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Abstract. The purpose of this paper is to compare side-by-side the
NTRU and BGV schemes in their non-scale invariant (messages in the
lower bits), and their scale invariant (message in the upper bits) forms.
The scale invariant versions are often called the YASHE and FV schemes.
As an additional optimization, we also investigate the ffect of modulus
reduction on the scale-invariant schemes. We compare the schemes using
the “average case” noise analysis presented by Gentry et al. In addition
we unify notation and techniques so as to show commonalities between
the schemes. We find that the BGV scheme appears to be more efficient
for large plaintext moduli, whilst YASHE seems more efficient for small
plaintext moduli (although the benefit is not as great as one would have
expected).

1 Introduction

Some of the more spectacular advances in implementation improvements for
Somewhat Homomorphic Encryption (SHE) schemes have come in the context
of the ring based schemes such as BGV [3]. The main improvements here have
come through the use of SIMD techniques (first introduced in the context of
Gentry’s original scheme [7] by Smart and Vercauteren [17], but then extended to
the Ring-LWE based schemes by Gentry et al. [3]). SIMD techniques in the ring
setting allow for a small overall asymptotic overhead in using SHE schemes [8]
by exploiting the Galois group to move data between slots. The Galois group can
also be used to perform cheap exponentiation via the Frobenius endomorphism
[9]. Other improvements in the ring based setting have come from the use of
modulus switching to a larger modulus, so as to perform key switching [9], the use
of scale invariant versions [1,6], and the use of NTRU to enable key homomorphic
schemes [14].

The scale invariant schemes, originally introduced in [2], are particularly
interesting, they place the message space in the “upper bits” of the decryption
equation, as opposed to the lower bits. This enables a more effective noise control
mechanism to be employed which does not on the face of it require modulus
switching to keep the noise within bounds. However, the downside is that they
require a more complex rounding operation to be performed in the multiplication
procedure.
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However each paper which analyses the schemes uses a different methodology
for deriving parameters, and examining the noise growth. In addition not all
papers utilize all optimizations and improvements available. For example papers
on the NTRU scheme [5,14], and its scale invariant version YASHE [1], rarely,
if at all, make mention of the use of SIMD techniques. Papers working on scale
invariant systems [1,6] usually focus on plaintext moduli of two, and discount
larger moduli. But many applications, e.g. usage in the SPDZ [4] MPC system,
require the use of large moduli.

We have therefore conducted a systematic study of the main ring-based SHE
schemes with a view to producing a fair comparison over a range of possible
application spaces, from low characteristic plaintext spaces through to large
characteristic ones, from low depth circuits through to high depth ones. The
schemes we have studied are BGV, whose details can be found in [3,8,9], and its
scale-invariant version [6] (called FV in what follows), the basic NTRU scheme
[5,14], and its scale-invariant version YASHE [1]. A previous study [12] only
compared FV and YASHE, restricted to small plaintext spaces (in particular
characteristic two), and did not consider the various variants in relation to key
switching and modulus switching which we consider. Our results are broadly in
line with [12] (where we have a direct comparison) for YASHE, but our estimates
for FV appear slightly better.

On the face of it one expects that YASHE should be the most efficient, since
it is scale invariant (which often leads to smaller parameters) and a ciphertext
consists of only a single ring element, as opposed to two for the BGV style
schemes. Yet this initial impression hides a number of details, wherein one can
find a number of devils. It turns out that which is the most efficient scheme
depends on the context (message characteristic and depth of admissible circuits).

To compare all four schemes fairly we apply the same API to all schemes,
and the same optimizations. In particular we also investigate applying modulus
switching to the scale invariant schemes (where its use is often discounted as not
being needed). The use of modulus switching can be beneficial as it means cipher-
texts become smaller as the function evaluation proceeds, resulting in increased
performance. We also examine two forms of key switching (one based on the
traditional decomposition technique and one based on raising the modulus to a
larger value). For the decomposition technique we also examine the most efficient
modulus to take in the modular decomposition, which turns out not to the two
often seen in many treatments.

