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Preface

The RSA conference has been a major international event for information security
experts since its inception in 1991. It is an annual event that attracts hundreds of
vendors and thousands of participants from industry, government, and academia.

Since 2001, the RSA conference has included the Cryptographers’ Track (CT-RSA),
which provides a forum for current research in cryptography.

CT-RSA has become a major publication venue in cryptography. It covers a wide
variety of topics from public-key to symmetric-key cryptography and from crypto-
graphic protocols to primitives and their implementation security.

This volume represents the proceedings of the 2016 RSA Conference Cryptogra-
phers’ Track, which was held in San Francisco, California, from February 29 to March
4, 2016.

A total of 76 full papers were submitted for review, out of which 26 papers were
selected for presentation. As chair of the Program Committee, I deeply thank all the
authors who contributed the results of their innovative research. My appreciation also
goes to all the members of the Program Committee and the designated external
reviewers who carefully reviewed the submissions. Each submission had at least three
independent reviewers, and those authored/co-authored by a member of the Program
Committee had six reviewers. The process of selection was very difficult, as each
submission had different aspects in its contribution. It was carried out with enthusiastic
discussion among the members of the Program Committee in a transparent manner.

In addition to the contributed talks, the program included a panel discussion
moderated by Bart Preneel on “The Future of Bitcoin and Cryptocurrencies.”

December 2015 Kazue Sako
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Mitigating Server Breaches in Password-Based
Authentication: Secure and Efficient Solutions

Olivier Blazy1, Céline Chevalier2(B), and Damien Vergnaud3

1 Université de Limoges, XLim, Limoges, France
2 Université Panthéon-Assas, Paris, France

celine.chevalier@ens.fr
3 ENS, CNRS, INRIA and PSL Research University, Paris, France

Abstract. Password-Authenticated Key Exchange allows users to gen-
erate a strong cryptographic key based on a shared “human-memorable”
password without requiring a public-key infrastructure. It is one of the
most widely used and fundamental cryptographic primitives. Unfortu-
nately, mass password theft from organizations is continually in the news
and, even if passwords are salted and hashed, brute force breaking of
password hashing is usually very successful in practice.

In this paper, we propose two efficient protocols where the password
database is somehow shared among two servers (or more), and authen-
tication requires a distributed computation involving the client and the
servers. In this scenario, even if a server compromise is doable, the secret
exposure is not valuable to the adversary since it reveals only a share of
the password database and does not permit to brute force guess a pass-
word without further interactions with the parties for each guess. Our
protocols rely on smooth projective hash functions and are proven secure
under classical assumption in the standard model (i.e. do not require
idealized assumption, such as random oracles).

Keywords: Password-authenticated key exchange · Distributed
computation · Decision diffie-hellman · Smooth projective hashing

1 Introduction

Authenticated Key Exchange protocols enable two parties to establish a shared
cryptographically strong key over an insecure network under the complete con-
trol of an adversary. This primitive is one of the most widely used and funda-
mental cryptographic primitives and it obviously requires the parties to have
authentication means, e.g. (public or secret) cryptographic keys or short (i.e.,
low-entropy) secret keys.

PAKE, for Password-Authenticated Key Exchange, allows users to generate
a strong cryptographic key based on a shared “human-memorable” password
without requiring a public-key infrastructure. In this setting, an adversary con-
trolling all communication in the network should not be able to mount an offline
dictionary attack. More precisely, an eavesdropper should not obtain enough
c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-29485-8 1



4 O. Blazy et al.

information to be able to brute force guess a password without further inter-
actions with the parties for each guess. Note that online dictionary attacks in
which an adversary simply attempts to log-in repeatedly, trying each possible
low-entropy password can be dealt with using other computer security methods
(such as limiting the number of attempts). In particular, strong security can
be obtained even using passwords chosen from a small set of possible values (a
four-digit pin, for example).

Incidents of sensitive customer information “hacking” (including leaking of
passwords) in e-commerce systems are frequently revealed in the newspaper. In
addition to major reputational damage, a company with a significant data breach
may be sued by its clients for the breach and may be suspended or disqualified
from future public sector or government work.

To alleviate the threat that stored passwords are revealed immediately in case
of a server compromise, many servers adopt the approach for storing passwords
in a hashed form with a random salt. When the database of hashed password is
compromised, the offline dictionary attack requires a more important computa-
tional effort but remains usually possible. The notion of Verifier-based PAKE,
where the client owns a password pw and the server knows a one-way transforma-
tion v of the password only were proposed by Bellovin and Merritt [BM92]. The
two players eventually agree on a common high entropy secret if and only if pw
and v match together. It prevents massive password recovering in case of server
corruption and it forces the attacker who breaks into the server and is willing to
recover passwords to perform an additional costly offline dictionary attack.

We consider an alternative approach inspired by the multi-party computa-
tion paradigm (and first suggested by Ford and Kaliski [FK00]). The password
database on the server side is somehow shared among two servers (or more, but
we focus here on two for sake of simplicity), and authentication requires a dis-
tributed computation involving the client – who still does not need an additional
cryptographic device capable of storing high-entropy secret keys – and the two
servers who will use some additional shared secret information. The interaction
is performed using a gateway that does not know any secret information and
ends up in the gateway and the client sharing a common key. The lifetime of
the protocol is divided into distinct periods (for simplicity, one may think of
these time periods as being of equal length; e.g. one day) and at the beginning
of each period, the two servers interact and update their sharing of the password
database. Similarly to proactive schemes in multi-party computation, we allow
the adversary multiple corruptions of each server, limiting only the corruptions
to one server for each period. The user does not need to update his password
nor to perform any kind of computations and its interaction with the two servers
(performed using the gateway) remains the same for the lifetime of the protocol.
In this scenario, even if a server compromise is doable, the secret exposure is not
valuable to the adversary since it reveals only a share of the password database
and does not permit to run an offline dictionary attack.

The goal of our paper is to present practical realizations based on classical
cryptographic assumptions in the standard security model.
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Related Work. EKE (Encrypted Key Exchange) is the most famous instantia-
tion of Password-Authenticated Key Exchange. It has been proposed by Bellovin
and Merritt [BM92] and consists of a Diffie-Hellman key exchange [DH76], where
the flows are symmetrically encrypted under the shared password.

A first formal security model was proposed by Bellare, Pointcheval and
Rogaway [BPR00] (the BPR model), to deal with offline dictionary attacks.
It essentially says that the best attack should be the online exhaustive search,
consisting in trying all the passwords by successive executions of the protocol
with the server. Several variants of EKE with BPR-security proofs have been
proposed in the ideal-cipher model or the random-oracle model (see the sur-
vey [Poi12] for details). Katz, Ostrovsky and Yung [KOY01] proposed the first
practical scheme, provably secure in the standard model under the Decision
Diffie-Hellman assumption (DDH). It has been generalized by Gennaro and Lin-
dell [GL03], making use of smooth projective hash functions.

As mentioned above, Ford and Kaliski [FK00] were the first to propose to
distribute the capability to test passwords over multiple servers. Building on
this approach, several such protocols were subsequently proposed in various set-
tings (e.g. [Jab01,MSJ02,BJKS03,DG06,SK05,KMTG12,ACFP05,KM14]) and
it is worth noting that the protocol from [BJKS03] is commercially avail-
able as EMC’s RSA Distributed Credential Protection. Recently, Camenisch,
Enderlein and Neven [CEN15] revisited this approach and proposed a scheme in
the universal composability framework [Can01] (which has obvious advantages
for password-based protocols since users often use related passwords for many
providers). Camenisch et al. gave interesting details about the steps that need to
be taken when a compromise actually occurs. Unfortunately, due to the inher-
ent difficulties of construction of the simulator in the universal composability
framework, their scheme is inefficient since users and servers have to perform a
few hundred exponentiations each.

Our Contributions. In order to achieve practical constructions in the standard
security model, we consider the variant of the BPR model1 in the distributed
setting proposed by Katz, MacKenzie, Taban and Gligor in [KMTG12]. In this
security model, we assume that the communication between the client and the
authentication servers, is carried on a basically insecure network. Messages can
be tapped and modified by an adversary and the communication between the
clients and the servers is asynchronous. The adversary should not be able to
brute force guess a password without further interactions with the client for
each guess even if he corrupts and impersonates a server in an active way.

Our first construction uses a similar approach to the schemes from
[Jab01,MSJ02,BJKS03,DG06,SK05,KMTG12,ACFP05,KM14]: the user gener-
ates information theoretic shares of his password and sends them to the servers.
In the authentication phase, the parties run a dedicated protocol to verify that
1 Our schemes can be adapted to achieve security in universal composability frame-

work using techniques similar to those used in [CEN15]. The resulting schemes are
slightly more efficient but are unfortunately still not practical.
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the provided password equals the priorly shared one. Our solution then consists
in some sort of three-party PAKE, in which (1) the user implicitly checks (using
a smooth projective hash function) that its password is indeed the sum of the
shares owned by the two servers, and (2) each server implicitly checks that its
share is the difference of the password owned by the user and the share owned by
the other server. Contrary to the popular approach initiated in [KOY01,GL03]
for PAKE, we cannot use two smooth projective hash functions (one for the
client and one for the server) so we propose a technique in order to combine in a
secure way six smooth projective hash functions. This new method (which may
be of independent interest) allows us to prove the security of this construction
under classical cryptographic assumptions (namely the DDH assumption) in the
standard security model from [KMTG12] (without any idealized assumptions).

The main weakness of this first solution is that at each time period, the
servers have to refresh the information-theoretic sharing of the password of all
users. This can be handled easily using well-known techniques from proactive
multi-party computation but if the number of users is large, this can be really
time-consuming (in particular if the time period is very short). Our second con-
struction (which is the main contribution of the paper) is built on the ideas
from the first one but passwords are now encrypted using a public-key encryp-
tion scheme where the corresponding secret key is shared among the servers. At
the beginning of each time period, the servers only need to refresh the sharing of
this secret key but the password database is not modified (and can actually be
public). Password verification and the authenticated key exchange is then car-
ried out without ever decrypting the database. A secure protocol is run to verify
that the password sent by the user matches the encrypted password. It is similar
to the protocol we design for the first construction except that the user encrypts
its password and the parties implicitly check (using in this case five smooth pro-
jective hash functions) that the message encrypted in this ciphertext is the same
as the message encrypted in the database (using the secret key shared upon the
servers). Both constructions consist in only two flows (one from the client and
one from the servers) and a (private) flow from the servers to the gateway.

2 Preliminaries

In this section we recall various classical definitions, tools used throughout this
paper. We use classical notions and notations and the familiar reader may skip
this section.

Public-Key Encryption Scheme. An encryption scheme E is described by
four algorithms (Setup,KeyGen,Encrypt,Decrypt):

– Setup(1K), where K is the security parameter, generates the global parameters
param of the scheme;

– KeyGen(param) outputs a pair of keys, a (public) encryption key ek and a
(private) decryption key dk;
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– Encrypt(ek,M ; ρ) outputs a ciphertext C, on the message M , under the encryp-
tion key ek, with randomness ρ;

– Decrypt(dk, C) outputs the plaintext M , encrypted in the ciphertext C or ⊥.

Such encryption scheme is required to have the classical properties, Correct-
ness and Indistinguishability under Chosen Plaintext Attack IND-CPA [GM84]:
One might want to increase the requirements on the security of an encryption, in
this case the IND-CPA notion can be strengthened into Indistinguishability under
Adaptive Chosen Ciphertext Attack IND-CCA (see the full version [BCV16] for
formal definitions).

Smooth Projective Hash Functions. SPHF [CS02] were introduced by
Cramer and Shoup. A projective hashing family is a family of hash functions that
can be evaluated in two ways: using the (secret) hashing key, one can compute
the function on every point in its domain, whereas using the (public) projected
key one can only compute the function on a special subset of its domain. Such a
family is deemed smooth if the value of the hash function on any point outside
the special subset is independent of the projected key.

Smooth Projective Hashing System: A Smooth Projective Hash Function over
a language L ⊂ X, onto a set G, is defined by five algorithms (Setup,HashKG,
ProjKG,Hash,ProjHash):

– Setup(1K) where K is the security parameter, generates the global parameters
param of the scheme, and the description of an NP language L;

– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W ), derives the projection key hp, possibly depending

on the word W [GL03,ACP09] thanks to the hashing key hk.
– Hash(hk, (L, param),W ), outputs a hash value v ∈ G, thanks to the hashing

key hk, and W
– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the

projection key hp and the witness w that W ∈ L.

In the following, we consider L as a hard-partitioned subset of X, i.e. it
is computationally hard to distinguish a random element in L from a random
element in X \ L. A Smooth Projective Hash Function SPHF should satisfy the
following properties:

– Correctness: Let W ∈ L and w a witness of this membership. For all hashing
keys hk and associated projection keys hp we have Hash(hk, (L, param),W ) =
ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:

⎧
⎨

⎩
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ),
v = Hash(hk, (L, param),W )

⎫
⎬

⎭

�
{

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ), v $← G

}

.
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– Pseudo-Randomness : If W ∈ L, then without a witness of membership the
two previous distributions should remain computationally indistinguishable.

Classical Instantiations. For our needs, we consider discrete-logarithm based
encryption schemes and related smooth projective hash functions. The under-
lying setting is a group G (denoted multiplicatively) of prime order p and we
denote g a random generator of G = 〈g〉. The security of our constructions will
rely on the standard Decisional Diffie Hellman problems in G:

Decisional Diffie Hellman (DDH) [Bon98]: The Decisional Diffie-Hellman
hypothesis states that in a group (p,G, g) (written in multiplicative notation),
given (gμ, gν , gψ) for unknown μ, ν

$← Zp, it is hard to decide whether ψ = μν.

ElGamal encryption [ElG84] is defined by the following four algorithms:

– Setup(1K): The scheme needs a multiplicative group (p,G, g). The global para-
meters param consist of these elements (p,G, g).

– KeyGen(param): Chooses one random scalar α
$← Zp, which define the secret

key dk = α, and the public key pk = h = gα.
– Encrypt(pk = h,M ; r): For a message M ∈ G and a random scalar r

$← Zp,
computes the ciphertext as C =

(
c1 = hrM, c2 = gr

)
.

– Decrypt(dk = α,C = (c1, c2)): One computes M = c1/(cα
2 ).

As shown by Boneh [Bon98], this scheme is IND-CPA under the hardness of DDH.

Cramer-Shoup encryption scheme [CS98] is an IND-CCA version of the ElGamal
Encryption.

– Setup(1K) generates a group G of order p, with a generator g

– KeyGen(param) generates (g1, g2)
$← G

2, dk = (x1, x2, y1, y2, z) $← Z
5
p, and

sets, c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , and h = gz
1 . It also chooses a Collision-Resistant

hash function HK in a hash family H (or simply a Universal One-Way Hash
Function). The encryption key is ek = (g1, g2, c, d, h,HK).

– Encrypt(ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the
ciphertext is C = (u = (gr

1, g
r
2), e = M · hr, v = (cdξ)r), where v is computed

afterwards with ξ = HK(u, e).
– Decrypt(�, dk, C): one computes ξ = HK(u, e) and checks whether ux1+ξy1

1 ·
ux2+ξy2
2

?= v. If the equality holds, one computes M = e/(uz
1) and outputs M .

Otherwise, one outputs ⊥.

The security of the scheme is proven under the DDH assumption and the fact
the hash function used is a Universal One-Way Hash Function (see [CS98]).

3 Security Model

Distributed PAKE. In a distributed PAKE system, we consider as usual a
client (owning a password) willing to interact with a gateway, such as a website.
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The difference compared to a non-distributed system is that the gateway itself
interacts with two servers, and none of the three owns enough information to
be able to recover the passwords of the clients on its own2. Such a scheme
is correct if the interaction between a client with a correct password and the
gateway succeeds. An honest execution of a distributed PAKE protocol should
result in the client holding a session key KU and the gateway holding a session
key KG = KU.

We propose in this paper two settings that describe well this situation. In a
first setting, we consider that the passwords of the clients are shared information-
theoretically between the servers, such as π = π1 +π2 (if the password π belongs
to an appropriate group) or with the help of any secret sharing protocol. At the
beginning of each time period, the shares are updated, in a probabilistic way,
using a public function Refresh, depending on the sharing protocol used.

In a second setting, we consider that the gateway owns a database of
encrypted passwords (which can be considered public), and the servers each
own a share of the corresponding private keys (obtained by a secret sharing
protocol). At the beginning of each time period, the shares are updated, in a
probabilistic way, using a public function Refresh, depending on the sharing
protocol used.

Since the security of our schemes is not analyzed in the universal composabil-
ity framework (contrary to the recent paper [CEN15]), the Refresh procedure
can be handled easily using classical techniques from computational proactive
secret sharing (see [OY91,HJKY95] for instance).

Security Model. We consider the classical model [BPR00] for authenticated
key-exchange, adapted to the two-server setting by [ACFP05,KMTG12]. In the
latter model, the authors assume that every client in the system shares its pass-
word with exactly two servers. We loosen this requirement here, depending on
the setting considered, as described above. We refer the interested reader to
these articles for the details and we give the high-level ideas in [BCV16].

4 Our Simple Protocol

In this first setting, we consider a client U owning a password π and willing
to interact with a gateway G. The gateway interacts with two servers S1 (own-
ing π1) and S2 (owning π2), such that π = π1 + π2. It should be noted that only
the client’s password is assumed to be small and human-memorable. The two
“passwords” owned by the servers can be arbitrarily big. The aim of the protocol
is to establish a shared session key between the client and the gateway.

A simple solution to this problem consists in considering some sort of three-
party PAKE, in which the client implicitly checks (using an SPHF) whether its
password is the sum of the shares owned by the two servers, and the servers
implicitly check (also using an SPHF) whether their share is the difference of the

2 Note that the gateway can be merged with one server.
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password owned by the client and the share owned by the other server. For sake
of simplicity, we denote the client U as S0 and its password π as π0.

4.1 Building Blocks

Cramer-Shoup Encryption and SPHF. We consider Cramer-Shoup encryption
as described in Sect. 2. The public key is denoted by ek = (g1, g2, c, d, h,HK)
and the private key by dk = (x1, x2, y1, y2, z) $← Z

5
p. The public parameters

(G, p, g, ek) are given as a common reference string.
We denote the ciphertext of a message M ∈ G with the scalar r ∈ Zp by

C = CSek(M ; r) = (u1, u2, e, v), with v = cdξ and ξ = HK(u1, u2, e).
We use the SPHF described in [BBC+13] for the language of the valid cipher-

texts of M under the public key ek. Its main advantage is that it can be computed
without using the associated ciphertext, and in particular before having seen it.
This allows all the participants to send their ciphertext and their projected keys
in only one flow. The classical use of this SPHF is as follows: user U (owning
a message M) and V (owning a message M ′) are supposed to share a common
message, so that M = M ′. User U wants to implicitly check this equality. To this
aim, user V sends an encryption C of M ′ under randomness r. In order for U to
implicitly check that C is a valid encryption of M , it chooses a hash key hk and
computes and sends a projection key hp to V . If M = M ′ and if the encryption
was computed correctly, then the hash value H computed by U using the private
value hk is the same as the projected hash value H ′ computed by V using the
public value hp and its private witness r. The SPHF is described by the following
algorithms.

Setup(1K): param = (ek, M)
L = {C = (u1, u2, e, v) ∈ G

4 | ∃r ∈ Zp s. t.
C = CSek(M ; r)}

HashKG(L, (ek, M)): hk = (η, γ, θ, λ, κ)
$← Z

5
p

ProjKG(hk, (L, (ek, M))): hp = (hp1 = gη
1gθ

2hλcκ, hp2 = gγ
1 dκ) ∈ G

2

Hash(hk, (L, (ek, M)), C): H = Hash(hk, (ek, M), C) = u
(η+ξγ)
1 uθ

2(e/M)λvκ

ProjHash(hp, (L, (ek, M ′)), C, r): H ′ = (hp1hp
ξ
2)

r

It has been known to be correct, smooth and pseudo-random since [BBC+13].

Main Idea of the Construction. In our setting, we denote by pwb = gπb . The main
idea of the protocol is depicted on Fig. 1. For sake of readability, the participants
which have a real role in the computations are directly linked by arrows in the
picture, but one should keep in mind that all the participants (U, S1 and S2)
only communicate with G, which then broadcasts all the messages.

In a classical SPHF-based two-party key-exchange between U and G, the client
and the gateway would compute a Cramer-Shoup encryption of their password:
C0 = CSek(pw0; r0) and CG = CSek(pwG; rG). The gateway would then send a
projection key hpG,0 in order to implicitly check via an SPHF whether C0 is
a valid Cramer-Shoup encryption of pwG, and the client would send a projec-
tion key hp0,G in order to implicitly check via an SPHF whether CG is a valid
Cramer-Shoup encryption of pw0.
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U

C0 = CSek(pw0; r0)

G

S1

C1 = CSek(pw1; r1)

S2

C2 = CSek(pw2; r2)

hp1,2
(r2 for C2

known?)

hp2,1
(r1 for C1

known?)

hp1,0 (r0 for C0 known?)

hp0,1 (r1 for C1 known?)

hp2,0 (r0 for C0 known?)

hp0,2 (r2 for C2 known?)

Fig. 1. Main idea of the construction

Here, since S0 owns pw0 = pw1 · pw2, so that the players do not share the
same password, we consider an SPHF between each pair of players (Si,Sj),
in which player Si computes the ciphertext Ci = CSek(pwi; ri), the keys hki,j

and hpi,j and sends (Ci, hpi,j) to Sj . It also computes the hash value Hi,j =
Hash(hki,j , (ek, pwi), Cj) and the projected hash value H ′

j,i = ProjHash(hpj,i,
(ek,Mi), Ci, ri). Formally, for each pair of users (Si,Sj), the language checked
on Sj by Si is defined as follows: Cj ∈ Li,j = {C = (u1, u2, e, v) ∈ G

4 | ∃r ∈
Zp such that C = CSek(pwj ; r)} but it cannot be checked directly by a unique
SPHF since the passwords are different (and thus Si does not know pwj). Rather,
we combine in the protocol the six SPHF described to globally ensure the correct-
ness (each one remaining smooth and pseudo-random), as described in the next
part. The correctness of the SPHF for the pair (Si,Sj) implies that if everything
was computed honestly, then one gets the equalities Hi,j(pwi/pwj)λi = H ′

i,j and
Hj,i(pwj/pwi)λj = H ′

j,i.

4.2 Login Procedure

– Each participant Sb picks rb at random and computes a Cramer-Shoup encryp-
tion of its password Cb = CSek(pwb; rb), with vb = cdξb .
It also chooses, for i ∈ {0, 1, 2}\{b}, a random hash key hkb,i = (ηb,i, γb,i, θb,i,
λb, κb,i) and sets hpb,i = (hpb,i;1, hpb,i;2) = (g1ηb,ig2

θb,ihλbcκb,i , g1
γb,idκb,i) as

the projection key intended to the participant Si.
It sends (Cb, (hpb,i)i∈{0,1,2}\{b}) to the gateway G, which broadcasts these val-
ues to the other participants.

– After receiving the first flow from the servers, the client computes, for i ∈
{1, 2}, H ′

i,0 = hpi,0;1
r0hpi,0:2

ξ0r0 . It also computes H0 = H0,1 · H0,2 · pw0
λ0 ,

and sets its session key KU as KU = K0 = H ′
1,0 · H ′

2,0 · H0.
After receiving the first flow from the other server and the client, the server Sb

computes, for i ∈ {0, 3 − b}, H ′
i,b = hpi,b;1

rbhpi,b;2
ξbrb . It also computes Hb =

Hb,0/(Hb,3−b · pwλb

b ), and sets its partial key Kb as Kb = H ′
0,b · H ′

3−b,b · Hb. It
privately sends this value Kb to the gateway G.
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– The gateway finally sets KG = K1 · K2.

Correctness. Recall that H ′
i,j = Hi,j(pwi/pwj)λi for all pairs (i, j) ∈ {0, 1, 2}2,

so that the session key of the gateway is equal to KG = K1 · K2, i.e.

KG = H′
0,1H′

2,1H1,0

H1,2pw
λ1
1

H′
0,2H′

1,2H2,0

H2,1pw
λ2
2

= H0,1H1,0H0,2H2,0

(
1

pw2

)λ1
(

1
pw1

)λ2
(

(pw0)
2

pw1pw2

)λ0

while the session key of the client is KU = H ′
1,0 · H ′

2,0 · H0, i.e.

KU = H ′
1,0 ·H ′

2,0 ·H0,1 ·H0,2 ·pw0
λ0 = H0,1H1,0H0,2H2,0

(
pw1
pw0

)λ1
(

pw2
pw0

)λ2

(pw0)λ0

and these two values are equal as soon as pw0 = pw1 · pw2.

Complexity. The following table sums up the number of group elements needed
for each participant. It should be noted that in case one of the servers is the
gateway, its communication costs are reduced.

Ciphertext
(Broadcast)

Projection Keys
(Overall)

To the Gateway

Client 4 4 0
Server (each) 4 4 1

Proof of Security. The proof follows the spirit of the proofs given in [KV11,
BBC+13]. For lack of space, a sketch is given in [BCV16].

5 Our Efficient Protocol

In this second setting, we consider again a client U owning a password π and
willing to interact with a gateway G. The gateway owns a public database of
encrypted passwords, and it interacts with two servers S1 and S2, each owning
a share of the secret key of the encryption scheme. The aim of the protocol is to
establish a shared session key between the client and the gateway.

The idea is similar to the protocol described in the former section, except
that only the client needs to compute a ciphertext, the other ciphertext being
publicly available from the database. The participants implicitly check (using
several SPHF) that the message encrypted in the ciphertext of the client is the
same as the message encrypted in the database (using the secret key shared upon
the servers).

5.1 Building Blocks

Cramer-Shoup Encryption and SPHF. We consider Cramer-Shoup encryption
as the previous construction. We use here the simpler SPHF described in [GL03]
for the language of the valid ciphertexts of M under the public key ek, in which
the participants need to see the ciphertext before being able to compute their
projection keys. The SPHF is described by the following algorithms.
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Setup(1K): param = (ek,M)
L = {C = (u1, u2, e, v) ∈ G

4 | ∃r ∈ Zp s. t.
C = CSek(M ; r)}

HashKG(L, (ek,M)): hk = (η, θ, λ, κ) $← Z
4
p

ProjKG(hk, (L, (ek,M)), C): hp = gη
1gθ

2h
λ(cdξ)κ ∈ G

Hash(hk, (L, (ek,M)), C): H = uη
1u

θ
2(e/M)λvκ

ProjHash(hp, (L, (ek,M ′)), C, r): H ′ = hpr

It has been known to be correct, smooth and pseudo-random since [GL03].

El Gamal Encryption and SPHF. We consider El Gamal encryption as described
in Sect. 2. The public key is denoted by pk = h = gα and the private key by sk =
α

$← Zp. The public parameters (G, p, g, pk) are given as a common reference
string. We denote the ciphertext of a message M ∈ G with the scalar r ∈ Zp by
C = EGpk(M ; r) = (e, u) = (hrM, gr).

The regular SPHF used throughout the literature [CS02] on the language
{C = (e, u) ∈ G

2 | ∃r ∈ Zp such that C = EGpk(M ; r)} of the valid encryptions
of M , with r being the witness of the word C, usually allows a server to check
whether the ciphertext was honestly computed on the value M by a client, by
generating a pair of keys (hk, hp) and sending hp to the client.

Here, on the contrary, we now want a client to implicitly check that a server
knows the decryption key of the encryption scheme. This means that the client
computes both the ciphertext (or the ciphertext is publicly available in a data-
base, as here) and the pair of keys (hk, hp) and sends the ciphertext as well as
hp to the server, which now uses the decryption key as a witness. This implies
the following modifications to the algorithms of the SPHF:

Setup(1K): param = (pk,M)
L = {C = (e, u) ∈ G

2 | ∃α ∈ Zp such that
h = gα and e/uα = M}

HashKG(L, (pk,M)): hk = (λ, μ) $← Z
2
p

ProjKG(hk, (L, (pk,M)), C): hp = uλgμ ∈ G

Hash(hk, (L, (pk,M)), C): H = hμ(e/M)λ

ProjHash(hp, (L, (pk,M ′)), C, α): H ′ = hpα

and we show that this SPHF satisfies the usual properties:

– Correctness: if C ∈ L with witness α, one directly gets H = H ′;
– Smoothness: assume C /∈ L. It can then be parsed as C = (e, u) with u = gr

and e = hrM ′ = gαrMgδM (with M ′ 
= M and thus δM 
= 0), so that
hp = uλgμ = grλ+μ and H = hμ(e/M)λ = gαμg(αr+δM )λ.
The smoothness is then easy to see by considering the following equality of
matrices: (

logg(hp)
logg(H)

)

=
(

r 1
αr + δM&α

)

·
(

λ
μ

)

which shows that as soon as the word is not a valid encryption of M , and so
δM is not equal to 0, the Hash value H is not in the span of the projection
key hp so that the two distributions described in Sect. 2 are indistinguishable.
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– Pseudo-Randomness. Since El Gamal encryption is IND-CPA, it is impossible
to distinguish between a real encryption and a random value without knowing
the decryption key. Since the decryption key is the witness of the SPHF,
without knowing the witness, the two distributions remain indistinguishable.

Main Idea of the Construction. Again, we denote the client U as S0 and its
password π as π0. In our setting, we denote by pwk = gπk for all k. The database
contains El Gamal encryptions of each ciphertext pwUi

, under randomness sUi
:

Cdb
Ui

= EGpk(pwUi
; sUi

) = (hsUipwUi
, gsUi ), so that here, Cdb

U = EGpk(pwU; sU) =
(hsUpwU, gsU). The client computes a Cramer-Shoup encryption of its password:
C0 = CSek(pw0; r0) = (u1, u2, e, v) with v = cdξ. The execution of the protocol
should succeed if these encryptions are correct and pw0 = pwU. Recall that the
server Si knows αi such that α = α1 + α2 is the decryption key of the El Gamal
encryption.

The main idea is depicted on Fig. 2. For sake of readability, the participants
which have a real role in the computations are directly linked by arrows in the
picture, but one should keep in mind that all the participants (U, S1 and S2)
only communicate with G, which then broadcasts all the messages.

In a classical SPHF-based two-party key-exchange between U and G, the
gateway would check whether C0 is a valid Cramer-Shoup encryption of pwU.
Since here the password pwU is unknown to the servers S1 and S2, this is done in
our setting by two SPHF, using hpCS

1 (sent by S1) and hpCS
2 (sent by S2), where

the servers use the first term of the public encryption CDB
U (hsUpwU) in order to

cancel the unknown pwU.
In a classical SPHF-based two-party key-exchange between U and G, the client

would also check whether CDB
U is a valid El Gamal encryption of its password pw0,

i.e. whether the gateway knows a witness for its ciphertext CDB
U (sU in the usual

constructions, α here). Since α is unknown to the gateway, this is done in our
setting by the combination of three SPHF, using hpEG

0 (sent by the client), hpEG
1

(sent by S1) and hpEG
2 (sent by S2). These three SPHF allow the client and the

servers to implicitly check that the servers know α1 and α2 such that CDB
U can

be decrypted (using the decryption key α = α1 + α2) to the same password pw0

than the one encrypted in C0 sent by the client. Formally, the languages checked
are as follows:

– by the client:
CDB
U ∈ L0 = {C = (e, u) ∈ G

2 | ∃α ∈ Zp such that h = gα and e/uα = pw0}
– by server Si (with respect to the client S0 and server Sj):

C0 ∈ Li,0 = {C = (u1, u2, e, v) ∈ G
4 | ∃r ∈ Zp such that C = CSek(pwU; r)

and CDB
U ∈ Li,j = {C = (e, u) ∈ G

2 | ∃αj ∈ Zp such that h = gαi+αj } and
e/uαi+αj = pwU}

but they cannot be checked directly by a unique SPHF since the value pwU

appearing in the languages is unknown to the verifier Si. Rather, the server Si

will use the first term of the public encryption CDB
U (hsUpwU) in order to cancel

this unknown pwU. To achieve this goal, we combine the five SPHF described
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U

C0 = CSek(pw0; r0)

G

CDB
U = EGpk(pwU; sU)

sk = α1 + α2 (unknown)

S1

α1

S2

α2

hpEG
0 (α for CDB

U known?) hpEG
1

(α2 for CDB
U

known?)

hpEG
2

(α1 for CDB
U

known?)

hpCS
1 (r0 for C0 known?)

hpCS
2 (r0 for C0 known?)

Fig. 2. Main idea of the construction

to globally ensure the correctness (each one remaining smooth and pseudo-
randomness), as described in the next part.

5.2 Login Procedure

– The client U = S0 chooses r0 at random and computes a Cramer-Shoup
encryption of its password C0 = CSek(pw0; r0) = (u1, u2, e, v) with v = cdξ.
It also chooses a random (El Gamal) hash key hkEG

0 = (λ0, μ0) and computes
the corresponding projected key on the ciphertext CDB

U = EGpk(pwU; sU) =
(hsUpwU, gsU) contained in the database: hpEG

0 = gsUλ0gμ0 .
It sends (C0, hp

EG
0 ) to the gateway, which broadcasts these values to the

servers.
– After receiving this flow from the client, the servers S1 and S2 also choose

a random (El Gamal) hash key hkEG
b = (λb, μb) and compute the corre-

sponding projected key on the ciphertext CDB
U contained in the database:

hpEG
b = gsUλbgμb .

The servers S1 and S2 also choose a random (Cramer-Shoup) hash key hkCS
b =

(ηb, θb, λb, κb) (with the same value λb) and compute the corresponding pro-
jected key on the ciphertext C0 sent by the client: hpCS

b = (g1ηbg2
θbhλb(cdξ)κb).

Each server sends (hpEG
b , hpCS

b ) to the gateway G, which broadcasts these val-
ues to the other participants.

– After receiving the projected keys from the servers, the client computes, for
i ∈ {1, 2}, H ′

i,0 = (hpCS
i )r0 . It also computes H0 = (hsUpwU/pw0)λ0hμ0 by

dividing the first term of the ciphertext CDB
U contained in the database by its

password pw0. It finally sets its session key KU as KU = K0 = H ′
1,0 ·H ′

2,0 ·H0.
After receiving the first flow from the other server and the client, the server Sb

computes, for i ∈ {0, 3 − b}, H ′
i,b = (hpEG

i )αb .
It also computes Hb,0 = (u1)ηb(u2)θb [e/(hsUpwU)]λbvκb and Hb = Hb,0 ·
(hpEG

b )αb/hμb , and sets its partial key Kb as Kb = H ′
0,b ·H ′

3−b,b ·Hb. It privately
sends this value Kb to the gateway G.

– The gateway finally sets KG = K1 · K2.
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Correctness. Due to the correctness of the Cramer-Shoup SPHF, we have the

equalities H ′
b,0 = Hb,0

(
hsUpwU

pw0

)λb

for b ∈ {1, 2}. The session key of the gateway
is thus equal to KG = K1 · K2 = (H ′

0,1 · H ′
2,1 · H1) · (H ′

0,2 · H ′
1,2 · H2) where, after

computation, Kb = h(λ0+λ1+λ2)αbg(μ0+μ1+μ2)αbH ′
b,0(pw0/pwU)λbh−sUλbh−μb .

If pw0 = pwU, h = gα and α = α1 + α2, KG = hsUλ0hμ0H ′
1,0H

′
2,0, which is

equal to the session key of the client KU = K0 = H ′
1,0 · H ′

2,0 · H0 = H ′
1,0 · H ′

2,0 ·
hsUλ0hμ0 .

Complexity. The following table sums up the number of group elements needed
for each participant. It should be noted that in case one of the servers is the
gateway, its communication costs are reduced.

Ciphertext
(Broadcast)

Projection Keys
(Overall)

To the Gateway

Client 4 2 0
Server (each) 0 2 1

Compared to [KMTG12], the communication complexity of our protocol is
decreased by more than 50 % (9 group elements instead of 20 group elements).
For efficiency, as in [KMTG12], we count exponentiations only, and assume a
multi-exponentiation with up to 5 bases can be computed at the cost of at most
1.5 exponentiations. The client performs the equivalent of 8 full exponentiations,
while each server performs 7 exponentiations (instead of 15 and 13 respectively
in [KMTG12]).

Proof of Security. The proof follows the idea of the former one. For lack of space,
a sketch is given in [BCV16].

6 Conclusion

We presented two constructions of distributed Password-Authenticated Key
Exchange between a user and several servers. We focused on presenting them in
a classical group setting (with only two servers). Very efficient implementations
of our protocols can be readily obtained using standard cryptographic libraries
and do not require pairings.

Our methods can be generalized to the setting where n servers share the
(encryption of the) password. SPHF can further handle polynomials of variables
and the use of secret sharing techniques à la Shamir, allows to share polynomials
evaluation between n servers and to provide a threshold distributed PAKE such
that security is ensured as long as less than a certain arbitrary threshold t ∈
{1, . . . , n} of servers are compromised (contrary to the protocol from [DG06]
which requires an honest majority of the servers).

Smooth projective hashing is mostly used in a classical discrete-logarithm-
based setting (or pairing-based setting) but constructions were also proposed
for Paillier encryption [CS02] and for LWE encryption [KV09]. These SPHF
would allow a readily adaptation of our techniques to other classical settings of
cryptography.
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Abstract. Authenticated Key Exchange (AKE) protocols have been
widely deployed in many real-world applications for securing communi-
cation channels. In this paper, we make the following contributions. First,
we revisit the security modelling of leakage-resilient AKE protocols, and
show that the existing models either impose some unnatural restrictions
or do not sufficiently capture leakage attacks in reality. We then introduce
a new strong yet meaningful security model, named challenge-dependent
leakage-resilient eCK (CLR-eCK) model, to capture challenge-dependent
leakage attacks on both long-term secret key and ephemeral secret key
(i.e., randomness). Second, we propose a general framework for construct-
ing one-round CLR-eCK-secure AKE protocols based on smooth projec-
tive hash functions (SPHFs). Finally, we present a practical instantiation
of the general framework based on the Decisional Diffie-Hellman assump-
tion without random oracle. Our result shows that the instantiation is
efficient in terms of the communication and computation overhead and
captures more general leakage attacks.

Keywords: Authenticated key exchange · Challenge-dependent leak-
age · Strong randomness extractor · Smooth projective hash function

1 Introduction

Leakage-resilient cryptography, particularly leakage-resilient cryptographic prim-
itives such as encryption, signature, and pseudo-random function, has been exten-
sively studied in recent years. However, there are only very few works that have
been done on the modelling and construction of leakage-resilient authenticated
key exchange (AKE) protocols. This is somewhat surprising since AKE protocols
are among the most widely used cryptographic primitives. In particular, they form
a central component in many network standards, such as IPSec, SSL/TLS, SSH.
Many practical AKE protocols such as the ISO protocol (a.k.a. SIG-DH) [1,10]
and the Internet Key Exchange protocol (a.k.a. SIGMA) [22] have been proposed
c© Springer International Publishing Switzerland 2016
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and deployed in the aforementioned network standards. In such an AKE pro-
tocol, each party holds a long-term public key and the corresponding long-term
secret key, which are static in the establishment of different session keys for
multiple communication sessions. In order to establish a unique session key for
an individual session, each party also generates their own ephemeral secret key
and exchanges the corresponding ephemeral public key. Both parties can derive
a common session key based on their own secret keys and the public keys of the
peer entity. We should note that in practice, an AKE protocol proven secure in
the traditional model could be completely insecure in the presence of leakage
attacks. For example, an attacker can launch a memory attack [2,19] to learn
partial information about the long-term secret key, and also obtain partial infor-
mation about the ephemeral secret key (i.e., randomness) of an AKE session
(e.g., via poorly implemented PRNGs [24,29,33]).

1.1 Motivations of This Work

The general theme in formulating leakage resilience of cryptographic primitives
is that in addition to the normal black-box interaction with an honest party, the
adversary can also learn some partial information of the secret via an abstract
leakage function f . This approach was applied to model leakage resilience of
many cryptographic schemes [9,12,27,31]. One of the major problems of leakage
resilient cryptography is to define a meaningful leakage function family F for a
cryptographic primitive such that the leakage functions in F can cover as many
leakage attacks as possible while at the same time it is still feasible to construct
a scheme that can be proven secure.

Limitations in Existing Leakage-Resilient AKE Models. The above mod-
elling approach has been applied to define leakage-resilient AKE protocols in
[4,5,15,26]. However, we find that the existing leakage-resilient AKE models fail
to fully capture general leakage attacks due to the following reasons.

Unnatural Restrictions. The de facto security definition of AKE requires
that the real challenge session key should be indistinguishable from a randomly
chosen key even when the adversary has obtained some information of the chal-
lenge session. However, such a definition will bring a problem when it comes to
the leakage setting. During the execution of the challenge session, the adversary
can access to the leakage oracle by encoding the available information about the
challenge session into the leakage function and obtain partial information about
the real session key. The previous security definitions for leakage-resilient AKE,
e.g., [5,15,26,30], bypassed the definitional difficulty outlined above by only con-
sidering challenge-independent leakage. Namely, the adversary cannot make a
leakage query which involves a leakage function f that is related to the challenge
session. This approach indeed bypasses the technical problem, but it also puts
some unnatural restrictions on the adversary by assuming leakage would not
happen during the challenge AKE session. Such a definitional difficulty was also
recognized in the prior work on leakage-resilient encryption schemes. For exam-
ple, Naor and Segev wrote in [27] that “it will be very interesting to find an
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appropriate framework that allows a certain form of challenge-dependent leak-
age.” We should note that there are some recent works on challenge-dependent
leakage-resilient encryption schemes [20,32], which addressed the problem by
weakening the security notions.

Insufficient Leakage Capturing. The notions proposed in [4,5,15,26,30]
only focused on partial leakage of the long-term secret key. We should note that
the partial leakage here is independent from the (long-term/ephemeral) secret key
reveal queries in CK/eCK models. In reality, an attacker may completely reveal
one (long-term/ephemeral) secret key and learn partial information about the
other (ephemeral/long-term) secret key. Such an adversarial capability has never
been considered in the previous models. In practice, as mentioned before, potential
weakness of the randomness can be caused due to different reasons such as the poor
implementation of pseudo-random number generators (PRNGs) [24,29,33]. More-
over, real leakage attacks (e.g., timing or power consumption analysis) can also be
closely related to the randomness. The problem has been recognized in prior work
on leakage-resilient encryption and signature schemes. For example, Halevi and
Lin mentioned in [20] that “Another interesting question is to handle leakage from
the encryption randomness, not just the secret key”, which was later answered by
the works in [8,32]. In terms of the signature schemes, the notion of fully leakage-
resilient signatures was also proposed by Katz and Vaikuntanathan [21]. However,
to date there is no formal treatment on the randomness leakage in AKE.

On After-the-Fact Leakage. It is worth noting that Alawatugoda et al. [4]
modelled after-the-fact leakage for AKE protocols. Their proposed model, named
bounded after-the-fact leakage eCK model (BAFL-eCK), captures the leakage
of long-term secret keys during the challenge session. However, the BAFL-eCK
model has implicitly assumed that the long-term secret has split-state since oth-
erwise their definition is unachievable in the eCK-model. Moreover, the central
idea of their AKE construction is to utilize a split-state encryption scheme with
a special property (i.e., pair generation indistinguishability), which is a strong
assumption. We also note that the split-state approach seems not natural for
dealing with ephemeral secret leakage. The work in [3] also introduced a contin-
uous after-the-fact leakage eCK model which is a weaker variant of the one in
[4] and hence also suffers from the aforementioned limitations.

Goal of This Work. In this work, we are interested in designing a more general
and powerful leakage-resilient AKE model without the aforementioned limita-
tions. Particularly, we ask two questions: how to generally define a challenge-
dependent leakage-resilient AKE security model capturing both long-term and
ephemeral secret leakage, and how to construct an efficient AKE protocol proven
secure under the proposed security model. The motivation of this work is to
solve these two outstanding problems which are of both practical and theoreti-
cal importance.
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1.2 Related Work

Traditional AKE Security Notions. The Bellare-Rogaway (BR) model [7]
gives the first formal security notion for AKE based on an indistinguishability
game. Its variants are nowadays the de facto standard for AKE security analysis.
In particular, the Canetti-Krawczyk (CK) model [10], which can be considered
as the extension and combination of the BR model and the Bellare-Canetti-
Krawczyk (BCK) model [6], has been used to prove the security of many widely
used AKE protocols (e.g., SIG-DH). LaMacchia et al. [23] introduced an exten-
sion of the CK model, named eCK model, to consider stronger adversaries (in
some aspects) who is allowed to access either the long-term secret key or the
ephemeral secret key in the target session chosen by the adversary. We refer the
readers to Choo et al. [11] for a detailed comparisons among the aforementioned
AKE models, and to Cremers et al. [14] for a full analysis of these models.

Modelling Leakage Resilience. The method of protecting against leakage
attacks by treating them in an abstract way was first proposed by Micali and
Reyzin [25] based on the assumption that only computation leaks information.
Inspired by the cold boot attack presented by Halderman et al. [19], Akavia
et al. [2] formalized a general framework, namely, Relative Leakage Model, which
implicitly assumes that, a leakage attack can reveal a fraction of the secret key,
no matter what the secret key size is. The Bounded-Retrieval Model (BRM) [5]
is a generalization of the relative leakage model. In BRM, the leakage-parameter
forms an independent parameter of the system. The secret key-size is then chosen
flexibly depending on the leakage parameter. Another relatively stronger leakage
model is the Auxiliary Input Model [16] where the leakage is not necessarily
bounded in length, but it is assumed to be computationally hard to recover the
secret-key from the leakage.

Leakage-Resilient AKE. Alwen, Dodis and Wichs [5] presented an efficient
leakage-resilient AKE protocol in the random oracle model. They considered a
leakage-resilient security model (BRM-CK) and showed that a leakage-resilient
AKE protocol can be constructed from an entropically-unforgeable digital sig-
nature scheme secure under chose-message attacks. The resulted AKE protocol,
namely eSIG-DH, however, is at least 3-round and does not capture ephemeral
secret key leakage. Also, the security model considered in [5] does not capture
challenge-dependent leakage. In [15], Dodis et al. proposed new constructions
of AKE protocols that are leakage-resilient in the CK security model (LR-CK).
Similar to Alwen et al. [5], the security model given by Dodis et al. [15] is
not challenge-dependent, and the proposed construction (i.e., Enc-DH) has 3-
round and didn’t consider randomness leakage. Another leakage-resilient model
for AKE protocols is introduced by Moriyama and Okamoto [26]. Their notion,
named λ-leakage resilient eCK (LR-eCK) security, is an extension of the eCK
security model with the notion of λ-leakage resilience introduced in [2]. They
also presented a 2-round AKE protocol that is λ-leakage resilient eCK secure
without random oracles. However, they only considered the long-term secret
key leakage (when the ephemeral secret key is revealed) but not the ephemeral
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secret key leakage (when the long-term secret key is revealed). Also, their model
challenge-independent. Yang et al. [30] initiated the study on leakage resilient
AKE in the auxiliary input model, which however, is based on the CK model
and only captures the challenge-independent leakage of lone-term secret.

1.3 Our Results and Techniques

In this work, we address the aforementioned open problems by designing a
strong yet meaningful AKE security model, namely challenge-dependent leakage-
resilient eCK (CLR-eCK) model, to capture the challenge-dependent leakage
attacks on both the long-term secret key and the ephemeral secret key; we then
present a general framework for the construction of CLR-eCK-secure one-round
AKE protocol as well as an efficient instantiation based on the DDH assumption.
Below we give an overview of our results.

Overview of Our Model. As shown in Table 1, our model is the first split-state-
free model that captures challenge-dependent leakage on both the long-term
secret key and the ephemeral secret key (or randomness), which could occur in
practice due to side-channel attacks and weak randomness implementations. In
our proposed model, we consider the partial Relative-Leakage [2]. Our CLR-eCK
security model addresses the limitations of the previous leakage-resilient models
by allowing both long-term and ephemeral key leakage queries before, during
and after the test (i.e., challenge) session. Nevertheless, we should prevent an
adversary M from submitting a leakage function which encodes the session key
derivation function of the test session since otherwise the adversary can trivially
distinguish the real session key from a random key. To address this technical
problem, instead of asking adversary M to specify the leakage functions before
the system setup (i.e., non-adaptive leakage), we require M to commit a set
of leakage functions before it obtains (via key reveal queries) all the inputs,
except the to-be-leaked one, of the session key derivation function for the test
session. Once M obtains all the other inputs, it can only use the leakage func-
tions specified in the committed set to learn the partial information of the last
unknown secret. To be more precise, in the CLR-eCK model, after M reveals the
ephemeral secret key of the test session, it can only use any function f1 ∈ F1 as
the long-term secret key leakage function where F1 is the set of leakage functions
committed by M before it reveals the ephemeral secret key. A similar treatment
is done for the ephemeral secret key leakage function f2. Under such a restriction,
neither f1 nor f2 can be embedded with the session key derivation function of
the test session and M cannot launch a trivial attack against the AKE protocol.
Therefore, the adversary can still make leakage queries during and after the test
session, and if the long-term/ephemeral key is not revealed, then the adversary
even doesn’t need to commit the ephemeral/long-term key leakage functions F1

or F2. We can see that our approach still allows the adversary to adaptively
choose leakage functions and meanwhile can capture challenge-dependent leak-
age under the minimum restriction.
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Table 1. Comparison with existing leakage-resilient AKE security models

AKE models Partial leakage setting Basic models

Challenge-Dependent Long-Term Key Ephemeral Key Leakage Model

BRM-CK [5] No
√ × Bounded-Retrieval CK

LR-CK [15] No
√ × Relative Leakage CK

LR-eCK [26] No
√ × Relative Leakage eCK

BAFL-eCK [4] Yes (w/ split-state)
√ × Relative Leakage eCK

CLR-eCK Yes (w/o split-state)
√ √

Relative Leakage eCK

Generic AKE Construction. To illustrate the practicality of the model, we
present a general framework for the construction of AKE protocol secure in our
newly proposed challenge-dependent leakage-resilient eCK model. The frame-
work can be regarded as a variant of the AKE protocols proposed by Okamoto
et al. [26,28]. Roughly speaking, we apply both pseudo-random functions (PRFs)
and strong randomness extractors in the computation of ephemeral public key
and session key to obtain the security in the presence of key leakage. Specifi-
cally, we employ an (extended) smooth projective hash function (SPHF) which
is defined based on a domain X and an NP language L ⊂ X . During the ses-
sion execution, both parties generate their ephemeral secret key and apply a
strong extractor to extract a fresh seed for a PRF in order to derive a word in
L. They then exchange their words with the corresponding witness kept secret
locally. Additionally, they also run an ephemeral Diffie-Hellman protocol using
the exponent which is also output by the PRF. At the end of session, they derive
the session key by computing the hash value of both words along with the Diffie-
Hellman shared key. The correctness of the framework can be easily obtained
due to the property of SPHF and Diffie-Hellman protocol while the security
is guaranteed by the strong extractors, pseudo-random functions, along with
the underlying (2-)smooth SPHF bulit on an NP language where the subgroup
decision problem is hard.

An Efficient Instantiation. We show that the building blocks in our frame-
work can be instantiated efficiently based on the DDH assumption. Precisely, we
first introduce the Diffie-Hellman language LDH = {(u1, u2)|∃r ∈ Zp, s.t., u1 =
gr
1, u2 = gr

2} where G is a group of primer order p and g1, g2 ∈ G are generators.
We then use it to construct a 2-smooth SPHF, denoted by SPHFDH. A concrete
protocol based on SPHFDH is then presented and proved to be CLR-eCK-secure.
A comparison between our protocol and the previous ones is given in Table 2.
We should note that the communication cost in eSIG-DH [5] and Enc-DH [15] is
higher than our protocol due to the reason that they require their underlying
primitive, i.e., signature or encryption scheme, to be leakage-resilient. For exam-
ple, according to the result (Theorem 5.2) of [15], to obtain (1 − ε)-leakage
resilience, the ciphertexts CT transferred in the Enc-DH protocol has the size of
O(1/ε)|G|. Due to the same reason, the computation overhead of those protocols
is also higher than that of our protocol.
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Table 2. Comparison with existing leakage-resilient AKE protocols

Protocols Round Communicationa Computationa Relative leakageb Security AKEmodels

lsk esk

eSIG-DH [5] 3 3 · |Cer| + 2 · |G| + 2 · |Sig| 4 · Exp + 2 · Sgn + 2 · Ver (1 − ε) 0 w/ RO BRM-CK [5]

Enc-DH [15] 3 4 · |Cer| + |G| + 2 · |CT| 4 · Exp + 2 · Enc + 2 · Dec (1 − ε) 0 w/o RO LR-CK [15]

MO [26] 2 4 · |Cer| + 9 · |G| + 3 · |Exk| 20 · Exp (1/4 − ε) 0 w/o RO LR-eCK [26]

π [4] 2 4 · |Cer| + 2 · |G| + 2 · |Sig| 24 · Exp (1/n − ε) 0 w/o RO BAFL-eCK [4]

Our
protocol

1 4 · |Cer| + 6 · |G| + 2 · |Exk| 16 · Exp (1/4 − ε) (1 − ε) w/o RO CLR-eCK

a We use Cer to denote the certificate of a long-term public key, G a group of primer order p, CT a ciphertext, Sig a
signature and Exk the key of a randomness extractor. For the computation cost, we use Exp to denote exponentiation,
Sgn the signing operation, Ver the verification operation, Enc the encryption operation and Dec the decryption
operation.
b The “Relative Leakage” column indicates the leakage ratio of a secret key. In [4], the secret key is split into n

parts.

2 Preliminaries

2.1 Notation

For a finite set Ω, ω
$← Ω denotes that ω is selected uniformly at random from Ω.

Statistical Indistinguishability. Let X and Y be two random variables over
a finite domain Ω, the statistical distance between X and Y is defined as
SD(X,Y ) = 1/2

∑
ω∈Ω | Pr[X = ω] − Pr[Y = ω]|. We say that X and Y are

ε-statistically indistinguishable if SD(X,Y ) ≤ ε and for simplicity we denote it
by X

s≡ε Y . If ε = 0, we say that X and Y are perfectly indistinguishable.

Computational Indistinguishability. Let V1 and V2 be two probability dis-
tribution over a finite set Ω where |Ω| ≥ 2k and k is a security parameter.
We then define a distinguisher D̃ as follows. In the game, D̃ takes as input
V1 and V2, the challenger flips a coin γ

$← {0, 1}. D̃ is then given an element

v1
$← V1 if γ = 1, otherwise an element v2

$← V2. Finally, D̃ outputs a bit
γ′ ∈ {0, 1} as its guess on γ. We define the advantage of D̃ in this game as
AdvV1,V2

˜D (k) = Pr[γ′ = γ] − 1/2. We say that V1 and V2 are computationally

indistinguishable if for any polynomial-time distinguisher D, AdvV1,V2
˜D (k) is neg-

ligible, and we denote it by V1
c≡ V2.

2.2 Randomness Extractor

Average-Case Min-Entropy. The min-entropy of a random variable X is
H∞(X) = − log(maxx Pr[X = x]). Dodis et al. [17] formalized the notion of
average min-entropy that captures the unpredictability of a random variable
X given the value of a random variable Y , formally defined as H̃∞(X|Y ) =
− log(Ey←Y [2−H∞(X|Y =y)]). They also showed the following result on average
min-entropy in [17].

