho_E(y,g,n,o)
98 rho_D(y,n,o)
99 rho_theta(y,n,o)

100 eta_theta_ref(y,o);

102 POSITIVE VARIABLES
103 * primal variables
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104 p_C(g,n,o) power produced by the
candidate conventional units

105 p_D(n,o) power consumed by the
consumers

106 p_E(g,n,o) power produced by the
existing conventional units

107 p_S(g,n,o) power produced by the
candidate stochastic units

108 x_C(g,n) capacity of the candidate
conventional units

109 x_S(g,n) capacity of the candidate
stochastic units

110 alpha_C(g,n,o) offer price by the candidate
conventional units

111 alpha_E(g,n,o) offer price by the existing
conventional units

112 *dual variables associated with the lower -level
problems

113 mu_Cmin(g,n,o)
114 mu_Cmax(g,n,o)
115 mu_Dmin(n,o)
116 mu_Dmax(n,o)
117 mu_Emin(g,n,o)
118 mu_Emax(g,n,o)
119 mu_Smin(g,n,o)
120 mu_Smax(g,n,o)
121 mu_F(n,m,o)
122 mu_theta_min(n,o)
123 mu_theta_max(n,o)
124 *dual variables associated with the MPEC of

producer y
125 eta_Cmax(y,g,n,o)
126 eta_Cmin(y,g,n,o)
127 eta_Emax(y,g,n,o)
128 eta_Emin(y,g,n,o)
129 eta_Smax(y,g,n,o)
130 eta_Smin(y,g,n,o)
131 eta_Dmax(y,n,o)
132 eta_Dmin(y,n,o)
133 eta_x_C_max(y,g,n)
134 eta_x_C_min(y,g,n)
135 eta_x_S_max(y,g,n)
136 eta_x_S_min(y,g,n)
137 eta_budget(y,g)
138 eta_alpha_C(y,g,n,o)
139 eta_alpha_E(y,g,n,o)
140 eta_F(y,n,m,o)
141 eta_theta_max(y,n,o)
142 eta_theta_min(y,n,o)
143 gamma_Cmin(y,g,n,o)
144 gamma_Cmax(y,g,n,o)
145 gamma_Dmin(y,n,o)
146 gamma_Dmax(y,n,o)
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147 gamma_Emin(y,g,n,o)
148 gamma_Emax(y,g,n,o)
149 gamma_Smin(y,g,n,o)
150 gamma_Smax(y,g,n,o)
151 gamma_F(y,n,m,o)
152 gamma_theta_min(y,n,o)
153 gamma_theta_max(y,n,o);

155 BINARY VARIABLES
156 u_mu_Smin(g,n,o)
157 u_mu_Smax(g,n,o)
158 u_mu_Cmin(g,n,o)
159 u_mu_Cmax(g,n,o)
160 u_mu_Emin(g,n,o)
161 u_mu_Emax(g,n,o)
162 u_mu_Dmin(n,o)
163 u_mu_Dmax(n,o)
164 u_mu_F(n,m,o)
165 u_mu_theta_min(n,o)
166 u_mu_theta_max(n,o)
167 u_x_C_min(y,g,n)
168 u_x_C_max(y,g,n)
169 u_x_S_min(y,g,n)
170 u_x_S_max(y,g,n)
171 u_budget(y,g)
172 u_alpha_C(y,g,n,o)
173 u_alpha_E(y,g,n,o)
174 u_C_min(y,g,n,o)
175 u_C_max(y,g,n,o)
176 u_S_min(y,g,n,o)
177 u_S_max(y,g,n,o)
178 u_E_min(y,g,n,o)
179 u_E_max(y,g,n,o)
180 u_D_min(y,n,o)
181 u_D_max(y,n,o)
182 u_F(y,n,m,o)
183 u_theta_min(y,n,o)
184 u_theta_max(y,n,o)
185 u1(y,g,n,o)
186 u2(y,g,n,o)
187 u3(y,g,n,o)
188 u4(y,g,n,o)
189 u5(y,g,n,o)
190 u6(y,g,n,o)
191 u7(y,n,o)
192 u8(y,n,o)
193 u9(y,n,m,o)
194 u10(y,n,o)
195 u11(y,n,o);

197 x_S.UP(g,n)=X_Smax(n);
198 x_C.UP(g,n)=X_Cmax(n);
199 p_E.UP(g,n,o)=P_Emax(g,n);
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200 p_D.UP(n,o)=P_Dmax(n)*Q_D(n,o);
201 theta.LO(n,o)=-PI;
202 theta.UP(n,o)=PI;
203 theta.FX(’n1 ’,o)=0;
204 EQUATIONS
205 OF , EQ1 , EQ2 , EQ3 , EQ4 , EQ5 , EQ6 , EQ7 , EQ8 , EQ9 ,

EQ10 , EQ11 , EQ12 , EQ13 , EQ14 , EQ15 , EQ16 , EQ17 ,
EQ18 , EQ19 , EQ20 ,

206 EQ21 , EQ22 , EQ23 , EQ24 , EQ25 , EQ26 , EQ27 , EQ28 ,
EQ29 , EQ30 , EQ31 , EQ32 , EQ33 , EQ34 , EQ35 , EQ36 ,
EQ37 , EQ38 , EQ39 , EQ40 ,

207 EQ41 , EQ42 , EQ43 , EQ44 , EQ45 , EQ46 , EQ47 , EQ48 ,
EQ49 , EQ50 , EQ51 , EQ52 , EQ53 , EQ54 , EQ55 , EQ56 ,
EQ57 , EQ58 , EQ59 , EQ60 ,

208 EQ61 , EQ62 , EQ63 , EQ64 , EQ65 , EQ66 , EQ67 , EQ68 ,
EQ69 , EQ70 , EQ71 , EQ72 , EQ73 , EQ74 , EQ75 , EQ76 ,
EQ77 , EQ78 , EQ79 , EQ80 ,

209 EQ81 , EQ82 , EQ83 , EQ84 , EQ85 , EQ86 , EQ87 , EQ88 ,
EQ89 , EQ90 , EQ91 , EQ92 , EQ93 , EQ94 , EQ95 , EQ96 ,
EQ97 , EQ98 , EQ99 , EQ100 ,

210 EQ101 , EQ102 , EQ103 , EQ104 , EQ105 , EQ106 , EQ107 ,
EQ108 , EQ109 , EQ110 , EQ111 , EQ112 , EQ113 , EQ114
, EQ115 , EQ116 , EQ117 ,

211 EQ118 , EQ119 , EQ120;

214 OF..TP=E=SUM(o,rho(o)*linear_term(o))-SUM((n,g),x_C
(g,n)*K_C(g,n))-SUM((n,g),x_S(g,n)*K_S(g,n))-
SUM((g,n,o),rho(o)*p_C(g,n,o)*C_C(g,n))-SUM((g,
n,o),rho(o)*p_E(g,n,o)*C_E(g,n));

216 EQ1(o).. linear_term(o)=E=SUM(n,U_D(n,o)*p_D(n,o))-
SUM(n,mu_Dmax(n,o)*P_Dmax(n)*Q_D(n,o))-SUM((n,m
)$Omega(n,m),Fmax(n,m)*mu_F(n,m,o))-SUM(n,PI*[
mu_theta_max(n,o)+mu_theta_min(n,o)]);

218 EQ2(g)..SUM(n,x_C(g,n)*K_C(g,n))+SUM(n,x_S(g,n)*K_S
(g,n))=L=Kmax(g);

220 EQ3(n,o)..p_D(n,o)+SUM(m$Omega(n,m),B(n,m)*[theta(n
,o)-theta(m,o)])-SUM(g,p_C(g,n,o))-SUM(g,p_E(g,
n,o))-SUM(g,p_S(g,n,o))=E=0;

222 EQ4(g,n,o)..p_C(g,n,o)=L=x_C(g,n);

224 EQ5(g,n,o)..p_S(g,n,o)=L=Q_S(n,o)*x_S(g,n);

226 EQ6(n,m,o)$Omega(n,m)..B(n,m)*[ theta(n,o)-theta(m,o
)]=L=Fmax(n,m);

228 EQ7(g,n,o).. alpha_C(g,n,o)-lambda(n,o)+mu_Cmax(g,n,
o)-mu_Cmin(g,n,o)=E=0;
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230 EQ8(g,n,o).. alpha_E(g,n,o)-lambda(n,o)+mu_Emax(g,n,
o)-mu_Emin(g,n,o)=E=0;

232 EQ9(g,n,o)..-lambda(n,o)+mu_Smax(g,n,o)-mu_Smin(g,n
,o)=E=0;

234 EQ10(n,o)..-U_D(n,o)+lambda(n,o)+mu_Dmax(n,o)-
mu_Dmin(n,o)=E=0;

236 EQ11(n,o).. SUM(m$Omega(n,m),B(n,m)*[ lambda(n,o)-
lambda(m,o)])+SUM(m$Omega(n,m),B(n,m)*[mu_F(n,m
,o)-mu_F(m,n,o)])+mu_theta_max(n,o)-
mu_theta_min(n,o)+mu_theta_ref(o)$s(n)=E=0;

238 EQ12(g,n,o)..p_C(g,n,o)=L=u_mu_Cmin(g,n,o)*BigM1;
239 EQ13(g,n,o).. mu_Cmin(g,n,o)=L=[1- u_mu_Cmin(g,n,o)]*

BigM2;

241 EQ14(g,n,o)..[x_C(g,n)-p_C(g,n,o)]=L=u_mu_Cmax(g,n,
o)*BigM1;

242 EQ15(g,n,o).. mu_Cmax(g,n,o)=L=[1- u_mu_Cmax(g,n,o)]*
BigM2;

244 EQ16(g,n,o)..p_S(g,n,o)=L=u_mu_Smin(g,n,o)*BigM1;
245 EQ17(g,n,o).. mu_Smin(g,n,o)=L=[1- u_mu_Smin(g,n,o)]*

BigM2;

247 EQ18(g,n,o)..[( Q_S(n,o)*x_S(g,n))-p_S(g,n,o)]=L=
u_mu_Smax(g,n,o)*BigM1;

248 EQ19(g,n,o).. mu_Smax(g,n,o)=L=[1- u_mu_Smax(g,n,o)]*
BigM2;

250 EQ20(g,n,o)..p_E(g,n,o)=L=u_mu_Emin(g,n,o)*BigM1;
251 EQ21(g,n,o).. mu_Emin(g,n,o)=L=[1- u_mu_Emin(g,n,o)]*

BigM2;

253 EQ22(g,n,o)..[ P_Emax(g,n)-p_E(g,n,o)]=L=u_mu_Emax(g
,n,o)*BigM1;

254 EQ23(g,n,o).. mu_Emax(g,n,o)=L=[1- u_mu_Emax(g,n,o)]*
BigM2;

256 EQ24(n,o)..p_D(n,o)=L=u_mu_Dmin(n,o)*BigM1;
257 EQ25(n,o).. mu_Dmin(n,o)=L=[1- u_mu_Dmin(n,o)]* BigM2;

259 EQ26(n,o)..[( Q_D(n,o)*P_Dmax(n))-p_D(n,o)]=L=
u_mu_Dmax(n,o)*BigM1;

260 EQ27(n,o).. mu_Dmax(n,o)=L=[1- u_mu_Dmax(n,o)]* BigM2;

262 EQ28(n,m,o)$Omega(n,m)..Fmax(n,m) -[B(n,m)*( theta(n,
o)-theta(m,o))]=L=u_mu_F(n,m,o)*BigM1;

263 EQ29(n,m,o)$Omega(n,m)..mu_F(n,m,o)=L=[1- u_mu_F(n,m
,o)]* BigM2;
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265 EQ30(n,o)..PI+theta(n,o)=L=[1- u_mu_theta_min(n,o)]*
BigM1;

266 EQ31(n,o).. mu_theta_min(n,o)=L=u_mu_theta_min(n,o)*
BigM2;

268 EQ32(n,o)..PI -theta(n,o)=L=[1- u_mu_theta_max(n,o)]*
BigM1;

269 EQ33(n,o).. mu_theta_max(n,o)=L=u_mu_theta_max(n,o)*
BigM2;

271 EQ34(y,g,n,o)$[ORD(g) EQ ORD(y)]..-[rho(o)*( lambda(
n,o)-C_C(g,n))]-beta(y,n,o)+eta_Cmax(y,g,n,o)-
eta_Cmin(y,g,n,o)+[ eta_parameterized(y,o)*
alpha_C(g,n,o)]=E=0;

272 EQ35(y,g,n,o)$[ORD(g) NE ORD(y)]..-beta(y,n,o)+
eta_Cmax(y,g,n,o)-eta_Cmin(y,g,n,o)+[
eta_parameterized(y,o)*alpha_C(g,n,o)]=E=0;

274 EQ36(y,g,n,o)$[ORD(g) EQ ORD(y)]..-[rho(o)*( lambda(
n,o)-C_E(g,n))]-beta(y,n,o)+eta_Emax(y,g,n,o)-
eta_Emin(y,g,n,o)+[ eta_parameterized(y,o)*
alpha_E(g,n,o)]=E=0;

275 EQ37(y,g,n,o)$[ORD(g) NE ORD(y)]..-beta(y,n,o)+
eta_Emax(y,g,n,o)-eta_Emin(y,g,n,o)+[
eta_parameterized(y,o)*alpha_E(g,n,o)]=E=0;

277 EQ38(y,g,n,o)$[ORD(g) EQ ORD(y)]..-[rho(o)*lambda(n
,o)]-beta(y,n,o)+eta_Smax(y,g,n,o)-eta_Smin(y,g
,n,o)=E=0;

278 EQ39(y,g,n,o)$[ORD(g) NE ORD(y)]..-beta(y,n,o)+
eta_Smax(y,g,n,o)-eta_Smin(y,g,n,o)=E=0;

280 EQ40(y,n,o)..beta(y,n,o)+eta_Dmax(y,n,o)-eta_Dmin(y
,n,o) -[eta_parameterized(y,o)*U_D(n,o)]=E=0;

282 EQ41(y,g,n)$[ORD(g) EQ ORD(y)]..K_C(g,n)+
eta_x_C_max(y,g,n)-eta_x_C_min(y,g,n)+[K_C(g,n)
*eta_budget(y,g)]-SUM(o,eta_Cmax(y,g,n,o))+SUM(
o,eta_parameterized(y,o)*mu_Cmax(g,n,o))=E=0;

283 EQ42(y,g,n)$[ORD(g) NE ORD(y)]..-SUM(o,eta_Cmax(y,g
,n,o))+SUM(o,eta_parameterized(y,o)*mu_Cmax(g,n
,o))=E=0;

285 EQ43(y,g,n)$[ORD(g) EQ ORD(y)]..K_S(g,n)+
eta_x_S_max(y,g,n)-eta_x_S_min(y,g,n)+[K_S(g,n)
*eta_budget(y,g)]-SUM(o,Q_S(n,o)*eta_Smax(y,g,n
,o))+SUM(o,Q_S(n,o)*eta_parameterized(y,o)*
mu_Smax(g,n,o))=E=0;

286 EQ44(y,g,n)$[ORD(g) NE ORD(y)]..-SUM(o,Q_S(n,o)*
eta_Smax(y,g,n,o))+SUM(o,Q_S(n,o)*
eta_parameterized(y,o)*mu_Smax(g,n,o))=E=0;
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288 EQ45(y,g,n,o)$[ORD(g) EQ ORD(y)]..- eta_alpha_C(y,g,
n,o)+rho_C(y,g,n,o)+[ eta_parameterized(y,o)*p_C
(g,n,o)]=E=0;

289 EQ46(y,g,n,o)$[ORD(g) NE ORD(y)].. rho_C(y,g,n,o)+[
eta_parameterized(y,o)*p_C(g,n,o)]=E=0;

291 EQ47(y,g,n,o)$[ORD(g) EQ ORD(y)]..- eta_alpha_E(y,g,
n,o)+rho_E(y,g,n,o)+[ eta_parameterized(y,o)*p_E
(g,n,o)]=E=0;

292 EQ48(y,g,n,o)$[ORD(g) NE ORD(y)].. rho_E(y,g,n,o)+[
eta_parameterized(y,o)*p_E(g,n,o)]=E=0;

294 EQ49(y,n,o)..SUM(m$Omega(n,m),B(n,m)*[beta(y,n,o)-
beta(y,m,o)])+SUM(m$Omega(n,m),B(n,m)*[ eta_F(y,
n,m,o)-eta_F(y,m,n,o)])+eta_theta_max(y,n,o)-
eta_theta_min(y,n,o)+eta_theta_ref(y,o)$s(n)=E
=0;

296 EQ50(y,n,o)..-[rho(o)*(p_C(y,n,o)+p_S(y,n,o)+p_E(y,
n,o))]-SUM(g,rho_C(y,g,n,o))-SUM(g,rho_E(y,g,n,
o))-SUM(g,rho_S(y,g,n,o))+rho_D(y,n,o)+SUM(
m$Omega(n,m),B(n,m)*[ rho_theta(y,n,o)-rho_theta
(y,m,o)])=E=0;

298 EQ51(y,g,n,o)..-rho_C(y,g,n,o)-gamma_Cmin(y,g,n,o)=
E=0;

299 EQ52(y,g,n,o)..+ rho_C(y,g,n,o)-gamma_Cmax(y,g,n,o)
+[ eta_parameterized(y,o)*x_C(g,n)]=E=0;

301 EQ53(y,g,n,o)..-rho_S(y,g,n,o)-gamma_Smin(y,g,n,o)=
E=0;

302 EQ54(y,g,n,o)..+ rho_S(y,g,n,o)-gamma_Smax(y,g,n,o)
+[ eta_parameterized(y,o)*Q_S(n,o)*x_S(g,n)]=E
=0;

304 EQ55(y,g,n,o)..-rho_E(y,g,n,o)-gamma_Emin(y,g,n,o)=
E=0;

305 EQ56(y,g,n,o)..+ rho_E(y,g,n,o)-gamma_Emax(y,g,n,o)
+[ eta_parameterized(y,o)*P_Emax(g,n)]=E=0;

307 EQ57(y,n,o)..-rho_D(y,n,o)-gamma_Dmin(y,n,o)=E=0;
308 EQ58(y,n,o)..+ rho_D(y,n,o)-gamma_Dmax(y,n,o)+[

eta_parameterized(y,o)*P_Dmax(n)*Q_D(n,o)]=E=0;

310 EQ59(y,n,m,o)$Omega(n,m)..[B(n,m)*( rho_theta(y,n,o)
-rho_theta(y,m,o))]-gamma_F(y,n,m,o)+[
eta_parameterized(y,o)*Fmax(n,m)]=E=0;

312 EQ60(y,n,o)..-rho_theta(y,n,o)-gamma_theta_min(y,n,
o)+[ eta_parameterized(y,o)*PI]=E=0;

313 EQ61(y,n,o)..+ rho_theta(y,n,o)-gamma_theta_max(y,n,
o)+[ eta_parameterized(y,o)*PI]=E=0;

314 EQ62(y,n,o).. rho_theta(y,’n1 ’,o)=E=0;
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316 EQ63(y,g,n)$[ORD(g) EQ ORD(y)]..x_C(g,n)=L=[1-
u_x_C_min(y,g,n)]* BigM1;

317 EQ64(y,g,n)$[ORD(g) EQ ORD(y)].. eta_x_C_min(y,g,n)=
L=u_x_C_min(y,g,n)*BigM2;

319 EQ65(y,g,n)$[ORD(g) EQ ORD(y)]..[ X_Cmax(n)-x_C(g,n)
]=L=[1- u_x_C_max(y,g,n)]*BigM1;

320 EQ66(y,g,n)$[ORD(g) EQ ORD(y)].. eta_x_C_max(y,g,n)=
L=u_x_C_max(y,g,n)*BigM2;

322 EQ67(y,g,n)$[ORD(g) EQ ORD(y)]..x_S(g,n)=L=[1-
u_x_S_min(y,g,n)]* BigM1;

323 EQ68(y,g,n)$[ORD(g) EQ ORD(y)].. eta_x_S_min(y,g,n)=
L=u_x_S_min(y,g,n)*BigM2;

325 EQ69(y,g,n)$[ORD(g) EQ ORD(y)]..[ X_Smax(n)-x_S(g,n)
]=L=[1- u_x_S_max(y,g,n)]*BigM1;

326 EQ70(y,g,n)$[ORD(g) EQ ORD(y)].. eta_x_S_max(y,g,n)=
L=u_x_S_max(y,g,n)*BigM2;

328 EQ71(g,y)$[ORD(g) EQ ORD(y)].. Kmax(g)-SUM(n,x_C(g,n
)*K_C(g,n))-SUM(n,x_S(g,n)*K_S(g,n))=L=[1-
u_budget(g,y)]* BigM3;

329 EQ72(g,y)$[ORD(g) EQ ORD(y)].. eta_budget(y,g)=L=
u_budget(g,y)*BigM3;

331 EQ73(y,g,n,o)$[ORD(g) EQ ORD(y)].. alpha_C(g,n,o)=L
=[1- u_alpha_C(y,g,n,o)]* BigM1;

332 EQ74(y,g,n,o)$[ORD(g) EQ ORD(y)].. eta_alpha_C(y,g,n
,o)=L=u_alpha_C(y,g,n,o)*BigM2;

334 EQ75(y,g,n,o)$[ORD(g) EQ ORD(y)].. alpha_E(g,n,o)=L
=[1- u_alpha_E(y,g,n,o)]* BigM1;

335 EQ76(y,g,n,o)$[ORD(g) EQ ORD(y)].. eta_alpha_E(y,g,n
,o)=L=u_alpha_E(y,g,n,o)*BigM2;

337 EQ77(y,g,n,o)..p_C(g,n,o)=L=(1- u_C_min(y,g,n,o))*
BigM1;

338 EQ78(y,g,n,o).. eta_Cmin(y,g,n,o)=L=u_C_min(y,g,n,o)
*BigM2;

340 EQ79(y,g,n,o)..[x_C(g,n)-p_C(g,n,o)]=L=(1- u_C_max(y
,g,n,o))*BigM1;

341 EQ80(y,g,n,o).. eta_Cmax(y,g,n,o)=L=u_C_max(y,g,n,o)
*BigM2;

343 EQ81(y,g,n,o)..p_S(g,n,o)=L=(1- u_S_min(y,g,n,o))*
BigM1;

344 EQ82(y,g,n,o).. eta_Smin(y,g,n,o)=L=u_S_min(y,g,n,o)
*BigM2;

346 EQ83(y,g,n,o)..[( Q_S(n,o)*x_S(g,n))-p_S(g,n,o)]=L
=(1- u_S_max(y,g,n,o))*BigM1;
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347 EQ84(y,g,n,o).. eta_Smax(y,g,n,o)=L=u_S_max(y,g,n,o)
*BigM2;

349 EQ85(y,g,n,o)..p_E(g,n,o)=L=(1- u_E_min(y,g,n,o))*
BigM1;

350 EQ86(y,g,n,o).. eta_Emin(y,g,n,o)=L=u_E_min(y,g,n,o)
*BigM2;

352 EQ87(y,g,n,o)..[ P_Emax(g,n)-p_E(g,n,o)]=L=(1-
u_E_max(y,g,n,o))*BigM1;

353 EQ88(y,g,n,o).. eta_Emax(y,g,n,o)=L=u_E_max(y,g,n,o)
*BigM2;

355 EQ89(y,n,o)..p_D(n,o)=L=(1- u_D_min(y,n,o))*BigM1;
356 EQ90(y,n,o).. eta_Dmin(y,n,o)=L=u_D_min(y,n,o)*BigM2

;

358 EQ91(y,n,o)..[( P_Dmax(n)*Q_D(n,o))-p_D(n,o)]=L=(1-
u_D_max(y,n,o))*BigM1;

359 EQ92(y,n,o).. eta_Dmax(y,n,o)=L=u_D_max(y,n,o)*BigM2
;

361 EQ93(y,n,m,o)$Omega(n,m)..Fmax(n,m) -[B(n,m)*[ theta(
n,o)-theta(m,o)]]=L=[1-u_F(y,n,m,o)]* BigM1;

362 EQ94(y,n,m,o)$Omega(n,m).. eta_F(y,n,m,o)=L=u_F(y,n,
m,o)*BigM1;

364 EQ95(y,n,o)..[PI+theta(n,o)]=L=[1- u_theta_min(y,n,o
)]* BigM1;

365 EQ96(y,n,o).. eta_theta_min(y,n,o)=L=u_theta_min(y,n
,o)*BigM2;

367 EQ97(y,n,o)..[PI -theta(n,o)]=L=[1- u_theta_max(y,n,o
)]* BigM1;

368 EQ98(y,n,o).. eta_theta_max(y,n,o)=L=u_theta_max(y,n
,o)*BigM2;

370 EQ99(y,g,n,o).. mu_Cmin(g,n,o)=L=[1-u1(y,g,n,o)]*
BigM3;

371 EQ100(y,g,n,o).. gamma_Cmin(y,g,n,o)=L=u1(y,g,n,o)*
BigM3;

373 EQ101(y,g,n,o).. mu_Cmax(g,n,o)=L=[1-u2(y,g,n,o)]*
BigM3;

374 EQ102(y,g,n,o).. gamma_Cmax(y,g,n,o)=L=u2(y,g,n,o)*
BigM3;

376 EQ103(y,g,n,o).. mu_Smin(g,n,o)=L=[1-u3(y,g,n,o)]*
BigM3;

377 EQ104(y,g,n,o).. gamma_Smin(y,g,n,o)=L=u3(y,g,n,o)*
BigM3;
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379 EQ105(y,g,n,o).. mu_Smax(g,n,o)=L=[1-u4(y,g,n,o)]*
BigM3;

380 EQ106(y,g,n,o).. gamma_Smax(y,g,n,o)=L=u4(y,g,n,o)*
BigM3;

382 EQ107(y,g,n,o).. mu_Emin(g,n,o)=L=[1-u5(y,g,n,o)]*
BigM3;

383 EQ108(y,g,n,o).. gamma_Emin(y,g,n,o)=L=u5(y,g,n,o)*
BigM3;

385 EQ109(y,g,n,o).. mu_Emax(g,n,o)=L=[1-u6(y,g,n,o)]*
BigM3;

386 EQ110(y,g,n,o).. gamma_Emax(y,g,n,o)=L=u6(y,g,n,o)*
BigM3;

388 EQ111(y,n,o).. mu_Dmin(n,o)=L=[1-u7(y,n,o)]* BigM3;
389 EQ112(y,n,o).. gamma_Dmin(y,n,o)=L=u7(y,n,o)*BigM3;

391 EQ113(y,n,o).. mu_Dmax(n,o)=L=[1-u8(y,n,o)]* BigM3;
392 EQ114(y,n,o).. gamma_Dmax(y,n,o)=L=u8(y,n,o)*BigM3;

394 EQ115(y,n,m,o)$Omega(n,m)..mu_F(n,m,o)=L=[1-u9(y,n,
m,o)]*BigM3;

395 EQ116(y,n,m,o)$Omega(n,m).. gamma_F(y,n,m,o)=L=u9(y,
n,m,o)*BigM3;

397 EQ117(y,n,o).. mu_theta_min(n,o)=L=[1-u10(y,n,o)]*
BigM3;

398 EQ118(y,n,o).. gamma_theta_min(y,n,o)=L=u10(y,n,o)*
BigM3;

400 EQ119(y,n,o).. mu_theta_max(n,o)=L=[1-u11(y,n,o)]*
BigM3;

401 EQ120(y,n,o).. gamma_theta_max(y,n,o)=L=u11(y,n,o)*
BigM3;

403 MODEL EQUILIBRIA /ALL/;
404 OPTION OPTCR =0;
405 SOLVE EQUILIBRIA USING MIP MAXIMIZING TP;
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Chapter 7
Deciding on Alternative Investments: A Real
Options Approach

Investment decisions in power plants and other assets are typicallymade under evolv-
ing uncertainties. Power companies often have managerial discretion over the timing
of the investment as well as flexibility regarding the type of technology. By abstract-
ing from some real-world details, the real options approach provides an elegant
mathematical framework in which to assess the value of such flexibilities to provide
both managerial and policy insights. In this chapter, we introduce the real options
approach and contrast it with the now-or-never net present value perspective. Besides
dealing with the issue of optimal timing, the real options approach also enables a
power company to value operational flexibility, e.g., in the form of faster ramping, as
compound options. Other flexibilities, such as modularized investment and endoge-
nous capacity choice, are also amenable to analysis via this approach. Finally, the
impact of risk aversion is explored, and the chapter concludes with extensions and
exercises for further analysis.