To compare the schemes we use the average distributional analysis first intro-
duced in [9], which measures the noise in terms of the expected size in the canon-
ical embedding norm. The use of the canonical embedding norm also deviates
from some other treatments. For general rings the canonical embedding norm
provides a more accurate measure of noise growth, over norms in the polynomial
embedding, when analysed over a number of homomorphic operations. The noise
growth of all of our schemes is analysed in the same way, and this is the first time
(to our knowledge) that all schemes have been analysed on an equal footing.



Which Ring Based Somewhat Homomorphic Encryption Scheme is Best? 327

The first question when performing such a comparison is how to compare
security of differing schemes. On one hand one could take the standpoint of an
exact security analysis and derive parameter sizes from the security theorems.
However, even this is tricky when comparing schemes as the theorems may reduce
security of different schemes to different hard problems. So instead we side-step
this issue and select parameters according to an analysis of the best known
attack on each scheme; which is luckily the same in all four cases. Thus we
select parameters according to the Lindner-Peikert analysis [13]. To also afford a
fair comparison we use similar distributions for the various parameters for each
scheme; e.g. small Hamming weight for the secret key distributions etc.

The next question is how to measure what is “better”. In the context of
a given specific scheme we consider one set of parameters to be better than
another, for a given plaintext modulus, level bound and security parameter, if
the number of bits to represent a ring element is minimized. After all this corre-
sponds directly to the computational overhead when implementing the scheme.
When comparing schemes one has to be a little more careful, as ciphertexts in
the BGV family consist of two ring elements and in the NTRU family they con-
sist of one element, but still ciphertext size is a good crude measure of overall
performance. In addition, the operations needed for the scale invariant schemes
are not directly compatible with the efficient double-CRT representation of ring
elements introduced in [9], thus even if ciphertext sizes for the scale invariant
schemes are smaller than for the non-scale invariant schemes, the actual compu-
tation times might be much larger.

As one can appreciate much of the analysis is an intricate following through
of various inequalities. The full derivations can be found in the full version of
this paper. We find that the BGV scheme appears to be more efficient for large
plaintext moduli, whilst YASHE seems more efficient for small plaintext moduli
(although the benefit is not as great as one would have expected).

2 Preliminaries

In this section we outline the basic mathematical background which forms the
basis of our four ring-based SHE schemes. Much of what follows can be found
in [8,9], we recap on it here for convenience of the reader. We utilize rings
defined by cyclotomic polynomials, A = Z[X]/Φm(X). We let Aq denote the set
of elements of this ring reduced modulo various (possibly composite) moduli q.
The ring A is the ring of integers of the mth cyclotomic number field K = Q(ζm).
We let [a]q for an element a ∈ A denote the reduction of a modulo q, with the
set of representatives of coefficients lying in (−q/2, . . . , q/2], hence [a]q ∈ Aq.
Assignment of variables will be denoted by a ← b, with equality being denoted
by = or ≡.

Plaintext Slots: We will always use p for the plaintext modulus, and thus
plaintexts will be elements of Ap, and the polynomial Φm(X) factors modulo p
into � irreducible factors, Φm(X) = F1(X) · F2(X) · · · F�(X) (mod p), all of
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degree d = φ(m)/�. Just as in [3,8,9,17] each factor corresponds to a “plaintext
slot”. That is, we view a polynomial a ∈ Ap as representing an �-vector (a
mod Fi)�

i=1. We assume that p does not divide m so as to enable the slots to
exist. In a number of applications p is likely to split completely in A, i.e. p ≡ 1
(mod m). This is especially true in applications not requiring bootstrapping, and
hence only requiring evaluation of low depth arithmetic circuits.