Lemma 1 ([17]). If Y has 2λ possible values, then H̃∞(X|Y ) ≥ H∞(X) − λ.
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Definition 1 (Average-Case Strong Extractor) [17]. Let k ∈ N be a secu-
rity parameter. A function Ext : {0, 1}n(k) ×{0, 1}t(k) → {0, 1}l(k) is an average-
case (m, ε)-strong extractor if for all pairs of random variables (X, I) such that
X ∈ {0, 1}n(k) and H̃∞(X|I) ≥ m, it holds that SD((Ext(X,S), S, I), (U, S, I)) ≤
ε, as long as l(k) ≤ m − 2 log(1/ε), where S

$← {0, 1}t(k) is the extraction key

and U
$← {0, 1}l(k).

2.3 Pseudo-Random Function

Pseudo-Random Function [18]. Let k ∈ N be a security parameter. A function
family F is associated with {Seedk}k∈N, {Domk}k∈N and {Rngk}k∈N. Formally,

for any
∑ $← Seedk, σ

$← ∑
, D $← Domk and R $← Rngk, Fk,

∑

,D,R
σ defines a

function which maps an element of D to an element of R. That is, Fk,
∑

,D,R
σ (ρ) ∈

R for any ρ ∈ D.

Definition 2 (PRF). F is a pseudo-random function (PRF) family if
{Fk,

∑

,D,R
σ (ρi)} c≡ {RF (ρi)} for any {ρi ∈ D} adaptively chosen by any poly-

nomial time distinguisher, where RF is a truly random function. That is, for
any ρ ∈ D, RF (ρ) $← R.

πPRF [28]. Roughly speaking, πPRF refers to a pseudo-random function family
that if a specific key σ is pairwise-independent from other keys, then the output of
function with key σ is computationally indistinguishable from a random element.

Definition 3 (πPRF). Define F̃(ρj) = F
k,
∑

,D,R
σij

(ρj) for ij ∈ I∑, ρj ∈ D. We

say that F is a πPRF family if {F̃(ρj)} c≡ {R̃F(ρj)} for any {ij ∈ I∑, ρj ∈ D}
(j = 0, 1, ..., q(k)) adaptively chosen by any polynomial time distinguisher such
that σi0 is pairwisely independent from σij

(j > 0), where R̃F is the same as F̃

except that R̃F(ρ0) is replace by a truly random value in R.

2.4 Smooth Projective Hash Function

Smooth projective hash function (SPHF) is originally introduced by Cramer and
Shoup [13] and extended for constructions of many cryptographic primitives.

Syntax. Roughly speaking, the definition of an SPHF requires the existence of
a domain X and an underlying NP language L, where elements of L form a
subset X , i.e., L ⊂ X . Formally, an SPHF over a language L ⊂ X , onto a set Y,
is defined as,
SPHFSetup(1k): generates the parameters param and the description of

language L;
HashKG(L, param): generates a hashing key hk for the language L;
ProjKG(hk, (L, param)): derives the projection key hp from the hashing key hk;
Hash(hk, (L, param),W ): outputs the hash value hv ∈ Y on the word W from hk;
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ProjHash(hp, (L, param),W,w): outputs the hash value hv′ ∈ Y, on the word W
from the projection key hp, and the witness w for the fact that W ∈ L.

Extension. In order to make the SPHF notion well applied for our work, similar
to [13], we also need an extension of the SPHF in this paper. Precisely, we intro-
duce the WordG algorithm and slightly modify the Hash,ProjHash algorithms for
SPHF as follows.1

WordG(L, param, w): generates a word W ∈ L with w the witness;
Hash(hk, (L, param),W, aux): outputs hv on W from hk and the auxiliary input

aux;
ProjHash(hp, (L, param),W,w, aux): outputs the hash value hv′ ∈ Y, on the word

W from key hp, the witness w for the fact that W ∈ L and the auxiliary
input aux.

Property. A smooth projective hash function should satisfy the following prop-
erties,

Correctness. Let W = WordG(L, param, w), then for all hashing key hk and proj-
ection key hp, Hash(hk, (L, param),W, aux) = ProjHash(hp, (L, param),
W,w, aux).

Smoothness. For any W ∈ X\L, the distribution V1 = {(L, param,W,
hp, aux, hv)|hv = Hash(hk, (L, param),W, aux)} is perfectly indistinguishable

from the distribution V2 = {(L, param,W, hp, aux, hv)|hv $← Y}.

Definition 4 (2-smooth SPHF). For any W1,W2 ∈ X\L, let aux1, aux2 be the
auxiliary inputs such that (W1, aux1) 
= (W2, aux2), we say an SPHF is 2-smooth
if the distribution V1 = {(L, param,W1,W2, hp, aux1, aux2, hv1, hv2)|hv2 =
Hash(hk, (L, param),W2, aux2)} is perfectly indistinguishable from V2 =

{(L, param,W1,W2, hp, aux1, aux2, hv1, hv2)|hv2 $← Y}, where hv1 =
Hash(hk, (L, param),W1, aux1).

Definition 5 (Hard Subset Membership Problem). For a finite set X and
an NP language L ⊂ X , we say the subset membership problem is hard if for any
word W

$← L, W is computationally indistinguishable from any random element
chosen from X\L.

3 A New Strong Leakage-Resilient AKE Security Model

In this section, we assume that the reader is familiar with the details of AKE
protocol and eCK model [23]. More details are referred to the full version.

1 In the rest of paper, all the SPHFs are referred to as the extended SPHF and defined
by algorithms (SPHFSetup, HashKG, ProjKG, WordG, Hash, ProjHash).
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3.1 Challenge-Dependent Leakage-Resilient eCK Model

Our notion, named Challenge-Dependent Leakage-Resilient eCK (CLR-eCK)
model is the first split-state-free security model that captures both long-term
and ephemeral key leakage and allows the adversary to issue leakage queries
even after the activation of the test session. Formally, adversary M is allowed
to issue the following queries.

– Send(A,B,message). Send message to party A on behalf of party B, and
obtain A’s response for this message.

– EstablishParty(pid). Register a long-term public key on behalf of party pid,
which is said to be dishonest.

– LongTermKeyReveal(pid). Query the long-term secret key of honest party pid.
– SessionKeyReveal(sid). Query the session key of the completed session sid.
– EphemeralKeyReveal(sid). Query the ephemeral secret key of session sid.
– LongTermKeyLeakage(f1, pid). This query allows M to learn f1(lsk) where

f1 denotes the leakage function and lsk denotes the long-term secret key of
party pid.

– EphemeralKeyLeakage(f2, sid). This query allows M to learn f2(esk) where f2
denotes the leakage function and esk denotes the ephemeral secret key used
by an honest user in the session sid.

– Test(sid∗). To answer this query, the challenger pick b
$← {0, 1}. If b = 1, the

challenger returns SK∗ ← SessionKeyReveal(sid∗). Otherwise, the challenger

sends the adversary a random key R∗ $← {0, 1}|SK∗|.

Note that the Test query can be issued only once but at any time during the
game, and the game terminates as soon as M outputs its guess b′ on b.

Restrictions on the Leakage Function. In our CLR-eCK security model, we
consider several restrictions on the leakage function to prevent trivial attacks.

The first restriction is that the output size of the leakage function f1 and f2
must be less than |lsk| and |esk|, respectively. Specifically, following the work in
[27], we require the output size of a leakage function f is at most λ bits, which
means the entropy loss of sk is at most λ bits upon observing f(sk). Formally,
we define two bounded leakage function families Fbbd-I and Fbbd-II as follows.
Fbbd-I(k) is defined as the class of all polynomial-time computable functions:
f : {0, 1}|lsk| → {0, 1}≤λ1(k), where λ1(k) < |lsk|. Fbbd-II(k) is defined as the
class of all polynomial-time computable functions: f : {0, 1}|esk| → {0, 1}≤λ2(k),
where λ2(k) < |esk|. We then require that the submitted leakage function should
satisfy that f1 ∈ Fbbd-I and f2 ∈ Fbbd-II.

Another restriction that must be enforced is related to the challenge-
dependent leakage security of AKE protocols. Consider a test session sid∗ which
is owned by party A with peer B. Note that for a 2-pass AKE protocol, the
session key of sid∗ is determined by (Â, B̂, lskA, esk∗

A, lpkB, epk∗
B) which con-

tains only two secret keys (i.e., lskA, esk∗
A). Since M is allowed to reveal esk∗

A
(lskA) in the eCK model, M can launch a trivial attack by encoding the session
key derivation function into the leakage function of lskA (esk∗

A) and hence wins
the security game. Therefore, adversary M should not be allowed to adaptively



Strongly Leakage-Resilient Authenticated Key Exchange 29

issue leakage query after it obtains all the other (secret) information for ses-
sion key computation, otherwise the security of AKE protocol is unachievable.
More precisely, we describe the restrictions on LongTermKeyLeakage(f1,A) and
EphemeralKeyLeakage(f2, sid∗) as follows.

– M is allowed to ask for arbitrary leakage function f1 ∈ Fbbd-I before it obtains
the ephemeral secret key esk∗

A, i.e., by issuing EphemeralKeyReveal(sid∗) query;
however, after obtaining esk∗

A, M can only use the leakage functions f1 ∈
F1 ⊂ Fbbd-I where F1 is a set of leakage functions chosen and submitted by
M before it issues EphemeralKeyReveal(sid∗).

– M is allowed to ask for arbitrary leakage function f2 ∈ Fbbd-II before it obtains
the long-term secret key lskA, i.e., by issuing LongTermKeyReveal(A) query;
however, after obtaining lskA, M can only use the leakage functions f2 ∈
F2 ⊂ Fbbd-II where F2 is a set of leakage functions chosen and submitted by
M before it issues LongTermKeyReveal(A).

We should note that if sid∗ exists, the above restriction must also be enforced
for LongTermKeyLeakage(f1,B) and EphemeralKeyLeakage(f2, sid∗), since the ses-
sion key of sid∗ is also determined by (Â, B̂, lpkA, epk∗

A, lskB, esk∗
B).

Adaptive Leakage. One can see that our proposed model enables adver-
sary M to choose F1,F2 adaptively and M can submit F1,F2 even after
the challenge phase as long as the restriction holds. That is, M can spec-
ify function set F1,F2 after seeing epk∗

A and epk∗
B. Also, if there is no long-

term (ephemeral, respectively) key reveal query, then F1 (F2, respectively) is
the same as Fbbd-I (Fbbd-II, respectively). Implicitly, M is allowed to obtain
f1(lskA), f ′

1(lskB), f2(esk∗
A), f ′

2(esk
∗
B) where f1, f

′
1 ∈ Fbbd-I, f2, f ′

2 ∈ Fbbd-II can
be dependent on (lpkA, lpkB, epk∗

A, epk∗
B), or to obtain f1(lskA), f2(esk∗

B) where
f1 ∈ F1, f2 ∈ F2 can be dependent on (lpkA, lpkB, lskB, epk∗

A, epk∗
B) and

(lpkA, lpkB, epk∗
A, esk∗

A, epk∗
B), respectively.

We define the notion of a fresh session in the CLR-eCK model as follows.

Definition 6 ((λ1, λ2)-Leakage Fresh Session in the CLR-eCK Model). Let
sid be a completed session owned by an honest party A with peer B, who is also
honest. Let sid denote the matching session of sid, if it exists. Session sid is said
to be fresh in the CLR-eCK model if the following conditions hold:

– sid is a fresh session in the sense of eCK model.
– M only issues the queries LongTermKeyLeakage(f1,A), LongTermKeyLeak-

age (f ′
1,B), EphemeralKeyLeakage(f2, sid), EphemeralKeyLeakage(f ′

2, sid) (if sid
exists), such that f1, f

′
1, f2, f

′
2 satisfy the restrictions given above.

– The total output length of all the LongTermKeyLeakage queries to A (B, respec-
tively) is at most λ1.

– The total output length of all the EphemeralKeyLeakage query to sid (sid, respec-
tively, if it exists) is at most λ2.

We now describe the notion of CLR-eCK security.
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Definition 7 (CLR-eCK Security). Let the test session sid∗ be (λ1, λ2)-leakage
fresh where adversary M issues Test(sid∗) query. We define the advantage of M
in the CLR-eCK game by AdvCLR-eCKM (k) = Pr[b′ = b]−1/2, where k is the security
parameter of the AKE protocol. We say the AKE protocol is (λ1, λ2)-challenge-
dependent leakage-resilient eCK-secure ((λ1, λ2)-CLR-eCK-secure) if the match-
ing session computes the same session key and for any probabilistic polynomial-
time adversary M, AdvCLR-eCKM (k) is negligible.

4 One-Round CLR-eCK-Secure AKE

4.1 General Framework

Figure 1 describes a generic construction of the CLR-eCK secure AKE protocol.
Suppose that k is the system security parameter. Let G be a group with prime
order p and g is a random generator of G. Let SPHF denote a 2-smooth SPHF
over L ⊂ X and onto the set Y such that the subset membership problem
between L and X is hard. Denote the hashing key space by HK, the projection

A B
Long-Term Key Generation

hk
$← HashKG(param,L), hk′ $← HashKG(param,L),

hp
$← ProjKG(param,L, hk), hp′ $← ProjKG(param,L, hk′),

rA1
$← {0, 1}t1(k), rA2

$← {0, 1}t2(k), rB1
$← {0, 1}t1(k), rB2

$← {0, 1}t2(k),

lskA = hk, lpkA = (hp, rA1 , rA2 ). lskB = hk′, lpkB = (hp′, rB1 , rB2 ).

Session Execution

eskA
$← {0, 1}u(k), tA

$← {0, 1}t3(k), eskB
$← {0, 1}u(k), tB

$← {0, 1}t3(k),

̂lskA = Ext1(lskA, rA1 ),
̂lskB = Ext1(lskB, rB1 ),

̂eskA = Ext2(eskA, rA2 ),
̂eskB = Ext2(eskB, rB2 ),

(wA, x) = ̂F
̂lskA

(eskA) + F
̂eskA

(rA1 ), (wB, y) = ̂F
̂lskB

(eskB) + F
̂eskB

(rB1 ),

WA = WordG(param,L, wA), X = gx, WB = WordG(param,L, wB), Y = gy,

Erase all state except (eskA,WA, X, tA). Erase all state except (eskB,WB, Y, tB).

( ̂B, ̂A,WA, X, tA)

( ̂A, ̂B,WB, Y, tB)

Session Key Ouput

Set sid = ( ̂A, ̂B,WA, X, tA,WB, Y, tB) Set sid = ( ̂A, ̂B,WA, X, tA,WB, Y, tB)

aux = H1(sid), KA1 = Y x, aux = H1(sid), KA1 = Xy ,

KA2 = ProjHash(param,L, lpkB,WA, wA, aux), KB2 = Hash(param,L, lskB,WA, aux),

KA3 = Hash(param,L, lskA,WB, aux), KB3 = ProjHash(param,L, lpkA,WB, wB, aux),

sA = Ext3(H2(KA1 ) ⊕ KA2 ⊕ KA3 , tA ⊕ tB), sB = Ext3(H2(KB1 ) ⊕ KB2 ⊕ KB3 , tA ⊕ tB),

SKA = ˜FsA (sid). SKB = ˜FsB (sid).

Fig. 1. Framework for CLR-eCK secure AKE
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key space by HP, the auxiliary input space by AUX and the witness space by
W. Pick two collision-resistant hash functions H1 : {0, 1}∗ → AUX ,H2 : G → Y.

Let λ1 = λ1(k) be the bound on the amount of long-term secret key leakage
and λ2 = λ2(k) be that of the ephemeral secret key leakage. Let Ext1,Ext2,Ext3
be strong extractors as follows. Ext1 : HK×{0, 1}t1(k) → {0, 1}l1(k) is an average-
case (|HK|−λ1, ε1)-strong extractor. Ext2 : {0, 1}u(k)×{0, 1}t2(k) → {0, 1}l2(k) is
an average-case (k−λ2, ε2)-strong extractor. Ext3 : Y×{0, 1}t3(k) → {0, 1}l3(k) is
an average-case (|Y| − λ1, ε3)-strong extractor. Here ε1 = ε1(k), ε2 = ε2(k), ε3 =
ε3(k) are negligible.

Let F̂ and F be PRF families and F̃ be a πPRF family as follows.
̂Fk,
∑

̂F
,D
̂F
,R
̂F :
∑

̂F = {0, 1}l1(k), D
̂F = {0, 1}u(k), R

̂F = W × Zp,

F
k,
∑

F
,D

F
,R

F :
∑

F = {0, 1}l2(k), DF = {0, 1}t1(k), RF = W × Zp,
˜Fk,
∑

˜F
,D
˜F
,R
˜F :

∑

˜F = {0, 1}l3(k), D
˜F = (Λk)2 × L2 × G

2 × {0, 1}2t3(k), R
˜F =

{0, 1}l4(k).2

Let F̂ ← F̂k,
∑

̂F,D
̂F,R

̂F , F ← F
k,
∑

F,DF,RF and F̃ ← F̃k,
∑

˜F,D
˜F,R

˜F .

The system parameter is (param,G, p, g,H1,H2,Ext1,Ext2,Ext3, F̂ , F , F̃ )
where param ← SPHFSetup(1k).

Correctness Analysis. One can note that KA1 = KB1 as KA1 = Y x = Xy =
KB1 = gxy. Due to the property of SPHF, we have KA2 = ProjHash(param,
L, lpkB, WA, wA, aux) = Hash(param,L, lskB,WA, aux) = KB2 , KA3 =
Hash(param,L, lskA,WB, aux) = ProjHash(param,L, lpkA,WB, wB, aux) = KB3 .
Therefore, we can obtain that sA = Ext3(H2(KA1) ⊕ KA2 ⊕ KA3 , tA ⊕ tB) =
sB = Ext3(H2(KB1)⊕KB2 ⊕KB3 , tA ⊕ tB), which guarantees that SKA = SKB.

4.2 Security Analysis

Theorem 1. The AKE protocol following the general framework is (λ1, λ2)
-CLR-eCK-secure if the underlying smooth projective hash function is 2-smooth,
the DDH assumption holds in G, H1,H2 are collision-resistant hash functions,
F̂ and F are PRF families and F̃ is a πPRF family. Here λ1 ≤ min{|HK| −
2 log(1/ε1) − l1(k), |Y| − 2 log(1/ε3) − l3(k)}, λ2 ≤ u(k) − 2 log(1/ε2) − l2(k).

Proof. Due to the space limitation, we just describe the proof sketch here. The
full security proof will be given in the full paper.

Let session sid∗ = (Â, B̂,W ∗
A,X∗, t∗A,W ∗

B, Y ∗, t∗B) be the target session chosen
by adversary M. A is the owner of the session sid∗ and B is the peer. We then
analyze the security of the AKE protocol in the following two disjoint cases.
Case I. There exists a matching session, sid∗, of the target session sid∗. Based on
the definition, we can see that for each party, either long-term or ephemeral secret
key remains unknown to the adversary. Without loss of generality, suppose that
the adversary obtains at most λ2-bits of the ephemeral secret key of target session

2 In this paper, we denote the space of a certified long-term public key (such as ̂A) by
Λk.
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sid∗, we have that êsk
∗
A = Ext2(esk∗

A, rA2)
s≡ε2 êsk

′
A

$← {0, 1}l2(k). Therefore,

(w∗
A, x∗) = F̂

̂lskA
(esk∗

A) + F
̂esk

∗
A
(rA1)

c≡ (w′
A, x′) $← W × Zp. Similarly, suppose

that the adversary obtains at most λ2-bits of the ephemeral secret key of match-
ing session sid∗, we have that êsk

∗
B = Ext2(esk∗

B, rB2)
s≡ε2 êsk

′
B

$← {0, 1}l2(k),

and thus (w∗
B, y∗) = F̂

̂lskB
(esk∗

B) + F
̂esk

∗
B
(rB1)

c≡ (w′
B, y′) $← W × Zp. There-

fore, regardless of the type of the reveal query and leakage query, (x∗, y∗) are
uniformly random elements in Z

2
p from the view of adversary M. Therefore,

K∗
A1

= K∗
B1

= gx∗y∗
is computationally indistinguishable from a random ele-

ment in G according to the DDH assumption and hence H2(K∗
A1

) is a uniform
random string from the view of M who is given X∗ = gx∗

, Y ∗ = gy∗
. We

then have that the seed s∗
A for the πPRF function is uniformly distributed and

unknown to the adversary and thus the derived session key SK∗
A is computa-

tionally indistinguishable from a random string. It is worth noting that in this
case we only require F̃ to be a normal PRF.

Case II. There exists no matching session of the test session sid∗.
In this case, the adversary cannot issue LongTermKeyReveal query to
reveal the long-term secret key of B but may issue the leakage query
LongTermKeyLeakage to learn some bit-information of lskB. We prove the
security of the AKE protocol as follows. In the simulation, we mod-
ify the security game via the following steps to obtain a new game.
We first replace K∗

A2
= ProjHash(param,L, lpkB,W ∗

A, w∗
A, aux∗) by K∗

A2
=

Hash(param,L, lskB,W ∗
A, aux∗), and then choose W ∗

A ∈ X \ L instead of deriv-
ing it from L through the algorithm WordG. One can see that the new game is
identical to the original game from the view of adversary M due to the fact that
ProjHash(param,L, lpkB,W ∗

A, w∗
A) = Hash(param,L, lskB,W ∗

A), and due to the
difficulty of the subset membership problem which ensures that the distribution
of X \ L is indistinguishable from L.

Note that adversary M may activate a session sid, which is not match-
ing to session sid∗, with B. Precisely, M can choose W ∈ X \ L (e.g., by
replaying W ∗

A), send W to B and issue SessionKeyReveal(sid) query to learn
the shared key. According to the property of 2-smooth of the underlying
smooth projective hash function, we have that K∗

A2
is pairwisely indepen-

dent from any other such key (denoted by K̃) and all public information (i.e.,
param,L, lpkB,W ∗

A, aux∗) and hence H̃∞(K∗
A2

|K̃, param,L, lpkB,W ∗
A, aux∗) =

|Y|. Suppose that the leakage of lskB is at most λ1-bits (denoted by l̃skB),
and therefore (see Lemma 1 ), H̃∞(K∗

A2
|K̃, param,L, lpkB,W ∗

A, aux∗, l̃skB) ≥
H̃∞(K∗

A2
| K̃, param,L, lpkB,W ∗

A, aux∗) − λ1 = |Y| − λ1. Therefore, by using
the strong extractor Ext3, it holds that s∗

A = Ext3(H2(KA1)
∗ ⊕K∗

A2
⊕K∗

A3
, t∗A ⊕

t∗B)
s≡ε3 s′

A
$← {0, 1}l3(k). One can see that A obtains a variable s∗

A which is
pairwisely independent from any other such variables and thus the derived ses-
sion key SK∗

A is computationally indistinguishable from a truly random element
from M’s view due to the application of πPRF, which completes the proof.
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Simulation for Non-test Session. Note that for the two cases above, we
have to simulate the non-test session correctly with the adversary. Specifi-
cally, when adversary M activates a non-test session with A or B, the ses-
sion execution simulated should be identical to the session run by A or B
from the view of M. One can note that this can be easily guaranteed when
the query LongTermKeyReveal(A) or LongTermKeyReveal(B) is issued in the
game. Since we know the long-term secret key of A or B, we can just select
an ephemeral secret key and compute the ephemeral public key correctly by
using the long-term secret key and long-term public key. Nevertheless, if the
query LongTermKeyReveal(A) or LongTermKeyReveal(B) is not issued, that is,
without the long-term secret key of A or B, the simulation of the non-test ses-
sion owned by A or B can no longer be simulated as shown above. In this case,
we simulate the session as follows. Suppose that we are to simulate the ses-
sion owned by A without knowing lskA, we pick (r1, r2)

$← W × Zp and then
compute WA = WordG(param,L, r1),X = gr2 . We say that the session simu-
lated in this way can be identical to the real session from M’s view due to the
pseudo-randomness of the PRF. To be more precise, even when M obtains at
most λ1-bits of lskA through LongTermKeyLeakage(A), the variable l̂skA, which
comes from Ext1(lskA, rA) and inputs to the pseudo-random function F̂ , still
remains unknown to adversary M. Therefore, the value of F̂

̂lskA
(eskA) is com-

putationally indistinguishable from a random element.

5 An Instantiation from DDH Assumption

In the following, we present the language we for the instantiation of our generic
CLR-eCK-secure AKE protocol.

Diffie-Hellman Language. Let G be a group of prime order p and g1, g2 ∈ G.
The Diffie-Hellman Language is as LDH = {(u1, u2)|∃r ∈ Zp, s.t., u1 = gr

1, u2 =
gr
2}. One can see that the witness space of LDH is W = Zp and LDH ⊂ X = G

2.
Due to the DDH assumption, we have that the subset membership problem over
LDH is hard.

SPHF on LDH. Here we show how to construct a 2-smooth SPHF (denoted
by SPHFDH) over the language LDH ⊂ X = G

2 onto the group Y = G. Let
H1 : {0, 1}∗ → Zp denote a collision-resistant hash function. The concrete con-
struction is as follows.

SPHFSetup(1λ): param = (G, p, g1, g2);

HashKG(LDH, param): hk = (α1, α2, β1, β2)
$← Z

4
p;

ProjKG(hk, (LDH, param)): hp = (hp1, hp2) = (gα1
1 gα2

2 , gβ1
1 gβ2

2 ) ∈ G
2
p;

WordG(hk, (LDH, param), w = r): W = (gr
1 , gr

2);
Hash(hk, (LDH, param), W = (u1, u2) = (gr

1 , gr
2), aux = d = H1(W, aux′)): hv =

uα1+dβ1
1 uα2+dβ2

2 ;

ProjHash(hp, (LDH, param), W = (u1, u2) = (gr
1 , gr

2), w = r, aux = d = H1(W, aux′)):
hv′ = hpr

1hpdr
2 .
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Note that Y = G,HK = Z
4
p,HP = G

2
p,AUX = Zp,W = Zp. Then we have

the following theorem. The proof is referred to the full version.

Theorem 2. SPHFDH is a 2-smooth SPHF.

The Concrete AKE Protocol. One can easily obtain the concrete AKE pro-
tocol using the instantiated SPHFDH. Due to the space limitation, we postpone
the details to the full version. Based on Theorems 1, 2 and 3, we have the fol-
lowing result for the concrete AKE protocol.

Theorem 3. The concrete AKE protocol is (λ1, λ2)-CLR-eCK-secure, where
λ1 ≤ min{4 log p − 2 log(1/ε1) − l1(k), log p − 2 log(1/ε3) − l3(k)}, λ2 ≤ u(k) −
2 log(1/ε2) − l2(k).
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Abstract. Authenticated encryption (AE) is a mechanism to provide
privacy as well as integrity of a plaintext. In the decryption phase of
an AE scheme, the plaintext corresponding to a ciphertext is released if
the tag is verified. As AE can be implemented in low end devices like
smart cards, one may be forced to release plaintext before verification.
Andreeva et al. address the issue of releasing unverified plaintext and
formalize it by the notion called INT-RUP. In this paper, we consider
“rate-1” block-cipher based affine authenticated encryption mode and
show a generic INT-RUP attack on this mode. Using this attack idea,
we also present an INT-RUP attack on CPFB (rate 3

4
). Then we present

a variant of CPFB, called mCPFB (rate 3
4
) which achieves INT-RUP

security.

Keywords: Authenticated encryption · Block cipher · Rate · INT-RUP

1 Introduction

The main application of cryptography is to implement a secure channel between
two or more users to exchange information over that channel. The users initially
have a shared key through an initial key set-up or key-exchange protocol. They
use this key to authenticate and encrypt the transmitted information using effi-
cient symmetric-key algorithms such as message authentication code (MAC) and
(symmetric-key) encryption. The encryption provides privacy or confidentiality
of the sensitive data, called plaintext or message, whereas a message authenti-
cation code provides data-integrity of the message. An authenticated encryption
or AE is an integrated scheme which provides both privacy of plaintext and
authenticity or data integrity of message or ciphertext. The decryption of an
conventional AE scheme consists of two phases: plaintext computation and veri-
fication. If the verification is successful, then only the plaintext corresponding to
the decryption, is released. But in practice, releasing plaintext after verification
can be unavoidable at times. For example, when AE is implemented on low-
end devices like smart cards, which has limited buffer, it is impossible to store
entire plaintext. Also, there may be situations when a decrypted plaintext needs
c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 39–54, 2016.
DOI: 10.1007/978-3-319-29485-8 3
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early processing due to real-time requirements, which may not be met if plain-
text is released after verification. Moreover, if a scheme is secure under release of
unverified plaintext, then one can increase efficiency of that scheme. For instance,
one uses the two-pass Encrypt-then-MAC composition (first pass to verify the
MAC and the second pass to decrypt the ciphertext) to avoid releasing unveri-
fied plaintext into a device with insecure memory [17]. If an AE construction is
secure against the release of unverified plaintext, then a single pass would have
been sufficient. Also, even if the attacker cannot observe the unverified plaintext
directly, it could find interesting properties of the plaintext through side channel
attacks. For example, in the padding oracle attacks introduced by Vaudenay [18],
an error message or the lack of an acknowledgment indicates whether the unver-
ified plaintext was correctly padded or not. In [4], Canvel et al. showed how to
mount a padding oracle attack on a version of OpenSSL by exploiting timing
differences in the decryption processing of TLS.

Note that, releasing unverified plaintext does not imply omitting verification,
which remains essential to preventing incorrect plaintexts from being accepted.
However, the scenario assumes that the attacker can observe the unverified plain-
text, or any information relating to it, before verification is complete. This issue
has been addressed and formalized by Andreeva et al. In the paper [2], Andreeva
et al. address the issue of releasing unverified plaintext and formalize it by the
two new notions called PA (Plaintext Awareness) and INT-RUP (INTegrity
under Releasing Unverified Plaintext). To achieve privacy, they propose using
plaintext awareness (PA) along with IND-CPA. An authenticated encryption
scheme achieves PA if it has a plaintext extractor, which tries to fool adversaries
by mimicking the decryption oracle without the secret key. Releasing unverified
plaintext then becomes harmless as it is infeasible to distinguish the decryp-
tion oracle from the plaintext extractor. They introduce two notions of plaintext
awareness in the symmetric-key setting - PA1 and PA2. The extractor is given
access to the history of queries made to the encryption oracle in PA1, but not in
PA2. Hence PA1 is used to take care of the RUP scenarios where the adversary
has the goal to gain the additional knowledge from the query history. For situa-
tions in which the goal of the adversary is to decrypt one of the ciphertexts in the
query history, PA2 is used. On the otherhand, an AE scheme is said to achieve
INT-RUP security, if the adversary can generate a fresh valid ciphertext-tag pair
given the additional power of access to a unverified decryption oracle, along with
the encryption oracle.

In [2], Andreeva et al. also showed that most of the AE schemes using nonce
IV (OCB [11], GCM [12] etc.) or arbitrary IV (COPA [3], McOE-G [6]) are
not PA-1 secure where as schemes like CTR, CBC using random IV is PA1
secure. They also introduce two techniques called nonce-decoy and PRF-to-IV
method to restore PA1 for nonce IV and arbitary IV schemes respectively. They
also showed INT-RUP insecurity of schemes like OCB, COPA. The issue of
releasing unverified plaintext has been acknowledged and explicitly discussed
in the ongoing CAESAR competition [1] as well. It is of interest to investigate
INT-RUP security of various schemes.
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1.1 Our Contributions

In this paper, we consider the INT-RUP security of block-cipher based AE
schemes. We call a block-cipher based AE scheme to be of “rate 1” if the no. of
block-ciphers used to generate the ciphertext (without the tag) is exactly equal to
the number of message blocks and the additional block-cipher calls, required to
generate the tag is constant (doesn’t depend on the number of message blocks).
In this paper, we first consider weakness during the tag processing, which can be
fixed with small modification in the tag generation. On the other hand, in this
paper we describe an attack on the mode and hence can not be fixed with small
modifications. In Sect. 3.3, using the similar idea as used in iFeed, we provide
an INT-RUP attack on general feedback based AE mode. “rate-1” block-cipher
based authenticated encryption mode. In Sects. 3.1 and 3.2, we describe this
mode in details and provide some example of existing popular AE schemes that
belong to this mode. Here we adopt the notations as used by Nandi [14] in
the definition of linear mode authenticated encryption and extend it to define
the generalized block-cipher based affine mode authenticated encryption scheme.
Our main results are as follows:

(A). Generic INT-RUP attack on “rate-1” affine mode authenticated encryption. In
Sect. 3.3, we describe a generic INT-RUP attack on this mode. Note that, in [14],
Nandi gives a generalized PRP-SPRP attack (privacy attack) using similar idea
that was used in the SPRP attack on XLS [15]. On the otherhand, our attack
is a generalized INT-RUP attack (integrity attack in the RUP settings) and the
attack technique used for our case is completely different from their approach.
Our attack is similar to the one used in [2] during the INT-RUP attack on OCB.
Note that, our attack doesn’t depend on the type of IVs. One can fix the PA1
security by having random IVs but can not prevent the INT-RUP attack.

(B). INT-RUP attack on AES-CPFB [13]. In Sect. 4.1, we revisit the AE scheme
AES-CPFB, submitted to the CAESAR competition. CPFB is an affine mode
AE scheme whose rate is 3

4 . We show an INT-RUP attack on AES-CPFB by
observing weaknesses in the construction design in AES-CPFB.

(C). mCPFB: A rate 3
4 INT-RUP secure AE Scheme. In Sect. 4.3, we propose a

modified version of CPFB named mCPFB and then prove the INT-RUP security
of mCPFB in Sect. 4.4. This shows that, we can have INT-RUP secure affine
mode AE constructions with rate 3

4 .

1.2 Significance of Our Results

The efficiency of a block-cipher based authenticated encryption improves as the
number of block-cipher invocations per message block reduces. To have a secure
authenticated encryption scheme, the no. of block-cipher calls required is atleast
equal to the no. of blocks in the message. Our result shows that no “rate-1” block-
cipher based authenticated encryption construction can be INT-RUP secure,
meaning that in order to achieve INT-RUP security, one has to compromise
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the efficiency. Both efficiency and INT-RUP security can not come together for
block-cipher based authenticated encryption schemes. On the other hand, by the
INT-RUP security of mCPFB (rate 3

4 ), we show that even with small decrease
in the rate, the construction can achieve INT-RUP security. block-ciphers and
hence the efficiency decreases.

2 Preliminaries

2.1 Rate of a Block-cipher Based AE Schemes

The rate of a block-cipher based encryption is defined as the no. of message blocks
processed per block-cipher call. Consider an authenticated encryption scheme
which requires (s + c)-many block-cipher calls (s many block-cipher calls to
generate the ciphertext and additional c-many block-ciphers to generate the
tag) to process l-block messages. The rate of the scheme is given by l

(s+c) . For
any authenticated encryption scheme, s depends on the length of the message i.e.
l. For most of the authenticated encryption schemes c is a very small constant
(usually 1 or 2) and doesn’t depend on l. For these schemes, we can ignore the
c-term and consider the rate of the scheme as l

s . Here are the example of some
block-cipher based authenticated encryption schemes and their rates:

• OCB [11], iFeed [19]: s = l, c = 1, rate = 1.
• COPA [3], ELmD [5]: s = 2.l, c = 2, rate = 1

2 .
• CPFB [13]: s = 4l

3 , c = 2, rate = 3
4 .

• CLOC [7], SILC [8]: s = l, c = l, rate = 1
2 .

2.2 Block Matrices and Its Properties

In this subsection, we discuss block matrices and its properties. We borrow some
notations from [14]. A block is a n-bit field element. Denote B := {0, 1}n. We
represent a block in bold letters to distinguish it from an integer. For example 2
denotes a block (field element) where as 2 denotes an integer value. We denote
both integer addition as well as field addition by +, which should be realized
from the context. We call a matrix to be block-matrix if all the entries are
blocks. Throughout the paper, we will consider any matrix as a block matrix.
Let Mn(a, b) denote the set of all partitioned matrices Aa×b (of size a × b as a
block partitioned matrix and of size an × bn as a binary matrix) whose (i, j)th

entry, denoted A[i, j], is a block-matrix for all i ∈ [1..a] = {1, . . . , a} and j ∈
[1..b]. The transpose of A, denoted Atr, is applied as a binary matrix. Thus,
Atr[i, j] = A[j, i]tr. where A[i, ∗] and A[∗, j] denote ith block-row and jth block-
column respectively. For 1 ≤ i ≤ j ≤ a, we also write A[i..j ; ∗] to mean the
sub-matrix consisting of all rows in between i and j. We simply write A[..j ; ∗]
or A[i.. ; ∗] to denote A[1..j ; ∗] and A[i..a ; ∗] respectively. We define similar
notation for columns. By (0) and (1), we mean a matrix of appropriate size,
whose all entries are 0 and 1 respectively.
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A (square) matrix A ∈ Mn(a, a) is called (block-wise) diagonal if for all i �= j,
A[i, j] = 0 and A[i, i] = 1. We represent it by Ia. We call a (square) matrix
A ∈ Mn(a, a) (block-wise) strictly lower triangular if for all 1 ≤ i ≤ j ≤ a,
A[i, j] = 0.

For all X = (X1, . . . , Xl) ∈ B
l, we define an affine function mapping l blocks

to b blocks as A ·
(

1
X

)

= (Y1, . . . , Yb). Here, we consider X and Y as binary

column vectors (we follow this convention which should be understood from
the context). So the block matrix A[1, j] represents the constant term in Yi and
A[i + 1, j] represents the contribution of Xj to define Yi. More formally,

Yi = A[i, 1] + A[i, 2] · X1 + A[i, 3] · X2 + · · · + A[i + 1, a] · Xi, 1 ≤ i ≤ b.

If A[2..a, 2..b] is a strictly lower triangular matrix then Yi is clearly function-
ally independent of Xi, . . . , Xl, 1 ≤ i ≤ l. So if we associate Yi uniquely to each
Xi (e.g., Yi = ρ(Xi) for some function ρ) then the choice of the vectors X and Y
satisfying A · X = Y becomes unique. This observation is useful while we define
intermediate inputs and outputs of a black-box based construction.

Useful Properties of Matrices. It is well known that the maximum number
of linearly independent (binary) rows and columns of a matrix A ∈ Mn(s, t) are
same and this number is called rank of the matrix, denoted rank(A). So clearly
we have rank(A) ≤ min{ns, nt}.

Now, we briefly state two very important properties of matrices.

Lemma 1. Let M and N be two matrices with same number of rows. If M
doesn’t have full rank but [M : N ] has full rank, then one can find a row vector
R such that R · M = 0 but R · N �= 0.

Lemma 2. Let A ∈ Mn(s, t) and r = rank(A). Then,

If s < t, then we can find a solution (not necessarily unique) of A · x = 0.

As the proofs are straightforward, we skip the proofs.

3 Generalized “rate-1” Affine Mode AE Schemes

3.1 Affine Query and Mode

A block matrix J ∈ Mn(q, 1+ l+q) is called (l, q)-query function if J [∗, l+1..]
is block-wise strictly lower triangular. Here q represents the number of queries
and l represents the number of blocks in the input. For any such query function,
an input M ∈ B

l, (and a tuple of q functions ρ̃ = (ρ1, . . . , ρq) over B), we can
uniquely define or associate U and V , called intermediate input and output
vector respectively, satisfying

(i)J ·
⎛

⎝
1
M
O

⎞

⎠ = I and (ii) ρ̃(I) := (ρ1(I1), . . . , ρq(Iq)) = O.
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This can be easily shown by recursive definitions of Ii’s and Oi’s. More precisely,
Ii is an affine function of M,O1, . . . , Oi−1 and Oi is uniquely determined by Ii

through ρi, for all 1 ≤ i ≤ q.
Informally, a (l, b, q)-affine mode is a mode which takes l blocks input and

returns b blocks output based on executing block-functions building blocks. For-
mally, (l, b, q)-affine mode is defined by a block matrix E ∈ Mn(q + b, 1 + l + q)
where E[1..q, ∗] is a (l, q)-query function. For any q-tuple of functions ρ̃ ∈ Funcq,
the corresponding affine-mode function Eρ̃ : Bl → B

b is defined as Eρ̃(I) = O
where

E ·
⎛

⎝
1
M
O

⎞

⎠ =
(

I
Z

)

, ρ̃(I) = O.

So V is the intermediate output vector associated to the input I and the final

output Z := E[q + 1.., ∗] ·
⎛

⎝
1
M
O

⎞

⎠, an affine function of O and M . Now observe

that the functions of ρ̃ are non-linear and would be secret for the adversaries.
So to obtain any information about the intermediate input and output, we only
can equate intermediate outputs whenever two inputs collide for same function.
Keyed Affine Mode. Let F = F1 × · · · × Ff and k be a non-negative integer
where Fi ⊆ Func. A key-space K for any keyed function is of the form B

k × F .
We call F the function-key space and B

k masking-key space. Any function g is
also written as g+1.

Definition 1. Let μ : [1..q] → [1..f ], called key-assignment function, α :=
(α1, . . . , αl) ∈ {+1,−1}�, called inverse-assignment tuple. For any function-key
ρ = (ρ1, . . . , ρf ) ∈ F , we define ρα

μ := (ρα1
μ1

, . . . , ρ
αq
μq ). We denote the set of all

functions ρα
μ by Fα

μ .

Here we implicitly assume that whenever αi = −1, ρμi
is a permutation. If

α = +1q, we simply skip the notation α. In general, the presence of inverse call of
building blocks may be required when we consider decryption of keyed function.
For the encryption, or a keyed function where decryption is not defined, w.l.o.g.
we may assume that α = 1q.

Definition 2. A (k, l, b, q) keyed affine mode with key-space K, key-assignment
function μ, is a (k+l, b, q) linear mode E. For each key κ := (L, ρ) ∈ K := Ik

n×F ,
we define a keyed function Eκ(M) := Eρµ(K,M).

Observe that, given a key (K, ρ) and a key-assignment function μ, we can
represent a (k, l, b, q) keyed affine function as follows:

E ·
⎛

⎝
L
M
O

⎞

⎠ =
(

I
Z

)

, ρμ(I) = O where L =
(

1
K

)
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Definition 3 (Reordering of Vectors). Let α := (α1, . . . , αq) ∈ {1,−1}q,
and β = (β1, . . . , βq) be a permutation over [1..q]. A pair of vectors (U, V ) ∈ B

2q

is (α, β)-reordering of a pair of vectors (X,Y ) ∈ B
2q if

(Ui, Vi) =

{
(Xβi

, Yβi
) if αi = 1,

(Yβi
,Xβi

) if αi = −1.

3.2 Affine Mode Authenticated Encryption Scheme

A (l, s, c) affine-mode authenticated encryption scheme takes an input M ∈
B

l and returns a tagged-ciphertext (C, T ) ∈ B
l × B using (s + c)-many non-

linear block computations. Moreover it requires exactly s-many non-linear block
computations to compute C and additional c-many permutations for computing
the tag T .

Definition 4. A (k + l, l + 1, s + c)-affine mode E, is called (l, s, c) affine-mode
authenticated encryption with key-space K := B

k × F and key-assignment π if
the corresponding decryption algorithm D is also a (k + l, l + 1, s + c)-linear
mode with (1) an inverse assignment-tuple α := (α1, . . . , αs+c) ∈ {1,−1} and
(2) key-assignment π′ := β ◦ π where β = (β1, . . . , βs+c) is a permutation over
[1..(s + c)]. Moreover, ∀M ∈ B

l, L ∈ B
k, ρ = (ρ1, . . . , ρf ) ∈ F ,

E.

⎛

⎝
L
M
Y ∗

⎞

⎠ =

⎛

⎝
X∗

(
C
T

)

⎞

⎠ , ρπi
(Ui) = Vi

if and only if

D.

⎛

⎝
L
C
V ∗

⎞

⎠ =

⎛

⎝
U∗

(
M
T

)

⎞

⎠ , ραi

π′
i
(Xi) = Yi

where (U∗, V ∗) is (α, β)-reordering of (X∗, Y ∗). Here k, no of keys used, is
assumed to be a constant and doesn’t depend on l.

Rate-1 Affine Mode Authenticated Encryption Scheme. We call an affine
(authenticated) encyption scheme to be “rate-1” if s = l i.e. no of permutation
calls to generate ciphertext (without the tag) of a message of length l is exactly l.

We represent a “rate-1” affine mode authenticated encryption as:

E.

⎛

⎜
⎜
⎝

L
M

Y ∗ =
(

Y
Ytag

)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

X∗ =
(

X
Xtag

)

Z =
(

C
T

)

⎞

⎟
⎟
⎠

where X = X∗[1..l], Xtag = X∗[(l + 1)..(l + c)], Y = Y ∗[1..l] and Ytag =
Y ∗[(l + 1)..(l + c)]. It is easy to see that a “rate-1” affine mode AE scheme has
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the following structure of E:

E =

⎛

⎜
⎜
⎝

(E11)l×(k+1) (E12)l×l (E13)l×l (E14)l×c

(E21)c×(k+1) (E22)c×l (E23)c×l (E24)c×c

(E31)l×(k+1) (E32)l×l (E33)l×l (E34)l×c

(E41)1×(k+1) (E42)1×l (E43)1×l (E44)1×c

⎞

⎟
⎟
⎠

It is easy to check that E13 and E24 are strictly lower triangular matrices
and E14 = E34 are zero matrices.

For the decryption, we have identical representation as we replace E by D,
X by U , Y by V , M by C and C by M .

Some popular examples of “rate-1” Affine Mode AE schemes are: iFeed, OCB
etc. The E matrix corresponding to these constructions can be found in the full
version.

Remark 1. It is easy to check that any feedback based “rate-1” AE construction,
is a “rate-1” affine mode authenticated encryption. The detailed proof can be
found in the full version.

Important Properties of the Decryption Matrix D

Lemma 3. If rank(D33) < (l − (1 + k))n, then the AE construction doesn’t
preserve privacy.

Proof. We have the condition, D31.L + D32.C + D33.V = M . As the combined
rank of [D31 : D32 : D33] is full (otherwise scheme is not decryptable), we can
find a row vector N s.t. N.D32 �= 0 but N.D31 = 0 and N.D33 = 0. This gives a
linear equation on C and P :

N.D32.C = N.M.

Using, this equation, one can distinguish this scheme from a random function
making a single query and checking whether the above equation holds or not. 
�
Lemma 4. If rank(D12) < (l − c)n, then the AE construction doesn’t have
integrity security.

Proof. Let the decryption matrix for a AE Scheme is D, with rank(D12) <
(l − c)n. Now, we describe an integrity attack against the scheme using only one
encryption query, as follows:

• Encryption Query: (N,AD,M = (M1,M2, . . . , Ml)). Let, C = (C1, C2, . . . ,
Cl, T ) be the tagged ciphertext.

• Find a non-zero ΔC = (ΔC1, . . . , ΔCl) satisfying (i) D12ΔC = 0 and (ii)
D22ΔC = 0. Rank of D12 ensures that we will find such a ΔC value for some
l. Let it be ΔC∗

• Compute ΔT = D42ΔC∗

• Forged Query: (N,AD,C + ΔC∗, T + ΔT ) 
�
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3.3 INT-RUP Insecurity of “rate-1” Block-Cipher Based Affine
Mode AE Schemes

In this section, we prove the following theorem:

Theorem 1. Any “rate-1” block-cipher based Affine mode authenticated encryp-
tion scheme is INT-RUP insecure.

Proof. Here we describe the generic INT-RUP attack on rate-1 affine domain
authenticated encryption schemes. The attack consists of one encryption and
one unverified plaintext query:

• Encryption Query: (N,AD,M0 = (M0
1 ,M0

2 , . . . , M0
l )). Let, C0 = (C0

1 , C0
2 ,

. . . , C0
l , T 0) be the tagged ciphertext.

• Unverified Plaintext Query: (N,AD,C1 = (C1
1 , C1

2 , . . . , C1
l )). Let M1 =

(M1
1 ,M1

2 , . . . , M1
l ) be the corresponding plaintext.

• Forged Query: (N,AD,Cf = (Cf
1 , Cf

2 , . . . , Cf
l ), T f ), which realizes a δ =

(δ1, . . . , δl) sequence. Cf realizes a δ-sequence if given a binary vector δ =
(δ1, . . . , δl), ∀i ≤ l, Uf

i = U δi
i and ∀i > l, Uf

i = U0
i .

Note that, as same nonce-associated data are used for all the queries, the keys
will remain same for all the queries. Hence we have the following relations:

(
D12 D13

D32 D33

)

·
(

ΔCij

ΔV ij

)

=
(

ΔU ij

ΔM ij

)

, i = 0, j ∈ {1, f}

(
D22 D23 D24

D42 D43 D44

)

·
⎛

⎝
ΔC0f

ΔV 0f

ΔV 0f
tag

⎞

⎠ =
(

ΔU0f
tag

ΔT 0f

)

Now, our job is to find the value of ΔC0f = (ΔC0f
1 , . . . , ΔC0f

l ) and T 0f .
We find in the following steps:

• Step 1. Find ΔV01 from the equation, D32ΔC01 + D33ΔV 01 = ΔM01:

ΔV 01 = D−1
33 (ΔM01 + D32ΔC01)

• Step 2. Find ΔC0f in terms of δ:

ΔC0f = D−1
12 .(ΔU0f + D32ΔV 0f )

As ΔU0f
i = δi.ΔU01

i and ΔV 0f
i = δi.ΔV 01

i , one can write both ΔU0f and V 0f

as a linear combination of δ. So, we can write (ΔU0f + D32ΔV 0f ) = D∗.δ,
for some D∗. In fact we can find out D∗ as follows:

D∗ =

⎛

⎜
⎜
⎜
⎝

ΔU01
1 + D11

13.ΔV 01
1 D12

13.ΔV 01
2 · · · D1l

13.ΔV 01
l

D21
13.ΔV 01

1 ΔU01
2 + D22

13.ΔV 01
2 · · · D2l

13.ΔV 01
l

...
Dl1

13.ΔV 01
1 Dl2

13.ΔV 01
2 · · · ΔU01

l + Dll
13.ΔV 01

l

⎞

⎟
⎟
⎟
⎠
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So, we can write ΔC0f as the following linear combination of δ:

ΔC0f = D−1
12 .D∗.δ

• Step 3. Solve the following set of equations to find a δ that makes ΔU0f
tag = 0

D22ΔC0f + D23ΔV 0f = 0

As ΔC0f and ΔV 0f can be represented as linear combination of δ as men-
tioned already, the above equality implies (D22.D

−1
12 .D∗ +D23.V

∗).δ = 0. It is
easy to see that this equation has at least one solution as long as l > (c−1).n.
Let the solution be δ∗.

• Step 4. We find ΔC0f and ΔT 0f as we put δ = δ∗ in the following equations:

ΔC0f = D−1
12 .D∗.δ

ΔT 0f = D42ΔC0f + D43ΔV0f

Thus we provide a generalized INT-RUP attack for any affine domain authenti-
cated encryption schemes assuming D12 and D33 matrices are invertibles, which
imply rank(D12) = rank(D33) = l.n.

Case when at least one of D12 and D33 doesn’t have full rank. From
Lemmas 3 and 4, we already know that rank(D12) and rank(D33) should be
high. This ensures that if we set l appropriately to a high value, we will have
a (n × n) submatrix which has full rank for both D12 as well as D33. More
formally, from Lemmas 3 and 4, we know that rank(D12) > (l − (k + 1))n and
rank(D33) > (l − c)n. It is easy to check that, we can find a value of l such that
both the submatrix D12[l−n.., l−n..] and D33[l−n.., l−n..] both has full rank.
As k and c are small constants, one can ensure that we will find such an l. Now
one can easily modify the previous attack and apply here. 
�
Corollary 1. Any “rate-1” block-cipher based AE scheme is not integrity secure
against Nonce-repeating adversaries.

It is easy to verify it and can be found in the full version.

Remark 2 (Extension of the Attack for Any Number of Keys). In the definition
of affine domain authenticated encryption, we have assumed k, number of keys to
be constant. Some constructions like IACBC [9] and IAPM [10] use log l number
of keys while encrypting l block messages. It is easy to see that our INT-RUP
attack will be valid for these constructions as well. In general, this attack will
be applicable for any “rate-1” authenticated encryption scheme for which D11

and D22 are invertible, even if the number of masking keys it use depends on
the message length.
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4 INT-RUP Analysis of CPFB, a Rate 3
4

Block-cipher
Based AE Scheme

4.1 Revisting CPFB

CPFB is a block-cipher based AE scheme which takes a nonce N , an associated
data A (a blocks of 96 bits), a message M (l blocks of 96 bits), a secret key K
(128-bit) as its input and outputs a ciphertext C (l blocks of 96 bits) and a 128
bit tag T . As one 128-bit block-cipher call is needed to process 96-bit message,
the rate of the construction is 96/128 = 3/4. Details of CPFB authenticated
encryption is shown in Figure below (Fig. 1).

0

κ0 ⊕

Eκ[1]

X1

⊕M1

Y1

C1

Z1

96 32

M1||1
κ0 ⊕

Eκ[2]

X2

⊕M2

Y2

C2

96 32

Z2

· · ·

Ml−1||l − 1

κ0 ⊕

Eκ[�]

Xl

⊕Ml

Yl

Cl

96 32

Zl

Ml||l
κ0 ⊕

Eκ[�+1]

Xl+1

⊕
Yl+1||Zl+1

⊕l
i=2 Yi||Zi

⊕

Eκ0

ZM

ZM ⊕ L ⊕ XA

LXA

T

Fig. 1. Encryption and Tag Generation Phase of CPFB. Here κi = EK(N ||i||lN ), κ[i] =
κj where j = � i

232
�, XA := Ua where Ui = Ui−1 + Eκ0(Ai||i) and L = Eκ0(a||l||0).

4.2 INT-RUP Attack on CPFB

The attack consists of one encryption and one unverified plaintext query. The
attack steps are:

1. Make an encryption query: (N,A,M0 = (M0
1 ,M0

2 , . . . , M0
l )), where l = 129.

Let C0 = (C0
1 , C0

2 . . . , C0
l , T 0) be the tagged ciphertext. Let the correspond-

ing X and Y vectors are, X0 = (X0
1 , · · · ,X0

l+1) and Y 0 = (Y 0
1 , · · · , Y 0

l+1)
respectively.

2. Make an unverified plaintext decryption query: (N,A,C1 = (C1
1 , C1

2 , · · · ,
C1

l )). Let, M1 = (M1
1 ,M1

2 , · · · ,M1
l ) be the corresponding plaintext. Corre-

sponding X and Y vectors are X1 = (X1
1 , · · · ,X1

l+1) and Y 1 = (Y 1
1 , · · · , Y 1

l+1)
respectively.
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3. Compute the first 96 bit Y values Y 0
1 , · · · , Y 0

l and Y 1
1 , · · · , Y 1

l from the
two queries by XOR-ing the corresponding message and the ciphertext (by
M0 + C0 and M1 + C1).

4. Find the δ-sequence (δ1, . . . , δl), with δ1 = 0 such that,
∑l

i=2(Y
δi
i ||Zδi

i ) =
∑l

i=2(Y
0
i ||Z0

i ). One can expect 232-many such δ-sequences. This happens
because with the help of first 96 bits in the expressions at both the sides
of the above condition, we can form 128 linear equations on 128 unknowns
δ2, . . . , δ129 and with high probability we can get a solution. As, the last 32
bits in the expressions are assumed to be uniform and random, we expect
232-many such δ-sequences.

5. Perform the following for all such δ-sequence:
(a) Set Cf

1 = C0
1 . For all 1 < i < l, set Cf

i = Cδi
i if δi−1 = δi and Cδi

i + Y 0
i +

Y 1
i , otherwise.