7.1 Assumptions and the Need for Dynamic Programming

In previous chapters, we observed that it may be beneficial to delay investment in
new technologies when there is uncertainty concerning prices or performance. For
example, consider a small power company that may invest in a new power plant
from which it will earn revenues by selling the generated electricity at the prevailing
spot price of power and incur costs associated with fuel purchases.1 At the time of
investment, the company must pay a one-time capital cost to cover the expenses
associated with purchasing the equipment and installing it. Subsequently, there may
be operating and maintenance (O&M) expenses not related directly to fuel costs.
The basic question in engineering economics is, “Is it profitable to proceed with the

1Of course, there may be other streams of revenue, e.g., from feed-in tariffs (FITs) or renewable
energy certificates (RECs), and the possibility to sell the power in various types of markets, e.g.,
futures, day-ahead, and balancing. We neglect these possibilities for the sake of exposition.
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investment now?” For this purpose, it is straightforward to calculate the expected
now-or-never net present value (NPV) of investment and to determine whether it
warrants immediate investment.

However, if the power company has exclusive rights to invest at a particular
location, e.g., because of licensing agreements, then it also has the discretion to
consider investing at a later date. Indeed, given the trajectory of electricity and fuel
prices, it may be beneficial to delay the adoption decision by a year. In doing so, the
power company must trade off the following three aspects in determining the correct
timing:

1. The marginal benefit from postponing the investment cost. Rather than paying
the full investment cost now, delaying the project’s start by a year would mean
incurring the discounted investment cost.

2. The marginal benefit from starting the project with higher electricity prices or
lower fuel prices. It may be profitable to invest immediately, but the trajectory of
prices may be such that it is beneficial to delay adoption.

3. The marginal cost from forgone cash flows in the waiting period. In effect, the
cash flows that the power company could have been earning are an opportunity
cost that must be figured into its decision.

In general, if the power company has the discretion to defer investment perpetually,
then what should be the optimal time to invest? For example, in Fig. 7.1, the NPV
of a hypothetical power plant is given as a function of the current electricity price.
In addition to being able to invest immediately, the power company may undertake
the same project in five or ten years’ time. Depending on the current electricity
price and its growth rate, it may be optimal to invest immediately, wait five years,
wait ten years, or never invest. Thus, the NPV of the overall investment opportunity
is the upper envelope of the three NPV functions as well as zero. Furthermore, if
underlying prices are uncertain, then how would the optimal investment decision
be affected? How would characteristics of alternative technologies, e.g., operational
flexibility or sizing, affect the investment decision? Would a modular investment
strategy make sense in certain situations? Finally, how would the decisions change if
the power company were risk averse? Tackling all of these features within an elegant
mathematical framework would be desirable in order to elicit managerial insights.

While the timing question may be addressed adequately via the now-or-never
NPV approach, the analysis becomes cumbersome and leads us to propose a more
suitable framework for decision making: real options. Essentially, real options is a
dynamic programming approach to making optimal decisions in which investment
and operational opportunities are thought of as options on real (rather than finan-
cial) assets. In finance, an “option” refers to an instrument that provides the holder
with the right, but not the obligation, to obtain an asset in exchange for a so-called
strike price [20]. Given suitable simplifying assumptions, real options can provide
powerful insights into the value of managerial flexibility in appraising alternative
investment proposals. For example, the now-or-never NPV approach would not be
able to distinguish between investing in a single 100 MW power plant and investing
in two 50 MW modules constructed sequentially when there is uncertainty about
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Fig. 7.1 NPV of power plant in different starting years

the electricity price. Yet intuitively, most managers would attribute more value to
the modular approach, even though the now-or-never NPV approach would give the
same expected value. Hence in this chapter, we abstract from some of the details
of the previous chapters in order develop the intuition and methodology for apply-
ing real options analysis to investment and operational problems in the electricity
industry.

Before proceeding to the exposition of the real options approach, we first state the
assumptions and define the notation to be used for the rest of this chapter. Without
loss of generality, we assume that the electricity price at time t ≥ 0, Et , follows a
geometric Brownian motion (GBM). First, a Brownian motion (BM) may intuitively
be thought of as a continuous-time analogue of a random walk with drift [35]. In
other words, the absolute changes in the value of a random parameter following a
BM are normally distributed. Second, in dealing with prices, it is convenient to limit
the range of realizations to be nonnegative.2 Thus, rather than considering absolute
changes, it is expedient to deal with percentage changes, and a GBM is a stochastic
process in which the percentage changes (rather than absolute changes) in the value
are normally distributed. Consequently, if Et follows a GBM, then:

2Because of nonconvexities in power plant operations such as startup costs and minimum uptimes,
electricity pricesmay actually become negative during certain hours. For example, it may be cheaper
for a power plant with high startup costs to remain online even during off-peak periodswhen demand
is low. Thus, the power plant effectively pays to continue generation [22]. Nevertheless, we assume
in this chapter for the sake of clarity that prices are nonnegative.
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dEt = αEtdt + σ Etdzt , (7.1)

where dzt is the increment to a BM at time t , α is the annualized drift rate, σ ≥ 0 is
the annualized percentage volatility, and E0 ≡ E .3

Illustrative Example 7.1 GBM sample paths

If we ignore the stochastic dzt term, then we may derive the expected value of the
GBM in year t conditional on E as EE [Et ] = Eeαt . In effect, the GBM, on average,
exhibits exponential growth. Once the stochastic dzt term is considered, sample paths
for the GBM may be generated that evolve with uncertainty around the conditional
expectation. In Fig. 7.2, the forecast value, EE [Et ] = Eeαt , is plotted (solid series)
along with five sample paths (dotted series) from a GBMwith parameters α = 0.10,
σ = 0.20, and E = 50 over a period of ten years. Note that the forecast value after
ten years is 50e0.10×10 = 135.91. �

3There is considerable debate over whether energy prices follow BMs or mean-reverting processes.
For example, Pindyck [32] analyzes 127 years of coal, natural gas, and oil prices to test for mean
reversion. He finds that while such energy prices are indeed mean reverting, the rate of mean
reversion is so low that using aGBMassumption for the purposes of investment analysis is “unlikely
to lead to large errors.” Combined with the fact that real options models in the BM family typically
lead to closed-form solutions, we retain the GBMassumption for modeling long-term energy prices.
However, this may not be valid for short-term operational analyses in which the electricity price is
marked by stronger mean reversion and spikes [8].
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Taking the dynamic programming approach (see Appendix E for a summary)
to solving real options problems [12], we assume that all cash flows are real and
the exogenous discount rate is ρ > α. Without loss of generality, we assume that
the power company holds a perpetual option to invest in a power plant that will
last forever once constructed. The latter assumption about infinite lifetime may be
easily relaxed. However, the former is necessary to ensure analytical solutions that
will facilitate insights. Furthermore, it may be justified by the fact that typically, an
investor in the electricity industry will have monopoly rights to build a facility at a
particular location, e.g., through either an agreement with the municipal authority
or rights to the land. Finally, the impact of a finite option to build on the optimal
investment threshold price is weak when the time to expiration is relatively large.

At the optimal time, the power company pays a deterministic capital cost, I (in
$), to trigger the investment in the power plant. For now, we disregard the capacity
size of the facility, i.e., we assume that it generates a notional 1 MWh of electricity
per annum. Thus, I may be interpreted as a per-unit capacity cost. We assume that
the power plant is constructed immediately once ordered by the power company4

and starts generating electricity at heat rate H (in MWhth /MWh), which is sold at
price Et (in $/MWh). For now, we also assume that the fuel price at time t , Ft (in
$/MWhth), is constant, i.e., Ft = F . In subsequent sections, we will explore the
implications of relaxing some of these assumptions. However, in order to establish
a benchmark and to gain intuition for how investment with a deferral option differs
from a now-or-never NPV approach, we proceed to a stylized example in Sect. 7.2
with investment in a single power plant of given capacity. Next, in Sects. 7.3 and
7.4, we tackle flexibility in operations and modularity in investment, respectively.
Sections7.5 and 7.6 allow for the plant’s capacity to be a decision variable in either
a continuous or discrete setting. In order to examine the effect of risk aversion on
investment timing, we expand the framework in Sect. 7.7 to incorporate concave
utility functions. In Sect. 7.8, we summarize the chapter and provide an overview of
the recent literature. End-of-chapter exercises are included in Sect. 7.9. Section7.10
provides MATLAB codes for solving numerical examples.

The nomenclature for the rest of the chapter is as follows:

Indices

i, i ′ Index for states.
j Index for projects.
s, t Index for time.

Parameters

A j Investment cost term for power plant j with endogenous sizing [$/(MWh)2].

4Depending on the type of facility, this may not be a reasonable assumption. For example, wind
farms, solar plants, and run-of-river hydro plants can be constructed relatively quickly because
they use standardized components. Nuclear power plants, however, are notorious for time and cost
overruns because of the complexity of the task and the lack of suitable sites. Lead times for fossil-
fueled installations are somewhere in the middle, e.g., taking up to two years for gas-fired plants
and five years for coal plants. For how to handle this “time-to-build” problem, see [28].
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B j Investment cost superscript for power plant j with endogenous sizing (unit-
less).

Et Electricity price at time t [$/MWh].
Ft Fuel price at time t [$/MWhth].
H j Heat rate of power plant j [MWhth /MWh].
I j Investment cost of power plant j [$].
K j Annual electricity output of power plant j [MWh].
Si,i

′, j Switching cost between states i and i ′ of power plant j [$].

Constants and Rates

α Percentage growth rate [1/year].
β1(β2) Positive (negative) root of the characteristic quadratic.
γ Relative risk aversion parameter.
ρ Discount rate [1/year].
σ Percentage volatility [1/year].

Functions

I (K j ) Investment cost for power plant j with endogenous capacity sizing [$].
Q(β) Characteristic quadratic function.
U (E) Utility function given electricity price E .
V j (E) Expected now-or-never NPV of power plant j given electricity price E

[$].
W j

i (E) Value of power plant j in state i given electricity price E [$].

Variables

ai,1(ai,2) Coefficient for the positive (negative) branch of the option value function
in state i .

κ j (E) Optimal size for power plant j given current electricity price E [MWh].
ξ j Optimal investment threshold price for power plant j [$/MWh].
ξ i,i ′, j Optimal switching threshold from state i to state i ′ for power plant j

[$/MWh].
ξ
j
N PV Now-or-never NPV investment threshold price for power plant

j [$/MWh].
τ j Optimal stopping time for investment in plant j .

7.2 Optimal Timing Versus Now-or-Never Net Present
Value Approaches

In the now-or-never NPV approach, the expected discounted revenues of a project
are compared with its investment cost. The instantaneous cash flows of a power plant
with heat rate H at time t are Et − HFt . Assuming that the electricity price follows
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a GBM and that the fuel price is constant at F , the expected now-or-never NPV of
such a power plant is:

V (E) = EE

[∫ ∞

0
(Et − HF) e−ρt dt

]

− I

⇒ V (E) =
∫ ∞

0

(
Eeαt − HF

)
e−ρt dt − I

⇒ V (E) = E

ρ − α
− HF

ρ
− I. (7.2)

In Eq. (7.2), we use the fact that the conditional expectation of a continuous random
variable involves taking an integral. Thus, the first line is effectively a double inte-
gration, and without loss of generality, the order of integration may be reversed. We
use this fact in the second line by moving the conditional expectation operator inside
the integral with respect to time. Since EE [Et ] = Eeαt , we obtain the expression in
the second line, and evaluating this integral yields the result in the final line. Intu-
itively, it states that the expected now-or-never NPV of such a power plant is the
difference between the present value of the operating cash flows (stemming from
electricity sales and fuel purchases) and the up-front investment cost. Consequently,
if the option to defer investment is ignored, then investment occurs immediately as
long as V (E) ≥ 0. Otherwise, investment never occurs.

Rather than investing immediately, it may be desirable for the power company to
postpone taking action. For example, the electricity price may be likely to increase
in the next few years. The increase in expected revenues along with the delay in
paying the investment cost could make deferral favorable. However, the forgone
revenues from not having an active power plant in the intervening years are an
opportunity cost of delaying that would have to be factored into the decision. Thus,
the power company could consider waiting T years from now and then investing
immediately in the power plant. The expected NPV of such a strategy is simply
e−ρT

EE [V (ET )] = Ee−(ρ−α)T

ρ−α
− HFe−ρT

ρ
− I e−ρT , i.e., it is the discounted expected

NPV of a power plant that is constructed in T years when the electricity price is ET .
To elaborate, the expected NPV of a power plant that is constructed in T years is
EE

[∫ ∞
T (Et − HF) e−ρt dt

] − I e−ρT . Note that the conditional expectation may be
written as EE

[
EET

[∫ ∞
T (Et − HF) e−ρt dt

]]
because of the law of iterated expecta-

tions, i.e., E [X ] = E [E [X |Y ]], where X and Y are random variables. Furthermore,
since theGBM is aMarkov process, i.e., the probabilistic structure of the future given
the present is independent of the past, the inner conditional expectation may be ren-
dered as

∫ ∞
0

(
ET eαt ′ − HF

)
e−ρ(t ′+T )dt ′ after the change of variable t ′ = t − T .

Thus, this integral becomes e−ρTV (ET ) after including the discounted investment
cost.

Illustrative Example 7.2 Investment timing at discrete points in time

Using parameter values of I = 100, ρ = 0.10, α = 0.05, F = 20, and H = 2.5,
we obtain the value functions for T = 0, T = 5, and T = 10 in Fig. 7.1. We first
note that since the power plant is to generate a notional 1 MWh of electricity per
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annum, this results in an investment cost of $876/kW. Also, the heat rate implies a
40% electrical conversion efficiency. These two parameters are in line with the char-
acteristics of most gas-fired plants. Next, in terms of investment timing, if the power
company can construct the plant at only these three points in time, then its optimal
decision is dependent on the current electricity price. For example, if the current
electricity price is $25/MWh, then it is optimal to invest in ten years. This is because
the electricity price will need a decade to increase to a level that makes the plant
profitable. Plus, the investment cost will be discounted. On the other hand, a rela-
tively high current electricity price, e.g., greater than $60/MWh, warrants immediate
investment. Intuitively, waiting is not worthwhile because the price is high enough to
make the opportunity cost of not investing more than offset any benefit from deferral.
An electricity price in the middle of the range makes it optimal to invest after five
years, whereas a very low electricity price means that it is optimal never to invest.
Therefore, the value of the entire investment opportunity to the power company is
the upper envelope of the value functions as well as zero in Fig. 7.1. �

Suppose now that instead of having the option to invest in the power plant only
at certain discrete points in time, i.e., T = 0, 5, 10, the power company may start
the project at any point in time. In that case, the upper envelope in Fig. 7.1 reflecting
the value of the investment opportunity should become a smooth curve and indicate
the optimal investment threshold price. Using dynamic programming, we will derive
this function and threshold rigorously. We assume that there are two states of the
world: 0, in which the power company is waiting to invest, and 1, in which it has an
active power plant. Working backward from state 1, we know that its value function
is just the expected present value of an active power plant, i.e.:

W1(E) = E

ρ − α
− HF

ρ
. (7.3)

Now, in state 0, we begin with the Bellman equation in order to value W0(E) and to
determine the optimal investment threshold price, ξ :

ρW0(E)dt = EE [dW0] . (7.4)

This states that the instantaneous return on the option to invest is equal to its expected
appreciation. Intuitively, an external assessor’s required rate of return on the option
to build the power plant, ρ, must equal the expected value from owning the right to
build the power plant outright. Expanding the right-hand side of Eq. (7.4) via Itô’s
lemma and re-arranging, we obtain the following second-order ordinary differential
equation (ODE):

ρW0(E)dt = EE

[

W ′
0 (E)dE + 1

2
W ′′

0 (E) (dE)2
]

⇒ 1

2
σ 2E2W ′′

0 (E) + αEW ′
0 (E) − ρW0(E) = 0, (7.5)
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where we use the fact that EE [dE] = αEdt and (dE)2 = σ 2E2dt in going from the
first line to the second.

The general solution to the ODE in Eq. (7.5) is of the power form, i.e.:

W0(E) = a0E
β, (7.6)

which is subject to the following boundary conditions:

limE→0 W0(E) = 0 (7.7a)

W0(ξ) = W1(ξ) − I (7.7b)

W ′
0 (ξ) = W ′

1 (ξ). (7.7c)

Intuitively, Eq. (7.7a) states that the option to invest in the power plant becomes
worthless as the electricity price tends to zero. Since zero is an absorbing state
for the GBM, it follows that there will be no value from either waiting to invest
in such a plant or having an active one immediately. Next, Eq. (7.7b) is the value-
matching condition, which requires the value of the investment opportunity to equal
the expected NPV,W1(E) − I , at the optimal investment threshold price, ξ . Indeed,
the value lost from killing the option must equal the value gained from an active
power plant at this trigger price. Finally, Eq. (7.7c) is the smooth-pasting condition,
which is actually a first-order condition for optimization that reflects the fact that the
marginal benefit of waiting must equal the marginal cost of waiting at ξ .

Substituting the function from Eq. (7.6) and its derivatives into Eq. (7.5), we
obtain:

Q(β) ≡ 1

2
σ 2β(β − 1) + αβ − ρ = 0, (7.8)

where β is taken as a generic parameter andQ(β) is the fundamental characteristic
quadratic function, which implicitly defines β1 and β2 as its two roots. Although both
of these roots can be solved for explicitly, it becomes apparent from the geometry
of the problem that β1 > 1 and β2 < 0 as in Fig. 7.3. To observe this, note that
the expression in Eq. (7.8) is an upward-facing parabola with Q(0) = −ρ < 0 and
Q(1) = α − ρ < 0. The latter inequality implies that β1 > 1 because the parabola is
still negative at β = 1. Likewise, the former inequality implies that β2 < 0 because
the parabola is still negative at β = 0.

Now, if a0,1Eβ1 is a solution to the ODE in Eq. (7.5), then so is a0,2Eβ2 , where
a0,1 and a0,2 are endogenous coefficients that depend on ξ . Thus, we have:

W0(E) = a0,1E
β1 + a0,2E

β2 . (7.9)

Since the latter term in Eq. (7.9) goes to infinity as E goes to zero, it is inconsistent
with the boundary condition in Eq. (7.7a). Therefore, it must be the case that a0,2 = 0,
and, consequently, we obtain:
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Fig. 7.3 Characteristic quadratic function, Q(β), for α = 0.05, ρ = 0.10, and σ = 0.20

W0(E) = a0,1E
β1 . (7.10)

We now use the expression from Eq. (7.10) in Eqs. (7.7b) and (7.7c) to solve for ξ

and a0,1:

a0,1ξ
β1 = ξ

ρ − α
− HF

ρ
− I (7.11)

β1a0,1ξ
β1−1 = 1

ρ − α

⇒ a0,1 = ξ 1−β1

β1(ρ − α)
. (7.12)

Substituting the solution for a0,1 from Eq. (7.12) into Eq. (7.11), we obtain:

ξ

β1(ρ−α)
= ξ

ρ−α
− HF

ρ
− I

⇒ ξ =
(

β1

β1−1

) (
ρ−α

ρ

)
(HF + ρ I ). (7.13)

For comparison with the now-or-never NPV, we set the expression forW1(E) − I

to zero in Eq. (7.3) and solve for E to obtain ξN PV =
(

ρ−α

ρ

)
(HF + ρ I ). This

means that investment should occur only if the current price is high enough to
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cover the amortized operating and investment costs. By contrast, via the real options
approach, ξ in Eq. (7.13) results in a higher threshold price for investment because

β1

β1−1 > 1.5 This discretion to wait for a higher threshold vis-à-vis the now-or-never
NPVapproach stems froma combination of positive drift and volatility in the electric-
ity price. Note that even if σ = 0, then the optimal investment threshold in Eq. (7.13)
is greater than the now-or-never one. In particular, limσ→0 β1 = ρ

α
from Eq. (7.8),

which leads to limσ→0 ξ = HF + ρ I > ξN PV . Indeed, even without uncertainty in
the electricity price, as long as the power company has the discretion to wait for
a higher price at which to launch the power plant’s operations, it will do so until
the marginal benefit of waiting is just equal to the marginal cost of waiting, which
results from the forgone cash flows in the waiting period. With greater uncertainty,
the marginal benefit of waiting increases by more than the marginal cost because
the latter depends only on the opportunity cost of lost cash flows in the immediate
future. However, the marginal benefit of waiting is related to the possibility of a
higher starting price for the power plant in the future, which is affected to a greater
extent by uncertainty. Hence, with the deferral option, the value of the power plant
project is higher, yet this also increases the opportunity cost of killing the option to
wait, thereby leading to a higher investment threshold price.

Insights about investment under uncertainty may be facilitated via numerical
examples.We first consider the investment decision in Illustrative Example 7.3. Next,
we explore sensitivity analyses with respect to σ , α, and ρ in Illustrative Examples
7.4–7.6.

Illustrative Example 7.3 Investment under uncertainty with continuous time
Here, we use α = 0.05, ρ = 0.10, σ = 0.20, I = 100, H = 2.5, and F = 20 as

base parameters. First, we plot the expected NPV and value of the investment oppor-
tunity with respect to the electricity price, E , in Fig. 7.4. The expected NPV function,
W1(E) − I , is the same as the immediate investment NPV in Fig. 7.1. Recall that
when we allowed investment to occur only at discrete points in time, the value of
the investment opportunity comprised the upper envelope of the NPV functions. By
contrast, the real options approach enables such a comparison to be made at every
infinitesimal point in time. Thus, as the time intervals between alternative investment
opportunities go to zero, the kinked function in Fig. 7.1 becomes a smooth convex
one, as indicated in Fig. 7.4. Note that the expected NPV of immediate investment,
W1(E) − I , equals zero for ξN PV = 30. However, the value of the investment oppor-
tunity stemming from the real options approach,W0(E), is strictly above the expected
NPV, thereby revealing that there is positive value to waiting. In fact, it is optimal
to wait until the electricity price hits the threshold ξ = 79.30. In the parlance of
financial options, it is worthwhile retaining the option until it is deep “in the money.”
Furthermore, as the initial electricity price goes to zero, the value of the option to
invest also goes to zero because investment never occurs in that case. �

5To see this, note that β1
β1−1 = 1

1− 1
β1

. Since β1 > 1, the denominator of the latter expression is

strictly less than one.
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Fig. 7.4 ExpectedNPV,W1(E) − I , and value of the investment opportunity,W0(E), for α = 0.05,
ρ = 0.10, σ = 0.20, I = 100, H = 2.5, and F = 20

Illustrative Example 7.4 Sensitivity analysis of investment under uncertainty with
respect to volatility

Here,wevaryσ while holding all other parameters constant in order to examine the
sensitivity of ξ to uncertainty. In Fig. 7.5, we note that the now-or-never investment
threshold, ξN PV , is not affected by uncertainty and remains constant at $30/MWh.
However, the real options threshold, ξ , increases from a value of $60/MWh (for
σ = 0) to nearly $90/MWh (for σ = 0.25). Thus, greater uncertainty increases the
investment threshold as the value of waiting becomes larger.6 Consequently, the
“wedge” between the now-or-never and real options thresholds, β1

β1−1 , increases with

uncertainty as well.7

An example of the value functions for σ = 0 is given in Fig. 7.6 to illustrate that
there is a value inwaiting since the electricity price is still going to increase. However,
without the presence of uncertainty, its magnitude is reduced.

The effect of uncertainty on the value of the investment opportunity is summarized
in Fig. 7.7, in which the relative value of W0(E) to W1(E) − I at E = 50 is plotted.

6Although it may be appealing to think of a higher investment threshold price as “delaying” the
investment timing, in fact, as the volatility increases, so does the conditional probability that the
threshold price will be reached from a given initial price. Intuitively, the higher volatility also
increases the likelihood of extremely high (as well as extremely low) prices. Therefore, the overall
impact on timing is ambiguous. For a rigorous analysis, see [27].
7The formal proof of this is left as an exercise at the end of this chapter.
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Hence, higher uncertainty increases the discretion to wait, which leads to a higher
investment threshold. �

Illustrative Example 7.5 Sensitivity analysis of investment timing with respect to
the drift rate

In Fig. 7.8, we vary α while holding all other parameters constant. Intuitively,
we would postulate that an increase in the drift rate would increase the investment
threshold since it would be desirable to wait for a higher future electricity price
at which to launch the power plant’s operations. Somewhat surprisingly, ξ actually
decreaseswithα. In order to explain this seemingly counterintuitive outcome,we plot
ξN PV and note that it is also decreasing but at a faster rate. Indeed, from Eq. (7.13),
an increase in α leads to a decrease in the now-or-never threshold, ξN PV . But if
we look at the expected NPV of the power plant upon investment at ξ , we obtain(

β1

β1−1

) [
HF
ρ

+ I
]

− HF
ρ

− I . In other words, it is the “wedge” between ξ and ξN PV

that is affected by α. Plotting the wedge, i.e., β1

β1−1 in Fig. 7.8, we see that it is indeed
increasing with respect to α, i.e., a higher drift rate increases the expected NPV of
investment at the real options trigger. �

Illustrative Example 7.6 Sensitivity analysis of investment timing with respect to
the discount rate
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Fig. 7.8 Sensitivity of ξ , ξN PV , and
β1

β1−1 with respect to α for σ = 0.20, ρ = 0.10, I = 100,
H = 2.5, and F = 20

A similar breakdown of the behavior of ξ may be done with respect to ρ. Again,
intuitively, we would imagine that an increase in the discount rate would make the
future less important, thereby reducing the incentive to wait. Yet, Fig. 7.9 tells a story
that seems to belief our understanding since ξ actually increases with ρ. However, as
with the analysis with respect to α, it is important to note that the wedge, β1

β1−1 , is the
main driver of the result. Plotting it respect to ρ, we are able to reconcile the finding
with our intuition: a higher discount rate facilitates investment even as it lowers the
expected NPV of an operational power plant. �

7.3 Operational Flexibility

In Sect. 7.2, we focus on the optimal timing of the investment decision, assuming
that the power plant operates forever. In other words, the power company’s deci-
sion was completely irreversible. However, in many cases, there is at least partial
reversibility in the form of subsequent managerial discretion to abandon, modify, or
suspend temporarily the power plant. In this section, we focus on the latter aspect,
i.e., treatment of the so-called compound option to turn the power plant on and off
again after it has been constructed.

Given the volatile nature of energy prices, such flexibility may be highly valuable.
Indeed, [9] showed that by accounting for the option value of such flexibility, plants
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being sold in California after deregulation in the late 1990s were valued at higher
than their book values as indicated by the NPV approach. In particular, gas-fired
power plants have the flexibility to ramp up and down relatively quickly, although
this occurs at a cost and may be constrained by minimum uptimes. For example, a
gas-fired power plant with a maximum power capacity of 431 MW requires 1200 GJ
of fuel (or approximately 333 MWhth) for a “hot start” (immediately one hour after
the plant is shut down), which leads to a startup cost of almost $7000, assuming a fuel
price of $20/MWhth . These calculations are based on a combined-cycle gas turbine
(CCGT) plant installed in 2010 in Aghada, Republic of Ireland [41]. Furthermore,
according to the same source, CCGT plants have constraints on minimum uptimes
and downtimes (typically four hours each).

Using the real options approach, we can analyze how the availability of such
partial flexibility in the plant’s operations influences not only the value of the invest-
ment opportunity but also the initial investment decision. Intuitively, any power plant
operator would value a flexible power plant more. However, the value of this flexi-
bility is difficult to quantify via a now-or-never NPV approach. For example, at what
threshold electricity price would it be optimal to suspend or to resume operations?
If the value of operational flexibility increases with electricity price volatility, then
how does it affect the investment threshold vis-à-vis that from Sect. 7.2?
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Fig. 7.10 State-transition diagram for a power plant with operational flexibility

In order to focus on the implications of operational flexibility, we assume that
after investment, the plant may be in one of two states: on (state 1) or off (state 2).8

Transitioning between these two states incurs fixed resumption and suspension costs,
S2,1 and S1,2, respectively, as indicated in Fig. 7.10. Associated with these transitions
are threshold prices, ξ 2,1 and ξ 1,2, which will be determined endogenously.9 Thus,
we abstract from technical constraints of actual power plants such as finite ramping
rates and minimum uptimes and downtimes. Instead, we assume that these features
may be captured via fixed switching costs.