Canonical Embedding Norm: Following the work in [15], we use as the
“size” of a polynomial a ∈ A the l∞ norm of its canonical embedding. Recall
that the canonical embedding of a ∈ A into C

φ(m) is the φ(m)-vector of complex
numbers σ(a) = (a(ζi

m))i where ζm is a complex primitive m-th root of unity and
the indexes i range over all of (Z/mZ)∗. We call the norm of σ(a) the canonical
embedding norm of a, and denote it by

∥
∥a

∥
∥
can

∞ =
∥
∥σ(a)

∥
∥

∞. We will make use of
the following properties of

∥
∥ ·

∥
∥
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∞ :
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∥
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– For all a ∈ A we have
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∥
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∥
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∥
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– There is a ring constant cm (depending only on m) such that
∥
∥a

∥
∥

∞ ≤ cm ·
∥
∥a

∥
∥
can

∞ for all a ∈ A.

where
∥
∥a

∥
∥

∞ and
∥
∥a

∥
∥
1

refer to the relevant norms on the coefficient vectors
of a in the power basis. The ring constant cm is defined by cm =

∥
∥CRT−1

m

∥
∥

∞
where CRTm is the CRT matrix for m, i.e. the Vandermonde matrix over the
complex primitive m-th roots of unity. Asymptotically the value cm can grow
super-polynomially with m, but for the “small” values of m one would use in
practice values of cm can be evaluated directly. See [4] for a discussion of cm.

Sampling From Aq: At various points we will need to sample from Aq with
different distributions, as described below. We denote choosing the element a ∈ A

according to distribution D by a ← D. The distributions below are described as
over φ(m)-vectors, but we always consider them as distributions over the ring
A, by identifying a polynomial a ∈ A with its coefficient vector.

The uniform distribution Uq: This is just the uniform distribution over
(Z/qZ)φ(m), which we identify with (Z ∩ (−q/2, q/2])φ(m)).

The “rounded Gaussian” DGq(σ2): Let N (0, σ2) denote the normal (Gaussian)
distribution on real numbers with zero-mean and variance σ2, we use drawing
from N (0, σ2) and rounding to the nearest integer as an approximation to the
discrete Gaussian distribution. The distribution DGqt(σ

2) draws a real φ-vector
according to N (0, σ2)φ(m), rounds it to the nearest integer vector, and outputs
that integer vector reduced modulo q (into the interval (−q/2, q/2]).

Sampling small polynomials, ZO(p) and HWT (h): These distributions produce
vectors in {0,±1}φ(m).



Which Ring Based Somewhat Homomorphic Encryption Scheme is Best? 329

– For a real parameter ρ ∈ [0, 1], ZO(p) draws each entry in the vector from
{0,±1}, with probability ρ/2 for each of −1 and +1, and probability of being
zero 1 − ρ.

– For an integer parameter h ≤ φ(m), the distribution HWT (h) chooses a
vector uniformly at random from {0,±1}φ(m), subject to the condition that
it has exactly h nonzero entries.

Canonical Embedding Norm of Random Polynomials: In the coming
sections we will need to bound the canonical embedding norm of polynomials
that are produced by the distributions above, as well as products of such poly-
nomials. Following the work in [9] we use a heuristic approach, which we now
recap on.

Let a ∈ A be a polynomial that was chosen by one of the distributions
above, hence all the (nonzero) coefficients in a are independently identically
distributed. For a complex primitive m-th root of unity ζm, the evaluation a(ζm)
is the inner product between the coefficient vector of a and the fixed vector
zm = (1, ζm, ζ 2

m , . . .), which has Euclidean norm exactly
√

φ(m). Hence the
random variable a(ζm) has variance V = σ2φ(m), where σ2 is the variance of
each coefficient of a. Specifically, when a ← Uq then each coefficient has variance
(q−1)2/12 ≈ q2/12, so we get variance VU = q2·φ(m)/12. When a ← DGq(σ2) we
get variance VG ≈ σ2 ·φ(m), and when a ← ZO(ρ) we get variance VZ = ρ·φ(m).
When choosing a ← HWT (h) we get a variance of VH = h (but not φ(m), since
a has only h nonzero coefficients).

Moreover, the random variable a(ζm) is a sum of many independent identi-
cally distributed random variables, hence by the law of large numbers it is distrib-
uted similarly to a complex Gaussian random variable of the specified variance.1

We therefore use 6
√

V (i.e. six standard deviations) as a high-probability bound
on the size of a(ζm). Since the evaluation of a at all the roots of unity obeys
the same bound, we use six standard deviations as our bound on the canonical
embedding norm of a. (We chose six standard deviations since erfc(6) ≈ 2−55,
which is good enough for us even when using the union bound and multiplying
it by φ(m) ≈ 216.)

