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Abstract. Digital signature is a fundamental primitive with numerous
applications. Following the development of pairing-based cryptography,
several taking advantage of this setting have been proposed. Among
them, the Camenisch-Lysyanskaya (CL) signature scheme is one of the
most flexible and has been used as a building block for many other proto-
cols. Unfortunately, this scheme suffers from a linear size in the number
of messages to be signed which limits its use in many situations.

In this paper, we propose a new signature scheme with the same fea-
tures as CL-signatures but without the linear-size drawback: our signa-
ture consists of only two elements, whatever the message length, and our
algorithms are more efficient. This construction takes advantage of using
type 3 pairings, that are already widely used for security and efficiency
reasons.

We prove the security of our scheme without random oracles but in the
generic group model. Finally, we show that protocols using CL-signatures
can easily be instantiated with ours, leading to much more efficient con-
structions.

1 Introduction

Digital signature is one of the main cryptographic primitives which can be used
in its own right, to provide the electronic version of handwritten signatures, but
also as a building block for more complex primitives. Whereas efficiency is the
main concern of the first case, the latter case usually requires a signature scheme
with additional features. Indeed, when used as a building block, signatures must
not just be efficient, they also have to be compatible with the goals and the
other building blocks of the protocol. For example, privacy-preserving primitives
usually require a signature scheme which allows signatures on committed secret
values and compatible with zero-knowledge proofs.

1.1 Related Works

Constructing a versatile signature scheme that is both efficient and secure
is not easy. One of the first construction specifically designed as a building
block for other applications was proposed by Camenisch and Lysyanskaya [18].
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Their construction, relying on the Strong RSA assumption [6], allows indeed
signatures on committed values and proofs of knowledge of a signature.

The emergence of pairing-based cryptography [13,34] has created a need for
such signature schemes compatible with this new setting. Indeed, many cryp-
tographic protocols now use bilinear groups, i.e. a set of three groups G1, G2

and GT along with a bilinear map e : G1 × G2 → GT . In 2004, Camenisch and
Lysyanskaya proposed a new pairing-based signature scheme [19] whose flexibil-
ity has allowed it to be used in several applications, such as group signatures [10],
direct anonymous attestations [9,25], aggregate signatures [35] or E-cash sys-
tems [21]. One of its most interesting features is probably the ability of its sig-
natures to be randomized: given a valid CL-signature σ = (a, b, c) on a message
m, anyone can generate another valid signature on the same message by select-
ing a random scalar t and computing (at, bt, ct). The latter is indistinguishable
from a fresh signature on m. Let us consider a typical situation for anonymous
credentials [17], direct anonymous attestations [15], or group signatures [24]: a
user first gets a signature σ on some secret value s and then has to prove, sev-
eral times, that s is certified still keeping the proofs unlinkable. If σ were issued
using a conventional signature scheme, it would have to be committed and the
user would have to prove that the commitment opens to a valid signature on a
secret value which is a rather complex statement to prove, even in the Random
Oracle Model (ROM) [7]. Now, if σ is a CL-signature, then the user can simply
compute a randomized version σ′ of σ, sends it and proves that it is valid on
the secret value. This idea underlies the efficiency of the constructions described
in [9,10,25]. For these constructions, unlinkability relies on the DDH assumption
in G1, and so requires the use of asymmetric pairings. But this is not a strong
assumption, since they offer the best efficiency (see [29]).

One might have thought that the seminal work of Groth and Sahai [32],
providing the first practical non-interactive zero-knowledge proofs (NIZKs) in
the standard model, in conjunction with the recent structure-preserving signa-
tures [1–3,23], has decreased interest for CL-signatures. However, that has not
happened due to the huge performance gap between constructions in the stan-
dard model and constructions in the ROM: for example, the most efficient group
signature in the standard model [31] consists of 50 group elements whereas [10],
in the ROM, consists of only 3 group elements and two scalars. And for real-life
applications, where time constraints are particularly challenging, constructions
with NIZK proofs in the ROM seem unavoidable.

As a consequence, signatures schemes, such as the CL-signatures, compatible
with NIZKs in the ROM still remain of huge practical interest.

