
Mitigating Server Breaches in Password-Based
Authentication: Secure and Efficient Solutions

Olivier Blazy1, Céline Chevalier2(B), and Damien Vergnaud3

1 Université de Limoges, XLim, Limoges, France
2 Université Panthéon-Assas, Paris, France

celine.chevalier@ens.fr
3 ENS, CNRS, INRIA and PSL Research University, Paris, France

Abstract. Password-Authenticated Key Exchange allows users to gen-
erate a strong cryptographic key based on a shared “human-memorable”
password without requiring a public-key infrastructure. It is one of the
most widely used and fundamental cryptographic primitives. Unfortu-
nately, mass password theft from organizations is continually in the news
and, even if passwords are salted and hashed, brute force breaking of
password hashing is usually very successful in practice.

In this paper, we propose two efficient protocols where the password
database is somehow shared among two servers (or more), and authen-
tication requires a distributed computation involving the client and the
servers. In this scenario, even if a server compromise is doable, the secret
exposure is not valuable to the adversary since it reveals only a share of
the password database and does not permit to brute force guess a pass-
word without further interactions with the parties for each guess. Our
protocols rely on smooth projective hash functions and are proven secure
under classical assumption in the standard model (i.e. do not require
idealized assumption, such as random oracles).

Keywords: Password-authenticated key exchange · Distributed
computation · Decision diffie-hellman · Smooth projective hashing

1 Introduction

Authenticated Key Exchange protocols enable two parties to establish a shared
cryptographically strong key over an insecure network under the complete con-
trol of an adversary. This primitive is one of the most widely used and funda-
mental cryptographic primitives and it obviously requires the parties to have
authentication means, e.g. (public or secret) cryptographic keys or short (i.e.,
low-entropy) secret keys.

PAKE, for Password-Authenticated Key Exchange, allows users to generate
a strong cryptographic key based on a shared “human-memorable” password
without requiring a public-key infrastructure. In this setting, an adversary con-
trolling all communication in the network should not be able to mount an offline
dictionary attack. More precisely, an eavesdropper should not obtain enough
c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-29485-8 1



4 O. Blazy et al.

information to be able to brute force guess a password without further inter-
actions with the parties for each guess. Note that online dictionary attacks in
which an adversary simply attempts to log-in repeatedly, trying each possible
low-entropy password can be dealt with using other computer security methods
(such as limiting the number of attempts). In particular, strong security can
be obtained even using passwords chosen from a small set of possible values (a
four-digit pin, for example).

Incidents of sensitive customer information “hacking” (including leaking of
passwords) in e-commerce systems are frequently revealed in the newspaper. In
addition to major reputational damage, a company with a significant data breach
may be sued by its clients for the breach and may be suspended or disqualified
from future public sector or government work.

To alleviate the threat that stored passwords are revealed immediately in case
of a server compromise, many servers adopt the approach for storing passwords
in a hashed form with a random salt. When the database of hashed password is
compromised, the offline dictionary attack requires a more important computa-
tional effort but remains usually possible. The notion of Verifier-based PAKE,
where the client owns a password pw and the server knows a one-way transforma-
tion v of the password only were proposed by Bellovin and Merritt [BM92]. The
two players eventually agree on a common high entropy secret if and only if pw
and v match together. It prevents massive password recovering in case of server
corruption and it forces the attacker who breaks into the server and is willing to
recover passwords to perform an additional costly offline dictionary attack.

We consider an alternative approach inspired by the multi-party computa-
tion paradigm (and first suggested by Ford and Kaliski [FK00]). The password
database on the server side is somehow shared among two servers (or more, but
we focus here on two for sake of simplicity), and authentication requires a dis-
tributed computation involving the client – who still does not need an additional
cryptographic device capable of storing high-entropy secret keys – and the two
servers who will use some additional shared secret information. The interaction
is performed using a gateway that does not know any secret information and
ends up in the gateway and the client sharing a common key. The lifetime of
the protocol is divided into distinct periods (for simplicity, one may think of
these time periods as being of equal length; e.g. one day) and at the beginning
of each period, the two servers interact and update their sharing of the password
database. Similarly to proactive schemes in multi-party computation, we allow
the adversary multiple corruptions of each server, limiting only the corruptions
to one server for each period. The user does not need to update his password
nor to perform any kind of computations and its interaction with the two servers
(performed using the gateway) remains the same for the lifetime of the protocol.
In this scenario, even if a server compromise is doable, the secret exposure is not
valuable to the adversary since it reveals only a share of the password database
and does not permit to run an offline dictionary attack.

The goal of our paper is to present practical realizations based on classical
cryptographic assumptions in the standard security model.



Mitigating Server Breaches in Password-Based Authentication 5

Related Work. EKE (Encrypted Key Exchange) is the most famous instantia-
tion of Password-Authenticated Key Exchange. It has been proposed by Bellovin
and Merritt [BM92] and consists of a Diffie-Hellman key exchange [DH76], where
the flows are symmetrically encrypted under the shared password.