In this paper we model all canonical embedding norms as if from a random
distribution. In [9] the messages were always given a norm of

∥
∥m

∥
∥
can

∞ ≤ p·φ(m)/2,
i.e. a worst case bound. We shall assume that messages, and similar quantities,
behave as if selected uniformly at random and hence estimate

∥
∥m

∥
∥
can

∞ ≤ 6 ·
p ·

√

φ(m)/12 = p ·
√

3 · φ(m). This makes our bounds better, and does not
materially affect the decryption ability due to the larger effect of other terms.
However, this simplification makes the formulae somewhat easier to parse.

In many cases we need to bound the canonical embedding norm of a product
of two or more such “random polynomials”. In this case our task is to bound the
magnitude of the product of two random variables, both are distributed close to

1 The mean of a(ζm) is zero, since the coefficients of a are chosen from a zero-mean
distribution.



330 A. Costache and N.P. Smart

Gaussians, with variances σ2
a, σ2

b , respectively. For this case we use 16 · σa · σb as
our bound, since erfc(4) ≈ 2−25, so the probability that both variables exceed
their standard deviation by more than a factor of four is roughly 2−50. For a
product of three variables we use 40 · σa · σb · σc, since erfc(3.4) ≈ 2−19, and
3.43 ≈ 40.

3 Ring Based SHE Schemes

We refer to our four schemes as BGV, FV, NTRU and YASHE. The various
schemes have been used/defined in various papers: for example one can find
BGV in [3,8,9], FV in [6], NTRU in [5,14] and YASHE in [1]. In all four schemes
we shall use a chain of moduli for our homomorphic evaluation2 by choosing L
“small primes” p0, p1, . . . , pL−1 and the tth modulus in our chain is defined as
qt =

∏t
j=0 pj . A chain of L primes allows us to perform L − 1 multiplications.

The primes pi’s are chosen so that for all i, Z/piZ contains a primitive m-th root
of unity, i.e. pi ≡ 1 (mod m). Hence we can use the double-CRT representation,
see [9], for all Aqt .

For the BGV and NTRU schemes we additionally assume that pi ≡ 1
(mod p). This is to enable the Scaling operation to work without having to addi-
tionally scale by pi (mod p), which would result in slightly more noise growth.
A disadvantage of this is that the moduli pi will need to be slightly larger than
would otherwise be the case. The two scale invariant schemes (FV and YASHE)
will make use of a scaling factor Δq defined by Δq =

⌊
q
p

⌋

= q
p − εq, where

0 ≤ εq < 1.

3.1 Key Generation

We utilize the following methods for key generation, they sample the secret key
in all cases, from a sparse distribution, this follows the choices made in [9]. This
leads to more efficient homomorphic operations (since noise growth depends on
the size of the secret key in many situations). However, such choices might lead
to security weaknesses, which would need to be considered in any commercial
deployment.

KeyGenBGV(): Sample sk ← HWT (h), a ← UqL−1 , and e ← DGqL−1(σ
2). Then set

the secret key as sk and the public key as pk ← (a, b) where b ← [a ·sk+p ·e]qL−1 .

KeyGenFV(): Sample sk ← HWT (h), a ← UqL−1 , and e ← DGqL−1(σ
2). Then set

the secret key as sk and the public key as pk ← (a, b) where b ← [a · sk + e]qL−1 .

KeyGenNTRU(): Sample f, g ← HWT (h). Then set the secret key as sk ← p ·f +1
and the public key as pk ← [p · g/sk]qL−1 . Note, if p · f + 1 is not invertible in
AqL−1 we repeat the sampling again until it is.

2 This is not strictly needed for the Scale invariant version if modulus switching is not
performed.
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KeyGenYASHE(): Sample f, g ← HWT (h). Then set the secret key as sk ← p·f +1
and the public key as pk ← [p · g/sk]qL−1 . Again, if p · f + 1 is not invertible in
AqL−1 we repeat the sampling until it is.