(b) Set Cf
l = C0

l if δl = 0. Else, set Cf
l = C0

l + Y 0
l + Y 1

l .
(c) Return (Cf

1 , Cf
2 , · · · , Cf

l , T 0) as forged Ciphertext.

With the above 232-many forging attempts, we expect atleast one valid forgery
with very high probability.

4.3 mCPFB: Modified CPFB with INT-RUP Security

Motivation. As the rate of CPFB is 3
4 and the generic INT-RUP attack is

not applicable, we try to modify CPFB in order to make it INT-RUP secure.
We first observe that, a potential weakness of CPFB which led to the previous
attack is that the Zi values, computed during the message processing phase
has no influence over the ciphertext C. However, all the 32-bit Zi values are
finally added during the computation of T . Thus, the entropy of the effect of the
whole Z vector on the tag reduces to 32. Hence, computing a proper δ sequence
is sufficient to forge a valid ciphertext tag pair as the attacker has access to
the Y vector. So, injecting 32-bit Zi values in a proper way during the process
of generating ciphertext blocks may resist the previous attack. So, we tried to
update CPFB by modifying Xi as follows Xi = Mi−1||(i − 1) + κ0 + Zi−1||096,
for 2 ≤ i ≤ l + 1. This updated scheme resists the previous attack but with an
additional 224 unverified plaintext query, one can find a modified attack on this
updated version as well as with 232-many forging attempts. The weakness of this
updated version is that adversary can not observe only Zi values and the final
tag has only 32-bit entropy of the Zi values. So, now we modify the construction
such that final tag has full 128-bit entropy of the Zi values and it comes out to
be INT-RUP secure. We call the modified construction mCPFB and details of
mCPFB is given below.

mCPFB Construction. The description of mCPFB construction is given
below. Here, we use the notation V

(d,�)
α to denote a (d × l) vandermonde matrix

whose (i, j)th entry is α(i−1)(l−j).
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Nonce Processing. The nonce N is used to generate the keys: κi =
EK(N ||i||lN ). This step is identical to that of CPFB.

AD Processing. The associated data A is partitioned into a-many 96 blocks.
Ai, the ith associated data block is processed by Ui = Ui−1 + Eκ1(Ai||i). XA :=
Ua, is the final output. This step is also identical to that of CPFB except that
we use the key κ1 instead of κ0.

Message Processing. mCPFB can process any message upto size (264 − 232 −
4). In the message processing phase, we first expand M = (M1, . . . , Ml) by a
Distance 4 Error Correcting Code ECCode:

ECCode(M) = (M1, . . . , Ml,Ml+1,Ml+2,Ml+3)

where (Ml+1,Ml+2,Ml+3) = V
(3,l)
β · M , with β as a primitive element of F296 .

In [16], it has been shown that ECCode for fixed length input has minimum
distance 4. After the expansion, we process this expanded message in the same
way as message is processed for CPFB. C = (C1, . . . , Cl) is the ciphertext.

Tag Generation Phase. The tag T is calculated by Eκ−1(τ) where τ = Wl ⊕
XA ⊕ L and κ−1 = κ232−1. Computation of Wl is done by as follows: Wl =
V

(4,l+3)
α · (Z2, Z3, · · · , Zl+3, Zl+4) ⊕ (032||Vl), where Vl = Y2 ⊕ · · · ⊕ Yl+3 and α

be a primitive element of F232 . L is defined as L = Eκ−1(a||l||0).

4.4 INT-RUP Security for mCPFB

In this section, we prove the INT-RUP security of mCPFB in details. Consider
the function f that takes N , I and i as input and outputs O such that O =
Eκ[i](I||(i mod 232) + κ0) where κ[i] = EK(N ||j||l), j =  i

232 �. f is assumed to
have (q, ε)-PRF security where ε is believed to achieve beyond birthday security.
Given this, we proof the following theorem:

Theorem 2. Let f (defined as above) be (qe + qr, ε)-PRF. Any adversary A,
making qe many encryption query and qr many unverified plaintext query, can
break INT-RUP security (with single forgery attempt) of mCPFB has the follow-
ing advantage: Advint rup

mCPFB(A) ≤ 5
2128 + ε

Proof. First we consider the following important observations:

• As f (qe + qr, ε)-PRF, we replace the f module by a random function. So for
any two different(N,Mi, i), we consider Yi||Zi to be uniform and random.

• Z-values have full 128-bit entropy on the tag T through the multiplication
by Vandermonde matrix

• ECCode is a distance 4 error correcting code for fixed length inputs - thus for
two different messages M = (M1,M2, · · · ,Ml) and M ′ = (M ′

1,M
′
2, · · · ,M ′

l ),
there are at least four indices for which the corresponding 32-bit Z-values
are uniform and random

• For unverified plaintext queries the Z values are not known as the tag is not
generated.
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Now suppose the adversary makes encryption queries (Ni, Ai,Mi) and obtains
(Ci, Ti) for i = 1(1)qe, then makes unverified queries (Nrup

i , Arup
i , Crup

i ) and
obtains Mrup

i for i = 1(1)qr and then forges with (N∗, A∗, C∗, T ∗). The
view of the adversary is denoted by V iew(A) = {(Ni, Ai,Mi, Ci, Ti)i=1(1)qe ;
(Nrup

i , Arup
i , Crup

i ,Mrup
i )i=1(1)qr}. Let Win be the event that an adversary A

wins the INT-RUP security game. It is easy to check that,

Pr[Win] := maxvPr[Winv] = Pr[(N∗, A∗, C∗, T ∗) is a valid|V iew(A) = v]

Now, for any v, if we can show that Pr[Winv] < ε, then we have Pr[Win] < ε
and we will be done. Consider the following cases:
Case A. ∀i,N∗ �= Ni: As κ−1 is indepent with κ1

−1, . . . , κ
qe
−1, we can bound the

adversarial advantage by,

Pr[Winv] = Pr[Eκ∗
−1

(τ∗) = T ∗|V iew(A) = v]

= (
1

2128
∑

L∗ �=T ∗
Pr[Eκ∗

−1
(τ∗)=T ∗|Eκ∗

−1
(a∗||l∗||0)=L∗]) + Pr[L∗ = T ∗]

≤ 1
2128

+ Pr[L∗ = T ∗]

≤ 2
2128

Case B. ∃ unique i � N∗ = Ni, T
∗ �= Ti: Here κ∗

−1 = κi
−1. As T ∗ is a fresh

block-cipher output, successful forging in this case is bounded as follows:

Pr[Winv] = Pr[Eκ∗
−1

(τ∗) = T ∗|V iew(A) = v]

=
∑

L∗,Li �=T ∗
Pr[Eκ∗

−1
(τ∗) = T ∗|Eκ∗

−1
(τi) = Ti, Eκ∗

−1
(a∗||l∗||0) = L∗,

Eκ∗
−1

(ai||li||0) = Li] + Pr[T ∗ /∈ {Li, L
∗}]

≤ 1
2128 − 3

+ Pr[T ∗ /∈ {Li, L
∗}]

≤ 1
2128 − 3

+
2

2128

≤ 5
2128

Case C. ∃ unique i � N∗ = Ni, T ∗ = Ti, |Ci| = |C∗|: Here also we have κ∗
−1 =

κi
−1. As T ∗ = Ti here, we have to argue through the low collision probability

of τ∗ and τi. From observation (ii) and (iii), we found that there is atleast 4
non-zero entries in ΔZ for the ith encryption query and the forged query. With
this entropy of Z, we bound the probability of Win for this case. More formally,

Pr[Winv] = Pr[Eκ∗
−1

(τ∗) = T ∗|V iew(A) = v]

= Pr[Eκi
−1

(τ∗) = Ti|Eκi
−1

(τi) = Ti]

= Pr[W ∗
l + X∗

m + L∗ = W i
l + Xi

m + Li]
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= Pr[W ∗
l + Wl = c]

= Pr[V (4,l+3)
α · ΔZ = c′]

≤ 1
2128

Case D. ∃ unique i � N∗ = Ni, T ∗ = Ti, |Ci| �= |C∗|: If the length of Mi and
the forged ciphertext is different then we can’t argue through the entropy of ΔZ
as for two messages of different length ΔZ may vary in only one position. So,
here we argue through the L-values for the two queries. In fact we show that in
this case, we obtain a non-trivial equation on the corresponding L-values which
can bounded by 1

2128 . More formally,

Pr[Winv] = Pr[Eκ∗
−1(τ

∗) = T ∗|V iew(A) = v]

= Pr[Eκ∗
−1

(τ∗) = Ti|Eκ∗
−1

(τi) = Ti]

= Pr[τ∗ = τi]
= Pr[W ∗

l + X∗
m + L∗ = (Wl)i + (Xm)i + Li]

= Pr[L∗ + Li = c]
= Pr[Eκ∗

−1
(a∗||l∗||0) + Eκ∗

−1
(ai||li||0) = c]

≤ 1
2128

. 
�

5 Conclusion and Future Work

In this paper, we have provided a generic INT-RUP attack on any “rate-1” affine
AE mode. This result signifies that, to achieve INT-RUP security, any block-
cipher based AE scheme must use more block cipher calls than the number of
message blocks. So, INT-RUP security of block cipher based AE schemes can
be achieved at the cost of efficiency. We also extend this attack to attack CPFB
whose rate is less than 1 but also shows a variant of CPFB, achieving INT-RUP
security.

Analysis of the INT-RUP security for “rate< 1”-block cipher based AE con-
structions is a possible future work. We know that “rate-12” AE schemes like
ELmD, SILC and CLOC are claimed to have INT-RUP security where as CoPA
is not. So, it is of interest to find a property, that makes “rate-12” AE schemes
INT-RUP secure. One can further extend it for any rate r < 1. Providing the
upper bound of the rate of a block-cipher based AE scheme along with a con-
struction would be an interesting problem.
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Abstract. Authentication and authenticated encryption with associ-
ated data (AEAD) are applied in cryptographic protocols to provide
message integrity. The definitions in the literature and the constructions
used in practice all protect against forgeries, but offer varying levels of
protection against replays, reordering, and drops. As a result of the lack
of a systematic hierarchy of authentication and AEAD security notions,
gaps have arisen in the literature, specifically in the provable security
analysis of the Transport Layer Security (TLS) protocol. We present a
hierarchy of authentication and AEAD security notions, interpolating
between the lowest level of protection (against forgeries) and the highest
level (against forgeries, replays, reordering, and drops). We show gener-
ically how to construct higher level schemes from a basic scheme and
appropriate use of sequence numbers, and apply that to close the gap in
the analysis of TLS record layer encryption.

Keywords: Authentication · Authenticated encryption with associated
data (AEAD) · Transport Layer Security (TLS) protocol · Secure chan-
nels

1 Introduction

Message integrity is a vital security service demanded of cryptographic protocols,
and is usually provided either by a message authentication code (MAC) or by a
combined authenticated encryption scheme. The standard security property for
a MAC is existential unforgeability under a chosen message attack.

There has been an extensive line of research on security notions and con-
structions for authenticated encryption schemes, with initial definitions given by
Katz and Yung [14], Bellare and Namprempre [4], and Krawczyk [17]. For mes-
sage confidentiality, an authenticated encryption scheme could achieve indistin-
guishability under either an adaptive chosen plaintext (IND-CPA) or an adaptive
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chosen ciphertext (IND-CCA a.k.a. IND-CCA2) attack. For message integrity,
an authenticated encryption scheme could achieve either integrity of plaintexts
(INT-PTXT) or of ciphertexts (INT-CTXT). Shrimpton [28] combined the sep-
arate INT-CTXT and IND-CCA experiments into a single experiment which he
called IND-CCA3.

Bellare and Namprempre [4] and Krawczyk [17] also investigated how to
construct authenticated encryption schemes from MACs and symmetric encryp-
tion, evaluating three construction paradigms: encrypt-and-MAC, MAC-then-
encrypt, and encrypt-then-MAC.

Rogaway [25] defined the notion of authenticated encryption with associated
data (AEAD), to capture the common real-world scenario in which some data
(such as packet headers) needs to be sent authentically alongside a ciphertext,
but need not be encrypted, and AEAD has taken prominence over plain authen-
ticated encryption in recent years.

Despite the utility of authenticated encryption and AEAD, it is not enough
to realize the secure channel property expected of cryptographic protocols for
two reasons. First, secure channel protocols are often expected to perform an
initial establishment of the encryption key using a key exchange protocol; see
for example the original paper on secure channels by Canetti and Krawczyk [6]
(and the follow-up by Namprempre [21]) as well as recent realizations such as
the authenticated and confidential channel establishment (ACCE) model of Jager
et al. [13]. (In this paper, we will not focus on the key exchange establishment
phase of secure channels.) Second, and more important for this paper, applica-
tions often expect reliable delivery of a sequence of messages: that no attacker
can replay messages, deliver them in a different order in which they were sent,
or drop some messages without later detection.

To capture the notion of delivery of a sequence of messages, Bellare et al. [3]
introduced stateful authenticated encryption, with two security properties: state-
ful integrity of ciphertexts (INT-SFCTXT) and stateful indistinguishability of
ciphertexts (IND-SFCCA). Kohno et al. [16] extended the statefulness to AEAD
schemes, and gave a hierarchy of 5 integrity notions: type (1) security against
forgeries; type (2) type 1 plus security against replays; type (3) type 2 plus
security against reordering; type (4) type 3 plus detection of previous drops but
still accepting subsequent messages; type (5) type 4 plus but not accepting sub-
sequent messages. The type 5 notion of Kohno et al. [16] is equivalent to the
stateful authenticated encryption notion of Bellare et al. [3].

Paterson et al. [22] revisit AEAD definitions in the context of the Transport
Layer Security (TLS) protocol. They present a combined AEAD security notion
called length-hiding authenticated encryption (LHAE), which provides message
integrity and confidentiality similar to the type-5 security of Kohno et al. [16],
even for messages of different length (hence “length-hiding”), and in a single
combined security property (following Shrimpton [28]). Paterson et al. then go on
to show that, under appropriate length conditions on the message authentication
tag, a simplified form of the encode-then-MAC-then-encrypt form of encryption
in the TLS record layer in ciphersuites that use a block cipher in CBC mode
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is a secure length-hiding authenticated encryption scheme. The simplification is
that the statefulness aspects (sequence numbers) are not considered.

Jager et al. [13] and Krawczyk et al. [18], in their provable security analyses
of the full TLS protocol (covering both the authenticated key exchange in the
TLS handshake and the TLS record layer), rely on an extension of the work
of Paterson et al. [22], namely a form of stateful length-hiding authenticated
encryption (sLHAE). Unfortunately, the work of Paterson et al. did not show
that TLS encode-then-MAC-then-encrypt satisfies sLHAE, only LHAE. To our
knowledge, this gap remains in the literature until now.

1.1 Our Contributions

In this work, we construct a hierarchy of authentication and AEAD security
notions, show how to construct schemes with higher levels of security from a
scheme with the lowest level of security combined with sequence numbers, and
apply these techniques to TLS record layer encryption to bridge the gap between
LHAE [22] and sLHAE [13].

First, we construct a hierarchy of authentication levels:

1. protection against forgeries,
2. protection against forgeries and replays,
3. protection against forgeries, replays, and reordering of messages, and
4. protection against forgeries, replays, reordering of messages, and dropped

messages.

We give a similar hierarchy of definitions for AEAD, with single-experiment
AEAD notions that combine integrity and indistinguishability, following Shrimp-
ton [28]. In both cases, these hierarchy levels can be viewed as interpolating
between existing stateless notions at our level 1 and existing stateful notions at
our level 4.

Continuing, we show how to construct level 2, 3, and 4 schemes from level
1 schemes. The constructions are not surprising: by appropriate incorporation
and checking of sequence numbers, the receiver can ensure it is receiving a valid
sequence of sent messages. However, our constructions incorporate a degree of
generality: rather than fixing how the sequence numbers are incorporated, we
allow an encoding scheme to include them either implicitly or explicitly. For
example, in an explicit encoding scheme, the sequence number might be authen-
ticated and then transmitted alongside the ciphertext, in the manner of DTLS.
Alternatively, in an implicit encoding scheme, the sequence number might be
incorporated into the authentication calculation but not actually transmitted
across the wire (since the receiving party ought to know what packet number to
expect); this is how TLS works, for example.

We use this generic construction to close the gap in the provable security
analysis of TLS record layer encryption. Paterson et al.’s analysis of a simplified
form of TLS encode-then-MAC-then-encrypt (ΠPRS) shows that it satisfies the
LHAE notion, equivalent to our level 1. We can formulate TLS’s use of sequence
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numbers as an encoding scheme in our generic construction, and then see that
the full form of TLS encode-then-MAC-then-encrypt (ΠTLS) is equivalent to
our level-4 generic construction applied to ΠPRS , and thus ΠTLS achieves level-4
AEAD security, equivalent to sLHAE. Figure 1 illustrates the connection between
our work and that of Paterson et al., Jager et al., and Krawczyk et al., depicting
how the construction from level-1 AEAD to level-4 AEAD builds a missing and
necessary bridge in the analysis of TLS.

Fig. 1. TLS channel analysis.

Relation with Existing Work. The work most closely related to ours is the man-
uscript of Kohno et al. [16], who gave a hierarchy of AEAD notions. Our AEAD
hierarchy maps on to theirs: our levels 1, 2, 3, and 4 correspond to their types
1, 2, 3, and 5, respectively. There are several differences with our work. They
give constructions of higher level schemes directly from encryption and MAC
schemes in the encrypt-and-MAC, MAC-then-encrypt, and encrypt-then-MAC
paradigms, whereas we show how to construct higher levels generically from lower
level schemes. Their AEAD hierarchy uses separate integrity and indistinguisha-
bility experiments at each level, whereas we use a single combined experiment
at each level. We also give a hierarchy of authentication notions, not just AEAD
notions, and thereby expand applicability to schemes outside of the AEAD con-
text. Finally, we connect the hierarchy and our generic constructions with TLS
record layer encryption.
Connection with Secure Channel Definitions. One motivation of our work was
to understand the difference between the original CK01 secure channel defini-
tion of Canetti and Krawczyk [6] and the ACCE model of Jager et al. [13]. The
confidentiality and integrity notions in CK01 and their NetAut protocol corre-
spond with level 1 of our AEAD hierarchy – stateless authenticated encryption.
A comment in their paper does require that the receiver “check for uniqueness
of the incoming message”, which would upgrade to level 2 in our hierarchy, and
this is the notion that was used in a subsequent work by Namprempre [21]. In
contrast, Jager et al.’s ACCE notion maps to level 4 of our AEAD hierarchy –
sLHAE.

Application to Real-World Protocols. Each level of our AEAD hierarchy maps
to the requirements expected in some real-world protocols:

– Level 1: DTLS [23,24]: Datagram TLS provides basic authentication, allows
packets to be dropped, and will receive packets out of order, queuing them
for future processing.
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– Level 2: IPsec Authentication Header (AH) [15]: IPsec Authentication Header
protocol provides similar replay detection using a window of recently received
packets combined with dropping packets that are “too old”.

– Level 2: DTLS with optional replay detection: Datagram TLS does allow
optional replay detection [23,24, Sect. 3.3] using a similar technique to IPsec
AH.

– Level 3: 802.11 [12] is designed to preventing reordering and to detect replays
but allows for packet dropping.

– Level 4: TLS [7] is designed to receive a message sequence strictly as a sent,
and will be discussed at greater length in Sect. 4.

A recent analysis [19] of the QUIC protocol [29] employed an AEAD level
comparable to our level 1 AEAD; however, the replay-detection abilities of QUIC
suggest that a higher authentication level should be achievable.

1.2 Additional Related Work

There are several additional lines of work on authenticated encryption.
One line of research views data “as a stream”, rather than a discrete sequence

of messages; practical implementations receive data byte-by-byte rather than
as atomic messages in security definitions. Albrecht et al. [1] showed how to
carry out a plaintext recovery attack against the Secure Shell (SSH) protocol
as a result of byte-by-byte processing. This motivated the need for non-atomic
authenticated encryption definitions [5,8]. The work of Fischlin et al. [8] in par-
ticular is motivated by protocols such as TLS, SSH, and QUIC, and describes
checks that can again be correlated with our level-4 AEAD notion. It would be
interesting to expand stream-based analysis in the direction of our hierarchical
levels for protocols that allow packet dropping. For example, the QUIC protocol
[29] runs over UDP and tolerates a degree of packet loss, making analysis under
a level-4 stream-based notion inappropriate.

Another line of research focuses on the use of nonces in authenticated encryp-
tion [25,26], and more recently for the specific purposes of protecting implemen-
tations that misuse counters or nonces [9,11,27]. Meanwhile, Hoang et al. [10]
define a notion of robust authenticated encryption which incorporates padding
properties similar to the stateless form of LHAE of Paterson et al. [22]. Finally,
additional recent work focuses on defining authenticated encryption results in
the constructive cryptography framework [2,20].

2 Authentication Hierarchy

In this section, we formalize our 4-tier hierarchy of authentication notions, each
level building on the previous, and show how to achieve higher level notions from
level-1 combined with appropriate checks on sequence numbers.
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2.1 Definitions

Definition 1. A stateful authentication scheme Π for a message space M, a
key space K, and an output space C is a tuple of algorithms:

– Kgn() $→ k: A probabilistic key generation algorithm that outputs a key k.
– Snd(k,m, stE) $→ (c, stE): A probabilistic authentication algorithm that takes

as input a key k ∈ K, a message m ∈ M, and an authentication state stE,
and outputs a tagged message c ∈ C and updated state stE.

– Rcv(k, c, stD) → (m,α, stD): A deterministic verification algorithm that takes
as input a key k ∈ K, a tagged message c ∈ C, and a verification state stD,
and outputs either a message m ∈ M or an error symbol ⊥, a bit α ∈ {0, 1},
and an updated state stD.

On first use, stE and stD are initialized to ⊥.

Correctness is defined in the natural way: for all m ∈ M, all k
$← Kgn(), all

stE and stD defined in any sequence of encryptions and decryptions respectively,
and all c such that (c, st′E) ← Snd(k,m, stE), we have that Rcv(k, c, stD) =
(m, 1, st′D).

Note that in the case of a Rcv (message authentication check) failure, the
receive algorithm outputs a failure symbol ⊥, α = 0 to denote a failed receipt,
and an updated state stD: (⊥, 0, stD) ← Rcv(k, c, stD). Otherwise, the algorithm
outputs the correctly received message m, α = 1 to denote successful receipt,
and an updated state stD: (m, 1, stD) ← Rcv(k, c, stD).

Formally we define a stateful authentication security experiment that can be
parameterized with different authentication conditions to capture various levels
of authentication. Four graded levels of authentication are defined for the experi-
ment, correlated to different conditions, condi, under which an adversary A wins,
as shown in Fig. 2. Note that cond4 is strongly linked to authentication demands
in analyses of TLS [13,22], a protocol with strict authentication requirements.

Definition 2. Let Π be a stateful authentication scheme and let A be an adver-
sary algorithm. Let i ∈ {1, . . . , 4}. The stateful authentication experiment for
Π with authentication condition condi is given by ExpauthiΠ,A in Fig. 2. We define

Advauthi
Π (A) = Pr

[
ExpauthiΠ (A) = 1

]
.

Remark 1. If the authenticated message c takes the form of a ciphertext,
then level-1 authentication is equivalent to INT-CTXT. If c is such that
c = (m,MAC(m)), where MAC is a message authentication code, then level-1
authentication is equivalent to SUF-CMA. In order to maximize the application
potential of our results, we provide the generality for either application.

2.2 Relations Among Authentication Notions

Each of the authentication notions sequentially implies the security of the levels
below it. In the following theorem, the security implications between levels are
formalized, with security at Level 2 implying security at Level 1, etc.
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Fig. 2. Stateful authentication experiment authi with authentication condition condi
for stateful authentication scheme Π = (Kgn, Snd, Rcv) and adversary A.

Theorem 1 (Level-(i+1) authentication implies level-i authentication).
Let Π = (Kgn,Snd,Rcv) be an authentication scheme and let i ∈ {1, 2, 3}. For
any adversary A, Advauthi

Π (A) ≤ Advauthi+1
Π (A).

The proof of Theorem 1 can be found in the full version and is omitted here
due to space restrictions.

2.3 Constructing Higher Level Authentication Schemes

In this section, we generically show how to build higher level authentica-
tion schemes based on lower level authentication schemes and the inclusion of
sequence numbers with appropriate checks. Since currently implemented proto-
cols use both implicit and explicit sequence numbers, we generalize our model for
an arbitrary encoding scheme which captures both implicit and explicit sequence
numbers.

Definition 3 (Authentication encoding scheme). An (authentication)
encoding scheme Coding for a sequence number space S and message space M
is a pair of algorithms:

– Ecd(sqn,m) → mecd: A deterministic encoding algorithm that takes as input
a sequence number sqn ∈ S and a message m ∈ M, and outputs an encoded
message mecd ∈ Mecd, where Mecd is the encoded version of M.
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– Dcd(sqnlist,mecd) → (sqn,m, α): A deterministic decoding algorithm that
takes as input a sequence number list sqnlist ⊂ S and an encoded message
mecd ∈ Mecd, and outputs a sequence number sqn ∈ S, a message m ∈ M or
an error symbol ⊥, and a status variable α = 1 if decoding was successful or
α = 0 otherwise.

In our construction of higher level authentications, we will require that Ecd
is collision-resistant.

We can construct schemes that use either implicit or explicit sequence num-
bers using Definition 3. For example, the scheme with Ecd(sqn,m) := sqn‖m
has an explicit sequence number, and may be very applicable in practice since
sqn is sent explicitly with the message. An alternative scheme with implicit
sequence numbers would be Ecd(sqn,m) := m‖MAC(sqn). Thus elements of
the space Mecd may take various forms, contingent on the properties desirable
for Coding. We will see in Sect. 4.2 that the TLS record layer protocol uses an
encoding scheme based on the second example above. We formally distinguish
explicit and implicit sequence numbers as follows:

Definition 4. We say that authentication encoding scheme Coding uses explicit
sequence numbers if Dcd(∅, Ecd(sqn,m)) = (sqn,m, 1) for all sqn and all m, and
that Coding uses implicit sequence numbers otherwise.

We now present our generic constructions of level-i authentication schemes
from a level-1 authentication scheme. The heart of our construction is a sequence
number check TESTi that will correspond to the authentication condition condi.
Our constructions can accommodate any collision-resistant encoding scheme
Coding, with either implicit or explicit sequence numbers; this requirement
is specifically important in implicit authentication where the sequence num-
ber is not physically present on receipt. For conciseness, the notation Π ′

i for
P (Π, Ecd, TESTi) will be generally employed.

Definition 5 (P construction). Let Π be a (level-1) authentication scheme,
Coding be an encoding scheme, and let TESTi be one of the conditions specified in
Fig. 3. Define Π ′

i := P (Π, Coding, TESTi) as the authentication scheme resulting
from apply construction P in Fig. 3.

In this construction, the check TEST2 corresponds to the condition for level-
2 authentication. Basic level-1 authentication is assumed, so TEST2’s protec-
tion against replays implies replay protection for condition cond2. Namely, if
∃w < v : c = rcvdw then ∃j : sqn = stD.sqnlistj , since identical authenticated
messages must contain identical sequence numbers. Similar connections exist
between TEST3 and cond3 and TEST4 and cond4. Note that to check TEST2 it is
necessary to maintain a record of all previously received sqn; thus stD.sqnlist
must be a complete record. However, for TEST3 and TEST4, it is strictly only
necessary for stD.sqnlist to contain the last received sqn.

The following theorem shows that the P construction with TESTi achieves
level-i authentication. Notably Theorem2 depends on the collision-resistance of
Ecd. For many encoding schemes, this follows immediately. For example, the



From Stateless to Stateful: Generic Authentication 63

Fig. 3. Construction P of a level-i authentication scheme Π ′
i from a level-1 authenti-

cation scheme Π and encoding scheme Coding = (Ecd, Dcd).

simple concatenation scheme Ecd(ctr,m) = ctr‖m is clearly collision-resistant
when assuming unambiguous concatenation. When such a scheme is used, the
advantage of A is then directly reducible to the advantage of F . Due to space
restrictions, the proof of Theorem 2 can be found in the full version of this paper.

Theorem 2. Let Π be a secure level-1 authentication scheme and Coding
be an authentication encoding scheme with collision-resistant encoding. Let
i ∈ {2, 3, 4}. Then Π ′

i = P (Π, Coding, TESTi), constructed as in Fig. 3, is a
secure level-i authentication scheme. Specifically, let A be an adversary algo-
rithm that runs in time t and asks qs Send queries and qr Recv queries, and let
q = qs + qr. Then there exists an adversary B that runs in time tB ≈ t and
asks no more than qB = 1

2qs(qs − 1) queries, and an adversary F that runs
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in time tF ≈ t and asks qF = q queries, such that Advauthi
P (Π,Coding,TESTi)(A) ≤

Advauth1
Π (F) + Advcollision

Ecd (B).

The time-cost for checking using implicit sequence numbers could be consid-
erable when using a Level 2 or Level 3 authentication notion due to the need to
check against all previously received messages. However, to our knowledge, there
are no real-world implementations using implicit sequence numbers at these lev-
els. Implicit sequence numbers have been used in instances where Level 4 authen-
tication is desired, but explicit sequence numbers are usually employed at the
lower levels. Logically, this also corresponds to desirable real-world instantiation
formats; if a protocol allows packets to be dropped then it would be inconve-
nient to base authentication upon information that is not explicitly sent in each
packet. Alternatively, if no drops are allowed, authentication can be checked
against explicit or implicit information.

3 Authenticated Encryption Hierarchy

In this section, we build equivalent notions for authenticated encryption with
associated data (AEAD) schemes. AEAD security is typically defined by extend-
ing the authentication notion with a type of left-or-right encryption game.

3.1 Definitions

Definition 6. A stateful AEAD scheme Π for a message space M, an asso-
ciated data space AD, a key space K, and a ciphertext space C, is a tuple of
algorithms:

– Kgn() $→ k: A probabilistic key generation algorithm that outputs a key k.

– E(k, �, ad,m, stE) $→ (c, st′E): A probabilistic encryption algorithm that takes
as input a key k ∈ K, a length � ∈ Z, associated data ad ∈ AD, a message
m ∈ M, and an encryption state stE, and outputs a ciphertext c ∈ C and
updated state st′E.

– D(k, ad, c, stD) → (ad,m, α, st′D): A deterministic decryption algorithm that
takes as input a key k ∈ K, associated data ad ∈ AD, a ciphertext c, and a
decryption state stD, and outputs either associated data ad or an error symbol
⊥, a message m ∈ M or an error symbol ⊥, a bit α ∈ {0, 1}, and an updated
state st′D.

Compared with stateful authentication schemes in Definition 1, AEAD
schemes utilize two further fields: ad, which is for associated data (such as
authenticated but unencrypted header data), and an optional length field �.

Correctness is defined in an analogous manner to that of stateful authenti-
cation schemes. Correspondingly we define 4 levels of stateful AEAD security.
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Definition 7. Let Π be a stateful AEAD scheme and let A be an PPT adver-
sarial algorithm. Let i ∈ {1, . . . , 4} and let b ∈ {0, 1}. The stateful AEAD exper-
iment for Π with condition condi and bit b is given by Expaeadi−b

Π (A) in Fig. 4.

We define Advaeadi
Π (A) =

∣
∣
∣Pr

[
Expaeadi−1

Π (A) = 1
]

− Pr
[
Expaeadi−0

Π (A) = 1
]∣
∣
∣.

The Encrypt and Decrypt oracles in Fig. 4 work together to provide both an
authentication experiment and ciphertext indistinguishability experiment. When
b = 0, the adversary always gets m0 encrypted and never receives any decryption
information. When b = 1, the adversary always gets m1 encrypted and poten-
tially receives decryption information. If the adversary makes an attempt to forge
ciphertexts or violate the sequencing condition (modelled by the out-of-sync
flag), then a secure stateful AEAD scheme should return ⊥ in all subsequent
decryption queries. If the adversary has caused the encryptor and decryptor to
get out of sync (by forging a ciphertext or violating the sequencing condition)
and ever receives non-⊥ from Decrypt, the adversary learns b = 1.

When � is not used, the level-1 notion aead1 corresponds to IND-CCA and
INT-CTXT security of a stateless AEAD scheme.

When � is used for length, the level-4 notion aead4 corresponds to the stateful
length-hiding authenticated encryption security notion of Krawczyk et al. [18]
which is a slight modification of that of Jager et al. [13].

Analogously to Sect. 2.2, level-(i + 1) AEAD security implies level-i AEAD
security. The details are omitted due to space restrictions.

3.2 Constructing Higher Level AEAD Schemes

Similarly to Sect. 3, we can construct higher level AEAD schemes based on a
level-1 AEAD scheme with the inclusion of sequence numbers with appropriate
checks. We again generalize the approach using an encoding scheme that captures
both implicit and explicit sequence numbers.

Definition 8 (AEAD encoding scheme). An AEAD encoding scheme
Coding for a sequence number space S, a message space M, and an associated
data space AD is a pair of algorithms:

– Ecd(sqn, ad,m) → (adecd,mecd): A deterministic encoding algorithm that
takes as input a sequence number sqn ∈ S, associated data ad ∈ AD, and a
message m ∈ M, and outputs an encoded associated data value adecd ∈ ADecd

and message mecd ∈ Mecd, where ADecd and Mecd are the encoded versions
of associated data space AD and message space M, respectively.

– Dcd(sqnlist, adecd,mecd) → (sqn, ad,m, α): A deterministic decoding algorithm
that takes as input a sequence number list sqnlist ⊂ S, an encoded associ-
ated data value adecd, and an encoded message mecd ∈ Mecd, and outputs a
sequence number sqn ∈ S, associated data ad ∈ AD or an error symbol ⊥, a
message m ∈ M or an error symbol ⊥, and a status variable α = 1 if decoding
was successful or α = 0 otherwise.
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Fig. 4. Stateful AEAD experiment aeadi with authentication condition condi for state-
ful AEAD scheme Π = (Kgn, E, D) and adversary A.

Definition 9. We say that AEAD encoding scheme Coding uses explicit
sequence numbers if, for all sqn, ad, and m, when Ecd(sqn, ad,m) =
(adecd,mecd), we have that Dcd(⊥, adecd,mecd) = (sqn, ad,m, 1). Otherwise, we
say that Coding uses implicit sequence numbers.

Definition 10 (PAEAD construction). Let Π be a (level-1) AEAD scheme,
Coding be an AEAD encoding scheme, and let TESTi be a condition specified in
Fig. 3. Define Π ′

i := PAEAD(Π, Ecd, TESTi) as the AEAD scheme resulting from
applying construction PAEAD in Fig. 5.

Theorem 3. Let Π be a secure level-1 AEAD scheme and Coding be an AEAD
encoding scheme with collision-resistant encoding. Let TESTi be defined as in
Fig. 3 and i ∈ {2, 3, 4}. Then Π ′

i = PAEAD(Π, Coding, TESTi), constructed as
in Fig. 5, is a secure level-i AEAD scheme. Specifically, let A be an adversary
algorithm that runs in time t and asks qe Encrypt queries and qd Decrypt queries,
and let q = qe + qd. Then there exists an adversary B that runs in time tB ≈ t
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Fig. 5. Construction PAEAD of a level-i AEAD scheme Π ′
i from a level-1 AEAD scheme

Π and AEAD encoding scheme Coding = (Ecd, Dcd), with TESTi as shown in Fig. 3.

and asks no more than qB = 1
2qe(qe − 1) queries, and an adversary F that runs

in time tF ≈ t and asks qF = q queries, such that Advaeadi
PAEAD(Π,Coding,TESTi)(A) ≤

Advaead1
Π (F) + Advcollision

Ecd (B).

The proof of Theorem3 is omitted due to space restrictions.

4 Authenticated Encryption in TLS

The work of Paterson et al. [18] showed that the MAC-then-encode-then-encrypt
mode of CBC encryption in TLS 1.2 (with sufficiently long MAC tags) is a
secure length-hiding authenticated encryption (LHAE) scheme, assuming the
encryption function is a strong pseudorandom permutation and the MAC is
a pseudorandom function. Their definition corresponds to level 1 of our AEAD
hierarchy. Several subsequent work on the provable security of TLS, such as that
of Jager et al. [13] and Krawczyk et al. [18], assume that the TLS record layer
is a secure stateful length-hiding authenticated encryption (sLHAE) scheme,
corresponding to level 4 of our AEAD hierarchy. To our knowledge, there has
as of yet been no formal connection between the LHAE result of Paterson et al.
and the sLHAE requirement of subsequent works; we address that gap in this
section by bringing sequence numbers into the modeling using the framework in
the previous sections.
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4.1 TLS Sequence Numbers and Authentication Level

The TLS record layer utilizes sequence numbers to ensure detection of deleted
or reordered records [7, p. 94]. Being 64-bits long, sequence number exhaustion
for any given connection is unlikely and the specification demands renegotiation
should it occur. Sequence numbers are sent implicitly by inclusion under the
MAC (or AEAD). When instantiated, “the first record transmitted under a
particular connection state MUST use sequence number 0” [7, Sect. 6.1] and
each subsequent record increments the sequence number. Sequence numbers are
continuous across record types (application and alert).

When the ciphersuite uses MAC-then-encode-then-encrypt, the MAC tag
is computed as follows, where k is the MAC key (either MAC write key or
MAC read key, depending on the direction), sqn is the 64-bit sequence number,
and m is the (possibly compressed) TLS plaintext object (called TLSCompressed)
[7]: MAC(k, sqn ‖ m.type ‖ m.version ‖ m.length ‖ m.fragment). Since the
sequence number is implicit, a receiver will check the MAC verification using the
expected sequence number. If the check fails, a bad record mac alert (type 20)
will be generated – an alert that is always fatal [7, Sect. 7.2.2].

When the ciphersuite is uses a combined AEAD scheme, the sequence num-
ber, as well as several other values, are included in the additional data field
[7]: ad = sqn ‖ m.type ‖ m.version ‖ m.length. The ciphertext is then
c ← Encrypt(k, m.length, ad, m.fragment, stE). The sequence number is not
transmitted in the ciphertext. AEAD decryption is applied using the expected
sequence number. Decryption failure must also result in a bad record mac fatal
alert [7, Sect. 6.2.3.3].

4.2 From TLS Level-1 AEAD to Level-4 AEAD

Paterson et al. [22] show that a simplified version of TLS MAC-then-encode-
then-encrypt, which we call ΠPRS and describe in the top half of Fig. 6, satisfies
level-1 AEAD security. By design, ΠPRS includes the sequence number field
in the ad, but never initializes it as ΠPRS is not stateful. However, the TLS
record layer protocol as actually used is stateful and, as such, ought to achieve
a higher level of AEAD; namely, it should satisfy level-4 AEAD. The bottom
half of Fig. 6 shows the TLS MAC-then-encode-then-encrypt record layer with
the use of sequence numbers as specified in the standard.

Our framework allows us to immediately show that ΠTLS satisfies level-4
AEAD security: we incorporate the sequence numbers in an implicit AEAD
encoding scheme CodingTLS , and then view ΠTLS as the result of applying the
PAEAD construction to ΠPRS and CodingTLS .

Define AEAD encoding scheme CodingTLS = (EcdTLS , DcdTLS) as follows:

– EcdTLS(sqn, ad,m) = (sqn‖ad,m)
– DcdTLS(sqnlist, sqn‖ad,m) = (sqn, ad,m, α)

where α = 1 if and only if sqn and sqnlist satisfy TEST4 in Fig. 3, ad �= ⊥, and
m �= ⊥.
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Fig. 6. Construction of AEAD schemes ΠPRS (Paterson et al. [22] variant of TLS
MAC-then-encode-then-encrypt) and ΠTLS (TLS MAC-then-encode-then-encrypt)
from encode-then-encrypt scheme (E, D).

Theorem 4. ΠTLS = PAEAD(ΠPRS , CodingTLS , TEST4).

Theorem 4 follows semantically comparing ΠTLS and the scheme resulting
from the construction PAEAD(ΠPRS , CodingTLS , TEST4).

Clearly, EcdTLS is collision-resistant due to the unambiguous parsing of
sqn as a fixed-length 64-bit value. We can thus apply Theorem3 to obtain
Corollary 1.

Corollary 1. The TLS record layer with MAC-then-encode-then-encrypt in
CBC mode satisfies level-4 AEAD security. Specifically, let A be an adversary
algorithm that runs in time t against ΠTLS. Then there exists an adversary F
that runs in time tF ≈ t such that Advaead4

ΠTLS
(A) ≤ Advaead1

ΠPRS
(F).

From Paterson et al. [22] we know that the TLS record layer encryption
in MAC-then-encode-then-encrypt CBC mode satisfies AEAD level-1 security
when a secure cipher and message authentication code is used. Combined
with Corollary 1, this means that the sLHAE security definition used by Jager
et al. [13] and Krawczyk et al. [18] in their analyses of full TLS ciphersuites is
achieved, and thus TLS is ACCE secure in this scenario.
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Abstract. Searchable symmetric encryption allows a party to encrypt
data while maintaining the ability to partially search for over it. We
present a scheme that balances efficiency, privacy, and the set of admis-
sible operations: Our scheme searches in time logarithmic in the size of
the word dictionary (i.e., it is independent of the number of files), satis-
fies the strong security notion of search pattern privacy against adaptive
attacks, supports complex search queries over a Boolean algebra (includ-
ing conjunctions of multiple search words), provides the full functionality
of addition and deletion of search words and identifiers, and is provably
secure in the standard model.

At the heart of our system lies a novel cryptographic tool called con-
strained functional encryption (CFE) over the message plaintext. In a
CFE system, the decryptability of ciphertexts is constrained to partic-
ular ciphertexts having been evaluated in a very concrete way. We give
a definitional framework including a relaxed indistinguishability-based
security notion. Our construction is proved secure based on the sub-
group decision problem in bilinear groups for the class of inner products
functions.

Keywords: Searchable encryption · Functional encryption · Pairings ·
Dual vector spaces

1 Introduction

A searchable encryption scheme (SSE) allows a party to encrypt a message,
index the ciphertext, and at any point in time to efficiently look for the plaintext
by issuing a search token encoding a search criterion. In addition, a searchable
symmetric encryption scheme is dynamic, if it supports updates of the encrypted
database. SSE is an ideal tool in settings where a party would like to outsource
some data while it still wishes to maintain some privacy guarantees.

The best-possible notion of privacy hides the memory access during searches
and updates. In particular, a server should not be able to tell whether a client
retrieves a document which it already obtained from a previous query. One
calls this property privacy of the access pattern. Satisfying access pattern pri-
vacy in its full generality requires oblivious RAMs introduced by Goldreich and
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Ostrovsky [6]. Unfortunately, as it is often the case, general-purpose solutions are
inefficient and rather of theoretical interest (although significant steps have been
made towards practical ORAMs [11]). A weaker notion, known as privacy of the
search pattern, hides any information about the encoded keywords. In particu-
lar, a server should not be able to tell whether a client already has searched for
the same word. Dynamic SSE schemes additionally ask for update privacy. The
system shall leak no information about the documents and keywords through
the execution of update protocols.

Apart from privacy, relevant design criteria for SSE systems include sup-
port of comprehensive search queries and scalability aspects measured in the
communication and search complexity. Consider an encrypted version of a SQL-
database. Search queries are typically formulated in a regular language, allowing
for comprehensive expressions over multiple keywords. In file systems, such as
Google’s Drive and Amazon’s S3, millions of users push, pull and delete files.
Here, the desiderata is a low communication complexity for searches and updates.
Ideally, the operation shall require a single round of communication, as most
clients connect through high latency networks.

Previous Work. The research community has proposed different SSE sche-
mes, each one addressing different trade-offs between security, functionality and
efficiency. While prior SSE schemes achieve sublinear search time that scales only
with the number of documents matching the query [2–4,7,8], most of them lack
of important properties usually required in practice like the ability to update the
EDB, expressiveness in search queries and the capacity to run a search parallel
searching. In Table 1 we give a comparison of the relevant schemes.

The exception is the ground-breaking work of Cash et al. [2,3]. In [3] they
provide an SSE scheme with truly practical search capability and support of
conjunctive search queries. Using techniques from multi-party computation they
construct a scheme with search complexity O(r) where r is the number of doc-
uments matching a search word. They reduce the communication complexity
with a clever pre-processing technique. Later Cash et al. [2] propose efficient
SSE schemes that support updates to the encrypted database, i.e. dynamics.
The protocols resemble previous techniques from [3].

Our Results. In this work we construct a searchable symmetric encryption
system for searching on encrypted that is

1. Search efficient. Searching the encrypted database for all files containing a
single keyword is independent of the number of files. It is bounded by the size
of the word dictionary W, i.e. O(log |W|) where the size of dictionary is fixed
in advance.

2. Communication efficient. Communicating a search and update requires a sin-
gle round of communication. A search queries is succinct. It contains 2 log |W|
elements of a pairing-friendly group G.

3. Private. Searching for all files containing a word leaks no information about
the searched word. Search tokens are probabilistic and indistinguishable from
prior search queries.
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Table 1. Comparison of SSE schemes for a single keyword [2, Fig. 1]. Notation: In
security Ad means adaptive security in the standard model, Ad(ROM) means adaptive
security in the random oracle model, NonAd means non-adaptive security; Leakage
is leakage from encrypted database only; Search time is the complexity of the search
algorithm while Comm. is the number of communication rounds; Update measures
the communication complexity; Formula asks for support of Boolean expression; n = #
documents, m = |W|, r = |DB(w)|, N =

∑

w |DB(w)|, M = maxw|DB(w)|, p = #
processors, |Wid|= # keyword changes in an update, dw = # times the searched-for-
keyword has been added/deleted.

Scheme Security Leakage Dyn? Index size Search time/comm. Update Formula?

CGKO’06-1 [4] NonAd m, N No O(N + m) O(r), O(1) − No

CGKO’06-2 [4] Ad Mn No O(Mn) O(r), O(r) − No

KPR’12 [8] Ad(ROM) m,N Yes O(N + m) O(r), O(1) O(|Wid|) No

KP’13 [7] Ad(ROM) m,n Yes O(mn) O((r log n)/p), O(1) O(|Wid| + m log n) No

CJJJ+’14-1 [2] NonAd,
Ad(ROM)

N No O(N) O(r/p), O(1) − Yes

CJJJ+’14-2 [2] Ad N No O(N) O(r/p), O(r) − Yes

CJJJ+’14-3 [2] NonAd,
Ad(ROM)

N Yes O(N) O((r + dw)/p), O(1) O(|Wid| + m log n) Yes

This work Ad N Yes O(m) O((log m)/p), O(1) O((|Wid| log m)/p) Yes

4. Dynamic. Addition and deletion takes as much time and communication as
searching for the file.

5. Functional. Searching for all files containing multiple keywords expressed as
a Boolean formula of size |Wid| takes search time O(|Wid| · log(|W|)).
Our scheme achieves the results by expressing the data structure as an

encrypted binary tree (while prior work followed a linked list approach [2–4,7,8]).
To traverse the encrypted tree, we construct a function-private secret-key func-
tional encryption scheme for the inner product functionality. The system sup-
ports any arbitrary polynomial number of key queries and message queries with
the property that the functional keys decrypt specific ciphertexts only. Our con-
struction makes use of symmetric bilinear maps. The security notion we prove
for our construction is a natural indistinguishability-based notion, and we estab-
lish it under the Subgroup Decision Assumption. To obtain correctness for our
scheme, we assume that inner products will be contained in a polynomially-sized
range. This assumption is sufficient for our application, as the tree is binary.

2 Preliminaries

2.1 Bilinear Groups

We recall some facts about bilinear groups and vector spaces.

Definition 1 (Bilinear Group). A bilinear group is generated by a probabilis-
tic algorithm G that takes as input a security parameter λ and outputs three
abelian groups G,G1,GT with G1 ⊂ G. The algorithm also computes an effi-
ciently computable map e : G × G → GT that is:
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– bilinear: For all g, h ∈ G, x, y ∈ Fp we have e(gx, hy) = e(g, h)xy

– non-degenerate: For all g, h ∈ G, we have e(g, h) �= 1.

We assume that group operations and random sampling in each group is effi-
ciently computable and denote the output of G as (G,G1,GT , e).

In additive notation, a prime order bilinear group is closed under addition
and scalar multiplication. It gives raise to a vector space over G. To this end, we
introduce some additional notation. Let x = (x1, . . . , xn) ∈ F

n
p be an exponent

vector. We write gx = (gx1 , . . . , gxn) for the n-dimensional group vector in G.
For any “scalar” α ∈ Fp we use the notation (gx)α to denote the scalar product
(gαx1 , . . . , gαxn). If the context is clear, we use the term vector interchangeably
for group elements and exponents.

Looking at bilinear groups as vector spaces allows us to express linear map-
pings between such spaces. One such linear mapping is the “dot” product (some-
times referred to as inner product in Euclidean spaces), defined as the sum of
the products of the corresponding entries of two vectors. Geometrically, it is
the product of the Euclidean magnitudes of the two vectors and the cosine of
the angle between them. We define the analog of the dot product between two
n-dimensional vectors in bilinear groups.

Definition 2 (Dot Product Group). A dot product group is a bilinear group
generated by the group generator G∗. The generator also outputs an efficiently
computable algorithm d : G

n × G
n → GT . The algorithm computes the “dot

product” between two vectors gx, hy, written gx ∗ hy, as

d(gx, hy) =
n∏

i=1

e(g, h)xiyi = e(g, h)x∗y

The dot product fulfils the following properties if x,y and z are “vectors” in F
n
p

and α, β are “scalars” in Fp:

– commutative: gx ∗ hy = hy ∗ gx

– distributive (over multiplication): gx ∗ (hy hz) = (gx ∗ hy) (gx ∗ hz)
– scalar multiplication: gαx ∗ hβy = (gx)α ∗ (hy)β = (gx ∗ hy)αβ

– bilinear: gx ∗ (hαy hz) = (gx ∗ hy)α (gx ∗ hz).

2.2 Dual Spaces

We will employ the concept of dual pairing vector spaces from [10]. We choose
two random sets of vectors: B := {b1, . . . ,bm} and B

∗ := {b∗, . . . ,b∗
m} subject

to the constraint that they are “dual orthonormal” in the following sense:

〈bi,b∗
i 〉 = 1 mod p for all i

〈bi,b∗
j 〉 = 0 mod p for all i �= j

where 〈·, ·〉 denotes the dot product.
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We note that choosing sets (B,B∗) at random from sets satisfying these dual
orthonormality constraints can be realized by choosing a set of n vectors B

uniformly at random from F
n
p (these vectors will be linearly independent with

high probability), then determining each vector of B∗ from its orthonormality
constraints (these vectors will be close to the uniform distribution with high
probability). We will denote choosing random dual orthonormal sets this way
as: (B,B∗) ← Dual(Fn

p ).

2.3 Subset Membership Problem

The problem of deciding membership in a subset appears in various forms in
cryptography. One canonical example is the decisional Diffie-Helman (DDH)
problem in a group G of prime order p generated by g: Given (g, gx, gy, Tb) ∈ G

the decisional Diffie-Hellman problem asks to decide if T0 = gxy or T1 = gz

for random x, y, z←RFp. If we define the group G to be generated by (g, g) and
the subgroup G1 generated by (g, gx), then the DDH problem asks to decide if
(gy, Tb) is a random member in G or G1.

We recall Freeman’s definition of the subgroup decision problem in the setting
of symmetric pairing-friendly groups [5]. The assumption states that it is infeasi-
ble to distinguish a random sample from group G and a random sample from the
subgroup G1 ⊂ G. It has been used to prove security of the Boneh-Goh-Nissim
encryption system and many other applications [1,5].

Definition 3 (Subgroup Decision Assumption). Let G∗ be a symmetric
bilinear dot product group generator. We define the following distribution

param := (G,G1,GT , e, d) ← G(1λ)
G = G G1 = G1

T0←RG1 T1←RG

We define the advantage of an algorithm A in solving the subgroup decision
problem to be

AdvA
SDP(λ) =

∣
∣Pr

[A(param, T0) = 1
] − Pr

[A(param, T1) = 1
] ∣
∣

We say that G satisfies the subgroup decision assumption, if AdvA
SDP(λ) is a neg-

ligible function of λ for any polynomial-time adversary A.

Note, if the subgroup decision problem is infeasible in G, then it is in GT as
well.

2.4 Cryptographic Building Blocks

Our searchable encryption will make use of pseudo-random objects. These can
be efficiently generated with pseudo-random functions.
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Definition 4 (Pseudo-random Function). Let PRF : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ be an efficient, length-preserving, keyed function. We define the advantage
of distinguisher A as

AdvA
PRF(λ) =

∣
∣
∣Pr

[APRFs(·)(1λ) = 1
] − Pr

[Af(·)(1λ) = 1
]∣∣
∣

where the seed s is chosen at random from {0, 1}∗ and f is uniformly chosen at
random from the set of functions mapping λ strings to λ strings. We say that
PRF is a pseudorandom function, if AdvA

PRF(λ) is a negligible function of λ for
all probabilistic polynomial-time distinguishers A.

3 Constrained Functional Encryption over the Message
Plaintext

3.1 Syntax

We will consider a specialization of the general definition of functional encryption
to the particular functionality of computing dot products of n-length message
plaintext vectors over a finite field Fp with one caveat. Whereas the functional
encryption paradigm supports the generation of keys for the decryption of a
particular function for any ciphertext, our notion additionally constraints the
decryptability to a particular ciphertext.

To make the difference to functional encryption clear, we will refer to the
scheme as constrained functional encryption. A private key functional encryption
scheme for this functionality will have the following algorithms:

Definition 5 (Constrained Functional Encryption). A constrained funct-
ional encryption system CFE consists of four algorithms (Setup,KeyGen,Enc,
Dec), such that

– The Setup algorithm will take in the security parameter λ and the vector length
a parameter n (a positive integer that is polynomial in λ). It will produce a
master secret key MSK.

– The encryption algorithm Enc will take in the master secret key MSK, and
a vector x ∈ F

n
p . It produces a ciphertext CTx,q and an internal state stq for

the q-th ciphertext. (We will use counter q to point to a ciphertext.)
– The key generation algorithm KeyGen will take in the master secret key MSK,

a vector y ∈ F
n
p and the internal state stq. It produces a secret key SKy,q.

– The decryption algorithm Dec will take in a secret key SKy,q and a ciphertext
CTx,q. It will output a value z ∈ Fp.

For correctness, we require that for all x,y ∈ F
n
p , all MSK in the support of

Setup(1λ, n), all pairs (CTx,q, stq) result of calling Enc(MSK,x), all decryption
keys SKy,q result of calling KeyGen(MSK,y, stq), we have

Dec(SKy,q,CTx,q) = 〈x,y〉
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3.2 Security

We will consider an indistinguishability-based security notion defined by a game
between a challenger and an attacker. At the beginning of the game the chal-
lenger calls Setup(1λ, n) to produce the master secret MSK. The challenger
also selects a random bit b. Throughout the game, the attacker can (adaptively)
interact with two oracles.

– To make a ciphertext query, the attacker submits two vectors x0,x1 ∈ F
n
p

to the challenger, who then runs Enc(MSK,xb) and returns the resulting
ciphertext CTxb,q to the attacker. The challenger stores the state information
stq for the q-th query.

– To make a key query, it submits two vectors y0,y1 ∈ F
n
p along a pointer to

the q-th ciphertext query to the challenger, who then runs KeyGen(MSK,yb,
stq) and returns the resulting SKyb to the attacker.