A first formal security model was proposed by Bellare, Pointcheval and
Rogaway [BPR00] (the BPR model), to deal with offline dictionary attacks.
It essentially says that the best attack should be the online exhaustive search,
consisting in trying all the passwords by successive executions of the protocol
with the server. Several variants of EKE with BPR-security proofs have been
proposed in the ideal-cipher model or the random-oracle model (see the sur-
vey [Poi12] for details). Katz, Ostrovsky and Yung [KOY01] proposed the first
practical scheme, provably secure in the standard model under the Decision
Diffie-Hellman assumption (DDH). It has been generalized by Gennaro and Lin-
dell [GL03], making use of smooth projective hash functions.

As mentioned above, Ford and Kaliski [FK00] were the first to propose to
distribute the capability to test passwords over multiple servers. Building on
this approach, several such protocols were subsequently proposed in various set-
tings (e.g. [Jab01,MSJ02,BJKS03,DG06,SK05,KMTG12,ACFP05,KM14]) and
it is worth noting that the protocol from [BJKS03] is commercially avail-
able as EMC’s RSA Distributed Credential Protection. Recently, Camenisch,
Enderlein and Neven [CEN15] revisited this approach and proposed a scheme in
the universal composability framework [Can01] (which has obvious advantages
for password-based protocols since users often use related passwords for many
providers). Camenisch et al. gave interesting details about the steps that need to
be taken when a compromise actually occurs. Unfortunately, due to the inher-
ent difficulties of construction of the simulator in the universal composability
framework, their scheme is inefficient since users and servers have to perform a
few hundred exponentiations each.

Our Contributions. In order to achieve practical constructions in the standard
security model, we consider the variant of the BPR model1 in the distributed
setting proposed by Katz, MacKenzie, Taban and Gligor in [KMTG12]. In this
security model, we assume that the communication between the client and the
authentication servers, is carried on a basically insecure network. Messages can
be tapped and modified by an adversary and the communication between the
clients and the servers is asynchronous. The adversary should not be able to
brute force guess a password without further interactions with the client for
each guess even if he corrupts and impersonates a server in an active way.

Our first construction uses a similar approach to the schemes from
[Jab01,MSJ02,BJKS03,DG06,SK05,KMTG12,ACFP05,KM14]: the user gener-
ates information theoretic shares of his password and sends them to the servers.
In the authentication phase, the parties run a dedicated protocol to verify that
1 Our schemes can be adapted to achieve security in universal composability frame-

work using techniques similar to those used in [CEN15]. The resulting schemes are
slightly more efficient but are unfortunately still not practical.



6 O. Blazy et al.

the provided password equals the priorly shared one. Our solution then consists
in some sort of three-party PAKE, in which (1) the user implicitly checks (using
a smooth projective hash function) that its password is indeed the sum of the
shares owned by the two servers, and (2) each server implicitly checks that its
share is the difference of the password owned by the user and the share owned by
the other server. Contrary to the popular approach initiated in [KOY01,GL03]
for PAKE, we cannot use two smooth projective hash functions (one for the
client and one for the server) so we propose a technique in order to combine in a
secure way six smooth projective hash functions. This new method (which may
be of independent interest) allows us to prove the security of this construction
under classical cryptographic assumptions (namely the DDH assumption) in the
standard security model from [KMTG12] (without any idealized assumptions).

The main weakness of this first solution is that at each time period, the
servers have to refresh the information-theoretic sharing of the password of all
users. This can be handled easily using well-known techniques from proactive
multi-party computation but if the number of users is large, this can be really
time-consuming (in particular if the time period is very short). Our second con-
struction (which is the main contribution of the paper) is built on the ideas
from the first one but passwords are now encrypted using a public-key encryp-
tion scheme where the corresponding secret key is shared among the servers. At
the beginning of each time period, the servers only need to refresh the sharing of
this secret key but the password database is not modified (and can actually be
public). Password verification and the authenticated key exchange is then car-
ried out without ever decrypting the database. A secure protocol is run to verify
that the password sent by the user matches the encrypted password. It is similar
to the protocol we design for the first construction except that the user encrypts
its password and the parties implicitly check (using in this case five smooth pro-
jective hash functions) that the message encrypted in this ciphertext is the same
as the message encrypted in the database (using the secret key shared upon the
servers). Both constructions consist in only two flows (one from the client and
one from the servers) and a (private) flow from the servers to the gateway.

2 Preliminaries

In this section we recall various classical definitions, tools used throughout this
paper. We use classical notions and notations and the familiar reader may skip
this section.

Public-Key Encryption Scheme. An encryption scheme E is described by
four algorithms (Setup,KeyGen,Encrypt,Decrypt):

– Setup(1K), where K is the security parameter, generates the global parameters
param of the scheme;

– KeyGen(param) outputs a pair of keys, a (public) encryption key ek and a
(private) decryption key dk;



Mitigating Server Breaches in Password-Based Authentication 7

– Encrypt(ek,M ; ρ) outputs a ciphertext C, on the message M , under the encryp-
tion key ek, with randomness ρ;

– Decrypt(dk, C) outputs the plaintext M , encrypted in the ciphertext C or ⊥.

Such encryption scheme is required to have the classical properties, Correct-
ness and Indistinguishability under Chosen Plaintext Attack IND-CPA [GM84]:
One might want to increase the requirements on the security of an encryption, in
this case the IND-CPA notion can be strengthened into Indistinguishability under
Adaptive Chosen Ciphertext Attack IND-CCA (see the full version [BCV16] for
formal definitions).