Another primitive for which efficiency considerations are central is anonymous
credentials. Unfortunately, even if they are one of the applications proposed for
CL-signatures, most of these schemes [4,5,16,20] use other constructions, such as
the one proposed by Boneh, Boyen and Shacham (BBS) [12]. This is due to a large
extent to the size of CL-signatures, which is linear in the number of messages to be
signed. Since a user of an anonymous credential system may have several attributes
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to be certified, this cost quickly becomes prohibitive. This is unfortunate because,
here again, the randomizability of CL-signatures could lead to more efficient
protocols.

1.2 Our Contribution

In this paper, we propose a new signature scheme, with the same features as
CL-signatures, but with a remarkable efficiency. Indeed, whereas the original
CL-signatures [19] on blocks of r messages consist of 1+2r elements of G1, ours
only require 2 elements of G1, whatever r is. Moreover, as illustrated in Fig. 1
(see Sect. 7), our signature and verification algorithms are much more efficient.

Our work proceeds from the observation that most of the recent protocols
[9,10,25] using CL-signatures require type 3 pairings for efficiency and security
reasons (see [29]). However, CL-signatures, as most of the constructions from
the beginnings of pairing-based cryptography, were designed for type 1 pairings.
Unfortunately, this setting usually leads to more complex protocols since they
cannot rely on assumptions which would have held with pairings of other types.
This has been illustrated by the recent results [2,23] on structure-preserving
signatures, which show that designing schemes specifically for type 3 pairings
results in more efficient constructions.

Following the same rationale, we propose a signature scheme suited to such
pairings: it can be seen as CL-signatures, but taking advantage of the full poten-
tial of type 3 pairings. The separation between the space of the signatures (G1)
and the one of the public key (G2) allows indeed more efficient constructions
since the elements of the latter can no longer be used to build forgeries in the
former. Unfortunately, the security of our scheme does not rely on any standard
assumption and so is proved in the generic group model, which does not provide
the same guarantees. However, as illustrated by [2,11,19], relying on proofs in
the generic group model or on non-standard assumptions (themselves proved in
this model), allows more efficient constructions. For some applications with chal-
lenging time constraints, such as public transport where authentication must be
performed in less than 300 ms [27,33], we argue that this trade-off, between effi-
ciency and the security assumption, is reasonable. By providing short signatures
with efficient algorithms, our solution may then contribute to make all features
of modern cryptography more accessible.

Improving the efficiency of primitives with practical applications was also
the concern of the authors of [22]. They proved, in the generic group model,
the security of the MAC scheme introduced in [28] and used it to construct
keyed-verification anonymous credentials (the secret-key analogue of standard
anonymous credentials). Although our signature shares similarities with this
scheme, it offers much more flexibility. Indeed, the construction described in
[22,28] does not achieve public verifiability and so only fits the case where the
verifier is also the issuer. Moreover, the protocols for obtaining or proving knowl-
edge of a MAC on committed messages are more complex than the ones, for a
signature, we describe in this paper.
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Besides efficiency, one of the main advantages of our scheme is that it acts
as a plug-in replacement for CL-signatures. Indeed, since they achieve the same
properties than the latter, our signatures can be used to instantiate most of the
protocols initially designed for CL ones. To illustrate this point, we convert our
signature scheme into a sequential aggregate signature scheme [37] using an idea
similar to the one of Lee, Lee and Yung [35]. The resulting aggregate signature
only consists of 2 elements in G1 and so is shorter than theirs. Similar gains can
be achieved for many other applications such as group signatures or anonymous
credentials.

1.3 Organization

We review some definitions and notations in Sect. 2 and present new compu-
tational assumptions in Sect. 3. Section 4 describes our signature scheme whose
conversion into a sequential aggregate signature scheme is described in Sect. 5.
Section 6 describes a variant of our scheme allowing to sign committed values
along with a protocol for proving knowledge of a signature. Section 7 provides
a comparison with related works. Finally, we describe some applications and
provide the security proofs in the appendices.

2 Preliminaries

2.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups G1, G2, and GT of prime order
p along with a bilinear map e : G1 × G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [29] defined three types of pairings: in type 1,
G1 = G2; in type 2, G1 �= G2 but there exists an efficient homomorphism
φ : G2 → G1, while no efficient one exists in the other direction; in type 3,
G1 �= G2 and no efficiently computable homomorphism exists between G1 and
G2, in either direction.

Although type 1 pairings were mostly used in the early-age of pairing-based
cryptography, they have been gradually discarded in favour of type 3 pairings.
Indeed, the latter offer a better efficiency and are compatible with several com-
putational assumptions, such as the Decision Diffie-Hellman assumption in G1 or
G2, also known as the XDH assumption, which does not hold in type 1 pairings.