The attacker can make any polynomial number of key and ciphertext queries
throughout the game. Note, the result of each ciphertext query is the generation
of a ciphertext plus some internal state. We denote by stq the state information
related to the q-th ciphertext. The challenger uses stq to answer key queries
linked to the q-th ciphertext. In other words, the decryption key only decrypts
the inner product when applied to the q-th ciphertext. This captures the idea of
constrained decryptability of ciphertexts. At the end of the game, the attacker
must submit a guess b′ for the bit b. We require that for all ciphertext queries
x0,x1 and key queries y0,y1, it must hold that

〈x0,y0〉 = 〈x1,y1〉

The attacker’s advantage is defined to be the
∣
∣Pr[b = b′] − 1

2

∣
∣ .

Definition 6 We say a private key functional encryption scheme for dot prod-
ucts over F

n
p has indistinguishable ciphertexts in presence of constrained decryp-

tion keys (or simply, is deemed secure), if any PPT attacker’s advantage in the
above game is negligible as a function of the security parameter λ.

3.3 Construction

We now present our construction in symmetric bilinear groups. We will choose
random dual orthonormal bases (b1,b2) ∈ B and (b∗

1,b
∗
2) ∈ B

∗ that will be used
in the exponent to encode the message and one-time key vectors respectively.
Vectors will be encoded twice to create space for a hybrid security proof, resulting
in a ciphertext (Ai, Bi)n

i=1. A bit more concrete, the first bases (b1,b∗
1) encode

the message vector x and x, whereas the second bases (b2,b2
∗) encode the key

vector s and u.
We view it as a core feature of our construction that the structure of messages

and keys in our scheme is perfectly symmetric, just on different sides of dual
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orthonormal bases. This gives raise to a scheme that is both homomorphic to
the message plaintext and key with respect to addition and multiplication.

To generate a decryption key for an inner product function, we encrypt the
vector y under the key vector v and t, obtaining the “ciphertext” (Ci,Di)n

i=1,
and add a cancellation term E = e(g2, h2)〈s,t〉 plus the base F = e(g1, h1) for
the discrete log computation. Decryption first “homomorphically” evaluates the
inner product over the A and D elements. (The B and C elements are used in
the proof.) The result is a ciphertext encoding the inner products of the message
and key vectors. Next decryption just cancels out the key component E and
computes the discrete log to the base F.

We will only require decryptions of 〈x,y〉 from a fixed polynomial range of
values inside Fp, as this will allow a decryption algorithm to compute it as a
discrete log in a group where discrete log is generally hard. Hence, we expect the
range of 〈x,y〉 to be small, say an integer in the set {0, . . . , T}. Using Pollard’s
lambda method the computation of the discrete log takes expected time Õ(

√
T )

or alternatively space O(T ) by storing a look up table for the T entries.

– Setup(1λ, n): On input the security parameter 1λ and the dimension n, com-
pute a symmetric bilinear dot product group (G,G1,GT , e, d) ← G∗(1λ) with
|G| = p. Choose generators g1, h1 ∈ G and g2, h2 ∈ G1. Sample at random
orthonormal base B,B∗ ← Dual(F2

p). The algorithm outputs the master secret
MSK as B,B∗, g1, g2, h1, h2, p, n.

– Enc(MSK,x): To encrypt a message x ∈ F
n
p under secret key MSK, choose

random vectors sq,uq ∈ F
n
p . Output ciphertext

{Ai = (gb1
1 )xi(gb2

2 )si , Bi = (hb∗
1

1 )xi(hb∗
2

2 )ui}n
i=1

and store the random vectors stq ← (sq,uq).
– KeyGen(MSK,y, stq): To generate a decryption key for the q-th ciphertext

under master secret MSK for vector y ∈ F
n
p , the algorithm chooses random

vectors t,v ∈ F
n
p and sets the secret key SKy,q as

{Ci = (gb1
1 )yi(gb2

2 )vi , Di = (h
b∗
1

1 )yi(h
b∗
2

2 )ti}ni=1, E = e(g2, h2)
sqt, F = e(g1, h1)

– Dec(SKy,q, CT ): To decrypt a ciphertext CTx,q = (A,B) with secret key
SKy,q = (C,D,E, F ), compute

n∏

i=1

d(Ai,Di)
E

and return the discrete log to the base F = e(g1, h1).

We would like to comment on the scheme:

– The above construction is stateful. It requires the encryptor to store the key
vectors stq = (sq,uq) for every ciphertext. For efficient realizations of KeyGen
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one may reduce the storage complexity and re-compute the state using stan-
dard key derivation techniques. That is, instead of sampling vectors sq,uq

uniformly at random from Fp, run a pseudorandom function PRF(ki, q) for
i ∈ {s, u} where the ki’s are part of the master secret MSK and q is a pointer
to the ciphertext.

– Some emerging applications ask to compute a predicate Px : Fn
p → {0, 1} from

the class of predicates P = {Px|x ∈ F
n
p} where Px(y) = 1 if 〈x,y〉 = 0 and

Px(y) = 0 otherwise. It has been shown that this way one can evaluate degree
n polynomials and 2-CNF/DNF formuals [9]. Our scheme supports efficient
predicate tests without computing the discrete log by comparing the output
of the decryption to F 0 = e(g1, h1)0.

We prove the following main theorem in the full version.

Theorem 1. Assume the SDA assumption holds in G, then the above scheme
is secure.

4 Dynamic Searchable Symmetric Encryption

A searchable encryption allows a client to encrypt data in such a way that it can
later generate search tokens to send as queries to a storage server. Given a search
token, the server can search over the encrypted data and return the appropriate
encrypted files. Symmetric searchable encryption systems typically follow a blue
print (at least when the system tolerates leakage of access patterns): One first
encrypts the data with a scheme supporting pseudorandom ciphertexts1 and tags
ciphertexts with words. Next, one builds up a “cryptographic” data structure
with word-identifier pairs. Each identifier points to a ciphertext (or set thereof).
Then building a searchable encryption system boils down to designing search
mechanisms for the data structure. Throughout the remainder of the paper, we
implement the idea and define searchable encryption with respect to searching
for identifiers in a data structure.

4.1 Syntax

We follow the notation of Cash et al. A database DB = ((idi, {wj}j≤n)i≤m) is
represented as a list of identifier/word tuples where every (file) identifier idi ∈ I
taken form the index set I is associated with j words {wj}j≤n taken from a
word dictionary W. A search query ψ(w) = (ψ,w) is specified by a tuple of
words w ⊆ W and a boolean formula ψ on w. We denote by |ψ| the arity of the
formula. We write DB(wj) (resp. DB(ψ(w))) for the set of identifiers associated
with the word wj (resp. matching ψ(w)). An update query φ(u) is parameterized
with an update operation u. Updates of the form (add,w, id), (del, w, id) add
or remove identifiers id assigned with word w; update operations of the form
(add,w, id), (del,w, id) add or remove a list of words w from identifier id. We
write EDB(φ(u)) for the set of identifiers satisfying the update φ(u).
1 Semantic security is not enough. The reason is that the notion leaks the length of

messages.
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Definition 7 (Searchable Encryption). A dynamic searchable symmetric
encryption scheme DSSE consists of three interactive algorithms (Setup,Search,
Update) executed between the client and the server, such that

– Setup(1λ,DB). On input a security parameter λ and a data base DB, the pro-
tocol outputs a secret key MSK and an encrypted database EDB. The client
stores the secret key MSK, whereas the server holds the encrypted database
EDB.

– Search(MSK,ψ(w),EDB). The protocol is between the client and server,
where the client takes as input a secret key MSK and a search query ψ(w)
on words w, and the server takes as input the encrypted database EDB. The
server outputs a set of identifiers ID ⊆ I, the client has no output.

– Update(MSK,φ(u),EDB). The protocol runs between the client and server,
where the client input is a secret key MSK and an update query φ(u) on
operation u, and the server takes as input the encrypted database EDB. At
the end of the interaction, the client terminates with an updated state MSK ′

and the server with a modified database EDB′.

We say a DSSE system is non-interactive if Search and Update are two-round
protocols.

Definition 8 (Correctness). A dynamic symmetric searchable encryption
DSSE system is correct, if for all databases DB, all search queries ψ(w), all
update queries φ(u), and all (MSK,EDB) ← Setup(1λ,DB), it holds

– Search correctness: There exists a negligible function εs, s.t.

Pr
[
Search(MSK,ψ(w),EDB) �= DB(ψ(w))

]
= εs(λ)

– Update correctness: There exists a negligible function εu, s.t.

Pr
[
Update(MSK,φ(u),EDB) �= EDB(φ(u))

]
= εu(λ)

4.2 Security

Our aim is to provide a strong notion of query privacy. In our model the server
shall not tell apart search and update queries even if the same queries have been
issued before. We allow the adversary to learn from the interaction with the
system is the result of search and update queriers in terms of the associated
identifiers. (Note, the server will learn the access pattern when asked to retrieve
the ciphertexts as a consequence of the search and update.) To this end, we
devise an experiment between the challenger and the adversary A. The adversary
chooses two databases DB0,DB1 and sends two queries q0, q1 (be it a search
or be it an update query) to the challenger emulates the effect of the query
qb for a randomly chosen bit b on either of the two encrypted databases DBb.
The adversary A wins the experiment, if he guesses the database he interacts
with. To avoid a trivial game, we must restrict the type of adversarial queries.
Clearly, if the adversary defines a pair of queries which differ in their response,
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the adversary wins the experiment with overwhelming probability. Hence, for a
meaning security notion, we require that for all search queries ψ(w) = (ψ,w),
it holds that DB0(ψ(w)0) = DB1(ψ(w)1); and for all update queries φ(u) =
(φ,u), it holds that EDB0(φ(u)0) = EDB1(φ(u)1). We summarize the above
discussion in the following experiment:

Setup: Adversary A chooses two databases DB0,DB1. The challenger flips
a bit b ∈ {0, 1} and runs Setup(1λ,DBb). It keeps the master secret MSK to
itself and gives the encrypted database EDBb to A.

Challenge: Adversary A may additively send queries to oracles Search and
Update:

– Search(·, ·): This oracle implements the search protocol. It expects two equally-
sized search queries (ψ(w)b = (ψb,wb) subject to the restriction that

DB0(ψ(w)0) = DB1(ψ(w)1)

The purpose of the oracle is to emulate a client running the Search algorithm
on input (MSK,ψ(w)b,EDBb).

– Update(·, ·): This oracle expects as input two equally-sized update queries
φ(u)0, φ(u)1 subject to the restriction that

EDB0(φ(u)0) = EDB1(φ(u)1)

It emulates a client running the Update algorithm on input (MSK,φ(u)b,
EDBb).

Guess: At some point, the adversary A outputs a guess b′.
The advantage of an adversary A in this experiment is defined as Pr

[
b′ = b

]− 1
2 .

Definition 9 (Full Security). A dynamic symmetric searchable encryption
system is fully secure, if all polynomial-time adversaries A have at most a neg-
ligible advantage in the above experiment.

The above notion gives strong search query privacy guarantees in the sense
that an adversary does not only learn the search words w, but it neither learns
the formula ψ. We also consider a relaxed version, where the scheme hides search
words only. The experiment is identical to the above one except that we require
(ψ,w0) = (ψ,w1) to hold for all adversarial search queries ψ(w) = (ψ,w) and
(φ,w0) = (φ,w1) to hold for all adversarial update queries φ(u) = (φ,w).

Definition 10 (Weak Security). A dynamic searchable symmetric encryption
scheme is weakly secure, if all polynomial-time adversaries A have at most a
negligible advantage in the modified experiment subject to the restriction that
for all search and update queries, it holds that (ψ,w0) = (ψ,w1) and (φ,w0) =
(φ,w1).
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4.3 A Note on the Blue-Print

The beginning of the section describes a blue print for searchable symmetric
encryption systems. The fact that an index search scheme has indistinguishable
search queriers allows us to construct a searchable symmetric encryption system
against outsider attackers analyzing the frequency of (popular) search words
given the client’s and server’s trace as follows: Before the server sends out the
ciphertexts for the identified indexes, it re-randomises the ciphertexts.

4.4 High-Level Idea

For ease of explanation, we explain the main ideas behind searching for a single
word. While a common ground of previous constructions has been a linked list
data structure [2–4], our scheme implements a perfect binary tree data structure.
The depth d = log |W| of the binary tree is logarithmic in the total number of
words (and a parameter fixed in advance).

We denote the k-th node at level l as Nk,l. The root is N0,0. Every node
has two children. Each edge connecting a parent node Nk,l and a child Nk′,l+1 is
associated with a bit bl ∈ {0, 1}. Every leaf is randomly associated with a bucket
bj containing all indices idi ∈ ID matching word wj ∈ W. Searching for a word
w = (w0, . . . , wd−1) means to traverse a path from the root N0,0 to a leaf Nk,d−1

and read all identifiers in the bucket.
It remains to show how to implement a private decision mechanism for effi-

ciently selecting the nodes. Here is where the constrained functional encryption
comes into the game (for dimension n = 1). We generate a cryptographic binary
tree where an encryption (CT k,l, qk,l) ← Enc(MSK, 1) represents node Nk,l.

To search for word w = (w0, . . . , wd−1), we first compute the random encod-
ing bj = (b0, . . . , bd−1) of word wj with a pseudorandom function and next
generate decryption keys SKk,l ← KeyGen(MSK, bl, qk,l) constrained to the set
of nodes on the path from the root to the target leaf. Decrypting the node Nk,l

gives a hint to choose the child node Nk′,l+1

Dec(SKk,l, CTk,l) =

{
0 if bl = 0
1 if bl = 1

Applying this technique for all sequential nodes enables us to traverse the
tree efficiently in O(log |W|). To search a formula over multiple words ψ(w), one
first searches for the buckets matching every word and then applies the formula
over the indices of the buckets. Searching a compound expression of arity |ψ|
takes O(|ψ| · log |W|). Updating the words in the encrypted database essentially
requires to search for the bucket matching the word. One then adds a new index
to the bucket, or deletes the bucket. The operation takes time O(log |W|).

Discussions and Generalizations. The use of the functional encryption scheme
CFE has several advantages. First, it randomizes every search query. Without the
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probabilistic scheme the searchable encryption system would satisfy a weaker pri-
vacy notion, where the (outsider) adversary recognizes search queries previously
sent. The scheme also makes sure that the server must traverse the tree before
identifying the bucket and thereby does not deviate from the path. An adversary
applying the search tokens to nodes other than the eligible ones or combining
them with previous tokens receives random decryptions. These properties are
the crux why the scheme leaks no more information other than the pattern to
access the buckets. Third, the constrained functional encryption scheme grows in
value, when one expresses a more comprehensive traversal policy. Recall, the CFE
supports decryption of functions fx : Fn

p → Fp from the class of inner products
F = {fx|x ∈ F

n
p} where fx(y) = 〈x,y〉 is from a fixed polynomial range.

One may generalize the scheme to search on a directed acyclic graph in the
following way:

– For each node Nk,l, encrypt a vector xk,l ∈ F
n
p .

– For each edge connecting a parent node Nk,l with a child Nk′,l+1 assign a
label fxk,l

(yk′,l+1).
– To traverse from node Nk,l to child Nk′,l+1, decrypt node Nk,l with a key for
yk′,l+1 ∈ F

n
p .

This way, the search conditions extend to inner product functions. These
are particularly useful functions enabling the computation of conjunctions, dis-
junctions, CNF/DNF formulas, thresholds, Hadamard weights, and low range
statistics. We leave details of the general scheme to search on directed acyclic
graphs and other data structures to the full version. In the forthcoming section,
we describe a searchable encryption scheme for the special case, where at node
Nk,l the inner product function computes a validity check by xor-ing wl ⊕ 1.

4.5 Description of the Construction

Let CFE = (Setup,KeyGen,Enc,Dec) be constrained functional encryption
scheme. Wlog, suppose |W| = 2d is a power of 2. Let PRF : {0, 1}λ × {0, 1}d →
{0, 1}d be a pseudorandom function. Define a dynamic symmetric searchable
encryption system DSSE = (Setup,Search,Update) as follows:

– Setup(1λ,DB): On input a security parameter λ and database DB = ((idi,
{wj}j≤2d)i≤m), build up an encrypted data structure as follows:
1. Sample a random seed s←R{0, 1}λ and generate a master secret key

msk ← CFE.Setup(1λ) for the constrained functional encryption scheme
for dimension n = 1.

2. For every wj ∈ DB, add DB(wj) to bucket bj ← PRF(s, wj).
3. Create the encrypted data structure by computing a set of 2d − 1 cipher-

texts CTk,l, qk,l ← Enc(msk, 1) and assign each state qk,l with node Nk,l.
Define M to be the set of all (k, l) pairs identifying the ciphertexts.

4. Return the master secret MSK = (s, qk,l)∀(k,l)∈M and the encrypted data
structure EDB = (CTk,l)∀(k,l)∈M .
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– Search(MSK,ψ(w)): To generate a search token TKψ(w) for the query
ψ(w) = (ψ,w0, . . . , w|ψ|), the client generates for every word wj = (w0, . . . ,
wd−1 a decryption key SKj = (SKj,0, . . . , SKj,d−1) as follows:
1. Recover the bucket bj = (bj,0, . . . , bj,d−1) for word wj by computing

PRF(s, wj)
2. Compute for the kth node Nk,l on the path to the bucket a decryption

key SKj,k ← KeyGen(MSK, bj,l, qk,l).
The client sends the search token TKψ(w) = (φ,SK1, . . .SK|ψ|) to the server.
Upon receiving the token, the server searches for every decryption key SKj =
(SKj,0, . . . , SKj,d−1) the bucket bj as follows:
1. Decrypt for 0 ≤ l ≤ d − 1 the bit bj,l ← Dec(SKj,l, CTk,l)
2. Traverse to the node at level l + 1 in the tree whose edge is associated

with bit bj,l.
Once the server identified all buckets bj , it applies the formula φ to retrieve
the ciphertexts matching the identifiers ψ(w).

– Update(MSK,φ(u),EDB). To add files to the data structure, one needs to
search for the bucket matching the word and store the file index in the bucket.
Deletion of files matching a word requires to delete the bucket associated with
the word. Deletion of a single file requires the client to decrypt the files and ask
the server to delete the index associated with the corresponding ciphertext.

A careful inspection of our data structure reveals that buckets leak the num-
ber of stored words. The server may conduct a statistical analysis based on the
sizes of buckets and use the extra information to break privacy. We note that
prior work is susceptible the analysis as well. To prevent the server from learning
words from the number of indices stored in a bucket, one may apply standard
masking techniques to bias the size. One essentially adds “dummy” identifiers
to normalize the bucket sizes.

4.6 Security Analysis

We are now ready to analyze the scheme.

Theorem 2. Assume PRF is a secure pseudo-random function and CFE is
a secure constrained functional encryption scheme. Then the above dynamic
searchable encryption system is weakly secure.

Proof (Sketch). The proof is trivial and therefor sketched. An adversary A break-
ing the security of the searchable encryption scheme can be used to construct a
reduction against the pseudo-random function or constrained functional encryp-
tion scheme. To attack the pseudo-randomness, the reduction flips a bit b and
simulates the searchable encryption scheme except that every invocation of PRF
is forwarded to the pseudo-random oracle, implementing the PRF (b = 0) or a
random function with identical output range (b = 1). When adversary A outputs
a guess b′ = b, then the reduction conjectures to deal with an oracle implement-
ing the pseudo-random function PRF; otherwise, the reduction conjectures to
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interact with a random function. To attack the security of the constrained func-
tional encryption scheme, the reduction emulates the generation of cryptographic
binary tree by forwarding encryption requests to the challenge oracle. It simu-
lates search and update queries by relaying the requests to its key generation
oracle. When adversary A outputs a guess b′ = 0, the reduction claims to interact
with EDB0 searching for words ψ(w)0 and making updates φ(u)0; otherwise, it
claims to interact with EDB1 searching for words ψ(w)1 and making updates
φ(u)1.
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Abstract. With the growing popularity of remote storage, the abil-
ity to outsource a large private database yet be able to search on this
encrypted data is critical. Searchable symmetric encryption (SSE) is a
practical method of encrypting data so that natural operations such as
searching can be performed on this data. It can be viewed as an effi-
cient private-key alternative to powerful tools such as fully homomorphic
encryption, oblivious RAM, or secure multiparty computation. The main
drawbacks of existing SSE schemes are the limited types of search avail-
able to them and their leakage. In this paper, we present a construction
of a private outsourced database in the two-server model (e.g. two cloud
services) which can be thought of as an SSE scheme on a B-tree that
allows for a wide variety of search features such as range queries, sub-
string queries, and more. Our solution can hide all leakage due to access
patterns (“metadata”) between queries and features a tunable parame-
ter that provides a smooth tradeoff between privacy and efficiency. This
allows us to implement a solution that supports databases which are ter-
abytes in size and contain millions of records with only a 5× slowdown
compared to MySQL when the query result size is around 10 % of the
database, though the fixed costs dominate smaller queries resulting in
over 100× relative slowdown (under 1 s actual).

In addition, our solution also provides a mechanism for allowing data
owners to set filters that prevent prohibited queries from returning any
results, without revealing the filtering terms. Finally, we also present the
benchmarks of our prototype implementation.

Y. Ishai, E. Kushilevitz, S. Lu and R. Ostrovsky—Work done while consulting for
Stealth Software Technologies, Inc. Supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior National Busi-
ness Center (DoI/NBC) contract number D11PC20199 and ENTACT subcontract
through MIT Lincoln Laboratory. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright
annotation therein. Disclaimer: The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsement, either expressed or implied, of IARPA, DoI/NBC, or the U.S.
Government.

c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 90–107, 2016.
DOI: 10.1007/978-3-319-29485-8 6



Private Large-Scale Databases with Distributed SSE 91

Keywords: Searchable symmetric encryption · Secure databases ·
Private cloud computing

1 Introduction

In order to protect a large database (e.g. for cloud storage), one would like to
apply encryption on the database so that only those with the proper keys can
decrypt. However, for ordinary semantically secure encryption, this precludes
any ability to perform useful operations on this data other than decryption.
The ability to perform limited searches or other operations on ciphertexts would
greatly enhance the utility of the encrypted database. This topic has motivated
researchers to study the problem from many different angles, and has lead to
cryptographic solutions such as Private Information Retrieval (PIR) [10,23],
Oblivious RAM [17,19,26,27], Encrypted Keyword Search [4,14,28], Deter-
ministic and Order-preserving encryption [1–3], Fully Homomorphic Encryp-
tion [5,15], and more.

One of the promising approaches for searching on encrypted data is known
as Searchable Symmetric Encryption (SSE). This approach has been the subject
of a long line of research starting with Song et al. [29]. An SSE scheme allows
the data to be encrypted using only private-key primitives that allow it to be
searched upon at a very low cost, while attempting to minimize the correlation
between queries. The latter information is commonly referred to as query leakage
or access pattern leakage. An important improvement of obtaining a sublinear
time solution was introduced in Curtmola et al. [11] and the notion of SSE was
subsequently generalized to Structured Encryption by Chase and Kamara [9].
Recent works including that of Cash et al. [7] and Fisch et al. [13] present highly
scalable SSE schemes supporting exact match queries and keyword searches, and
also more complex Boolean formulas of these queries, and extended query types
such as range queries.

Our motivation of building a large, scalable SSE scheme is similar to that
of [7,13], but our approach and conclusions diverge from these works. Our aim
is to build a light-weight solution that supports a variety of natural string-
search queries. However, unlike their work, we insist on eliminating all leakage
about the access pattern except an upper bound on the size of the individual
matches, which must be leaked regardless of any efficiency requirements. Our
solution builds on a B-tree data structure whose choice is natural as B-trees are
ubiquitous, serve a variety of queries, and are more suitable for our cryptographic
subprotocols compared to other string data structures like tries or n-grams.

We state a high level summary of our secure construction. At the heart of
our construction is the ability for a client to privately search on a remotely held,
encrypted B-tree such that (1) the client learns only the matching indices and
nothing else about the entries in the tree, and (2) neither the client nor the
remote parties learn which path was taken. Consider how a tree is travesed in
the clear: starting from the root, a node is fetched, then the query is compared to
the contents of the node which results in the pointer to a node in the next level,
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and this repeats until the leaf level is reached. We create cryptographic parallels
to be able to perform this traversal while satisfying our security requirements.

In order to privately fetch a node from a level, PIR or even Symmetric PIR
(SPIR, where the client does not learn anything beyond the query) does not
fully guarantee our needs. There are two reasons for this: PIR still returns the
node in the clear to the client, and the client must input a location to fetch.
However, since the client should not learn which path was taken, nor the con-
tents of the nodes, this information must be hidden. In order to account for
this, we introduce a functionality known as shared-input-shared-output-SPIR or
SisoSPIR that takes as input secret-shared values between the client and remote
parties, and outputs a secret-shared node. This way, nodes can be fetched with-
out the client learning the location or contents of the node. We will see later
that the construction is reminiscent of the “indirect indexing” techniques due
to Naor and Nissim [25]. Then, in order to compute on the secret-shared node
against the query, we employ lightweight MPC that effectively computes a b-
way comparison gate, where b is the branching factor of the tree, and returns a
secret-shared result.

With this idea in mind, we are then able to build securely queryable B-
trees, which then leads to range queries, substring queries, and more. Our paper
takes a formal treatment of these concepts as a composition of cryptographic
functionalities, each of which is easy to analyze, and their combined security
follows from standard secure composition theorems (e.g. Canetti [6]). We propose
realiziations to these functionalities, and also implement them and benchmark
our results. Our code has been independently tested to scale to terabytes in size
and millions of records, and we present our own timings that show that our
solution is around 5× slower compared to MySQL when querying around 10 %
of the database, though the fixed costs dominate smaller queries resulting in over
100× relative slowdown (under 1 s actual).

1.1 Related Work

As noted above, the problem of searchable encryption, and that of private data-
base management in general, can be solved using powerful general techniques
such as Oblivious RAM, secure multiparty computation, and FHE. Our aim is
to focus on practical solutions that have as little overhead as possible compared
to an insecure solution. One of the interesting aspects of our construction is that
we use highly efficient variants of Oblivious RAM, PIR, and MPC and apply
them as sub-protocols only on dramatically smaller portions of the database.

There is a rich literature on searchable symmetric encryption (see for exam-
ple [7–9,11,13,16,20–22,29]), and these works are highly relevant to the task at
hand. Furthermore, recent works such as [12,24,32] have considered combining
PIR with ORAM for efficiency reasons. While these schemes are more efficient
than generic tools, they are limited in search functionality and possibly leak
too much access pattern information. The most relevant work is that of Cash
et al. [7], and we highlight the main differences between this work and ours.
Indeed, our model uses two “servers” and a client, and the servers are assumed
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not to collude, as the two-server setting typically lends itself to more efficient
instantiations. We also do not necessarily assume the data owner is the same as
the client, which is the case for typical SSE schemes. This allows us to work in
different settings, such as the example of a data owner delegating sensitive data
to a semi-untrusted cloud, and still allowing a client (who is not the data owner
themselves) to query against it while guaranteeing no unqueried information is
leaked. If we assume that the client does own the data, then the client can play
the role of both the client and the data owner, S1, in which case non-collusion is
for free (of course, this would mean the client would have to store the index data
that would have been held by the primary server, but this is less data than what is
held by the “helper” server that has the encrypted payloads). We obtain different
string-type searches as opposed to boolean formulas on exact matches obtained
by [7], and our leakage definitions are similar to those of [7,9,11] (though the
type of leakage allowed by our solution is much more limited).

We do pay a price in the non-collusion assumption and efficiency compared
to existing schemes, but we believe this tradeoff provides an interesting contrast
since we achieve less leakage and offer an alternative construction in achieving
these types of search queries like those in existing SSE schemes while maintaining
a practical level of efficiency.

1.2 Our Contributions

In this work, we introduce the notion of distributed searchable symmetric encryp-
tion. We define it in terms of an ideal three-party functionality, where there is a
querying client, a data owner, and a helper server.

We outline our main result as follows: there is a data owner S1 that holds a
database D that wants to outsource the bulk of the work of querying to a helper
server S2 such that a client C can perform queries q against D by interacting
with S1 and S2 (but mostly S2). The data owner wants the guarantee that only
the results of the query is revealed to the C and no additional information about
D, and only queries that satisfy the query policy list P will return any results.
On the other hand, C does not want any additional information to be revealed
about q to either S1 or S2. We can define a functionality FSSE with two phases:
Setup and Query such that during the setup phase, S1 inputs D and P to FSSE ,
which returns a leakage profile Li

Setup to party i ∈ S2,C,S1. During the query
phase, C inputs a query q (range, substring, etc.) to FSSE and the functionality
checks that q satisfies P and returns the results to C if it conforms, while sending
a leakage profile Li

Query to player i ∈ S2,C,S1.

Main Theorem (Informal). There is a sublinear communication protocol real-
izing the above SSE functionality FSSE where the leakage profiles only reveal
minimal size information (no information about access patterns and intersection
of queries or results across multiple queries). The protocol achieves 1-privacy
in the semi-honest (honest-but-curious) model, i.e. any adversary corrupting a
single party in the protocol can be simulated in the ideal model, and uses a loga-
rithmic number of communication rounds in the size of the database.
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In order to construct an efficient realization of this ideal functionality, we
define and construct a few intermediate sub-protocols that may be of indepen-
dent interest. One new concept is that of privacy preserving data structures,
which can be thought of as a more general variant of Oblivious Data Struc-
tures [30]. Other concepts include efficient realizations of shared-input-shared-
output variants of cryptographic primitives such as pseudorandom functions and
private information retrieval.

1.3 Roadmap

In Sect. 2 we describe background and our model. In Sect. 3 we provide a high-
level overview of our new scheme and provide the detailed construction and
proofs for our main technical functionality SisoSPIR in Sect. 4. We construct a
full-fledged distributed SSE using this functionality in Sect. 5. We show how to
reduce various query types into range queries in the full version. For the sake of
brevity, we also defer our proofs to the full version.

We describe our benchmark results in Appendix A.

2 Background and Model

We consider a system of three parties: the client C, the server S1, and “helper
server” S2. When considering adversarial behavior, we restrict our attention
to the case of semi-honest (honest-but-curious) adversaries with the presence
of an honest majority, i.e. only one party may be corrupted. Due to the low
communication complexity, we automatically have some guarantees even against
a malicious C. The assumption that the data owner server and the helper server
are semi-honest and do not collude are reasonable if, for example, the helper
server is a neutral cloud service.

We consider a simplified model of a database D, which we take to be a
single table of records of the following form. D is a set of records indexed by t
different fields A1, . . . , At, where each field Ai may take on some set of allowed
values (e.g. string, date, enum, etc.). Each record r ∈ D then takes the form
r = (x1, . . . , xt, y) with each xi ∈ Ai denoting a searchable field value, and y ∈
{0, 1}� (for some length parameter �) being the payload. We make the simplifying
assumptions that there is only one payload field (WLOG), the database schema
is known to all parties, as well as the total number of records. All fields and
records are padded up to the same length, and we assume A1 to be a unique ID
field, denoted by id(r) for record r.

A range query q on a field Ai is of the form x ≺ b or a ≺ x or a ≺ x ≺ b,
where ≺ can be either < or ≤. The query returns all records r satisfying the
inequality on field i. We focus on range queries and describe other query types
and how to reduce them to range queries in the full version. We also consider
simple query authorization policies p that take as input a query q and output 0
or 1. As long as p is efficiently computable via a Boolean formula, we can use
general MPC to evaluate and enforce only queries satisfying p applied to q is 1 in
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our system. For example, our current implementation allows us to deny queries
that are not of a particular query type, or column, or value.

3 Overview of Our Construction

In this section we include a high level overview of our solution. A formal descrip-
tion of the various sub-protocols and their security proofs will be given in Sects. 4
and 5. In this section only, for the sake of simplicity, we focus our description on
just performing a range query on a binary tree. We first consider the scenario
where we do not need to hide the data owner’s information from the client C.
Recall that protocols such as PIR or ORAM allow queries of the form “fetch
location i” from a data array D to obtain D[i] to be performed in a randomized
fashion without leaking any access pattern information: even identical repeated
queries look the same to everyone but the querier.

First, let us focus on a single column (say, ‘Name’) with entries x1, . . . , xn

(with duplicity). During initialization, these are stored in a balanced B-tree T ,
and let Ti denote the i-th level of the tree, and Ti[j] denote the j-th node on
that level. On the leaves, we additionally store pointers (along with the xi) that
point back to the original rows of the DB. In order to perform a range query
(say, fetch all records where ‘Name’>‘Bob’), the client C uses fetches the node
in root T0 of the tree. If the value in the node is larger than ‘Bob’ the client
wants to go right, otherwise left. This determines which node j1 to traverse to
in level T1 of the tree. C then uses a private fetching algorithm (such as PIR
or ORAM) to fetch the node T1[j1], and then determines whether to go left or
right again, which will result in j2 for level 2 of the tree. This proceeds until C
reaches a leaf, whereupon it will also privately fetch all subsequent leaves (since
this is a > query). Since these leaves contain pointers i1, . . . , ik to the original
DB, C can also privately fetch these pointers.

In our full solution, much of the complexity arises when we do not want
the client C to learn the contents of the database not returned by the query.
We therefore introduce a secret-shared variant SisoSPIR to ensure the location
and node are secret shared, and then apply secure multiparty computation to
determine whether to go left or right, where the choice is also secret-shared.
We explain at a high level how this is done. Whenever C is about to receive
a result of privately fetching a node, the server S1 will mask it with a ran-
dom value Rnode. This renders the result node hidden, since now C cannot use
this randomly masked value to determine whether to go left or right. Now, to
determine which way to go, C invokes an MPC protocol with S1 that computes
query ≥ value ? right : left. We do not want C to know where it is exactly in
the tree, so ‘left’ and ’right’ are absolute pointers that are blinded. A common
technique for this is to virtually shift the array by some random amount r, and
offset the pointer by r. In order to handle policies, we incorporate a “killswitch”
into the MPC where a non-compliant query will always lead the client down to
a “no results found” leaf.
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4 Formal Description

In this section we formally define and analyze the building blocks of our solution.
All functionalities and protocols involve 3 parties: Server S1, Client C, and Helper
Server S2.

Functionalities. We treat functionalities as picking their internal secret ran-
domness. To model leakage, we use “leak x to P” to specify ideal functionality
leakage which only affects the security requirement and not correctness, whereas
“return y to P” is used to specify an actual output which affects both correctness
and security. We treat the “Query phase” of functionalities as receiving a sin-
gle query, with the implicit understanding that multiple queries are handled by
repeating the Query phase sequentially for each query. We will sometimes invoke
multiple sessions of the same protocol in parallel on different sets of inputs. Since
we only consider security against semi-honest adversaries, parallel composition
holds in general (we can run many simulators in parallel since the inputs cannot
be modified by a semi-honest adversary to depend on the transcript). We define
the main functionality we are trying to achieve, the distributed SSE functionality
FSSE in Fig. 1.

Functionality FSSE

Setup. S1 inputs a database D and policy P to FSSE . Leak Li
Setup (which is

implementation defined) to party i ∈ S2,C, S1.
Query. C inputs a query q. Checks that q satisfies P and returns the results of the query

to C if it conforms. Leak a leakage profile Li
Query to player i ∈ S2,C, S1.

Fig. 1. The privacy preserving data structure functionality.

Protocols. To simplify the presentation of the protocols, we do not explicitly
describe the authentication mechanism used for preventing attacks by the net-
work. Security against the network is achieved via a standard use of encryption
and MACs. This does not affect the security of the protocols against semi-honest
insiders. We also simplify notation by letting parties pick their own randomness.
We follow the standard convention of including in the view of each party only
its internal randomness and the incoming messages. The outgoing messages are
determined by the inputs, randomness, and incoming messages. Finally, we omit
“Done” messages in the end of protocols, under the understanding that when-
ever a party finishes its role in a (sub)protocol, it sends a “Done” message to all
other parties.

Security. We consider asymptotic (vs. concrete) security parameterized by a
security parameter k. Security is defined with respect to families of polynomial-
size circuits. Whenever we use a pseudorandom function (PRF) or a pseudoran-
dom generator (PRG) we will instantiate these primitives using a standard block
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cipher such as AES with seed size equal to the standard key length of the block
cipher. The correctness of some protocols assumes that the number of queries is
smaller than 2k. Concretely, the number of queries scheduled is polynomial in
k, and the correctness requirement should hold for all sufficiently large k. We
use the real/ideal simulation paradigm when discussing security of our protocols.
Namely, we use the following standard definition for security (see e.g. Canetti [6]
or Goldreich’s Book [18]):

Definition 1. We say a protocol π 1-privately realizes F in the semi-honest
model if for every semi-honest (honest-but-curious) PPT adversary A corrupting
a party in a real protocol π, there exists a PPT simulator S playing the role of
A that only interacts with the ideal F, such that on all inputs, S produces a
simulated transcript that is computationally indistinguishable from the view of
A. The view of A includes the transcript of messages that A sees during the
execution of the protocol as well as its internal randomness.

We say that the protocol has perfect correctness if the output of π always
matches the output of F.

4.1 Technical Overview

We provide a technical overview of our construction at a high level. The goal of
our construction is to build a protocol that 1-privately realizes the functionality
FSSE. In order to build an efficient protocol, we look toward data structures that
support fast evaluations of the queries we want (in particular, range queries).
However, because the ideal functionality reveals nothing about the query except
the so-called “leakage profile”, we want to minimize this surface. If the data
structure has vastly different number of lookups for best and worst-case queries,
this would require our ideal functionality to reveal this information, otherwise no
simulator could correctly guess how many lookups to simulate without knowledge
of the data. Thus, as a tradeoff, we work only with privacy preserving data
structures (which we introduce below) which roughly states that the access to
the data structure is data independent. This is a very reasonable tradeoff as
many real-world data structures already satisfy this property, in particular B-
trees. After we introduce this notion, we focus just on the B-tree case, though
our scheme extends to support any PPDS.

In our solution, the way a client performs a query is done roughly in two parts:
first, the client interacts with S1 and S2 to traverse a B-tree to retrieve indexes
matching the query, then interacts with S2 to retrieve the actual records at those
indices. For the latter part, we introduce a primitive called weak distributed
oblivious permutation Symmetric Private Information Retrieval or wSPIR for
short, and its range-query variant rSPIR, that does the following: given a set
of indices, the client can look them up from the S2 without revealing anything
about the set of indices nor learning anything beyond that set of indices. This
is accomplished by having the data randomly permuted and the client learning
only the permuted indices.
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The drawbacks of wSPIR is that once an element is looked up, it must be
cached, and a more subtle point is that the indices must be known. During the
traversal of the B-tree, we do not want any party to learn the path traversed
by the query, and so this alone is insufficient. Therefore, we introduce another
primitive, shared-input-shared-output SPIR, SisoSPIR which is a gadget that
the input is a secret sharing of an index to an array (between the client and S2)
and the output is a secret sharing of the indexed array element. We give two
instantiations of SisoSPIR, a simple linear-time instantiation SisoLinSPIR and a
more complex sublinear-time instantiation SisoSublinSPIR that we describe in
the full version. The simplicity of the linear-time instantiation makes it faster
than the sublinear-time version in the implementation for most realistic database
sizes, though it is slower asymptotically.

Finally, the last ingredient is a general secure multiparty computation (MPC)
scheme. The way we then combine all of our ingredients is as follows. The data
owner S1 sets up a PPDS B-tree to store the index data, which points to the
records of the actual database, then treats each level of the B-tree as an array to
be used for SisoSPIR and the main database will be set up to be used for rSPIR.
When the client wants to make a query, it starts at the root where it has a trivial
secret sharing with S2 and invokes SisoSPIR to obtain a secret shared version
of the root node (which is different each time a query is made). It then uses
general MPC to compute comparisons to obtain a secret sharing of the index
to the next level of the B-tree. With this, it can then invoke SisoSPIR for the
next level, and continues down until the leaf level. Then S2 sends the leaf shares
to the client whereupon it can reconstruct the index information, and then uses
rSPIR to retrieve the records corresponding to the query.

4.2 Privacy Preserving Data Structures (PPDS)

We can think of a (static) data structure for some data set D (consisting of
(key, value) pairs) as being two algorithms DS = (Setup,Query). The setup
algorithm takes as input some dataset D and outputs the initial state and sizes
of the memory arrays M1, . . . , Mk. The query algorithm takes as input some
query x and produces a sequence of memory probes of the form q� = (i, j) and
gets the j-th entry of Mi, i.e. Mi[j]. The sequence can be adaptive in the sense
that q�+1 may depend on q1, . . . , q� as well as all the Mi[j] for all qk = (i, j).

We take a modular approach and say that since PIR can hide the actual j
within a memory array Mi, a PPDS need only “hide” the access pattern across
the memory arrays. That is to say, there exists a simulator that can simulate
the sequence of memory arrays being accessed (though it need not simulate
which element in that memory array). Note that in the extreme case where each
memory array is treated as a single element, the definition flattens into that
of oblivious data structures as defined in [30]. We formalize this concept as a
functionality FDS

PPDS, relative to some data structure DS = (Setup,Query), that
leaks to S2 only the sizes of the memory arrays in Fig. 2.

Given a data structure, we define the three-party protocol πDS to be: the
server sets up the data structure, and the client sends its query to the server, the
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Functionality FPPDS

Setup. The functionality receives as input (Setup, D), where D is some dataset, from
the server. The functionality runs Setup on D and outputs to the server a sequence
M1, . . . , Mk, where the length of the data stored in Mi is �i. It outputs {|Mi|}, k, {�i}
to the client C and S2.

Query. The functionality receives from the client as input (query, x), where x is a
query. The functionality runs Query and returns the probe results Mi[j] and locations
pm = (i, j) to the client. It outputs to S2 only the is corresponding to the pm probes.

Fig. 2. The privacy preserving data structure functionality.

server processes the query and sends back the result to the client and “leaks”
the memory array locations i to S2. We say that some data structure is privacy
preserving if πDS is a 1-private (against a dishonest S2) implementation of the
functionality FDS

PPDS.
Observe that many data structures are well-suited for privacy-preserving data

structures. Hash tables, Bloom filters, trees, and sorted arrays with binary search
can all be converted to privacy-preserving ones. For the remainder of the paper,
we will fix balanced B-trees as our PPDS, and focus on building a secure way to
search on these B-trees.

4.3 General MPC

Some of our protocols will employ general secure multiparty computation (MPC)
for simple functionalities with short inputs. In particular, the circuit complexity
of functionalities we realize via general MPC will always be sublinear in the
database size N . To abstract away the details of the underlying general MPC
protocol we use, we will cast protocols that invoke it in the MPC-hybrid model.
That is, we will assume the availability of a trusted oracle which receives inputs
and delivers the outputs defined by the functionality. We will similarly use other
hybrid models that invoke specific functionalities which we have already shown
how to realize.

The implementation ΠMPC of an MPC oracle will use an efficient implementa-
tion of Yao’s protocol [31] applied to a boolean circuit representing the function-
ality. To efficiently implement each 1–2 String OT in Yao’s protocol, we use the
3 parties as follows: In an offline phase, S1 generates a random OT pair (s0, s1)
and (b, sb), sends (s0, s1) to S2 (acting as OT sender) and (b, sb) to C (acting as
OT receiver). In the online phase, we consume the precomputed random OTs
via a standard, perfectly secure reduction from OT to random OT. Thus, the
entire implementation of ΠMPC uses an arbitrary PRF as a black box, and does
not require the use of public-key primitives. We omit further details about the
implementation of ΠMPC and treat it from here on as a black box. Finally, we
will use sisoMPC to denote a shared-input-shared-output variant of MPC, where
the inputs and outputs are secret-shared between the parties (typically C and
S2).



100 Y. Ishai et al.

4.4 Weak Distributed Oblivious Permutation SPIR

We define our lowest level ideal functionality, which we refer to as Weak-
distributed-oblivious-permutation-SPIR (wSPIR). We summarize at a high level
what the functionality does and how to implement it. It allows C to retrieve
an indexed entry in an array generated by S1 using the help of S2. Define a
protocol ΠwSPIR where S1 encrypts and permutes the array and sends it to S2
and gives the key and permutation to C so that later, C can fetch any location
and decrypt. As long as C asks for each location once (caching the results), it is
easy to see this hides access pattern from S2, and we do some additional work
to ensure that C doesn’t learn anything when performing a dummy query when
there is a cache hit.

Lemma 1. Protocol ΠwSPIR realizes wSPIR with perfect correctness (i.e. the out-
put of the protocol always matches the output of the functionality) and with com-
putational security against a single semi-honest party.

4.5 Shared-Input Shared-Output SPIR

A disadvantage of wSPIR is that it requires C to know the query locations ij ,
and in particular learn when a query is repeated. However, when these queries
are obtained by traversing a data structure (rather than originating from C), it
is desirable to hide the query locations and query results from C. To this end
we define and implement a stronger primitive which receives the query locations
ij in a secret-shared form and produces the output in a secret-shared form. We
refer to this functionality as shared-input shared-output SPIR (SisoSPIR).

For brevity, we present a linear implementation of SisoSPIR that we call
SisoLinSPIR and describe the sublinear version in the full paper.

Both variants will use the following non-reactive shared-input shared-output
PRF (SisoPRF) functionality. Loosely speaking, this functionality computes
fr[x+ y] and secret shares it as Q and Q⊕ fr[x+ y], where r is a secret key to a
PRF f and x and y are a secret sharing of an input, and Q is a random mask.
We will use two different implementations of this functionality: in the linear
solution we will realize it via a 2-server PIR protocol applied to a precomputed
table of function values, and in the sublinear solution we will implement it via
the general MPC protocol πMPC applied to a circuit representation of F .

4.6 Linear Implementation

Figure 3 defines the functionality realized by the linear implementation of
SisoSPIR, referred to as SisoLinSPIR, and Figs. 4 and 5 describe (respectively)
the initialization phase and query phase of a protocol ΠSisoLinSPIR realizing
SisoLinSPIR. Note that the functionality leaks the input y of S2 to S1. This
leakage is harmless, because in the higher level protocols y will always be ran-
dom and independent of the inputs.
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Functionality SisoLinSPIR

Init. Given an array A ∈ ({0, 1}K)N from S1:

1. Store N, K, A.
The entries of A will be indexed by the elements of the cyclic group ZN .

2. Leak N and K to C and S2.

Query. Given input x ∈ ZN from C and y ∈ ZN from S2 do the following:

1. Leak y to S1.
2. Pick a random R ∈ {0, 1}K .
3. Return R to C.
4. Return R ⊕ A[x + y] to S2.

Fig. 3. Ideal functionality for linear shared-input-shared-output-SPIR (SisoLinSPIR)

Protocol ΠSisoLinSPIR.Init

Global parameters and functions.

– Computational security parameter 1k.
– Pseudorandom function Fr : {0, 1}∗ → {0, 1}∗, where r ∈ {0, 1}k. The input and

output length will be understood from the context.

Init.S1. On input (N, K, A), the Server S1 does the following:

1. Pick a random PRF key r ∈ {0, 1}k.
2. Generate the masked array B defined by B[i] = A[i] ⊕ Fr(i) for i ∈ ZN .
3. Send N, K, B to S2 and N, K to C.

Init.C. Store the values N, K received from S1.
Init.S2. Store the values of N, K, B received from S1.

Fig. 4. The initialization phase ΠSisoLinSPIR.Init for the functionality SisoLinSPIR

Protocol ΠSisoLinSPIR.Query

1. S2 sends y to S1.
2. S2 and S1 locally generate a virtual database B←y defined by B←y[i] = B[i + y].
3. C picks a random R ∈ {0, 1}K .
4. C picks a random subset TS1 ⊆ ZN and lets TS2 = TS1 ⊕ {x}.
5. C sends R and TS1 to S1 and TS2 to S2.
6. S1 locally computes ZS1 =

⊕
i∈TS1

B←y[i] and S2 computes ZS2 =
⊕

i∈TS2
B←y[i].

7. S1 sends to S2 the string Z′
S1 = ZS1 ⊕ R.

8. Parties invoke the SisoPRF oracle with inputs (N, K, r) from S1, input x from C, and
input y from S2. Let YC and YS2 denote the outputs.

9. C outputs R ⊕ YC and S2 outputs ZS2 ⊕ Z′
S1 ⊕ YS2.

Fig. 5. The query phase ΠSisoLinSPIR.Query for the functionality SisoLinSPIR in the
SisoPRF-hybrid model
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Lemma 2 (Main Technical Construction of Linear SisoSPIR). Protocol
ΠSisoLinSPIR realizes SisoLinSPIR in the SisoPRF-hybrid model with perfect correct-
ness and computational security against any single semi-honest party.

5 Full SSE and Range Queries

5.1 Weak Distributed Oblivious Permutation Range SPIR

In the full version, we give a simple extension from a single index weak SPIR
(wSPIR) to a multi-index weak SPIR (rSPIR) that can support privately retriev-
ing multiple locations at once, though remains “weak” in the sense that it relies
on a permutation and must cache results.

5.2 FindEndpoints

Our goal will be to use the above protocols to retrieve a range of records, once
we found the relevant endpoints. For this we use, for each searchable field and
each type of query, a “helper” array which is sorted according to the field value
(or, sometimes, tokens) and contain pointers to the actual records.

Figure 6 defines the ideal functionality FindEndpoints. This functionality
allows C to find, given a query on field field of type type, the two endpoints
of the range of matches inside an array Lfield,type. The exact content of these
arrays will be defined shortly.

Functionality FindEndpoints

Global parameters. List of pairs (field, type) such that S1 supports queries of type type
to field field.
Init. For each pair (field, type) in the list, S1 provides an array Lfield,type ∈ ({0, 1}K)N .

1. Store each array Lfield,type.
2. Leak the corresponding N and K to all parties.

Query. Given query q from C, do the following:

1. Let ileft be the minimal element of Lfield,type that matches q, or ileft = +∞ if no such
element exists.

2. Let iright be the maximal element of Lfield,type that matches q, or iright = −∞ if no such
element exists.

3. Return ileft, iright to C.

Fig. 6. Ideal functionality for FindEndpoints

The implementation of the FindEndpoints functionality is based on B-tree
data-structures. S1, given each of the sorted arrays L = Lfield,type (for each sup-
ported pair (field,type)), builds a B-tree with branching factor b as follows: in the
leaf layer, partition the elements of L into groups of b elements each (in order).
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Protocol ΠFindEndpoints.Init

Global parameters and functions. List of pairs (field, type) such that S1 supports
queries of type type to field field.
Init.S1. For each pair (field, type) in the list, S1 is given an input array Lfield,type ∈
({0, 1}K)N

field,type

. It does the following:

1. Construct a B-tree T field,type, as described above, for the (field, type) pair.
2. Send Nfield,type, K, T field,type to S2 and Nfield,type, K to C.

Init.S2. Participate in SisoSublinSPIR.Init. Store the values Nfield,type, K, T field,type received
from S1.
Init.C. Participate in SisoSublinSPIR.Init. Store the values Nfield,type, K received from S1.

Fig. 7. The initialization phase ΠFindEndpoints.Init for the functionality FindEndpoints

Protocol ΠFindEndpoints.Query

Global parameters and functions. MPC Protocols for the following functionalities:

– The functionality find-left gets as input (additive) shares for the content of the current
node v in the B-tree (C-node and S2-node), a query q from C and a pointer left-trap for
a trap node. It returns shares of a pointer (C-ptr, S2-ptr) to the leftmost (direct) child
of v that satisfies the query q, or to left-trap if no such child exists. The functionality
find-right is defined similarly for finding the rightmost child that satisfies q.

– The functionality ExtractEndpoints gets as input shares C-l-leaf, S2-l-leaf of the leftmost
node satisfying q and C-r-leaf, S2-r-leaf of the rightmost node satisfying q. The first node
is of the form (x, ileft, irealleft) and the second is (x′, iright, irealright). The functionality
returns ileft, iright to C, except if irealleft = +∞ or irealright = −∞ or irealleft > irealright
or q does not satisfy the policy; in all of these cases return ileft = +∞, iright = −∞.

Query. On input q ∈ {0, 1}K for C:

1. depth = �logb N�,C-ptr = root,S2-ptr = 0
2. Do depth times:

Invoke ΠSisoLinSPIR(C-ptr, S2-ptr) to obtain C-node, S2-node.
Invoke MPC oracle for find-left(C-node, S2-node, q, left-trap) to obtain C-ptr, S2-ptr.

End Do
3. Invoke ΠSisoSublinSPIR(C-ptr, S2-ptr) to obtain shares of left leaf C-l-leaf, S2-l-leaf.
4. C-ptr = root,S2-ptr = 0
5. Do depth times:

Invoke ΠSisoLinSPIR(C-ptr, S2-ptr) to obtain C-node, S2-node.
Invoke MPC oracle for find-right(C-node, S2-node, q, right-trap). Obtain C-ptr, S2-ptr.

End Do
6. Invoke ΠSisoSublinSPIR(C-ptr, S2-ptr) to obtain shares of right leaf C-r-leaf, S2-r-leaf.

7. Invoke MPC oracle for ExtractEndpoints(C-l-leaf, S2-l-leaf,C-r-leaf, S2-r-leaf).

Fig. 8. The query phase ΠFindEndpoints.Query for the functionality FindEndpoints in the
(SisoPRF,MPC)-hybrid model

That is, for each such group, there is a leaf node (i.e., the i-th element of the
array L belongs to the �i/b�) leaf node). We will also need to append the value
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i to the i-th element in the leafs. Finally, we create a leftmost “trap” node that
contains −∞ and a rightmost “trap” node which contains +∞ values. Non-leaf
nodes will contain b elements of the form (il−value, ir−value, ptr), where the value
of all elements inside the subtree pointed to by ptr is in the (closed) interval
[il−value, ir−value]. Again, each of these internal layers (excluding the root layer)
will contain a leftmost and rightmost “trap” nodes. Finally, in the initialization
we invoke SisoLinSPIR.Init for each such layer (which results in S2 having an
“encrypted” form of the layer).

We take additional care in the leaf level and use SisoSublinSPIR padded with
δ dummy entries.

Figure 7 describes the initialization phase of protocol ΠFindEndpoints which real-
izes FindEndpoints with security against a single semi-honest party.

FindEndpoints. Query is implemented as described in the overview: the B-tree is
privately traversed by invoking SisoSPIR and MPC on the node level by level.
Figure 8 describes the query phase of protocol ΠFindEndpoints. Next, we consider
the following outer protocol OuterFindEndpoints, that serves as an interface to
FindEndpoints by applying a few additional permutations. The ideal functionality
OuterFindEndpoints is described in Fig. 9. The implementation is straightforward
as it is essentially obtained by replacing the various ideal functionalities by their
actual implementations.

Functionality OuterFindEndpoints

Init. S1 is given database D ∈ ({0, 1}K)N .
It picks a random permutation σ : [N ] → [N ]. Then, for each field field and query type type
that S1 supports, it does the following:

1. Compute arrays Lfield,type[i] = (xi, i), Bfield,type[i] = ptri (of length Nfield,type).
2. Pick a random permutation πfield,type : [Nfield,type] → [Nfield,type].
3. Let L′ field,type[i] = (xi, π

field,type(i)) and B′ field,type[i] = σ(ptri).
4. Invoke rSPIR.Init using B′field,type and πfield,type as inputs.
5. Invoke FindEndpoints.Init using L′field,type as input.