Smooth Projective Hash Functions. SPHF [CS02] were introduced by
Cramer and Shoup. A projective hashing family is a family of hash functions that
can be evaluated in two ways: using the (secret) hashing key, one can compute
the function on every point in its domain, whereas using the (public) projected
key one can only compute the function on a special subset of its domain. Such a
family is deemed smooth if the value of the hash function on any point outside
the special subset is independent of the projected key.

Smooth Projective Hashing System: A Smooth Projective Hash Function over
a language L ⊂ X, onto a set G, is defined by five algorithms (Setup,HashKG,
ProjKG,Hash,ProjHash):

– Setup(1K) where K is the security parameter, generates the global parameters
param of the scheme, and the description of an NP language L;

– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W ), derives the projection key hp, possibly depending

on the word W [GL03,ACP09] thanks to the hashing key hk.
– Hash(hk, (L, param),W ), outputs a hash value v ∈ G, thanks to the hashing

key hk, and W
– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the

projection key hp and the witness w that W ∈ L.

In the following, we consider L as a hard-partitioned subset of X, i.e. it
is computationally hard to distinguish a random element in L from a random
element in X \ L. A Smooth Projective Hash Function SPHF should satisfy the
following properties:

– Correctness: Let W ∈ L and w a witness of this membership. For all hashing
keys hk and associated projection keys hp we have Hash(hk, (L, param),W ) =
ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:

⎧
⎨

⎩
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ),
v = Hash(hk, (L, param),W )

⎫
⎬

⎭

�
{

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ), v $← G

}

.



8 O. Blazy et al.

– Pseudo-Randomness : If W ∈ L, then without a witness of membership the
two previous distributions should remain computationally indistinguishable.

Classical Instantiations. For our needs, we consider discrete-logarithm based
encryption schemes and related smooth projective hash functions. The under-
lying setting is a group G (denoted multiplicatively) of prime order p and we
denote g a random generator of G = 〈g〉. The security of our constructions will
rely on the standard Decisional Diffie Hellman problems in G:

Decisional Diffie Hellman (DDH) [Bon98]: The Decisional Diffie-Hellman
hypothesis states that in a group (p,G, g) (written in multiplicative notation),
given (gμ, gν , gψ) for unknown μ, ν

$← Zp, it is hard to decide whether ψ = μν.

ElGamal encryption [ElG84] is defined by the following four algorithms:

– Setup(1K): The scheme needs a multiplicative group (p,G, g). The global para-
meters param consist of these elements (p,G, g).

– KeyGen(param): Chooses one random scalar α
$← Zp, which define the secret

key dk = α, and the public key pk = h = gα.
– Encrypt(pk = h,M ; r): For a message M ∈ G and a random scalar r

$← Zp,
computes the ciphertext as C =

(
c1 = hrM, c2 = gr

)
.

– Decrypt(dk = α,C = (c1, c2)): One computes M = c1/(cα
2 ).

As shown by Boneh [Bon98], this scheme is IND-CPA under the hardness of DDH.

Cramer-Shoup encryption scheme [CS98] is an IND-CCA version of the ElGamal
Encryption.

– Setup(1K) generates a group G of order p, with a generator g

– KeyGen(param) generates (g1, g2)
$← G

2, dk = (x1, x2, y1, y2, z) $← Z
5
p, and

sets, c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz
1 . It also chooses a Collision-Resistant

hash function HK in a hash family H (or simply a Universal One-Way Hash
Function). The encryption key is ek = (g1, g2, c, d, h,HK).

– Encrypt(ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the
ciphertext is C = (u = (gr

1, g
r
2), e = M · hr, v = (cdξ)r), where v is computed

afterwards with ξ = HK(u, e).
– Decrypt(�, dk, C): one computes ξ = HK(u, e) and checks whether ux1+ξy1

1 ·
ux2+ξy2
2

?= v. If the equality holds, one computes M = e/(uz
1) and outputs M .

Otherwise, one outputs ⊥.

The security of the scheme is proven under the DDH assumption and the fact
the hash function used is a Universal One-Way Hash Function (see [CS98]).

3 Security Model

Distributed PAKE. In a distributed PAKE system, we consider as usual a
client (owning a password) willing to interact with a gateway, such as a website.



Mitigating Server Breaches in Password-Based Authentication 9

The difference compared to a non-distributed system is that the gateway itself
interacts with two servers, and none of the three owns enough information to
be able to recover the passwords of the clients on its own2. Such a scheme
is correct if the interaction between a client with a correct password and the
gateway succeeds. An honest execution of a distributed PAKE protocol should
result in the client holding a session key KU and the gateway holding a session
key KG = KU.

We propose in this paper two settings that describe well this situation. In a
first setting, we consider that the passwords of the clients are shared information-
theoretically between the servers, such as π = π1 +π2 (if the password π belongs
to an appropriate group) or with the help of any secret sharing protocol. At the
beginning of each time period, the shares are updated, in a probabilistic way,
using a public function Refresh, depending on the sharing protocol used.