In this work, we only consider type 3 pairings. We stress that using type 1
or type 2 pairings would make our signature scheme totally insecure.
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2.2 Digital Signature Scheme

Syntax. A digital signature scheme Σ is defined by four algorithms:

– the Setup algorithm which, on input a security parameter k, outputs pp, a
description of the public parameters;

– the key generation algorithm Keygen which, on input pp, outputs a pair of
signing and verification keys (sk, pk) – we assume that sk contains pk, and
that pk contains pp;

– the signing algorithm Sign which, on input the signing key sk and a message
m, outputs a signature σ;

– the verification algorithm Verify which, on input m, σ and pk, outputs 1 if
σ is a valid signature on m under pk, and 0 otherwise.

Security Notion. The standard security notion for a signature scheme is
existential unforgeability under chosen message attacks (EUF-CMA) [30] which
means that it is hard, even given access to a signing oracle, to output a valid
pair (m,σ) for a message m never asked to the signing oracle. It is defined using
the following game between a challenger C and an adversary A:

– Setup: C runs the Setup and the Keygen algorithms to obtain sk and pk. The
adversary is given the public key pk;

– Queries: A adaptively requests signatures on at most q messages m1,. . . ,mq.
C answers each query by returning σi ← Sign(sk,mi);

– Output: A eventually outputs a message-signature pair (m∗, σ∗) and wins
the game if Verify(pk,m∗, σ∗) = 1 and if m∗ �= mi ∀i ∈ [1, q].

A signature scheme is EUF-CMA secure if no probabilistic polynomial-time
adversary A can win this game with non-negligible probability.

2.3 Sequential Aggregate Signature

Syntax. Sequential aggregate signature [37] is a special type of aggregate sig-
nature (introduced by Boneh et al. [14]) where the final signature on the list of
messages is computed sequentially by each signer, who adds his signature on his
message. It is defined by the four algorithms described below:

– the AS.Setup algorithm which, on input a security parameter k, outputs pp,
a description of the public parameters;

– the key generation algorithm AS.Keygen which, on input pp, outputs a pair
of signing and verification keys (sk, pk) – we assume that sk contains pk, and
that pk contains pp;

– the signing algorithm AS.Sign which, on input an aggregate signature σ on
messages (m1, . . . ,mr) under public keys (pk1, . . . , pkr), a message m and a
signing key sk such that pk /∈ {pki}ri=1, outputs a new aggregate signature σ′

on (m1, . . . ,mr,m);
– the verification algorithm AS.Verify which, on input (m1, . . . ,mr), σ and

distinct public keys (pk1, . . . , pkr), outputs 1 if σ is a valid aggregate signature
on (m1, . . . ,mr) under (pk1, . . . , pkr), and 0 otherwise.
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Security Model. The security property for a sequential aggregate signature
scheme is existential unforgeability under chosen message attacks which requires
that no adversary is able to forge an aggregate signature, on a set of messages
of its choice, by a set of users whose secret keys are not all known to it. It is
defined using the following game between a challenger C and an adversary A:

– Setup: C first initializes a key list KeyList as empty. Next it runs the AS.Setup
algorithm to get pp and the AS.Keygen algorithm to get the signing and veri-
fication keys (sk∗, pk∗). The verification key pk∗ is given to A;

– Join Queries: A adaptively asks to add the public keys pki to KeyList;
– Signature Query: A adaptively requests aggregate signatures on at most q

messages m1, . . . ,mq under the challenge public key pk∗. For each query, it
provides an aggregate signature σi on the messages (mi,1, . . . ,mi,ri

) under the
public keys (pki,1, . . . , pki,ri

), all in KeyList. Then C returns the aggregation
AS.Sign(sk∗, σi, (mi,1, . . . ,mi,ri

), (pki,1, . . . , pki,ri
),mi);

– Output: A eventually outputs an aggregate signature σ on the messages
(m∗

1, . . . ,m
∗
r) under the public keys (pk1, . . . , pkr) and wins the game if the

following conditions are all satisfied:
• AS.Verify((pk1, . . . , pkr), (m∗

1, . . . ,m
∗
r), σ) = 1;

• For all pkj �= pk∗, pkj ∈ KeyList ;
• For some j∗ ∈ [1, r], pk∗ = pkj∗ and m∗

j∗ has not been queried to the
signing oracle, i.e. m∗

j∗ �= mi, for i = 1, . . . , q.