3.2 Encryption and Decryption

The encryption algorithms for all four schemes are given in Fig. 1. As for key
generation we select slightly simpler distributions than the theory would imply
so as to ensure noise growth is not as bad as it would otherwise be. The output of
each algorithm is a tuple c consisting of the ciphertext data, the current level, plus
a bound on the current “noise” B∗

clean. This bound is on the canonical embedding
norm of a particular critical quantity which comes up in the decryption process;
a different critical quantity depending on which scheme we are using. If the
critical quantity has canonical embedding norm less than a specific value then
decryption will work, otherwise decryption will likely fail. Thus having each
ciphertext carry around an upper bound on the norm of this quantity allows us
to analyse noise growth dynamically.

Fig. 1. Encryption algorithms for BGV, FV, NTRU and YASHE

To understand the critical quantity we have to first look at the decryption
procedure in each case. Then we can apply our heuristic noise analysis to obtain
an upper bound on the canonical embedding norm of the critical quantity for a
fresh ciphertext, and so obtain B∗

clean; a process which is done in the full version
of this paper.

DecBGVpk (c): Decryption of a ciphertext (c0, c1, t, ν) at level t is performed by
setting m′ ← [c0 − sk · c1]qt , and outputting m′ mod p. If we define the critical
quantity to be c0 − sk · c1 (mod qt), then this procedure will work when ν is an
upper bound on the canonical embedding norm of this quantity and cm · ν <
qt/2. If ν satisfies this inequality then the value of c0 − sk · c1 (mod qt) will be
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produced exactly with no wrap-around, and will hence be equal to m + p · v, if
c0 = sk · c1 + p · v + m (mod qt). Thus we must pick the smallest prime q0 = p0
large enough to ensure that this always holds.

DecFVpk (c): Decryption of a ciphertext (c0, c1, t, ν) at level t is performed by setting

m′ ←
⌈ p

qt
· [c0 − sk · c1]qt

⌋

,

and outputting m′ mod p. Consider the value of [c0 − sk · c1]qt computed during
decryption, suppose this is equal to (over the integers before reduction mod qt)
m ·Δqt +w+r ·qt. Then another way of looking at decryption is that we perform
rounding on the value

p · Δqt · m

qt
+

p · w

qt
+

p · r · qt

qt
=

p · ( qt
p − εqt) · m

qt
+

p · w

qt
+ p · r

= m + p · w − εqt · m

qt
+ p · r

and then take the result modulo p. Thus the critical quantity in this case is the
value of w − εqt · m. So that the rounding is correct we require that ν is an
upper bound on

∥
∥w− εqt ·m

∥
∥
can

∞ . The decryption procedure will then work when
cm · ν < Δqt/2, since in this case we have

∥
∥
∥p · w − εqt · m

qt

∥
∥
∥

∞
≤ cm · p

qt
·
∥
∥w − εqt · m

∥
∥
can

∞ ≤ Δqt · p

2 · qt
<

1
2
.

Thus again we must pick the smallest prime q0 = p0 large enough, to ensure
that cm · ν < Δqt/2.

DecNTRU
pk (c): Decryption of a ciphertext (c, t, ν) at level t is performed by setting

m′ ← [c · sk]qt , and outputting m′ mod p. Much as with BGV the critical quan-
tity is [c · sk]qt . If ν is an upper bound on the canonical embedding norm of c · sk,
and we have c = a · pk + p · e + m modulo qt, for some values of a and e, then
over the integers we have

[c · sk]qt = m + p · (a · g + e + f · m) + p2 · e · f,

which will decrypt to m. Thus for decryption to work we require that cm · ν <
qt/2.