Although the sequence of decisions depicted in Fig. 7.10 begins in state 0 with
the option to invest and progresses to state 1 with the valuation of an active power
plant with the suspension option, we solve the problem using backward induction.
Specifically, we start by considering the operational decisions of the power plant
given that the investment decision with associated threshold, ξ , has already been
undertaken. We define Wi (E) as the value of the power plant in state i and use
dynamic programming to find not only the value functions but also the optimal
switching thresholds. First, we consider state 1 and note that the value of the plant
should comprise both the expected PV of cash flows from indefinite operations and
the option value to shut down. Intuitively, the latter component should increase in
value as the electricity price decreases.Wenow formally determine the value function
in state 1 by setting up the Bellman equation while keeping in mind that it should be
adjusted from that in Eq. (7.4) to reflect cash flows from ongoing operations:

ρW1(E)dt = EE [dW1] + (E − HF) dt. (7.14)

8Instead of two discrete on–off states, it may also be possible to have several operating states ranging
from zero to full capacity. Alternatively, continuous adjustment of the plant’s output may be handled
by specifying a production function as in Chap.6 of [12].
9In the limit as these fixed transition costs go to zero, the problem collapses to one of costless
switching, e.g., as in [30]. The optimal switching thresholds then converge to the operating cost
of the plant, i.e., HF . Intuitively, it is optimal to shut down (restart) the plant when the electricity
price drops below (increases above) the operating cost.
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The second term on the right-hand side of Eq. (7.14) is precisely the instantaneous
cash flow from operations. Next, we expand dW1 via Itô’s lemma as in Sect. 7.2 and
rearrange it to obtain a second-order ODE similar to that in Eq. (7.5):

1

2
σ 2E2W ′′

1 (E) + αEW ′
1 (E) − ρW1(E) + E − HF = 0. (7.15)

The solution to the ODE in Eq. (7.15) is similar to that in Eq. (7.9) but with an extra
term reflecting the expected PV of cash flows from a perpetually operating power
plant:

W1(E) = a1,1E
β1 + a1,2E

β2 + E

ρ − α
− HF

ρ
, (7.16)

where β1 and β2 are still the positive and negative roots, respectively, of the character-
istic quadratic function from Eq. (7.8). Here, E

ρ−α
− HF

ρ
represents the expected PV

of a power plant that operates forever, and a1,1Eβ1 + a1,2Eβ2 is the value of the option
to suspend operations. Economically, we require limE→∞ W1(E) = E

ρ−α
− HF

ρ
, i.e.,

the value of a power plant at very high electricity prices should be simply that of one
that never shuts down. Indeed, it is only for relatively low electricity prices that the
plant would ever shut down. Hence, we must have a1,1 = 0, thereby resulting in:

W1(E) = a1,2E
β2 + E

ρ − α
− HF

ρ
. (7.17)

Second,we similarly tackle the value of a suspended power plant, i.e., one that is in
state 2. Since there are no instantaneous cash flows, the Bellman equation becomes:

ρW2(E)dt = EE [dW2] . (7.18)

Again, by applying Itô’s lemma to the right-hand side and rearranging, we obtain a
second-order ODE:

1

2
σ 2E2W ′′

2 (E) + αEW ′
2 (E) − ρW2(E) = 0. (7.19)

The solution is W2(E) = a2,1Eβ1 + a2,2Eβ2 , which becomes the following after
application of the boundary condition limE→0 W2(E) = 0:

W2(E) = a2,1E
β1 . (7.20)

Hence, the value of the power plant in state 2 is simply the value of the option to
resume operations in the future, which is increasing with the electricity price.

From Eqs. (7.17) and (7.20), we have two endogenous variables, a1,2 and a2,1,
as well as two thresholds, ξ 1,2 and ξ 2,1, to solve for. Thus, we need a total of four
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equations. We obtain these by writing a pair of value-matching and smooth-pasting
conditions for each of the two operational transitions. First, in shutting down the
power plant, i.e., going from state 1 to 2, we obtain:

W1(ξ
1,2) = W2(ξ

1,2) − S1,2

⇒ a1,2
(
ξ 1,2

)β2 + ξ 1,2

ρ − α
− HF

ρ
= a2,1

(
ξ 1,2

)β1 − S1,2 (7.21a)

W ′
1 (ξ 1,2) = W ′

2 (ξ 1,2)

⇒ β2a1,2
(
ξ 1,2

)β2−1 + 1

ρ − α
= β1a2,1

(
ξ 1,2

)β1−1
. (7.21b)

Second, we have a pair of such equations for the transition from state 2 to 1:

W2(ξ
2,1) = W1(ξ

2,1) − S2,1

⇒ a2,1
(
ξ 2,1

)β1 = a1,2
(
ξ 2,1

)β2 + ξ 2,1

ρ − α
− HF

ρ
− S2,1 (7.22a)

W ′
2 (ξ 2,1) = W ′

1 (ξ 2,1)

⇒ β1a2,1
(
ξ 2,1)β1−1 = β2a1,2

(
ξ 2,1)β2−1 + 1

ρ − α
. (7.22b)

Intuitively, Eqs. (7.21a)–(7.22b) state that the value gained must equal the value lost
from switching operating modes and that the marginal benefit must equal the mar-
ginal cost from delaying any operational transitions. However, unlike Eqs. (7.11)–
(7.12), the system of equations here with operational flexibility is highly nonlinear.
Therefore, in general, it is not possible to obtain closed-form solutions for the four
unknowns. Instead, wemust resort to numerical methods to find solutions for specific
parameter values. Most computational software packages like Mathematica, MAT-
LAB, and Octave have functions, e.g., fsolve in MATLAB, that solve nonlinear
systems if a guess for the solution is available.

We provide MATLAB code in Sect. 7.10 for solving the nonlinear system result-
ing from Illustrative Example 7.7. But, how should the guess for the solution be
calculated? One way to proceed is to find analytical solutions to a simpler system,
e.g., with a one-time abandonment option from state 1 or a one-time resumption
option from state 2. Considering such a simplified model from state 1, we note that
the resumption option from state 2 will not be available. Thus, the following system
of two equations can be easily solved for guesses ã1,2 and ξ̃ 1,2:

ã1,2
(
ξ̃ 1,2

)β2 + ξ̃ 1,2

ρ − α
− HF

ρ
= −S1,2 (7.23a)
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β2ã1,2
(
ξ̃ 1,2

)β2−1 + 1

ρ − α
= 0. (7.23b)

Solving Eqs. (7.23a)–(7.23b), we obtain ξ̃ 1,2 =
(

β2

β2−1

)
(ρ − α)

[
HF
ρ

− S1,2
]
and

ã1,2 = − (ξ̃ 1,2)
1−β2

β2(ρ−α)
as the guesses for ξ 1,2 and a1,2, respectively. By similarly sim-

plifying Eqs. (7.22a) and (7.22b) to remove the
(
ξ 2,1

)β2 terms, we obtain ξ̃ 2,1 =
(

β1

β1−1

)
(ρ − α)

[
HF
ρ

+ S2,1
]
and ã2,1 = − (ξ̃ 2,1)

1−β1

β1(ρ−α)
as the guesses for ξ 2,1 and a2,1,

respectively. Indeed, even without solving the nonlinear system numerically, we
obtain the insight that with uncertainty and the option to make operational changes,
the switching thresholds lead the decision-maker to be more cautious than the
now-or-never NPV rule in which the plant would be shut down when the elec-
tricity price dropped below

(
HF − ρS1,2

)
> ξ̃ 1,2 and restarted when the elec-

tricity price increased above
(
HF + ρS2,1

)
< ξ̃ 2,1. These results follow because

(
β1

β1−1

) (
ρ−α

ρ

)
> 1and

(
β2

β2−1

) (
ρ−α

ρ

)
< 1 forσ > 0.To see this, note that

(
β2

β2−1

)
<

1 and
(

ρ−α

ρ

)
< 1. Thus,

(
β2

β2−1

) (
ρ−α

ρ

)
< 1. On the other hand,

(
β1

β1−1

)
> 1 but

(
ρ−α

ρ

)
< 1. Since

(
β1

β1−1

)
is the lowest when σ = 0, we can show that even in this

case, we have limσ→0

(
β1

β1−1

)
= ρ

ρ−α
. Hence the product

(
β1

β1−1

) (
ρ−α

ρ

)
must be

greater than 1 for all σ > 0.
As in Sect. 7.2, the optimal investment threshold, ξ 0,1, may be found via value-

matching and smooth-pasting conditions betweenW0(E) andW1(E) − I .We remark
that the optimization must occur in going from state 0 to state 1 rather than state 2
because it would not make sense for the power company to invest I only to have
an idle power plant. For this reason, the thresholds should have the ordering ξ 1,2 <

ξ 2,1 < ξ 0,1. In order to obtain W0(E), we follow the same procedure as in Eq. (7.5)
to obtain:

W0(E) = a0,1E
β1 . (7.24)

Next, value-matching and smooth-pasting conditions yield the following system of
equations:

W0
(
ξ 0,1) = W1

(
ξ 0,1) − I

⇒ a0,1
(
ξ 0,1

)β1 = (
ξ 0,1

)β2 + ξ

ρ − α
− HF

ρ
− I (7.25a)

W ′
0

(
ξ 0,1

) = W ′
1

(
ξ 0,1

)

⇒ β1a0,1
(
ξ 0,1

)β1−1 = β2
(
ξ 0,1

)β2−1 + 1

ρ − α
. (7.25b)
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In contrast to Eqs. (7.11)–(7.12), here an analytical solution is impossible. However,
it is possible to reduce Eqs. (7.25a)–(7.25b) to one nonlinear equation for ξ 0,1:

(β1 − β2) a1,2
(
ξ 0,1)β2 + (β1 − 1)

ξ 0,1

ρ − α
− β1

(
HF

ρ
+ I

)

= 0. (7.26)

Using ξ from Eq. (7.13) as a guess, we can solve numerically for ξ 0,1 and conse-
quently for a0,1. Yet even without an analytical solution, it is possible to prove that
ξ 0,1 < ξ by comparing the implicit definition of ξ 0,1 in Eq. (7.26) with the following
for ξ :

(β1 − 1)
ξ

ρ − α
− β1

(
HF

ρ
+ I

)

= 0. (7.27)

The two equations are identical except for the presence of the (β1 − β2) a1,2
(
ξ 0,1

)β2

term inEq. (7.26), which is strictly positive. This adds to the linear term (β1 − 1) ξ 0,1

ρ−α
,

thereby ensuring that its intersection with the constant β1

(
HF
ρ

+ I
)
is for a lower

threshold price. In Illustrative Examples 7.7 and 7.8, we demonstrate the shapes of
the value functions, perform sensitivity analyses on the thresholds with respect to the
volatility, and provide MATLAB code in Sect. 7.10 for solving the nonlinear system
of equations.

Illustrative Example 7.7 Investment timing with operational flexibility

Using α = 0.05, ρ = 0.10, σ = 0.20, I = 100, S1,2 = S2,1 = 10, H = 2.5, and
F = 20 as base parameters, we plot the value functions as in Fig. 7.11. Note that
the functions W1(E) and W2(E) are defined over the ranges (ξ 1,2,∞) and (0, ξ 2,1),
respectively. Thus, W2(E) is a convex function that has the same gradient asW1(E)

at ξ 2,1 and differs from it by exactly S2,1 at that point. Meanwhile, W1(E) has a
pronounced convex shape only for relatively low values of E , whereas it becomes
asymptotically linear as E → ∞. Indeed, for extremely high electricity prices, the
value of the option to shut down the plant is nearly zero. Consequently, an active
power plant’s value converges to that of a plant that operates forever. However, for
low electricity prices, it becomes optimal to suspend operations and switch to state 2.
Therefore, at ξ 1,2,W1(E) has the same gradient asW2(E) and differs from it by S1,2

at that point. Moreover, the suspension and resumption thresholds at $37.99/MWh
and $61.38/MWh, respectively, are lower and higher, respectively, than the now-
or-never NPV thresholds of $49/MWh and $51/MWh, respectively. Finally, the
value function in state 0 satisfies the value-matching and smooth-pasting conditions
with W1(E) − I at ξ 0,1, which at $76.23/MWh is lower than that of $79.30/MWh
for ξ . �

Illustrative Example 7.8 Sensitivity analysis of operational flexibility with respect
to volatility
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Fig. 7.11 Value functions with operational flexibility for α = 0.05, ρ = 0.10, σ = 0.20, I = 100,
S1,2 = 10, S2,1 = 10, H = 2.5, and F = 20

By varying the volatility parameter, e.g., between 0.15 and 0.35, we investigate
the sensitivity of the thresholds and the relative value of flexibility. In Fig. 7.12,
we show that higher volatility causes the thresholds to spread wider apart. Indeed,
greater uncertainty induces more hesitancy as the value of suspension from an active
state increases, but this value stems from the option value of keeping the discretion
to suspend alive. Likewise, from state 2, higher volatility increases the value of the
option to resume operations by moving to state 1. However, this also increases the
opportunity cost of exercising the option to resume operations, and, as a result, the
power company ismore cautious inmaking the operational change.As for the relative
value of flexibility, we plot in Fig. 7.13 the ratio of a0,1 from Eq. (7.24) to that from
Eq. (7.10) with respect to σ . It increases with volatility because, intuitively, more
uncertainty gives more value to the flexibility option. Here, the power company
would be willing to pay about 3% more for a power plant with such flexibility.
A similar analysis for a California-based distributed generation unit may be found
in [39]. �

7.4 Modularity and Capacity Expansion

Rather than investing in a power plant all at once, it may be desirable to make
incremental capacity additions. One motivation for modularizing adoption of the
power plant is that the power company may prefer to observe how the electricity
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Fig. 7.12 Sensitivity of ξ0,1, ξ1,2, and ξ2,1 with respect to σ with operational flexibility for α =
0.05, ρ = 0.10, I = 100, S1,2 = 10, S2,1 = 10, H = 2.5, and F = 20

price is unfolding and to match capacity to the needs to the market. For example,
technological advances have made it possible for small-scale modules, i.e., less than
300 MW, to be developed even for nuclear power plants [44]. By proceeding to add
capacity in an incremental manner, the power company may benefit from starting
cash flows sooner while adding larger modules later on [16]. Hence, although the
total investment costs of modular units may be higher than that of a single large
unit, these diseconomies of scale may be outweighed by the benefit from optimizing
capacity additions.

In order to explore such modular capacity expansion, we assume that the power
companymay invest in a power plant of total capacity K = K 1 + K 2 either directly or
sequentially.Without loss of generality, we assume that the capital cost from “lumpy”
investment, I , will be the same as the total capital cost from the modular approach,
i.e., I 1 + I 2, where I j is the capital cost of module j . This may be extended to treat
an arbitrary number of modules as well as operational flexibility. Thus, although
we ignore total economies of scale, we nevertheless have I 1

K 1 < I 2

K 2 , i.e., relative
diseconomies of scale in integrating the second module, which reflect difficulties
associated with modifying fixed infrastructure. This is similar to the assumption
made by [25, 40].

Figure7.14 illustrates the sequence of decisions that are possible under the direct
and modular investment strategies. In the former, the only possible transition is
between states 0 and 2. Proceeding backward, state 2 is one in which both modules
are active, i.e., the power company has a perpetually operating plant that outputs
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Fig. 7.13 Sensitivity of relative value of flexibility with respect to σ with operational flexibility
for α = 0.05, ρ = 0.10, I = 100, S1,2 = 10, S2,1 = 10, H = 2.5, and F = 20

K MWh of electricity per year and costs I to install. Thus, the value in state 2,
assuming that the electricity price follows a GBM as in Eq. (7.1), a heat rate of H , a
fuel price of F , and an exogenous discount rate of ρ, is:

W2(E) = K E

ρ − α
− KHF

ρ
. (7.28)

In state 0, the value function reflects simply the option to invest directly in such a
power plant. Consequently, by following the same argument as in Eqs. (7.4)–(7.5),
we have:

W d
0 (E) = ad0,1E

β1 . (7.29)

We let the d denote a “direct” investment strategywith the corresponding endogenous
ad0,1. Via value-matching and smooth-pasting conditions between the functions in
Eqs. (7.28) and (7.29), we obtain the optimal investment threshold price by following
the direct investment strategy:

ξ 0,2 =
(

β1

β1 − 1

)

(ρ − α)

[
I

K
+ HF

ρ

]

. (7.30)

Analogously, we have:
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Fig. 7.14 State-transition diagram for a power plant with two modules

ad0,1 = K
(
ξ 0,2

)1−β1

β1 (ρ − α)
. (7.31)

By contrast, with a modular investment strategy, the power company first invests
in a module of annual output K 1, i.e., going from state 0 to state 1. In state 1, its
value function includes not only the expected PV of cash flows from a module that
operates forever but also the option to upgrade to the second module. Thus, the value
function in state 1 is:

W1(E) = a1,1E
β1 + K 1E

ρ − α
− K 1HF

ρ
. (7.32)

Finally, the value function in state 0 reflects the option value to invest in the first
module with the subsequent option to acquire the second one:

W0(E) = a0,1E
β1 . (7.33)

Under the modular strategy, we need to solve for two investment thresholds, ξ 1,2 and
ξ 0,1, as well as a1,1 and a0,1. We obtain these via four value-matching and smooth-
pasting conditions:

W1
(
ξ 1,2

) = W2
(
ξ 1,2

) − I 2

⇒ a1,1ξ
1,2β1 + K 1ξ 1,2

ρ − α
− K 1HF

ρ
= K ξ 1,2

ρ − α
− K HF

ρ
− I 2 (7.34a)

W ′
1

(
ξ 1,2

) = W ′
2

(
ξ 1,2

)

⇒ β1a1,1ξ
1,2β1−1 + K 1

ρ − α
= K

ρ − α
(7.34b)
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W0
(
ξ 0,1

) = W1
(
ξ 0,1

) − I 1

⇒ a0,1ξ
0,1β1 = a1,1ξ

0,1β1 + K 1ξ 0,1

ρ − α
− K 1HF

ρ
− I 1 (7.34c)

W ′
0

(
ξ 0,1

) = W ′
1

(
ξ 0,1

)

⇒ β1a0,1ξ
0,1β1−1 = β1a1,1ξ

0,1β1−1 + K 1

ρ − α
. (7.34d)

The analytical solutions are:

ξ 1,2 =
(

β1

β1 − 1

)

(ρ − α)

[
I 2

K 2
+ HF

ρ

]

(7.35)

a1,1 = K 2
(
ξ 1,2

)1−β1

β1 (ρ − α)
(7.36)

ξ 0,1 =
(

β1

β1 − 1

)

(ρ − α)

[
I 1

K 1
+ HF

ρ

]

(7.37)

a0,1 = a1,1 + K 1
(
ξ 0,1

)1−β1

β1 (ρ − α)
. (7.38)

In comparing the solutions, we note that ξ 0,1 is independent of ξ 1,2. Indeed,
although the value in state 0 is affected by that of state 1 (since a0,1 depends on a1,1),
the timing of the investment in the first module is myopic, i.e., it is as if the second
module did not exist. This is due to the structure of the sequential decision-making
problem. Recall that the investment is delayed up to the point that the marginal ben-
efit of waiting equals the marginal cost of waiting. From Sect. 7.2, we know that the
former quantity is related to starting the plant at a higher price and reducing the dis-
counted investment cost. Meanwhile, the marginal cost of waiting is the opportunity
cost of not earning cash flows from an active power plant. Now with a subsequent
module, themarginal benefit ofwaiting additionally includes the discounted expected
marginal benefit (from having to wait less until the second module is installed after
the first one is adopted) and the discounted expected marginal cost (from having to
wait longer from the initial point until the option to install the secondmodule is avail-
able). These two extra marginal values cancel out, thereby rendering the effect of the
second module on the timing inconsequential. In order to examine the properties of
modularity, we next perform Illustrative Examples 7.9 and 7.10.
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Fig. 7.15 Value functions with direct investment strategy for α = 0.05, ρ = 0.10, σ = 0.20, I =
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Illustrative Example 7.9 Investment timing with modularity
Let α = 0.05, ρ = 0.10, I 1 = 40, I 2 = 60, K 1 = 0.5, K 2 = 0.5, H = 2.5, and

F = 20. Thus, I = 100 and K = 1.0, and σ is allowed to vary between 0 and 0.35.
First, Fig. 7.15 indicates the value functions with a direct investment strategy. Here,
investment occurs when the electricity price reaches a threshold of $79.30/MWh.
Second, in Fig. 7.16, we have the modular investment strategy. As expected, the
first module is adopted at a lower threshold, i.e., $78.31/MWh, than in the direct
investment strategy.A subsequent price increase to $81.95/MWh is required to trigger
adoption of the second module. �

Illustrative Example 7.10 Sensitivity analysis of modularity with respect to volatil-
ity

In performing sensitivity analysis, we examine how the thresholds change with
uncertainty in Fig. 7.17. As anticipated, all thresholds increase with uncertainty,
with those related to the modular investment strategy sandwiching the one for the
direct investment strategy. The relative value of flexibility from following a modular
approach is sketched out in Fig. 7.18. For the base case of α = 0.05, this relative
value is barely 0.1%. However, with a lower annualized percentage growth rate, it
can comprise nearly 5% of the project’s value. The reason is that a modular strategy
enables the power company to take advantage of revenues from the more economic
module even at relatively low prices before waiting for the right time to complete the
project. Finally, this relative value of modularity decreases with uncertainty since
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an increase in σ warrants delaying investment of any type. Hence, there is less dis-
crepancy between the direct and modular investment strategies. See [31, 38] for
applications of the modular investment approach to gas-fired power plants and dis-
tributed generation facilities, respectively. �

7.5 Continuous Capacity Sizing

Up to now, we have examined managerial discretion with respect to investment tim-
ing, operations, and modularity while assuming that the size of the completed power
plant is simply a constant parameter, K . In reality, the size of the power plant itself
may be a decision variable. Subject to land, permitting, and resource constraints, the
power companymay scale the plant’s capacity in order tomaximize profit.Depending
on the type of plant, the sizing decisionmay be considered continuous or discrete. For
example, in an analysis of distributed generation investment, [29] models gas-fired
units as having discrete capacity sizes with batteries and solar photovoltaic panels
having capacities that are continuous decision variables. Likewise, [2] examines the
optimal investment timing and capacity sizing problem of a run-of-river hydropower
plant inNorway by assuming that the scaling decision variable is continuous. By con-
trast, [14] treats the capacity sizing decision of a wind farm as a discrete one. Thus,
either assumption may be valid depending on the characteristics of the technology



298 7 Deciding on Alternative Investments: A Real Options Approach

and siting constraints. In this section, we assume that the endogenous sizing deci-
sion is continuous and follow in the spirit of [6]. A discrete treatment of the sizing
decision is implemented in the next section.

As in previous sections, we assume that the power company has the discretion to
invest in a power plant at a time of its choosing after which it will earn a profit flow
that equals the stochastic revenue from electricity sales and a deterministic operating
cost. Now, in addition, the power company may also determine the size of the plant,
κ(E), which depends on the electricity price and is the solution to the following
now-or-never expected NPV maximization problem:

κ(E) ≡ argmax
K

[
E

ρ − α
− HF

ρ

]

K − I (K ). (7.39)

We assume increasing marginal construction costs because of land and material
restrictions, for example. Thus, the investment cost is:

I (K ) = AK B, (7.40)

where A > 0 and B > 1 are deterministic parameters.Consequently,with this convex
investment cost, the optimal capacity size is obtained by differentiating the right-hand
side of equation (7.39) with respect to K and setting it equal to zero:

E
ρ−α

− HF
ρ

− ABκ(E)B−1 = 0

⇒ κ(E) = max

{[
1
AB

(
E

ρ−α
− HF

ρ

)] 1
B−1

, 0

}

. (7.41)

Hence, the maximized expected now-or-never NPV is obtained via substitution of
Eq. (7.41) into the right-hand side of Eq. (7.39):

W1(E; κ(E)) − I (κ(E)) =

⎧
⎪⎨

⎪⎩

0, if κ(E) = 0
[

1
AB

(
E

ρ−α
− HF

ρ

)B
] 1

B−1 ( B−1
B

)
, otherwise.

(7.42)

W1(E; κ(E)) − I (κ(E)) indicates the maximized expected NPV of the power
plant given that it is optimal to construct immediately. However, besides this
sizing flexibility, the power company also has discretion over the investment timing.
As in previous sections, it is possible to show that the value of the option to invest
is:

W0(E) = a0,1E
β1 . (7.43)

We next determine the optimal investment threshold via value-matching and smooth-
pasting conditions between the functions in Eqs. (7.42) and (7.43):
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a0,1ξ
β1 =

[
ξ

ρ − α
− HF

ρ

] B
B−1

(
1

AB

) 1
B−1

(
B − 1

B

)

(7.44a)

β1a0,1ξ
β1−1 =

(
1

ρ − α

) [
ξ

ρ − α
− HF

ρ

] 1
B−1

(
1

AB

) 1
B−1

. (7.44b)

Although Eqs. (7.44a) and (7.44b) are highly nonlinear, it is possible to solve them
analytically for ξ :

ξ = (ρ − α)HFβ1(B − 1)

ρ (β1(B − 1) − B)
. (7.45)

Finally, by substituting ξ fromEq. (7.45) into Eq. (7.41), we obtain the optimal capac-
ity size at the investment threshold price:

κ(ξ) =
[

1

AB

HF

ρ

(
B

β1(B − 1) − B

)] 1
B−1

, (7.46)

where we must ensure that β1(B − 1) − B > 0.