A sequential aggregate signature scheme is EUF-CMA secure if no probabilistic
polynomial-time adversary A can win this game with non-negligible probability.

Certified Keys. As in [35], we consider the setting proposed by Lu et al. [36]
where users must prove knowledge of their signing key sk when they want to add
a public key pk in KeyList. In the security proof, this enables the simulator to
answer every signature query made by the adversary A. As a consequence, in
the Join Query, when A asks to add pk to KeyList, it additionally proves its
knowledge of the corresponding secret key sk.

3 Assumption

A by-now classical assumption is the so-called LRSW [38], applied to many
privacy-preserving protocols, such as the CL-signatures [19], that admit two
protocols: an issuing protocol that allows a user to get a signature σ on a message
x, just by sending a commitment of x to the signer, and a proving protocol that
allows the user to prove, in a zero-knowledge way, his knowledge of a signature
on a commitment of x. They lead to efficient anonymous credentials.

Definition 1 (LRSW Assumption). Let G be a cyclic group of prime order
p, with a generator g. For X = gx and Y = gy, where x and y are random scalars
in Zp, we define the oracle O(m) on input m ∈ Zp that chooses a random h ∈ G

and outputs the triple T = (h, hy, hx+mxy). Given (X,Y ) and unlimited access
to this oracle, no adversary can efficiently generate such a triple for a new scalar
m∗, not asked to O.
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This assumption has been introduced in [38] and proven in the generic group
model, as modeled by Shoup [42].

We now propose two similar assumptions in bilinear groups of type 3 that
will provide even more efficient protocols. We then prove them to hold in the
bilinear generic group model.

Definition 2 (Assumption 1). Let (p,G1,G2,GT , e) a bilinear group setting
of type 3, with g (resp. g̃) a generator of G1 (resp. G2). For (X = gx, Y = gy)
and ( ˜X = g̃x, ˜Y = g̃y), where x and y are random scalars in Zp, we define the
oracle O(m) on input m ∈ Zp that chooses a random h ∈ G1 and outputs the
pair P = (h, hx+my). Given (g, Y, g̃, ˜X, ˜Y ) and unlimited access to this oracle,
no adversary can efficiently generate such a pair, with h �= 1G1 , for a new scalar
m∗, not asked to O.

One can note that using pairings, an output of the adversary can be checked
since the pair P = (P1, P2) should satisfy e(P1, ˜X · ˜Y m) = e(P2, g̃). In addition,
(X,Y ) are enough to answer oracle queries: on a scalar m ∈ Zp, one computes
(gr, (X · Y m)r). This requires 3 exponentiations per query, while knowing (x, y)
just requires a random sampling in G1 and one exponentiation.

In some situations, a weaker assumption will be enough, where Y is not given
to the adversary:

Definition 3 (Assumption 2). Let (p,G1,G2,GT , e) a bilinear group setting
of type 3, with g (resp. g̃) a generator of G1 (resp. G2). For ( ˜X = g̃x, ˜Y = g̃y)
where x and y are random scalars in Zp, we define the oracle O(m) on input
m ∈ Zp that chooses a random h ∈ G and outputs the pair P = (h, hx+my).
Given (g̃, ˜X, ˜Y ) and unlimited access to this oracle, no adversary can efficiently
generate such a pair, with h �= 1G1 , for a new scalar m∗, not asked to O.

Theorem 4. The above Assumption 1 (and thus the Assumption 2) holds in the
generic bilinear group model: after q oracle queries and qG group-oracle queries,
no adversary can generate a valid pair for a new scalar with probability greater
than 6(q + qG)2/p.

The proof can be found in the full version [40].

4 Our Randomizable Digital Signature Scheme

For the sake of clarity, for our signature scheme, we first describe the specific
case where only one message is signed. We then present an extension allowing
to sign several messages and show that the security of the latter scheme holds
under the security of the former (which holds under the weak Assumption 2).