Invoke wSPIR.Init using D′ = σ(D) (a randomly permuted version of database D) as input.
Query. Given query q of type type to field field from C, do the following:

1. Invoke FindEndpoints.Query using array L′field,type and query q.
Obtain ileft and iright which are equal πfield,type(irealleft) and πfield,type(irealright), respec-
tively. If ileft = +∞ then Return ∅ to C.

2. Invoke rSPIR.Query using ileft and iright as inputs.
Obtain all elements in B′[(πfield,type)−1(ileft), . . . , (π

field,type)−1(iright)] (that is,
B′[irealleft, . . . , irealright]).

3. Each of these values is of the form σ(ptrj), for some ptrj which is a pointer to a record
that actually matches the query q. C invokes the functionality ΠwSPIR.Query on each
value σ(ptrj) to obtain the records D′(σ(ptrj)) = D[σ−1(σ(ptrj))] = D[ptrj ].
Return records to C.

Fig. 9. Ideal functionality for OuterFindEndpoints



Private Large-Scale Databases with Distributed SSE 105

Remark. We discuss how to handle query policies: we augment the
FindEndpoints functionality to take as input a policy from the server, and if
it is not satisfied by the policy, it sets ileft = +∞ and iright = −∞.

5.3 Putting it All Together

Theorem 1 (Main Theorem). The OuterFindEndpoints protocol is a sublinear
communication protocol realizing the distributed SSE functionality FSSE where
the leakage profiles only reveal the sizes of the objects (no information about
access patterns and intersection of queries or results across multiple queries).
The protocol achieves 1-privacy in the semi-honest model and uses a logarithmic
number of communication rounds in the size of the database.

6 Conclusion

In this paper, we presented a solution for large-scale private database outsourcing
via an SSE-style construction on B-trees. We formalized a model for our two-
server SSE, and provided an abstract scheme along with an efficient realization
of the scheme as our solution. The solution has sublinear overhead and leaks no
access pattern information up to δ queries. Finally, we implemented a prototype
and provided benchmarked results for our solution, which is only 5× slower
compared to MySQL when querying around 10 % of the database, with smaller
queries resulting in over 100× relative slowdown due to fixed costs.

A Implementation and Benchmarking

We implemented our protocol in C and C++ targeting a POSIX environment.
In our implementation, we transmit all information over TLS, thus reducing the
leakage to the network to just the size of communication. Our tests were run
on a desktop machine running inside a Ubuntu 12.04 LTS virtual machine with

Fig. 10. Actual query times Fig. 11. Relative query times
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8GB of RAM and 4 cores of an Intel i7-2600K 3.4GHz CPU assigned to it. Here,
we give the results of tests compared to MySQL and defer component testing to
the full version.

Actual Queries and Comparison to MySQL. We set up a database of 10
million records, where each record is roughly 0.5KB. We query the database
using range queries that return roughly 1000, 10000, 50000, 100000, 250000,
500000, 750000, and 1 million records (which is 10 % of the database). The raw
times are presented in Fig. 10. We consider the relative multiplicative overhead,
which is presented in Fig. 11. We show a trend line in Fig. 12.

Fig. 12. Comparison to MySQL trendline
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Abstract. Digital signature is a fundamental primitive with numerous
applications. Following the development of pairing-based cryptography,
several taking advantage of this setting have been proposed. Among
them, the Camenisch-Lysyanskaya (CL) signature scheme is one of the
most flexible and has been used as a building block for many other proto-
cols. Unfortunately, this scheme suffers from a linear size in the number
of messages to be signed which limits its use in many situations.

In this paper, we propose a new signature scheme with the same fea-
tures as CL-signatures but without the linear-size drawback: our signa-
ture consists of only two elements, whatever the message length, and our
algorithms are more efficient. This construction takes advantage of using
type 3 pairings, that are already widely used for security and efficiency
reasons.

We prove the security of our scheme without random oracles but in the
generic group model. Finally, we show that protocols using CL-signatures
can easily be instantiated with ours, leading to much more efficient con-
structions.

1 Introduction

Digital signature is one of the main cryptographic primitives which can be used
in its own right, to provide the electronic version of handwritten signatures, but
also as a building block for more complex primitives. Whereas efficiency is the
main concern of the first case, the latter case usually requires a signature scheme
with additional features. Indeed, when used as a building block, signatures must
not just be efficient, they also have to be compatible with the goals and the
other building blocks of the protocol. For example, privacy-preserving primitives
usually require a signature scheme which allows signatures on committed secret
values and compatible with zero-knowledge proofs.

1.1 Related Works

Constructing a versatile signature scheme that is both efficient and secure
is not easy. One of the first construction specifically designed as a building
block for other applications was proposed by Camenisch and Lysyanskaya [18].

O. Sanders—Work done while being at Orange Labs.
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Their construction, relying on the Strong RSA assumption [6], allows indeed
signatures on committed values and proofs of knowledge of a signature.

The emergence of pairing-based cryptography [13,34] has created a need for
such signature schemes compatible with this new setting. Indeed, many cryp-
tographic protocols now use bilinear groups, i.e. a set of three groups G1, G2

and GT along with a bilinear map e : G1 × G2 → GT . In 2004, Camenisch and
Lysyanskaya proposed a new pairing-based signature scheme [19] whose flexibil-
ity has allowed it to be used in several applications, such as group signatures [10],
direct anonymous attestations [9,25], aggregate signatures [35] or E-cash sys-
tems [21]. One of its most interesting features is probably the ability of its sig-
natures to be randomized: given a valid CL-signature σ = (a, b, c) on a message
m, anyone can generate another valid signature on the same message by select-
ing a random scalar t and computing (at, bt, ct). The latter is indistinguishable
from a fresh signature on m. Let us consider a typical situation for anonymous
credentials [17], direct anonymous attestations [15], or group signatures [24]: a
user first gets a signature σ on some secret value s and then has to prove, sev-
eral times, that s is certified still keeping the proofs unlinkable. If σ were issued
using a conventional signature scheme, it would have to be committed and the
user would have to prove that the commitment opens to a valid signature on a
secret value which is a rather complex statement to prove, even in the Random
Oracle Model (ROM) [7]. Now, if σ is a CL-signature, then the user can simply
compute a randomized version σ′ of σ, sends it and proves that it is valid on
the secret value. This idea underlies the efficiency of the constructions described
in [9,10,25]. For these constructions, unlinkability relies on the DDH assumption
in G1, and so requires the use of asymmetric pairings. But this is not a strong
assumption, since they offer the best efficiency (see [29]).

One might have thought that the seminal work of Groth and Sahai [32],
providing the first practical non-interactive zero-knowledge proofs (NIZKs) in
the standard model, in conjunction with the recent structure-preserving signa-
tures [1–3,23], has decreased interest for CL-signatures. However, that has not
happened due to the huge performance gap between constructions in the stan-
dard model and constructions in the ROM: for example, the most efficient group
signature in the standard model [31] consists of 50 group elements whereas [10],
in the ROM, consists of only 3 group elements and two scalars. And for real-life
applications, where time constraints are particularly challenging, constructions
with NIZK proofs in the ROM seem unavoidable.

As a consequence, signatures schemes, such as the CL-signatures, compatible
with NIZKs in the ROM still remain of huge practical interest.

Another primitive for which efficiency considerations are central is anonymous
credentials. Unfortunately, even if they are one of the applications proposed for
CL-signatures, most of these schemes [4,5,16,20] use other constructions, such as
the one proposed by Boneh, Boyen and Shacham (BBS) [12]. This is due to a large
extent to the size of CL-signatures, which is linear in the number of messages to be
signed. Since a user of an anonymous credential system may have several attributes
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to be certified, this cost quickly becomes prohibitive. This is unfortunate because,
here again, the randomizability of CL-signatures could lead to more efficient
protocols.

1.2 Our Contribution

In this paper, we propose a new signature scheme, with the same features as
CL-signatures, but with a remarkable efficiency. Indeed, whereas the original
CL-signatures [19] on blocks of r messages consist of 1+2r elements of G1, ours
only require 2 elements of G1, whatever r is. Moreover, as illustrated in Fig. 1
(see Sect. 7), our signature and verification algorithms are much more efficient.

Our work proceeds from the observation that most of the recent protocols
[9,10,25] using CL-signatures require type 3 pairings for efficiency and security
reasons (see [29]). However, CL-signatures, as most of the constructions from
the beginnings of pairing-based cryptography, were designed for type 1 pairings.
Unfortunately, this setting usually leads to more complex protocols since they
cannot rely on assumptions which would have held with pairings of other types.
This has been illustrated by the recent results [2,23] on structure-preserving
signatures, which show that designing schemes specifically for type 3 pairings
results in more efficient constructions.

Following the same rationale, we propose a signature scheme suited to such
pairings: it can be seen as CL-signatures, but taking advantage of the full poten-
tial of type 3 pairings. The separation between the space of the signatures (G1)
and the one of the public key (G2) allows indeed more efficient constructions
since the elements of the latter can no longer be used to build forgeries in the
former. Unfortunately, the security of our scheme does not rely on any standard
assumption and so is proved in the generic group model, which does not provide
the same guarantees. However, as illustrated by [2,11,19], relying on proofs in
the generic group model or on non-standard assumptions (themselves proved in
this model), allows more efficient constructions. For some applications with chal-
lenging time constraints, such as public transport where authentication must be
performed in less than 300 ms [27,33], we argue that this trade-off, between effi-
ciency and the security assumption, is reasonable. By providing short signatures
with efficient algorithms, our solution may then contribute to make all features
of modern cryptography more accessible.

Improving the efficiency of primitives with practical applications was also
the concern of the authors of [22]. They proved, in the generic group model,
the security of the MAC scheme introduced in [28] and used it to construct
keyed-verification anonymous credentials (the secret-key analogue of standard
anonymous credentials). Although our signature shares similarities with this
scheme, it offers much more flexibility. Indeed, the construction described in
[22,28] does not achieve public verifiability and so only fits the case where the
verifier is also the issuer. Moreover, the protocols for obtaining or proving knowl-
edge of a MAC on committed messages are more complex than the ones, for a
signature, we describe in this paper.
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Besides efficiency, one of the main advantages of our scheme is that it acts
as a plug-in replacement for CL-signatures. Indeed, since they achieve the same
properties than the latter, our signatures can be used to instantiate most of the
protocols initially designed for CL ones. To illustrate this point, we convert our
signature scheme into a sequential aggregate signature scheme [37] using an idea
similar to the one of Lee, Lee and Yung [35]. The resulting aggregate signature
only consists of 2 elements in G1 and so is shorter than theirs. Similar gains can
be achieved for many other applications such as group signatures or anonymous
credentials.

1.3 Organization

We review some definitions and notations in Sect. 2 and present new compu-
tational assumptions in Sect. 3. Section 4 describes our signature scheme whose
conversion into a sequential aggregate signature scheme is described in Sect. 5.
Section 6 describes a variant of our scheme allowing to sign committed values
along with a protocol for proving knowledge of a signature. Section 7 provides
a comparison with related works. Finally, we describe some applications and
provide the security proofs in the appendices.

2 Preliminaries

2.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups G1, G2, and GT of prime order
p along with a bilinear map e : G1 × G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [29] defined three types of pairings: in type 1,
G1 = G2; in type 2, G1 �= G2 but there exists an efficient homomorphism
φ : G2 → G1, while no efficient one exists in the other direction; in type 3,
G1 �= G2 and no efficiently computable homomorphism exists between G1 and
G2, in either direction.

Although type 1 pairings were mostly used in the early-age of pairing-based
cryptography, they have been gradually discarded in favour of type 3 pairings.
Indeed, the latter offer a better efficiency and are compatible with several com-
putational assumptions, such as the Decision Diffie-Hellman assumption in G1 or
G2, also known as the XDH assumption, which does not hold in type 1 pairings.

In this work, we only consider type 3 pairings. We stress that using type 1
or type 2 pairings would make our signature scheme totally insecure.
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2.2 Digital Signature Scheme

Syntax. A digital signature scheme Σ is defined by four algorithms:

– the Setup algorithm which, on input a security parameter k, outputs pp, a
description of the public parameters;

– the key generation algorithm Keygen which, on input pp, outputs a pair of
signing and verification keys (sk, pk) – we assume that sk contains pk, and
that pk contains pp;

– the signing algorithm Sign which, on input the signing key sk and a message
m, outputs a signature σ;

– the verification algorithm Verify which, on input m, σ and pk, outputs 1 if
σ is a valid signature on m under pk, and 0 otherwise.

Security Notion. The standard security notion for a signature scheme is
existential unforgeability under chosen message attacks (EUF-CMA) [30] which
means that it is hard, even given access to a signing oracle, to output a valid
pair (m,σ) for a message m never asked to the signing oracle. It is defined using
the following game between a challenger C and an adversary A:

– Setup: C runs the Setup and the Keygen algorithms to obtain sk and pk. The
adversary is given the public key pk;

– Queries: A adaptively requests signatures on at most q messages m1,. . . ,mq.
C answers each query by returning σi ← Sign(sk,mi);

– Output: A eventually outputs a message-signature pair (m∗, σ∗) and wins
the game if Verify(pk,m∗, σ∗) = 1 and if m∗ �= mi ∀i ∈ [1, q].

A signature scheme is EUF-CMA secure if no probabilistic polynomial-time
adversary A can win this game with non-negligible probability.

2.3 Sequential Aggregate Signature

Syntax. Sequential aggregate signature [37] is a special type of aggregate sig-
nature (introduced by Boneh et al. [14]) where the final signature on the list of
messages is computed sequentially by each signer, who adds his signature on his
message. It is defined by the four algorithms described below:

– the AS.Setup algorithm which, on input a security parameter k, outputs pp,
a description of the public parameters;

– the key generation algorithm AS.Keygen which, on input pp, outputs a pair
of signing and verification keys (sk, pk) – we assume that sk contains pk, and
that pk contains pp;

– the signing algorithm AS.Sign which, on input an aggregate signature σ on
messages (m1, . . . , mr) under public keys (pk1, . . . , pkr), a message m and a
signing key sk such that pk /∈ {pki}ri=1, outputs a new aggregate signature σ′

on (m1, . . . , mr,m);
– the verification algorithm AS.Verify which, on input (m1, . . . , mr), σ and

distinct public keys (pk1, . . . , pkr), outputs 1 if σ is a valid aggregate signature
on (m1, . . . , mr) under (pk1, . . . , pkr), and 0 otherwise.
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Security Model. The security property for a sequential aggregate signature
scheme is existential unforgeability under chosen message attacks which requires
that no adversary is able to forge an aggregate signature, on a set of messages
of its choice, by a set of users whose secret keys are not all known to it. It is
defined using the following game between a challenger C and an adversary A:

– Setup: C first initializes a key list KeyList as empty. Next it runs the AS.Setup
algorithm to get pp and the AS.Keygen algorithm to get the signing and veri-
fication keys (sk∗, pk∗). The verification key pk∗ is given to A;

– Join Queries: A adaptively asks to add the public keys pki to KeyList;
– Signature Query: A adaptively requests aggregate signatures on at most q

messages m1, . . . , mq under the challenge public key pk∗. For each query, it
provides an aggregate signature σi on the messages (mi,1, . . . , mi,ri

) under the
public keys (pki,1, . . . , pki,ri

), all in KeyList. Then C returns the aggregation
AS.Sign(sk∗, σi, (mi,1, . . . , mi,ri

), (pki,1, . . . , pki,ri
),mi);

– Output: A eventually outputs an aggregate signature σ on the messages
(m∗

1, . . . , m
∗
r) under the public keys (pk1, . . . , pkr) and wins the game if the

following conditions are all satisfied:
• AS.Verify((pk1, . . . , pkr), (m∗

1, . . . , m
∗
r), σ) = 1;

• For all pkj �= pk∗, pkj ∈ KeyList ;
• For some j∗ ∈ [1, r], pk∗ = pkj∗ and m∗

j∗ has not been queried to the
signing oracle, i.e. m∗

j∗ �= mi, for i = 1, . . . , q.

A sequential aggregate signature scheme is EUF-CMA secure if no probabilistic
polynomial-time adversary A can win this game with non-negligible probability.

Certified Keys. As in [35], we consider the setting proposed by Lu et al. [36]
where users must prove knowledge of their signing key sk when they want to add
a public key pk in KeyList. In the security proof, this enables the simulator to
answer every signature query made by the adversary A. As a consequence, in
the Join Query, when A asks to add pk to KeyList, it additionally proves its
knowledge of the corresponding secret key sk.

3 Assumption

A by-now classical assumption is the so-called LRSW [38], applied to many
privacy-preserving protocols, such as the CL-signatures [19], that admit two
protocols: an issuing protocol that allows a user to get a signature σ on a message
x, just by sending a commitment of x to the signer, and a proving protocol that
allows the user to prove, in a zero-knowledge way, his knowledge of a signature
on a commitment of x. They lead to efficient anonymous credentials.

Definition 1 (LRSW Assumption). Let G be a cyclic group of prime order
p, with a generator g. For X = gx and Y = gy, where x and y are random scalars
in Zp, we define the oracle O(m) on input m ∈ Zp that chooses a random h ∈ G

and outputs the triple T = (h, hy, hx+mxy). Given (X,Y ) and unlimited access
to this oracle, no adversary can efficiently generate such a triple for a new scalar
m∗, not asked to O.
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This assumption has been introduced in [38] and proven in the generic group
model, as modeled by Shoup [42].

We now propose two similar assumptions in bilinear groups of type 3 that
will provide even more efficient protocols. We then prove them to hold in the
bilinear generic group model.

Definition 2 (Assumption 1). Let (p,G1,G2,GT , e) a bilinear group setting
of type 3, with g (resp. g̃) a generator of G1 (resp. G2). For (X = gx, Y = gy)
and (X̃ = g̃x, Ỹ = g̃y), where x and y are random scalars in Zp, we define the
oracle O(m) on input m ∈ Zp that chooses a random h ∈ G1 and outputs the
pair P = (h, hx+my). Given (g, Y, g̃, X̃, Ỹ ) and unlimited access to this oracle,
no adversary can efficiently generate such a pair, with h �= 1G1 , for a new scalar
m∗, not asked to O.

One can note that using pairings, an output of the adversary can be checked
since the pair P = (P1, P2) should satisfy e(P1, X̃ · Ỹ m) = e(P2, g̃). In addition,
(X,Y ) are enough to answer oracle queries: on a scalar m ∈ Zp, one computes
(gr, (X · Y m)r). This requires 3 exponentiations per query, while knowing (x, y)
just requires a random sampling in G1 and one exponentiation.

In some situations, a weaker assumption will be enough, where Y is not given
to the adversary:

Definition 3 (Assumption 2). Let (p,G1,G2,GT , e) a bilinear group setting
of type 3, with g (resp. g̃) a generator of G1 (resp. G2). For (X̃ = g̃x, Ỹ = g̃y)
where x and y are random scalars in Zp, we define the oracle O(m) on input
m ∈ Zp that chooses a random h ∈ G and outputs the pair P = (h, hx+my).
Given (g̃, X̃, Ỹ ) and unlimited access to this oracle, no adversary can efficiently
generate such a pair, with h �= 1G1 , for a new scalar m∗, not asked to O.

Theorem 4. The above Assumption 1 (and thus the Assumption 2) holds in the
generic bilinear group model: after q oracle queries and qG group-oracle queries,
no adversary can generate a valid pair for a new scalar with probability greater
than 6(q + qG)2/p.

The proof can be found in the full version [40].

4 Our Randomizable Digital Signature Scheme

For the sake of clarity, for our signature scheme, we first describe the specific
case where only one message is signed. We then present an extension allowing
to sign several messages and show that the security of the latter scheme holds
under the security of the former (which holds under the weak Assumption 2).

4.1 A Single-Message Signature Scheme

Description. Our signature scheme to sign a message m ∈ Zp consists of the
following algorithms:
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– Setup(1k): Given a security parameter k, this algorithm outputs pp ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the following,
we denote G

∗
1 = G1\{1G1};

– Keygen(pp): This algorithm selects g̃
$← G2 and (x, y) $← Z

2
p, computes

(X̃, Ỹ ) ← (g̃x, g̃y) and sets sk as (x, y) and pk as (g̃, X̃, Ỹ );
– Sign(sk,m): This algorithm selects a random h

$← G
∗
1 and outputs σ ←

(h, h(x+y·m));
– Verify(pk,m, σ): This algorithm parses σ as (σ1, σ2) and checks whether σ1 �=

1G1 and e(σ1, X̃ · Ỹ m) = e(σ2, g̃) are both satisfied. In the positive case, it
outputs 1, and 0 otherwise.

Correctness: If σ = (σ1 = h, σ2 = h(x+y·m)), then

e(σ1, X̃ · Ỹ m) = e(h, X̃ · Ỹ m) = e(h, g̃)(x+y·m) = e(h(x+y·m), g̃) = e(σ2, g̃).

Remark 5. As already remarked above, the signature could be generated with
the secret key being either (x, y) or (X = gx, Y = gy). But the former leads a
more efficient signature scheme.

Randomizability. As the CL-signatures, a signature σ = (σ1, σ2) on a message
m can be randomized by selecting a random t

$← Z
∗
p and computing σ′ ← (σt

1, σ
t
2)

which is still a valid signature on m: it corresponds to replace h ∈ G
∗
1 by h′ =

ht ∈ G
∗
1.

Security Analysis. EUF-CMA is exactly the above Assumption 2, since a
signing oracle is perfectly equivalent to the oracle O.

4.2 A Multi-message Signature Scheme

Description. We now present a variant of the previous scheme to sign r-message
vectors (m1, . . . , mr) ∈ Z

r
p at once. Our signature scheme consists of the following

algorithms, where all the sums and products are on j between 1 and r:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the following,
we denote G

∗
1 = G1\{1G1};

– Keygen(pp): This algorithm selects g̃
$← G2 and (x, y1, . . . , yr)

$← Z
r+1
p , com-

putes (X̃, Ỹ1, . . . , Ỹr) ← (g̃x, g̃y1 , . . . , g̃yr ) and sets sk as (x, y1, . . . , yr) and pk

as (g̃, X̃, Ỹ1, . . . , Ỹr).
– Sign(sk,m1, . . . , mr): This algorithm selects a random h

$← G
∗
1 and outputs

σ ← (h, h(x+
∑

yj ·mj)).
– Verify(pk, (m1, . . . , mr), σ): This algorithm parses σ as (σ1, σ2) and checks

whether σ1 �= 1G1 and e(σ1, X̃ · ∏
Ỹ

mj

j ) = e(σ2, g̃) are both satisfied. In the
positive case, it outputs 1, and 0 otherwise.
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Correctness: If σ = (σ1 = h, σ2 = h(x+
∑

yj ·mj)), then

e(σ1, X̃ ·
∏

Ỹ
mj

j ) = e(h, X̃ ·
∏

Ỹ
mj

j ) = e(h, g̃)x+
∑

yj ·mj

= e(hx+
∑

yj ·mj , g̃) = e(σ2, g̃).

Security Analysis. We now rely the security of this multiple-message signa-
ture scheme to the security of the single-message signature scheme, and so on
Assumption 2. Due to space limitations, the proof of the following theorem is
provided in in the full version [40].

Theorem 6. The multiple-message signature scheme achieves the EUF-CMA
security level under the above Assumption 2. More precisely, if an adversary can
break the EUF-CMA of the multiple-message signature scheme with probability
ε, then there exists an adversary against the EUF-CMA security of the single-
message signature scheme, within the same running time and the same number
of signing queries, succeeding with probability greater than ε − q/p.

5 A Sequential Aggregate Signature

Our Construction. It is possible to slightly modify the scheme from Sect. 4.2
to convert it into a sequential aggregate signature scheme. The signer’s secret key
of the original scheme to sign r-message vector was (x, y1, . . . , yr). But now, let us
assume one publishes a signature on the r-vector (0, . . . , 0): (g,X) = (g, gx) ∈ G

2
1

for some g ∈ G1. This additional knowledge does not help an adversary to
produce forgeries on non-zero vectors, but the scalar value x is no longer useful
in the secret key since one can sign a vector (m1, . . . , mr) by selecting a random
t

$← Zp and computing (gt, (X)t · (gt)
∑

yj ·mj ). The correctness follows from the
one of the original scheme.

On the other hand, we can use the public key sharing technique from [35]
to construct an efficient sequential aggregate signature scheme in the standard
model: each signer j (from 1 to r) generates his own signing and verification
keys (yj , Ỹj) but uses the same element X from the public parameters. To sign
a message m1 ∈ Z

∗
p, the first selects a random t1

$← Zp and outputs (σ1, σ2) ←
(gt1 , (X)t1 ·(gt1)y1·m1). A subsequent signer 2 can generate an aggregate signature
on m2 by selecting a random t2 and computing (σ′

1, σ
′
2) ← (σt2

1 , (σ2 · σy2·m2
1 )t2).

Therefore, (σ′
1, σ

′
2) = (gt1·t2 , gt1·t2(x+m1·y1+m2·y2)) = (gt, gt(x+m1·y1+m2·y2)), for

t = t1t2, and so its validity can be verified using the Verify algorithm described
in Sect. 4.2.

More formally, our sequential aggregate signature scheme is defined by the
following algorithms.

– AS.Setup(1k): Given a security parameter k, this algorithm selects a random
x ∈ Zp and outputs pp ← (p,G1,G2,GT , e, g,X, g̃, X̃), where X = gx and
X̃ = g̃x for some generators (g, g̃) ∈ G1 × G2.
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– AS.Keygen(pp): This algorithm selects a random y
$← Zp, computes Ỹ ← g̃y

and sets sk as y and pk as Ỹ .
– AS.Sign(sk, σ, (m1, . . . , mr), (pk1, . . . , pkr),m) proceeds as follows:

• If r = 0, then σ ← (g,X);
• If r > 0 but AS.Verify((pk1, . . . , pkr), σ, (m1, . . . , mr)) = 0, then it halts;
• If m = 0, then it halts;
• If for some j ∈ {1, . . . , r} pkj = pk, then it halts.

If the algorithm did not halt, then it parses sk as y and σ as (σ1, σ2), selects
t

$← Zp and computes σ′ = (σ′
1, σ

′
2) ← (σt

1, (σ2 · σy·m
1 )t). It eventually outputs

σ′.
– AS.Verify((pk1, . . . , pkr), (m1, . . . , mr), σ) parses σ as (σ1, σ2) and pkj as Ỹj ,

for j = 1, . . . , r, and checks whether σ1 �= 1G1 and e(σ1, X̃ ·∏ Ỹ
mj

j ) = e(σ2, g̃)
are both satisfied. In the positive case, it outputs 1, and 0 otherwise.

Correctness. If r = 0, then the algorithm AS.Sign outputs (gt, (X · gy·m)t) =
(gt, gt(x+y·m)). By induction, let us now assume that σ = (gs, gs(x+

∑

yj ·mj)),
then an aggregate signature σ′ on m is equal to (gt·s, gt·s(x+m·y+∑ yj ·mj)), which
is equal to (h, hx+

∑

yj ·mj+y·m) for some h ∈ G1. The correctness of our sequential
aggregate signature scheme follows then from the signature scheme described in
Sect. 4.2.

Security Analysis. We now rely the security of this aggregate signature
scheme, in the certified public key setting, to the security of the single-message
signature scheme, and so on Assumption 2:

Theorem 7. The aggregate signature scheme achieves the EUF-CMA security
level, in the certified public-key setting, under the above Assumption 2. More
precisely, if an adversary can break the EUF-CMA of the aggregate signature
scheme, then there exists an adversary against the EUF-CMA security of the
single-message signature scheme, within the same running time and the same
number of signing queries, succeeding with the same probability.

The proof can be found in the in the full version [40].

6 Useful Features

6.1 Signing Committed Messages

Many cryptographic primitives require efficient protocols to obtain signatures
on committed (or transformed) values. For example, in some group signature
schemes [10,12,26], users must get a certificate on their secret key m ∈ Zp to
join the group. The non-frameability property [8] expected from such a primitive
prevents the users to directly send the value m to the group manager. Instead,
they rather send a public value gm, for some public g ∈ G1, and start a protocol
with the latter to get a signature on the secret value m.
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Our signature scheme can be slightly modified to handle such a protocol: one
can submit gm to the signer and prove knowledge of m. If the proof is valid, the
signer can return σ = (σ1, σ2) ← (gu, (gx · (gm)y)u), for some u

$← Zp, which is
a valid signature on m.

However, gm is not hiding enough in some applications, and namely if inform-
ation-theoretical security is required. For example, in anonymous credentials [17],
the elements gm1 , . . . , gmr may provide too much information on the attributes
(m1, . . . , mr), if they belong to small sets.

The modified BBS signature scheme [12] described in [4] enables the signer to
sign messages (m1, . . . , mr) from a Pedersen commitment [39] C = gt0·gm1

1 · · · gmr
r

(where t is a random scalar). We need to slightly modify the scheme described in
Sect. 4.2 to add such a feature. Indeed, the latter does not provide any element
of G1 in the public key. The resulting protocol is described below, in the multi-
message setting. But we first start with the single-message protocol.

A Single-Message Protocol. The signature scheme for signing one
information-theoretically hidden message consists of the following algorithms:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the follow-
ing, we denote G

∗
1 = G1\{1G1} and G

∗
2 = G2\{1G2}, which are the sets of the

generators.
– Keygen(pp): This algorithm selects g

$← G
∗
1, g̃

$← G
∗
2 and (x, y) $← Z

2
p,

computes (X,Y ) ← (gx, gy) and (X̃, Ỹ ) ← (g̃x, g̃y), and sets sk ← X and
pk ← (g, Y, g̃, X̃, Ỹ ).

– Protocol: A user who wishes to obtain a signature on the message m ∈ Zp first
selects a random t

$← Zp and computes C ← gtY m. He then sends C to the
signer. They both run a proof of knowledge of the opening of the commitment.
If the signer is convinced, he selects a random u

$← Zp and returns σ′ ←
(gu, (XC)u). The user can now unblind the signature by computing σ ←
(σ′

1, σ
′
2/σ′

1
t).

The element σ then satisfies σ1 = gu and σ2 = (XC)u/gut = (XgtY m/gt)u =
(XY m)u, which is a valid signature on m for the single-message signature scheme
described in Sect. 4.1. However, because of the additional elements in the public
key, the EUF-CMA security of the underlying signature scheme now relies on
the Assumption 1.

A Multi-message Protocol. The signature scheme for signing information-
theoretically hidden messages consists of the following algorithms:

– Setup(1k): Given a security parameter k, this algorithm outputs pp ←
(p,G1,G2,GT , e). These bilinear groups must be of type 3. In the follow-
ing, we denote G

∗
1 = G1\{1G1} and G

∗
2 = G2\{1G2}, which are the sets of the

generators.
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– Keygen(pp): This algorithm selects g
$← G

∗
1, g̃

$← G
∗
2 and (x, y1, . . . , yr)

$←
Z
r+1
p , computes (X,Y1, . . . , Yr) ← (gx, gy1 , . . . , gyr ) and (X̃, Ỹ1, . . . , Ỹr) ←

(g̃x, g̃y1 , . . . , g̃yr ), and sets sk ← X and pk ← (g, Y1, . . . , Yr, g̃, X̃, Ỹ1, . . . , Ỹr).
– Protocol: A user who wishes to obtain a signature on (m1, . . . , mr) first

selects a random t
$← Zp and computes C ← gt

∏r
i=1 Y mi

i . He then sends C
to the signer. They both run a proof of knowledge of the opening of the com-
mitment. If the signer is convinced, he selects a random u

$← Zp and returns
σ′ ← (gu, (XC)u). The user can now unblind the signature by computing
σ ← (σ′

1, σ
′
2/σ′

1
t).

Again, the element σ satisfies σ1 = gu and σ2 = (XC)u/gut. If one devel-
ops, σ2 = (Xgt

∏r
i=1 Y mi

i /gt)u = (X
∏r

i=1 Y mi
i )u, which is a valid signature

on (m1, . . . , mr) for the multi-message signature scheme described in Sect. 4.2,
but with additional elements in the public key: the EUF-CMA security of this
multi-message signature scheme can also be shown equivalent to the one of the
single-message signature scheme, with a similar proof as the one for Theorem 6,
and thus relies on the Assumption 1.

6.2 Proving Knowledge of a Signature

If we still consider the example of anonymous credentials, the previous protocols
have addressed the problem of their issuance. However, once a user has obtained
his credential, he must also be able to use it to prove that its attributes are
certified, while remaining anonymous. To do so, the protocols usually follow the
framework described in [19] and so need an efficient way to prove knowledge of
a signature.

Our scheme offers such functionality thanks to the ability of our signatures
to be sequentially aggregated. Informally, to prove knowledge of a signature
σ = (σ1, σ2) on a message m, the user will aggregate a signature on some random
message t under a dummy public key g̃ (which is part of the public parameters).
The resulting signature σ′ is then valid on the block (m, t) and does not reveal
any information on m.

More formally, let pk ← (g̃, X̃, Ỹ1, . . . , Ỹr) be a public key for the signature
scheme of Sect. 4.2 and σ = (σ1, σ2) be a valid signature on a block (m1, . . . , mr)
under it. To prove knowledge of σ, the prover does the following:

1. He selects random r, t
$← Zp and computes σ′ ← (σr

1, (σ2 · σt
1)

r).
2. He sends σ′ = (σ′

1, σ
′
2) to the verifier and carries out a zero-knowledge proof of

knowledge π (such as the Schnorr’s interactive protocol [41]) of (m1, . . . , mr)
and t such that:

e(σ′
1, X̃) ·

∏
e(σ′

1, Ỹj)mj · e(σ′
1, g̃)t = e(σ′

2, g̃)

The verifier accepts if π is valid.

Theorem 8. The protocol above is a zero-knowledge proof of knowledge of a
signature σ on the block (m1, . . . , mr).

The proof is provided in the in the full version [40].
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7 Efficiency

We compare in Fig. 1 the efficiency of our scheme with the ones of CL-
signatures [19] and BBS-signatures [4,12] since they are the most popular
schemes used as building blocks for pairing-based protocols. As described in [4],
to compute a BBS signature on a block of r messages (m1, . . . , mr), a signer
whose secret key is γ ∈ Zp first selects two random scalars e and s and then
computes A ← (g0gs1g

m1
2 . . . gmr

r+1)
1

e+γ for some public parameters g0,. . . ,gr+1.
The signature is defined as (A, e, s). For proper comparison, we consider a vari-
ant of this scheme where the signer has generated the elements gi ← gyi

0 for
i ∈ [1, r + 1]. Therefore, he can compute the element A more efficiently since

A = g
1+
∑r+1

i=1 yi·mi
γ+e

0 .

Size of Sig. Sig. Cost Verif. Cost Rand. Pairings

Sign. Schemes

BBS [12, 4] 1G1 + 2Zp 2 RZp + 1 EG1 2 P + 1 EG2 + (r + 1) EG1 No All

CL [19] (1 + 2r)G1 1 RG1 + 2r EG1 4r P + r EG2 Yes All

Ours [sect. 4.2] 2G1 1 RG1 + 1 EG1 2 P + r EG2 Yes type 3

Seq. Aggregate
Sign. Schemes

LLY [35] 3G1 1 Ver. + 5 EG1 5 P + r EG2 Yes All

Ours [sec. 5] 2G1 1Ver. + 3 EG1 2 P + r EG2 Yes type 3

Fig. 1. Efficiency comparison between related works. Here, r refers to the number of
messages, RG1 (resp. RZp) to the cost of generating a random element of G1 (resp.
Zp), EGi to the cost of an exponentiation in Gi (i ∈ {1, 2}), P to the cost of a pairing
computation and Ver to the cost of verifying an aggregate signature.

As illustrated in Fig. 1, our signature scheme (resp. sequential aggregate sig-
nature scheme) compares favourably with the one from [19] (resp. [35]). However,
our scheme is only compatible with type 3 pairings but we argue that this is not
a strong restriction since most of the recent cryptographic protocols already use
them for efficiency and security reasons.

Although the efficiency of our scheme is similar to the one of BBS, we stress
that the ability of our signatures to be randomized improves the efficiency of
protocols using them. Indeed, as explained in Sect. 1.1, one cannot show several
times a BBS signature while being unlinkable. One must then commit to the
signature and then prove in a zero-knowledge way that the resulting commitment
opens to a valid signature. This is not the case with our scheme since one can
simply randomize the signature between each show. To illustrate this point, we
provide some examples in in the full version [40].



124 D. Pointcheval and O. Sanders

8 Conclusion

In this work we have proposed a new signature scheme, suited for type 3 pairings,
which achieves a remarkable efficiency. As CL-signatures, our signatures can be
randomized and can be used as building blocks for many cryptographic primi-
tives. In particular, they support efficient protocols for obtaining a signature on
committed elements and can be efficiently combined with zero-knowledge proofs
in the ROM. As illustrated in this paper, instantiating cryptographic construc-
tions with our solution improves their efficiency and may therefore contribute to
make them more accessible for real-life applications.

Acknowledgments. This work was supported in part by the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-
2013 Grant Agreement no. 339563 – CryptoCloud).
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Abstract. Group signatures are an important privacy-enhancing tool
that allow to anonymously sign messages on behalf of a group. A recent
feature for group signatures is controllable linkability, where a dedicated
linking authority (LA) can determine whether two given signatures stem
from the same signer without being able to identify the signer(s). Cur-
rently the linking authority is fully trusted, which is often not desirable.

In this paper, we firstly introduce a generic technique for non-
interactive zero-knowledge plaintext equality and inequality proofs. In
our setting, the prover is given two ciphertexts and some trapdoor infor-
mation, but neither has access to the decryption key nor the randomness
used to produce the respective ciphertexts. Thus, the prover performs
these proofs on unknown plaintexts. Besides a generic technique, we also
propose an efficient instantiation that adapts recent results from Blazy
et al. (CT-RSA’15), and in particular a combination of Groth-Sahai (GS)
proofs (or sigma proofs) and smooth projective hash functions (SPHFs).

While this result may be of independent interest, we use it to real-
ize verifiable controllable linkability for group signatures. Here, the LA
is required to non-interactively prove whether or not two signatures link
(while it is not able to identify the signers). This significantly reduces the
required trust in the linking authority. Moreover, we extend the model of
group signatures to cover the feature of verifiable controllable linkability.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [11], allow users to
anonymously sign messages on behalf of a group. In case of dispute, a so-called
opening authority is able to reveal the identity of the actual signer. While many
popular group signature schemes (GSSs) (such as [2,8]) simply trust the output
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of the opening authority, Camenisch and Stadler [10] proposed to require a proof
of the correctness of the opening mechanism. Later, Bellare et al. [3] introduced
a model for dynamic group signatures (BSZ model) that incorporates this issue
by requiring publicly verifiable proofs of opening, i.e., the opening authority pro-
vides a proof that the claimed signer indeed produced a given signature. Recently,
Sakai et al. [33] identified an issue with this opening mechanism in the BSZ model
and introduced an additional property called opening soundness. This property
prevents signature hijacking, i.e., it prevents malicious group members (who
cooperate with the opening authority) from claiming ownership of a signature
produced by an honest group member. Over the years many other additional
features for GSSs have been introduced (cf. Sect. 1.2).

One rather recent feature is called controllable linkability [21–23,34]. Here, a
dedicated entity called linking authority (LA) can determine whether two given
group signatures stem from the same signer, but the LA is not able to identify
the signer(s). Consequently, the LA is strictly less powerful than the opening
authority which can identify all signers by opening their signatures. Like early
group signatures did not consider untrusted opening authorities, existing group
signatures with controllable linkability [21–23,34] do not consider untrusted LAs.
In particular, the LA simply provides a binary linking decision and thus has to be
fully trusted. It is, however, desirable to reduce this trust. Ideally, in a way that
the LA needs to provide verifiable evidence, i.e., a proof, of a correct decision.
In this paper, we solve this open problem and introduce the novel concept of
verifiable controllable linkability (VCL). Applications of VCL include different
types of privacy-preserving data-mining scenarios in various fields such as online
shopping, public transport, park- and road pricing. Essentially, whenever one
requires to analyse customers’ behavioural patterns in a privacy-respecting way
and these computations are outsourced to a potentially untrusted party, e.g., a
cloud provider, that needs to prove honest behaviour and must not be able to
identify individuals. Moreover, their application to revocation mechanisms seems
interesting to study.

1.1 Background and Motivation

Naive approaches to solve this problem, like abusing the opening-authority or
requiring the LA to sign its decision, are not satisfactory and rather privacy
intrusive. To give an idea of how we approach this problem, we have to look at
the existing approaches to achieve controllable linkability without verifiability.
This concept has been proposed for several GSSs by Hwang et al. [21–23]. As
their approach to controllable linkability, however, is ad-hoc and always tailored
to a specific GSS, Slamanig et al. [34] proposed a generic approach to add con-
trollable linkability to pairing-based group signature schemes following the sign-
and-encrypt-and-prove (SEP) paradigm (cf. Sect. 2.3), which covers a large class
of practical group signatures in the ROM. We recall that a group signature in the
SEP paradigm is an encryption of a per-user unique value (certificate) under the
public key of the opening authority and a non-interactive zero-knowledge proof of
a signature (on this certificate) from the group manager. This generic approach
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allows the LA to perform the linking operation on the encrypted membership
certificates (which are used for opening group signatures) by means of a variant
of the all-or-nothing public key encryption with equality tests (AoN-PKeet∗)
primitive. Basically, the LA obtains a single linking key (trapdoor) that allows
plaintext equality tests on the membership certificates without being able to
decrypt. Now, our idea is to require the LA to provide a proof that either two
encrypted membership certificates contain the same or different unknown cer-
tificates (plaintexts). The particular challenge, however, is that the LA must not
be able to identify the signers and thus needs to perform such proofs without
knowing the plaintexts, the decryption key or the randomness used to produce
the ciphertexts. Moreover, in contrast to opening proofs, we do not only need
to provide a proof in case of a positive linking decision but also in case of a
negative decision, i.e., when two ciphertexts contain different unknown plain-
texts (certificates). This makes proving the correctness of a linking decision a
much more challenging task.

1.2 Related Work

Group Signatures. In traceable signatures [13,26], the opening authority can
compute a tracing trapdoor for a user, which allows the identification of all signa-
tures generated by a particular user without violating the privacy of other users.
In group signatures with message dependent opening [32], the opening authority
cannot open any signature unless an additional authority (the admitter) admits
to open signatures for specified messages and thus restricts the power of the
opening authority. In deniable group signatures [24], the opener can, in addition
to opening proofs, prove that a particular signature has not been generated by a
particular signer. Apart from these opening capabilities, also linking capabilities
have been investigated. For instance, the possibility to publicly link group signa-
tures of users without identifying them [29] or to allow public tracing of signers
who have produced a number of signatures above a certain threshold [37]. But
also the linkability of signatures for a specified time frame (by fixing the ran-
domness for a certain time [27] or by introducing specific time tokens [17]) have
been considered. Another direction is to put the user in charge of controlling
which signatures can be linked, as it is used in DAA [9] and related schemes [6].
These concepts are related to our work but do not help to realize our goals.

Plaintext Equality/Inequality Proofs. Zero-knowledge proofs of plaintext
equality (under distinct public keys) are well known from the twin-encryption
paradigm [30]. However, we require equality as well as inequality proofs and
in our setting the prover neither has access to the decryption key nor the ran-
domness used to produce the respective ciphertexts. Jakobsson and Juels [25]
introduced the concept of distributed plaintext equality tests (PETs) within their
approach to general secure multiparty computation. Basically, it allows n > 1
entities to determine whether two ElGamal ciphertexts encrypt the same or a
different message without learning the message. However, this requires access to
the decryption key. Choi et al. [12] provide zero-knowledge equality/inequality
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proofs for boolean ElGamal ciphertexts. Their approach requires the knowledge
of the decryption key and the randomness used to produce the two ciphertexts.
Parkes et al. [31] provide zero-knowledge equality/inequality proofs of plaintexts
within Paillier ciphertexts, which however require either access to the random-
ness used to produce the ciphertexts or access to the plaintexts. Recently, Blazy
et al. [7] introduced a generic approach to prove non-membership with respect
to some language in non-interactive zero-knowledge. Among others, they show
how to prove plaintext inequality of two ElGamal ciphertexts, where the verifier
knows the plaintext and the randomness used to produce one of the ciphertexts.
Therefore, none of these approaches directly fits our requirements.

1.3 Contribution

The contributions of this paper are as follows: (1) Based upon the idea of pub-
lic key encryption with equality tests, we define a generic non-interactive proof
system that allows to perform zero-knowledge proofs about plaintext equality
and inequality with respect to any two ciphertexts under the same public key.
Thereby, the prover is neither required to have access to the decryption key
nor to the randomness used to produce the respective ciphertexts. (2) We show
how Groth-Sahai (GS) proofs [20] and an adaptation of non-interactive zero-
knowledge proofs of non-membership [7] can be combined to obtain an instan-
tiation of our proof system. While an instantiation of such a proof system is of
independent interest, it allows us to construct group signatures with verifiable
controllable linkability (VCL-GS). (3) We adopt the model of GSSs with control-
lable linkability [21–23] to one for verifiable controllable linkability. In the vein of
Sakai et al. [33], we introduce a property called linking soundness, which requires
that even corrupted LAs (colluding with malicious users) cannot produce false
linking proofs. (4) We show how to transform GSSs with controllable linkability
following the SEP paradigm into GSSs with verifiable controllable linkability by
using the proposed non-interactive zero-knowledge proof system.

2 Preliminaries

Subsequently, we discuss preliminaries and required tools.

Notation. Let x ←R X denote the operation that picks an element x uniformly
at random from a set X. A function ε : N → R

+ is called negligible if for all
c > 0 there is a k0 such that ε(k) < 1/kc for all k > k0. In the remainder of this
paper, we use ε to denote such a negligible function. We use boldface letters to
denote vectors, e.g., X = (X1, . . . Xn).

Let G1 = 〈g〉, G2 = 〈ĝ〉, and GT be groups of prime order p. We write
elements in G2 as ĝ, ĥ, etc. A bilinear map e : G1 ×G2 → GT is a map, where it
holds for all (u, v̂, a, b) ∈ G1 ×G2 ×Z

2
p that e(ua, v̂b) = e(u, v̂)ab, and e(g, ĝ) �= 1,

and e is efficiently computable. We assume the asymmetric setting where G1 �=
G2. The required hardness assumptions are provided in the full version.
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2.1 Groth-Sahai (GS) Non-interactive Zero-Knowledge Proofs

Groth and Sahai [20] provide a framework for efficient non-interactive witness-
indistinguishable (NIWI) and zero-knowledge (NIZK) proofs for languages
defined over bilinear groups. It allows, among others, to prove statements about
the satisfiability of so-called pairing product equations (PPEs). While the frame-
work is quite independent of the underlying hardness assumption, we will use
the instantiation based on the SXDH setting, and, thus, our further explanations
are tailored to this setting. A PPE is of the form
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Informally, GS proofs use the following strategy. One commits to the vectors X
and Ŷ, and uses the commitments instead of the actual values in the PPE. The
proof π is used to cancel out the randomness used in the commitments. As this
does not directly work when using the groups G1,G2, and GT , one projects
the involved elements to the vector spaces G
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projection maps and proves the satisfiability of the PPE using the projected
elements and corresponding bilinear map F : G2
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2 → G

4
T .

More formally, a GS proof for a PPE allows to prove knowledge of a
witness w = (X, Ŷ) such that the PPE, uniquely defined by the statement
x = (A, B̂, Γ, tT ), is satisfied. Henceforth, let BG denote the description of the
used bilinear group and let R be the relation such that (BG, x, w) ∈ R iff w is a
satisfying witness for x with respect to BG. Further, let LR be the corresponding
language.

Formally, a non-interactive proof system in a bilinear group setting is defined
as follows:

Definition 1. A non-interactive proof system Π is a tuple of PPT algorithms
(BGGen, CRSGen, Proof, Verify), which are defined as follows:

BGGen(1κ): Takes a security parameter κ as input, and outputs a bilinear group
description BG.

CRSGen(BG): Takes a bilinear group description BG as input, and outputs a
common reference string crs.

Proof(BG, crs, x, w): Takes a bilinear group description BG, a common reference
string crs, a statement x, and a witness w as input, and outputs a proof π.

Verify(BG, crs, x, π): Takes a bilinear group description BG, a common reference
string crs, a statement x, and a proof π as input, and outputs 1 if π is valid
and 0 otherwise.

The security definitions for non-interactive proof systems are provided in the full
version. GS proofs are perfectly complete, perfectly sound, and witness indistin-
guishable. Furthermore, they are composably zero-knowledge if tT = 1GT

and
the PPE does not involve a pairing of two public constants.
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Throughout this paper we use the GS-based commit-and-prove approach
from [18], which allows to reuse the commitments in proofs for different state-
ments. This allows us to prove statements with respect to commitments that are
included in the CRS to obtain more efficient proofs. Moreover, the fact that the
commitments are already contained in the CRS allows us to exclude the usage
of trivial witnesses, i.e., 1G1 or 1G2 .

2.2 Smooth Projective Hash Functions

Smooth projective hash functions (SPHF) [15] are families of pairs of functions
(Hash,ProjHash) defined on a language L. They are indexed by a pair of asso-
ciated keys (hk, hp), where the hashing key hk may be viewed as the private
key and the projection key hp as the public key. On a word W ∈ L, both func-
tions need to yield the same result, i.e., Hash(hk, L,W ) = ProjHash(hp, L,W,w),
where the latter evaluation additionally requires a witness w that W ∈ L. Thus,
they can be seen as a tool for implicit designated-verifier proofs of membership
[1]. Formally SPHFs are defined as follows (cf. [5]).

Definition 2. A SPHF for a language L is a tuple of PPT algorithms
(Setup,HashKG,ProjKG,Hash,ProjHash), which are defined as follows:

Setup(1κ): Takes a security parameter κ and generates the global parameters pp
(we assume that all algorithms have access to pp).

HashKG(L): Takes a language L and outputs a hashing key hk for L.
ProjKG(hk, L,W ): Takes a hashing key hk, a language L, and a word W and

outputs a projection key hp, possibly depending on W .
Hash(hk, L,W ): Takes a hashing key hk, a language L, and a word W and

outputs a hash H ′.
ProjHash(hp, L,W,w): Takes a projection key hp, a language L, a word W , and

a witness w for W ∈ L and outputs a hash H.

The security properties as well as the concrete ElGamal-based instantiation
from [19] used in this paper are provided in the full version.

2.3 Sign-and-Encrypt-and-Prove Paradigm

Group signature schemes following the sign-and-encrypt-and-prove (SEP) par-
adigm are popular and there are various efficient constructions (in the ROM)
following this paradigm. Such a scheme consist of the following three building
blocks: (1) A secure signature scheme DS = (KeyGens,Sign,Vrfy), (2) an at least
IND-CPA secure public key encryption scheme AE = (KeyGene,Enc,Dec) and
(3) a non-interactive zero-knowledge proof of knowledge (NIZKPK) system, e.g.,
non-interactive versions of Σ-protocols obtained via the Fiat-Shamir transform
in the ROM (denoted as signatures of knowledge (SoK) subsequently).

The group public key gpk consists of the public encryption key pke, and the
signature verification key pks. The master opening key mok is the decryption
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key ske, and the master issuing key mik is the signing key sks. During the joining
procedure a user i sends f(xi) to the issuer, where f(·) is a one-way function
applied to a secret xi. The issuer returns a signature cert ← Sign(sks, f(xi))
which represents the user’s certificate.

A group signature σ = (T, π) for a message M consists of a ciphertext T ←
Enc(pke, cert) and the following SoK π:

π ← SoK{(xi, cert) : cert = Sign(sks, f(xi)) ∧ T = Enc(pke, cert)}(M).

We note that there are slight deviations in instantiations of this paradigm (cf.
[28,34]), e.g., sometimes cert is computed for xi instead of f(xi) (which, however,
does not yield constructions providing non-frameability), or T may represent
an encryption of f(xi) or g(xi) for some one-way function g(·). We, however,
stress that for our approach in this paper it does not matter how T is exactly
constructed (beyond being the encryption of a per-user unique value).

2.4 All-or-Nothing Public Key Encryption with Equality Tests

Following the work of Tang [35,36], Slamanig et al. [34] modified the all-or-
nothing public key encryption with equality tests (AoN-PKeet∗). The idea of
AoN-PKeet [35,36] is to allow specific entities in possession of a trapdoor to
perform equality tests on ciphertexts without learning the underlying plaintext.
Slamanig et al. additionally require this primitive to be compatible with efficient
zero-knowledge proofs regarding the plaintexts, to ensure compatibility with
group signature schemes following the SEP paradigm.

An AoN-PKeet∗ scheme (KeyGen, Enc, Dec, Aut, Com) is a conventional (at
least IND-CPA secure) public key encryption scheme (compatible with efficient
zero-knowledge proofs) augmented by two additional algorithms Aut and Com
(cf. [34] for a formal treatment).

Aut(ske): Takes the private decryption key ske of the public key encryption
scheme and returns a trapdoor tk required for the equality test.

Com(T, T ′, tk): Takes two ciphertexts (T , T ′) and a trapdoor tk and returns 1 if
both ciphertexts encrypt the same (unknown) message and 0 otherwise.

Definition 3 [34]. An AoN-PKeet∗ scheme is called secure if it is sound,
provides OW-CPA security against Type-I adversaries (trapdoor holders) and if
the underlying encryption scheme provides IND-CPA/IND-CCA security against
Type-II adversaries (outsiders).

Construction from ElGamal. In a bilinear group setting where the (S)XDH
assumption is assumed to hold, one can rely on ElGamal encryption in G1.
Let the private key be a random element ξ ←R Zp and the corresponding public
key be h ← gξ ∈ G1, then the encryption of a message m is computed as
T = (T1, T2) = (gα,mhα) for a randomly chosen element α ←R Zp. The trapdoor
generation and comparison algorithms are as follows:

Aut(ξ): Return the trapdoor tk ← (r̂, t̂ = r̂ξ) ∈ G
2
2 for a random r̂ ←R G2.
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Com(T, T ′, tk): Given two ciphertexts T = (T1, T2) = (gα,mhα) and T ′ =
(T ′

1, T
′
2) = (gα′

,m′hα′
) and a trapdoor tk = (r̂, t̂ = r̂ξ), return 1 if

e(T2, r̂) · e(T1, t̂)−1 = e(T ′
2, r̂) · e(T ′

1, t̂)
−1 holds and 0 otherwise.

Lemma 1 [34]. Under the co-CDH assumption AoN-PKeet∗ based on ElGa-
mal in G1 in an (S)XDH setting is secure.

3 Non-interactive Plaintext (In-)Equality Proofs

We are interested in plaintext equality and inequality proofs where the prover
neither knows the randomness used for encryption, nor the decryption key and
consequently also does not know the plaintexts. If we use the idea of AoN-
PKeet∗ [34], the prover can use a trapdoor to determine whether two cipher-
texts encrypt the same unknown plaintext, while not being able to decrypt. This,
in turn, allows the prover to select which type of proof to conduct. Moreover, for
AoN-PKeet∗ schemes in the pairing setting, we can use the pairing product
equation that is used by the Com algorithm and a suitable proof framework to
prove (1) knowledge of a trapdoor that is consistent with the respective public
key, and (2) the satisfiability of the pairing product equation corresponding to
Com when used with the non-revealed trapdoor on two ciphertexts in question.
As we will see later, this allows us to prove plaintext equality in a straightforward
way, while plaintext inequality requires a slightly more sophisticated approach.