Illustrative Example 7.11 Investment with continuous capacity sizing

In order to gainmore intuition about havingflexibility over capacity sizing,weper-
form numerical examples with the following parameter values: α = 0.01, ρ = 0.10,
A = 2.65 × 10−5, B = 2, H = 2.5, and F = 20. We allow the volatility, σ , to vary
between 0.01 and 0.10. The parameter A corresponds approximately to the invest-
ment cost of a typical gas-fired power plant. For example, the 430 MW CCGT
plant built in Aghada [41] cost $371 million. Since this is close to the capacity
cost of $876/kW assumed in Sect. 7.2, we use it to calculate a total investment cost
for this plant to be $377 million. By inserting this value into Eq. (7.40), we obtain
A = 377×106

(430×8760)2
= 2.65 × 10−5. Using these parameters, we obtain the value func-

tions given in Fig. 7.19. Here, the function W1(E; κ(E)) − I (κ(E)) represents the
maximized expected NPV of the power plant from Eq. (7.42). In other words, this
nonlinear function assumes that there is no discretion over the timing of the invest-
ment, but the capacity of the plant may be determined optimally as a function of the
current electricity price, E . This now-or-never capacity size, κ(E)

8760 , is illustrated in
Fig. 7.23 for different values of E and is linearly increasing as long as the electric-
ity price is high enough to cover the discounted operating costs. A doubling of A
simply reduces the optimal now-or-never capacity level. For this reason, the maxi-
mized expected NPV in Fig. 7.19 is bounded by zero. Taking the value of waiting
into account means that it is optimal to invest in the plant only when the price of
electricity hits the threshold ξ , which is $90/MWh in this case. Thus, the difference
between the functionsW0(E) andW1(E; κ(E)) − I (κ(E)) reflects the value of this
deferral option. Finally, the linear functionW1(E; κ(ξ)) − I (κ(ξ)) is one in which
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Fig. 7.19 Value functions with capacity sizing, σ = 0.10, and A = 2.65 × 10−5

there is no discretion over either investment timing or capacity sizing. As such, it
reflects the now-or-never expected NPV of investing in a power plant of optimal
capacity κ(ξ)

8760 = 1075 MW immediately. Consequently, since the firm has no subse-
quent flexibility over its decision-making, it is exposed to losses if the electricity price
decreases. Figure7.20 repeats this figure for a doubled marginal cost of investment,
i.e., A = 5.31 × 10−5. �

Illustrative Example 7.12 Sensitivity analysis of investmentwith continuous capac-
ity sizing with respect to volatility

We next conduct sensitivity analysis with respect to the volatility, σ . In Fig. 7.21,
we plot the optimal investment threshold price, ξ , and note that it increases monoton-
ically. Interestingly, it is independent of the A parameter, i.e., a higher marginal cost
of capacity will not affect the optimal timing of investment. This is also evident
analytically from Eq. (7.45). The explanation for this result is provided by what hap-
pens to the optimal capacity size. In Fig. 7.22, we plot both the optimal capacity
size, κ(ξ)

8760 , and the now-or-never capacity size,
κ(E)

8760 , at the current electricity price of
$50/MWh as given in Eqs. (7.46) and (7.41), respectively, for two levels of A. Since
the now-or-never decision is independent of the volatility, it is constant for all values
of σ at 119.45 MW (and 59.72 MW for the higher value of A). By contrast, optimal
capacity sizing is based on waiting until the electricity price hits ξ and building a
power plant of the appropriate size. For σ = 0.10, this is 1075 MW (and 537.50
MW for the higher value of A). Hence, as uncertainty increases, it is optimal to
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Fig. 7.22 Optimal capacity size as a function of volatility, σ

wait longer and to build a larger plant, but the impact of a higher marginal cost of
capacity expansion is absorbed into the sizing decision only and leaves the optimal
investment threshold unchanged. Finally, Fig. 7.23 plots the now-or-never capacity
size, κ(E)

8760 , from Eq. (7.41) as a function of the current electricity price to indicate the
linear dependence as long as the price is high enough to cover operating costs. �

7.6 Mutually Exclusive Technologies

In the previous section, we assumed that it is possible to determine the size of the
power plant endogenously as a continuous variable. While this supposition may be
valid for certain types of facilities, it does not hold for those that are available only
in discrete capacity sizes. For example, wind turbines and nuclear reactors cannot
be scaled continuously. Likewise, even smaller gas-fired generators are typically
optimized for performance and are available in discrete sizes [29]. Thus, in choosing
capacities [14] or between different technologies [37, 43], it is also desirable to
consider mutually exclusive discrete alternatives from the viewpoint of real options.

In this context, [11] proposes a simple adjustment to the standard real options
treatment of investment under uncertainty when considering any finite number of
discrete investment opportunities under uncertainty. For example, with two projects,
j = 1, 2, of discrete size as given in Fig. 7.24, [11] would proceed as follows:
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1. Find the optimal investment thresholds, ξ j , along with the endogenous coeffi-
cients, a j

0,1, from independent real options analysis of each alternative.

2. Let j∗ ≡ argmax
j

{
a j
0,1

}
be the project with the higher option value coefficient.

3. If the current price, E , is less than project j∗’s threshold, ξ j∗ , then wait for the
threshold ξ j∗ to be hit and invest in project j∗; otherwise, if E > ξ j∗ , then invest
immediately in the project with the highest expected NPV, W j (E) − I j .

This procedure seems sensible, but it can break down when the option value coeffi-
cient for the smaller project is higher than that for the larger project, i.e., a10,1 > a20,1,
and the initial electricity price is equal to the indifference level between the two
NPVs. In such a situation, [11] would suggest tossing a coin to break the tie. How-
ever, given the uncertainty in the electricity price, it seems intuitive that waiting for
more information would be optimal in such a situation.

Following this line of reasoning, [7] allows for the value of the option to invest to be
discontinuous, i.e., dichotomous with an upper branch that straddles the indifference
point, Ẽ , at which the two projects’ expected NPVs are equal. Specifically, if we let
the now-or-never expected NPV of project j = 1, 2 be defined as:

W j
1 (E) − I j = K j E

ρ − α
− K j H j F

ρ
− I j . (7.47)

In order to have a tradeoff between the two projects, we assume that K 2 > K 1 and
I 2 > I 1 such that I 1/K 1 < I 2/K 2. Without loss of generality, we set H 1 = H 2.
Thus, the power company has a mutually exclusive choice between a smaller but
relatively less costly (plant 1) or a large but relatively more costly (plant 2) option
along with the right to determine the timing of the investment decision. By setting
the expected NPVs of the two projects equal to each other, we find the indifference
point:

Ẽ = (ρ − α)

ρ

[
ρ

(
I 1 − I 2

) + F
(
K 1H 1 − K 2H 2

)

K 1 − K 2

]

. (7.48)

If we do a real options analysis of each project j independently, i.e., assuming
that the other project does not exist, then we obtain the usual optimal investment
threshold prices and endogenous coefficients via value-matching and smooth-pasting
conditions:

ξ j =
(

β1

β1 − 1

)
(ρ − α)

ρ

[

H j F + I j

K j

]

(7.49)

a j
0,1 = K j

(
ξ j

)1−β1

β1 (ρ − α)
. (7.50)
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Hence, the independent value of the option to invest in project j is simply

W j
0 (E) = a j

0,1E
β1 . (7.51)

The procedure in [7] for dealing with such mutually exclusive investment oppor-
tunities is as follows:

1. Order the projects by their capacities.
2. Find a j

0,1 for each project j .
3. If a10,1 ≤ a20,1, then the value of the option to invest will not be dichotomous

because the larger project dominates the smaller one. In this case, the value of the
investment opportunity is simplyW0(E) = W 2

0 (E), i.e., project 1 can effectively
be ignored.

4. If a10,1 > a20,1, then the value of the option to invest will have two waiting regions:

a. E ∈ [0, ξ 1), which involves waiting for the price to increase until it is optimal
to invest in project 1.

b. E ∈ (ξ L , ξ R), which involves waiting for the price to decrease (increase)
until it is optimal to invest in project 1 (2).

The value of the investment opportunity is thus:

W0(E) =
{
a10,1E

β1 , if E ∈ [0, ξ 1)

aREβ1 + aL Eβ2 , if E ∈ (ξ L , ξ R).
(7.52)

Thus, the dichotomous value function in Eq. (7.52) is defined over two ranges.
Although ξ 1 and a10,1 are known, the thresholds, ξ

L and ξ R , as well as the coefficients,
aL and aR , must be found endogenously via value-matching and smooth-pasting
conditions between the second branch of W0(E) in Eq. (7.52) and W j

1 (E) − I j as
follows:

W0(ξ
L) = W 1

1 (ξ L) − I 1

⇒ aR
(
ξ L

)β1 + aL
(
ξ L

)β2 = K 1ξ L

ρ−α
− K 1H 1F

ρ
− I 1 (7.53a)

dW0(E)

dE

∣
∣
∣
E=ξ L

= dW 1
1 (E)

dE

∣
∣
∣
E=ξ L

⇒ β1aR
(
ξ L

)β1−1 + β2aL
(
ξ L

)β2−1 = K 1

ρ−α
(7.53b)

W0(ξ
R) = W 2

1 (ξ R) − I 2

⇒ aR
(
ξ R

)β1 + aL
(
ξ R

)β2 = K 2ξ R

ρ−α
− K 2H 2F

ρ
− I 2 (7.53c)
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dW0(E)

dE

∣
∣
∣
E=ξ R

= dW 2
1 (E)

dE

∣
∣
∣
E=ξ R

⇒ β1aR
(
ξ R

)β1−1 + β2aL
(
ξ R

)β2−1 = K 2

ρ−α
. (7.53d)

The system in Eqs. (7.53a)–(7.53d) is highly nonlinear and must be solved numeri-
cally. As in Sect. 7.3, guesses for the four unknowns are required. Reasonable guesses

for ξ L and ξ R are ξ 1+Ẽ
2 and ξ 2, respectively. Likewise, a guess for aR may be obtained

by dropping the β2aL
(
ξ R

)β2−1
term in smooth-pasting Eq. (7.53d) to solve explicitly

for the remaining option value coefficient. This may be substituted into the remaining
smooth-pasting Eq. (7.53b) to obtain a guess for aL .

Illustrative Example 7.13 Mutually exclusive investment with high volatility

In order to illustrate how the waiting region may be dichotomous, we perform a
numerical example with ρ = 0.04, α = 0, K 1 = 1, K 2 = 2.9, I 1 = 100, and I 2 =
900.Without loss of generality, we set F = 0 and allow σ to range from 0.05 to 0.30.
In other words, plant 2 is almost three times as large but has an investment cost that is
nine times as high as that of plant 1.Note that these parameter values are different from
those in Sect. 7.2 in order to obtain a nontrivial result with a10,1 > a20,1 for low values
of volatility. Figure7.24 illustrates that the two projects may be analyzed separately
for a relatively high value of σ , i.e., 0.30. Here, it is clear that a10,1 < a20,1, because
W 2

0 (E) > W 1
0 (E). Thus, the optimal strategy is simple: the power company should

disregard plant 1 and wait for the electricity price to hit the threshold ξ 2 = 34.30.
The corresponding value functions are indicated in Fig. 7.25. �

Illustrative Example 7.14 Mutually exclusive investment with low volatility

With a relatively low level of volatility, e.g., σ = 0.15, we have a10,1 > a20,1.
Consequently, the waiting region becomes dichotomous with an upper region
around the indifference price, Ẽ = 16.84. This upper waiting region, reflected by
aREβ1 + aL Eβ2 , extends from ξ L = 11.89 to ξ R = 21.71. For comparison, we have
ξ 1 = 6.76 and ξ 2 = 20.97. Figure7.26 shows that the lower portion of the W0(E)

function is precisely W 1
0 (E). �

Illustrative Example 7.15 Sensitivity analysis of mutually exclusive investment
with respect to volatility

As σ is varied, we obtain waiting and immediate investment regions for the two
plants considered together in Fig. 7.27. For σ ≤ 0.21, it is impossible to disregard
plant 1, and the dichotomous value of waiting must be considered. For example,
with σ = 0.15, there are lower and upper waiting regions. In the former, the power
company shouldwait until the electricity price increases to ξ 1 before investing imme-
diately in plant 1. By contrast, in the latter, the power company may end up investing
in either plant 1 (if the price drops to ξ L ) or plant 2 (if the price increases to ξ R).
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However, if the current electricity price is in the range [ξ 1, ξ L ] or [ξ R,∞), then it
is optimal to invest immediately in plant 1 or 2, respectively. The MATLAB code in
Sect. 7.10 solves the nonlinear system inEqs. (7.53a)–(7.53d) andgenerates Fig. 7.27.
As [7] illustrates using a similar numerical example, the percentage gain from opti-
mally delaying investment at the indifference price relative to investing immediately
as suggested by [11] may be substantial. In our example, it will be 18.31% for
σ = 0.15. Finally, this mutually exclusive analysis may be extended to allow for
switching options as in Sect. 7.4, i.e., having the right to switch from plant 1 to 2
[14], or allowing for subsequent improvement in the performance of one of the two
plants [37]. �

7.7 Risk Aversion

In previous sections of this chapter, we assumed that the decisionmaker, i.e., typically
a power company, is risk neutral because its objective is to maximize expected profit.
While this may be justified if the standard assumptions of finance, viz., complete
markets, hold and risk may be diversified by holding a portfolio of freely traded
assets, such a suppositionmay not hold in practice. For example, besides market risk,
power companies in the electric power industry may be exposed to heterogenous
risk stemming from technological uncertainty associated with R&D in renewable
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energy technologies or the possibility of a change in policy support. Moreover, some
municipally owned power companies may be inherently risk averse since they are
answerable to a more conservative class of investor. Either way, it would be desirable
to expand the framework for analysis to permit the decision maker to be risk averse
when solving optimal timing or technology choice problems.

Taking the perspective of [19], we embed a utility function into the real options
framework in order to examine how a risk-averse investor may make decisions under
uncertainty with the deferral option. In the economics literature, constant relative
risk aversion (CRRA) is a standard workhorse for both its analytical tractability and
its desirable property that the fraction of wealth placed in a risky (as opposed to risk-
free) asset by a decision-maker is independent of the initial level of wealth [33].10 In
particular, the CRRAutility functionwith relative risk aversion parameter 0 ≤ γ ≤ 1
has the form:

U (E) =
{

E1−γ

1−γ
, if 0 ≤ γ < 1

ln E, otherwise.
(7.54)

Hence, as a concave function, U (E) captures the risk aversion of a conservative
investor.

One difficulty with incorporating the CRRA utility function is the treatment of
the operating costs. This is because the function is not separable in E and HF, i.e.,
U (E − HF) �= U (E) − U (HF). Since we would like to avoid working with a
function of the form (E−HF)1−γ

1−γ
, we decompose the cash flows using the approach of

[4], in which operating costs are also included in a risk-averse analysis of real options
decision making. Suppose that at the current time, i.e., t = 0, the power company has
set aside all of the cash that it will need to pay for a power plant of nominal annual
output 1MWh thatwill cost I to build andwill incur operational costs ofHF perMWh
of electricity generated. If the power plant operates forever after construction, then
its discounted investment and operational costs are I + HF

ρ
(assuming a subjective

discount rateρ). This lump sum is assumed to be sitting in an interest-bearing account
earning the same discount rate until the plant is constructed at optimal time τ , which

implies an instantaneous cash flow of ρ
(
I + HF

ρ

)
. Consequently, the discounted

(to time 0) utility of the cash flows from this lump sum is
∫ τ

0 e−ρtU (HF + ρ I ) dt .
Given that the power plant starts to earn revenues, Et , at time τ that follow a GBM,
the time-zero discounted expected utility of the cash flows is:

∫ τ

0
e−ρtU (HF + ρ I ) dt + EE

[∫ ∞

τ

e−ρtU (Et ) dt

]

, (7.55)

where E is the electricity price at t = 0. Now, since the first term in Eq. (7.55) may
be reexpressed as

∫ ∞
0 e−ρtU (HF + ρ I ) dt − ∫ ∞

τ
e−ρtU (HF + ρ I ) dt , we can

10The CRRA utility function is itself a special case of the hyperbolic absolute risk aversion (HARA)
class employed in studies of investor behavior.
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de facto decompose the cash flows as follows:

∫ ∞

0
e−ρtU (HF + ρ I ) dt + EE

[∫ ∞

τ

e−ρt {U (Et ) − U (HF + ρ I )} dt
]

.

(7.56)

From the law of iterated expectations and the strong Markov property of the
GBM,11 the conditional expectation in Eq. (7.56) may be rewritten as follows:

EE
[∫ ∞

τ
e−ρt {U (Et ) − U (HF + ρ I )} dt]

= EE
[
e−ρτ

EEτ

[∫ ∞
0 e−ρt {U (Et ) − U (HF + ρ I )} dt]] . (7.57)

Since the first term in Eq. (7.56) is a constant, it may be ignored in determining the
optimal time to invest. Thus, Eq. (7.57) is the discounted (to time t = 0) expected
utility of cash flows from a power plant that becomes active at τ and operates forever.
Intuitively, the inner conditional expectation’s independence from E means that the
two expectations may be separated as follows:

EE

[

e−ρτ
EEτ

[∫ ∞

0
e−ρt {U (Et ) − U (HF + ρ I )} dt

]]

=EE
[
e−ρτ

]
EEτ

[∫ ∞

0
e−ρt {U (Et ) − U (HF + ρ I )} dt

]

= EE
[
e−ρτ

]
[

β1β2U (Eτ )

ρ (1 − β1 − γ ) (1 − β2 − γ )
− U (HF + ρ I )

ρ

]

. (7.58)

In moving from the second to the third line of Eq. (7.58), we use Theorem 9.18 from
[24], which finds a closed-form expression for the conditional expectation of an
integral of a function of a Brownian motion. Here, β1 > 1 and β2 < 0 are again the
positive and negative roots, respectively, of the characteristic quadratic function in
Eq. (7.8). Hence, the value of the investment opportunity for a risk-averse decision-
maker may be formulated as the solution to the following optimal stopping-time
problem:

W0(E) = sup
τ

EE
[
e−ρτ

]
[

β1β2U (Eτ )

ρ (1 − β1 − γ ) (1 − β2 − γ )
− U (HF + ρ I )

ρ

]

. (7.59)

Using the fact that the conditional expectation of the stochastic discount factor is

of power form, i.e.,EE
[
e−ρτ

] =
(

E
Eτ

)β1

, as shown on page 315 of [12], and letting ξ

denote the optimal threshold price, we can recast the optimal stopping-time problem
in Eq. (7.59) as the following unconstrained nonlinear maximization problem:

11These effectively imply that price values after τ are independent of the values before τ and depend
only on the value of the process at τ .
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W0(E) = max
ξ≥E

(
E

ξ

)β1
[

β1β2U (ξ)

ρ (1 − β1 − γ ) (1 − β2 − γ )
− U (HF + ρ I )

ρ

]

.

(7.60)

Taking the first-order necessary conditionwith respect to ξ , we obtain the following:
(

E
ξ

)β1
β1β2ξ

−γ

ρ(1−β1−γ )(1−β2−γ )

−β1

(
E
ξ

)β1
(
1
ξ

) [
β1β2ξ

1−γ

ρ(1−β1−γ )(1−β2−γ )(1−γ )
− (HF+ρ I )1−γ

ρ(1−γ )

]
= 0. (7.61)

Solving Eq. (7.61), we obtain the following optimal investment threshold price:

ξ =
(

β2 + γ − 1

β2

) 1
1−γ

(HF + ρ I ) . (7.62)

Note that although investment thresholds are typically expressed in terms of β1, e.g.,
as in Sect. 7.2, here it is more expedient to use β2. Using the fact that β1β2 = − 2ρ

σ 2 , it
can also be verified that ξ is the same as the investment threshold under risk neutrality
from Eq. (7.13) for γ = 0. Although we have a closed-form expression for the opti-
mal investment threshold under risk aversion, it is possible to prove analytically that
the threshold increases with both volatility and risk aversion as one would expect.
However, the proofs are tedious and are carried out in full in [4]. Intuitively, it is impor-
tant to stress that both volatility and risk aversion increase the optimal investment
threshold price but for vastly different reasons: greater uncertainty delays investment
because the value of waiting for more information increases, thereby also increasing
the opportunity cost of exercising the option to invest. By contrast, since greater
risk aversion lowers the inherent payoff of an active power plant, it also reduces the
marginal cost of delaying investment, which consists exclusively of stochastic cash
flows, by more than the marginal benefit (see [4] for a rigorous proof).

Illustrative Example 7.16 Investment under uncertainty with risk aversion

In order to illustrate the properties of optimal investment with a deferral option
from the perspective of a risk-averse power company, we perform numerical exam-
ples with the following parameter values: ρ = 0.1, α = 0.05, H = 2.5, F = 20,
I = 100, σ = 0.20, and γ ∈ [0, 1). These are the same values as in Sect. 7.2 for
ease of comparison. Indeed, when γ = 0, all results collapse to the risk-neutral
ones. In Figs. 7.28 and 7.29, we draw the expected utility functions for γ = 0.25
and γ = 0.75, respectively, corresponding to the expression in Eq. (7.58). Notice
that the curves denoted by β1β2U (E)

ρ(1−β1−γ )(1−β2−γ )
− U (HF+ρ I )

ρ
are concave, as is to be

expected for a risk-averse decision-maker. The value of the option to invest given
this attitude toward risk is reflected by the curves W0(E) as defined in Eq. (7.60).
Although they are convex and always nonnegative, compared to the corresponding
curve in Fig. 7.4, the value of the option to invest has been eroded. Furthermore, the
investment threshold is slightly higher, i.e., ξ = 80.04 and ξ = 81.76 for γ = 0.25
and γ = 0.75, respectively, compared with ξ = 79.30 for the risk-neutral case. �
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Fig. 7.28 Value of investment opportunity and expected utility of NPV for γ = 0.25

Illustrative Example 7.17 Sensitivity analysis of investment thresholdswith respect
to relative risk aversion and volatility

In Fig. 7.30, the optimal investment thresholds are indicated for various levels
of relative risk aversion and volatility. As discussed, greater risk aversion increases
the optimal investment threshold because of the lower valuation of the power plant.
Thus, in order to justify investment, a higher trigger price is required. Although
greater uncertainty also increases the optimal investment threshold price, it does so
for a different reason, i.e., the higher value of waiting. These two parameters interact
in order to increase the threshold yet further. �

Illustrative Example 7.18 Sensitivity analysis of the value of the investment invest-
ment opportunity with respect to relative risk aversion and volatility

Figure7.31 assesses the extent to which risk aversion affects the valuation of
the investment opportunity at some arbitrary common initial electricity price (here,
E = 50). In particular, we plot the ratio ofW0(E) fromEq. (7.60) (with risk aversion)
to that from Eq. (7.10). When γ = 0, the ratio is simply one, but it decreases rapidly
as γ increases. For example, this ratio becomes just 0.25 for γ = 0.25 and drops
thereafter to only 0.02 for γ = 0.75. A higher volatility exacerbates this reduction,
whereas a lower volatility has the opposite effect. �



7.7 Risk Aversion 313

0 10 20 30 40 50 60 70 80 90 100
−100

−80

−60

−40

−20

0

20

40

E [$/MWh]

O
pt
io
n
va
lu
e
an

d
N
P
V

[u
ti
ls
]

β1β2U(E)
ρ(1−β1−γ)(1−β2−γ) − U(HF+ρI)

ρ

W0(E)

Fig. 7.29 Value of investment opportunity and expected utility of NPV for γ = 0.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

γ

O
pt
im

al
in
ve
st
m
en
t
th
re
sh
ol
d
pr
ic
e
[$
/M

W
h]

σ = 0.20
σ = 0.10
σ = 0.30

Fig. 7.30 Investment thresholds as functions of relative risk aversion, γ , and volatility, σ



314 7 Deciding on Alternative Investments: A Real Options Approach

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

R
el
at
iv
e
va
lu
e
of

in
ve
st
m
en
t
op

po
rt
un

ity
σ = 0.20
σ = 0.10
σ = 0.30

Fig. 7.31 Value of investment opportunity relative to a risk-neutral case as a function of relative
risk aversion, γ , and volatility, σ , at initial electricity price, E = 50

7.8 Summary and Extensions

In this chapter, we address discretion over investment timing, technology choice,
and capacity from the perspective of a single power company facing uncertainty in
the electricity price. We also investigate how the optimal decision would change if
the company were risk averse or could modularize its investment. Throughout, we
model uncertainty using a GBM and assume a simple proposition for investment in
order to facilitate analytical tractability from which we could formalize managerial
insights. For example, we show how operational flexibility is used to increase the
value of the investment opportunity while also lowering the optimal threshold price
vis-à-vis the case without operational flexibility. Assessment of such flexibilities,
and indeed others involving investment strategies or capacity sizing, would not be
possible from the traditional now-or-never NPV approach to decision making.

Specifically, we begin by discussing the limitations of the now-or-never NPV
approach in Sect. 7.1. When applied correctly, it can provide insights about opti-
mal investment timing since the maximized NPV is the upper envelope of several
mutually exclusive projects, each starting at a different point in time. However, since
only discrete time points are considered, it is cumbersome to analyze every conceiv-
able starting date for a given project. Furthermore, it is impossible to distinguish
between two power plants of the same capacity that have different levels of opera-
tional flexibility. In order to overcome these limitations with the now-or-never NPV
approach, the real options methodology is developed in Sect. 7.2. Using an elegant
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continuous-time approach, it solves the optimal investment timing problem as a sto-
chastic dynamic program. Under the assumption of a GBM for the electricity price,
a closed-form solution for the optimal investment threshold price is obtained, which
facilitates comparison with the now-or-never NPV threshold to show that the real
options approach recommends postponing investment precisely because of the value
of waiting. Thus, unlike the now-or-never NPV approach, the real options approach
detects the effect of increased uncertainty on the opportunity cost of killing the
discretion to wait for more information. Somewhat paradoxically, the real options
approach attributes a higher value to the investment opportunity even as it recom-
mends more caution in pulling the investment trigger. This so-called hysteresis in
making decisions involving fixed costs is present in many real-world decisions, e.g.,
farming and unemployment [5, 10]. Empirical work to detect its effects is relatively
new, but a study of small run-of-river hydropower plants in Norway tries to examine
how uncertainty in government subsidies for renewable energy technologies affected
investment timing [26].

Besides tackling the issue of investment timing,we consider operational flexibility
in Sect. 7.3. Such embedded options to change the operating status of the power
plant in response to fluctuations in market conditions after the initial investment
decision surely affects not only the value of the initial opportunity but also the
optimal investment threshold. We show how to handle such operational flexibility
by first using backward induction to value an active power plant that may switch
between active and idle states. Next, we use the value of an active plant to determine
the value of the investment opportunity and find that the added flexibility lowers the
investment threshold while increasing the option value of investing. Furthermore,
the value of this operational flexibility is shown to increase with volatility. Rather
than having two operating states, it may be possible to have an arbitrary number
or a continuous scale of output captured by a production function (see Chap.6 of
[12]). In a similar vein, Sect. 7.4 examines the possibility of building a power plant in
stages. Although the modular investment strategy is always worth more and results
in a lower initial threshold price for investment, somewhat surprisingly, the relative
value of modularity decreases with uncertainty. This is because greater uncertainty
makes it desirable to delay investment of any kind.

We also investigate the possibility of selecting the size of the power plant as
an endogenous variable while also considering the deferral option. In Sect. 7.5, the
capacity sizing decision is treated as continuous. Here, we again use backward induc-
tion to determine first the optimal size of the plant given that it was optimal to proceed
with investment. The optimal size is a monotonic function of the electricity price and
is subsequently substituted into the expected NPV function over which the opti-
mal timing analysis is performed. We find that greater uncertainty leads to higher
installed capacity simply because it is also beneficial to delay investment. By contrast,
in Sect. 7.6, we consider mutually exclusive plants of discrete sizes. These could also
be interpreted as competing technologies. Unlike the previous analyses, we show that
it may be optimal to have a second waiting region around the indifference point of
the two projects’ expected NPVs, thereby rendering the option value dichotomous.
This is particularly likely to occur for relatively low values of uncertainty. Finally,
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in Sect. 7.7, we relax the assumption of a risk-neutral power company to take the
perspective of a risk-averse decision maker, e.g., a municipal authority. We recast
the real options problem as an optimal stopping-time problem with a concave utility
function driving the investment decision. As expected, greater risk aversion makes
the investor more cautious and, thus, increases the investment threshold price.

Clearly, it is straightforward to develop real options models to analyze investment
projects in the electricity industry that have two or more of the aforementioned char-
acteristics. For example, [14] combines mutually exclusive wind turbine investment
opportunities with the possibility of a follow-on project after the initial installation
reaches the end of its lifetime. However, there are three areas for further analysis that
have not been covered in this chapter. First, we have used investment in a single power
plant (ormutually exclusive alternatives) as amotivating example. However, analysis
of investment in transmission lines from a real options perspective would also be suit-
able as long as their peculiarities are taken into account. One such complication is the
fact that transmission lines may take on the order of a decade to plan and construct
as opposed to two to three years for most fossil-fueled power plants. Thus, neither
the lead time nor the uncertainty involved in the planning process may be neglected.
Given this background, [36] models uncertainty in the initial regulatory decision as
a function of the market uncertainty. Their motivation is Hydro-Québec’s proposal
to construct an interconnection to the neighboring province of Ontario. In this work,
although higher benefits from constructing the line will result in a higher proba-
bility of regulatory approval, there is still uncertainty in the authorization process.
Another complication with assessing transmission investment is that the construc-
tion of an interconnection may change the very nature of the anticipated cash flows,
i.e., the transmission owner’s profit from collecting congestion rents on the new line
[18, 23]. In considering the mutually exclusive option to build interconnections of
various sizes between Norway and Germany, [13] addresses the impact that such
a link would have on the nodal price differences in the connecting regions of the
two countries. Consequently, these authors first run a bottom-up model to estimate
the impact that such transmission links will have on the electricity price differences
before incorporating them into the real options analysis.