4.1 A Single-Message Signature Scheme

Description. Our signature scheme to sign a message m ∈ Zp consists of the
following algorithms:
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– Setup(1k): Given a security parameter k, this algorithm outputs pp ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the following,
we denote G

∗
1 = G1\{1G1};

– Keygen(pp): This algorithm selects g̃
$← G2 and (x, y) $← Z

2
p, computes

( ˜X, ˜Y ) ← (g̃x, g̃y) and sets sk as (x, y) and pk as (g̃, ˜X, ˜Y );
– Sign(sk,m): This algorithm selects a random h

$← G
∗
1 and outputs σ ←

(h, h(x+y·m));
– Verify(pk,m, σ): This algorithm parses σ as (σ1, σ2) and checks whether σ1 �=

1G1 and e(σ1, ˜X · ˜Y m) = e(σ2, g̃) are both satisfied. In the positive case, it
outputs 1, and 0 otherwise.

Correctness: If σ = (σ1 = h, σ2 = h(x+y·m)), then

e(σ1, ˜X · ˜Y m) = e(h, ˜X · ˜Y m) = e(h, g̃)(x+y·m) = e(h(x+y·m), g̃) = e(σ2, g̃).

Remark 5. As already remarked above, the signature could be generated with
the secret key being either (x, y) or (X = gx, Y = gy). But the former leads a
more efficient signature scheme.

Randomizability. As the CL-signatures, a signature σ = (σ1, σ2) on a message
m can be randomized by selecting a random t

$← Z
∗
p and computing σ′ ← (σt

1, σ
t
2)

which is still a valid signature on m: it corresponds to replace h ∈ G
∗
1 by h′ =

ht ∈ G
∗
1.

Security Analysis. EUF-CMA is exactly the above Assumption 2, since a
signing oracle is perfectly equivalent to the oracle O.

4.2 A Multi-message Signature Scheme

Description. We now present a variant of the previous scheme to sign r-message
vectors (m1, . . . ,mr) ∈ Z

r
p at once. Our signature scheme consists of the following

algorithms, where all the sums and products are on j between 1 and r:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the following,
we denote G

∗
1 = G1\{1G1};

– Keygen(pp): This algorithm selects g̃
$← G2 and (x, y1, . . . , yr)

$← Z
r+1
p , com-

putes ( ˜X, ˜Y1, . . . , ˜Yr) ← (g̃x, g̃y1 , . . . , g̃yr ) and sets sk as (x, y1, . . . , yr) and pk

as (g̃, ˜X, ˜Y1, . . . , ˜Yr).
– Sign(sk,m1, . . . ,mr): This algorithm selects a random h

$← G
∗
1 and outputs

σ ← (h, h(x+
∑

yj ·mj)).
– Verify(pk, (m1, . . . ,mr), σ): This algorithm parses σ as (σ1, σ2) and checks

whether σ1 �= 1G1 and e(σ1, ˜X · ∏

˜Y
mj

j ) = e(σ2, g̃) are both satisfied. In the
positive case, it outputs 1, and 0 otherwise.
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Correctness: If σ = (σ1 = h, σ2 = h(x+
∑

yj ·mj)), then

e(σ1, ˜X ·
∏

˜Y
mj

j ) = e(h, ˜X ·
∏

˜Y
mj

j ) = e(h, g̃)x+
∑

yj ·mj

= e(hx+
∑

yj ·mj , g̃) = e(σ2, g̃).

Security Analysis. We now rely the security of this multiple-message signa-
ture scheme to the security of the single-message signature scheme, and so on
Assumption 2. Due to space limitations, the proof of the following theorem is
provided in in the full version [40].

Theorem 6. The multiple-message signature scheme achieves the EUF-CMA
security level under the above Assumption 2. More precisely, if an adversary can
break the EUF-CMA of the multiple-message signature scheme with probability
ε, then there exists an adversary against the EUF-CMA security of the single-
message signature scheme, within the same running time and the same number
of signing queries, succeeding with probability greater than ε − q/p.

5 A Sequential Aggregate Signature

Our Construction. It is possible to slightly modify the scheme from Sect. 4.2
to convert it into a sequential aggregate signature scheme. The signer’s secret key
of the original scheme to sign r-message vector was (x, y1, . . . , yr). But now, let us
assume one publishes a signature on the r-vector (0, . . . , 0): (g,X) = (g, gx) ∈ G

2
1

for some g ∈ G1. This additional knowledge does not help an adversary to
produce forgeries on non-zero vectors, but the scalar value x is no longer useful
in the secret key since one can sign a vector (m1, . . . ,mr) by selecting a random
t

$← Zp and computing (gt, (X)t · (gt)
∑

yj ·mj ). The correctness follows from the
one of the original scheme.