DecYASHEpk (c): Decryption of a ciphertext (c, t, ν) at level t is performed by setting

m′ ←
⌈ p

qt
· [c · sk]qt

⌋

,

and outputting m′ mod p. Following the same reasoning as for the FV scheme,
suppose c · sk is equal to (again over the integers before reduction mod qt) m ·
Δqt +w + r · qt. Then for decryption to work we require ν to be an upper bound
on

∥
∥w − εqt · m

∥
∥
can

∞ and cm · ν < qt/2.
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3.3 Scale

These operations scale a ciphertext, reducing the corresponding level and more
importantly scaling the noise. The syntax is Scale∗(c, tout) where c is at level tin
and the output ciphertext is at level tout with tout ≤ tin. The noise is scaled by
a factor of approximately qtin/qtout

, however an additive term of B∗
scale is added.

For each of our variants see the full version of this paper for a justification of
the proposed method and an estimate on B∗

scale.
For use in one of the SwitchKey∗ variants we also use a Scale which takes a

ciphertext with respect to modulus Q and produces a ciphertext with respect to
modulus q, where q|Q. The syntax for this is Scale∗(c, Q); the idea here is that
Q is a “temporary” modulus unrelated to the actual level t of the ciphertext,
and we aim to reduce Q down to qt. The former scale function can be defined in
terms of the latter via

Scale∗(c, tout):

– Write c = (c, t, ν).
– c′ ← Scale∗((c, tout, ν), qt).
– Output c′.

The Scale∗ function was originally presented in [3] as a form of noise control
for the non-scale invariant schemes. However, the use of such a function within
the scale invariant schemes can also provide more efficient schemes, as alluded to
in [6]. This is due to the modulus one is working with which decreases as homo-
morphic operations are applied. It is also needed for our second key switching
variant. We thus present a Scale∗ function for all our four schemes in Fig. 2.

Fig. 2. Scale algorithms for BGV, FV, NTRU and YASHE. In all methods Q = qt · P ,
and for the BGV and NTRU schemes we assume that P ≡ 1 (mod p).
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3.4 Reduce Level

For all schemes we can define a ReduceLevel∗ operation which reduces a cipher-
text level from level t′ to level t where t′ ≥ t. For the non-scale invariant schemes
when we reduce a level we only perform a scaling (which could be an expensive
operation) if the noise is above some global bound B. This is because for small
noise we can easily reduce the level by just dropping terms off the modulus, since
the modulus is a product of primes. For the scale invariant schemes we actually
need to perform a Scale operation since we need to modify the Δqt term. See the
full version of this paper for details. In our parameter estimation evaluation we
examine the case, for FV and YASHE, of applying modulus switching to reduce
levels and not applying it. In the case of not applying it all ciphertexts remain
at level L − 1, and ReduceLevel∗ becomes a NOP.

3.5 Switch Key

The switch key operation is needed to relinearize after a multiplication, or after
the application of a Galois automorphism (see [8] for more details on the latter).
For all schemes we present two switch key operations:

– One based on decomposition modulo a general modulus T . See [11] for this
method explained in the case of the BGV scheme. Unlike prior work we do not
take T = 2, as we treat T as a parameter to be optimized to achieve the most
efficient scheme. Although to ease parameter search we restrict to T being a
power of two.

– Our second method is based on the raising the modulus idea from [9], where
it was applied to the BGV scheme. Here we adopt a more complex switching
operation, and a potentially larger parameter set, but we gain by reducing the
size of the switching “matrices”.

For each variant we require algorithms SwitchKeyGen and SwitchKey; the first
generates the public switching “matrix”, whilst the second performs the actual
switch key. In the BGV and FV schemes we perform a general key switch of the
underlying decryption equation of the form d0−sk ·d1+sk′ ·d2 −→ c0−sk ·c1. For
the NTRU and YASHE schemes the underlying key switch is of the form c·sk′ −→
c′ · sk. In Fig. 3 we present the key switching methods for the BGV algorithm.
See the full version of this paper for the methods for the other schemes, plus
derivations of upper bounds on the constants BKs,∗ ∗ (∗).