3.1 A Generic Construction

Let PKEQ = (KeyGen,Enc,Dec,Aut,Com) be a secure AoN-PKeet∗ scheme.
Building upon PKEQ, we define a generic non-interactive proof system Π that—
for two ciphertexts T and T ′ under some public key pk—allows to prove knowl-
edge of a trapdoor tk, that either attests membership of (T, T ′, pk) in language
LR∈ or in a language LR/∈ . The corresponding NP-relations are defined as follows:

((T, T ′, pk), tk) ∈ R∈ ⇐⇒ Com(T, T ′, tk) = 1 ∧ tk ≡ pk,
((T, T ′, pk), tk) ∈ R/∈ ⇐⇒ Com(T, T ′, tk) = 0 ∧ tk ≡ pk,

where tk ≡ pk denotes that tk corresponds to pk and we omit BG for simplicity.
To obtain a non-interactive proof system Π with the desired expressiveness,
we compose two non-interactive proof systems, namely Π∈ and Π/∈. Here, Π∈
covers statements in LR∈ , whereas Π/∈ covers statements in LR/∈ . It is easy to
see that—by the soundness of PKEQ—each tuple ((T, T ′, pk), tk) is either in R∈
or in R/∈. Membership can be efficiently checked using the Com algorithm. The
non-interactive proof system Π is presented in Scheme 1, where we assume that
one can efficiently decide for which language a given proof π has been computed.1

We call a non-interactive plaintext equality and inequality (NIPEI) proof system
secure if it is perfectly complete, perfectly sound, and at least computationally
zero-knowledge. The subsequent Lemma trivially follows from the fact that LR∈
and LR�∈ are disjoint.
1 As LR∈ and LR/∈ are disjoint, one can otherwise just run Verify for both languages.
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Scheme 1. NIPEI Proof System

Lemma 2. If Π∈ and Π/∈ are secure NIZK proof systems, then the resulting
NIPEI proof system Π is also secure. Thereby, for every security property p∈ of
Π∈ and corresponding security property p/∈ of Π/∈, Π inherits p∈ if p∈ is implied
by p/∈ and p/∈ otherwise. That is, Π inherits the weaker security notion of both.

3.2 Instantiation with PKEQ from ElGamal Encryption

We will now present a concrete instantiation of a NIPEI proof system in the
SXDH setting where we base the PKEQ scheme on ElGamal encryption in G1.
Recall, that pk = gξ, the trapdoor is tk = (r̂, t̂ = r̂ξ) ∈ G

2
2 and for two ciphertexts

T and T ′, Com(T, T ′, tk) checks whether e(T2, r̂) ·e(T1, t̂)−1 = e(T ′
2, r̂) ·e(T ′

1, t̂)
−1

holds. If so, the ciphertexts encrypt the same plaintexts and different plaintexts
otherwise. Subsequently, we present the relations R∈ and R/∈ for this PKEQ
scheme. For membership in R∈, the following PPEs need to be satisfied:

(((T1, T2), (T ′
1, T

′
2)), (r̂, t̂)) ∈ R∈ ⇐⇒ e(gξ, r̂) · e(g−1, t̂) = 1GT

∧
r̂ �= 1G2 ∧ t̂ �= 1G2 ∧ e(T2 · T ′−1

2 , r̂) · e(T−1
1 · T ′

1, t̂) = 1GT
. (1)

By the soundness of the underlying PKEQ scheme, the PPEs above deliver the
desired soundness properties for membership in R∈. For membership in R/∈,
we have to exchange the last literal in the conjunction of the PPEs above by
e(T2 · T ′−1

2 , r̂) · e(T−1
1 · T ′

1, t̂) �= 1GT
. It is important to note that an inequality

(as in the second part of the conjunction) cannot be proven using GS.

Instantiation of Π∈. We use the GS-based commit-and-prove scheme from
[18]. Thereby, the advantage is that it is possible to reach composable zero-
knowledge even when reusing commitments in proofs for different statements.
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Consequently, we can include commitments to r̂ and t̂ in the CRS and we can
reuse these commitments to prove the satisfiability of the following PPE

2∏

i=1

e(Ai, Ŷi) = e(T2 · T ′−1
2 , r̂) · e(T−1

1 · T ′
1, t̂) = 1GT

,

where the prover is given access to the openings of the commitments and the
underlined values are not revealed to the verifier. The fact that the commitments
are already contained in the CRS forces the prover to use commitments to the
actual values which are consistent with the public key (instead of plugging in
r̂ = 1G2 , t̂ = 1G2 as the trivial solution).2 The corresponding proof is very simple
and can be communicated with two group elements in G1. Since our instantiation
is a straightforward application of the GS-based commit-and-prove scheme, we
obtain the following lemma:

Lemma 3. Π∈ provides perfect completeness, perfect soundness and—because
of the form of the PPE—composable zero-knowledge.3

Instantiation of Π /∈. To construct a proof for plaintext inequality statements,
we build upon a recent technique by Blazy et al. [7]. They show a generic way
to (non-interactively) prove non-membership claims with respect to a language
in zero-knowledge and provide multiple instantiations of their framework based
on combinations of SPHFs and GS proofs. Informally, their generic technique
for proving non-membership works as follows. They use a non-interactive proof
system Π1 that allows to prove possession of a witness demonstrating the mem-
bership of some statement in some language, where the respective proof fails.
Then, they use a non-interactive proof system Π2 that allows to prove that
Π1.Proof has been computed honestly. This way, it is possible to express non-
membership statements by producing a proof such that Π1.Verify returns 0 and
proving that the proof itself was honestly computed (since otherwise such a
faulty proof would be trivially computable).

We will build our instantiation upon a SPHF for Π1 (where we can use the
SPHF framework from [4], which allows to prove the required statements) and
GS proofs for Π2. However, in contrast to how this technique is used in [7],
in our setting the verifier does not know the randomness of the commitments.
This imposes an additional technicality to be discussed below. In particular, we
additionally compute the hash value H using ProjHash on the prover side and
prove that H was honestly computed using an additional non-interactive zero-
knowledge proof system Π3 (which we instantiate with GS proofs). In Scheme 2,
we present our non-interactive proof system for membership in a language LR/∈
that contains all tuples (T, T ′, pk,Ctk), where the trapdoor committed to in Ctk

allows to demonstrate plaintext inequality. For simplicity, crs is for Π1 and Π3.
2 For the simulation we may still use r̂ = 1G2 , t̂ = 1G2 .
3 We note that, due to using the commit-and-prove approach from [18], we also use

their composable zero-knowledge notion for commit-and-prove schemes. This notion
can be seen as a generalization of standard composable zero-knowledge.
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Scheme 2. NIPEI Proof System. P . . .Prover, V . . .Verifier.

A nice thing to note (which will allow us to improve the efficiency of Π/∈) is
that we do not need to simulate the proof φ. We will only require the proof to
completely hide hk, i.e., to be witness indistinguishable.

Likewise to Π∈, we can include the commitments Ctk to tk in the CRS and use
these commitments in the SPHF. Accordingly, the corresponding PPE simplifies
to e(T2 ·T ′−1

2 , r̂) · e(T−1
1 ·T ′

1, t̂) �= 1GT
. We additionally include commitments CR

to the randomness Rtk used to compute Ctk in the CRS. Then we can use these
commitments together with the GS-based commit-and-prove scheme from [18]
to prove the honest computation of the projective hash value more efficiently.
Likewise to the other commitments in the CRS, this ensures that the prover uses
the correct values (while also ensuring the simulatability).

Since the instantiation of Π1, Π2, and Π3 with the required properties is
quite involved, we provide a detailed description in the full version. Finally, for
Scheme 2 we can show the following:

Theorem 1. If Π1 is correct and the verifier cannot distinguish a failing proof
(i.e., H) from random, Π2 is complete, sound and witness indistinguishable, Π3

is complete, sound and zero-knowledge, then Π/∈ is also complete, sound and
zero-knowledge.

We prove Theorem 1 in the full version. By combining Lemmas 2, 3, and
Theorem 1 we straightforwardly derive the following corollary for our instan-
tiation of the proof system Π = (Π∈,Π/∈).

Corollary 1. The NIPEI proof system Π obtained by combining the above
instantiations of Π∈ and Π/∈ is secure, i.e., complete, sound, and zero-knowledge.

Instantiations with Other Encryption Schemes. For simplicity, we have
presented an instantiation in the SXDH setting using ElGamal, but it is straight-
forward to adapt to Cramer-Shoup [14] or twin-ElGamal [16]. Furthermore, it
is easy to adapt it to the DLIN setting and the corresponding linear encryption
schemes.

4 GSSs with Verifiable Controllable Linkability

Subsequently, we propose a model for group signatures that considers verifiable
controllable linkability and builds upon the model of Hwang et al. [21–23] who
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formalized controllable linkability. Moreover, we consider the extension to the
BSZ [3] model of Sakai et al. [33], i.e., opening soundness. The model involves
three authorities: an issuing authority possessing the master issuing key (mik),
an opening authority possessing the master opening key (mok), and a linking
authority possessing the master linking key (mlk).

4.1 Model for GSSs with Verifiable Controllable Linkability

We now define GSSs with verifiable controllable linkability (VCL-GS).

Definition 4. A VCL-GS is a tuple of efficient algorithms GS = (GkGen,
UkGen, Join, Issue, GSig, GVf, Open, Judge, Link, JudgeLink), defined as follows.

GkGen(1κ): On input a security parameter κ, this algorithm generates and out-
puts a tuple (gpk, mok, mik, mlk), representing the group public key, the
master opening key, the master issuing key, and the master linking key.

UkGen(1κ): On input a security parameter κ, this algorithm generates a user
key pair (uski, upki).

Join(uski, upki): On input the user’s key pair (uski, upki), this algorithm interacts
with Issue and outputs the group signing key gski of user i.

Issue(gpk,mik, reg): On input of the group public key gpk, and the master issuing
key mik and the registration table reg, this algorithm interacts with Join to
add user i to the group.

GSig(gpk,M, gski): On input of the group public key gpk, a message M , and a
user’s secret key gski, this algorithm outputs a group signature σ.

GVf(gpk,M, σ): On input of the group public key gpk, a message M , and a
signature σ, this algorithm verifies whether σ is valid with respect to M and
gpk. If so, it outputs 1 and 0 otherwise.

Open(gpk, reg,M, σ,mok): On input of the group public key gpk, the registration
table reg, a message M , a valid signature σ, and the master opening key
mok, this algorithm returns the signer i together with a publicly verifiable
proof τ attesting the validity of the claim and ⊥ otherwise.

Judge(gpk,M, σ, i, upki, τ): On input of the group public key gpk, a message M ,
a valid signature σ, the claimed signer i, the public key upki as well as a
proof τ , this algorithm returns 1 if τ is a valid proof that i produced σ and
0 otherwise.

Link(gpk,M, σ,M ′, σ′,mlk): On input of the group public key gpk, a message M ,
a corresponding valid signature σ, a message M ′, a corresponding valid sig-
nature σ′ and the master linking key mlk, this algorithm determines whether
σ and σ′ have been produced by the same or different signers and returns the
linking decision b ∈ {1, 0} as well as a publicly verifiable proof ρ attesting
the validity of this decision.

JudgeLink(gpk,M, σ,M ′, σ′, b, ρ): On input of the group public key gpk, a message
M , a corresponding valid signature σ, a message M ′, a corresponding valid
signature σ′, a linking decision b as well as the corresponding linking proof
ρ, this algorithm returns 1 if ρ is a valid proof for b with respect to σ and
σ′ and 0 otherwise.
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Now we present the security properties for group signature schemes with verifi-
able controllable linkability. They are adopted from the model of Hwang et al.
[21–23] for controllable linkability, which builds upon the BSZ [3] model.4 In
addition to the properties correctness, anonymity, non-frameability, and trace-
ability defined in the BSZ model, Hwang et al. [21–23] introduced properties
to cover controllable linkability, namely LO-linkability (link-only linkability),
JP-unforgeability (judge-proof unforgeability), and E-linkability (enforced linka-
bility). Additionally, we integrate the proposal of Sakai et al. [33] who introduced
the additional property of (weak) opening soundness as an optional property.5

We briefly sketch them below and present formal definitions in the full version.

– Anonymity: Signers remain anonymous for all entities except for the opening
authority.

– Traceability: All valid signatures open correctly and allow to compute a
valid opening proof.

– Non-frameability: No entity is able to produce a valid opening proof that
falsely accuses an honest user as the signer.

– JP-Unforgeability: The linking key is not useful to generate valid opening
proofs.

– LO-Linkability: The linking key is only useful to link signatures, but not to
open signatures.

– E-Linkability: Colluding users, linkers, and openers are not able to gener-
ate two message-signature pairs yielding contradicting opening and linking
decisions.

– Opening Soundness: Colluding issuers, users, linkers, and openers are
not able to produce two different (contradicting) opening proofs, even when
allowed to corrupt users and/or the opener.6

In addition to the above, in the vein of Sakai et al. we introduce the additional
notion of linking soundness. We only consider a strong variant, where the adver-
sary has access to all keys. Informally, linking soundness targets contradicting
linking proofs, where the signatures as well as the proofs may be maliciously gen-
erated, yet accepted by GVf and JudgeLink, respectively. In contrast, E-linkability
targets contradicting results of Open and Link for maliciously generated signa-
tures, where Open, Judge, and Link are honestly computed. Subsequently, we
present a definition of linking soundness.

Definition 5 (Linking Soundness). A group signature scheme GS with veri-
fiable controllable linkability is said to provide linking soundness if for any adver-
sary A and any κ ∈ N, Pr[ExplsGS,A(κ) = 1] ≤ ε(κ).

The experiment ExplsGS,A is formally defined in the full version.

4 Actually, it uses a weaker anonymity notion similar to CPA-full anonymity [8], where
the challenge oracle can only be called once.

5 We emphasize that this property is optional as there are no known GSSs with con-
trollable linkability that have been shown to provide this property.

6 Note that Sakai et al. [33] also introduced a weaker version of this property denoted
as weak opening soundness.
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4.2 Verifiable Controllable Linkability

Recall that in group signatures with controllable linkability the LA runs the
Com algorithm of a PKEQ scheme to decide whether two ciphertexts contain
the same unknown plaintext. Publishing the required trapdoor key tk would
allow any party to link any two group signatures, which is clearly not desired.
However, by means of our proposed NIPEI proof system we are able to allow the
LA to verifiably prove whether or not any two signatures stem from the same
signer without being able to identify the signer(s) and still only requiring tk.

Subsequently, we show how our generic construction for NIPEI proofs can be
used to realize verifiable controllable linkability for group signatures following
the SEP paradigm. Thereby, we assume that the used PKEQ is defined for
bilinear groups, such that it is possible to set up the PKEQ and the proof
systems in a compatible way. To this end, we assume that the group public
key gpk contains a bilinear group description BG. Then, the modified group key
generation algorithm GkGen′ looks as follows:

GkGen′(1κ): Run (gpk,mok,mik,mlk) ← GkGen(1κ) and obtain BG from gpk.
Then, run crs ← Π.CRSGen(BG), set gpk′ ← (gpk, crs) and return (gpk′,
mok, mik, mlk).

Furthermore, the algorithms Link and LinkJudge operate as follows:

Link(gpk,M, σ,M ′, σ′,mlk): Extract the ciphertexts T and T ′ from σ and σ′,
respectively. Obtain BG, pke from gpk and tk from mlk. Compute ρ ←
Π.Prove(BG, crs, (T, T ′, pke), tk) and return the linking decision b and the
corresponding proof ρ.

LinkJudge(gpk,M, σ,M ′, σ′, b, ρ): Extract the ciphertexts T and T ′ from σ and σ′.
Obtain BG, crs and pke from gpk. If b = 1 and ρ is a proof for language LR/∈
or vice versa, return ⊥. Otherwise, return Π.Verify(BG, crs, (T, T ′, pke), ρ).

Security Analysis. We investigate to which extent the extension of a group sig-
nature scheme with controllable linkability (i.e., the constructions in [21–23] and
the generic conversion from [34]) to one with verifiable controllable linkability
requires to re-evaluate the original security properties. Note that the proof of the
subsequent theorem is quite independent of the concrete definition of anonymity
and works for group signature schemes providing the weaker anonymity notion
by Hwang et al. but also with stronger notions such as CPA-full or CCA2-full
anonymity (cf. the discussion in the full version).

Theorem 2. Let GS = (GkGen,UkGen, Join, Issue,GSig,GVf,Open, Judge, Link)
be a secure group signature scheme with controllable linkability with or without
(weak) opening soundness, let Π be a secure NIPEI proof system, and let PKEQ =
(KeyGen,Enc,Dec,Aut,Com) be the used AoN-PKeet∗ scheme, where PKEQ
is compatible with Π. Then, GS ′ = (GkGen,UkGen, Join, Issue,GSig,GVf,Open,
Judge, Link, JudgeLink) is a secure group signature scheme with verifiable control-
lable linkability with or without (weak) opening soundness.

We prove Theorem 2 in the full version.
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Instantiating Π/∈ for Group Signatures with Σ-Proofs. Many existing
GSSs following the SEP paradigm are instantiated using the RO heuristic. Now,
if one already relies on the ROM for the GSS, it might be an alternative to instan-
tiate parts of Π/∈ (i.e., Π2 and Π3) using a non-interactive Σ protocol obtained
via the Fiat-Shamir transform, which is specifically crafted for the application
with verifiable controllable linkability and the used SPHF instantiation. In the
full version, we illustrate such an instantiation of Π/∈.
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Abstract. Publicly Verifiable Outsourced Computation (PVC) allows
weak devices to delegate computations to more powerful servers, and to
verify the correctness of results. Delegation and verification rely only on
public parameters, and thus PVC lends itself to large multi-user sys-
tems where entities need not be registered. In such settings, individual
user requirements may be diverse and cannot be realised with current
PVC solutions. In this paper, we introduce Hybrid PVC (HPVC) which,
with a single setup stage, provides a flexible solution to outsourced com-
putation supporting multiple modes: (i) standard PVC, (ii) PVC with
cryptographically enforced access control policies restricting the servers
that may perform a given computation, and (iii) a reversed model of
PVC which we call Verifiable Delegable Computation (VDC) where data
is held remotely by servers. Entities may dynamically play the role of
delegators or servers as required.

Keywords: Publicly verifiable computation · Outsourced computa-
tion · Dual-Policy Attribute-based Encryption · Revocation · Access
control

1 Introduction

The trend towards cloud computing means that there is a growing trust depen-
dency on remote servers and the functionality they provide. Publicly Verifiable
Computation (PVC) [20] allows any entity to use public information to delegate
or verify computations, and lends itself to large multi-user systems that are likely
to arise in practice (as delegators need not be individually registered).

However, in such a system, the individual user requirements may be diverse
and require different forms of outsourced computation, whereas current PVC
schemes support only a single form. Clients may wish to request computations
from a particular server or to issue a request to a large pool of servers; in the latter
case, they may wish to restrict the servers that can perform the computation to
only those possessing certain characteristics. Moreover, the data may be provided
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by the client as part of the computation, or it may be stored by the server; and
the role of servers and clients may be interchangeable depending on the context.

Consider the following scenarios: (i) employees with limited resources (e.g.
using mobile devices when out of the office) need to delegate computations to more
powerful servers. The workload of the employee may also involve responding to
computation requests to perform tasks for other employees or to respond to inter-
departmental queries over restricted databases; (ii) Entities that invest heavily in
outsourced computations could find themselves with a valuable, processed dataset
that is of interest to other parties, and hence want to selectively share this infor-
mation by allowing others to query the dataset in a verifiable fashion; (iii) data-
base servers that allow public queries may become overwhelmed with requests,
and need to enlist additional servers to help (essentially the server acts as a del-
egator to outsource queries with relevant data). Finally, (iv) consider a form of
peer-to-peer network for sharing computational resources – as individual resource
availability varies, entities can sell spare resources to perform computations for
other users or make their own data available to others, whilst making computa-
tion requests to other entities when resources run low.

Current PVC solutions do not handle these flexible requirements particu-
larly well; although there are several different proposals in the literature that
realise some of the requirements described above, each requires an independent
(potentially expensive) setup stage. We introduce Hybrid PVC (HPVC) which
is a single mechanism (with the associated costs of a single setup operation and
a single set of system parameters to publish and maintain) which simultaneously
satisfies all of the above requirements. Entities may play the role of both delega-
tors and servers, in the following modes of operation, dynamically as required:

– Revocable PVC (RPVC) where clients with limited resources outsource
computations on data of their choosing to more powerful, untrusted servers
using only public information. Multiple servers can compute multiple func-
tions. Servers may try to cheat to persuade verifiers of incorrect information
or to avoid using their own resources. Misbehaving servers can be detected and
revoked so that further results will be rejected and they will not be rewarded
for their effort;

– RPVC with access control (RPVC-AC) which restricts the servers that
may perform a given computation. Outsourced computations may be distrib-
uted amongst a pool of available servers that are not individually authenti-
cated and known by the delegator. Prior work [1] used symmetric primitives
and required all entities to be registered in the system (including delegators)
but we achieve a fully public system where only servers need be registered
(as usual in PVC);

– Verifiable Delegable Computation (VDC) where servers are the data
owners and make a static dataset available for verifiable querying. Clients
request computations on subsets of the dataset using public, descriptive labels.

We begin, in Sect. 2, with a summary of related work and the KP-ABE-
based PVC schemes [3,20] on which we base our HPVC construction. In Sect. 3,
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we define the generic functionality and security properties of HPVC. We then,
in Sect. 4.1, discuss each supported mode of computation, and how it fits our
generic definition. To support user revocation [3], we introduce a new crypto-
graphic primitive called Revocable-Key Dual-policy Attribute-based Encryption
(rkDPABE) in Sect. 4.2, and finally, in Sect. 4.3, we instantiate HPVC using
rkDPABE. Additional details, formal security games and proofs can be found in
the full version online [2].

2 Background and Related Work

Verifiable computation [10,12,13,15,16,20,24] may be seen as a protocol between
a (weak) client C and a server S, resulting in the provably correct computation of
F (x) by the server for the client’s choice of F and x. The setup stage may be com-
putationally expensive (amortised over multiple computations) but other opera-
tions should be efficient for the client. Some prior work used garbled circuits with
fully homomorphic encryption [13,16] or targeted specific functions [10,12,15].
Chung et al. [14] introduced memory delegation which is similar to VDC; a client
uploads his memory to a server who can update and compute a function F over
the entire memory. Backes et al. [8] consider a client that outsources data and
requests computations on a data portion. The client can efficiently verify the
correctness of the result without holding the input data. Most work requires
the client to know the data in order to verify [9,11,17,19]. Verifiable oblivi-
ous storage [5] ensures data confidentiality, access pattern privacy, integrity and
freshness of data accesses. Work on authenticated data lends itself to verifi-
able outsourced computations, albeit for specific functions only. Backes et al. [7]
use privacy-preserving proofs over authenticated data outsourced by a trusted
client. Similar results are presented in [22] using public logs. It is notable that
[7] and [11] achieve public verifiability. In independent and concurrent work, Shi
et al. [21] use DP-ABE to combine keyword search on encrypted data with the
enforcement of an access control policy.

Parno et al. [20] introduce Publicly Verifiable Computation (PVC) where
multiple clients outsource computations of a single function to a single server, and
verify the results. Alderman et al. [3] introduce a trusted Key Distribution Centre
(KDC) to handle the expensive setup for all entities, to allow multiple servers
to compute multiple functions, and to revoke misbehaving servers. Informally,
the KDC acts as the root of trust to generate public parameters and delegation
information, and to issue secret keys and evaluation keys to servers. To outsource
the evaluation of F (x), a delegator sends an encoded input σF (x) to a server S,
and publishes verification tokens. S uses an evaluation key for F to produce
an encoded output θF (x). Any entity can verify correctness of θF (x) using a
verification key and learn the value of F (x). If S cheated they may be reported
to the KDC for revocation.

The constructions of [3,20] to outsource a Boolean function, F , are based on
Key-policy Attribute-based encryption (KP-ABE), which links ciphertexts with
attribute sets and decryption keys with a policy; decryption only succeeds if the
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attributes satisfy the policy. For PVC, two random messages are encrypted and
linked to the input data X (represented as attributes) to form the encoded input.
The evaluation key is a pair of decryption keys linked to F and F (the comple-
ment function of F ). Exactly one message can be recovered, implying whether F
or F was satisfied, and hence if F (X) = 1 or 0. Ciphertext indistinguishability
ensures S cannot return the other message to imply an incorrect result.

3 Hybrid Publicly Verifiable Computation

To accommodate different modes of computation, we define HPVC generically
in terms of parameters ω, O, ψ and S. Depending on the mode (and which party
provides the input data), O or S will encode functions, while ω or ψ encode
input data, as detailed in Sect. 4.1. We retain the single, trusted key distribution
centre (KDC) from RPVC [3] who initialises the system for a function family
F resulting in a set of public parameters PP and a master secret key. For each
function F ∈ F , the KDC publishes a delegation key PKF . It also registers each
entity Si that wants to act as a server by issuing a signing key SKSi

. It may
also update PP during any algorithm to reflect changes in the user population.

Depending on the mode, servers either compute functions O on behalf of
clients, or make a dataset ψ available for public querying. The Certify algorithm
is run by the KDC to produce an evaluation key EK(O,ψ),Si

enabling Si to
perform these operations. Si chooses a set of labels Li – in RPVC or RPVC-
AC modes, Li uniquely represents the function F that Si should be certified to
compute; in VDC mode, Li is a set of labels, each uniquely representing a data
point contained in the dataset Di owned by Si

1. In the VDC setting, the server is
the data owner and so Si also provides a list Fi advertising the functions that he
is willing to evaluate on his data in accordance with his own data usage policies;
in RPVC settings, Fi advertises the functions Si is certified to compute.

To request a computation of F (X) (encoded in ω or S) from Si, a delegator
uses public information to run ProbGen. He provides labels LF,X ⊆ Li describing
the computation: in RPVC or RPVC-AC modes, the delegator provides the input
data X and LF,X labels the function F to be applied; in VDC mode, the client
uses the descriptive labels to choose a subset of data points X ⊆ Di,X ⊆
Dom(F ) held by Si that should be computed on. ProbGen generates an encoded
input σF,X and a public verification key V KF,X .

A server combines σF,X with its evaluation key to compute θF (X) encoding
the result F (X). Any entity can verify the correctness of θF (X) using V KF,X .
Verification outputs the result y = F (X) of the computation (if correct) and
generates a token τF (X) which is sent to the KDC; if the token signifies that
the result was incorrectly formed then the server is revoked from performing
further evaluations. This prevents delegators wasting their (limited) resources
outsourcing to a server known to be untrustworthy, and also acts as a deterrent,
especially when servers are rewarded per computation.
1 These descriptive labels (e.g. field names in a database) allow delegators to select

data points to be used in a computation without knowing the data values.
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Definition 1. A Hybrid Publicly Verifiable Computation (HPVC) scheme for a
family of functions F comprises the following algorithms:

1. (PP,MK) $←Setup(1�,F): run by the KDC to establish public parameters
PP and a master secret key MK for the system. The inputs are the security
parameter �, and the family of functions F that may be computed;

2. PKF
$←FnInit(F,MK,PP): run by the KDC to generate a public delegation

key, PKF , allowing entities to outsource, or request, computations of F ;
3. SKSi

$←Register(Si,MK,PP): run by the KDC to enrol an entity Si within
the system to act as a server. It generates a personalised signing key SKSi

;

4. EK(O,ψ),Si

$←Certify(mode, Si, (O, ψ), Li,Fi,MK,PP): run by the KDC to
generate an evaluation key EK(O,ψ),Si

enabling the server Si to compute
on the pair (O, ψ). The algorithm also takes as input the mode in which it
should operate, a set of labels Li and a set of functions Fi;

5. (σF,X , V KF,X) $←ProbGen(mode, (ω,S), LF,X , PKF ,PP): run by an entity to
request a computation of F (X) from Si. The inputs are the mode, the pair
(ω,S) representing the computation, a set of labels LF,X ⊆ Li, the delegation
key for F and the public parameters. The outputs are an encoded input σF,X

and a verification key V KF,X ;

6. θF (X)
$←Compute(mode, σF,X , EK(O,ψ),Si

, SKSi
,PP): run by an entity Si to

compute F (X). The inputs are the mode, an encoded input, and an evaluation
key and signing key for Si. The output, θF (X), encodes the result;

7. (y, τF (X)) ← Verify(θF (X), V KF,X ,PP): run by any entity. The inputs are an
encoded output produced by Si and verification key; the outputs are the compu-
tation result y = F (X) if the result was computed correctly, or else y =⊥, and
a token τF (X) which is (accept, Si) if θF (X) is correct, or (reject, Si) otherwise;

8. UM
$←Revoke(τF (X),MK,PP): run by the KDC if a misbehaving server is

reported. It returns UM =⊥ if τF (X) = (accept, Si). Otherwise, all evaluation
keys EK(·,·),Si

for Si are rendered non-functional and the update material
UM is a set of updated evaluation keys {EK(O,ψ),S′} for all servers.

3.1 Security Models

We now discuss desirable security properties for HPVC; additional formal models
are found in the full paper [2]2. Public verifiability, revocation and authorised
computation are selective notions in line with our rkDPABE scheme introduced
in Sect. 4.2.

Public Verifiability, presented in Game 1, ensures that a server that returns
an incorrect result is detected by the verification algorithm so that they can be
reported for revocation. The adversary, A, may corrupt other servers, generate

2 We do not consider input privacy here, but note that a revocable dual-policy predi-
cate encryption scheme, if found, could easily replace our ABE scheme in Sect. 4.3.
Security against vindictive servers and managers can also be adapted from [3].
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Game 1. ExpsPubVerif
A

[HPVC, 1�,F]

1: (ω�,O�, ψ�, S�, LF,X� , mode)
$← A(1�, F)

2: (PP, MK)
$← Setup(1�, F)

3: if (mode = V DC) then (F ← S
�, X� ← ψ�)

4: else (F ← O
�, X� ← ω�)

5: PKF
$←FnInit(F, MK, PP)

6: (σ�, V K�)
$←ProbGen(mode, (ω�, S�), LF,X� , PKF , PP)

7: θ� $← AO(σ�, V K�, PKF , PP)
8: (y, τθ�) ← Verify(θ�, V K�, PP)
9: if (((y, τθ�) �= (⊥, (reject, ·))) and (y �= F (X�))) then

10: return 1
11: else return 0

arbitrary computations, and perform verification steps himself. A first selects its
challenge parameters, including the mode it wishes its challenge to be generated
in and the labels associated to its choice of inputs. We ask A to choose O

� and
ψ�, despite the challenge inputs being only ω� and S

�. This allows us to define
the challenge in terms of F and X� on line 3; note that O

� and ψ� can also
be gleaned from the mode and labels, so this does not weaken the game – the
adversary has already determined these values through its choices.

The challenger runs Setup and FnInit for the chosen function F . It then
runs ProbGen to create the challenge parameters for the adversary, which
are given to A along with the public information. The adversary is also
given oracle access to the functions FnInit(·,MK,PP), Register(·,MK,PP),
Certify(·, ·, (·, ·), ·, ·,MK,PP) and Revoke(·,MK,PP), denoted by O. A wins the
game if it creates an encoded output that verifies correctly yet does not encode
the correct value F (x).

Definition 2. The advantage of a probabilistic polynomial time adversary A
in the sPubVerif game for an HPVC construction, HPVC, for a family of
functions F is defined as:

AdvsPubVerif
A (HPVC, 1�,F) = Pr

[
1 $←ExpsPubVerif

A
[HPVC, 1�,F]]

.

HPVC is secure with respect to selective public verifiability if, for all PPT adver-
saries A, AdvsPubVerif

A (HPVC, 1�,F) is negligible in �.

– Revocation ensures that a server that has been detected as misbehaving
cannot produce a result (even a correct result) that is accepted by a verifier –
thus, the server cannot be rewarded for future work. To reflect the revocation
mechanism of the rkDPABE primitive, we include a semi-static restriction
whereby a list of entities to be revoked at the time of the challenge computa-
tion must be declared before the adversary receives oracle access3.

3 This restriction was also used in [6] for revocable KP-ABE, and could be removed
if an adaptive, indirectly revocable ABE scheme is found.
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– Authorised Computation extends the model of [1] to the public-key setting
to ensure that an unauthorised server cannot produce acceptable results.

4 Instantiating HPVC

We construct an HPVC scheme for the class NC1, which includes common arith-
metic and matrix operations. Let F be the family of Boolean formulas closed
under complement – for all F ∈ F , F (x) = F (x)⊕1 is also in F . We construct our
scheme from a novel use of Dual-policy Attribute-based Encryption (DP-ABE)
which combines KP-ABE and Ciphertext-policy ABE (CP-ABE). Decryption
keys are linked to an “objective” policy O and “subjective” attribute set ψ, and
ciphertexts linked to an “objective” attribute set ω and “subjective” policy S;
decryption requires both policies to be satisfied – ω ∈ O and ψ ∈ S.

Following [20], we encrypt two random messages to form the encoded input,
while decryption keys form evaluation keys; by linking these to F , F and X
according to the mode, we ensure that exactly one message can be recovered,
implying whether F or F was satisfied, and hence if F (X) = 1 or 0. DP-ABE
security ensures a server cannot learn a message implying an invalid result.

The values of ω, O, ψ and S depend upon the mode, as detailed in Table 1.
Two additional parameters TO and TS “disable” modes when not required. Note
that, trivially, ψ ∈ S when ψ = {TS} and S = {{TS}}, and similarly for TO.

4.1 Supporting Different Modes

RPVC. In this mode, a delegator owns some input data X and wants to learn
F (X) but lacks the computational resources to do so itself; thus, the computation
is outsourced. In this setting, only the parameters O and ω are required, and
are set to be F and X respectively. The set X comprises a single datapoint: the
input data to this particular computation. The remaining parameters S and ψ
are defined in terms of the dummy parameter TS . The set of functions Fi that a
server is certified for during a single Certify operation is simply F , and the sets
of labels Li and LF,X both comprise a single element l(F ) uniquely labelling F .

Table 1. Parameter definitions for different modes

mode O ψ ω S

RPVC F {TS} X {{TS}}
RPVC-AC F s X P
VDC {{TO}} Di {TO} F

mode Li LF,X Fi

RPVC {l(F )} {l(F )} {F}
RPVC-AC {l(F )} {l(F )} {F}
VDC {l(xi,j)}xi,j∈Di {l(xi,j)}xi,j∈X {(F, {l(xi,j)}xi,j∈Dom(F ))}F∈F
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RPVC-AC. RPVC-AC [1] was introduced with the motivation that servers
may be chosen from a pool based on resource availability, a bidding process etc.
Delegators may not have previously authenticated the selected server, in contrast
to prior models [20] where a client set up a PVC system with a single, known
server.

The construction of [1] used a symmetric key assignment scheme allowing
only authorised entities to derive the required keys. However, the KDC had
to register all delegators and verifiers. This was due both to the policies being
enforced (e.g. to restrict the computations delegators may outsource), and to the
use of symmetric primitives – to encrypt inputs, delegators must know the secret
symmetric key. Thus, the scheme is not strictly publicly delegable as delegation
does not depend only on public information, and similarly for verification.

We retain public delegability and verifiability whilst restricting the servers
that may perform a given computation. In some sense, servers are already autho-
rised for functions by being issued evaluation keys. However, we believe that
access control policies in this setting must consider additional factors than just
functions. The semantic meaning and sensitivity of input data may affect the
policy, or servers may need to possess specific resources or characteristics, or be
geographically nearby to minimise latency. E.g. a government contractor may,
due to the nature of its work, require servers to be within the same country.

One solution could be for the KDC to issue signed attributes to each server
who attaches the required signatures to computation results for verification.
In this case, a verifier must decide if the received attributes are sufficient. We
consider the delegator that runs ProbGen to “own” the computation and, as
such, it should specify the authorisation policy that a server must meet. As
this is a publicly verifiable setting, any entity can verify and we believe (i)
verifiers should not accept a result that the delegator itself would not accept,
and (ii) it may be unreasonable to expect verifiers to have sufficient knowledge
to determine the authorisation policy. Of course, the delegator could attach a
signed authorisation policy to the verification key, but verifiers are not obliged
to adhere to this policy and doing so creates additional work for the verifier
– one of the key efficiency requirements for PVC is that verification is very
cheap. Using DP-ABE to instantiate HPVC allows the delegator to specify the
authorisation policy during ProbGen and requires no additional work on the part
of the verifier compared to standard RPVC. Furthermore, an unauthorised server
cannot actually perform the computation and hence verification will always fail.

We use the objective parameters ω and O to compute (as for RPVC) whilst
the subjective parameters ψ and S enforce access control on the server. Servers
are assigned both an evaluation key for a function F and a set of descriptive
attributes describing their authorisation rights, s ⊆ US , where US is a universe
of attributes used solely to define authorisation. ProbGen operates on both the
input data X and an authorisation policy P ⊆ 2US \{∅} which defines the permis-
sible sets of authorisation attributes to perform this computation. Servers may
produce valid, acceptable outputs only if s ∈ P i.e. they satisfy the authorisation
policy. E.g. P = (Country = UK) ∨ ((clearance = Secret) ∧ (Country = USA))
is satisfied by s = {Country = UK, Capacity = 3TB}.
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Table 2. Example database

User ID Name Age Height

001 Alice 26 165

002 Bob 22 172

Table 3. Example list Fi

F Dom(F)

Average Age of record 1, Height of record 1, Age

of record 2, Height of record 2

Most common

value

Name of record 1, Age of record 1, Height

of record 1, Name of record 2, Age of

record 2, Height of record 2

VDC. VDC reverses the role of the data owner – a server owns a static database
and enables delegators to request computations/queries over the data. Hence, the
user relationship is more akin to the traditional client-server model compared
to PVC. Delegators learn nothing more than the result of the computation,
and do not need the input data in order to verify. The efficiency requirement
for VDC is also very different from PVC: outsourcing a computation is not
merely an attempt to gain efficiency as the delegator never possesses the input
data and so cannot execute the computation himself (even with the necessary
resources). Thus, VDC does not have the stringent efficiency requirement present
in PVC (that outsourcing and verifying computations be more efficient than per-
forming the computation itself, for outsourcing to be worthwhile). Our solution
behaves reasonably well, achieving constant time verification; the size of the
query depends on the function F , while the size of the server’s response depends
only on the size of the result itself and not on the input size which may be large.

In VDC, each entity Si that wants to act as a server owns a dataset
Di = {xi,j}mi

j=1 comprising mi data points. The KDC issues a single evalua-
tion key EKDi,Si

enabling Si to compute on subsets of Di. Si publishes a list Li

comprising a unique label l(xi,j) ∈ Li for each data point xi,j ∈ Di, and a list of
functions Fi ⊆ F that are (i) meaningful on their dataset, and (ii) permissible
according to their own access control policies. Furthermore, not all data points
xi,j ∈ Di may be appropriate for each function e.g. only numeric data should be
input to an averaging function. Fi comprises elements (F,

⋃
xi,j∈Dom(F ) l(xi,j))

describing each function and the associated permissible inputs. Labels should
not reveal the data values themselves to preserve the confidentiality of Di.

Delegators may select servers and data using only these labels e.g. they may
ask Si to compute F (X) for any function F ∈ Fi on a set of data points X ⊆
Dom(F )4 by specifying labels {l(xi,j)}xi,j∈X . Although it may be tempting to
suggest that Si simply caches the results of computing each F ∈ Fi, the number
of input sets X ⊆ Dom(F ) could be large, making this an unattractive solution.

As an example, consider a server Si that owns the database in Table 2. The
dataset Di represents this as a set of field values for each record in turn: Di =
{001,Alice, 26,165, 002, Bob, 22, 172}. Si publishes data labels Li = {User ID
of record 1, Name of record 1, Age of record 1, Height of record 1, User ID of
record 2, Name of record 2, Age of record 2, Height of record 2}. In Table 3,
Fi lists the functions and domains that Si is willing to compute. To find the

4 In contrast to prior modes where X was a single data point, F now takes |X| inputs.
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average age, a delegator queries “Average” on input X = {Age of record 1, Age
of record 2}.

4.2 Revocable Dual-Policy Attribute-Based Encryption

Before instantiating HPVC, we first introduce a new cryptographic primitive
which forms the basic building-block of our construction. If revocation is not
required then a standard DP-ABE scheme can be used.

Definition 3. A Revocable Key Dual-policy Attribute-based Encryption scheme
(rkDPABE) comprises five algorithms:

– (PP,MK) $← Setup(1�,U): takes the security parameter and attribute universe
and generates public parameters PP and a master secret key MK;

– CT(ω,S),t
$←Encrypt(m, (ω,S), t,PP): takes as input a message to be encrypted,

an objective attribute set ω, a subjective policy S, a time period t and the
public parameters. It outputs a ciphertext that is valid for time t;

– SK(O,ψ),ID
$←KeyGen(ID, (O, ψ),MK,PP): takes an identity ID, an objective

access structure O, a subjective attribute set ψ, the master secret key and the
public parameters. It outputs a secret decryption key SK(O,ψ),ID;

– UKR,t
$←KeyUpdate(R, t,MK,PP): takes a revocation list R containing all

revoked identities, the current time period, the master secret key and public
parameters. It outputs updated key material UKR,t which makes the decryp-
tion keys SK(O,ψ),ID, for all non-revoked identities ID 
∈ R, functional to
decrypt ciphertexts encrypted for the time t;

– PT ← Decrypt(CT(ω,S),t, (ω,S), SK(O,ψ),ID, (O, ψ), UKR,t,PP): takes as input
a ciphertext formed for the time period t and the associated pair (ω,S), a
decryption key for entity ID and the associated pair (O, ψ), an update key
for the time t and the public parameters. It outputs a plaintext PT which
is the encrypted message m, if and only if the objective attributes ω satisfies
the objective access structure O and the subjective attributes ψ satisfies the
subjective policy S and the value of t in the update key matches that specified
during encryption. If not, PT is set to be a failure symbol ⊥.

Definition 3 suffices to comprehend the remainder of this paper as we shall
use an rkDPABE scheme in a black-box manner. For completeness, we give
correctness and security definitions, a construction and a security proof in the
full, online version of the paper [2].

4.3 Construction

As mentioned, we base our construction on rkDPABE by encoding inputs as
attributes in a universe Ux, and encoding Boolean functions as access structures
over Ux. Computations with n-bit outputs can be built from n Boolean functions
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returning each bit in turn. Negations can be handled by building rkDPABE
from non-monotonic ABE [18] or, as here, by adding negated attributes to the
universe [23]. For the ith bit of a binary input string X = x1 . . . xn, define
attributes A0

X,i and A1
X,i ∈ Ux

5; X is encoded as AX = {Aj
X,i ∈ Ux : xi = j}.

Let Ul be a set of attributes (disjoint from Ux) uniquely labelling each function
and data item, and let UID represent server identities. Let g be a one-way function
and DPABE be a revocable key DP-ABE scheme for F with attribute universe
U = Ux ∪ Ul ∪ UID. We initialise two independent DP-ABE systems over U ,
and define four additional “dummy” attributes to disable modes: T 0

O, T 0
S for the

first system, and T 1
O, T 1

S for the second. We denote the complement functions
as follows: in RPVC and RPVC-AC, recall O = F and S = {{T 0

S}}; we define
O = F and S = {{T 1

S}}. Similarly, for VDC, O = {{T 1
0 }} and S = F .

1. Setup initialises two rkDPABE schemes over U , an empty two-dimensional
array LReg to list registered entities, a list of revoked entities LRev and a
time source T (e.g. a networked clock or counter) to index update keys6.

Algorithm 1. (PP,MK) $←HPVC.Setup(1�,F)

1: (MPK0
ABE, MSK0

ABE, T 0
O, T 0

S)
$←DPABE.Setup(1�, U)

2: (MPK1
ABE, MPK1

ABE, T 1
O, T 1

S)
$←DPABE.Setup(1�, U)

3: for Si ∈ UID do
4: LReg[Si][0] ← ε, LReg[Si][1] ← {ε}
5: Initialise T

6: LRev ← ε
7: PP ← (MPK0

ABE, MPK1
ABE, LReg, T 0

O, T 1
O, T 0

S , T 1
S ,T)

8: MK ← (MSK0
ABE, MSK1

ABE, LRev)

2. FnInit sets the public delegation key PKF (for all functions F ) to be the
public parameters for the system (since we use public key primitives).

Algorithm 2. PKF
$←HPVC.FnInit(F,MK,PP)

1: PKF ← PP

5 Either by defining a large enough Ux or by hashing strings to elements of the attribute
group. Unlike prior schemes [3,20], we include an identifier of the data X (based on
the label l(xi,j)) in the attribute mapping to specify the data items to be used;
alternatively, Di could be a long bitstring formed by concatenating each data point,
and the labels should identify the attributes corresponding to each data point.

6 Our KDC will act as the trusted KeyGen authority already inherent in ABE schemes.
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3. Register runs a signature KeyGen algorithm and adds the verification key to
LReg[Si][0]. These prevent servers being impersonated and wrongly revoked.

Algorithm 3. SKSi

$←HPVC.Register(Si,MK,PP)

1: (SKSig, V KSig)
$←Sig.KeyGen(1�)

2: SKSi
← SKSig

3: LReg[Si][0] ← LReg[Si][0] ∪ V KSig

4. Certify first adds an element (F,
⋃

l∈Li
l) to the list LReg[Si][1] for each

F ∈ Fi; this publicises the computations that Si can perform (either func-
tions in RPVC and RPVC-AC modes, or functions and data labels in VDC).
The algorithm removes Si from the revocation list, gets the current time
from T and generates a decryption key for (O, Aψ ∪ ⋃

l∈Li
l) (where Aψ is

the attribute set encoding ψ) in the first DP-ABE system. The additional
attributes for the labels l ∈ Ul ensure that a key cannot be used to eval-
uate computations that do not correspond to these labels. In RPVC and
RPVC-AC, this means that a key for a function G cannot evaluate a com-
putation request for F (X). In VDC, it means that an evaluation key must
be issued for a dataset Di that includes (at least) the specified input data
X�. It is sufficient to include labels only on the subjective attribute set; as
these labels are a security measure against a misbehaving server, we amend
the servers key but need not take similar measures against the delegator.
Delegators can then specify, in the subjective policy that they create, the
labels that are required; these must be in the server’s key for successful eval-
uation (decryption). The KDC should check that the label corresponds to
the input to ensure that a server does not advertise data he does not own.
It also generates an update key for the current time period to prove that Si

is not currently revoked. In RPVC mode, another pair of keys is generated
using the second DP-ABE system for the complement inputs.

Algorithm 4. EK(O,ψ),Si

$←HPVC.Certify(mode, Si, (O, ψ), Li,Fi,MK,PP)
1: for F ∈ Fi do
2: LReg[Si][1] ← LReg[Si][1] ∪ (F,

⋃
l∈Li

l)

3: LRev ← LRev \ Si, t ← T

4: SK0
ABE

$←DPABE.KeyGen(Si, (O, Aψ ∪
⋃

l∈Li
l), MSK0

ABE, MPK0
ABE)

5: UK0
LRev,t

$←DPABE.KeyUpdate(LRev, t, MSK0
ABE, MPK0

ABE)

6: if (mode =RPVC) or (mode =RPVC-AC) then

7: SK1
ABE

$←DPABE.KeyGen(Si, (O, Aψ ∪
⋃

l∈Li
l), MSK1

ABE, MPK1
ABE)

8: UK1
LRev,t

$←DPABE.KeyUpdate(LRev, t, MSK1
ABE, MPK1

ABE)

9: else
10: SK1

ABE ←⊥, UK1
LRev,t ←⊥

11: EK(O,ψ),Si
← (SK0

ABE, SK1
ABE, UK0

LRev,t, UK1
LRev,t)
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5. ProbGen chooses messages m0 and m1 randomly from the message space. m0

is encrypted with (Aω,S∧ ∧
l∈LF,X

l) in the first DPABE system, whilst m1

is encrypted with the complement policy and either the first DPABE system
for VDC or the second for RPVC (the attributes remain the same as it is
the same attribute T 0

O or input data X respectively). The verification key
comprises g applied to each message; the one-wayness of g allows the key to
be published.

Algorithm 5. (σF,X , V KF,X) $←HPVC.ProbGen(mode, (ω,S), LF,X , PKF ,PP)

1: (m0, m1)
$← M × M

2: t ← T

3: c0
$←DPABE.Encrypt(m0, (Aω, S ∧

∧

l∈LF,X

l), t, MPK0
ABE)

4: if mode = VDC then c1
$←DPABE.Encrypt(m1, (Aω, S ∧

∧

l∈LF,X

l), t, MPK0
ABE)

5: else c1
$←DPABE.Encrypt(m1, (Aω , S ∧

∧

l∈LF,X
l), t, MPK1

ABE)

6: return σF,X ← (c0, c1), V KF,X ← (g(m0), g(m1), LReg)

6. Compute attempts to decrypt both ciphertexts, ensuring that different modes
use the correct parameters. Decryption succeeds only if the function eval-
uates to 1 on the input data X i.e. the policy is satisfied. Since F and F
output opposite results on X, exactly one plaintext will be a failure sym-
bol ⊥. The results are signed, along with the ID of the server Si performing
the computation.

Algorithm 6. θF (X)
$←HPVC.Compute(mode, σF,X , EK(O,ψ),Si

, SKSi
,PP)

1: Parse EK(O,ψ),Si
as (SK0

ABE, SK1
ABE, UK0

LRev,t, UK1
LRev,t) and σF,X as (c0, c1)

2: d0 ← DPABE.Decrypt(c0, SK0
ABE, MPK0

ABE, UK0
LRev,t)

3: if mode = V DC then d1 ← DPABE.Decrypt(c1, SK0
ABE, MPK0

ABE, UK0
LRev,t)

4: else d1 ← DPABE.Decrypt(c1, SK1
ABE, MPK1

ABE, UK1
LRev,t)

5: γ
$←Sig.Sign((d0, d1, Si), SKSi

)
6: θ(ω,S),(O,ψ) ← (d0, d1, Si, γ)

7. Verify verifies the signature using the verification key for Si stored in LReg.
If correct, it applies g to each plaintext in θF (X) and compares the results
to the components of the verification key. If either comparison results in a
match (i.e. the server successfully recovered a message), the output token is
accept. Otherwise the result is rejected. If m0 was returned then F (X) = 1
as m0 was encrypted for the non-complemented inputs; if m1 was returned
then F (X) = 0.
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Algorithm 7. (y, τF (X)) ← HPVC.Verify(θF (X), V KF,X ,PP)
1: Parse V KF,X as (g(m0), g(m1), LReg) and θF (X) as (d0, d1, Si, γ)

2: if accept ← Sig.Verify((d0, d1, Si), γ, LReg[Si][0]) then
3: if g(m0) = g(d0) then return (y ← 1, τF (X) ← (accept, Si))

4: else if g(m1) = g(d1) then return (y ← 0, τF (X) ← (accept, Si))

5: else return (y ←⊥, τF (X) ← (reject, Si))

6: return (y ←⊥, τF (X) ← (reject, ⊥))

8. Revoke first checks whether a sever, Si, should in fact be revoked. If so, it
deletes the list LReg[Si][1] of computations that Si may perform. It also adds
Si to the revocation list, and refreshes the time source. It then generates new
update keys for all non-revoked entities such that non-revoked keys are still
functional in the new time period.

Algorithm 8. UM
$←HPVC.Revoke(τF (X),MK,PP)

1: if (τF (X) �= (reject, Si)) then return UM ←⊥
2: LReg[Si][1] ← {ε}, LRev ← LRev ∪ Si

3: Refresh T, t ← T

4: UK0
LRev,t

$←DPABE.KeyUpdate(LRev, t, MSK0
ABE, MPK0

ABE)

5: if (mode =RPVC) or (mode = RPVC-AC) then

6: UK1
LRev,t

$←DPABE.KeyUpdate(LRev, t, MSK1
ABE, MPK1

ABE)

7: for all S′ ∈ UID do
8: Parse EK(O,ψ),S′ as (SK0

ABE, SK1
ABE, UK0

LRev,t−1, UK1
LRev,t−1)

9: EK(O,ψ),S′ ← (SK0
ABE, SK1

ABE, UK0
LRev,t, UK1

LRev,t)

10: return UM ← {EK(O,ψ),S′}S′∈UID

Theorem 1. Given an IND-sHRSS secure rkDPABE scheme, a one-way func-
tion g, and an EUF-CMA signature scheme, this construction is secure in the
sense of selective public verifiability, and selective semi-static revocation and
selective authorised computation.

Full proofs of security can be found in the full, online version of the paper [2].
Informally, to prove selective public verifiability, we show that we can replace
the message encrypted under the non-satisfied function evaluation (i.e. the com-
putation that evaluates to F (x)⊕1) with a randomly chosen message; due to the
IND-CPA-style security of the rkDPABE scheme (implied by the IND-sHRSS
property), an adversary cannot learn anything about a message for which the
decryption policy is not satisfied. In particular, we can (implicitly) replace the
message with the challenge message in an inversion game for the one-way func-
tion g and then the verification token for this message is the challenge input in
that game. We therefore show that breaking the public verifiability of our con-
struction (i.e. returning the message for the wrong computational result) will
allow an adversary to invert the one-way function g.
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5 Conclusion

We have introduced a hybrid model of publicly verifiable outsourced computa-
tion to support flexible and dynamic interactions between entities. Entities may
request computations from other users, restrict which entities can perform com-
putations on their behalf, perform computations for other users, and make data
available for queries from other users, all in a verifiable manner.

Our instantiation, built from a novel use of DP-ABE, captures prior models of
PVC [3,20], extends RPVC-AC [1] to the public key setting to allow truly public
delegability and verifiability, and introduces a novel form of ABE-based verifiable
computation in the form of VDC. In follow up work, we have investigated VDC
further with regards to searching on remote databases [4].

ABE was developed to enforce read-only access control policies, and the use
of KP-ABE in PVC was a novel and surprising result [20]. A natural question
to ask is whether other forms of ABE can similarly find use in this context. Our
use of all possible modes of ABE provides an affirmative answer to this question.

DP-ABE has previously attracted relatively little attention, which we believe
to be primarily due to its applications being less obvious than for the single-
policy ABE schemes. Whilst KP- and CP-ABE are generally considered in the
context of cryptographic access control, it is unclear that the policies enforced
by DP-ABE are natural choices for access control. Thus an interesting side-effect
of this work is to show that additional applications for DP-ABE do exist.
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Abstract. The notion of covert computation, an enhanced form of secure
multiparty computation, allows parties to jointly compute a function,
while ensuring that participating parties cannot distinguish their counter-
parties from a random noise generator, until the end of the protocol, when
the output of the function is revealed, if favorable to all parties. Previous
works on covert computation achieved super-constant round protocols for
general functionalities [5,16], with efficiency at least linear in the size of
the circuit representation of the computed function. Indeed, [9] showed
that constant-round covert computation of any non-trivial functionality
with black-box simulation is impossible in the plain model.

In this work we construct the first practical constant-round covert
protocol for a non-trivial functionality, namely the set-intersection func-
tionality, in the Random Oracle Model. Our construction demonstrates
the usefulness of covert subprotocols as building blocks in constructing
larger protocols: We show how to compile a concurrently covert proto-
col for a single-input functionality, e.g. string equality, into an efficient
secure and covert protocol for a corresponding multi-input functionality,
e.g. set intersection.

Our main contributions are summarized as follows:

– We upgrade the notion of covert computation of [5] to concurrent
covert computation.

– We provide a general compiler that converts concurrent covert pro-
tocols for single-input functionalities to concurrent covert protocols
for corresponding multi-input counterparts of these functionalities,
at linear cost, in the Random Oracle Model.