On the other hand, we can use the public key sharing technique from [35]
to construct an efficient sequential aggregate signature scheme in the standard
model: each signer j (from 1 to r) generates his own signing and verification
keys (yj , ˜Yj) but uses the same element X from the public parameters. To sign
a message m1 ∈ Z

∗
p, the first selects a random t1

$← Zp and outputs (σ1, σ2) ←
(gt1 , (X)t1 ·(gt1)y1·m1). A subsequent signer 2 can generate an aggregate signature
on m2 by selecting a random t2 and computing (σ′

1, σ
′
2) ← (σt2

1 , (σ2 · σy2·m2
1 )t2).

Therefore, (σ′
1, σ

′
2) = (gt1·t2 , gt1·t2(x+m1·y1+m2·y2)) = (gt, gt(x+m1·y1+m2·y2)), for

t = t1t2, and so its validity can be verified using the Verify algorithm described
in Sect. 4.2.

More formally, our sequential aggregate signature scheme is defined by the
following algorithms.

– AS.Setup(1k): Given a security parameter k, this algorithm selects a random
x ∈ Zp and outputs pp ← (p,G1,G2,GT , e, g,X, g̃, ˜X), where X = gx and
˜X = g̃x for some generators (g, g̃) ∈ G1 × G2.
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– AS.Keygen(pp): This algorithm selects a random y
$← Zp, computes ˜Y ← g̃y

and sets sk as y and pk as ˜Y .
– AS.Sign(sk, σ, (m1, . . . ,mr), (pk1, . . . , pkr),m) proceeds as follows:

• If r = 0, then σ ← (g,X);
• If r > 0 but AS.Verify((pk1, . . . , pkr), σ, (m1, . . . ,mr)) = 0, then it halts;
• If m = 0, then it halts;
• If for some j ∈ {1, . . . , r} pkj = pk, then it halts.

If the algorithm did not halt, then it parses sk as y and σ as (σ1, σ2), selects
t

$← Zp and computes σ′ = (σ′
1, σ

′
2) ← (σt

1, (σ2 · σy·m
1 )t). It eventually outputs

σ′.
– AS.Verify((pk1, . . . , pkr), (m1, . . . ,mr), σ) parses σ as (σ1, σ2) and pkj as ˜Yj ,

for j = 1, . . . , r, and checks whether σ1 �= 1G1 and e(σ1, ˜X ·∏ ˜Y
mj

j ) = e(σ2, g̃)
are both satisfied. In the positive case, it outputs 1, and 0 otherwise.

Correctness. If r = 0, then the algorithm AS.Sign outputs (gt, (X · gy·m)t) =
(gt, gt(x+y·m)). By induction, let us now assume that σ = (gs, gs(x+

∑
yj ·mj)),

then an aggregate signature σ′ on m is equal to (gt·s, gt·s(x+m·y+∑ yj ·mj)), which
is equal to (h, hx+

∑
yj ·mj+y·m) for some h ∈ G1. The correctness of our sequential

aggregate signature scheme follows then from the signature scheme described in
Sect. 4.2.

Security Analysis. We now rely the security of this aggregate signature
scheme, in the certified public key setting, to the security of the single-message
signature scheme, and so on Assumption 2:

Theorem 7. The aggregate signature scheme achieves the EUF-CMA security
level, in the certified public-key setting, under the above Assumption 2. More
precisely, if an adversary can break the EUF-CMA of the aggregate signature
scheme, then there exists an adversary against the EUF-CMA security of the
single-message signature scheme, within the same running time and the same
number of signing queries, succeeding with the same probability.

The proof can be found in the in the full version [40].

6 Useful Features

6.1 Signing Committed Messages

Many cryptographic primitives require efficient protocols to obtain signatures
on committed (or transformed) values. For example, in some group signature
schemes [10,12,26], users must get a certificate on their secret key m ∈ Zp to
join the group. The non-frameability property [8] expected from such a primitive
prevents the users to directly send the value m to the group manager. Instead,
they rather send a public value gm, for some public g ∈ G1, and start a protocol
with the latter to get a signature on the secret value m.
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Our signature scheme can be slightly modified to handle such a protocol: one
can submit gm to the signer and prove knowledge of m. If the proof is valid, the
signer can return σ = (σ1, σ2) ← (gu, (gx · (gm)y)u), for some u

$← Zp, which is
a valid signature on m.