A second facet that we have not covered in this chapter is real options analysis
with two or more sources of uncertainty. Such a consideration may be important
because in addition to the electricity, the cost of investment and the price of fuel may
be stochastic along with other parameters, e.g., government subsidies for renewable
energy technologies. Recall that with a single source of uncertainty, we end up solv-
ing an ODE. Analogously, with multiple uncertain factors, we can follow a similar
valuation procedure using stochastic dynamic programming to obtain a partial dif-
ferential equation (PDE). In general, PDEs are difficult to solve analytically because
a free boundary rather than an optimal trigger must be obtained endogenously. Under
certain conditions, e.g., when the payoff of the project is homogeneous in the under-
lying stochastic parameters, the resulting PDE may be reduced to an ODE through
the use of a numéraire. For example, if the expected NPV of a power plant effec-
tively depends on the relative value of the electricity price and investment cost, then
their ratio is what ultimately drives the investment strategy. This dimension-reducing
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technique is outlined in [12, 30] (see Chap. 6). However, in general, homogeneity
may not hold, e.g., when it is the electricity price and fuel price that are uncertain with
a deterministic investment cost. In that case, the expected NPV of the plant cannot
be expressed via a numéraire, and an analytical procedure to solve the resulting PDE
is required. By guessing at a solution of the power form (when the underlying uncer-
tainties followGBMs), [1] shows rigorously how to obtain quasi-analytically the free
boundary and related coefficients. This approach has been applied to problems in
the energy sector, e.g., investment in carbon capture and sequestration technologies
[17, 34].

A third and final main feature of real options analysis that we have not included
in this chapter is game-theoretic interactions. Indeed, given that most liberalized
electricity industries have a few large power companies, they can effectively exercise
market power through their investment and operational decisions. How does this
rivalry affect the timing of investment decisions? In a game-theoretic model without
uncertainty, [15] finds an equilibrium between two firms in which there is a strategic
incentive for one to preempt the other. This model is extended by [21] in the context
of a duopoly to the case with uncertainty in which the decision-analytic incentive to
delay investment interacts with the strategic incentive to preempt one’s rival. These
authors find that depending on parameter values, e.g., volatility, growth rate, and
the relative market share of the firm that moves first, either collusive or preemptive
equilibria may arise. In the context of electricity industries, [42] uses this framework
to analyze a game between a nuclear and a gas-fired power plant. They find that the
operational flexibility of the latter makes it more likely to be the leader, especially in
cases of high price volatility. In order to gain policy insights for the United Kingdom
electricity market, which has nearly 40% of its installed capacity based on natural
gas as of 2011, [3] sets up a similar duopoly model involving a renewable energy
plant and a gas-fired power plant. These authors find that the “natural hedge” of the
latter (in terms of being a price setter) gives it a built-in advantage over the former,
thereby stymieing policy objectives to increase the share of renewables. However,
they demonstrate that a policy measure such as a CO2 price floor can reduce the
value of the gas-fired power plant’s operational flexibility and, thus, make it more
likely for the renewable energy plant to be the leader.

7.9 End-of-Chapter Exercises

7.1 Prove that the optimal investment threshold in Eq. (7.13) increases with uncer-
tainty. It may be easier to prove implicitly that β1 decreases with uncertainty first,
i.e., ∂β1

∂σ
< 0. In order to do this, differentiate the characteristic quadratic function in

Eq. (7.8) totally and evaluate it at β = β1 to obtain ∂Q
∂β

∂β1

∂σ
+ ∂Q

∂σ

∣
∣
∣
β=β1

= 0.

7.2 Re-work the real options analysis of Sect. 7.2 by assuming that the profit flowcan
be modeled directly as Xt = Et − HF . Use a simple Brownian motion for the profit

http://dx.doi.org/10.1007/978-3-319-29501-5_6
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flow, i.e., dXt = αdt + σdzt . Show that the value of the investment opportunity
is W0(X) = a0,1eη1X , where η1 is the positive root of 1

2σ
2η2 + αη − ρ = 0, ξ =

1
η1

+ I − α
ρ
, and a0,1 = e−η1ξ

ρη1
.

7.3 In the model of operational flexibility from Sect. 7.3, prove that the optimal
switching thresholds, ξ 1,2 and ξ 2,1, from Eqs. (7.21a)–(7.22b) converge to HF as
S1,2 → 0 and S2,1 → 0.

7.4 After investment, an abandonment option can also be modeled. For example,
in the modular investment model of Sect. 7.4, state 3 may represent the value of an
abandoned plant, i.e., with W3(E) = 0 and fixed cost I 3 > 0. Set up and solve the
problem in which it is possible to abandon the power plant only from state 2 with
I 3 = 10. How does the solution change if it is possible to abandon the plant from
either state 1 or state 2?

7.5 With continuous capacity sizing, operational flexibilitymay also affect the initial
investment timing and scaling decisions. Re-work the model of Sect. 7.5 to allow for
costless operational flexibility. In particular, assume that an active power plantmay be
shut down and restarted at any time. Thus, the expected NPV of an active power plant

of size K isW1(E; K ) = K
[

E
ρ−α

− HF
ρ

]
+ a1,2(K )Eβ2 , whereas the expected NPV

of a suspended plant of size K isW2(E; K ) = a2,1(K )Eβ1 . Use value-matching and
smooth-pasting conditions between these two functions at E = HF to determine the
coefficients a1,2(K ) and a2,1(K ). Next, determine the optimal capacity size by max-
imizingW1(E; K ) − I (K )with respect to K . Finally, use this maximized expected
NPV, W1(E; κ(E)) − I (κ(E)), to determine the optimal investment threshold, ξ ,
and capacity, κ(ξ).

7.6 In the model of mutually exclusive technology choice from Sect. 7.6, how
would you modify the value function of technology 1 to allow for a subsequent
switching option to technology 2? Show that its value function will be of the
form W 1

1 (E) = K 1E
ρ−α

− K 1H 1F
ρ

+ a1,2Eβ1 , where ξ 1,2, the optimal switching thresh-
old from technology 1 to 2, and a1,2 will be determined via value-matching and
smooth-pasting conditions between W 1

1 (E) − I 1 − I 2 and W 2
1 (E) − I 2.

7.7 Show that the optimal investment threshold price under risk aversion from
Eq. (7.62) converges to the risk-neutral threshold of Eq. (7.13) as γ → 0.

7.10 MATLAB Codes

Here, we present MATLAB codes for solving selected examples numerically. The
following code solves Illustrative Example 7.7 to analyze optimal investment timing
with operational flexibility.
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1 % Real options treatment of the investment timing
problem

2 % with operational flexibility
3 rho =0.1;
4 alpha =0.05;
5 H=2.5;
6 F=20;
7 I=100;
8 sigmastart =0.15;
9 E=50;
10 S12 =10; % Cost of switching from state 1 to state 2
11 S21 =10; % Cost of switching from state 2 to state 1
12 interplot=zeros (1,5);

14 for kk =1:+1:21;
15 sigma=sigmastart +0.01*(kk -1)
16 beta1 = 0.5 - alpha/sigma^2 + ...
17 sqrt ((0.5- alpha/sigma ^2) ^2+2* rho/sigma ^2);
18 beta2 = 0.5 - alpha/sigma^2 - ...
19 sqrt ((0.5- alpha/sigma ^2) ^2+2* rho/sigma ^2);
20 e =0:+0.001:100;
21 % Guesses for investment and switching

thresholds
22 xi010 = (beta1/(beta1 -1))*(rho -alpha)*(H*F+rho*

I)/rho;
23 xi120 = (beta2/(beta2 -1))*(rho -alpha)*(H*F/rho -

S12);
24 xi210 = (beta1/(beta1 -1))*(rho -alpha)*(H*F/rho+

S21);
25 a010=xi010^(1-beta1)/( beta1*(rho -alpha));
26 a120=-xi120^(1-beta2)/(beta2*(rho -alpha));
27 a210=xi210^(1-beta1)/( beta1*(rho -alpha));
28 % Initial guess for operational decisions
29 vars0 = [a120 a210 xi120 xi210];
30 % Specify options for fsolve
31 opts=optimset(’fsolve ’);
32 opts=optimset(opts ,’Maxiter ’,2000,’Tolx ’,...
33 1e-6,’tolfun ’,1e-6);
34 %***************************************
35 %* next instruction calls funtion fffROinvof.m*
36 %***************************************
37 vars = fsolve(@fffROinvof ,vars0 ,opts ,...
38 beta1 ,beta2 ,alpha ,H,F,rho ,S12 ,S21);
39 a12 = vars (1);
40 a21 = vars (2);
41 xi12 = vars (3);
42 xi21 = vars (4);
43 z=@(y)(beta1 -beta2)*a12*y.^ beta2 +...
44 (beta1 -1)*y/(rho -alpha)-beta1*(H*F/rho+I);
45 xi01=fzero(z, xi010);
46 a01=( beta2/beta1)*a12*xi01^(beta2 -beta1)+...
47 xi01^(1-beta1)/( beta1*(rho -alpha));
48 e1=xi12 :+0.001:100;
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49 e2 =0:0.001: xi21;
50 e0 =0:0.001: xi01;
51 W1=a12*e1.^ beta2+e1/(rho -alpha)-H*F/rho;
52 W2=a21*e2.^ beta1;
53 W0=a01*e0.^ beta1;
54 flexvalue=a01/a010;
55 interplot =[ interplot; sigma xi12 xi21 xi01

flexvalue ];
56 end

58 % delete first row leaving just calculated values
59 interplot (1,:) = [ ];

61 figure (1)
62 plot(e1 , W1 , ’--k’)
63 hold on
64 grid
65 plot(e2 , W2 , ’:k’)
66 plot(e0 , W0 , ’k’)

68 figure (2)
69 plot(interplot (:,1), interplot (:,2), ’:k’)
70 hold on
71 grid
72 plot(interplot (:,1), interplot (:,3), ’k’)
73 plot(interplot (:,1), interplot (:,4), ’--k’)

75 figure (3)
76 plot(interplot (:,1), interplot (:,5), ’k’)
77 grid

1 % Function file: fffROinvof.m
2 % Called to solve non -linear system for operational

decisions
3 function f=fffROinvof(vars ,beta1 ,beta2 ,alpha ,H,F,

rho ,S12 ,S21)
4 a12 = vars (1);
5 a21 = vars (2);
6 xi12 = vars (3);
7 xi21 = vars (4);
8 f=zeros (4,1);
9 f(1) = a12*xi12^beta2+xi12/(rho -alpha) -...
10 H*F/rho -a21*xi12^beta1+S12;
11 f(2)= beta2*a12*xi12^(beta2 -1) +...
12 1/(rho -alpha)-beta1*a21*xi12^(beta1 -1);
13 f(3)= -a21*xi21^beta1 +...
14 xi21/(rho -alpha)-H*F/rho+a12*xi21^beta2 -S21;
15 f(4) = -beta1*a21*xi21^(beta1 -1) +...
16 1/(rho -alpha)+beta2*a12*xi21^(beta2 -1);
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The following MATLAB code solves Illustrative Example 7.15 numerically to
determine optimal investment timing and sizing with mutually exclusive technology
options.

1 % Real options treatment of mutually exclusive
investment

2 % opportunity in discrete capacity sizes

4 rho =0.04;
5 alpha =0.0;
6 HA =2.5;
7 KA=1;
8 KB=2.9;
9 HB =2.5;
10 F=0;
11 IA =100;
12 IB =900;
13 sigmastart =0.05;
14 E=50;
15 num =251;

18 for kk =1:+1: num
19 sigma(kk) = sigmastart + (kk -1) *0.001;

21 % Option value parameters
22 beta1(kk) = 0.5 - alpha/sigma(kk)^2 + ...
23 sqrt ((0.5 - alpha/sigma(kk)^2) ^2+2* rho/sigma(kk)

^2);

25 beta2(kk) = 0.5 - alpha/sigma(kk)^2 - ...
26 sqrt ((0.5 - alpha/sigma(kk)^2) ^2+2* rho/sigma(kk)

^2);

28 % Indifference point of NPVs
29 xiind(kk)=(rho -alpha)*(rho*(IA -IB)+...
30 F*(KA*HA -KB*HB))/(rho*(KA -KB));

32 e =0:+0.001:35;

34 % Independent options analysis
35 WA1=KA*(e/(rho -alpha)-HA*F/rho);

37 WB1=KB*(e/(rho -alpha)-HB*F/rho);

40 xiA(kk) = (beta1(kk)/( beta1(kk) -1))*...
41 (rho -alpha)*(HA*F+rho*IA/KA)/rho;
42 xiAalt(kk) = xiA(kk);

44 xiA0(kk) = (rho -alpha)*(HA*F+rho*IA/KA)/rho;

46 xiB(kk) = (beta1(kk)/( beta1(kk) -1))*...
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47 (rho -alpha)*(HB*F+rho*IB/KB)/rho;

49 xiB0(kk) = (rho -alpha)*(HB*F+rho*IB/KB)/rho;

51 aA(kk)=KA*xiA(kk)^(1- beta1(kk))/( beta1(kk)*(rho -
alpha));

52 aB(kk)=KB*xiB(kk)^(1- beta1(kk))/( beta1(kk)*(rho -
alpha));

54 eA1 =0:+0.001: xiA(kk);
55 eB1 =0:+0.001: xiB(kk);

57 WA0=aA(kk)*eA1.^ beta1(kk);
58 WB0=aB(kk)*eB1.^ beta1(kk);

60 % Check whether project A is option -dominated
61 if (aB(kk) > aA(kk))
62 xiR(kk) = xiB(kk);
63 xiL(kk) = NaN;
64 xiAalt(kk) = NaN;
65 W = WB0;
66 % Otherwise , either project may be selected
67 else
68 % Form guesses as to the solution
69 % to the non -linear system
70 xiR0(kk) = xiB(kk);
71 aR0(kk) = (KB*xiR0(kk)^(1- beta1(kk)))...
72 /( beta1(kk)*(rho -alpha));
73 xiL0(kk) = (xiind(kk)+xiA(kk))/2;
74 aL0(kk) = (KA*xiL0(kk)^(1- beta2(kk)))...
75 /( beta2(kk)*(rho -alpha)) - ...
76 (beta1(kk)*aR0(kk)/beta2(kk))*...
77 xiL0(kk)^( beta1(kk)-beta2(kk));
78 % vars0is your guess
79 vars0 = [aR0(kk) xiR0(kk) aL0(kk) xiL0(kk)];
80 % OPTIMSET is recommended for setting options.
81 opts=optimset(’fsolve ’);
82 opts=optimset(opts ,’Maxiter ’ ,9000 ,...
83 ’Tolx ’,1e-4,’tolfun ’,1e-4);
84 %*********************************************
85 % next instruction calls fffdmv.m
86 %*********************************************
87 vars = fsolve(@fffdmv ,vars0 ,opts ,beta1(kk) ,...
88 beta2(kk),rho ,alpha ,KA ,KB ,IA ,IB ,HA ,HB ,F);
89 % The option value curve has three parts now
90 aR(kk)=vars (1);
91 xiR(kk)=vars (2);
92 aL(kk)=vars (3);
93 xiL(kk)=vars (4);
94 W1 = aA(kk)*eA1.^ beta1(kk);
95 edi = xiL(kk):+0.001: xiR(kk);
96 W2 = aL(kk)*edi.^ beta2(kk) + aR(kk)*edi.^ beta1

(kk);
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97 end

99 end

101 figure (1)
102 plot(sigma , xiAalt , ’--k’)
103 hold on
104 grid
105 plot(sigma , xiL , ’-.k’)
106 plot(sigma , xiR , ’k’)
107 plot(sigma , xiind , ’:k’)
108 xlabel(’$\sigma$ ’)
109 ylabel(’Optimal investment threshold prices [(\$/MWh

]’)

1 % Function file: fffdmv.m

2 % Called to solve non -linear system

3 % for mutually exclusive investment

4 function f=fffdmv(vars ,beta1 ,beta2 ,rho ,alpha ,KA,KB,IA,IB ,...

5 HA ,HB,F)

6 aR=vars (1);

7 xiR=vars (2);

8 aL=vars (3);

9 xiL=vars (4);

10 f=zeros (4,1);

11 f(1) = aR*xiL^beta1+aL*xiL^beta2 -xiL*KA/(rho -alpha)+...

12 KA*HA*F/rho+IA;

13 f(2) = beta1*aR*xiL^(beta1 -1)+beta2*aL*xiL^(beta2 -1) -...

14 KA/(rho -alpha);

15 f(3) = aR*xiR^beta1+aL*xiR^beta2 -xiR*KB/(rho -alpha)+...

16 KB*HB*F/rho+IB;

17 f(4) = beta1*aR*xiR^(beta1 -1)+beta2*aL*xiR^(beta2 -1) -...

18 KB/(rho -alpha);
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Appendix A
Engineering Economics

This appendix provides an overview of engineering economics. Its purpose is to
familiarize the reader with the discounting of cash flows and the time value of money.
Compounding periods are also treated, and the appendix concludes with examples
of how to handle amortization of capital costs.

A.1 Introduction

In this appendix, we provide an overview of treating cash flows involved with real
investments, e.g., in power plants or transmission lines, with respect to the time value
ofmoney. This field is known as engineering economics [2], and itsmain purpose is to
develop a framework for economic analysis of real, rather than financial, investments.
The complexity of investment projects in the electric power industry means that cash
flows (both receipts and expenditures) may be uneven and occur at diverse points in
time. From the perspective of investment appraisal, how are the cash flows from two
different projects to be treated in order to facilitate comparison?

For example, in Figs.A.1 and A.2, we have projects 1 and 2, respectively, with
cash flows of different magnitudes occurring at various points in time. Specifically,
project 1 requires an expenditure of size P immediately followed by a revenue of
size F received in year 8. Conversely, project 2 requires eight equal payments of
size A each, after which the revenue in year 8 is received. By converting the cash
flows of these two projects into either a single payment or a series of payments using
an appropriate interest rate that reflects the time value of money, it is possible to
compare their economic effects. Indeed, in general, any sequence of cash flows can
be converted into another by accounting for the forgone opportunity to use themoney
profitably. In the next section, we discuss different types of interest rates.

© Springer International Publishing Switzerland 2016
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time (year)

0

1 2 3 4 5 6 7 8

P

F

Fig. A.1 Cash flow diagram with a single payment (project 1)

time (year)8

0 1 2 3 4 5 6 7

A A A A A A A A

F

Fig. A.2 Cash flow diagram with multiple payments (project 2)

A.2 Interest Rates

The basic principle in engineering economics is that money today is generally worth
more than the same amount available in the future. It is, thus, impossible to compare
monetary amounts received at different points in time without having a common
reference point. For this purpose, the future value is defined as the amount into
which an initial investment will grow after earning interest for a given period of
time. Likewise, the present value is the discounted value of some future payment or
receipt. Thus, prior to doing cash flow calculations, it is useful to describe different
types of interest rates.

Suppose that you put $100 in the bank. If the annual interest rate is 5%, then how
much total money will you have in two years? The answer depends on the following
factors:

1. Simple or compound interest.
2. Number of compounding periods (with continuous compounding in the limit).
3. Inflation.

With simple interest rates, only the principal earns interest. Thus, each year, the
interest earned is 5% × $100 = $5, which yields a future value after two years of
$110. In general, the formula for the future value, FN , after N periods with an interest
rate of i is:

FN = P (1 + i N ) . (A.1)
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However, it is more common to earn interest on the interest itself. This is referred to
as compound interest andmeans that the interest earned after one year, 5%× $100=
$5, will also earn interest in the second year. Consequently, the balance after two
years will be the interest earned on the principal, $100 × (1 + 0.05 × 2) = $110,
plus the interest earned on the interest, i.e., 5% × $5 = $0.25. Hence, the future
value after two years with compound interest will be $110.25, or in general:

FN = P (1 + i)N . (A.2)

In Eq. (A.2), we assumed that compounding occurs annually. However, many
financial instruments pay out interest every six months, e.g., United States federal
treasury bonds, which means that the compounding period is not synchronous with
the payment period. Consequently, since compounding occurs more frequently than
the payment, the quoted interest rate will not be the effective annual interest rate.
As an example, consider putting $100 in a bond that will pay 10% annual interest
compounded semiannually. This effectivelymeans that youwill earn 5% on the $100
every six months. Thus, the balance after six months and twelve months will be $100
× (1 + 0.05) = $105 and $105 × (1 + 0.05) = $110.25, respectively. By contrast,
the $100 with a 10% annual interest rate compounded annually will be worth only
$100 × (1 + 0.10) = $110 after one year. In general, the effective annual interest
rate, ia , with M compounding periods per year and an annual interest rate r will be:

ia =
(
1 + r

M

)M − 1. (A.3)

In our example, with semiannual compounding of 10% annual interest, we obtain an
effective annual interest rate of ia = (

1 + 0.10
2

)2 − 1 = 10.25%. As the number of
compounding periods per year increase, we have in the limit the case of continuous
compounding:

ia = lim
M→∞

(
1 + r

M

)M − 1 = er − 1. (A.4)

Here, we use the definition of the mathematical constant e to obtain the result.
Hence, for the same example, 10% annual interest compounded continuously would
correspond to an effective annual interest rate of ia = e0.10 − 1 = 10.52%.

The interest rates discussed so far have all ignored the effects of inflation, i.e., the
rate at which prices in general are increasing. For example, in the United States, the
Consumer Price Index (CPI) uses a basket of goods to determine the general price
level in a given year, and the percentage change in successive CPIs is a measure of
inflation. The consequence of inflation is that it reduces purchasing power and thus
the real interest rate. For example, if the annual interest rate offered on an investment
were i = 5% compounded annually, and the annual inflation rate were f = 2.2%,
then we could obtain the real interest rate, i ′, from the Fisher equation as follows:
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1 + i ′ = 1 + i

1 + f
. (A.5)

Multiplying out Eq. (A.5) yields i = i ′ + f + f i ′. Since f and i ′ are “small,” we
have i ′ ≈ i − f . Thus, in the example, we have i ′ = 1.05

1.022 − 1 = 2.74%, or the
approximation i ′ ≈ 0.05−0.022 = 2.8%. Finally, when it comes to discounting cash
flows, the nominal (real) interest rate should be used with nominal (real) cash flows.
For example, the present value of $100 available in a year’s time given a nominal
interest rate i = 10% is simply 100

1.1 = $90.91. If the inflation rate is f = 7% per
annum, then the real amount available in a year’s time is 100

1.07 = $93.46. Discounting
this by the real interest, i.e., i ′ = 1.1

1.07 − 1 = 2.8%, yields the same answer, i.e.,
93.46
1.028 = $90.91.

A.3 Time Value of Money

Besides using the interest rate to discount single cash flows to obtain, e.g., present
values, it is also straightforward to compare multiple cash flows occurring at various
points in time. This is due to the principle of value additivity, i.e., the present value
of the sum of two cash flows (say A in year � and B in year m) is simply the sum of
the cash flows’ present values using the interest rate i :

PV (A + B) = A

(1 + i)�
+ B

(1 + i)m

⇒ PV (A + B) = PV (A) + PV (B) . (A.6)

The principle of value additivity in Eq. (A.6) can be generalized to any finite number
of discrete cash flows, and it also applies to future values, i.e., FV (A + B) =
FV (A) + FV (B).

We illustrate this concept with the example in Fig.A.3 with cash flows of $1,200
and $1,500 received in years 4 and 6, respectively. The present value of this series of
cash flows for an annual interest rate of 5% is simply PV = 1200

1.054 + 1500
1.056 = $2,106.57.

Alternatively, we can recast everything in terms of the future value in year 8 as in

time (year)0 1 2 3 4 5 6 7 8

PV

$1,200
$1,500

Fig. A.3 Principle of value additivity (present value)
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time (year)0 1 2 3 4 5 6 7 8

FV

$1,200
$1,500

Fig. A.4 Principle of value additivity (future value)

Fig.A.4. Thus, we have FV = 1200 (1.05)4+1500 (1.05)2 = $3,112.36.Moreover,
the equivalence between the PV and FV can be established because PV = FV

1.058 .
Hence, in general, for any sequence of discrete cash flows and any sequence of annual
interest rates, we have the following relationship:

PV0 =
∑

n

Cn

(1 + in)
n , (A.7)

where PV0 is the present value today, Cn is the cash flow in year n, and in is the
interest rate for year n.

A.4 Payment Schemes

Although the principle of value additivity could be used to deal with an arbitrary
sequence of cash flows, it is often helpful to have formulas to handle frequently
occurring annual payments. For example, some bonds issued by the British gov-
ernment in the eighteenth century to finance wars and infrastructure projects had
perpetual coupon payments of equal amounts, C . Assuming a fixed interest rate, i ,
and the first payment starting in year 1, what is the present value of such a bond
(known as a perpetuity) in year 0 (Fig.A.5)? Using the principle of value additivity,

time (year)

0

1 2 3 4 5 6 7 8

C C C C C C C
· · ·

PV0

Fig. A.5 Cash flow diagram for a perpetuity
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we can express the present value of a perpetuity in year 0 as:

PV0 =
∞∑

n=1

C

(1 + i)n

⇒ PV0 = C ×
[

1

1 − 1
1+i

− 1

]

⇒ PV0 = C ×
[

1
i

1+i

− 1

]

⇒ PV0 = C

i
, (A.8)

where we used the property of an infinite geometric series, i.e.,
∑∞

n=0 x
n = 1

1−x for
|x | < 1, in going from the first to the second line. Hence, given an annual interest rate
of 8%, the present value today of a perpetual cash flow stream that pays $150,000
per year forever is $150,000 × 1

0.08 = $1,875,000.
Althoughperpetuities are rare in both engineering-economic projects andfinancial

transactions, they are, nevertheless, useful for valuing other payment schemes with
level cash flows. Consider the annuity in Fig.A.6 with eight equal cash flows each
of size A received in years 1 through 8. What is the present value of this stream of
cash flows in year 0? Again, we can use the principle of value additivity to perform
the calculation or use the property of a finite geometric series. However, it is less
tedious to treat the present value of the cash flows in Fig.A.6 as the difference in the
present values of two perpetual cash flows, the first of which begins in year 1 and
the second in year 9. Since the present value of the former in year 0 is A

i , the present
value of the latter in year 0 is A

i(1+i)8
, i.e., the discounted cash flows of A

i from year
8. In general, the present value in year 0 of an annuity that starts in year 1 and goes
to year N is:

PV0 = A

i
− A

i (1 + i)N

⇒ PV0 = A

[
(1 + i)N − 1

i (1 + i)N

]

. (A.9)

time (year)

0

1 2 3 4 5 6 7 8

A A A A A A A A

PV0

Fig. A.6 Cash flow diagram for an annuity
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time (year)

0

1 2 3 4 5 6 7 8

A+(1−1)G

A+(2−1)G

A+(3−1)G

A+(4−1)G

A+(5−1)G

A+(6−1)G

A+(7−1)G

A+(8−1)G

PV0

Fig. A.7 Cash flow diagram for a linear gradient series

Hence, the present value in year 0 of an eight-year annuity with annual cash flows

of $10,000 using an annual interest rate of 10% is $10,000 ×
[

(1.1)8−1
0.10(1.1)8

]
= $53,349.

Besides constant annual cashflows, some engineering-economic applicationsmay
also involve periodic payments that increase or decrease by some common factor,
G. Consider the cash flows in Fig.A.7, in which the payment received in year 1 is
A, in year 2 is A + G, and so on until year 8, when the final payment of A + 7G is
received. Using the fact that the cash flows in Fig.A.7 may be reconfigured as two
cash flow series, one of which is an eight-year annuity beginning in year 1 of A and
the other is a gradient series beginning in year 2 of constant amountG, we can obtain
the present value with a constant annual interest rate i as:

PV0 = A

[
(1 + i)N − 1

i (1 + i)N

]

+
N∑

n=2

(n − 1)G

(1 + i)n

⇒ PV0 = A

[
(1 + i)N − 1

i (1 + i)N

]

+ G

[
(1 + i)N − i N − 1

i2 (1 + i)N

]

, (A.10)

where we use the property of an arithmetic–geometric series, i.e.,
∑N

n=0 nx
n =

x[1−(N+1)xN+NxN+1]
(1−x)2

for x �= 1, in going from the first to the second line. Hence, the
present value in year 0 of a cash-flow stream that starts in year 1 with $100 and
increases by annual amounts of $25 with the last payment received in year 8 using an

annual interest rate of 10% is $100×
[

(1.1)8−1
0.10(1.1)8

]
+ $25×

[
1.18−0.1×8−1

0.12×1.18

]
= $934.21.