In a second setting, we consider that the gateway owns a database of
encrypted passwords (which can be considered public), and the servers each
own a share of the corresponding private keys (obtained by a secret sharing
protocol). At the beginning of each time period, the shares are updated, in a
probabilistic way, using a public function Refresh, depending on the sharing
protocol used.

Since the security of our schemes is not analyzed in the universal composabil-
ity framework (contrary to the recent paper [CEN15]), the Refresh procedure
can be handled easily using classical techniques from computational proactive
secret sharing (see [OY91,HJKY95] for instance).

Security Model. We consider the classical model [BPR00] for authenticated
key-exchange, adapted to the two-server setting by [ACFP05,KMTG12]. In the
latter model, the authors assume that every client in the system shares its pass-
word with exactly two servers. We loosen this requirement here, depending on
the setting considered, as described above. We refer the interested reader to
these articles for the details and we give the high-level ideas in [BCV16].

4 Our Simple Protocol

In this first setting, we consider a client U owning a password π and willing
to interact with a gateway G. The gateway interacts with two servers S1 (own-
ing π1) and S2 (owning π2), such that π = π1 + π2. It should be noted that only
the client’s password is assumed to be small and human-memorable. The two
“passwords” owned by the servers can be arbitrarily big. The aim of the protocol
is to establish a shared session key between the client and the gateway.

A simple solution to this problem consists in considering some sort of three-
party PAKE, in which the client implicitly checks (using an SPHF) whether its
password is the sum of the shares owned by the two servers, and the servers
implicitly check (also using an SPHF) whether their share is the difference of the

2 Note that the gateway can be merged with one server.



10 O. Blazy et al.

password owned by the client and the share owned by the other server. For sake
of simplicity, we denote the client U as S0 and its password π as π0.

4.1 Building Blocks

Cramer-Shoup Encryption and SPHF. We consider Cramer-Shoup encryption
as described in Sect. 2. The public key is denoted by ek = (g1, g2, c, d, h,HK)
and the private key by dk = (x1, x2, y1, y2, z) $← Z

5
p. The public parameters

(G, p, g, ek) are given as a common reference string.
We denote the ciphertext of a message M ∈ G with the scalar r ∈ Zp by

C = CSek(M ; r) = (u1, u2, e, v), with v = cdξ and ξ = HK(u1, u2, e).
We use the SPHF described in [BBC+13] for the language of the valid cipher-

texts of M under the public key ek. Its main advantage is that it can be computed
without using the associated ciphertext, and in particular before having seen it.
This allows all the participants to send their ciphertext and their projected keys
in only one flow. The classical use of this SPHF is as follows: user U (owning
a message M) and V (owning a message M ′) are supposed to share a common
message, so that M = M ′. User U wants to implicitly check this equality. To this
aim, user V sends an encryption C of M ′ under randomness r. In order for U to
implicitly check that C is a valid encryption of M , it chooses a hash key hk and
computes and sends a projection key hp to V . If M = M ′ and if the encryption
was computed correctly, then the hash value H computed by U using the private
value hk is the same as the projected hash value H ′ computed by V using the
public value hp and its private witness r. The SPHF is described by the following
algorithms.

Setup(1K): param = (ek, M)
L = {C = (u1, u2, e, v) ∈ G

4 | ∃r ∈ Zp s. t.
C = CSek(M ; r)}

HashKG(L, (ek, M)): hk = (η, γ, θ, λ, κ)
$← Z

5
p

ProjKG(hk, (L, (ek, M))): hp = (hp1 = gη
1gθ

2hλcκ, hp2 = gγ
1 dκ) ∈ G

2

Hash(hk, (L, (ek, M)), C): H = Hash(hk, (ek, M), C) = u
(η+ξγ)
1 uθ

2(e/M)λvκ

ProjHash(hp, (L, (ek, M ′)), C, r): H ′ = (hp1hp
ξ
2)

r

It has been known to be correct, smooth and pseudo-random since [BBC+13].

Main Idea of the Construction. In our setting, we denote by pwb = gπb . The main
idea of the protocol is depicted on Fig. 1. For sake of readability, the participants
which have a real role in the computations are directly linked by arrows in the
picture, but one should keep in mind that all the participants (U, S1 and S2)
only communicate with G, which then broadcasts all the messages.

In a classical SPHF-based two-party key-exchange between U and G, the client
and the gateway would compute a Cramer-Shoup encryption of their password:
C0 = CSek(pw0; r0) and CG = CSek(pwG; rG). The gateway would then send a
projection key hpG,0 in order to implicitly check via an SPHF whether C0 is
a valid Cramer-Shoup encryption of pwG, and the client would send a projec-
tion key hp0,G in order to implicitly check via an SPHF whether CG is a valid
Cramer-Shoup encryption of pw0.



Mitigating Server Breaches in Password-Based Authentication 11

U

C0 = CSek(pw0; r0)

G

S1

C1 = CSek(pw1; r1)

S2

C2 = CSek(pw2; r2)

hp1,2
(r2 for C2

known?)

hp2,1
(r1 for C1

known?)

hp1,0 (r0 for C0 known?)

hp0,1 (r1 for C1 known?)

hp2,0 (r0 for C0 known?)

hp0,2 (r2 for C2 known?)