– To demonstrate the usefulness of our compiler, we construct a con-
currently covert string equality protocol and then apply our compiler
to achieve a two-message concurrent covert protocol for Set Intersec-
tion (SI) with a linear cost in the Random Oracle Model.
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1 Introduction

Steganography addresses a security question that is not usually considered in
cryptography, namely how to make the very fact that a (secure) protocol is
being executed, hidden from an eavesdropping adversary. Such hiding of a pro-
tocol instance is, in principle, possible if the public channels connecting the
communicating parties are steganographic in the sense that they have intrinsic
entropy. A protocol is steganographic, or covert, if its messages can be efficiently
injected into such channels in a way that the resulting communication cannot be
distinguished from the a priori behavior of these channels. A simple example of
a steganographic channel is a random channel, which can be implemented e.g.
using protocol nonces, random padding bits, lower bits of time stamps, and var-
ious other standard communication mechanisms which exhibit inherent entropy.
Assuming such random communication channels, if protocol participants encode
their protocol messages as binary strings which are indistinguishable from ran-
dom, they can inject their out-going messages into the random channel, and
interpret the information received on those channels as the protocol messages
from other parties. The participants must synchronize the timing of using these
channels, so they know which bits to interpret as protocol messages, but this
can be public information, because the covertness of the protocol implies that
the exchanged messages cannot be distinguished from the a priori behavior of
these random channels.

Covert computation was formalized for the two-party setting by von Ahn
et al. in [16] and in the multi-party setting by Chandran et al. in [5], as a proto-
col that lets the participants securely compute the desired functionality on their
inputs, with the additional property that no participating party can distinguish
the other participants from “random beacons” that send random binary strings
of fixed length instead of proscribed protocol messages, until the end of the pro-
tocol, when the output of the function is revealed, if favorable to all parties. Both
[5,16] show protocols for covert computation of any functionality which toler-
ates malicious adversaries, resp. in the two-party and the multi-party setting,
but the costs of these protocols are linear in the size of the circuit representation
of the computed function. Moreover, these protocols are not constant-round,
and the subsequent work of [9] showed that this is a fundamental limitation on
maliciously-secure covert computation (with black-box simulation) in the stan-
dard model, i.e., without access to trusted parameters or public keys. In a recent
work, Jarecki [12] showed a constant-round covert mutual-authentication proto-
col, but that protocol satisfied only a game-based definition of an authentication
problem. This leaves a natural open question whether useful two-party (or multi-
party) tasks can be computed covertly in a more practical way, with constant-
round protocols, in stronger but commonly assumed computational models, like
the Random Oracle Model (ROM), or equivalently the Ideal Cipher Model [6,10].

Our Contributions: In this work we construct the first practical two-message
covert protocol for the set-intersection functionality in the Ideal Cipher Model.
That is, two parties, where each party holds a private set of size n, compute the
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intersection of their private sets. If the two input sets do not have an intersection,
then no party can tell apart the following two cases: (1) the other party did not
participate in the protocol execution, and (2) the other party did participate but
the intersection was empty. Towards this goal, our contribution is three-fold:

(1) We introduce an upgraded version of the covert computation definition of
[5], concurrent covert (C-covert) computation. We provide a definition of C-covert
computation that enjoys advantages over the “single-shot” definition of covert
computation in [5] because multiple instances of such protocols can execute
concurrently, and the covertness and security properties are assured for each
protocol instance.

(2) We show that covert protocols can serve as useful tools in constructing secure
(and covert) protocols. Namely, we exhibit a general compiler which converts a
covert protocol (supporting a concurrent composability) for a single-input func-
tionality, e.g., a String Equality Test (SEQ) functionality which takes two strings
and outputs 1 if they are equal and 0 (or ⊥) otherwise, into a covert protocol
computing a corresponding multi-input functionality, e.g. which in the case of
SEQ would be a Set Intersection (SI) functionality. Our compiler is instantiated
in the Ideal Cipher Model (equivalently the Random Oracle Model [6,10]) and
it preserves the covertness and the round complexity of the underlying proto-
col for the single-input functionality, at the increase of the computational and
bandwidth costs which is only linear in the number of inputs contributed by
each party. (Technically, this compiler is slightly stronger because the covert
protocol for the underlying single-input functionality must only satisfy a weaker
version of the C-covert computation.) The construction of our compiler is rooted
in the idea of the Index-Hiding Message Encoding (IHME) scheme of Manulis et
al. [14]. While the security of IHME scheme is defined in terms of a game-based
definition, the security of our compiler is generalized and defined in terms of
simulation-based security, while the instantiation is provided in the Ideal Cipher
Model.

(3) To make this general compiler result more concrete, we show an example of
a two-party single-input functionality for the SEQ functionality (here presented
in a one-sided output version), which on a pair of inputs (x, y) outputs (b,⊥)
where b = 1 if x = y and 0 otherwise. The two-party multi-input functionality
corresponding to the SEQ functionality is a Set Intersection (SI) functionality
which takes a pair of vectors ((x1, ..., xn), (y1, ..., yn)) as its inputs, and out-
puts ((b1, ..., bn),⊥) where bi = 1 iff there exists j s.t. xi = yj . We construct
a C-covert protocol for SEQ, and by applying the above compiler we obtain a
C-covert protocol for the Set Intersection (SI) functionality. Since the C-covert
protocol we show for SEQ takes 2 rounds and O(1) group exponentiations, the
resulting C-covert Set Intersection protocol takes 2 rounds and performs O(n)
group exponentiations. This compares well to existing standard, i.e. non-covert,
Set Intersection protocols, e.g. [8,13]. Standard SI protocols have received lots
of attention, and in particular there are multiple solutions which trade off public
key operations for increased communication complexity, e.g. based on garbled
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circuits [11], Bloom Filters [7] or OT extensions [15] (see also the last refer-
ence for comparisons between various SI protocols). Still, we take our results as
showing that covertness can be achieved for non-trivial functionalities of gen-
eral interest, like the SI functionality, at the cost which is comparable to the
non-covert protocols for the same functionality.

1.1 Technical Overview

Concurrent Covert Computation. We introduce a new notion of concurrent covert
(C-covert) computation. Covert computation was first introduced by von Ahn et al.
[16] in the two-party setting. Later, Chandran et al. [5] formulated the notion of
covert multiparty computation based on the simulation paradigm. In this work, we
initiate a study of composable covert computation by considering the case of con-
current self-composition. We give a formal definition of concurrent covert compu-
tation, which provides a framework for arguing whether a protocol remains covert
while many instances of this protocol are executed concurrently in the system.
In particular, our notion of C-covert computation follows the framework of uni-
versal composability (UC) by Canetti [4] although our notion has a limitation
on its composability property compared to the notion of UC. Still, the notion we
define upgrades the covert (“one-shot”) computation notion of Chandran et al. by
enabling concurrent and parallel self-composition of a covert protocol. Such a com-
posability guarantee is at the crux of our application which compiles single-input
(weakly)C-covert protocol to aC-covert protocol for the corresponding multi-input
functionality. We note that our focus here is on concurrent composability and not
full universal composability (UC) because only the former notion is required by the
single-input to multi-input compiler: Our compiler executes multiple instances of
the covert protocol for the single-input functionality, andhence its security requires
that the underlying covert protocol is self-composable.

Intermediate Security Notions. In the course of achieving concurrent covert
security, we introduce a special class of functionalities that we call indexed
single-input functionalities. Namely, we call a two-party functionality F indexed
single-input (ISI) if there exists an index function I s.t. for all inputs (x, y) to
F we have that F(x, y) = ⊥ if I(x) �= I(y). We also introduce an intermedi-
ate security notion for ISI functionalities, called Weakly Concurrent Covert (in
short, wC-covert) computation, which is a relaxation of C-covert computation.
The high-level insight for this relaxation is that the simulator is allowed to pos-
sess additional advice which enables the simulation to go through. This relaxed
notion of C-covert is sufficient in our compiler because the compiler construction
ensures that the simulator has access to this advice, and hence it suffices that
the underlying covert protocol is simulatable given this advice.

From wC-covert Single Input Protocol to C-covert Multi-input Protocol. We con-
struct, in the Ideal Cipher Model, a compiler that converts any wC-covert
protocol for ISI functionality to C-covert protocol for the indexed mult-input
(IMI) version of the same functionality, where the IMI functionality on inputs
x = (x1, ..., xn) and y = (y1, ..., yn) is defined, in short, as an n × n execution
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of the underlying ISI functionality on pairs of matching inputs, i.e. pairs (xi, yj)
s.t. I(xi) = I(yj). The compiler builds on the compiler idea proposed by Manulis
et al. [14]. The compiler of [14] converts a particular protocol for single-input
functionality, which in their case was a Secret Handshake protocol (see e.g. [1]),
into a secure protocol for multi-input functionality, e.g. a multi-input version of
a Secret Handshake, where each party puts a vector of credentials, which are
then pair-wise matched by the functionality.

In this work, we give a general-purpose version of this compiler, where we
show that covertness and self-composability are the crucial properties needed of
the protocol for the single-input functionality to be compiled. And this shows,
very interestingly, that covertness is not just an interesting goal in itself but
also can be useful as a tool in building more efficient (e.g. linear time) two-party
protocols for multi-input functionalities. We exemplify it with the construction of
C-covert Set-Intersection protocol secure under Decisional Diffie-Hellman (DDH)
assumption in the random oracle model, which uses O(n) exponentiations and
O(n polylog n) multiplications of group elements where n is the number of
elements in the set contributed by each party. This compares quite well to the
existing non-covert SI protocols (see the discussion of various SI protocols in
[15], although that discussion concentrates on efficiency in the honest-but-curious
setting).

Organization. In Sect. 2, we introduce the notions of C-covert computation,
the indexed single-input and multi-input functionalities (ISI and IMI), and
the related notions such as wC-covert computation, which will be utilized by
our ISI-to-IMI compiler. In Sect. 3 we present the construction of compiler
which converts a wC-covert protocol for a single-input (ISI) functionality into a
C-covert protocol for the multi-input (IMI) version of this functionality, in the
Ideal Cipher Model. In Sect. 4, we present an application of this compiler by
exhibiting a wC-covert two-message O(1)-exponentiations covert protocol for the
SEQ functionality in the Random Oracle Model.

2 Preliminaries

2.1 The Ideal Cipher Model

The ideal cipher model is an idealized model of computation in which entities
(i.e., parties) has a public accessible to a ideal (random) block cipher. Such
ideal cipher is a block cipher indexed by a key which is a k-bit string (or a
field element) s.t. each key k defines a random permutation on l-bit strings. All
entities in the ideal cipher model can make encryption and decryption queries
to the cipher by specifying its index. In this work, we denote an ideal block
cipher by Ψk : {0, 1}l → {0, 1}l and its inverse by Ψ−1

k : {0, 1}l → {0, 1}l. Coron
et al. [6,10] showed that the ideal cipher model is equivalent to the Random
Oracle Model (ROM), first formalized by Bellare and Rogaway [2]. Therefore,
all results in this work can be translated into the same results in the Random
Oracle Model. Throughout this work, we use these two names interchangeably.
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2.2 Concurrent Covert Computation

We provide the definition of concurrent covert computation (C-covert) for a given
functionality. Our definition of C-covert computation follows the framework of
Universally composability (UC) by Canetti [4] as well as the definition of stand-
alone (i.e. “single-shot”) covert computation given by Chandran et al. [5]. Note
that we provide the definition of concurrent covert computation for the multi-
party case but in the remainder of the paper we will concentrate solely on the
two-party functionalities and protocols, leaving general multi-party protocols
to future work. Even though our definition builds upon the UC framework,
its composability guarantee is restricted to concurrent self-composition. The
main reason for this restrictiveness is that the definition guarantees only self-
composability of covert computation for functions, i.e. not for general reactive
functionalities as in the case of standard UC definition of Canetti [4]. We make
this definitional choice because it is already sufficient in many applications, as
exemplified e.g. by the compiler construction we present in this paper. More-
over, composing functionally distinct covert protocols is a challenge. Consider
for example a protocol Π formed as a composition of protocols Π1 and Π2,
where protocol Π1 runs Π2 as a subroutine, and note that an adversary might
discover the participation of honest parties in the protocol from the outputs of
subroutine Π2 before the completion of protocol Π. In this work we concentrate
on concurrent covertness and leave establishment of the framework of fully UC
covert computation for future work.

Intuitively, the differences between the concurrent covert notion for function-
ality F we define below and the standard notion of concurrent computation for
F is that (1) F’s inputs and outputs are extended to include a special sign ⊥
designating non-participation; (2) F is restricted to output a non-participation
symbol ⊥ to each party if any of these parties contributed ⊥ as its input; and
(3) the real-world protocol of an honest party on the non-participation input ⊥
is fixed as a “random beacon”, i.e. a protocol which sends out random bitstrings
of fixed length independently of the messages it receives.

The Ideal Model. The definition of the ideal model is the UC analogue of the
ideal model of Chandran et al. [5], except that composability guarantees are
restricted to self-composition. The ideal process involves an ideal functionality
F , an ideal process adversary (simulator) Sim, an environment Z with input z,
and a set of dummy parties P1, . . . , Pn. Parties may input a value x ∈ {0, 1}k to
the functionality or a special symbol ⊥ to indicate that they do not participate
in the protocol. Let x denote the vector of inputs (including ⊥) of all parties.

Similarly to the stand-alone covert computation notion of [5], an ideal func-
tionality F in the C-covert computation is defined by a pair of functions f, g,
where g : {{0, 1}k ∪ {⊥}}n → {0, 1} is a favor function where g(x) = 0 if and
only if x is either a non-favorable input (i.e. inputs on which parties want to hide
their participation, e.g. two distinct strings in the case F is SEQ) or a subset of
parties set their inputs to ⊥ (which indicates that those parties do not partici-
pates in the computation). The function f : {{0, 1}k ∪{⊥}}n → {{0, 1}k ∪{⊥}}n

is the actual functionality to be jointly computed, and it is restricted so that
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f(x) = y ∈ {{0, 1}k}n if g(x) = 1, and f(x) = {⊥}n if g(x) = 0. In other words,
function f outputs non-bot outputs if and only if the output of g on the inputs
is favorable. We note that g and f can be randomized functions, in which case
functionality F picks the randomness which is appended to input x before g and
f execute.

Let IdealF,Sim,Z(k, z, r) denote the output of environment Z after interacting
in the ideal process with adversary S and ideal functionality F , on security
parameter k, input z, and random input r = rZ , rSim, rF as described above. Let
IdealF,Sim,Z(k; z) denote the random variable describing IdealF,Sim,Z(k, z, r) when
r is uniformly chosen. We denote the distribution ensemble of IdealF,Sim,Z(k; z)
by {IdealF,Sim,Z(k, z)}k∈N ;z∈{0,1}∗ .

The Real Model. The definition of the real model is also the UC analogue of the
real model of Chandran et al. [5]. It is as the real model in the standard UC
security model, except that each honest party on the non-participation input
⊥ is assumed to execute a “random beacon” protocol, i.e. to send out random
bitstrings of lengths appropriate to a given protocol round. Let RealΠ,A,Z(k, z, r)
denote the output of environment Z after interacting in the ideal process with
adversary A and parties running protocol Π on security parameter k, input z,
and random tapes r = rZ , rA, r1, . . . , rn as described above. Let RealΠ,A,Z(k; z)
denote the random variable describing RealΠ,A,Z(k, z, r) when r is uniformly
chosen. Similar to the notations in the ideal model, we denote the distribution
ensemble of RealΠ,A,Z(k, z, r) by {RealΠ,A,F (k, z)}k∈N ;z∈{0,1}∗ .

Definition 1. Let n ∈ N . Let F be an ideal functionality and Π be an n-party
protocol. We say that Π concurrently securely realizes F if for any adversary A
there exists an ideal-process adversary Sim such that for any environment Z,

{IdealF,Sim,Z(k, z)}k∈N ;z∈{0,1}∗
c≈ {RealΠ,A,Z(k, z)}k∈N ;z∈{0,1}∗ .

2.3 Indexed Functionalities

Below we define two special classes of functionalities, ISI and IMI, which specify
syntactic requirements on the functionalities involved in the compiler described
in Sect. 3. The first notion, of Indexed Single-Input (ISI) two-party functional-
ity, is a syntactic constraint which makes such function subject to a compilation
from a “single-input” to a “multi-input” functionality. The second notion, of
Indexed Multi-Input (IMI) two-party functionality, describes the functionality
that results from such compilation, as it is defined by the underlying ISI function-
ality and the numbers of inputs contributed by each party. Finally, in definition
4, we define a security requirement on a protocol for computing some ISI func-
tionality F which is a technical relaxation of the C-covert notion of definition 1,
and which turns out to suffice for the compilation procedure described in Sect. 3
to produce a C-covert protocol for the IMI functionality corresponding to F.

Definition 2 (Indexed single-input two-party functionalities). F is said
to be an indexed single-input (ISI) two-party functionality (over domain D), with
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an index function I, if on a pair of inputs (x, y) ∈ D×D it outputs (outA, outB)
where outA and outB are outputs to A and B respectively s.t. outA = outB =⊥
whenever I(x) �= I(y).

Many natural functionalities are of the ISI type. The notion of an “index
agreement” between parties’ inputs appears natural especially in the case of
functionalities which one would want to compute covertly. Note that the notion
of covert computation for F involves an admission function g on inputs s.t. if
g(x, y) = 0 then F outputs ⊥ to all parties, in which case neither party can
distinguish its counter-party from a random beacon. The notion of an index
function I specializes this agreement function by requiring that g(x, y) = 0
whenever I(x) �= I(y). Consider the case of F being a PKI-based authentication
policy verification, a Password Authenticated Key Exchange (PAKE), or a String
Equality (SEQ) test. In each of these cases the inputs have to “match” for the
function to return a positive output. In the case of PAKE and SEQ, the index
function can be an identity, as both functionalities might want to return ⊥ if x �=
y, while in the first case function I can output the hash of a public key, either the
public key held by the verifier or the public key which issued the certificate held
by the prover. Note that an ISI functionality models a computation where each
party contributes a single such input, e.g. a string, a password, or a certificate,
etc. Hence, a natural extension of any ISI functionality F is a multi-input version
of this functionality, which we denote F̃, where each party can input a vector
of n such inputs, and F̃ computes a pair-wise matching of these inputs (out of
n2 input pairs) and then runs F on input pairs which match successfully. In the
following we present a relaxed version of such multi-input functionality where
the number of inputs that a malicious party can enter into the functionality
might deviate by some δ from the number of honest party’s inputs.

Definition 3 (Indexed δ-relaxed multi-input two-party functionali-
ties). Let D be the domain of inputs, I be a function defined on D, and F be
an indexed single-input two-party functionality over D with an index function
I. Let F̃ be a two party functionality which for some integer δ ≥ 0, takes input
x = (x1, . . . , xn1) from party A, and input y = (y1, . . . , yn2) from party B, where
n1, n2 ∈ [n, n + δ] and xi, yj ∈ D for every i ∈ [n1] and j ∈ [n2].

F̃ is said to admit input x (resp. y) if I(xi) �= I(xj) (resp. I(yi) �= I(yj))
for all i, j ∈ [n1] (resp. i, j ∈ [n2]). Then, F̃ is said to be an indexed δ-relaxed
multi-input (IMI) two-party functionality corresponding to F if F̃(x,y) computes
its output as follows:

1. If F̃ does not admit inputs x or y, then it outputs (⊥,⊥).
2. F computes output sets SA and SB as follows: It initializes SA and SB as

empty sets, and then for each pair of inputs (xi, yj) for (i, j) ∈ [n1]× [n2] s.t.
z = I(xi) = I(yj), computes (outA, outB) as an output of F on (xi, yj), and if
outA or outB �=⊥, then it adds (z, outA) to SA and (z, outB) to SB. Note that
this computation invokes O(n) instances of F because if x and y are admitted
by F̃ then there can be at most min(n1, n2) pairs (xi, yj) s.t. I(xi) = I(yj).
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Finally, if SA and SB are nonempty, then F̃ outputs SA to party A and SB

to party B. Otherwise it outputs ⊥ to both parties.

When δ = 0 where the size of inputs from both parties is equal, we simply
call F̃ an indexed multi-input two-party functionality corresponding to F.

2.4 Relaxed Covertness Notion for ISI Protocols

To utilize the full power of our ISI-to-IMI compiler construction we introduce a
relaxed notion of C-covert security applicable to ISI functionalities, which we call
“Weakly Concurrent Covert” (in short, wC-covert) security. The main difference
from the definition of C-covert is that the simulator receives additional advice to
simulate the view of environment. Namely, the simulator learns the index I(x)
(resp. I(y)) for an x (resp. y) input by an honest party A (resp. B). Intuitively,
simulation of a protocol can only be easier if the simulator gets such advice on
the honest party’s input, and therefore a protocol that satisfies this relaxation is
easier to achieve. (We will indeed see such construction in the Random Oracle
Model (ROM) in Sect. 4.) The reason that we consider such a relaxed notion of
C-covert security for a protocol computing an ISI functionality is that our com-
piler, shown in Sect. 3, compiling C-covert protocol for an ISI functionality F to a
C-covert protocol for an IMI functionality F̃ corresponding to F, is constructed in
the ideal cipher model where each party encrypts its messages of an instance of
the protocol for F such that if x is a party’s input to an instance, then the party
uses the ideal cipher Ψa(·) with key a = I(x) to encode all messages belonging
to the instance. The idea is that the simulator can embed a random output r for
the honest party’s ideal cipher queries. Only if the adversary then queries Ψ−1

a (r)
will the simulator need to simulate the underlying message m of the protocol for
F, using the programmability of the ideal cipher and the underlying simulator for
F. Therefore, whenever the underlying simulator for F is instantiated, a = I(x)
is already known.

Definition 4 (wC-covert protocols for an ISI two-party functionality).
Let F be an ISI two-party functionality and let Π = (A,B) be a two-party protocol
that realizes F. Let x be the input of honest party and let x∗ be the input of
corrupted party. Protocol Π is a ρ-round wC-covert implementation of F if Π
is C-covert computation of F with the following additional conditions:

1. (Additional Advice). For all efficient environments Z and adversaries A,
there exists an PPT simulator Sim s.t. for all inputs x in the domain of
inputs of F, the environment’s output in the real world, RealΠ,A,Z(k, z, r)
is indistinguishable from the environment’s output in the ideal world,
IdealF,Sim,Z(k, z, r), where the way messages are passed between Z and honest
ideal players is identical to the one of definition of concurrent covert com-
putation in the Sect. 2.2 except for the following change in the ideal world:
When Z sends to an ideal honest party its input x to F, the security game
gives an“advice” a to Sim where a = I(x) if x �= ⊥ and a = I(x∗) if x = ⊥.
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2. Consider a malicious strategy for party A (resp. B), where A chooses s ←
{0, 1}t such that t is the bit length of the message sent by A in protocol Π and
sends s to (honest) B (resp. A) as its message in the j-th round of protocol
Π for some j ∈ [ρ]. Then, with probability 1 − neg(k) over choice of s, Sim,
given the additional advice a as in Condition 1, queries the ideal functionality
F with ⊥ (and so the ideal party outputs ⊥). Furthermore, with probability
1 − neg(k), over choice of s for A’s (resp. B’s) j-th round message as above,
Sim’s subsequent messages, conditioned on s, are uniformly distributed.

3 Compiling Single-Input TPCs to Multi-input TPCs

In this section, we present a compiler Comp(Π,n) which takes any wC-covert
protocol Π for indexed single input two-party functionality F and converts it to a
C-covert protocol Π̃ which securely implements the corresponding indexed multi-
input two-party functionality F̃. We first describe the compiler which results in
a multi-input F̃ which takes exactly n inputs from each party, and then we show
how its efficiency can be improved if the resulting functionality F̃ is relaxed to
allow the dishonest parties to input n + δ inputs instead of n.

We first give some intuition for our compiler and the proof of security. For
simple exposition in the following high-level intuition, we restrict ourselves to
the case of the two-message protocols where each party sends a single message to
each other (i.e., a single-round protocol). The formal construction of multi-round
compiler is provided in Fig. 1. The very high-level intuition is that each party
encodes n parallel messages (where n is the size of the party’s input set) from n
instantiations of the underlying protocol Π using an ideal cipher Ψ and a poly-
nomial encoding. Specifically, A constructs a polynomial PA

1 such that for each
input xi of party A, PA

1 (I(xi)) = ΨI(xi)(mi
1) and sends PA

1 (i.e., its coefficients)
to B as its message, where mi

1 is the corresponding first message of protocol
Π. Due to the covertness of the underlying protocol Π, the party receiving the
encoded message cannot tell which points of the polynomial were programmed.
For each of its inputs yi, party B recovers the value mi

1 = Ψ−1
I(yi)(P

A
1 (I(yi)) and

uses it to compute the corresponding second message mi
2 of protocol Π. Then,

B encodes these messages in a similar fashion using polynomial PB
2 . B sends

PB
2 to A who similarly recovers its output values.

There are several important points about the proof of security:

– Using the Simulator for Π. We note that the underlying simulator for
Π, denoted by SimΠ will be used to generate mi

1 when B is corrupt and
mi

2 when A is corrupt. However, note that since the simulator Sim for the
compiled protocol simulates the ideal cipher, Sim has the advantage that it
can construct the polynomials PA

1 , PB
2 at random and then run the underlying

simulator SimΠ to generate mi
1 or mi

2 only when an inversion query is made
to the ideal cipher. The advantage of this is that now SimΠ can be given some
auxiliary information about the ideal input I(xi) or I(yi). Specifically, when
an adversary queries Ψ−1

a , the simulator for the compiled program knows that
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the underyling message should be either a random message (corresponding to
the element not being in the party’s set) or it should be a protocol message
for Π, computed using input xi or yi such that I(xi) = a or I(yi) = a. Note
that obtaining this auxiliary information is exactly the relaxation on SimΠ is
formalized in item (1) of Definition 4.

– Ensuring Correctness. We must account for the fact that a party may not
query the ideal cipher but may simply embed a random message m in PA

1

or PB
2 with the hopes that it will be “valid”. Specifically, in the case that

a random message is embedded in PB
2 , we must ensure correctness. In other

words, we must rule out the possibility that B embeds a random message, from
which SimΠ cannot extract a corresponding input yi but which yields a valid
output for the real party A. To address this issue, we assume that Π has the
property that random messages will cause the other party to output ⊥ with
all but negligible probability. We note that this property of Π is formalized
in item (2) of Definition 4.

See Fig. 1 for the formal description of the compiler Comp(Π,n).

Theorem 1. Let k be a security parameter. If Π is a wC-covert protocol for
indexed single input two-party functionality F and Ψ : {0, 1}∗ → {0, 1}l is an
ideal cipher with l = n · ω(k), then Comp(Π) is a secure, C-covert protocol for
indexed multi-input two-party functionality F̃ corresponding to F, taking n inputs
from each party.

Remark 1. We note that our compiler does not require the parties to enter
the same number of the inputs. An adversarial party’s number of inputs to
Comp(Π,n) might be indeed differ from n even if the honest party’s number of
inputs is n. First consider the case that the number of inputs of an adversary
is smaller than n. For this case, observe that the honest party given a degree-
n + 1 polynomial as a message from its adversary will extract only the messages
m according to its own n indexes such that I(xi) = I(yi) while automatically
treating all the other messages as non-participating messages of adversary (even
though the honest party does not notice it). For the case where adversary wants
to enter inputs more than n encoded in a n+1-degree polynomial, we prove that
no PPT adversary can do that if we choose appropriate parameters for random
oracle. See the following Lemma 1.

Lemma 1. Let k be a security parameter, let q(k) be an arbitrary polynomial in
k, and let δ ≥ 1 be a constant. Let A be any PPT adversary which runs in time
q(k), an arbitrary polynomial in k. Consider the following game Gameq,m,n,k,δ

between adversary A and challenger C:

1. Repeat the following procedure q times:
(a) A chooses a field element a from a field F = GF (2m). A sends it to C.
(b) C responses with s uniformly sampled from field F .

2. Without loss of generality, assume that A chooses q distinct a’s. Let T be the
set of q pairs of (a, s) generated in the above procedure. A wins the game if
there exists a degree n polynomial f(x) such that there exist a subset S ⊂ T
where |S| = n + δ and f(a) = s for all (a, s) in S.
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Fig. 1. The compiler Comp(Π, n).
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Then, for sufficiently large k, for all n and δ, if m = nω(log k), then for any
PPT adversary A running in time q, A wins the above game except with negligible
probability ε.

Proof. Towards contradiction, assume that the lemma is false. That is, there
exists a PPT adversary A that runs in time q = kd for some constant d and wins
the game with non-negligible probability: there exists some c such that

P := Pr[A wins Gameq,m,n,k,δ] ≥ 1
kc

where the probability is taken over the coin toss of adversary A.
Then, we have

P =
(

q

n + δ

)
1

|F |δ =
(

q

n + δ

)
1

2mδ
≤ qn+δ

2mδ
.

This means that

1
kc

≤ qn+δ

2mδ
⇒ 2mδ

qn+δ
≤ kc ⇒ mδ − (n + δ) log qn+δ ≤ c log k

⇒ mδ

log k
− dn − dδ ≤ c ⇒ ω(log k)nδ

log k
− dn − dδ ≤ c ⇒ n(ω(1)) ≤ c.

Therefore, this completes the proof as we have a contradiction. �
We provide the formal proof of Theorem1 in the full version of this work

due to the restriction of the space. One immediate consequence of Theorem 1 is
that it compiles a wC-covert protocols for any ISI two-party functionality into a
C-covert protocol for the same functionality in the ideal cipher model. That is, if
we encode messages with a degree one polynomial (a linear function) vanishing
at 0 where messages correspond to underlying weakly secure protocol Π for F,
then the resulting compiled protocol Comp(Π) is a C-covert protocol for F.

Corollary 1. If there is a wC-covert protocol for an ISI two-party functionality
F then there is a C-covert protocol for F in the random oracle model.

Improving Efficiency by Relaxing the Functionality. We note that Theorem 1 and
its security proof rely on the fact that ideal cipher Ψ maps protocol messages into
a string of length m = n · ω(k), so the efficiency of protocol degrades linearly in
n. To improve the compilation efficiency we can break this dependency between
m and n by allowing (corrupted) parties to encode more than n messages into
a polynomial. In particular, we relaxed the requirement of compiler that each
party must put n inputs by allowing the parties to put n + δ inputs for δ ≥ 0.
That is, if we allow δ = O(n) in the proof of Lemma 1 above, then it is easy
to see m = O(k), which is independent of the number of expected inputs. The
simulator’s strategy (provided in the full version) remains the same except that
the simulator’s time complexity increases by O(n).
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Theorem 2. Let k be a security parameter and let δ = O(n). If Π is a wC-covert
protocol for indexed single input two-party functionality F and Ψ : {0, 1}∗ →
{0, 1}l is an ideal cipher with l = O(k), then Comp(Π) is a secure, C-covert
protocol for δ-relaxed indexed multi-input two-party functionality F̃ corresponding
to F, taking at most n + δ inputs from each party.

4 Instantiation of wC-covert String Equality Protocol

In the following, we construct an efficient one-round C-covert set-intersection
protocol in the random oracle model. Given the compiler presented in Sect. 3,
the construction of wC-covert protocol for ISI two-party string equality protocol
is sufficient for a C-covert set-intersection protocol.

At the very high-level, the main idea behind our construction is to utilize
the Smooth Projective Hash Function (SPHF) for (Cramer-Shoup like, see [3]
for more details) CCA-secure encryption defined in the Random Oracle Model.
More specifically, let G be a cyclic group of prime q and H be a random oracle.
Given a public key (g, h) where h = gα for some α ∈ Zq, a party (called A)
can encrypt its message p as c = (gr, hr · gH(p)) for some random r ∈ Zq. Given
the ciphertext c, another party (called B), if B possesses p, can extract a DDH
tuple from the ciphertext c and create a hash value h and a projection key pk
which is independent of message p. If A is given the projection key pk, then it
may compute the same hash value h using its own witness r and pk. If B does
not possess p, then B cannot extract a DDH tuple from the encryption and the
hash value h becomes uniformly random in its range in the view of A even given
projection key pk. For our wC-covert string equality protocol, we use this SPHF
in both ways: from A to B and from B to A, where each direction checks if
a party possess an identical string. The formal description of wC-covert string
equality protocol is provided in Fig. 2.

Theorem 3. Assume the DDH problem is hard in group G of order prime q and
let H be a random oracle. Then, protocol Π is a one-round wC-covert protocol
for the string-equality functionality.

We prove Theorem 3 by proving two lemmas, Lemma 2 (correctness) and
Lemma 3 (security). Due to the space constrain, we provide their proofs in the
full version.

Lemma 2. The protocol Π described in Fig. 2 is correct with overwhelming prob-
ability. That is, Π on input (pA, pB) outputs (1,⊥) if and only if pA = pB except
with probability 1/2q.

Lemma 3. The protocol Π described in Fig. 2 is one-round wC-covert protocol
as defined in Definition 4.

Combining Theorem 1 (resp. Theorem 2) with Theorem 3 immediately yields
two-pass C-covert set-intersection protocol (resp. with δ-relaxation). For the com-
pleteness, we provide the formal corollary as follows.
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Fig. 2. A simple covert protocol Π for string equality functionality

Corollary 2. Let k be a security parameter and let δ = 0 (resp. δ = O(n)).
If Π is a wC-covert protocol for indexed single input two-party string equality
functionality F and Ψ : {0, 1}∗ → {0, 1}l is an ideal cipher with l = O(nω(log k))
(resp. l = O(k)), then Comp(Π,n) is a one-round C-covert protocol for (resp. δ-)
relaxed set-intersection two-party functionality, taking a set of n (resp. at most
n + δ) elements from each party.
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Abstract. Log files are the primary source of information when the
past operation of a computing system needs to be determined. Keeping
correct and accurate log files is important for after-the-fact forensics, as
well as for system administration, maintenance, and auditing. Therefore,
a line of research has emerged on how to cryptographically protect the
integrity of log files even against intruders who gain control of the logging
machine.

We contribute to this line of research by devising a scheme where
one can verify integrity not only of the log file as a whole, but also of
excerpts. This is helpful in various scenarios, including cloud provider
auditing.

Keywords: Secure audit logs · Log files · Excerpts · Forward security

1 Introduction

Log files are append-only files recording information on events and actions within
a computer system. They are essential for digital forensics, intrusion detection
and for proving the correct operation of computers.

However, their evidentiary value can be severely impaired if it is unclear
whether they have been tampered with. It is therefore imperative to protect log
files from unauthorized modification. This need has been widely recognised, see
for example [15, p.10], [19, Sects. 18.3 and 18.3.1], [9, Sect. 8.6].

However, to actually prove a claim e.g. in court with the help of a log file is
problematic even if the log file’s integrity is unharmed, since the log file may
contain confidential information. Furthermore, a large fraction of log entries may
be irrelevant. Filtering these out significantly facilitates the log file analysis.

In this work, we therefore propose a logging scheme that can support the
verification of excerpts from a log file. Creating an excerpt naturally solves both
problems: Log entries that contain confidential and/or irrelevant data can simply
be omitted from the excerpt. Excerpts created with our scheme remain verifiable,
and therefore retain their probative force. Let us illustrate their use with two
examples.

Example 1 (Banking). Consider a bank B that provides financial services to its
customers. In order to prove correct behaviour of its computer systems, the bank
maintains log files on all transactions on customers’ accounts.
c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 183–199, 2016.
DOI: 10.1007/978-3-319-29485-8 11
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When a customer A accuses the bank of fraud or incorrect operation, the bank
will want to use its log files to disprove A’s allegations. However, submitting the
entire log file as evidence to court is not an option, as this would compromise the
confidentiality of all transactions recorded, including the ones of other customers.
Besides, the log file may also be prohibitively large.

Alternative solutions might be handing the log file to an expert witness,
who verifies the integrity of the log file, or to encrypt log entries under different
keys and revealing keys selectively for verification. These solutions, however, are
unsatisfactory, since both approaches do not solve the problem of the log file
size. Moreover, the first one eliminates public verifiability.

Utilizing a logging scheme with verifiable excerpts, however, the problem at
hand is simple: The bank B generates an excerpt from its log files, containing only
information on the transactions on A’s account and possibly general information,
e.g. about the system state. This excerpt is then submitted to court, where it can
be verified by the judge and everyone else. If the verification succeeds, the judge
may safely consider the information from the excerpt in his/her deliberation.

Example 2 (Cloud Auditing). Imagine an organisation O that would like to use
the services of a cloud provider, e.g. for storage. O may be legally required to
pass regular audits, and must therefore be able to provide documentation of all
relevant events in its computer systems. Therefore, the cloud provider C must
be able to provide O with verifiable log files, which can then be included in O’s
audit report.

Now, if C was to hand over all its log files to O, this would reveal details
about other customers’ usage of C’s services, which would most likely violate
confidentiality constraints. Furthermore, once again, the entire log files may be
too large for transmission by regular means.

Here, as above, audit logging schemes with verifiable excerpts can solve the
problem at hand easily. With these, C could simply create an excerpt containing
only information that is relevant for O from its log files. This would solve the
confidentiality issue while simultaneously lightening the burden induced by the
log file’s size, while the excerpt can still be checked by the auditors.

Background. We consider a scenario where there is a single data logger (e.g.
a server or a system of multiple servers), who is initially trusted to adhere to a
specified protocol, but feared to be corrupted at some point in time. We would
like to guarantee that after the logger has been corrupted, it cannot manipulate
the log entries created before the corruption.

Preventing the modification of log data usually requires dedicated hardware,
such as write-once read-many-times drives (WORM drives). Since employing
such hardware may not always be a viable option, cryptographers and security
researchers have taken on the task to create schemes or protocols to verify the
integrity of log files, see e.g. [3,5,6,12,16,20,22,24,26]. These schemes cannot pro-
tect log data from actual modification, but they can be used to detect modifica-
tions, while being purely implemented in software. Knowing if and what log data
has been tampered with is very valuable information for a forensic investigation.
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In order to enable verification, the logger must create a verification key when
the logging process is started. This verification key can then be distributed to a
set of verifiers, or even published for everyone to see. Since the logger is trusted
at the beginning of the process, the verification key is chosen honestly.

In our specific setting, we want the logger to be able to create excerpts from
its log files. These excerpts should be verifiable by everyone in possession of
the verification key. We demand that it be hard for the adversary to create an
excerpt whose content deviates from the information logged honestly while the
logger was uncorrupted, yet passes the verification.

Once the logger has been corrupted, it may surrender all cryptographic keys
under its control to the adversary, rendering standard cryptographic schemes
useless. To mitigate this problem, researchers have devised schemes (e.g. [1,2,4–
6,8,13,14,17,21,27]) that guarantee “forward integrity” [6]. Such schemes use a
series of secret keys sk0, . . . , skT−1, where each key ski+1 can be computed from
the previous key ski via a specified update procedure. Given i ∈ {0, . . . , T − 1},
the verification algorithm then checks whether the data at hand was indeed
authenticated using key ski. Informally speaking, a scheme has forward integrity
if obtaining one of these secret keys ski does not help in forging a proof of
authenticity and integrity with respect to any previous key skj with j < i.
Digital signature schemes as well as MACs that have forward integrity are also
called forward-secure.

In this work, we will focus on logging systems that use digital signatures.
These have two important advantages over MAC-based logging schemes: Firstly,
anyone in possession of the public key pk can verify their integrity, i.e. log files
can be verified publicly. Secondly, verifiers can not modify the log file without
detection. Due to the symmetric nature of MACs, this is possible for MAC-
based schemes. On the downside, signature-based logging schemes are usually
less efficient than MAC-based schemes.

A secure log file, also called secure audit log, can be built from forward-secure
signatures schemes as follows [6]. When a new log file is created, the scheme
generates a key pair (sk0, pk). The public key is copied and either published or
distributed to a set of verifiers (e.g. auditors). When the logging system is put
into operation, log entries are signed with key sk0, and the resulting signatures
are stored along with the log file. At some point in time, the signer updates the
secret key sk0 to sk1, securely erases1 sk0 and continues signing log entries with
sk1 instead of sk0. At a later point in time, the signer updates sk1 to sk2, deletes
sk1 and continues to work with sk2, and so on. The time interval in which all
log entries are signed using the secret key ski is called the i-th epoch.

When an attacker A takes control over the system during epoch i (and hence
may obtain the secret key ski), the forward-security property guarantees that
A cannot modify log entries signed in previous epochs without being detected.
Note that A can trivially forge signatures for the current epoch i and all future

1 Erasure of secret keys must be complete and irrecoverable to guarantee security, i.e.,
the secret keys must actually be overwritten or destroyed, instead of just removing
(file) pointers or links to the secret key.
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epochs by using the regular signing and updating procedures. When the log file
needs to be verified later, everyone who is in possession of pk (or can securely
retrieve a copy of it) can run the verification algorithm to see if the log file has
been tampered with.

The scheme described above is highly simplified and has several weaknesses.
Therefore, actual proposals in the literature as well as current implementations
usually employ a combination of additional measures such as adding timestamps
to log entries [6,16], numbering log entries with sequence numbers [6,16,24,26],
chaining hash values [16,20], adding “epoch markers” that indicate the tran-
sition from one epoch to the next [6], adding “metronome entries” that just
contain a current timestamp [12], and encryption of log entries to preserve
confidentiality [12,20].

In our work, we abstract from most of these features. For our purposes, a
(plain) log message is a string of bits m ∈ {0, 1}∗. This bit string may contain
timestamps and/or event types, may be formatted in any fashion and may be
encrypted or not. We focus on the secure storage of log entries, instead of also
considering the secure transmission of log entries to a logging server, since this
problem is mostly orthogonal to the storage problem.

Previous and Related Work. Most of the older schemes for securing audit
logs use hash chains and authenticate the hash values using forward-secure MACs
[11,20]. The Logcrypt scheme by Holt [12] is similar in nature, but also supports
(public-key) digital signatures for authentication. Marson and Poettering [18]
devise a special type of one-way hash chain, where one can skip the computation
of large parts of the chain, and directly compute each element without explicitly
computing the previous ones. Ma and Tsudik [16] observed that such hash-
chain-based approaches suffer from “truncation attacks”, where the attacker
deletes trailing log messages. They devised forward-secure sequential aggregate
signatures based on e.g. [7] to deal with this issue. Yavuz, Peng and Reiter
[24–26] devised two schemes tuned to very specific performance requirements.
Waters et al. [23] focus on searchable encryption of log entries, but rely on other
schemes to guarantee integrity.

The notion of excerpts from log files has not been explicitly considered before.
We note, though, that LogFAS [26] can support the verification of arbitrary sub-
sequences of log files. However, this is more an accidental property of the LogFAS
construction than due to an explicit design goal, and furthermore, systems that
can verify every subsequence are in general not suited for our example applica-
tions, as will be discussed in Sect. 3.

Closest to our work is the scheme by Crosby and Wallach [10], who devised
a method for secure logging that allows for controlled deletion of certain log
entries while keeping the remaining log entries verifiable. However, their scheme
relies on frequent communication between the log server and one or more trusted
auditors, whereas our scheme can be used non-interactively. Furthermore, they
did not formulate a security notion and consequently did not give a proof of
security for their scheme.
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Finally, we point out a survey paper on secure logging by Accorsi [3], which
gives an overview on some of the older schemes mentioned above.

Our Contribution. Our contribution is twofold: Firstly, we develop a model
for secure logging with verifiable excerpts. The ability to verify excerpts can be
useful (i) to provide full confidentiality and privacy of most of the log entries,
even when a subset of the log entries needs to be disclosed, (ii) to save resources
during transmission and storage of the excerpt, and (iii) to ease manual review
of log files. We also develop a strong, formal security notion for such schemes.

Secondly, we propose a novel audit logging scheme that allows for verification
of excerpts. Our scheme may be used to verify both the correctness of all log
entries contained in an excerpt as well as the completeness of the excerpt, i.e.
the presence of all relevant log entries in the excerpt. We rely on the application
software to define which log entries are relevant for the excerpts. Our scheme
makes efficient use of a forward-secure signature scheme, which is used in a black-
box fashion. Therefore, our scheme can be tuned to meet specific performance
goals, and be based on a variety of hardness assumptions. We analyse our scheme
formally and give a perfectly tight reduction to the security of the underlying
forward-secure signature scheme.

Outline. Section 2 introduces preliminary definitions and some notation. In
Sect. 3, we develop a formal framework to reason about log files with excerpts,
and give a security definition for such schemes. Section 4 presents our construc-
tion, proves that it fulfills the security notion from Sect. 3, and analyses the
overhead imposed by our scheme. Finally, Sect. 5 concludes the paper.

2 Preliminaries, Notation and Conventions

Sequences. Let S = 〈s0, . . . , sl−1〉 = 〈si〉l−1
i=0 be a finite sequence over some

domain D. Then |S| := l ∈ N0 denotes the length of S. We write v ∈ S to indicate
that v is contained in S. The empty sequence is 〈〉. The concatenation of two finite
sequences S1, S2 is denoted as S1 ‖ S2. If s ∈ D, we write S1 ‖ s as a shorthand
for S1 ‖〈s〉. If S = 〈s0, . . . , sl−1〉 is a sequence and P = 〈s0, . . . , sm−1〉 for some
m ≤ l, then P is a prefix of S. If I := 〈i0, . . . , in−1〉 is a finite, strictly increasing
sequence of numbers ij ∈ {0, . . . , l − 1} (for all j ∈ {0, . . . , n − 1}, with n ∈
N0, n < l), we call I an index sequence for S and S′ = 〈si0 , . . . , sin−1〉 the
subsequence of S induced by I.

Definition 1 (Operations on Subsequences). Let S = 〈s0, . . . , sl−1〉; let
I = 〈i0, . . . , iv−1〉, J = 〈j0, . . . , jw−1〉 be two index sequences for S, and let
T,U be the subsequences of S induced by I and J , respectively. Then:

T ∪ U is the subsequence of S that contains exactly those elements sk for which
k ∈ I or k ∈ J or both, in the order of increasing k ∈ {0, . . . , l − 1},

T ∩ U is the subsequence of S that contains exactly those elements sk for which
k ∈ I and k ∈ J , in the order of increasing k ∈ {0, . . . , l − 1}.
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Note that if S contains duplicates, then there may be different index sequences
inducing the same subsequence. Therefore, the operations from Definition 1 are
only well-defined if the index sequences I and J are given. In this work, we will
omit specifying I and J when they are clear from the context.

General Notation. A log entry (log message, message) m is a bit string, i.e.
m ∈ {0, 1}∗. The concatenation operation on bit strings is also denoted by ‖. A
log file M = 〈m0, . . . , ml−1〉 is a finite, possibly empty sequence of log entries.2

We write X := V for a deterministic assignment operation. In contrast,
X ← V is used when V is a finite set and X is chosen uniformly at random
from V , or V is a probabilistic algorithm and X is assigned the output of that
algorithm. All random choices are considered to be independent. We write PPT
for “probabilistic polynomial time”. Throughout this paper, κ ∈ N0 is the secu-
rity parameter. All algorithms are implicitly given 1κ as an additional input.
The set of all polynomials p : N0 → N0 which are parameterized by κ is poly(κ).

Forward-Secure Signature Schemes

Definition 2 (Key-Evolving Signature Scheme, based on [4]). A key-
evolving digital signature scheme Σ = (KeyGen,Update,Sign,Verify) is a tuple
of PPT algorithms, which are described as follows.

KeyGen(T ) receives an a priori upper bound T on the number of epochs as input.
It generates and outputs a pair of keys, consisting of the initial private signing
key sk0 and the public verification key pk.

Update(ski) takes a secret key ski as input, evolves it to ski+1 and outputs
ski+1. The old signing key ski is then deleted in an unrecoverable fashion. If
i ≥ T − 1, the behaviour of Update may be undefined.

Sign(ski,m) computes and outputs a signature σ for a given message m ∈
{0, 1}∗, using a secret key ski.

Verify(pk,m, i, σ) checks if σ is a valid signature under public key pk, created
with the i-th secret key, for a given message m. If it deems the signature
valid, it outputs 1, otherwise it outputs 0.

We require correctness in the canonical sense. The reader is referred to the full
version for a definition.

We assume without loss of generality that the message space of each signature
scheme is {0, 1}∗. We also assume that the algorithms Update and Sign have
access to the public key and that the index i of a secret key ski can be extracted
from ski efficiently.

Definition 3 (Forward-Secure Existential Unforgeability under Cho-
sen Message Attacks). Let Σ = (KeyGen,Update,Sign,Verify) be a key-
evolving signature scheme, A a PPT adversary and T = T (κ) a polynomial. The
experiment FS-EUF -CMA-ExpΣ,A,T (κ) consists of the following three phases:
2 Note that M = 〈m0, . . . , ml−1〉 �= m0 ‖ . . . ‖ ml−1, i.e. we consider the log entries in

M to be distinguishable.
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Setup Phase. The experiment begins by creating a pair of keys (sk0, pk) ←
KeyGen(T ), and initializing a counter i := 0. Afterwards A is called with
inputs pk and T .

Query Phase. During the experiment, A may adaptively issue queries to the
following three oracles:
Signature Oracle. On input m ∈ {0, 1}∗, the signature oracle computes

the signature σ = Sign(ski,m) for m using the current secret key ski. It
returns σ to A.

Epoch Switching Oracle. Whenever A triggers the NextEpoch oracle,
the experiment sets ski+1 ← Update(ski) and i := i + 1. The oracle
returns the string “OK” to the adversary. A may invoke this oracle at
most T − 1 times.

Break In. Once in the experiment, the attacker may query a special BreakIn
oracle that stores the current epoch number as iBreakIn := i and returns
the current secret key ski to the adversary. After A has invoked this
oracle, it is no longer allowed any oracle queries.3

Forgery Phase. Finally, the attacker outputs a forgery (m∗, i∗, σ∗). The exper-
iment outputs 1 iff Verify(pk,m∗, i∗, σ∗) = 1, m∗ was not submitted to the
signature oracle during epoch i∗, and i∗ < iBreakIn. (Let iBreakIn := ∞ if A
did not use its BreakIn oracle.) Otherwise, the experiment outputs 0.

We say that A wins an instance of this experiment iff the experiment outputs 1.

3 Secure Logging with Verifiable Excerpts

We now develop a formal model for log files with excerpts. Obviously, given
a log file M , an excerpt E is a subsequence of M . However, a scheme where
each subsequence of M can be verified4 is not sufficient for our applications,
since the provider of the excerpt could simply omit some critical log entries.
Put differently, such a scheme may guarantee correctness of all log entries in the
excerpt, but it does not guarantee that all relevant log entries are present.

To address this problem, we introduce categories. Each log entry is assigned
to one or more categories, which may also overlap. Each category has a unique
name ν ∈ {0, 1}∗. We require that when a new log entry m is appended to the
log file, one must also specify the names of all categories that m is assigned to.

We return to our banking example from Sect. 1 to illustrate the use of such
categories. The bank B introduces a category CA for each customer A, and then
adds each log entry concerning A’s account to CA. The problem of checking the
completeness of the excerpt for A’s account is thereby reduced to checking the

3 This restriction is without loss of generality, since the adversary knows skiBreakIn

after this query and can thus create signatures as well as all subsequent secret keys
by itself. Also, triggering the NextEpoch oracle after the BreakIn oracle would have
no consequences on the outcome of the game.

4 LogFAS [26] offers such a capability.



190 G. Hartung

presence of all log entries from the category CA and possibly from other cate-
gories containing general information. Of course, categories may also be added
based on other criteria, such as the event type (e.g. creation and termination
of an account, deposition or withdrawal of funds, and many more). Note that
the set of categories is not fixed in advance; rather the bank must be able to
add new categories on-the-fly, as it gains new customers. The use of categories
is similar in the cloud provider example.

3.1 Categorized Logging Schemes

Definition 4 (Categorized Messages and Log Files). A categorized mes-
sage (also categorized log entry) m = (N,m′) is a pair of a finite, non-empty
set N5 of category names ν ∈ {0, 1}∗ and a log entry m′ ∈ {0, 1}∗. A categorized
log file M = 〈m0, . . . , ml−1〉 is a finite sequence of categorized log entries m.

When it is clear from the context that we mean categorized log entries or cate-
gorized log files, we will omit the term “categorized” for the sake of brevity.

Definition 5 (Categories). A category with name ν ∈ {0, 1}∗ of a categorized
log file M = 〈(Ni,m

′
i)〉l−1

i=0 is the (possibly empty) subsequence C of M that
contains exactly those log entries (Ni,m

′
i) ∈ M where ν ∈ Ni. C is denoted by

C(ν,M). C’s index sequence I(ν,M) is the (possibly empty, strictly increasing)
sequence that contains all i ∈ {0, . . . , l − 1} for which ν ∈ Ni.

Definition 6 (Excerpts). Given a categorized log file M = 〈mi〉l−1
i=0 and a finite

set N of category names, the excerpt for N is E(N,M) =
⋃

ν∈N C(ν,M). The
index sequence I(N,M) is the (possibly empty, strictly increasing) sequence of
all i with i ∈ I(ν,M) for at least one ν ∈ N .

Clearly, C(ν,M) is induced by I(ν,M), and E(N,M) is induced by I(N,M). In
the following, we will mostly omit the second parameter, since it will be clear
from the context. Moreover, we make the convention that there is a category
named “All” such that C(All) = M , i.e. All ∈ N0 ∩ . . . ∩ Nl−1. As a special case
of excerpts, we obtain M as an excerpt for the categories N = {All}.

In the following, we adopt the convention that variables with two indices are
an “aggregate” of values ranging from the first to the second index, i.e. σ0,j is
the aggregate of σ0, . . . , σj . In our case, this aggregate is simply a sequence of
the individual values, i.e. σ0,j := 〈σ0, . . . , σj〉, M0,j := 〈m0, . . . , mj〉. However,
σ0,j may in general also be an actual aggregate signature, as in [16].

Definition 7 (Categorized Key-Evolving Audit Log Scheme). A cate-
gorized key-evolving audit log scheme is a quintuple of probabilistic polynomial
time algorithms (KeyGen,Update,Extract,AppendAndSign,Verify), where:

KeyGen(T ) outputs an initial signing key sk0, a permanent verification key pk,
and an initial signature σ0,−1 for the empty log file. T is the number of
supported epochs.

5 This is an upper case ν.
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Update(ski,M, σ) evolves the secret key ski for epoch i to the subsequent signing
key ski+1 and then outputs ski+1. ski is erased securely. Update may also
use and modify the current log file M as well as the current signature σ, e.g.
by adding epoch markers or metronome entries.

Extract(ski,M0,j−1, σ0,j−1, N) takes a log file M0,j−1 together with a signature
σ0,j−1 for M0,j−1 and a set N of category names and outputs a signature σ
for the excerpt E(N), computed with the help of ski.

AppendAndSign(ski,M0,j−1,mj , σ0,j−1) takes as input the secret key ski, the
current log file M0,j−1, its signature σ0,j−1 and a new log entry mj and
outputs a signature σ0,j for M0,j := M0,j−1 ‖ mj.

Verify(pk,N,E, σ) is given the verification key pk, a set N = {ν0, . . . , νn−1} of
category names, an excerpt E and a signature σ. It outputs 1 or 0, where 1
means E = E(N,M), and 0 means E = E(N,M).

We require correctness as defined in full version of this work.

Note that we require Verify to validate E without actually knowing the complete
log file M . This is the main difficulty that our construction must overcome.

3.2 Security Model

We now define our security notion for categorized key-evolving audit log schemes.
It is similar to the above definition for key-evolving signature schemes, but
adjusted to the append-only setting and to support extraction queries by the
attacker.