Using closed-form expressions for common types of payment schemes and the
principle of value additivity, it is possible to account for the time value of money
correctly in engineering-economic applications. We conclude this appendix with
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some worked examples and refer the reader to either [1] or [2] for a more in-depth
treatment of the subject.

Illustrative Example A.1 Doubling your money

Suppose that you currently have an arbitrary amount of money, P > 0, and want
to know how long it will take for it to double given an interest rate of r compounded
continuously. In general, we know that the future value in N years with continuous
compounding is FN = PerN because the effective annual interest rate becomes
ia = er − 1 from Eq. (A.4). Thus, since we want to have FN ∗ = 2 × P , we obtain
erN

∗ = 2 ⇒ N ∗ = ln 2
r . As an approximation, it is convenient to divide 70 (since

the natural logarithm of 2 is roughly 0.70) by the nominal interest rate (expressed in
percentage terms) in order to determine N ∗. �

Illustrative Example A.2 Discounting continuous cash flows

Rather than dealingwith discrete cash flows, it is also possible to tackle continuous
ones. Although cash flows may be discrete, they may occur so frequently, e.g., in
the case of a power plant, that it is useful to treat them as if they were continuous.
Consequently, the expressions for discounting discrete cash flows may be converted
analogously. For example, consider the present value for a series of discrete cash
flows, i.e., PV0 = ∑N

n=0 Fn (1 + i)−n . With continuous cash flows and continuous
compounding, the summation becomes an integral, the discrete periods, n, become
continuous time, t , and the annual discount factor, (1 + i)−n , becomes the continuous
discount factor, e−r t . Hence, we have PV0 = ∫ N

0 Fte−r tdt . �

Illustrative Example A.3 Amortization of capital costs with coincident payment
and planning horizons

Suppose that a power plant has a capital cost of P = $100millionwith an effective
lifetime of N = 30 years. If the annual interest rate is 10%, then how should the
amortized cost of the plant be included in each year’s cost calculations that will
appear in the objective function of the corresponding optimization problem? If we
restrict ourselves to investing only now, then the annuity to be paid in each year is
obtained by inverting Eq. (A.9) to solve for A in terms of P and next discounting.

Here, it is A = $100 million ×
[
0.10×1.130

1.130−1

]
= $10.61 million, which is the amortized

cost in each year. It is then discounted to yield the present value of the amortized
cost in year n, i.e., A

(1+i)n . For year 10, this is about $4.09 million. As a check, if we
add up all of the present values of the amortized costs in each year, then we obtain∑N

n=1
A

(1+i)n = $100 million. �

Illustrative Example A.4 Amortization of capital costs with noncoincident pay-
ment and planning horizons

In many multiperiod investment problems, the lifetime of the equipment exceeds
the planning horizon. For example, in Illustrative Example A.3, the effective lifetime
of the power plant is N = 30 years, whereas the planning horizon may be only
M = 20 years. Allowing for the possibility to invest in any of the next M years, we
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first define the decision variable xm , which equals 1 if investment occurs in year m
and is 0 otherwise. Thus, the mathematical formulation should specify xm ∈ {0, 1}
form = 0, . . . , M −1 and

∑M−1
m=0 xm ≤ 1 as constraints. If investment takes place in

year m, then the present value of the amortized capital cost is discounted back from
that year to obtain the expression for the present value to be included in the objective
function:

∑M−1
m=0

xm
(1+i)m

∑M
n=m+1

A
(1+i)n−m . �
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Appendix B
Optimization Under Uncertainty

This appendix provides a succinct tutorial introduction to optimization under uncer-
tainty, spanning both two-stage stochastic programming and adaptive robust opti-
mization. Two simple examples are used to illustrate the functioning of these two
decision frameworks, and then, general problem formulations are provided. Next,
observations on how to solve these problems are given. The appendix concludes by
indicating how to extend these decision frameworks to a multistage setting.

B.1 Introduction

Two-stage stochastic programming is considered first, followed by adaptive robust
optimization. These are the two most common frameworks for decision-making
under uncertainty.

B.2 Two-Stage Stochastic Programming

A brief tutorial introduction to two-stage stochastic programming is provided in
this section. Additional material can be found in the pioneering book by Birge and
Louveaux [3], in the tutorial paper [9], and in [5], which has an electricity focus.

Illustrative Example B.1

Consider an electricity producer that has the option of building one of two pro-
duction plants, A or B, as shown in Fig.B.1.

Plant A has a yearly investment cost of 4 and a yearly operating cost of 2monetary
units. On the other hand, Plant B has a yearly investment cost of 2 and a yearly
operating cost of 3 monetary units. The capacities of units A and B are 20 and 30
units, repetitively.

© Springer International Publishing Switzerland 2016
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Fig. B.1 Stochastic
programming example:
investment in production
facilities

Demand

Candidate units External source

A B

The producer intends to build one of these two plants to supply next year’s elec-
tricity demand, which is uncertain. It may also buy up to 40 units of energy from an
expensive external source at a yearly cost of 4 monetary units per unit of energy.

The uncertain future demand is estimated to be 10 units with probability 0.5, 20
units with probability 0.25, or 30 units with probability 0.25 as well. We call these
alternative realizations of the demand scenarios.

This producer needs to decide which plant to build without knowing next year’s
actual electricity demand. This decision is called a first-stage decision, since it is
made at the initial stage, or a here-and-now decision, since a plant has to be built
now to be ready for production next year.

Next year, with one of the two plants built, the producer will operate that plant and
possibly buy energy from the expensive external source to supply the demand that
finally materializes. This operating decision is a second-stage decision since it takes
place once the first-stage decision is made, and a wait-and-see decision because it is
made once the actual demand is known.

If the objective of this producer (investor) is to supply the demand minimizing
the total expected cost (investment and operation), its decision-making problem is:

minxA,xB ;yA1,yB1,yE1,yA2,yB2 yE2,yA3,yB3,yE3
4xA + 2xB+ 0.50(2yA1 + 3yB1 + 4yE1)+

0.25(2yA2 + 3yB2 + 4yE2)+
0.25(2yA3 + 3yB3 + 4yE3)

s. t.
xA + xB ≤ 1
xA, xB ∈ {0, 1}

yA1 + yB1 + yE1 = 10
yA2 + yB2 + yE2 = 20
yA3 + yB3 + yE3 = 30
0 ≤ yA1, yA2, yA3 ≤ 20xA
0 ≤ yB1, yB2, yB3 ≤ 30xB
0 ≤ yE1, yE2, yE3 ≤ 40.

(B.1)

Binary variables xA and xA represent the build/not-build decisions pertaining to
units A and B, respectively. These are here-and-now decisions. Variables yA1, yA2,
and yA3 represent the production of unit A in scenarios 1, 2, and 3, respectively;
variables yB1, yB2, and yB3 represent the production of unit B in scenarios 1, 2, and
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Table B.1 Stochastic programming example: optimal operating decisions once plant A has been
built

Unit/scenario Scenario 1 Scenario 2 Scenario 3

Unit A 10 20 20

Unit B 0 0 0

External source E 0 0 10

3, respectively; and yE1, yE2, and yE3 represent the quantity bought from the external
source in scenarios 1, 2, and 3, respectively. All these are wait-and-see decisions.

The objective function includes two parts. The left-hand-side part (i.e., 4xA+2xB)
represents the investment cost and depends on here-and-now variables, while the
right-hand-side part (i.e., 0.50(2yA1 + 3yB1 + 4yE1) + 0.25(2yA2 + 3yB2 + 4yE2) +
0.25(2yA3+3yB3+4yE3)) represents the operation cost and depends on wait-and-see
variables.

The first two constraints (on the left-hand side) involve here-and-now variables
and state that only one plant can be built and that variables xA and xB are binary.

The following three constraints (on the right-hand side) enforce the supply of the
demand in the three scenarios and involve just wait-and-see variables.

The following two double constraints (on the right-hand side as well) establish
production limits for the two candidate plants. These constraints involve both here-
and-now and wait-and-see variables.

Finally, the last double constraint (on the right-hand side) imposes a limit on the
purchase of energy from the expensive external source and involves just wait-and-see
variables.

Problem (B.1) is mixed-integer linear and can be solved using an appropriate
solver. The optimal solution of this mixed-integer linear programming problem con-
sists in building plant A, with the actual production per plant and scenario provided
in TableB.1. The level of purchase per scenario is also provided in this table. The
minimum expected total cost is 44 monetary units. A GAMS code to solve Problem
(B.1) above is provided in Sect.B.2.2. �

B.2.1 Formulation

Problem (B.1) above has the following general form:

minx;yw,∀w
f I(x)+ Ew{ f O(yw)}

s.t.
hI(x) = 0
gI(x) ≤ 0
x ∈ X (B.2)
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hO
w(x, yw) = 0 ∀w ∈ W

gOw(x, yw) ≤ 0, ∀w ∈ W
yw ∈ Y , ∀w ∈ W .

In this problem, the superscript I denotes investment (first) stage,while the superscript
O denotes operation (second) stage. The subscript w denotes scenario, andW is the
set of all possible scenarios. Constraints hI(x) = 0 and gI(x) ≤ 0 pertain to the
investment decisions, while constraints hO

w(x, yw) = 0 and gOw(x, yw) ≤ 0 pertain to
operation decisions in scenario w.

A more general version of problem (B.2) is:

minx
f I(x)+ Ew{zOw(x)}

s.t.
hI(x) = 0
gI(x) ≤ 0
x ∈ X ,

(B.3)

where
zOw(x) = {minyw f O(yw)

s.t. hO
w(x, yw) = 0

gOw(x, yw) ≤ 0
yw ∈ Y } ∀w ∈ W .

(B.4)

Problem (B.3) seeks to minimize the total cost, including investment costs, f I(x),
involving investment variables x, and expected operation costs, Ew{zSw}, involving
operation variables yw,∀w. Problem (B.4), which constrains problem (B.3), rep-
resents operation decisions regarding scenario w ∈ W and seeks to minimize the
scenario cost.

Problem (B.3)–(B.4) is a general statement of a two-stage stochastic programming
problem. Under mild mathematical assumptions, problems (B.3)–(B.4) and problem
(B.2) are equivalent [3].

B.2.2 Solution

If problem (B.2) is linear, it is generally solvable up to millions of variables and
constraints; if it is mixed-integer linear, solvability is directly linked to the number
of integer variables, which should be kept in the thousands; if it is nonlinear, it is
generally solvable up to thousands of variables and constraints; and if it is mixed-
integer nonlinear, the off-the-shelf solution techniques are generally not available,
and decomposition technique are advisable.

A GAMS code for solving problem (B.1), which is mixed-integer linear, is pro-
vided below:
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1 sets g/g1 ,g2/, go/go1/, w/w1 ,w2 ,w3/;
2 variable z;
3 positive variables y(g,w), yo(go ,w);
4 binary variables x(g);
5 parameter
6 i(g) /g1 4, g2 2/,
7 c(g) /g1 2, g2 3/,
8 cap(g) /g1 20, g2 30/,
9 co(go) /go1 4/,

10 capo(go) /go1 40/,
11 d(w) /w1 10, w2 20, w3 30/,
12 p(w) /w1 .5, w2 .25, w3 .25/;
13 equation of, alt , lim(g,w), limo(go ,w), bal(w);
14 of.. z =e= sum(g, i(g)*x(g)) +
15 sum((g,w), p(w)*c(g)*y(g,w)) + sum((go ,w

), p(w)*co(go)*yo(go ,w));
16 alt.. sum(g, x(g)) =l= 1;
17 lim(g,w).. y(g,w) =l= cap(g)*x(g);
18 limo(go ,w).. yo(go ,w) =l= capo(go);
19 bal(w).. sum(g, y(g,w)) + sum(go , yo(go ,w)) =e= d(w

);
20 model invgen /all/;
21 solve invgen using mip minimizing z;
22 display x.l, y.l, yo.l;

This GAMS code is briefly described in the following. Line 1 declares the sets
(indexes) used,which include plants, external source (singleton), and scenarios. Lines
2–4 are variable declarations. Lines 5–12 specify the required data. Lines 13–19 state
the equations (objective function and constraints) of the model. Line 20 defines the
model, line 21 directs GAMS to solve the model, and line 22 indicates which output
variables to display.

More often than not, problem (B.2) becomes large-scale as a result of considering
a large number of scenarios to properly represent the uncertainty involved. In such
a case, decomposition strategies are advisable [4] to achieve an efficient solution, or
even tractability.

Benders decomposition is particularly appealing since it is adapted to attack prob-
lems involving complicating variables, which is generally the case with investment
problems. Benders decomposition works as follows:

1. Fix investment decisions to given values by solving a so-called master problem,
which approximately reproduces the original problem but involves a reduced
number of variables and constraints.

2. For the given investment decisions, solve one operation problem per scenario
and determine the sensitivity of the operation cost with respect to the investment
decisions. Each scenario problem is generally called a subproblem.

3. Use this sensitivity information to enrich the master problem (making it closer to
the original one) and to derive improved investment decisions by solving it.

4. This iterative procedure concludes if the investment decisions cannot be improved.
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In cases in which the number of scenarios that need to be considered is very very
large, decomposition techniques that build on scenario sampling might be appro-
priate, as proposed in [7]. Such techniques use a Monte Carlo type of sampling,
and solve single-scenario problems within an iterative framework that, under some
assumptions, allows for an asymptotic approximation of the original problem.

B.3 Adaptive Robust Optimization

A tutorial introduction to adaptive robust optimization is provided in this section.
Further information can be found in the book by Ben-Tal et al. [1], the tutorial paper
by Bertsimas et al. [2], and in [6], which has an application focus.

Illustrative Example B.2

A transmission operator needs to decide which of two alternative transmission
lines to build, A or B, to connect a generation area and a demand area. One of
these transmission lines needs to be built to supply next year’s electricity demand,
as illustrated in Fig.B.2.

The capacity of transmission lines A and B are 10 and 20 units, respectively, and
their annualized building costs are 10 and 20 monetary units, respectively.

The transmission line to be built will allow shipping electricity from a generation
area to a consumption one. The generation area includes a production unit with a
yearly production cost of 2 monetary units and a capacity of 20 units, while the
demand node includes an expensive production unit with a yearly production cost of
10 monetary units and a capacity of 20 units.

Next year’s demand is uncertain, involving values of 10, 20, and 30 units, with
probabilities 0.50, 0.25, and 0.25, respectively, with an average value 17.5 units.

For policy reasons, the operator needs to ensure that the demand is supplied in
any case, i.e., it has a robust view.

In order to minimize building and operating costs and to enforce a robust view,
the problem to be solved by the operator is:

Fig. B.2 Robust
optimization example:
investment in transmission
lines

Demand

Cheap unit Expensive unit

Line to be built

A

B
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minxA,xB (10xA + 20xB) maxd miny1,y2 (2y1 + 10y2)
s.t.
y1 + y2 = d
y1 ≤ 10xA + 20xB
0 ≤ y1 ≤ 20
0 ≤ y2 ≤ 20

s.t.
d ∈ {10, 20, 30}

s.t.
xA + xB = 1
xA, xB ∈ {0, 1}

(B.5)
Binary variables xA and xB represent the build/not-build decisions pertaining to

transmission lines A andB, respectively, variable d represents the alternative demand
realizations, and variables y1 and y2 represent the actual production of the units in
the generation and demand areas, respectively, for the robust operating condition.

Problem (B.5) is a trilevel problem involving three hierarchically interrelated
problems. The left-hand-side problem allows deciding which of the two lines, A or
B, to build (variables xA and xB) pursuing minimum total (investment and operating)
cost. Once the investment decision has been made, the center problem pursues iden-
tifying the demand realization (variable d) that results in maximum operating cost.
Finally, for a given investment decision and a demand realization, the right-hand-side
problem decides the operation of the production units (variables y1 and y2) pursuing
minimum operating cost.

Note that the above framework involves a robust view with respect to uncertainty
(demand) since the decision of which line to build is made on the basis of worst
uncertainty (demand) realization.

We solve this problem by enumeration as shown in TableB.2. That is, we consider
both alternatives, i.e., building either line A or line B, and for each one of these two
alternatives, we consider each of the three possible demand realizations. This renders
six right-hand-side problems to be solved. Once the right-hand-side problems are
solved, the solution of the middle problem for each investment alternative in the one

Table B.2 Adaptive robust optimization example: solution by enumeration

Investment Demand Operation Cost

xA xB d y1 y2

1 0 10 10 0 30

1 0 20 10 10 130

1 0 30 10 20 230

0 1 10 10 0 40

0 1 20 20 0 60

0 1 30 20 10 160
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resulting in the highest cost, i.e., 230 if lineA is built, and 160 is line B is built instead.
Finally, the left-hand-side problem picks the smallest of these two cost alternatives,
i.e., 160. Thus, the optimal solution is building line B. �

B.3.1 Formulation

Trilevel problem (B.5) has the general form below:

minx maxu miny f (x,u, y)
s.t.
hO(x,u, y) = 0
gO(x,u, y) ≤ 0
y ∈ Y

s.t.
u ∈ U

s.t.
hI(x) = 0
gI(x) ≤ 0
x ∈ X .

(B.6)

Objective function f (x,u, y) represents the minimization of the system’s total cost,
including investment and operating costs. The investment decision variables, gath-
ered in vector x, are binary variables representing the build/not-build nature of the
investment decisions. The entries of vector u are variables describing the uncertain
parameters. Similarly, the entries of vector y are the operating decision variables,
which are considered to be continuous.

The worst case realization of the uncertainty and the successive adaptive actions
are considered in themax–min right-hand-side problem, while themin left-hand-side
problem seeks minimum total cost.

Constraints hI(x) = 0 and gI(x) ≤ 0 represent investment requirements and
limits, while constraints hO(x,u, y) = 0 and gO(x,u, y) ≤ 0 include equality con-
straints related to the system operations, and inequality constraints related to system
limits, respectively. Operation constraints depend on both x and y, which implies
that the investment decisions alter the configuration and the operation of the system.
Finally, u ∈ U defines the uncertainty set, a set representing the variability limits of
the uncertain parameters.

B.3.2 Solution

Trilevel problem (B.6) cannot be solved directly. A generally effective solution strat-
egy is using a Benders decomposition technique similar to the one explained in
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Sect.B.2.2, [4]. In this case, a master problem proposes investment decisions (and
thus plays the role of the left-hand-side problem), and a subproblem that involves
both the central and right-hand-side problems evaluates such investment decisions
and provides sensitivity information to enrich the master problem, which in turn
provides better investment decisions. The procedure concludes if no improvement
in investment decisions is achieved. The complication of this procedure is the joint
solution of the the central and right-hand-side problems, which requires merging
them into a single problem using duality theory, as explained in [1] or [2].

If operational (primal) information is transferred to the master problem instead
of sensitivity (dual) information, the resulting decomposition technique is called
column-and-constraint generation [10], which generally exhibits better computa-
tional efficiency than that of a dual Benders approach.

B.4 Multistage Decision-Making

A natural extension of the two-stage stochastic programming model is the multi-
stage stochastic programming model, in which the sequence decision–uncertainty
realization–reaction (recourse) is repeated a number of times. It is important to note
that most investment problems are indeed multistage since investment decisions are
made throughout a planning horizon at different points in time as uncertainty unfolds.
Further information on multistage stochastic programming models is available in the
textbook [5], which has an electricity focus.

Similarly, adaptive robust optimizationmodels can be transformed intomultistage
decision models using linear decision rules, as explained, for instance, in [8]. This,
however, requires significant simplifications.

B.5 End-of-Chapter Exercises

B.1 Formulate the two-stage stochastic programmingproblem (example) inSect.B.1
as an adaptive robust optimization problem, solve it, and compare the results obtained
with those in Sect.B.1.

B.2 Formulate the adaptive robust optimization problem (example) in Sect.B.2
as a two-stage stochastic programming problem, solve it, and compare the results
obtained with those in Sect.B.2.
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Appendix C
Complementarity

This appendix provides an overview of complementarity modeling, including equi-
librium models, mathematical programs with equilibrium constraints (MPECs), and
equilibrium programswith equilibrium constraints (EPECs). Thesemodels are intro-
duced and illustrated using simple investment examples.

C.1 Introduction

Equilibrium models are considered first, followed by hierarchical complementarity
models, i.e., MPECs and EPECs. For the purposes of this appendix, an equilib-
rium model results from jointly considering the solution of a number of interrelated
optimization problems.AnMPEC involves a hierarchy and often results from consid-
ering an optimization problem that is constrained by a number of other optimization
problems. Finally, an EPEC results from the joint consideration (in the equilibrium
sense) of a number of interrelated MPECs.

C.2 Equilibria

The concept of equilibrium is first stated using a simple investment example, then
illustrated through a numerical example. Finally, observations on solution algorithms
are given.

C.2.1 Formulation

Consider an investor i willing to build an electricity production facility of capacity
up to xmax

i units, with an annual investment cost Ii per production unit built, and an

© Springer International Publishing Switzerland 2016
A.J. Conejo et al., Investment in Electricity Generation and Transmission,
DOI 10.1007/978-3-319-29501-5
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annual operating cost Ci per unit of energy produced. The objective of this investor
is building the facility, producing electric energy using it, and selling the energy
produced in the electricity market for a profit. For simplicity, we assume that the
production unit can be built instantaneously, and that the electricity price depends
linearly on the production of this investor and all other investors (Cournot viewpoint).
The problem to be solved by this investor i is:

minxi ,yi Ii xi − (Ci − λ) yi
s.t. yi ≤ xi

xi ≤ xmax
i

yi ≥ 0
xi ≥ 0,

(C.1)

where xi is the capacity to be built, yi the production level, and λ the market price,
which has the form:

λ = a − b
∑

j

y j , (C.2)

where a and b are appropriate constants.
The objective function of Problem (C.1), to be minimized, is minus the profit of

the investor and includes investment cost (Ii xi ) and operations profit ((Ci − λ) yi ).
The first constraint enforces that the production level should be below the capacity
built, the second constraint provides a cap on the capacity that can be built, and the
third and fourth constraints are nonnegativity declarations.

Plugging (C.2) into the objective function of problem (C.1) and converting all
constraints to the type less than or equal to yields:

minxi ,yi Ii xi −
(
Ci − (a − b

∑
j y j )

)
yi

s.t. yi ≤ xi : αi

xi ≤ xmax
i : βi

−yi ≤ 0 : γi
−xi ≤ 0 : δi ,

(C.3)

where αi , βi , γi , and δi are the dual variables associated with the four constraints of
Problem (C.3).

The first-order optimality (KKT) conditions [4] of problem (C.3) are:

Ii − αi + βi − δi = 0 (C.4a)

Ci − a + byi + b
∑

j

y j + αi − γi = 0 (C.4b)

0 ≤ αi ⊥ (yi − xi ) ≤ 0 (C.4c)

0 ≤ βi ⊥ (xi − xmax
i ) ≤ 0 (C.4d)

0 ≤ γi ⊥ (−yi ) ≤ 0 (C.4e)
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0 ≤ δi ⊥ (−xi ) ≤ 0, (C.4f)

where u ⊥ v stands for u ≥ 0, v ≥ 0, and u · v = 0, element by element. The
operator ⊥ is the so-called perp operator.

We use (C.4a) to solve for γi and plug the resulting expression into (C.4e), (C.4b)
to solve for δi , and we plug the resulting expression into (C.4f). Also, we transform
all inequalities to greater than or equal to constraints, which gives us:

0 ≤ αi ⊥ (xi − yi ) ≥ 0 (C.5a)

0 ≤ βi ⊥ (xmax
i − xi ) ≥ 0 (C.5b)

0 ≤ (Ii − αi + βi ) ⊥ xi ≥ 0 (C.5c)

0 ≤ (Ci − a + byi + b
∑

j

y j + αi ) ⊥ yi ≥ 0. (C.5d)

The equilibrium for n investors behaving as indicated above is obtained by solving
the following system of complementarity conditions:

0 ≤ αi ⊥ (xi − yi ) ≥ 0
0 ≤ βi ⊥ (xmax

i − xi ) ≥ 0
0 ≤ (Ii − αi + βi ) ⊥ xi ≥ 0
0 ≤ (Ci − a + byi + b

∑
j y j + αi ) ⊥ yi ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭

i = 1, . . . , n. (C.6)

The solution of this complementarity systemprovides the so-calledNash–Cournot
equilibrium, as a result of representing the price demand dependency (λ = a −
b

∑
j y j ) in the profit-maximization problem of each investor.

A problem of the form (C.6) is called a complementarity problem, CP, or mixed
complementarity problem, MCP, if it also includes equality constraints.

Therefore, the general form of a CP is [2, 5]:

0 ≤ xi ⊥ gi (x1, . . . , xn) ≥ 0, ∀i = 1, . . . , n, (C.7)

while the general form of an MCP is [2]:

{
0 ≤ xi ⊥ gi (x1, . . . , xn; y1, . . . , ym) ≥ 0, ∀i = 1, . . . , n
hn+ j (x1, . . . , xn; y1, . . . , ym) = 0, y j free ∀ j = 1, . . . ,m.

(C.8)

Note that equality constraints have associated free variables and that complementarity
does not hold for these constraints.

Illustrative Example C.1

We consider three investors with investment costs 1, 1, and 1 units, operation costs
3, 4, and 5 units, and capacities 3, 4, and 2 units. The price slope and intercept are
equal to 1 and 10, respectively. The complementarity system to be solved to find the
equilibria of the three investors is:
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Table C.1 Equilibrium
example: capacity built and
production level per investor

Investor i Capacity built xi Production level yi

1 2.250 2.250

2 1.250 1.250

3 0.250 0.250

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ α1 ⊥ (x1 − y1) ≥ 0
0 ≤ β1 ⊥ (3 − x1) ≥ 0
0 ≤ (1 − α1 + β1) ⊥ x1 ≥ 0
0 ≤ (3 − 10 + y1 + ∑3

j=1 y j + α1) ⊥ y1 ≥ 0

0 ≤ α2 ⊥ (x2 − y2) ≥ 0
0 ≤ β2 ⊥ (4 − x2) ≥ 0
0 ≤ (1 − α2 + β2) ⊥ x2 ≥ 0
0 ≤ (4 − 10 + y2 + ∑3

j=1 y j + α2) ⊥ y2 ≥ 0

0 ≤ α3 ⊥ (x3 − y3) ≥ 0
0 ≤ β3 ⊥ (2 − x3) ≥ 0
0 ≤ (1 − α3 + β3) ⊥ x3 ≥ 0
0 ≤ (5 − 10 + y3 + ∑3

j=1 y j + α3) ⊥ y3 ≥ 0.

(C.9)

The equilibrium outcome resulting from solving the complementarity system
above is provided in TableC.1.

Observe from Table C.1 that the capacity and the production level are identical for
all producers; that is, each producer builds just the capacity that it can fully utilize.
This is an expected result since building higher capacity than that to be used makes
no economic sense.

A GAMS code [3] for solving this equilibrium problem is provided below:

1 OPTIONS mcp=path;

3 SETS i generators /g1*g3/;
4 ALIAS(i,j)

6 PARAMETERS
7 In(i) investment cost
8 /g1 1, g2 1, g3 1/
9 C(i) production cost

10 /g1 3, g2 4, g3 5/
11 X_max(i) capacity
12 /g1 3, g2 4, g3 2/
13 a price intercept /10/
14 b price slope /1/;

16 POSITIVE VARIABLES
17 x(i) capacity built
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18 y(i) production level
19 alpha(i) dual var. of maximum production
20 beta(i) dual var. of maximum investment;

22 EQUATIONS
23 eq1(i), eq2(i), eq3(i), eq4(i);
24 eq1(i).. x(i) - y(i) =g= 0;
25 eq2(i).. X_max(i) - x(i) =g= 0;
26 eq3(i).. In(i) - alpha(i) + beta(i) =g= 0;
27 eq4(i).. C(i) - a + b*y(i) + b*sum(j,y(j)) + alpha(

i) =g= 0;

29 MODEL Equilibrium /eq1.alpha , eq2.beta , eq3.x, eq4.
y/;

30 SOLVE Equilibrium using mcp;

Note that the GAMS code above follows almost verbatim the form of the com-
plementarity system (C.9). �

C.2.2 Solution

Further details on formulating CPs and MCPs, and on the available solution tech-
niques to tackle them, are discussed, for instance, in [2]. PATH 3.0 [1] is a solver that
embodies efficient solution techniques and allows solving CPs and MCPs of small
and moderate size.