Fig. 1. Main idea of the construction

Here, since S0 owns pw0 = pw1 · pw2, so that the players do not share the
same password, we consider an SPHF between each pair of players (Si,Sj),
in which player Si computes the ciphertext Ci = CSek(pwi; ri), the keys hki,j

and hpi,j and sends (Ci, hpi,j) to Sj . It also computes the hash value Hi,j =
Hash(hki,j , (ek, pwi), Cj) and the projected hash value H ′

j,i = ProjHash(hpj,i,
(ek,Mi), Ci, ri). Formally, for each pair of users (Si,Sj), the language checked
on Sj by Si is defined as follows: Cj ∈ Li,j = {C = (u1, u2, e, v) ∈ G

4 | ∃r ∈
Zp such that C = CSek(pwj ; r)} but it cannot be checked directly by a unique
SPHF since the passwords are different (and thus Si does not know pwj). Rather,
we combine in the protocol the six SPHF described to globally ensure the correct-
ness (each one remaining smooth and pseudo-random), as described in the next
part. The correctness of the SPHF for the pair (Si,Sj) implies that if everything
was computed honestly, then one gets the equalities Hi,j(pwi/pwj)λi = H ′

i,j and
Hj,i(pwj/pwi)λj = H ′

j,i.

4.2 Login Procedure

– Each participant Sb picks rb at random and computes a Cramer-Shoup encryp-
tion of its password Cb = CSek(pwb; rb), with vb = cdξb .
It also chooses, for i ∈ {0, 1, 2}\{b}, a random hash key hkb,i = (ηb,i, γb,i, θb,i,
λb, κb,i) and sets hpb,i = (hpb,i;1, hpb,i;2) = (g1ηb,ig2

θb,ihλbcκb,i , g1
γb,idκb,i) as

the projection key intended to the participant Si.
It sends (Cb, (hpb,i)i∈{0,1,2}\{b}) to the gateway G, which broadcasts these val-
ues to the other participants.

– After receiving the first flow from the servers, the client computes, for i ∈
{1, 2}, H ′

i,0 = hpi,0;1
r0hpi,0:2

ξ0r0 . It also computes H0 = H0,1 · H0,2 · pw0
λ0 ,

and sets its session key KU as KU = K0 = H ′
1,0 · H ′

2,0 · H0.
After receiving the first flow from the other server and the client, the server Sb

computes, for i ∈ {0, 3 − b}, H ′
i,b = hpi,b;1

rbhpi,b;2
ξbrb . It also computes Hb =

Hb,0/(Hb,3−b · pwλb

b ), and sets its partial key Kb as Kb = H ′
0,b · H ′

3−b,b · Hb. It
privately sends this value Kb to the gateway G.



12 O. Blazy et al.

– The gateway finally sets KG = K1 · K2.

Correctness. Recall that H ′
i,j = Hi,j(pwi/pwj)λi for all pairs (i, j) ∈ {0, 1, 2}2,

so that the session key of the gateway is equal to KG = K1 · K2, i.e.

KG = H′
0,1H′

2,1H1,0

H1,2pw
λ1
1

H′
0,2H′

1,2H2,0

H2,1pw
λ2
2

= H0,1H1,0H0,2H2,0

(
1

pw2

)λ1
(

1
pw1

)λ2
(

(pw0)
2

pw1pw2

)λ0

while the session key of the client is KU = H ′
1,0 · H ′

2,0 · H0, i.e.

KU = H ′
1,0 ·H ′

2,0 ·H0,1 ·H0,2 ·pw0
λ0 = H0,1H1,0H0,2H2,0

(
pw1
pw0

)λ1
(

pw2
pw0

)λ2

(pw0)λ0

and these two values are equal as soon as pw0 = pw1 · pw2.

Complexity. The following table sums up the number of group elements needed
for each participant. It should be noted that in case one of the servers is the
gateway, its communication costs are reduced.

Ciphertext
(Broadcast)

Projection Keys
(Overall)

To the Gateway

Client 4 4 0
Server (each) 4 4 1

Proof of Security. The proof follows the spirit of the proofs given in [KV11,
BBC+13]. For lack of space, a sketch is given in [BCV16].

5 Our Efficient Protocol

In this second setting, we consider again a client U owning a password π and
willing to interact with a gateway G. The gateway owns a public database of
encrypted passwords, and it interacts with two servers S1 and S2, each owning
a share of the secret key of the encryption scheme. The aim of the protocol is to
establish a shared session key between the client and the gateway.

The idea is similar to the protocol described in the former section, except
that only the client needs to compute a ciphertext, the other ciphertext being
publicly available from the database. The participants implicitly check (using
several SPHF) that the message encrypted in the ciphertext of the client is the
same as the message encrypted in the database (using the secret key shared upon
the servers).

5.1 Building Blocks

Cramer-Shoup Encryption and SPHF. We consider Cramer-Shoup encryption
as the previous construction. We use here the simpler SPHF described in [GL03]
for the language of the valid ciphertexts of M under the public key ek, in which
the participants need to see the ciphertext before being able to compute their
projection keys. The SPHF is described by the following algorithms.