In the context of BGV the first method requires us to store logT (qL−1)
“encryptions” of sk′, each of which is an element in R2

qL−1
. The second method

requires us to store a single “encryption” of P · sk′, but this time as an ele-
ment in R2

P ·qL−1
. The former will require more space than the latter as soon as

log2 P < logT (qL−1). In terms of noise the output noise of the first method is
modified by an additive constant of

BBGV
Ks,1 (t) =

8√
3

· p ·
⌈

logT qt

⌉

· σ · φ(m) · T.
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Fig. 3. The two variants of Key Switching for BGV.

whilst the output noise of the second method is modified by the additive constant

BBGV
Ks,2 (t)
P

+ B∗
scale =

8 · p · qt · σ · φ(m)√
3 · P

+ B∗
scale.

As the level decreases this becomes closer and closer to B∗
scale, as the P in the

denominator will wipe out the numerator term. Thus the noise will grow of
the order of O(

√

φ(m)) using the second method and as O(φ(m)) using the
first method. A similar outcomes arises when comparing the two methods with
respect to the other three schemes.

3.6 Addition and Multiplication

We can now turn to presenting the homomorphic addition and multiplication
operations. For reasons of space we give the addition and multiplication methods
in the full version of this paper. In all methods the input ciphertexts ci have
level ti, and recall our parameters are such that we can evaluate circuits with
multiplicative depth L − 1.

3.7 Security and Parameters

In this section we outline how we select parameters in the case where
ReduceLevel∗ is not a NOP (a no-operation). An analysis, for the FV and YASHE
schemes, where ReduceLevel∗ is a NOP we defer the analysis to the full version
of this paper. We let B denote an upper bound on ν at the output of any
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ReduceLevel∗ operation. Following [9] we set B = 2 ·B∗
scale. We assume that oper-

ations are performed as follows. We encrypt, perform up to ζ additions, then do
a multiplication, then do ζ additions, then do a multiplication and so on, where
we assume decryption occurs after a multiplication.

Security: We assume, as a heuristic assumption, that if we set the parameters
of the ring and modulus as per the BGV scheme then the other schemes will also
be secure. We follow the analysis in [9], which itself follows on from the analysis
by Lindner and Peikert [13]3. We therefore have one of two possible lower bounds
for φ(m), for security parameter k

φ(m) ≥

⎧
⎪⎨

⎪⎩

log(qL−1/σ)·(k+110)

7.2
If the first variant of SwitchKey is used,

log(P ·qL−1/σ)·(k+110)

7.2
If the second variant of SwitchKey is used.

(1)

Note the logs here are natural logarithms.

Bottom Modulus: To ensure decryption correctness at level zero we require
that

4 · cm · B∗
scale = 2 · cm · B <

⎧

⎪⎪⎨

⎪⎪⎩

p0 For BGV and NTRU

⌊
p0
p

⌋

For FV and YASHE.

(2)

Top Modulus: At the top level we take as input a ciphertext with noise B∗
clean,

perform ζ additions to produce a ciphertext with noise B1 = ζ · B∗
clean. We then

perform a multiplication to produce something with noise

B2 =

⎧
⎪⎪⎨

⎪⎪⎩

F ∗(B1, B1) +B∗
Ks,1(L− 1) If the first variant of SwitchKey is used,

F ∗(B1, B1) +
B∗

Ks,2(L−1)

P
+B∗

scale If the second variant of SwitchKey is used.

We then scale down a level to obtain something at the next level down. Thus
we obtain something with noise bounded by B3 = B2

pL−1
+ B∗

scale. We require, for
our invariant, B3 ≤ B = 2 · B∗

scale. Thus we require,

pL−1 ≥ B2

B∗
scale

. (3)

3 One could take into account a more elaborate analysis here, for example looking at
BKW style attacks e.g. [10]. But for simplicity we follow the same analysis as in [9].
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Middle Moduli: A similar argument applies for the middle moduli, but now
we start off with a ciphertext with bound B = 2 · B∗

scale as opposed to B∗
clean.

Thus we form

B′(t) =

⎧

⎪⎨

⎪⎩

F ∗(ζ · B, ζ · B) + B∗
Ks,1(t) First variant of SwitchKey,

F ∗(ζ · B, ζ · B) + B∗
Ks,2(t)

P + B∗
scale Second variant of SwitchKey.

after which a Scale operation is performed. Hence, the modulus pt for t �= 0, L−1
needs to be selected so that

pt ≥ B′(t)
B∗

scale

. (4)

Note, in practice we can do a bit better in the second variant of SwitchKey by
merging the final two final scalings into one.