C.3 Mathematical Program with Equilibrium
Constraints, MPEC

MPECs are considered next. An MPEC naturally arises in considering an optimiza-
tion problem that is constrained by one or more optimization problems. Such prob-
lems are also called bilevel optimization problems since they consist of an upper level
problem and a number of lower-level ones, the constraining optimization problems.
If each constraining optimization problem is replaced by its optimality conditions,
i.e., by its equilibrium conditions, the resulting problem is an optimization problem
(or program) with equilibrium constraints.
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C.3.1 Formulation

We consider that investor 1 is a leader and that investors 2 to n are followers. Thus,
the problem to be solved by investor 1 is:

minΞ1 I1x1 −
(
C1 − (a − b

∑
j y j )

)
y1

s.t. y1 ≤ x1 ≤ xmax
1

y1, x1 ≥ 0
0 ≤ αi ⊥ (xi − yi ) ≥ 0
0 ≤ βi ⊥ (xmax

i − xi ) ≥ 0
0 ≤ (Ii − αi + βi ) ⊥ xi ≥ 0
0 ≤ (Ci − a + byi + b

∑
j y j + αi ) ⊥ yi ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭

i = 2, . . . , n,

(C.10)

where Ξ1 = {x1, y1} ∪ {xi , yi , αi , βi , i = 2, . . . , n}.
Problem (C.10) embodies the problem maximization of investor 1 and is subject

to equilibrium conditions pertaining to investors 2 to n.
Considering the structure of (C.10), a general formulation of an MPEC is:

minΞ f (u1, . . . , unU; x1, . . . , xn; y1, . . . , ym)

s.t. hUk (u1, . . . , unU; x1, . . . , xn; y1, . . . , ym) = 0, ∀k = 1, . . . , pU

gUl (u1, . . . , unU ; x1, . . . , xn; y1, . . . , ym) ≤ 0, ∀l = 1, . . . , qU

0 ≤ xi ⊥ gi (u1, . . . , unU ; x1, . . . , xn; y1, . . . , ym) ≥ 0, ∀i = 1, . . . , n

hn+ j (u1, . . . , unU ; x1, . . . , xn; y1, . . . , ym) = 0, ∀ j = 1, . . . ,m,

(C.11)
where Ξ = {u1, . . . , unU} ∪ {x1, . . . , xn; y1, . . . , ym}.

Problem (C.11) in compact form is [2, 5]:

minu,x,y f (u, x, y)
s.t. hU(u, x, y) = 0

gU(u, x, y) ≤ 0
h(u, x, y) = 0
0 ≤ x ⊥ g(u, x, y) ≥ 0,

(C.12)

where u ∈ R
nU , x ∈ R

n , y ∈ R
m , f ∈ R, hU ∈ R

pU , gU ∈ R
qU
, h ∈ R

m , and g ∈ R
n .

Illustrative Example C.2

Considering the three investors in the example of Sect.C.1 and assuming that
investor 1 is a leader and that investors 2 and 3 are followers, the MPEC to be solved
is:
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Table C.2 MPEC example
with investor 1 as the leader:
capacity built and production
level per investor

Investor i Capacity built xi Production level yi

1 3 3

2 2/3 2/3

3 2/3 2/3

minΞ1 x1 −
(
3 − (10 − ∑3

j=1 y j )
)
y1

s.t. y1 ≤ x1 ≤ 3
y1, x1 ≥ 0

0 ≤ α2 ⊥ (x2 − y2) ≥ 0
0 ≤ β2 ⊥ (4 − x2) ≥ 0
0 ≤ (1 − α2 + β2) ⊥ x2 ≥ 0
0 ≤ (4 − 10 + y2 + ∑3

j=1 y j + α2) ⊥ y2 ≥ 0

0 ≤ α3 ⊥ (x3 − y3) ≥ 0
0 ≤ β3 ⊥ (2 − x3) ≥ 0
0 ≤ (1 − α3 + β3) ⊥ x3 ≥ 0
0 ≤ (5 − 10 + y3 + ∑3

j=1 y j + α3) ⊥ y3 ≥ 0,

(C.13)

where Ξ1 = {x1, y1} ∪ {x2, y2, α2, β2, x3, y3, α3, β3}.
The outcome resulting from solving MPEC (C.13) is provided in TableC.2.
A GAMS code for solving MPEC (C.13) is provided below:

1 OPTIONS mpec=knitro;

3 PARAMETERS
4 I1 /1/, I2 /1/, I3 /1/
5 C1 /3/, C2 /4/, C3 /5/
6 X1max /3/, X2max /4/, X3max /2/
7 a /10/, b /1/;

9 FREE VARIABLES
10 Profit_leader;
11 POSITIVE VARIABLES
12 x1 , x2 , x3
13 y1 , y2 , y3
14 alpha2 , alpha3 dual var. of maximum production
15 beta2 , beta3 dual var. of maximum capacity;

17 EQUATIONS
18 OF , plimit , climit ,
19 eq1_1 , eq1_2 , eq1_3 , eq1_4 ,
20 eq2_1 , eq2_2 , eq2_3 , eq2_4;

22 OF.. Profit_leader =e= I1*x1 - (C1 -a-b*(y1+y2+
y3))*y1;
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23 plimit.. y1 =l= x1;
24 climit.. x1 =l= X1max;

26 eq1_1.. x2 - y2 =g= 0;
27 eq1_2.. X2max - x2 =g= 0;
28 eq1_3.. I2 - alpha2 + beta2 =g= 0;
29 eq1_4.. C2 - a + b*y2 + b*(y1+y2+y3) + alpha2 =g=

0;

31 eq2_1.. x3 - y3 =g= 0;
32 eq2_2.. X3max - x3 =g= 0;
33 eq2_3.. I3 - alpha3 + beta3 =g= 0;
34 eq2_4.. C2 - a + b*y3 + b*(y1+y2+y3) + alpha3 =g=

0;

36 MODEL MPEC
37 /OF , plimit , climit ,
38 eq1_1.alpha2 , eq1_2.beta2 , eq1_3.x2 , eq1_4.y2 ,
39 eq2_1.alpha3 , eq2_2.beta3 , eq2_3.x3 , eq2_4.y3/;
40 SOLVE MPEC using mpec max Profit_leader;

Observe that the GAMS code above follows almost verbatim MPEC (C.13).
�

C.3.2 Solution

Solving large MPECs is possible, but it is generally not easy. The basic condition
for solvability is that the constraining problem (the one producing the equilibrium
constraints) be convex. In such a case, the optimality conditions of this constrain-
ing problem are both necessary and sufficient conditions for optimality. Therefore,
replacing the constraining optimization problem by its optimality conditions yields
a well-posedMPEC, which can be solved directly as a nonlinear programming prob-
lem or by linearizing the optimality conditions. The particular but common case
consisting of a linear programming problem constrained by another linear program-
ming problem is generally easy to tackle. Further details on solution techniques for
MPECs are available in [2].

C.4 Equilibrium Program with Equilibrium
Constraints, EPEC

We consider next EPECs. An EPEC arises from the joint consideration of a number
of interrelated MPECs.
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C.4.1 Formulation

We consider that both investor 1 and investor 2 are leaders and that investors 3 to n
are followers. Thus, the problems of investors 1 and 2 have to be solved jointly to
identify equilibria. That is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minx1,y1 I1x1 −
(
C1 − (a − b

∑
j y j )

)
y1

s.t. y1 ≤ x1 ≤ xmax
1

y1, x1 ≥ 0
0 ≤ αi ⊥ (xi − yi ) ≥ 0
0 ≤ βi ⊥ (xmax

i − xi ) ≥ 0
0 ≤ (Ii − αi + βi ) ⊥ xi ≥ 0
0 ≤ (Ci − a + byi + b

∑
j y j + αi ) ⊥ yi ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭

i = 3, . . . , n

minx2,y2 I2x2 −
(
C2 − (a − b

∑
j y j )

)
y2

s.t. y2 ≤ x2 ≤ xmax
2

y2, x2 ≥ 0
0 ≤ αi ⊥ (xi − yi ) ≥ 0
0 ≤ βi ⊥ (xmax

i − xi ) ≥ 0
0 ≤ (Ii − αi + βi ) ⊥ xi ≥ 0
0 ≤ (Ci − a + byi + b

∑
j y j + αi ) ⊥ yi ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭

i = 3, . . . , n,

(C.14)
needs to be jointly solved.

The first problem in (C.14) represents the profit maximization of investor 1 and is
constrained by the equilibrium conditions of investors 3 to n, while the second prob-
lem in (C.14) represents the profit maximization of investor 2 and is also constrained
by the equilibrium conditions of investors 3 to n.

A general form of the EPEC (C.14) is [2, 5]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minu(1),x(1),y(1) f (1)
(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

)

s.t. hU(1)
(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

) = 0
gU(1)

(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

) ≤ 0
h(1)

(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

) = 0
0 ≤ x(1) ⊥ g(1)

(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

) ≥ 0

...

minu(o),x(o),y(o) f (o)
(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

)

s.t. hU(o)
(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

) = 0
gU(o)

(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

) ≤ 0
h(o)

(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

) = 0
0 ≤ x(o) ⊥ g(o)

(
u(1), x(1), y(1), . . . ,u(o), x(o), y(o)

) ≥ 0,

(C.15)
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where u(1) ∈ R
nU

(1)

, x(1) ∈ R
n(1)

, y(1) ∈ R
m(1)

, f (1) ∈ R, hU(1) ∈ R
pU

(1)

, gU
(1) ∈ R

qU(1)

,

h(1) ∈ R
m(1)

, g(1) ∈ R
n(1)

, . . . ,u(o) ∈ R
nU

(o)

, x(o) ∈ R
n(o)

, y(o) ∈ R
m(o)

, f (o) ∈ R,

hU(o) ∈ R
pU

(o)

, gU
(o) ∈ R

qU(o)

, h(o) ∈ R
m(o)

, g(o) ∈ R
n(o)

.

Illustrative Example C.3

We consider the example in Sect.C.1 and assume that investors 1 and 2 are both
leaders, while investor 3 is a follower, the EPEC to be solved is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minΞ1 x1 −
(
3 − (10 − ∑3

j=1 y j )
)
y1

s.t. y1 ≤ x1 ≤ 3
y1, x1 ≥ 0
0 ≤ α3 ⊥ (x3 − y3) ≥ 0
0 ≤ β3 ⊥ (2 − x3) ≥ 0
0 ≤ (1 − α3 + β3) ⊥ x3 ≥ 0
0 ≤ (5 − 10 + y3 + ∑3

j=1 y j + α3) ⊥ y3 ≥ 0,

minΞ2 x2 −
(
4 − (10 − ∑3

j=1 y j )
)
y2

s.t. y2 ≤ x2 ≤ 4
y2, x2 ≥ 0
0 ≤ α3 ⊥ (x3 − y3) ≥ 0
0 ≤ β3 ⊥ (2 − x3) ≥ 0
0 ≤ (1 − α3 + β3) ⊥ x3 ≥ 0
0 ≤ (5 − 10 + y3 + ∑3

j=1 y j + α3) ⊥ y3 ≥ 0,

(C.16)

where Ξ1 = {x1, y1} ∪ {y2} ∪ {x3, y3, α3, β3} and Ξ2 = {x2, y2} ∪ {y1} ∪ {x3, y3,
α3, β3}.

This EPEC can be solved using a diagonalization procedure that relies on solving
individual MPECs. It works as follows:

0. Variables x2 and y2 are fixed to initial values and the MPEC for investor 1 is
solved to obtain x̃1, ỹ1, x̃3, and ỹ3.

1. Variables x1 and y1 are then fixed to the values obtained in the previous step, x̃1
and ỹ1, and the MPEC for investor 2 is solved to obtain x̃2, ỹ2, x̃3, and ỹ3. Thus
the MPEC to be solved is:

minΞ2 x2 −
(
4 − (10 − ∑3

j=1 y j )
)
y2

s.t. y2 ≤ x2 ≤ 4
y2, x2 ≥ 0
0 ≤ α3 ⊥ (x3 − y3) ≥ 0
0 ≤ β3 ⊥ (2 − x3) ≥ 0
0 ≤ (1 − α3 + β3) ⊥ x3 ≥ 0
0 ≤ (5 − 10 + y3 + ∑3

j=1 y j + α3) ⊥ y3 ≥ 0
x1 = x̃1
y1 = ỹ1,
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Table C.3 EPEC example
with investors 1 and 2 as
leaders: capacity built and
production level per investor

Investor i Capacity built xi Production level yi

1 3 3

2 1 1

3 0.5 0.5

where Ξ2 = {x2, y2} ∪ {x3, y3, α3, β3}.
2. Variables x2 and y2 are then fixed to the values obtained in the previous step, x̃2

and ỹ2, and the MPEC for investor 1 is solved to obtain x̃1, ỹ1, x̃3, and ỹ3. Thus
the MPEC to be solved is:

minΞ1 x1 −
(
3 − (10 − ∑3

j=1 y j )
)
y1

s.t. y1 ≤ x1 ≤ 3
y1, x1 ≥ 0
0 ≤ α3 ⊥ (x3 − y3) ≥ 0
0 ≤ β3 ⊥ (2 − x3) ≥ 0
0 ≤ (1 − α3 + β3) ⊥ x3 ≥ 0
0 ≤ (5 − 10 + y3 + ∑3

j=1 y j + α3) ⊥ y3 ≥ 0
x2 = x̃2
y2 = ỹ2,

where Ξ1 = {x1, y1} ∪ {x3, y3, α3, β3}.
3. Steps 1 and 2 are repeated until convergence is obtained, that is, until x1, y1, x2,

y2, x3, y3 do not change in two consecutive iterations.

The outcome from solving EPEC (C.16) is provided in TableC.3.
The GAMS code for the MPEC of investor 1 is given below:

1 OPTIONS mpec=knitro;

3 PARAMETERS
4 I1 /1/, I2 /1/, I3 /1/
5 C1 /3/, C2 /4/, C3 /5/
6 X1max /3/, X2max /4/, X3max /2/
7 a /10/, b /1/
8 x2 /4/, y2 /4/;

10 FREE VARIABLES
11 Profit_leader;
12 POSITIVE VARIABLES
13 x1 , x3
14 y1 , y3
15 alpha3 dual var. of maximum production
16 beta3 dual var. of maximum capacity;

18 EQUATIONS
19 OF , plimit , climit ,
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20 eq2_1 , eq2_2 , eq2_3 , eq2_4;

22 OF.. Profit_leader =e= -I1*x1 + ((a-b*(y1+y2+
y3))-C1)*y1;

23 plimit.. y1 =l= x1;
24 climit.. x1 =l= X1max;

26 eq2_1.. x3 - y3 =g= 0;
27 eq2_2.. X3max - x3 =g= 0;
28 eq2_3.. I3 - alpha3 + beta3 =g= 0;
29 eq2_4.. C2 - a + b*y3 + b*(y1+y2+y3) + alpha3 =g=

0;

31 MODEL MPEC
32 /OF , plimit , climit ,
33 eq2_1.alpha3 , eq2_2.beta3 , eq2_3.x3 , eq2_4.y3/;
34 SOLVE MPEC using mpec max Profit_leader;

Since the MPEC of investor 2 is similar to that of investor 1, it is not reproduced
here. �

C.4.2 Solution

Solving EPECs is generally very complicated, due to the nonconvex nature of such
problems. Two techniques are generally available to attack such problems. The first
one, diagonalization, has already been described (Sect.C.3 above). The second one,
which is valid only for certain type of EPECs, consists in deriving the optimality
conditions of each MPEC (constituting the EPEC) and attempting to solve all these
conditions together. Regarding this second technique, it is relevant to note that deriv-
ing the optimality conditions of an MPEC is not generally easy since the constraints
of an MPEC do not meet regularity conditions [4].

C.5 Comparison

Investment and production outcomes for the equilibrium, MPEC, and EPEC models
are summarized in TableC.4.

Resulting prices and total productions for the equilibrium, MPEC, and EPEC
models are reported in TableC.5.

Resulting profits for the equilibrium, MPEC, and EPEC models are reported in
TableC.6.

Considering the results reported in TablesC.4, C.5, and C.6, the observations
below are in order:
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Table C.4 Comparison across models: capacity built and production level per investor

Investor 1 Investor 2 Investor 3

Investment Production Investment Production Investment Production

x1 y1 x2 y2 x3 y3

Equilibrium 2.25 2.25 1.25 1.25 0.25 0.25

MPEC 3.00 3.00 0.67 0.67 0.67 0.67

EPEC 3.00 3.00 1.00 1.00 0.50 0.50

Table C.5 Comparison across models: price and total production

Price Total production

Equilibrium 6.25 3.75

MPEC 5.67 4.33

EPEC 5.50 4.50

Table C.6 Comparison across models: profits

Profit Producer 1 Profit Producer 2 Profit Producer 3 Total profit

Equilibrium 5.0625 1.5625 0.0625 6.6875

MPEC 5.0000 0.4444 −0.2222 5.2222

EPEC 4.5000 0.5000 −0.2500 4.7500

1. The Nash–Cournot equilibrium provides the most favorable outcome for all
investors in terms of profit. Nevertheless, investor 3 experiences losses for the
MPEC and EPEC solutions.

2. The price is lowest for the EPEC equilibrium, and thus this is the best option for
consumers.

3. In terms of production level, the EPEC equilibrium is the best option for investor
1, while the Nash–Cournot equilibrium is best for investor 2, and the MPEC
solution is best for investor 3.

C.6 End-of-Chapter Exercises

C.1 Consider two interrelated linear programming problems and derive the equilib-
rium resulting from the joint consideration of their respective optimality conditions.

C.2 Write a linear programming problem constrained by another (related) linear
programming problem and derive the resulting MPEC.

C.3 Write two interrelated MPECs similar to the one in the previous exercise and
identify their equilibrium (or equilibria) using a diagonalization technique.
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C.4 Expand the example in Sect.C.1 considering six investors, the three in that
example and three additional ones, identical to the original three. Compute the equi-
librium outcomes in this newmarket condition and compare them with the outcomes
of the example in Sect.C.1.

C.5 Repeat Exercise C.4 considering investor 1 as the leader and solving an MPEC.

C.6 Repeat Exercise C.4 considering investors 1 and 2 as leaders and solving an
EPEC.
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Appendix D
Risk Management

This appendix provides an overview of risk management and the corresponding risk
metrics, especially the conditional value-at-risk (CVaR) that is used in Chap.4. This
metric is introduced and illustrated using a simple example corresponding to the
generation expansion planning (GEP) problem.

D.1 Introduction

In the investment decision-making optimization problems, the objective function is
either maximizing profit, e.g., in the case in which a single producer invests in new
generating units, or minimizing system cost, e.g., in the centralized GEP problem.
However, those problems are generally subject to diverse sources of uncertainty,
e.g., the expansion costs and the future demand growth. One relevant approach to
modeling those uncertainties is stochastic programming, whereby uncertain data are
represented through a set of plausible scenarios. Each scenario contains a realization
for uncertain parameters and a probability. For example, the uncertainty of future
investment cost of a specific generating unit can be represented by two scenarios,
i.e., $600,000/MW and $800,000/MW, whose probabilities are 0.6 and 0.4, respec-
tively. This provides a distribution of the objective function (profit or system cost),
and therefore, it is needed to optimize a function characterizing such a distribution,
e.g., its expected value. The main disadvantage of maximizing expected profit or
minimizing expected cost is that the remaining parameters characterizing the profit
or cost distribution are neglected. For example, the expected profit maximization
may result in a significant loss if a specific scenario with a nonnegligible probability
is realized.

In order to control the risk of experiencing distributions with undesirable proper-
ties, several risk management tools have been developed in the literature. Those tools
mostly define risk metrics that can be incorporated into the optimization problems
as an additional term in the objective function and/or as additional constraints. The
most relevant risk metrics in the technical literature are listed below [1]:
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• Variance,
• Shortfall probability,
• Expected shortage,
• Value-at-risk (VaR),
• Conditional value-at-risk (CVaR) [2, 3].

Among the risk metrics above, the last one is the most advantageous, for the
following reasons:

1. In contrast to the first metric, no quadratic (or nonlinear) term needs to be included
in this one. Therefore, it maintains the linearity of linear programming (LP) and
mixed-integer LP (MILP) problems.

2. Unlike the second and the fourth metrics, the CVaR does not add any binary
variables to the problem. Therefore, it maintains the convexity of LP problems
and does not increase the number of binary variables in the MILP problems.

3. Unlike all othermetrics, theCVaRprovides information about the profit (or system
cost) throughout the distribution. For example, it is able to detect and quantify a
fat tail that may appear in the profit (or system cost) distribution.

4. Unlike all other metrics, the CVaR is a coherent risk metric, i.e., it satisfies all
desirable properties for a risk metric. These properties are (i) translation invari-
ance, (ii) subadditivity, (iii) positive homogeneity, and (iv) monotonicity. Further
information about these properties are available in [1].

Considering the context above, the CVaR risk metric is considered in this book.
In the rest of this appendix, first a risk-neutral GEP example is provided. Then, the
CVaR risk metric is described and applied to an illustrative example.

Illustrative Example D.1 Risk-neutral GEP problem

This illustrative example addresses a centralizedGEPproblem inwhich the system
operator makes the optimal generation expansion decisions, whose objective is to
minimize the expected system cost. The existing generating portfolio includes two
conventional units, e1 and e2. The capacity of unit e1 is 1000 MWwith a production
cost of $14/MWh. In addition, the capacity of unit e2 is 800 MW with a production
cost of $20/MWh. The only candidate unit to be built is conventional unit c1, whose
production cost is $15/MWh. The transmission system is not considered in this
example.

For expansion purposes, two future time periods, t1 and t2, are considered
(dynamic expansion approach). The generation expansion decisions are made at
the beginning of each time period. For the sake of simplicity, the capacity expansion
options are assumed continuous, so that the maximum capacity to be built in each
time period is 1500 MW. The amortization rates are equal to 30% and 15% in the
first and second time periods, respectively.

The expansion cost at the beginning of the first time period is known, which is
$300,000/MW. However, such cost in the second time period is uncertain and repre-
sented by five equiprobable scenarios. According to these scenarios, the expansion
cost in the second time period can be 20% lower than, 10% lower than, equal to,
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20% higher than, or 50% higher than that cost in the first time period. Note that once
the first time period concludes, the system operator knows which scenario is actually
realized. As another source of uncertainty, we consider an inelastic consumer with
uncertain consumption level. This uncertainty in the first time period is represented
by three equiprobable scenarios: 2000MW, 2250MW, and 2500MW. For the sake of
simplicity, we assume that the demand level in the second time period is known at the
beginning of that time period, which is identical to the realized demand level in the
first time period raised by 20%. Based on the two sources of uncertainty considered,
15 (i.e., 5 × 3) equiprobable scenarios can be generated, as given in TableD.1. The
risk-neutral GEP problem is formulated by (D.1) below:

minΔω={xCt1c1ω, xCt2c1ω, pEt1e1ω, pEt2e1ω, pEt1e2ω, pEt2e2ω, pCt1c1ω, pCt2c1ω} ∀ω=ω1,ω2,...,ω15

∑ω15

ω=ω1
φω

{

8760

[

14 (pEt1e1ω + pEt2e1ω) + 20 (pEt1e2ω + pEt2e2ω)

+ 15 (pCt1c1ω + pCt2c1ω)

]

+ (0.30 × 300000) xCt1c1ω + 0.15 Ct2ω xCt2c1ω

}

(D.1a)

subject to

0 ≤ xCt1c1ω ≤ 1500 ∀ω = ω1, ω2, . . . , ω15 (D.1b)

0 ≤ xCt2c1ω ≤ 1500 ∀ω = ω1, ω2, . . . , ω15 (D.1c)

Table D.1 Illustrative Example D.1: uncertain data across different scenarios

Scenario (ω) Expansion cost in t2
[$/MW] (Ct2ω)

Demand level in t1
[MW] (PD

t1ω)
Demand level in t2
[MW] (PD

t2ω)

ω1 240,000 2000 2400

ω2 270,000 2000 2400

ω3 300,000 2000 2400

ω4 360,000 2000 2400

ω5 450,000 2000 2400

ω6 240,000 2250 2700

ω7 270,000 2250 2700

ω8 300,000 2250 2700

ω9 360,000 2250 2700

ω10 450,000 2250 2700

ω11 240,000 2500 3000

ω12 270,000 2500 3000

ω13 300,000 2500 3000

ω14 360,000 2500 3000

ω15 450,000 2500 3000
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xCt1c1ω = xCt1c1ω̃ ∀ω = ω1, ω2, . . . , ω15; ∀ω̃ = ω1, ω2, . . . , ω15 (D.1d)

pEt1e1ω + pEt1e2ω + pCt1c1ω = PD
t1ω ∀ω = ω1, ω2, . . . , ω15 (D.1e)

pEt2e1ω + pEt2e2ω + pCt2c1ω = PD
t2ω ∀ω = ω1, ω2, . . . , ω15 (D.1f)

0 ≤ pEt1e1ω ≤ 1000 ∀ω = ω1, ω2, . . . , ω15 (D.1g)

0 ≤ pEt2e1ω ≤ 1000 ∀ω = ω1, ω2, . . . , ω15 (D.1h)

0 ≤ pEt1e2ω ≤ 800 ∀ω = ω1, ω2, . . . , ω15 (D.1i)

0 ≤ pEt2e2ω ≤ 800 ∀ω = ω1, ω2, . . . , ω15 (D.1j)

0 ≤ pCt1c1ω ≤ xCt1c1ω ∀ω = ω1, ω2, . . . , ω15 (D.1k)

0 ≤ pCt2c1ω ≤ (
xCt1c1ω + xCt2c1ω

) ∀ω = ω1, ω2, . . . , ω15. (D.1l)

The objective function (D.1a) minimizes the expected system cost including the
expected production cost and the expected expansion cost. Note that φω represents
the probability of scenario ω. Constraints (D.1b) and (D.1c) bound the capacity of
candidate unit c1 to be built in time periods t1 and t2, respectively. The nonanticipa-
tivity constraints are enforced by (D.1d). Constraints (D.1e) and (D.1f) enforce the
power balance between production and consumption levels in time periods t1 and t2,
respectively. The remaining constraints (D.1g)–(D.1l) restrict the production levels.
Note that problem (D.1) is linear.

Table D.2 Illustrative Example D.1: risk-neutral generation expansion decisions

Scenario Generation expansion decision
in the first time period [MW]
(xCt1c1ω)

Generation expansion decision
in the second time period
[MW] (xCt2c1ω)

ω1 900 500

ω2 500

ω3 0

ω4 0

ω5 0

ω6 800

ω7 800

ω8 0

ω9 0

ω10 0

ω11 1100

ω12 1100

ω13 300

ω14 300

ω15 300
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Table D.3 Illustrative
Example D.1: system cost
distribution over scenarios

Scenario System cost [$ million]

ω1 664.02

ω2 666.27

ω3 667.92

ω4 667.92

ω5 667.92

ω6 758.04

ω7 761.64

ω8 764.28

ω9 764.28

ω10 764.28

ω11 852.06

ω12 857.01

ω13 861.00

ω14 863.70

ω15 867.75

The optimal solution of the GEP problem (D.1) is presented in TableD.2. Accord-
ingly, a new 900-MW unit is built at the beginning of the first time period. However,
the generation expansion decision in the second time period depends on scenario
realization at the end of the first time period. In the case of scenarios ω1 and ω2,
an additional 500-MW unit is built, i.e., the capacity of the candidate unit increases
up to 1400 MW (900 + 500). An additional 800-MW capacity is built in the second
time period if either scenario ω6 or scenario ω7 is realized. This additional capacity
in the case of scenarios ω11 and ω12 is 1100 MW. The capacity of the candidate unit
reaches 1200MW if one of scenarios ω13 to ω15 is realized at the end of the first time
period. Finally, the generation portfolio is not expanded in the second time period if
one of the remaining scenarios is realized.