However, gm is not hiding enough in some applications, and namely if inform-
ation-theoretical security is required. For example, in anonymous credentials [17],
the elements gm1 , . . . , gmr may provide too much information on the attributes
(m1, . . . ,mr), if they belong to small sets.

The modified BBS signature scheme [12] described in [4] enables the signer to
sign messages (m1, . . . ,mr) from a Pedersen commitment [39] C = gt0·gm1

1 · · · gmr
r

(where t is a random scalar). We need to slightly modify the scheme described in
Sect. 4.2 to add such a feature. Indeed, the latter does not provide any element
of G1 in the public key. The resulting protocol is described below, in the multi-
message setting. But we first start with the single-message protocol.

A Single-Message Protocol. The signature scheme for signing one
information-theoretically hidden message consists of the following algorithms:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the follow-
ing, we denote G

∗
1 = G1\{1G1} and G

∗
2 = G2\{1G2}, which are the sets of the

generators.
– Keygen(pp): This algorithm selects g

$← G
∗
1, g̃

$← G
∗
2 and (x, y) $← Z

2
p,

computes (X,Y ) ← (gx, gy) and ( ˜X, ˜Y ) ← (g̃x, g̃y), and sets sk ← X and
pk ← (g, Y, g̃, ˜X, ˜Y ).

– Protocol: A user who wishes to obtain a signature on the message m ∈ Zp first
selects a random t

$← Zp and computes C ← gtY m. He then sends C to the
signer. They both run a proof of knowledge of the opening of the commitment.
If the signer is convinced, he selects a random u

$← Zp and returns σ′ ←
(gu, (XC)u). The user can now unblind the signature by computing σ ←
(σ′

1, σ
′
2/σ′

1
t).

The element σ then satisfies σ1 = gu and σ2 = (XC)u/gut = (XgtY m/gt)u =
(XY m)u, which is a valid signature on m for the single-message signature scheme
described in Sect. 4.1. However, because of the additional elements in the public
key, the EUF-CMA security of the underlying signature scheme now relies on
the Assumption 1.

A Multi-message Protocol. The signature scheme for signing information-
theoretically hidden messages consists of the following algorithms:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the follow-
ing, we denote G

∗
1 = G1\{1G1} and G

∗
2 = G2\{1G2}, which are the sets of the

generators.
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– Keygen(pp): This algorithm selects g
$← G

∗
1, g̃

$← G
∗
2 and (x, y1, . . . , yr)

$←
Z
r+1
p , computes (X,Y1, . . . , Yr) ← (gx, gy1 , . . . , gyr ) and ( ˜X, ˜Y1, . . . , ˜Yr) ←

(g̃x, g̃y1 , . . . , g̃yr ), and sets sk ← X and pk ← (g, Y1, . . . , Yr, g̃, ˜X, ˜Y1, . . . , ˜Yr).
– Protocol: A user who wishes to obtain a signature on (m1, . . . ,mr) first

selects a random t
$← Zp and computes C ← gt

∏r
i=1 Y mi

i . He then sends C
to the signer. They both run a proof of knowledge of the opening of the com-
mitment. If the signer is convinced, he selects a random u

$← Zp and returns
σ′ ← (gu, (XC)u). The user can now unblind the signature by computing
σ ← (σ′

1, σ
′
2/σ′

1
t).

Again, the element σ satisfies σ1 = gu and σ2 = (XC)u/gut. If one devel-
ops, σ2 = (Xgt

∏r
i=1 Y mi

i /gt)u = (X
∏r

i=1 Y mi
i )u, which is a valid signature

on (m1, . . . ,mr) for the multi-message signature scheme described in Sect. 4.2,
but with additional elements in the public key: the EUF-CMA security of this
multi-message signature scheme can also be shown equivalent to the one of the
single-message signature scheme, with a similar proof as the one for Theorem 6,
and thus relies on the Assumption 1.

6.2 Proving Knowledge of a Signature

If we still consider the example of anonymous credentials, the previous protocols
have addressed the problem of their issuance. However, once a user has obtained
his credential, he must also be able to use it to prove that its attributes are
certified, while remaining anonymous. To do so, the protocols usually follow the
framework described in [19] and so need an efficient way to prove knowledge of
a signature.

Our scheme offers such functionality thanks to the ability of our signatures
to be sequentially aggregated. Informally, to prove knowledge of a signature
σ = (σ1, σ2) on a message m, the user will aggregate a signature on some random
message t under a dummy public key g̃ (which is part of the public parameters).
The resulting signature σ′ is then valid on the block (m, t) and does not reveal
any information on m.