Putting it All Together: We are looking for parameters which satisfy Eqs. (1),
(2), (3) and (4), and which also minimize the size of data being processed,
which is

φ(m) ·
(

L−1∑

t=0

pt

)

.

To do this we iterate through all possible values of log2 qL−1 and log2 T (resp.
log2 P ). We then determine φ(m), as the smallest value which satisfies Eq. (1).
Here, we might need to take a larger value than the right hand side of Eq. (1)
due to application requirements on p or the amount of packing required.

We then determine the size of pL−1 from Eq. (3), via

pL−1 ≈
⌈ B2

B∗
scale

⌉

.

We can now iterate downwards for t = L − 2, . . . , 1 by determining the size of
log2 qt, via

log2 qt = log2 qt+1 − log2 pt+1.

If we obtain log2 qt < 0 then we abort, and pass to the next pair of (log2 qL−1, T )
(resp. (log2 qL−1, log2 P )) values. The value of pt being determined by Eq. (4), via

pt ≈
⌈B′(t)
B∗

scale

⌉

.

Finally we check whether a prime p0 the size of log2 q0, will satisify Eq. (2), if
so we accept this set of values as a valid set of parameters, otherwise we pass to
the next pair of (log2 qL−1, T ) (resp. (log2 qL−1, log2 P )) values.
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Fig. 4. Size of required ciphertext for various sizes of plaintext modulus when L = 5.
The graph on the left zooms into the portion of the right graph for small values of
log2 p (Color figure online).

4 Results

In the full version of this paper one can find a full set of parameters for each
scheme, and variant of key switching, for various values of the plaintext modulus
p and the number of levels L. In this section we summarize the overall conclusion.
As a measure of efficiency we examine the size of a ciphertext in kBytes; this is
a very crude measure but it will capture both the size of any data needed to be
transmitted as well as the computational cost of dealing with a single ciphertext
element within a calculation. In the full version of this paper we also examine
the size of the associated key switching matrices, which is significantly smaller
for the case of our second key switching method. In a given application this
additional cost of holding key switching data may impact on the overall choices,
but for this section we ignore this fact.

For all schemes we used a Hamming weight of h = 64 to generate the secret
key data, we used a security level of k = 80 bits of security, a standard deviation of
σ = 3.2 for the roundedGaussians, a tolerance factor of ζ = 8and a ring constant of
cm = 1.3. These are all consistent with the prior estimates for parameters given in
[9]. The use of a small ring constant can be justified by either selecting φ(m) to be a
power of two, or selecting m to be prime, as explained in [4]. As a general conclusion
we find that for FV and YASHE the use of modulus switching to lower levels results
in slightly bigger parameters to start for large values of L; approximately a factor of
two for L = 20 or 30. But as a homomorphic calculation progresses this benefit will
drop away, leaving, for most calculations, the variant in which modulus switching is
applied the most efficient. Thus in what follows we assume that modulus switching
is applied in all schemes.

Firstly examine the graphs in Figs. 4 and 5. We see that for a fixed number
of levels and very small plaintext moduli the most efficient scheme seems to be
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Fig. 5. Size of required ciphertext for various sizes of plaintext modulus when L = 30.
The graph on the left zooms into the portion of the right graph for small values of
log2 p (Color figure online).

YASHE. However, quite rapidly, as the plaintext modulus increases the BGV
scheme quickly outperforms all other schemes. In particular for the important
case of the SPDZ MPC system [4] which requires an SHE scheme supporting
circuits of multiplicative depth one, i.e. L = 2, for a large plaintext modulus p,
the BGV scheme is seen to be the most efficient.

Examining Fig. 6 we see that if we fix the prime and just increase the number
of levels then the choice of which is the better scheme is be very consistent. Thus
one is led to conclude that the main choice of which scheme to adopt depends on
the plaintext modulus, where one selects YASHE for very small plaintext moduli
and BGV for larger plaintext moduli.
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