The expected system cost in the optimal solution is $763.21 million. TableD.3
gives the system cost distribution, i.e., the optimal system cost for each scenario.
Note that the system cost exhibits high volatility varying from $664.02 million to
$867.75 million. �

D.2 Conditional Value-at-Risk

In a minimization problem with discrete scenarios, e.g., the GEP problem (D.1), the
CVaR for a given confidence level α ∈ (0,1) is defined as the expected value of the
system cost higher than the (1 − α)-quantile of the cost distribution over scenarios.
If all scenarios are equiprobable, the CVaR is computed as the expected system cost
in the (1 − α) × 100% worst scenarios. Similarly, in a maximization problem with
discrete scenarios, e.g., the generation investment problem of a producer maximizing
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its expected profit, the CVaR is defined as the expected value of the profit smaller
than the (1 − α)-quantile of the profit distribution over scenarios.

The CVaR of a discrete distribution function can be incorporated into the mini-
mization problem, e.g., the GEP problem (D.1), as follows:

minΔω, ζ, ηω
Eω

{

f (ω)

}

− β

(

ζ − 1

1 − α
Eω

{

ηω

})

(D.2a)

subject to

GEP constraints (D.1b) − (D.1l) (D.2b)

ζ + f (ω) ≤ ηω ∀ω (D.2c)

ηω ≥ 0 ∀ω, (D.2d)

where function f (ω) represents the system cost under scenario ω. In addition, Eω is
the expectation operator.

The term

(

ζ − 1
1−α

Eω

{

ηω

})

in the objective function (D.2a) computes theCVaR

risk metric. Note that ζ is an auxiliary continuous variable that computes the value-
at-risk (VaR). The optimal value of the VaR, i.e., ζ ∗, for a given confidence level α

is the minimum system cost value such that the probability of the system cost being
higher than this value is less than or equal to 1 − α. Based on the VaR, the CVaR is
defined as the expected value of those cost values that are greater than or equal to the
VaR. In the objective function (D.2a), the nonnegative weighting parameter β makes
a tradeoff between the expected system cost and the risk, so that a higher value of
β implies that the system operator is more risk averse. Note that β = 0 makes the
problem risk-neutral.

Constraints (D.2b) include all constraints of the original risk-neutral GEP prob-
lem. Finally, constraints (D.2c) and (D.2d) allow incorporating the CVaR riskmetric.
Note that ηω is an auxiliary nonnegative continuous variable equal to the summation
of the VaR, ζ , and the system cost under scenarioω if this summation is nonnegative,
and equal to zero if such a summation is negative.

Similarly, the CVaR risk metric can be incorporated into the maximization prob-
lem with discrete scenarios, e.g., the generation investment problem of a producer
maximizing its expected profit, as follows:

maxΓ, ζ, ηω
Eω

{

p(ω)

}

+ β

(

ζ − 1

1 − α
Eω

{

ηω

})

(D.3a)

subject to

Original constraints of the risk-neutral problem (D.3b)

ζ − p(ω) ≤ ηω ∀ω (D.3c)

ηω ≥ 0 ∀ω, (D.3d)

where function p(ω) represents the producer’s profit under scenario ω. In addition,
variable set Γ includes all variables of the original risk-neutral problem. The optimal
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value of the VaR, i.e., ζ ∗, for a given confidence level α is the maximum profit value
such that the probability of the profit being lower than this value is less than or equal
to 1−α. Based on the VaR, the CVaR is defined as the expected value of those profit
values that are less than or equal to the VaR.

Illustrative Example D.2 Risk-constrained GEP problem

In this section, the CVaR risk metric is incorporated into Illustrative Example
D.1. We assume a confidence level α=0.80 and a weighting parameter β=10. The
corresponding risk-constrained GEP model is formulated by linear problem (D.4)
below:

minxCt1c1ω, xCt2c1ω, pEt1e1ω, pEt2e1ω, pEt1e2ω, pEt2e2ω, pCt1c1ω, pCt2c1ω, ηω; ∀ω=ω1,ω2,...,ω15, ζ

ω15∑

ω=ω1

φω

{

8760

[

14 (pEt1e1ω + pEt2e1ω) + 20 (pEt1e2ω + pEt2e2ω)

+ 15 (pCt1c1ω + pCt2c1ω)

]

+ (0.30 × 300000) xCt1c1ω + 0.15 Ct2ω xCt2c1ω

}

− 10

(

ζ − 1

1 − 0.80

ω15∑

ω=ω1

φωηω

)

(D.4a)

subject to

Constraints (D.1b)−(D.11) (D.4b)

ζ + 8760

[

14 (pEt1e1ω + pEt2e1ω) + 20 (pEt1e2ω + pEt2e2ω) + 15 (pCt1c1ω + pCt2c1ω)

]

+ (0.30 × 300000) xCt1c1ω + 0.15 Ct2ω xCt2c1ω ≤ ηω ∀ω = ω1, ω2, . . . , ω15

(D.4c)

ηω ≥ 0 ∀ω = ω1, ω2, . . . , ω15. (D.4d)

The optimal solution of the risk-constrained GEP problem (D.4) is provided in
TableD.4. In this case, the risk-averse system operator decides to build a higher
capacity in the first time period (1200 MW) with respect to that in the risk-neutral
GEP problem (900 MW). In addition, a smaller capacity is built in the second time
period for different scenarios with respect to that in the risk-neutral GEP problem.
In this way, a higher capacity is available in the first time period, which increases the
ability of the risk-averse system operator to cope with future uncertainties.

The expected system cost in the risk-constrained case is $766.81 million. As
expected, it is higher than that in the risk-neutral case ($763.21 million). The system
cost and the optimal value of ηω per scenario in the risk-constrained case are pro-
vided in TableD.5. Note that the system cost varies from $675.84 million to $861.36
million, which exhibits in this example a comparatively lower volatility with respect
to the risk-neutral case.

Theoptimal value for theVaR (ζ ∗) at confidence levelα=0.80 is−$858.72million,
which is in fact minus the value of the system cost for scenario ω12. This implies
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Table D.4 Illustrative Example D.2: risk-constrained generation expansion decisions

Scenario Generation expansion decision
in the first time period [MW]
(xCt1c1ω)

Generation expansion decision
in the second time period
[MW] (xCt2c1ω)

ω1 1200 200

ω2 200

ω3 0

ω4 0

ω5 0

ω6 500

ω7 500

ω8 0

ω9 0

ω10 0

ω11 800

ω12 800

ω13 0

ω14 0

ω15 0

that $858.72 million is the minimum system cost value such that the probability of
the system cost being higher than that value is less than or equal to 0.20. As given in
TableD.5, the system costs in the last three scenarios ($861.36million) with identical
probabilities ( 1

15 ) are less than or equal to the VaR.
Since all scenarios in Illustrative Example D.2 are equiprobable, the CVaR at

confidence level α = 0.80 is equal to the expected system cost in the 20% worst
scenarios. Therefore, it determines the mean of the system cost value in the last
three scenarios, i.e., $861.36 million. Another general technique for computing the
CVaR even in cases with different probabilities is to derive the optimal value of the
term − (

ζ − 1
1−α

∑
ω φωηω

)
in the objective function. In this example, such a term

is computed as follows:

−
(

ζ − 1

1 − α

ω15∑

ω=ω1

φωηω

)

= 858.72 × 106 + 1

1 − 0.80

[(
1

15
× 2.64 × 106

)

+
(

1

15
× 2.64 × 106

)

+
(

1

15
× 2.64 × 106

)]

= 861.36 × 106.

It is worth mentioning that the value of CVaR in the risk-neutral GEP problem,
i.e., Illustrative Example D.1, is $867.75 million, which is comparatively higher than
that in the risk-constrained GEP problem ($861.36 million).
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Table D.5 Illustrative Example D.2: system cost and ηω for different scenarios

System cost [$ million] ηω [$ million]

ω1 675.84 0

ω2 676.74 0

ω3 677.40 0

ω4 677.40 0

ω5 677.40 0

ω6 761.10 0

ω7 763.35 0

ω8 765.00 0

ω9 765.00 0

ω10 765.00 0

ω11 855.12 0

ω12 858.72 0

ω13 861.36 2.64

ω14 861.36 2.64

ω15 861.36 2.64

763.5 764 764.5 765 765.5 766 766.5 767

861.5

862

862.5

863

863.5

864

864.5
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β =0.1

β =1.5

β =10

Fig. D.1 Illustrative Example D.2: expected system cost versus CVaR (efficient frontier)

Finally, the risk-constrained GEP problem (D.4) is solved considering different
values of theweighting parameterβ. FigureD.1 depicts the so-called efficient frontier
for this case, which shows how the expected system cost increases as the CVaR
decreases. �
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Appendix E
Dynamic Programming

This appendix presents a high-level introduction to dynamic programming. First, a
discrete-time approach is taken in which decisions may be made only at specific
points in time. Next, a continuous-time framework is developed and applied to the
problem of optimal stopping. Examples illustrate all concepts numerically.

E.1 Introduction

In this appendix, wewill survey dynamic programming concepts that are used to ana-
lyze dynamic decision making under uncertainty. These are relevant for any problem
in which decisions are made or updated sequentially in time as new information
is revealed. As a concrete example, consider the power company in Chap.7 that
holds the perpetual option to invest in a power plant of a given capacity. Facing
uncertainty in the underlying value of the plant, the company can choose to delay
its investment decision in order to maximize the conditional expected net present
value (NPV) of the power plant. For example, it may invest in the power plant either
immediately, in five years, or in ten years. Given these discrete choices, the power
company’s optimal investment timing decision is the one that maximizes the condi-
tional expected NPV. To that end, the power company compares the expected NPV
from immediate investment with the continuation function, which contains the value
of all subsequent decisions to invest or to wait. Conceptually, discrete-time dynamic
programming handles dynamic optimization under uncertainty by decomposing the
main problem into smaller subproblems and exploiting their recursive nature. Hence,
this so-called Bellman principle of optimality formalizes the notion that the optimal
decision policy based on some initial choices and conditions is such that the subse-
quent decisions for the resulting subproblems are also optimal [1].

However, it is plausible to imagine that the power company makes such com-
parisons at more frequent intervals. In the limit, we can convert the decision-
making problem into a continuous-time one by letting discrete time steps over which
the underlying stochastic process is defined go to zero. Consequently, instead of
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comparing the value functions from decisions at discrete points in time, the result-
ing Bellman equation is cast in terms of rates, i.e., the instantaneous rate of return
on the value of the investment equals its expected appreciation per unit time. If the
underlying stochastic process is an Itô process [3], then the Bellman equation may
be rearranged by applying Itô’s lemma to yield a partial differential equation (PDE).
In the case of a perpetual option, the PDE becomes an ordinary differential equation
(ODE) that can be solved analytically subject to boundary conditions.

In the final section of this appendix, we will consider optimal stopping-time prob-
lems. This approach makes the formal link between solving an investment problem
and finding the optimal threshold price. Illustrative examples for a typical investment
decision-making problem are used to convey the main concepts.

E.2 Discrete-Time Dynamic Programming

We will demonstrate discrete-time dynamic programming using a simple setup in
which the investor faces uncertainty in the price of the underlying asset, i.e., a power
plant. The expected value of the plant, Vt (in $), changes at discrete points in time
t = 0,Δt, 2Δt, . . . , TΔt , where Δt is the length of each time increment and T + 1
is the finite number of time periods over which the investment decisionmay bemade.
Over any time increment, Δt , the value of the plant can either jump up or down by
a factor of U > 1 or D < 1, respectively. We let 0 ≤ p ≤ 1 be the probability
associated with an upward jump and assume that successive changes in the price
are independent of all previous movements in the plant’s value. Thus, given Vt , the
value in period t + Δt is UVt with probability p and DVt with probability 1 − p.
FigureE.1 illustrates the discrete movements in the plant’s value.

Given that the power company has discretion over investment timing, which time
period is the optimal one in which to initiate investment? Assuming no operating
costs and that the investment cost is I (in $), the expected NPV from immediate
investment in any time period t is simply max{Vt − I, 0}. This expected NPV must
now be compared with the discounted expected value (conditional on the current
plant value) of waiting to invest in a subsequent period, where ρ is the periodic
discount rate. If W (Vt , t) is the value of the investment opportunity in period t
when the plant value is Vt , then we have the recursive relationship in Eq. (E.1) for
t = 0, . . . , (T − 1) Δt [4]:

W (Vt , t) = max

{

Vt − I,
1

1 + ρΔt
EVt

[
W (Vt+Δt , t + Δt)

]
}

. (E.1)

The boundary condition with respect to which the recurrence is solved is in
Eq. (E.2):

W (VTΔt , TΔt) = max{VTΔt − I, 0}. (E.2)
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Fig. E.1 Discrete movements in the plant’s value over time

Illustrative Example E.1 Discrete-time dynamic programming

We now apply the discrete-time dynamic programming approach in Eqs. (E.1)–
(E.2) to a specific example. Consider the movements of the plant value given in
Fig.E.2. Here, the parameters are T = 2, Δt = 1, U = 1.2, D = 0.9, p = 1

2 ,
ρ = 0.10, V0 = 100, and I = 100. Thus, the power company has two years
over which to observe the value of the underlying plant and to make its investment
decision. The expected annual percentage change in the value of the power plant is
1
2 ×0.20+ 1

2 ×−0.10 = 5%, and the annualized volatility in the percentage changes

is
√

1
2 × (0.20 − 0.05)2 + 1

2 × (−0.10 − 0.05)2 = 15%. We solve for the value of
the option to invest and obtain the optimal investment policy by solving equations
(E.1)–(E.2) using backward induction starting with year 2:

• In year 2, the power company’s investment decision is a simple now-or-never one,
which means that Eq. (E.2) is evaluated for each value of V2:
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Fig. E.2 Discrete movements in the plant’s value for two time periods

W (V2, 2) = max{V2 − I, 0} =

⎧
⎪⎨

⎪⎩

44, if V2 = 144

8, if V2 = 108

0, if V2 = 81.

• In year 1, the expected NPV from immediate investment must be compared with
the expected value ofwaiting conditional on the current plant value usingEq. (E.1):

W (V1, 1) = max

{

V1 − I,
1

1 + ρ
EV1 [W (V2, 2)]

}

=
{
max{20, 1

1.1

[
1
2 × 44 + 1

2 × 8
]}, if V1 = 120

max{−10, 1
1.1

[
1
2 × 8 + 1

2 × 0
]}, if V1 = 90

=
{
23.636, if V1 = 120

3.636, if V1 = 90.

• Finally, in year 0, we have:

W (V0, 0) = max{V0 − I,
1

1 + ρ
EV0 [W (V1, 1)]}

= max

{

0,
1

1.1

[
1

2
× 23.636 + 1

2
× 3.636

] }

= 12.397.
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Hence, the value of the investment opportunity is worth $12.397 initially even though
the expected now-or-never NPV is precisely zero. The optimal investment policy is
to wait until year 2 and to invest only if the value of the plant is 144 or 108. �

E.3 Continuous-Time Dynamic Programming

Rearranging Eq. (E.1), we obtain that the Bellman equation in the continuation region
is:

W (Vt , t) = 1

1 + ρΔt
EVt

[
W (Vt+Δt , t + Δt)

]

⇒ (1 + ρΔt)W (Vt , t) = EVt

[
W (Vt+Δt , t + Δt)

]

⇒ ρΔtW (Vt , t) = EVt

[
W (Vt+Δt , t + Δt) − W (Vt , t)

]
. (E.3)

By lettingΔW ≡ W (Vt+Δt , t + Δt)−W (Vt , t) and dividingEq. (E.3) byΔt before
taking the limit as Δt goes to zero, we obtain:

ρW (Vt , t) = 1

Δt
EVt [ΔW ]

⇒ lim
Δt→0

ρW (Vt , t) = lim
Δt→0

1

Δt
EVt [ΔW ]

⇒ ρW (Vt , t) = 1

dt
EVt [dW ]

⇒ ρW (Vt , t) dt = EVt [dW ] . (E.4)

The last line of Eq. (E.4) reflects the return-equilibrium condition that the instanta-
neous rate of return from owning the investment opportunity is equal to the expected
appreciation as if it were operated optimally.

In the limit asΔt → 0, the underlying plant value also converges to a continuous-
time stochastic process rather than a discrete one as in Sect.E.2. Now, if the
underlying stochastic processes, {Vt , t ≥ 0}, is an Itô process, i.e., of the form
dVt = a (·) dt + b (·) dzt , where a (·) and b (·) are the drift and diffusion parameters
depending on Vt as well as t , and dzt is the increment to a Wiener process, then the
continuous-time Bellman equation in Eq. (E.4) may be simplified as a result of apply-
ing Itô’s lemma. At its essence, Itô’s lemma enables the calculation of the total dif-
ferential of a function that depends on an Itô process and time. Intuitively, it is related
to a Taylor series expansion for a deterministic function of several variables, e.g.,
f (x, y), which yields d f = ∂ f

∂x dx + ∂ f
∂y dy+ 1

2
∂2 f
∂x2 (dx)2 + 1

2
∂2 f
∂y2 (dy)2 +· · · . In con-

trast to the deterministic setting, second-order terms of an Itô process do not vanish
but are of the order of dt since (dVt )

2 = a (·)2 (dt)2+b (·)2 (dzt )
2+2a (·) b (·) dtdzt .

Here, (dzt )
2 = dt , whereas dtdzt = (dt)

3
2 and (dt)2 are both “small” compared to

dt . Hence, we have for W (Vt , t), where {Vt , t ≥ 0} is an Itô process:
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dW = ∂W

∂Vt
dVt + ∂W

∂t
dt + 1

2

∂2W

∂V 2
t

(dVt )
2

= ∂W

∂Vt
a (·) dt + ∂W

∂Vt
b (·) dzt + ∂W

∂t
dt + 1

2

∂2W

∂V 2
t
b (·)2 dt

=
(

∂W

∂Vt
a (·) + ∂W

∂t
+ 1

2

∂2W

∂V 2
t
b (·)2

)

dt + ∂W

∂Vt
b (·) dzt . (E.5)

Applying Itô’s lemma to the return-equilibrium condition in Eq. (E.4) yields the
following PDE:

ρW (Vt , t) dt = EVt

[(
∂W

∂Vt
a (·) + ∂W

∂t
+ 1

2

∂2W

∂V 2
t
b (·)2

)

dt + ∂W

∂Vt
b (·) dzt

]

⇒ ρW (Vt , t) dt =
(

∂W

∂Vt
a (·) + ∂W

∂t
+ 1

2

∂2W

∂V 2
t
b (·)2

)

dt

⇒ 1

2
b (·)2 ∂2W

∂V 2
t

+ a (·) ∂W

∂Vt
+ ∂W

∂t
− ρW (Vt , t) = 0. (E.6)

The PDE in Eq. (E.6) may be solved numerically, e.g., by starting at the terminal
time T and working backward through a grid based on the finite-differencing method
subject to boundary conditions [2]. Besides finding the value of the option to invest,
the solution should also comprise the “free boundary,” υt , i.e., the optimal threshold
plant value at which to invest for every t . The corresponding boundary conditions
are the value-matching and smooth-pasting conditions as follows:

W (Vt , t)|Vt=υt
= Vt − I |Vt=υt

(E.7)

∂W (Vt , t)

∂Vt

∣
∣
∣
∣
Vt=υt

= ∂ (Vt − I )

∂Vt

∣
∣
∣
∣
Vt=υt

. (E.8)

Intuitively, the value-matching condition in Eq. (E.7) states that at the free boundary,
the value of the option to invest equals the expected NPV of the active plant, whereas
the smooth-pasting condition in Eq. (E.8) is a first-order condition for optimality [3].

If the option to invest is perpetual or the time to expiry is long, then the value
function no longer depends directly on time, i.e., it is simplyW (V ). Consequently,
the PDE in Eq. (E.6) becomes an ODE as the time derivative vanishes:

1

2
b (·)2 W ′′ (V ) + a (·)W ′ (V ) − ρW (V ) = 0. (E.9)

Now, instead of solving for a free boundary, we solve for an optimal threshold, υ,
which is independent of time. Thus, Eq. (E.9) is solved together with the following
value-matching and smooth-pasting conditions:



Appendix E: Dynamic Programming 377

W (V )|V=υ = V − I |V=υ (E.10)

dW (V )

dV

∣
∣
∣
∣
V=υ

= d (V − I )

dV

∣
∣
∣
∣
V=υ

. (E.11)

Illustrative Example E.2 Continuous-time dynamic programming

Suppose that a power company has the perpetual option to invest in a power plant
with underlying value {Vt , t ≥ 0}, which follows a GBM, i.e., dV = αV dt+σV dzt .
As in Illustrative Example E.1, we let ρ = 0.10 be the annual discount rate and set the
investment cost to be I = 100. Since the expected appreciation in Vt in Illustrative
Example E.1 is 0.05 with a volatility of 0.15, we set α = 0.05 and let the volatility
parameter, σ , be equal to 0.15. Using Eq. (E.9), we obtain the following ODE:

1

2
σ 2V 2W ′′ (V ) + αVW ′ (V ) − ρW (V ) = 0. (E.12)

The solution to this second-order ODE is of the power form, i.e.:

W (V ) = a0,1V
β1 + a0,2V

β2 , (E.13)

where β1 > 1 and β2 < 0 are the roots of the characteristic quadratic equation
Q (β) = 1

2σ
2β (β − 1) + αβ − ρ = 0 defined by the insertion of Eq. (E.13) into

Eq. (E.12). Furthermore, as the value of the plant goes to zero, the value of the option
to invest in it should also become worthless, i.e., limV→0W (V ) = 0 is a boundary
condition, which implies that a0,2 = 0. Thus, the solution to the value of the option
to invest is:

W (V ) = a0,1V
β1 . (E.14)

Using the value-matching and smooth-pasting conditions in Eqs. (E.10) and (E.11),
respectively, we can now solve for the optimal investment threshold, υ, and the
endogenous constant, a0,1:

υ =
(

β1

β1 − 1

)

I (E.15)

a0,1 = υ1−β1

β1
. (E.16)

From the parameters, we first obtain that β1 = 1.7209, which leads to υ = 238.7198
and a0,1 = 0.0112 from Eqs. (E.15) and (E.16), respectively. Hence, it is optimal to
invest when the value of the plant hits υ, and the value of the option to invest when
V = 100 is a0,1V β1 = 31.0341, which is considerably higher than the expected
now-or-never NPV of zero. �
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As an exercise, the reader is encouraged to extend Illustrative Example E.1 to
T = 20 to facilitate comparison with the results of Illustrative Example E.2. With
the discrete approximation, the value of the option to invest is 30.4767, and in the
next-to-last year, the lowest possible plant value that triggers immediate investment
is 239.8806. Hence, both values with the discrete approximation are similar to the
continuous-time solution.

E.4 Optimal Stopping Time Problems

Another way to approach the problem of investment under uncertainty is to recast
it in terms of the optimal stopping time. Specifically, suppose that the same power
company as in Illustrative Example E.2 is trying to determine the optimal time, τ ≥ 0,
at which to invest assuming a perpetual option and that {Vt , t ≥ 0} follows a GBM:

W (V ) = sup
τ≥0

EV
[
e−ρτ {Vτ − I }] . (E.17)

Using the law of iterated expectations and the strong Markov property of the GBM,
we may express the objective in the right-hand side of Eq. (E.17) as follows:

EV
[
EVτ

[
e−ρτ {Vτ − I }]]

= EV
[
e−ρτ

EVτ
[Vτ − I ]

]

= EV
[
e−ρτ

] {Vτ − I } . (E.18)

Thus, the independence of Vτ from V enables the inner expectation to be separated
from the outer one. As a result, the objective function in Eq. (E.17) becomes:

W (V ) = sup
τ≥0

EV
[
e−ρτ

] {Vτ − I } . (E.19)

In order to solve the optimal stopping-time problem in Eq. (E.19), it is expe-
dient to convert it into a nonlinear unconstrained optimization problem by find-
ing an expression for the conditional expectation of the stochastic discount factor,
EV

[
e−ρτ

]
, in terms of the optimal investment threshold value, υ. To do so, we let

g (V ) ≡ EV
[
e−ρτ

]
and condition on the first thing that happens in the next dt time

units:

g (V ) = o (dt) e−ρdt + (1 − o (dt)) e−ρdt
EV [g (V + dV )]

⇒ g (V ) = o (dt) e−ρdt + (1 − o (dt)) e−ρdt
EV [g (V ) + dg + o (dt)]

⇒ g (V ) = o (dt) e−ρdt + (1 − o (dt)) e−ρdt
EV

[

g (V ) + dVg′ (V )
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+1

2
(dV )2 g′′ (V ) + o (dt)

]

⇒ g (V ) = o (dt) + e−ρdt g (V ) + e−ρdtαVg′ (V ) dt + e−ρdt 1

2
σ 2V 2g′′ (V ) dt

⇒ g (V ) = o (dt) + (1 − ρdt) g (V ) + (1 − ρdt) αVg′ (V ) dt

+ (1 − ρdt)
1

2
σ 2V 2g′′ (V ) dt

⇒ 1

2
σ 2V 2g′′ (V ) + αVg′ (V ) − ρg (V ) = o (dt)

dt
. (E.20)

The first line of Eq. (E.20) is obtained by conditioning on whether the threshold υ ≥
V is reached in the next dt time units, which is presumed to occur with probability
o (dt). If it does, then the discount factor is simply e−ρdt . Otherwise, with probability
(1 − o (dt)), the problem starts all over again with time displacement dt , which leads
to discounting of e−ρdt and a change of dV in the underlying plant value. Next, we
move to the second line of Eq. (E.20) by arguing heuristically that g (V + dV ) is
g (V )+dg plus some terms of order o (dt). In order to get to the third line, we apply
Itô’s lemma to the dg term. The fourth line of Eq. (E.20) arises from the fact that
terms of order dt become o (dt) when multiplied by other terms of order o (dt). In
the fifth line, we use the relationship e−ρdt = (1 − ρdt) + o (dt), and finally, the
sixth line of Eq. (E.20) is a consequence of rearrangement.

If we take the limit as dt goes to zero, then the last line of Eq. (E.20) becomes the
following familiar second-order ODE:

1

2
σ 2V 2g′′ (V ) + αVg′ (V ) − ρg (V ) = 0. (E.21)

The general solution to the ODE in Eq. (E.21) is g (V ) = a1V β1 + a2V β2 , where
β1 and β2 are the positive and negative roots of the characteristic quadratic equation
Q (β) = 1

2σ
2β (β − 1) + αβ − ρ = 0. In order to obtain the endogenous constants

a1 and a2, we use the following boundary conditions:

lim
V→0

g (V ) = 0, (E.22)

g (υ) = 1. (E.23)

Equation (E.22) states that as the initial plant value goes to zero, which is an absorb-
ing state for the GBM, it becomes improbable for the threshold υ to be hit. Thus, τ
should go to infinity, which means that the expected discount factor becomes zero.
The only way for this to hold is if a2 = 0; otherwise, the V β2 term explodes to
infinity. At the other extreme, if the initial plant value is already very close to the
investment threshold, υ, then the so-called hitting time should be approaching zero,
which implies that the expected discount factor is as reflected by Eq. (E.23). Conse-
quently, we have a1 = 1

υβ1
. Hence, the optimal stopping-time problem in Eq. (E.17)
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becomes the following nonlinear optimization problem:

W (V ) = max
υ≥V

(
V

υ

)β1

(υ − I ) . (E.24)

Illustrative Example E.3 Optimal stopping time

Taking the first-order necessary condition for the problem in Eq. (E.24) yields the
following:

(
V

υ

)β1

− β1 (υ − I )

(
V

υ

)β1−1 V

υ2
= 0. (E.25)

Solving this for υ yields the expression in Eq. (E.15). The second-order sufficiency
condition may be verified as well:

−β1

(
V

υ

)β1−1 V

υ2
− β1

(
V

υ

)β1−1 V

υ2
+ β1 (β1 + 1) (υ − I )

(
V

υ

)β1 1

υ2

= β1

(
V

υ

)β1 1

υ

[
(υ − I )

υ
(β1 + 1) − 2

]

< 0. (E.26)

The result in the last line of Eq. (E.26) follows because (i) β1
(
V
υ

)β1 1
υ

> 0 and (ii)
(υ−I )

υ
(β1 + 1) − 2 < 0 if the definition of υ from Eq. (E.15) is employed. �
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