More formally, let pk ← (g̃, ˜X, ˜Y1, . . . , ˜Yr) be a public key for the signature
scheme of Sect. 4.2 and σ = (σ1, σ2) be a valid signature on a block (m1, . . . ,mr)
under it. To prove knowledge of σ, the prover does the following:

1. He selects random r, t
$← Zp and computes σ′ ← (σr

1, (σ2 · σt
1)

r).
2. He sends σ′ = (σ′

1, σ
′
2) to the verifier and carries out a zero-knowledge proof of

knowledge π (such as the Schnorr’s interactive protocol [41]) of (m1, . . . ,mr)
and t such that:

e(σ′
1, ˜X) ·

∏

e(σ′
1, ˜Yj)mj · e(σ′

1, g̃)t = e(σ′
2, g̃)

The verifier accepts if π is valid.

Theorem 8. The protocol above is a zero-knowledge proof of knowledge of a
signature σ on the block (m1, . . . ,mr).

The proof is provided in the in the full version [40].
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7 Efficiency

We compare in Fig. 1 the efficiency of our scheme with the ones of CL-
signatures [19] and BBS-signatures [4,12] since they are the most popular
schemes used as building blocks for pairing-based protocols. As described in [4],
to compute a BBS signature on a block of r messages (m1, . . . ,mr), a signer
whose secret key is γ ∈ Zp first selects two random scalars e and s and then
computes A ← (g0gs1g

m1
2 . . . gmr

r+1)
1

e+γ for some public parameters g0,. . . ,gr+1.
The signature is defined as (A, e, s). For proper comparison, we consider a vari-
ant of this scheme where the signer has generated the elements gi ← gyi

0 for
i ∈ [1, r + 1]. Therefore, he can compute the element A more efficiently since

A = g
1+
∑r+1

i=1 yi·mi
γ+e

0 .

Size of Sig. Sig. Cost Verif. Cost Rand. Pairings

Sign. Schemes

BBS [12, 4] 1G1 + 2Zp 2 RZp + 1 EG1 2 P + 1 EG2 + (r + 1) EG1 No All

CL [19] (1 + 2r)G1 1 RG1 + 2r EG1 4r P + r EG2 Yes All

Ours [sect. 4.2] 2G1 1 RG1 + 1 EG1 2 P + r EG2 Yes type 3

Seq. Aggregate
Sign. Schemes

LLY [35] 3G1 1 Ver. + 5 EG1 5 P + r EG2 Yes All

Ours [sec. 5] 2G1 1Ver. + 3 EG1 2 P + r EG2 Yes type 3

Fig. 1. Efficiency comparison between related works. Here, r refers to the number of
messages, RG1 (resp. RZp) to the cost of generating a random element of G1 (resp.
Zp), EGi to the cost of an exponentiation in Gi (i ∈ {1, 2}), P to the cost of a pairing
computation and Ver to the cost of verifying an aggregate signature.

As illustrated in Fig. 1, our signature scheme (resp. sequential aggregate sig-
nature scheme) compares favourably with the one from [19] (resp. [35]). However,
our scheme is only compatible with type 3 pairings but we argue that this is not
a strong restriction since most of the recent cryptographic protocols already use
them for efficiency and security reasons.

Although the efficiency of our scheme is similar to the one of BBS, we stress
that the ability of our signatures to be randomized improves the efficiency of
protocols using them. Indeed, as explained in Sect. 1.1, one cannot show several
times a BBS signature while being unlinkable. One must then commit to the
signature and then prove in a zero-knowledge way that the resulting commitment
opens to a valid signature. This is not the case with our scheme since one can
simply randomize the signature between each show. To illustrate this point, we
provide some examples in in the full version [40].
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8 Conclusion

In this work we have proposed a new signature scheme, suited for type 3 pairings,
which achieves a remarkable efficiency. As CL-signatures, our signatures can be
randomized and can be used as building blocks for many cryptographic primi-
tives. In particular, they support efficient protocols for obtaining a signature on
committed elements and can be efficiently combined with zero-knowledge proofs
in the ROM. As illustrated in this paper, instantiating cryptographic construc-
tions with our solution improves their efficiency and may therefore contribute to
make them more accessible for real-life applications.
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