Mitigating Server Breaches in Password-Based Authentication 13

Setup(1K): param = (ek,M)
L = {C = (u1, u2, e, v) ∈ G

4 | ∃r ∈ Zp s. t.
C = CSek(M ; r)}

HashKG(L, (ek,M)): hk = (η, θ, λ, κ) $← Z
4
p

ProjKG(hk, (L, (ek,M)), C): hp = gη
1gθ

2h
λ(cdξ)κ ∈ G

Hash(hk, (L, (ek,M)), C): H = uη
1u

θ
2(e/M)λvκ

ProjHash(hp, (L, (ek,M ′)), C, r): H ′ = hpr

It has been known to be correct, smooth and pseudo-random since [GL03].

El Gamal Encryption and SPHF. We consider El Gamal encryption as described
in Sect. 2. The public key is denoted by pk = h = gα and the private key by sk =
α

$← Zp. The public parameters (G, p, g, pk) are given as a common reference
string. We denote the ciphertext of a message M ∈ G with the scalar r ∈ Zp by
C = EGpk(M ; r) = (e, u) = (hrM, gr).

The regular SPHF used throughout the literature [CS02] on the language
{C = (e, u) ∈ G

2 | ∃r ∈ Zp such that C = EGpk(M ; r)} of the valid encryptions
of M , with r being the witness of the word C, usually allows a server to check
whether the ciphertext was honestly computed on the value M by a client, by
generating a pair of keys (hk, hp) and sending hp to the client.

Here, on the contrary, we now want a client to implicitly check that a server
knows the decryption key of the encryption scheme. This means that the client
computes both the ciphertext (or the ciphertext is publicly available in a data-
base, as here) and the pair of keys (hk, hp) and sends the ciphertext as well as
hp to the server, which now uses the decryption key as a witness. This implies
the following modifications to the algorithms of the SPHF:

Setup(1K): param = (pk,M)
L = {C = (e, u) ∈ G

2 | ∃α ∈ Zp such that
h = gα and e/uα = M}

HashKG(L, (pk,M)): hk = (λ, μ) $← Z
2
p

ProjKG(hk, (L, (pk,M)), C): hp = uλgμ ∈ G

Hash(hk, (L, (pk,M)), C): H = hμ(e/M)λ

ProjHash(hp, (L, (pk,M ′)), C, α): H ′ = hpα

and we show that this SPHF satisfies the usual properties:

– Correctness: if C ∈ L with witness α, one directly gets H = H ′;
– Smoothness: assume C /∈ L. It can then be parsed as C = (e, u) with u = gr

and e = hrM ′ = gαrMgδM (with M ′ 
= M and thus δM 
= 0), so that
hp = uλgμ = grλ+μ and H = hμ(e/M)λ = gαμg(αr+δM )λ.
The smoothness is then easy to see by considering the following equality of
matrices: (

logg(hp)
logg(H)

)

=
(

r 1
αr + δM&α

)

·
(

λ
μ

)

which shows that as soon as the word is not a valid encryption of M , and so
δM is not equal to 0, the Hash value H is not in the span of the projection
key hp so that the two distributions described in Sect. 2 are indistinguishable.



14 O. Blazy et al.

– Pseudo-Randomness. Since El Gamal encryption is IND-CPA, it is impossible
to distinguish between a real encryption and a random value without knowing
the decryption key. Since the decryption key is the witness of the SPHF,
without knowing the witness, the two distributions remain indistinguishable.

Main Idea of the Construction. Again, we denote the client U as S0 and its
password π as π0. In our setting, we denote by pwk = gπk for all k. The database
contains El Gamal encryptions of each ciphertext pwUi

, under randomness sUi
:

Cdb
Ui

= EGpk(pwUi
; sUi

) = (hsUipwUi
, gsUi ), so that here, Cdb

U = EGpk(pwU; sU) =
(hsUpwU, gsU). The client computes a Cramer-Shoup encryption of its password:
C0 = CSek(pw0; r0) = (u1, u2, e, v) with v = cdξ. The execution of the protocol
should succeed if these encryptions are correct and pw0 = pwU. Recall that the
server Si knows αi such that α = α1 + α2 is the decryption key of the El Gamal
encryption.

The main idea is depicted on Fig. 2. For sake of readability, the participants
which have a real role in the computations are directly linked by arrows in the
picture, but one should keep in mind that all the participants (U, S1 and S2)
only communicate with G, which then broadcasts all the messages.

In a classical SPHF-based two-party key-exchange between U and G, the
gateway would check whether C0 is a valid Cramer-Shoup encryption of pwU.
Since here the password pwU is unknown to the servers S1 and S2, this is done in
our setting by two SPHF, using hpCS

1 (sent by S1) and hpCS
2 (sent by S2), where

the servers use the first term of the public encryption CDB
U (hsUpwU) in order to

cancel the unknown pwU.
In a classical SPHF-based two-party key-exchange between U and G, the client

would also check whether CDB
U is a valid El Gamal encryption of its password pw0,

i.e. whether the gateway knows a witness for its ciphertext CDB
U (sU in the usual

constructions, α here). Since α is unknown to the gateway, this is done in our
setting by the combination of three SPHF, using hpEG

0 (sent by the client), hpEG
1

(sent by S1) and hpEG
2 (sent by S2). These three SPHF allow the client and the

servers to implicitly check that the servers know α1 and α2 such that CDB
U can

be decrypted (using the decryption key α = α1 + α2) to the same password pw0

than the one encrypted in C0 sent by the client. Formally, the languages checked
are as follows:

– by the client:
CDB
U ∈ L0 = {C = (e, u) ∈ G

2 | ∃α ∈ Zp such that h = gα and e/uα = pw0}
– by server Si (with respect to the client S0 and server Sj):

C0 ∈ Li,0 = {C = (u1, u2, e, v) ∈ G
4 | ∃r ∈ Zp such that C = CSek(pwU; r)

and CDB
U ∈ Li,j = {C = (e, u) ∈ G

2 | ∃αj ∈ Zp such that h = gαi+αj } and
e/uαi+αj = pwU}

but they cannot be checked directly by a unique SPHF since the value pwU

appearing in the languages is unknown to the verifier Si. Rather, the server Si

will use the first term of the public encryption CDB
U (hsUpwU) in order to cancel

this unknown pwU. To achieve this goal, we combine the five SPHF described



Mitigating Server Breaches in Password-Based Authentication 15

U

C0 = CSek(pw0; r0)

G

CDB
U = EGpk(pwU; sU)

sk = α1 + α2 (unknown)

S1

α1

S2

α2

hpEG
0 (α for CDB

U known?) hpEG
1

(α2 for CDB
U

known?)

hpEG
2

(α1 for CDB
U

known?)

hpCS
1 (r0 for C0 known?)

hpCS
2 (r0 for C0 known?)

Fig. 2. Main idea of the construction

to globally ensure the correctness (each one remaining smooth and pseudo-
randomness), as described in the next part.

5.2 Login Procedure

– The client U = S0 chooses r0 at random and computes a Cramer-Shoup
encryption of its password C0 = CSek(pw0; r0) = (u1, u2, e, v) with v = cdξ.
It also chooses a random (El Gamal) hash key hkEG

0 = (λ0, μ0) and computes
the corresponding projected key on the ciphertext CDB

U = EGpk(pwU; sU) =
(hsUpwU, gsU) contained in the database: hpEG

0 = gsUλ0gμ0 .
It sends (C0, hp

EG
0 ) to the gateway, which broadcasts these values to the

servers.
– After receiving this flow from the client, the servers S1 and S2 also choose

a random (El Gamal) hash key hkEG
b = (λb, μb) and compute the corre-

sponding projected key on the ciphertext CDB
U contained in the database:

hpEG
b = gsUλbgμb .

The servers S1 and S2 also choose a random (Cramer-Shoup) hash key hkCS
b =

(ηb, θb, λb, κb) (with the same value λb) and compute the corresponding pro-
jected key on the ciphertext C0 sent by the client: hpCS

b = (g1ηbg2
θbhλb(cdξ)κb).

Each server sends (hpEG
b , hpCS

b ) to the gateway G, which broadcasts these val-
ues to the other participants.

– After receiving the projected keys from the servers, the client computes, for
i ∈ {1, 2}, H ′

i,0 = (hpCS
i )r0 . It also computes H0 = (hsUpwU/pw0)λ0hμ0 by

dividing the first term of the ciphertext CDB
U contained in the database by its

password pw0. It finally sets its session key KU as KU = K0 = H ′
1,0 ·H ′

2,0 ·H0.
After receiving the first flow from the other server and the client, the server Sb

computes, for i ∈ {0, 3 − b}, H ′
i,b = (hpEG

i )αb .
It also computes Hb,0 = (u1)ηb(u2)θb [e/(hsUpwU)]λbvκb and Hb = Hb,0 ·
(hpEG

b )αb/hμb , and sets its partial key Kb as Kb = H ′
0,b ·H ′

3−b,b ·Hb. It privately
sends this value Kb to the gateway G.

– The gateway finally sets KG = K1 · K2.



16 O. Blazy et al.

Correctness. Due to the correctness of the Cramer-Shoup SPHF, we have the

equalities H ′
b,0 = Hb,0

(
hsUpwU

pw0

)λb

for b ∈ {1, 2}. The session key of the gateway
is thus equal to KG = K1 · K2 = (H ′

0,1 · H ′
2,1 · H1) · (H ′

0,2 · H ′
1,2 · H2) where, after

computation, Kb = h(λ0+λ1+λ2)αbg(μ0+μ1+μ2)αbH ′
b,0(pw0/pwU)λbh−sUλbh−μb .

If pw0 = pwU, h = gα and α = α1 + α2, KG = hsUλ0hμ0H ′
1,0H

′
2,0, which is

equal to the session key of the client KU = K0 = H ′
1,0 · H ′

2,0 · H0 = H ′
1,0 · H ′

2,0 ·
hsUλ0hμ0 .

Complexity. The following table sums up the number of group elements needed
for each participant. It should be noted that in case one of the servers is the
gateway, its communication costs are reduced.

Ciphertext
(Broadcast)

Projection Keys
(Overall)

To the Gateway

Client 4 2 0
Server (each) 0 2 1

Compared to [KMTG12], the communication complexity of our protocol is
decreased by more than 50 % (9 group elements instead of 20 group elements).
For efficiency, as in [KMTG12], we count exponentiations only, and assume a
multi-exponentiation with up to 5 bases can be computed at the cost of at most
1.5 exponentiations. The client performs the equivalent of 8 full exponentiations,
while each server performs 7 exponentiations (instead of 15 and 13 respectively
in [KMTG12]).

Proof of Security. The proof follows the idea of the former one. For lack of space,
a sketch is given in [BCV16].

6 Conclusion

We presented two constructions of distributed Password-Authenticated Key
Exchange between a user and several servers. We focused on presenting them in
a classical group setting (with only two servers). Very efficient implementations
of our protocols can be readily obtained using standard cryptographic libraries
and do not require pairings.

Our methods can be generalized to the setting where n servers share the
(encryption of the) password. SPHF can further handle polynomials of variables
and the use of secret sharing techniques à la Shamir, allows to share polynomials
evaluation between n servers and to provide a threshold distributed PAKE such
that security is ensured as long as less than a certain arbitrary threshold t ∈
{1, . . . , n} of servers are compromised (contrary to the protocol from [DG06]
which requires an honest majority of the servers).

Smooth projective hashing is mostly used in a classical discrete-logarithm-
based setting (or pairing-based setting) but constructions were also proposed
for Paillier encryption [CS02] and for LWE encryption [KV09]. These SPHF
would allow a readily adaptation of our techniques to other classical settings of
cryptography.



Mitigating Server Breaches in Password-Based Authentication 17

Acknowledgements. This work was supported in part by the French ANR Project
ANR-14-CE28-0003 EnBiD.

References

[ACFP05] Abdalla, M., Chevassut, O., Fouque, P.-A., Pointcheval, D.: A simple
threshold authenticated key exchange from short secrets. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 566–584. Springer, Heidelberg
(2005)

[ACP09] Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for
conditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009)

[BBC+13] Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.:
New techniques for SPHFs and efficient one-round PAKE protocols. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 449–475. Springer, Heidelberg (2013)

[BCV16] Blazy, O., Chevalier, C., Vergnaud, D.: Mitigating server breaches in
password-based authentication: secure and efficient solutions. In: Sako, K.
(eds.) Topics in Cryptology, CT-RSA 2016, pp. 3–18. Springer, Heidelberg
(2016)

[BJKS03] Brainard, J.G., Juels, A., Kaliski, B., Szydlo, M.: A new two-server app-
roach for authentication with short secrets. In: Proceedings of the 12th
USENIX Security Symposium, Washington, D.C., USA, 4–8 August 2003
(2003)

[BM92] Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based pro-
tocols secure against dictionary attacks. In: 1992 IEEE Symposium on Secu-
rity and Privacy, pp. 72–84. IEEE Computer Society Press, May 1992

[Bon98] Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.)
ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

[BPR00] Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange
secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[CEN15] Camenisch, J., Enderlein, R.R., Neven, G.: Two-server password-
authenticated secret sharing UC-secure against transient corruptions. In:
Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 283–307. Springer, Heidel-
berg (2015)

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002)

[DG06] Di Raimondo, M., Gennaro, R.: Provably secure threshold password-
authenticated key exchange. J. Comput. Syst. Sci. 72(6), 978–1001 (2006)

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theo. 22(6), 644–654 (1976)



18 O. Blazy et al.

[ElG84] El Gamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

[FK00] Ford, W., Kaliski Jr., B.S.: Server-assisted generation of a strong secret
from a password. In: 9th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE 2000),
Gaithersburg, MD, USA, 4–16 June 2000, pp. 176–180 (2000)

[GL03] Gennaro, R., Lindell, Y.: A framework for password-based authenticated
key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 524–543. Springer, Heidelberg (2003)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[HJKY95] Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing
or: how to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

[Jab01] Jablon, D.P.: Password authentication using multiple servers. In: Naccache,
D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 344–360. Springer, Heidelberg
(2001)

[KM14] Kiefer, F., Manulis, M.: Distributed smooth projective hashing and its
application to two-server password authenticated key exchange. In: Boure-
anu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479,
pp. 199–216. Springer, Heidelberg (2014)

[KMTG12] Katz, J., MacKenzie, P.D., Taban, G., Virgil, D.: Two-server password-only
authenticated key exchange. J. Comput. Syst. Sci. 78(2), 651–669 (2012)

[KOY01] Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key
exchange using human-memorable passwords. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg
(2001)

[KV09] Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-
based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009)

[KV11] Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenti-
cated key exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
293–310. Springer, Heidelberg (2011)

[MSJ02] MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-
authenticated key exchange. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 385–400. Springer, Heidelberg (2002)

[OY91] Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: 10th ACM PODC, pp. 51–59. ACM, August 1991

[Poi12] Pointcheval, D.: Password-based authenticated key exchange. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
390–397. Springer, Heidelberg (2012)

[SK05] Szydlo, M., Kaliski, B.: Proofs for two-server password authentication. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 227–244. Springer,
Heidelberg (2005)


	Mitigating Server Breaches in Password-Based Authentication: Secure and Efficient Solutions
	1 Introduction
	2 Preliminaries
	3 Security Model
	4 Our Simple Protocol
	4.1 Building Blocks
	4.2 Login Procedure

	5 Our Efficient Protocol
	5.1 Building Blocks
	5.2 Login Procedure

	6 Conclusion
	References