Definition 8 (Forward-Secure Existential Unforgeability under Cho-
sen Log Message Attacks). For a categorized key-evolving audit log scheme
Σ = (KeyGen,Update,Extract,AppendAndSign,Verify), a PPT adversary A,
the number of epochs T := T (κ) ∈ poly(κ) and κ ∈ N0, the security experiment
FS-EUF -CLMA-ExpΣ,A,T (κ) is defined as follows:

Setup Phase. The experiment generates the initial secret key, the public key
and the initial signature as (sk0, pk, σ0,−1) ← KeyGen(T ). It initializes the
epoch counter i := 0, the message counter j := 0, and the log file M0,−1 := 〈〉.
It then starts A with inputs pk, T and σ0,−1.

Query Phase. During the query phase, the adversary may adaptively issue
queries to the following four oracles:
Signature Oracle. Whenever A submits a message mj to the signature

oracle, the experiment appends that message to the log file by setting
M0,j := M0,j−1 ‖ mj and updates the signature to

σ0,j ← AppendAndSign(ski,M0,j−1,mj , σ0,j−1) .

It then sets j := j + 1. The oracle returns the new signature σ0,j.
Extraction Oracle. On input of a set N of category names, the experiment

creates a signature σ ← Extract(ski,M0,j−1, σ0,j−1, N) for the excerpt
E := E(N,M0,j−1) and gives (E, σ) to the adversary.
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Epoch Switching Oracle. Upon a query to the NextEpoch oracle, the
experiment updates the secret key (and possibly the log file and its signa-
ture) to ski+1 ← Update(ski,M0,j−1, σ0,j−1) and increments the epoch
counter i := i + 1. The oracle returns the updated log file M ′ and signa-
ture σ′ to the attacker. This oracle may be queried at most T − 1 times.

Break In. Optionally, the adversary may use its BreakIn oracle to retrieve
the current secret key ski. After this, it may no longer issue queries to
any of its oracles.6 The experiment sets iBreakIn := i. (Let iBreakIn := ∞
if A never queried this oracle.)

Forgery Phase. At the end of the experiment, A outputs a non-empty set N∗

of categories, a forged excerpt E∗ for N∗, and a forged signature σ∗ of E∗.

We say that A wins the experiment, iff the following conditions hold.

– The signature is valid, i.e. Verify(pk,N∗, E∗, σ∗) = 1.
– The signature is non-trivial, i.e. it meets the following requirements:

• E∗ has not been part of an answer of the extraction oracle to A for
the categories N∗. More formally, if N0, . . . , Nk are the sets of cate-
gory names that A used to call its extraction oracle and E0, . . . , Ek

are the excerpts returned by the oracle, then we require (N∗, E∗) /∈
{(N0, E0), . . . , (Nk, Ek)}.

• If A used its BreakIn oracle to obtain a secret key ski, let Ei =
E(N∗,Mi), where Mi is the log file at the time of switching from epoch
iBreakIn − 1 to epoch iBreakIn. (Formally, Mi is the log file returned by
the most recent call to the NextEpoch oracle, so Mi includes all changes
made by the Update algorithm. We let Mi := 〈〉 if A never called the
NextEpoch oracle.) We require that Ei is not a prefix of E∗. Put differ-
ently, E∗ must not just be a continuation/extension of Ei.

Observe that our security model allows a log file to be truncated to the state
of the most recent epoch switch, counting this as a trivial attack. In the full
version, we argue that such attacks are inherent if A obtains a secret key.

4 Our Scheme

We now describe a scheme that realizes the above security notion. We call it
SALVE, for “Secure Audit Log with Verifiable Excerpts”. The main ingredient
for SALVE is a forward-secure signature scheme. Let us briefly describe the
basic ideas underlying our construction.

Sequence Numbers per Category. Instead of adding only global sequence
numbers, we augment signatures with sequence numbers (counters) cν for
each category ν. In particular, the sequence numbers for the category All
work as global sequence numbers.

6 Again, this restriction is without loss of generality, see Footnote 3 on page 7.
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Signing Counters. Each log entry is signed along with the sequence numbers
belonging to the categories of the log entry. During verification, one checks
if the counters of each category ν supposed to be present in the excerpt form
the sequence 〈0, . . . , cν − 1〉.

Epoch Markers with Counters. Additionally, we sign all counters that have
changed during an epoch i together with the epoch markers created at the
end of epoch i. Epoch markers are added to an additional, reserved category
named EM. By convention, EM is contained in all excerpts.

4.1 Formal Description

We introduce some additional notation. When signing multiple counter values,
we will sign a partial map f : {0, 1}∗ → N0, which is formally modelled as a
set f of pairs (ν, cν) ∈ {0, 1}∗ × N0, signifying f(ν) = cν . For each category
name ν, there is at most one pair in f that has ν as the first component. We
also write such partial maps as {ν0 �→ cν0 , . . . , νn �→ cνn

}. A key of f is a
bit string ν ∈ {0, 1}∗ for which f(ν) is defined. The set of keys for f is keys(f) :=
{ν ∈ {0, 1}∗ | ∃c ∈ N0 : (ν, c) ∈ f}.

We assume that SALVE uses an efficient encoding scheme to map pairs to bit
strings. We require that there are no pairs (f,m′) and (N,E) that are encoded
to the same bit string.

SALVE. Let ΣFS = (KeyGenFS,UpdateFS,SignFS,VerifyFS) be a key-evolving
signature scheme. The key-evolving categorized audit log scheme SALVE is given
by the following algorithms:

KeyGen(T ) creates a key pair by running (sk0, pk) ← KeyGenFS(T +1). The ini-
tial signature is the empty sequence σ0,−1 := 〈〉. The output is (sk0, pk, σ0,−1).

AppendAndSign(ski,M0,j−1,mj = (Nj ,m
′
j), σ0,j−1) first determines the cur-

rent counter values cν for all ν ∈ Nj (the total count of all log entries pre-
viously added to these categories). Let cν := 0 for all categories ν that have
never occurred before. We assume EM /∈ Nj , except when AppendAndSign
is called from the Update algorithm (see below), and All ∈ Nj .
Next, AppendAndSign creates the partial map fj = {ν �→ cν | ν ∈ Nj}, com-
putes σ′

j ← SignFS(ski, (fj ,m
′
j)), and appends σj := (fj , σ

′
j) to σ0,j−1 to

obtain σ0,j := 〈σ0, . . . , σj−1, σj〉. It outputs σ0,j .
Update(ski,M0,j−1, σ0,j−1) must append an epoch marker to M0,j−1 (and its

accompanying signature to σ0,j−1) and update the secret key.
In order to create the epoch marker, it determines the set N of all cat-
egories that have received a new log entry during epoch i and the total
number of log entries cν in each of these categories. It then creates
f ′

j := {ν �→ cν | ν ∈ N} and encodes (“End of epoch” ‖ i, f ′
j) =: m′

j as
a bit string m′

j . The epoch marker is set to mj := ({All,EM},m′
j) and

appended to M0,j−1. Next, the Update algorithm computes a signature
σ0,j ← AppendAndSign(ski,M0,j−1,mj , σ0,j−1) for the log file including the
epoch marker mj .
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Finally, if i < T , Update computes ski+1 ← UpdateFS(ski), securely erases
ski and outputs ski+1. Otherwise it deletes ski and outputs ski+1 := ⊥.

Extract(ski,M0,j , σ0,j , N) first determines K := I(N,M0,j) = 〈k1, . . . kl〉 and
constructs the excerpt E := E(N,M0,j). Then Extract computes σE ←
SignFS(ski, (N,E)), and outputs σ := 〈σk1 , . . . , σkl

, σE〉.
Verify(pk,N,E, σ) outputs 0 if EM /∈ N . Otherwise, it initializes counters c′

ν :=
0 for all ν ∈ N∪{All}. In the following, let E = 〈(N0,m

′
0), . . . , (Nl−1,m

′
l−1)〉.

Verify performs the following checks for each entry mj ∈ E, in the order of
increasing j:

1. It checks whether the signature for the individual log entry is valid:
VerifyFS(pk, (fj ,m

′
j), c

′
EM, σ′

j) = 1,
2. whether mj belongs to one of the requested categories: Nj ∩ N = ∅,
3. whether mj ’s set of category names Nj is unchanged: keys(fj) = Nj , and
4. whether the counter values signed together with the message are as

expected: fj(ν) = c′
ν for all ν ∈ N ∩ Nj .

5. If All /∈ N , it checks whether fj(All) ≥ c′
All and sets c′

All := fj(All) + 1.
6. If mj is an epoch marker, i.e. EM ∈ Nj , then Verify decodes m′

j to recon-
struct f ′

j . It then checks whether f ′
j(ν) = c′

ν for all ν ∈ keys(f ′
j) ∩ N .

If any of these checks fail, Verify outputs 0. If they pass, Verify increments
c′
ν by one for all ν ∈ N ∩Nj . The verification procedure then continues with

the next j, until (including) j = l − 1.

7. Finally, Verify checks whether VerifyFS(pk, (N,E), c′
EM, σE) ?= 1, and

outputs 1 if so, and 0 otherwise.

A few notes are in order here:

1. For all log entries mj , the number of epoch markers cEM in the log file (or an
excerpt) before mj is identical to the number i of the epoch in which mj was
signed.

2. Excerpts created by SALVE are signed with the most recent secret key avail-
able. The verification algorithm implicitly checks for truncation attacks by
using the number of epoch markers in the excerpt as the assumed epoch in
which the excerpt has been created (see check 7). Thus, the final signature
σE serves as an implicit proof that the signer knows the key of epoch c′

EM.
Truncating a log file (or an excerpt) to an epoch before the break-in therefore
requires forging a σE supposedly created with a previous secret key, and thus
breaking the security of ΣFS.

4.2 Security Analysis

We now analyse the security of our scheme above. The following theorem states
our main result:

Theorem 1 (Security of SALVE). If there exists a PPT attacker A that wins
the FS-EUF -CLMA experiment against SALVE with probability εA, then there
exists a PPT attacker B that wins the FS-EUF -CMA game against ΣFS with
probability εB = εA.
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Proof. Let A be an attacker having success probability εA in the FS-EUF-CLMA
experiment against SALVE. We construct an adversary B that tries to break the
FS-EUF-CMA-security of the underlying scheme ΣFS, using A as a component.

For this, B simulates the FS-EUF-CLMA experiment with SALVE for A.
The simulation is straightforward. (Nonetheless, a more detailed description can
be found in the full version of this paper.) B (on input pk and T ) starts A with
inputs pk, T −1 and σ0,−1 := 〈〉. During the simulation, B keeps track of the log
file M constructed so far, the signature σ for it, the sequence numbers cν for all
categories ν, as well as the current epoch number i. When A calls its signature
oracle, B executes the AppendAndSign algorithm, but uses its signature oracle
in the FS-EUF-CMA-game instead of calling the Sign algorithm of ΣFS. When
A requests an excerpt, B similarly executes the Extract algorithm of SALVE,
again replacing the call to the Sign algorithm of ΣFS by a call to its signature
oracle. When A makes a query to the NextEpoch oracle, B creates the epoch
marker, appends it to M via the AppendAndSign algorithm as above, increments
i and then triggers its own NextEpoch oracle in the FS-EUF-CMA-experiment.
Finally, when A requests the current secret key via the BreakIn oracle, B obtains
it using the BreakIn oracle in the FS-EUF-CMA experiment and returns it to A.

At the end of the experiment, A outputs a forged excerpt E∗, a set of cat-
egories N∗ and a forged signature σ∗ for E∗. If A outputs an invalid or trivial
forgery, then B outputs ⊥ and aborts. Otherwise, B determines which of the fol-
lowing cases has occured and acts as described for each case. For this distinction,
we let c∗

EM be the number of log entries (N∗
j ,m′∗

j ) in E∗ with EM ∈ N∗
j .

Case 1: E∗ contains c∗
EM < iBreakIn epoch markers. In this case, B outputs

m∗ := (N∗, E∗) as its message, the number i∗ := c∗
EM of epoch markers in E∗

as the epoch number, and the last element σ∗
E of the sequence σ∗ as its forged

signature for m∗. σ∗
E must be a valid signature for (N∗, E∗), since otherwise

Verify would have rejected the signature σ∗ after check 7.
Furthermore, B’s output is non-trivial, since firstly (N∗, E∗) can not be mixed

up with B’s signature queries for individual log entries because of the encoding,
secondly, B never asked for a signature for (N∗, E∗) because A’s output is non-
trivial, and thirdly i∗ = c∗

EM < iBreakIn.
Hence, B’s output is valid and non-trivial, so B wins the FS-EUF-CMA game.

Case 2: E∗ contains c∗
EM ≥ iBreakIn epoch markers. Let Mi and Ei be as in

Definition 8. Observe that iBreakIn > 0, because otherwise we had Ei = Mi = 〈〉,
and then A’s output were trivial.

Let E∗
i be the prefix of E∗ up until (including) the iBreakIn-th epoch marker

(the iBreakIn-th log message (N∗
j ,m′∗

j ) with EM ∈ N∗
j ). We know that Ei is not

a prefix of E∗
i , since otherwise Ei would also be a prefix of E∗ in contradiction

to A’s forgery not being trivial.
Let Ei = 〈mj〉l−1

j=0, E∗
i = 〈m∗

j 〉l∗−1
j=0 , m∗

j = (N∗
j ,m′∗

j ) for all j ∈ {0, . . . , l∗ − 1}
and mj = (Nj ,m

′
j) for all j ∈ {0, . . . , l − 1}. B builds the sequences S∗ =

〈(f∗
0 ,m′∗

0 ), . . . , (f∗
l∗−1,m

′∗
l∗−1)〉 (taking the f∗

j from the signatures σ∗
j ∈ σ∗) and

S = 〈(f0,m′
0), . . . , (fl−1,m

′
l−1)〉 (taking the fj from the signatures σj it con-

structed during the simulation). Note that S contains exactly B’s oracle queries
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during epochs 0 through iBreakIn −1, restricted to those messages that belong to
at least one of the categories N∗. Also observe that S∗ = S, since we otherwise
had E∗

i = Ei (by checks 2 and 3), in contradiction to Ei not being a prefix of E∗
i .

The key observation is that there must be a (f∗
k ,m′∗

k ) ∈ S∗ with (f∗
k ,m′∗

k ) /∈ S
(k ∈ {0, . . . , l∗ − 1}). Suppose for the sake of a contradiction that there is no
such pair. Then S∗ consists entirely of pairs that also occur in S. Obviously,
S∗ can not contain duplicate pairs (f∗

k ,m′∗
k ), since the verification algorithm

would have rejected the excerpt when checking that counters always increase
(checks 4 and/or 5). Since S∗ contains only pairs also contained in S, contains
no duplicates, and S∗ = S, S∗ is missing at least one tuple from S. S∗ can not
be missing an epoch marker, since it contains c∗

EM of them, exactly as S. So S∗

is missing some regular log entry. But then Verify had failed when checking the
counters in check 6, which is impossible if A’s output was valid.

So we have established that S∗ contains a pair (f∗
k ,m′∗

k ) /∈ S. B searches for
this pair, and outputs it as the message. It also outputs the number of epoch
markers in S∗ before (f∗

k ,m′∗
k ) as the epoch number i∗ and σ′∗

k as the signature.
This is a valid signature, because of check 1. It remains to show that this is

a non-trivial forgery. Firstly, the number of epoch markers before (f∗
k ,m′∗

k ) is at
most iBreakIn−1, so the signature σ′∗

k is valid for an epoch i∗ < iBreakIn. Secondly,
B has never requested (f∗

k ,m′∗
k ) from its signature oracle, since (f∗

k ,m′∗
k ) /∈ S,

where S is exactly the set of B’s signature queries for all messages belonging to
at least one of the categories N∗, such as m∗

k. Hence, B wins the FS-EUF-CMA
game in case 2, since it outputs a non-trivial and valid forgery.

Since B’s simulation of the FS-EUF-CLMA game for A is perfect, B wins
both in case 1 and in case 2, and one of these cases occurs whenever A outputs
a valid and non-trivial signature, we have εB = εA. Also, B runs in polynomial
time, as A does. ��

4.3 Performance Analysis

In this section, we analyse the runtime and storage overhead of SALVE. Since
SALVE can be instantiated with an arbitrary forward-secure signature scheme
ΣFS, we give our findings with regard to algorithm runtime in terms of calls to
algorithms of ΣFS, and our findings in regard to storage overhead in terms of
key and signature sizes of ΣFS, respectively.

Due to space restricitons, we can merely present the results; Table 1 summa-
rizes our (conservatively simplified) findings. Our analysis is built on a few mild
assumptions about the implementation, e.g. some simple caching. See the full
version for a statement of these, the detailed analysis and a comparison with
other schemes from the literature.

In Table 1, M refers to the current log file, i to the current epoch number,
E to the excerpt being created or verified, Ntotal to the set of (the names of) all
categories that have been used so far, Nepoch to the set of (the names of) the
categories that have received a new log entry in the epoch being ended by the
update procedure, and R to the total number of associations between log entries
and categories (i.e. R :=

∑|M |−1
j=0 |Nj |).
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Table 1. Performance characteristics of SALVE in relation to ΣFS. We use sets,
sequences and bit strings instead of their size and length, respectively, to relieve nota-
tion.

Algorithm Runtime

KeyGen 1 × KeyGenFS + O(1)

AppendAndSign 1 × SignFS + O(Nj(log Nj + log Ntotal) + m′
j)

Update 1 × UpdateFS + 1 × SignFS + O(Nepoch log Ntotal)

Extract 1 × SignFS + O(R log N)

Verify (E + 1) × VerifyFS + O(R log N)

Datum Size

Secret Key 1 × skFS + 0

Public Key 1 × pkFS + 0

Log File Signature (M + i) × σFS + O(R)

Excerpt Signature (E + i + 1) × σFS + O(R)

5 Conclusion

It is a desirable feature of secure logging schemes to have verifiable excerpts.
We have defined a security notion for such logging schemes, and proposed a new
scheme that provably fulfills this notion. Our scheme can be instantiated with
an arbitrary forward-secure signature scheme, and can therefore be tuned to
specific performance requirements and based on a wide variety of computational
assumptions.
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Abstract. One way to guarantee security against malicious voting
servers is to use NIZK shuffle arguments. Up to now, only two NIZK
shuffle arguments in the CRS model have been proposed. Both argu-
ments are relatively inefficient compared to known random oracle based
arguments. We propose a new, more efficient, shuffle argument in the
CRS model. Importantly, its online prover’s computational complexity
is dominated by only two (n+1)-wide multi-exponentiations, where n is
the number of ciphertexts. Compared to the previously fastest argument
by Lipmaa and Zhang, it satisfies a stronger notion of soundness.

Keywords: Bilinear pairings · CRS model · Mix-net · Non-interactive
zero knowledge · Shuffle argument

1 Introduction

A mix network, or mix-net, is a network of mix-servers designed to remove the
link between ciphertexts and their senders. To achieve this goal, a mix-server of
a mix-net initially obtains a list of ciphertexts (zi)n

i=1. It then re-randomizes and
permutes this list, and outputs the new list (z′

i)
n
i=1 together with a non-interactive

zero knowledge (NIZK, [2]) shuffle argument [22] that proves the re-randomization
and permutation was done correctly, without leaking any side information. If enc is
a multiplicatively homomorphic public-key cryptosystem like Elgamal [7], a shuf-
fle argument convinces the verifier that there exists a permutation ψ and a vector
t of randomizers such that z′

i = zψ(i) · encpk(1; ti), without revealing any informa-
tion about ψ or t . Mix-nets improve security against malicious voting servers in
e-voting. Other applications of mix-nets include anonymous web browsing, pay-
ment systems, and secure multiparty computation.

It is important to have a non-interactive shuffle argument outputting a short
bit string that can be verified by anybody (possibly years later) without inter-
acting with the prover. Many NIZK shuffle arguments are known in the random
oracle model, see for example [9,10,13,20,23]. Since the random oracle model
is only a heuristic, it is strongly recommended to construct NIZK arguments in

c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 200–216, 2016.
DOI: 10.1007/978-3-319-29485-8 12
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the common reference string (CRS) model [2], without using random oracles.1

We note that the most efficient shuffle arguments in the random oracle model
like [13] also require a CRS.

Up to now, only two NIZK shuffle arguments in the CRS model have been
proposed, by Groth and Lu [15] and Lipmaa and Zhang [18,19], both of which
are significantly slower than the fastest arguments in the random oracle model
(see Table 1). The Groth-Lu shuffle argument only provides culpable sound-
ness [15,16] in the sense that if a malicious prover can create an accepting shuffle
argument for an incorrect statement, then this prover together with a party that
knows the secret key can break the underlying security assumptions. Relaxation
of the soundness property is unavoidable, since [1] showed that only languages
in P/poly can have direct black-box adaptive perfect NIZK arguments under
a (polynomial) cryptographic hardness assumption. If the underlying cryptosys-
tem is IND-CPA secure, then the shuffle language is not in P/poly, and thus it
is necessary to use knowledge assumptions [5] to prove its adaptive soundness.
Moreover, [15] argued that culpable soundness is a sufficient security notion for
shuffles, since in any real-life application of the shuffle argument there exists
some coalition of parties who knows the secret key.

Lipmaa and Zhang [18] proposed a more efficient NIZK shuffle argument by
using knowledge assumptions under which they also bypassed the impossibility
result of [1] and proved that their shuffle argument is sound. However, their
shuffle argument is sound only under the assumption that there is an extractor
that has access to the random coins of all encrypters, e.g., all voters, allowing her
to extract all plaintexts and randomizers. We say in this case that the argument
is white-box sound. White-box soundness is clearly a weaker security notion than
culpable soundness of [15], and it would be good to avoid it.

In addition, the use of knowledge assumptions in [18] forces the underlying
BBS [4] cryptosystem to include knowledge components (so ciphertexts are twice
as long) and be lifted (meaning that one has to solve discrete logarithm to
decrypt, so plaintexts must be small). Thus, one has to use a random oracle-less
range argument to guarantee that the plaintexts are small and thus to guarantee
the soundness of the shuffle argument (see [18] for a discussion). While range
proofs only have to be verified once (e.g., by only one mix-server), this still
means that the shuffle argument of [18] is somewhat slower than what is given
in Table 1. Moreover, in the case of e-voting, using only small plaintexts restricts
the applicability of a shuffle argument to only certain voting mechanisms like
majority. On the other hand, a mechanism such as Single Transferable Vote
would likely be unusable due to the length of the ballots.

Table 1 provides a brief comparison between known NIZK shuffle arguments
in the CRS model and the most computationally efficient known shuffle argument
in the random oracle model [13]. We emphasize that the values in parentheses

1 In a practical implementation of a mix-net, one can use the random oracle model also
for other purposes, such as to construct a pseudo-number generator or a public-key
cryptosystem. In most of such cases, it is known how to avoid the random oracle
model, although this almost always incurs some additional cost.
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Table 1. A comparison of different NIZK shuffle arguments, compared with the com-
putationally most efficient known shuffle argument in the random oracle model [13].

[15] [19] This work [13]

|CRS| 2n + 8 7n + 6 8n + 17 n + 1
Communication 15n + 120 (+3n) 6n + 11 (+6n) 7n + 2 (+2n) 480n bits
pro’s comp. 51n + 246 (+3n) 22n + 11 (+6n) 16n + 3 (+2n) 6n (+2n)
ver’s comp. 75n + 282 28n + 18 18n + 6 6n exp.
Lifted No Yes No No

Soundness Culp. sound White-box sound Culp. sound Sound
Arg. of knowl. no yes yes yes

PKE (knowl. assm.) no yes yes no
Random oracle seyon

show the cost of computing and communicating the shuffled ciphertexts them-
selves, and must be added to the rest. Moreover, the cost of the shuffle argument
from [18] should include the cost of a range argument. Unless written otherwise,
the communication and the CRS length are given in group elements, the prover’s
computational complexity is given in exponentiations, and the verifier’s compu-
tational complexity is given in bilinear pairings. In each row, highlighted cells
denote the best efficiency or best security (e.g., not requiring the PKE assump-
tion) among arguments in the CRS model. Of course, a full efficiency comparison
can only be made after implementing the different shuffle arguments.

This brings us to the main question of the current paper:

Is it possible to construct an NIZK shuffle argument in the CRS model
that is comparable in efficiency with existing random oracle model NIZK
shuffle arguments? Moreover, can one do it while minimizing the use
of knowledge assumptions (i.e., not requiring the knowledge extractor to
have access to the random coins used by all encrypters) and using a
standard, non-lifted, cryptosystem?

Our Contributions. We give a partial answer to the main question. We pro-
pose a new pairing-based NIZK shuffle argument in the CRS model. Differently
from [18], we prove the culpable soundness of the new argument instead of white-
box soundness. Compared to [15], which also achieves culpable soundness, the
new argument has 3 times faster proving and more than 4 times faster ver-
ification. Compared to [15,18], it is based on a more standard cryptosystem
(Elgamal). While the new shuffle argument is still at least 2 times slower than
the most efficient known random oracle based shuffle arguments, it has almost
optimal online prover’s computation. Of course, a full efficiency comparison can
only be made after implementing the different shuffle arguments.

Our construction works as follows. We first commit to the permutation ψ (by
committing separately to first n−1 rows of the corresponding permutation matrix
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Ψ) and to the vector t of blinding randomizers. Here, we use the polynomial com-
mitment scheme (see Sect. 2) with com(ck;m ; r) = (g1, g

γ
2 )rP0(χ)+

∑n
i=1 miPi(χ) ∈

G1 × G2, in pairing-based setting, where ê : G1 × G2 → GT is a bilinear pairing,
gi is a generator of Gi for i ∈ {1, 2}, (Pi(X))n

i=0 is a tuple of linearly independent
polynomials, χ is a trapdoor, γ is a knowledge secret, and ck = ((g1, g

γ
2 )Pi(χ))n

i=0 is
the CRS. For different values of Pi(X), variants of this commitment scheme have
been proposed before [12,14,17].

We show that Ψ is a correct permutation matrix by constructing n witness-
indistinguishable succinct unit vector arguments, each of which guarantees that a
row of Ψ is a unit vector, for implicitly constructed Ψn = 1n −∑n−1

i=1 Ψ i. We use
the recent square span programs (SSP, [6]) approach to choose the polynomials
Pi(X) = yi(X) so that the unit vector argument is efficient. Since unit vectors
are used in many contexts, we hope this argument is of independent interest.

After that, we postulate a natural concrete verification equation for shuffles,
and construct the shuffle argument from this. If privacy were not an issue (and
thus z′

i = zψ(i) for every i), the verification equation would just be the tautology
∏n

i=1 ê(z′
i, g

yi(χ)
2 ) =?

∏n
i=1 ê(zi, g

yψ−1(i)(χ)

2 ). Clearly, if the prover is honest, this
equation holds. However, it does not yet guarantee soundness, since an adver-
sary can use g

yj(χ)
1 (given in the CRS) to create (z′

i)
n
i=1 in a malicious way. To

eliminate this possibility, by roughly following an idea from [15], we also verify

that
∏n

i=1 ê(z′
i, g

ŷi(χ)
2 ) =?

∏n
i=1 ê(zi, g

ŷψ−1(i)(χ)

2 ) for some well-chosen polynomi-
als ŷi(X). (We note that instead of n univariate polynomials, [15] used n random
variables χi, increasing the size of the secret key to Ω(n) bits.)

To show that the verifications are instantiated correctly, we also need a same-
message argument that shows that commitments w.r.t. two tuples of polynomials
(yi(X))n

i=1 and (ŷi(X))n
i=1 commit to the same plaintext vectors. We construct

an efficient same-message argument by using an approach that is (again, roughly)
motivated by the QAP-based approach of [11]. This argument is an argument of
knowledge, given that the polynomials ŷi(X) satisfy an additional restriction.

Since we also require privacy, the actual verification equations are more com-

plicated. In particular, z′
i = zψ(i) · encpk(1; ti), and (say) g

yψ−1(i)(χ)

2 is replaced

by the second element g
γ(riy0(χ)+yψ−1(i)(χ))

2 of a commitment to Ψ i. The result-
ing complication is minor (it requires one to include into the shuffle argument a
single ciphertext U ∈ G

2
1 that compensates for the added randomness). The full

shuffle argument consists of commitments to Ψ and to t (both committed twice,
w.r.t. the polynomials (yi(X))n

i=0 and (ŷi(X))n
i=0), n unit vector arguments (one

for each row of Ψ ), n − 1 same-message arguments, and finally U .
If ŷi(X) are well-chosen, then from the two verification equations and the

soundness of the unit vector and same-message arguments it follows, under a
new computational assumption PSP (Power Simultaneous Product, related to
an assumption from [15]), that z′

i = zψ(i) for every i.
We prove culpable soundness [15,16] of the new argument. Since the security

of the new shuffle argument does not depend on the cryptosystem either having
knowledge components or being lifted, we can use Elgamal encryption [7] instead
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of the non-standard knowledge BBS encryption introduced in [18]. Since the cryp-
tosystem does not have to be lifted, one can use more complex voting mechanisms
with more complex ballots. The use of knowledge assumptions means that the new
argument is an argument of knowledge.

The new shuffle argument can be largely precomputed by the prover and
forwarded to the verifier even before the common input (i.e., ciphertexts) arrive.
Similarly, the verifier can perform a large part of verification before receiv-
ing the ciphertexts. (See [24] for motivation for precomputation.) The prover’s
computation in the online phase is dominated by just two (n + 1)-wide multi-
exponentiations (the computation of U). The multi-exponentiations can be par-
allelized; this is important in practice due to the wide availability of highly
parallel graphics processors.

Main Technical Challenges. While the main objective of the current work is
efficiency, we emphasize that several steps of the new shuffle argument are tech-
nically involved. Throughout the paper, we use and combine very recent tech-
niques from the design of efficient succinct non-interactive arguments of knowl-
edge (SNARKs, [6,11,21], that are constructed with the main goal of achieving
efficient verifiable computation) with quite unrelated techniques from the design
of efficient shuffle arguments [15,18].

The security of the new shuffle argument relies on a new assumption, PSP. We
prove that PSP holds in the generic bilinear group model, given that polynomials
ŷi(X) satisfy a very precise criterion. For the security of the SSP-based unit
vector argument, we need yi(X) to satisfy another criterion, and for the security
of the same-message argument, we need yi(X) and ŷi(X) to satisfy a third
criterion. The fact that polynomials yi(X) and ŷi(X) that satisfy all three criteria
exist is not a priori clear; yi(X) and ŷi(X) (see Proposition 3) are also unlike
any polynomials from the related literature on non-interactive zero knowledge.

Finally, the PSP assumption was carefully chosen so it will hold in the generic
bilinear group model, and so the reduction from culpable soundness of the shuffle
argument to the PSP assumption would work. While the PSP assumption is
related to the SP assumption from [15], the situation in [15] was less fragile due
to the use of independent random variables Xi and X2

i instead of polynomials
yi(X) and ŷi(X). In particular, the same-message argument is trivial in the case
of using independent random variables.

Due to lack of space, several proofs and other details are given in the full
version, [8].

2 Preliminaries

Let n be the number of ciphertexts to be shuffled. Let Sd be the symmetric
group of d elements. Let G

∗ denote the group G without its identity element.
For a ≤ b, let [a .. b] := {c ∈ Z : a ≤ c ≤ b}. Denote (a, b)c := (ac, bc). For a set
of polynomials F that have the same domain, denote gF(a) := (gf(a))f∈F .

A permutation matrix is a Boolean matrix with exactly one 1 in every row
and column. If ψ is a permutation then the corresponding permutation matrix
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Ψψ is such that (Ψψ)ij = 1 iff j = ψ(i). Thus (Ψψ−1)ij = 1 iff i = ψ(j). Clearly,
Ψ is a permutation matrix iff its every row is a unit vector, and the sum of all
its row vectors is equal to the all-ones vector 1n.

Let κ be the security parameter. We denote f(κ) ≈κ g(κ) if |f(κ) − g(κ)| is
negligible in κ. We abbreviate (non-uniform) probabilistic-polynomial time by
(NU)PPT. On input 1κ, a bilinear map generator BP returns (p,G1,G2,GT , ê),
where G1, G2 and GT are multiplicative cyclic groups of prime order p, and
ê is an efficient bilinear map ê : G1 × G2 → GT that satisfies the following
two properties, where g1 (resp., g2) is an arbitrary generator of G1 (resp., G2):
(i) ê(g1, g2) �= 1, and (ii) ê(ga

1 , gb
2) = ê(g1, g2)ab. Thus, ê(ga

1 , gb
2) = ê(gc

1, g
d
2) iff

ab ≡ cd (mod p). We give BP another input, n (related to the input length),
and allow p to depend on n. Finally, we assume that all algorithms that handle
group elements reject if their inputs do not belong to corresponding groups.

We will now give short explanations of the main knowledge assumptions. Let
1 < d(n) < d∗(n) = poly(κ) be two functions. We say that BP is

– d(n)-PDL (Power Discrete Logarithm, [17]) secure if any NUPPT adversary,
given values ((g1, g2)χi

)d(n)
i=0 , has negligible probability of producing χ.

– (d(n), d∗(n))-PCDH (Power Computational Diffie-Hellman, [11,12,14])
secure if any NUPPT adversary, given values ((g1, g2)χi

)i∈[0 .. d∗(n)]\{d(n)+1},

has negligible probability of producing gχd(n)+1

1 .
– d(n)-TSDH (Target Strong Diffie-Hellman, [3,21]) secure if any NUPPT

adversary, given values ((g1, g2)χi

)d(n)
i=0 , has negligible probability of producing

a pair of values
(
r, ê(g1, g2)1/(χ−r)

)
where r �= χ.

For algorithms A and XA, we write (y; y′) ← (A||XA)(χ) if A on input χ outputs
y, and XA on the same input (including the random tape of A) outputs y′ [1]. We
will need knowledge assumptions w.r.t. up to 2 knowledge secrets γi. Let m be the
number of different knowledge secrets in any concrete argument, in the current
paper m ≤ 2. Let F = (Pi)n

i=0 be a tuple of univariate polynomials, and G1 (resp.,
G2) be a tuple of univariate (resp., m-variate) polynomials. For i ∈ [1 ..m], BP
is (F ,G1,G2, γi)-PKE (Power Knowledge of Exponent, [14]) secure if for any
NUPPT adversary A there exists a NUPPT extractor XA, such that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

gk ← BP(1κ, n), (g1, g2, χ) ←r G
∗
1 × G

∗
2 × Zp,γ ←r Z

m
p ,

γ−i = (γ1, . . . , γi−1, γi+1, . . . , γm), aux ←
(
g

G1(χ)
1 , g

G2(χ,γ−i)
2

)
,

(h1, h2; (ai)n
i=0) ← (A||XA)(gk; (g1, g

γi

2 )F(χ), aux) :

ê(h1, g
γi

2 ) = ê(g1, h2) ∧ h1 �= g
∑n

i=0 aiPi(χ)
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≈κ 0 .

The definition implies that aux may depend on γ−i but not on γi. If F = (Xi)d
i=0

for some d = d(n), then we replace the first argument in (F , . . . )-PKE with d.
If m = 1, then we omit the last argument γi in (F , . . . , γi)-PKE.

We will use the Elgamal cryptosystem [7] Π = (BP, genpkc, enc, dec), defined
as follows, in the bilinear setting.
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Setup (1κ): Let gk ← (p,G1,G2,GT , ê) ← BP(1κ).
Key Generation genpkc(gk): Let g1 ←r G

∗
1. Set the secret key sk ←r Zp, and

the public key pk ← (g1, h = gsk1 ). Output (pk, sk).
Encryption encpk(m; r): To encrypt a message m ∈ G1 with randomizer r ∈ Zp,

output the ciphertext encpk(m; r) = pkr · (1,m) = (gr,mhr).
Decryption decsk(c1, c2): m = c2/csk1 = mhr/hr = m.

Elgamal is clearly multiplicatively homomorphic. In particular, if t ←r Zp,
then for any m and r, encpk(m; r) · encpk(1; t) = encpk(m; r + t) is a random
encryption of m. Elgamal is IND-CPA secure under the XDH assumption.

An extractable trapdoor commitment scheme consists of two efficient algo-
rithms gencom (that outputs a CRS and a trapdoor) and com (that, given a
CRS, a message and a randomizer, outputs a commitment), and must satisfy the
following four security properties. Computational binding: without access to
the trapdoor, it is intractable to open a commitment to two different messages.
Trapdoor: given access to the original message, the randomizer and the trap-
door, one can open the commitment to any other message. Perfect hiding:
commitments of any two messages have the same distribution. Extractable:
given access to the CRS, the commitment, and the random coins of the commit-
ter, one can obtain the value that the committer committed to.

We use the following extractable trapdoor polynomial commitment scheme
that generalizes various earlier commitment schemes [12,14,17]. Let n = poly(κ),
n > 0, be an integer. Let Pi(X) ∈ Zp[X], for i ∈ [0 .. n], be n + 1 linearly inde-
pendent low-degree polynomials. First, gencom(1κ, n) generates gk ← BP(1κ, n),
picks g1 ←r G

∗
1, g2 ←r G

∗
2, and then outputs the CRS ck ← ((gPi(χ)

1 , g
γPi(χ)
2 )n

i=0)
for χ ←r Zp \ {j : P0(j) = 0} and γ ←r Zp. The trapdoor is equal to tdcom = χ.

The commitment of a ∈ Z
n
p , given a randomizer r ←r Zp, is com(ck;a; r) :=

(gP0(χ)
1 , g

γP0(χ)
2 )r · ∏n

i=1(g
Pi(χ)
1 , g

γPi(χ)
2 )ai ∈ G1 × G2. The validity of a commit-

ment (A1, A
γ
2) can be checked by verifying that ê(A1, g

γP0(χ)
2 ) = ê(gP0(χ)

1 , Aγ
2).

To open a commitment, the committer sends (a, r) to the verifier.

Theorem 1. Denote Fcom = (Pi(X))n
i=0. The polynomial commitment scheme

is perfectly hiding and trapdoor. Let d := maxf∈Fcom(deg f). If BP is d-PDL
secure, then it is computationally binding. If BP is (Fcom, ∅, ∅)-PKE secure, then
it is extractable.

Alternatively, we can think of com as being a commitment scheme that does
not depend on the concrete polynomials at all, and the description of Pi is just
given as a part of ck. We instantiate the polynomial commitment scheme with
concrete polynomials later in Sects. 3 and 6.

An NIZK argument for a group-dependent language L consists of four algo-
rithms, setup, gencrs, pro and ver. The setup algorithm setup takes as input 1κ

and n (the input length), and outputs the group description gk. The CRS gener-
ation algorithm gencrs takes as input gk and outputs the prover’s CRS crsp, the
verifier’s CRS crsv, and a trapdoor td. (td is only required when the argument
is zero-knowledge.) The distinction between crsp and crsv is only important for
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efficiency. The prover pro takes as input gk and crsp, a statement u, and a witness
w, and outputs an argument π. The verifier ver takes as input gk and crsv, a
statement u, and an argument π, and either accepts or rejects.

Some of the properties of an argument are: (i) perfect completeness (hon-
est verifier always accepts honest prover’s argument), (ii) perfect witness-
indistinguishability (argument distributions corresponding to all allowable wit-
nesses are equal), (iii) perfect zero knowledge (there exists an efficient simulator
that can, given u, (crsp, crsv) and td, output an argument that comes from the
same distribution as the argument produced by the prover), (iv) adaptive compu-
tational soundness (if u �∈ L, then an arbitrary non-uniform probabilistic poly-
nomial time prover has negligible success in creating a satisfying argument), and
(v) adaptive computational culpable soundness [15,16] (if u �∈ L, then an arbi-
trary NUPPT prover has negligible success in creating a satisfying argument
together with a witness that u �∈ L). An argument is an argument of knowledge,
if from an accepting argument it follows that the prover knows the witness.

3 Unit Vector Argument

In a unit vector argument, the prover aims to convince the verifier that he knows
how to open a commitment (A1, A

γ
2) to some (eI , r), where eI denotes the Ith

unit vector for I ∈ [1 .. n]. We construct the unit vector argument by using
square span programs (SSP-s, [6], an especially efficient variant of the quadratic
arithmetic programs of [11]).

Clearly, a ∈ Z
n
p is a unit vector iff the following n + 1 conditions hold:

– ai ∈ {0, 1} for i ∈ [1 .. n] (i.e., a is Boolean), and
–

∑n
i=1 ai = 1.

We use the methodology of [6] to obtain an efficient NIZK argument out
of these conditions. Let {0, 2}n+1 denote the set of (n + 1)-dimensional vectors
where every coefficient is from {0, 2}, let ◦ denote the Hadamard (entry-wise)
product of two vectors, let V :=

(
2·In×n

1�
n

)
∈ Z

(n+1)×n
p and b :=

(
0n
1

) ∈ Z
n+1
p .

Clearly, the above n + 1 conditions hold iff V a + b ∈ {0, 2}n+1, i.e.,

(V a + b − 1n+1) ◦ (V a + b − 1n+1) = 1n+1 . (1)

Let ωi, i ∈ [1 .. n + 1] be n + 1 different values. Let Z(X) :=
∏n+1

i=1 (X − ωi)
be the unique degree n + 1 monic polynomial, such that Z(ωi) = 0 for all i ∈
[1 .. n+1]. Let the ith Lagrange basis polynomial 	i(X) :=

∏
i,j∈[1 .. n+1],j �=i((X−

ωj)/(ωi −ωj)) be the unique degree n polynomial, s.t. 	i(ωi) = 1 and 	i(ωj) = 0
for j �= i. For a vector x ∈ Z

n+1
p , let Lx(X) =

∑n+1
i=1 xi	i(X) be a degree n

polynomial that interpolates x, i.e., Lx(ωi) = xi.
For i ∈ [1 .. n], let yi(X) be the polynomial that interpolates the ith column

of the matrix V . That is, yi(X) = 2	i(X) + 	n+1(X) for i ∈ [1 .. n]. Let y0(X) =
−1+	n+1(X) be the polynomial that interpolates b−1n+1. We will use an instan-
tiation of the polynomial commitment scheme with Fcom = (Z(X), (yi(X))n

i=1).
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As in [6], we arrive at the polynomial Q(X) = (
∑n

i=1 aiyi(X)+y0(X))2−1 =
(yI(X) + y0(X))2 − 1 (here, we used the fact that a = eI for some I ∈ [1 .. n]),
such that a is a unit vector iff Z(X) | Q(X). As in [6,11], to obtain privacy,
we now add randomness to Q(X), arriving at the degree 2(n + 1) polynomial
Qwi(X) = (rZ(X) + yI(X) + y0(X))2 − 1. By [6,11], Eq. (1) holds iff

(i) Qwi(X) = (A(X) + y0(X))2 − 1, where A(X) = raZ(X) +
∑n

i=1 aiyi(X) ∈
span(Fcom), and

(ii) Z(X) | Qwi(X).

An honest prover computes the degree ≤ n + 1 polynomial πwi(X) ←
Qwi(X)/Z(X) ∈ Zp[X], and sets the argument to be equal to π∗

uv := g
πwi(χ)
1

for a secret χ that instantiates X. If it exists, πwi(X) := Qwi(X)/Z(X)
is equal to r2Z(X) + r · 2(yI(X) + y0(X)) + ΠI(X), where for i ∈ [1 .. n],
Πi(X) := ((yi(X) + y0(X))2 − 1)/Z(X) is a degree ≤ n − 1 polynomial and
Z(X) | ((yi(X) + y0(X))2 − 1). Thus, computing π∗

uv uses two exponentiations.
We use a knowledge (PKE) assumption in a standard way to guarantee that

A(X) is in the span of {Xi}n+1
i=0 . As in [6,11], we then guarantee condition (i) by

using a PCDH assumption and condition (ii) by using a TSDH assumption. Here,
we use the same technique as in [11] and subsequent papers by introducing an
additional secret, β, and adding one group element Aβ

1 to the argument.

System parameters: Let com be the polynomial commitment scheme and let
Fcom = (Z(X), (yi(X))n

i=1).
Setup setupuv(1κ, n): Let gk ← BP(1κ, n).
CRS generation gencrsuv(gk): Let (g1, g2, χ, β, γ) ←r G

∗
1 × G

∗
2 × Z

3
p,

s.t. Z(χ) �= 0. Set ck ← (g1, g
γ
2 )Fcom(χ), crsuv,p ← (ck, (g2(yi(χ)+y0(χ))

1 ,

g
Πi(χ)
1 )n

i=1, g
β·Fcom(χ)
1 ), crsuv,v ← (g1, g

y0(χ)
1 , gγ

2 , g
γy0(χ)
2 , g

γZ(χ)
2 , gγβ

2 , ê(g1,
gγ
2 )−1). Return crsuv = (crsuv,p, crsuv,v).

Common input: (A1, A
γ
2) = ((g1, g

γ
2 )Z(χ))r(g1, g

γ
2 )yI(χ) where I ∈ [1 .. n].

Proving prouv(gk, crsuv,p;A1, A
γ
2 ;wuv = (a = eI , r)): Set π∗

uv ← (gZ(χ)
1 )r2 ·

(g2(yI(χ)+y0(χ))
1 )r · g

ΠI(χ)
1 . Set Aβ

1 ← (gβZ(χ)
1 )rg

βyI(χ)
1 . Output πuv =

(π∗
uv, Aβ

1 ) ∈ G
2
1.

Verification veruv(gk, crsuv,v;A1, A
γ
2 ;πuv): Parse πuv as πuv = (π∗

uv, Aβ
1 ). Ver-

ify that (1) ê(π∗
uv, g

γZ(χ)
2 ) = ê(A1 · g

y0(χ)
1 , Aγ

2 · g
γy0(χ)
2 ) · ê(g1, g

γ
2 )−1, (2)

ê(g1, A
γ
2) = ê(A1, g

γ
2 ), and (3) ê(A1, g

γβ
2 ) = ê(Aβ

1 , gγ
2 ).

Set Fuv,1 = {1} ∪ Fcom ∪ XβFcom and Fuv,2 = Y Fcom ∪ {Y, Y Xβ}. The formal
variable Xβ (resp., Y ) stands for the secret key β (resp., γ). Since other elements
of crsuv are only needed for optimization, crsuv can be computed from crs∗uv =
(gFuv,1(χ,β)

1 , g
Fuv,2(χ,β,γ)
2 ). If n > 2 then 1 �∈ span({Z(X)} ∪ {yi(X)}n

i=1), and
thus {1, Z(X)}∪{yi(X)}n

i=1 is a basis of all polynomials of degree at most n+1.
Thus, Fuv,1 can be computed iff {Xi}n+1

i=0 ∪ {XβFcom} can be computed.

Theorem 2. The new unit vector argument is perfectly complete and witness-
indistinguishable. If BP is (n+1, 2n+3)-PCDH secure, (n+1)-TSDH secure, and
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(n+1,XβFcom, {Y Xβ})-PKE secure, then this argument is an adaptive argument
of knowledge.

Proposition 1. The computation of (π∗
uv, Aβ

1 ) takes one 2-wide multi-
exponentiation and 1 exponentiation in G1. In addition, it takes 2 exponenti-
ations (one in G1 and one in G2) in the master argument to compute (A1, A

γ
2).

The verifier computation is dominated by 6 pairings.

4 New Same-Message Argument

In a same-message argument, the prover aims to convince the verifier that he
knows, given two commitment keys ck and ĉk (that correspond to two tuples of
polynomials (Pi(X))n

i=0 and (P̂i(X))n
i=0, respectively), how to open (A1, A

γ
2) =

com(ck;m ; r) and (Â1, Â
γ̂
2) = com(ĉk;m ; r̂) as commitments (w.r.t. ck and ĉk)

to the same plaintext vector m (but not necessarily to the same randomizer r).
We propose an efficient same-message argument using Fcom = (Z(X),

(yi(X))n
i=1) as described in Sect. 3. In the shuffle argument, we need (P̂i(X))n

i=0

to satisfy some specific requirements w.r.t. Fcom, see Sect. 5. We are free to choose
P̂i otherwise. We concentrate on a choice of P̂i that satisfies those requirements
yet enables us to construct an efficient same-message argument.

Denote Ẑ(X) = P̂0(X). For the same-message argument to be an argument
of knowledge and efficient, we choose P̂i such that (P̂i(ωj))n+1

j=1 = (yi(ωj))n+1
j=1 =

2ei + en+1 for i ∈ [1 .. n]. Moreover, (Ẑ(ωj))n+1
j=1 = (Z(ωj))n+1

j=1 = 0n+1.
Following similar methodology as in Sect. 3, define

Qwi(X) := (r̂Ẑ(X) +
∑n

i=1 m̂iP̂i(X)) − (rZ(X) +
∑n

i=1 miyi(X)) .

Let n̂ be the maximum degree of polynomials in (yi(X), P̂i(X))n
i=0, thus

deg Qwi ≤ n̂. Since Qwi(ωj) = 2(m̂j − mj) for j ∈ [1 .. n], Qwi(ωj) = 0 iff
mj = m̂j . Moreover, if m = m̂ then Qwi(ωn+1) =

∑n
i=1 m̂i − ∑n

i=1 mi = 0.
Hence, m = m̂ iff

(i) Qwi(X) = Â(X) − A(X), where A(X) ∈ span({Z(X)} ∪ {yi(X)}n
i=1), and

Â(X) ∈ span({Ẑ(X)} ∪ {P̂i(X)}n
i=1), and

(ii) there exists a degree ≤ n̂ − (n + 1) polynomial πwi(X) = Qwi(X)/Z(X).

If the prover is honest, then πwi(X) = r̂Ẑ(X)/Z(X) − r +
∑

mi · ((P̂i(X) −
yi(X))/Z(X)). Note that we do not need that Qwi(X) = 0 as a polynomial, we
just need that Qwi(ωi) = 0, which is a deviation from the strategy usually used
in QAP/QSP-based arguments [11].

We guarantee the conditions similarly to Sect. 3. The description of the argu-
ment follows. (Since it is derived as in Sect. 3, we omit further explanations.)

System parameters: Let n = poly(κ). Let com be the polynomial commitment
scheme and let Fcom = (Z(X), (yi)n

i=1) and F̂com = (Ẑ(X), (P̂i)n
i=1), where

P̂i(X) is such that yi(ωj) = P̂i(ωj) for i ∈ [0 .. n + 1] and j ∈ [1 .. n + 1].
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Setup setupsm(1κ, n): Let gk ← BP(1κ, n).
CRS generation gencrssm(gk): Let (g1, g2, χ, β, γ, γ̂) ←r G

∗
1 × G

∗
2 × Z

4
p

with Z(χ) �= 0. Set ck ← (g1, g
γ
2 )Fcom(χ) and ĉk ← (g1, g

γ̂
2 )F̂com(χ).

Let crssm,p ← (ck, ĉk, gβ·Fcom(χ)
1 , g

Ẑ(χ)/Z(χ)
1 , g1, (g

(P̂i(χ)−yi(χ))/Z(χ)
1 )n

i=1), and
crssm,v ← (g1, g

γ
2 , gγ̂

2 , gγβ
2 , g

γZ(χ)
2 ). Return crssm = (crssm,p, crssm,v).

Common input: (A1, A
γ
2) = com(ck;m ; r), (Â1, Â

γ̂
2) = com(ĉk;m ; r̂).

Argument generation prosm(gk, crssm,p;A1, A
γ
2 , Â1, Â

γ̂
2 ;m , r, r̂): Set π∗

sm ←
g

πwi(χ)
1 = (gẐ(χ)/Z(χ)

1 )r̂ · g−r
1 · ∏n

i=1(g
(P̂i(χ)−yi(χ))/Z(χ)
1 )mi . Set Aβ

1 ←
(gβZ(χ)

1 )r
∏n

i=1(g
βyi(χ)
1 )mi . Output πsm = (π∗

sm, Aβ
1 ) ∈ G

2
1.

Verification versm(gk, crssm,v; (A1, A
γ
2), (Â1, Â

γ̂
2);πsm):

Parse πsm as πsm = (π∗
sm, Aβ

1 ). Verify that (1) ê(g1, A
γ
2) = ê(A1, g

γ
2 ), (2)

ê(A1, g
γβ
2 ) = ê(Aβ

1 , gγ
2 ), (3) ê(g1, Â

γ̂
2) = ê(Â1, g

γ̂
2 ), and (4)ê(π∗

sm, g
γZ(χ)
2 ) =

ê(Â1/A1, g
γ
2 ).

Let Ŷ be the formal variable corresponding to γ̂. In the following theorem, it
suffices to take crs∗ = (gFsm,1(χ,β)

1 , g
Fsm,2(χ,β,γ,γ̂)
2 ), where Fsm,1 = {1} ∪ Fcom ∪

F̂com ∪ XβFcom ∪ {Ẑ(X)/Z(X)} ∪ {(P̂i(X) − yi(X))/Z(X)}n
i=1 and Fsm,2 =

Y · ({1,Xβ} ∪ Fcom) ∪ Ŷ · ({1} ∪ F̂com).

Theorem 3. The same-message argument is perfectly complete and witness-
indistinguishable. Let n̂ be as above. If BP is (n̂, n̂ + n + 2)-PCDH secure, n̂-
TSDH secure, (n+1,Fsm,1\({1}∪Fcom),Fsm,2\Y ·({1}∪Fcom), γ)-PKE secure,
and (F̂com,Fsm,1 \ F̂com,Fsm,2 \ Ŷ F̂com, γ̂)-PKE secure, then this argument is an
adaptive argument of knowledge.

Proposition 2. The prover’s computation is dominated by one (W + 2)-wide
and one (W +1)-wide multi-exponentiation in G1, where 0 ≤ W ≤ n is the num-
ber of elements in the vector m that are not in {0, 1}. The verifier’s computation
is dominated by 8 pairings.

In the shuffle argument below, the prover uses r = r̂, so prover’s computation
is 2W + 2 exponentiations. For a unit vector m , we additionally have W = 0
and computing Aβ

1 and the first two verification steps are already done in the
unit vector argument anyway, so the argument only adds 1 exponentiation for
the prover, and 4 pairings for the verifier.

5 New Assumption: PSP

We will next describe a new computational assumption (PSP) that is needed
in the shuffle argument. The PSP assumption is related to but not equal to
the SP assumption from [15]. Interestingly, the generic group proof of the PSP
assumption relies on the Schwartz-Zippel lemma, while in most of the known
interactive shuffle arguments (like [20]), the Schwartz-Zippel lemma is used in
the reduction from the shuffle security to some underlying assumption.
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Let d(n) > n be a function. Let F̂ = (P̂i(X))n
i=0 be a tuple of polynomials.

We say (d(n), F̂) is PSP-friendly, if the following set is linearly independent:
F̂d(n) := {Xi}2d(n)

i=0 ∪ {Xi · P̂j(X)}0≤i≤d(n),0≤j≤n ∪ {P̂0(X)P̂j(X)}n
j=0.

Let (d(n), F̂) be PSP-friendly. Let F = (Pi(X))n
i=0 be a tuple of polynomials

of degree ≤ d(n). The (F , F̂)-Power Simultaneous Product (PSP) assumption
states that for any n = poly(κ) and any NUPPT adversary A,

Pr

⎡

⎢

⎢

⎣

gk ← BP(1κ, n), (g1, g2, χ) ←r G
∗
1 × G

∗
2 × Zp,

G
n+2
1 � (t, t̂, (si)

n
i=1) ← A(gk; ((g1, g2)

χi

)
d(n)
i=0 , (g1, g2)

F̂(χ)) :

tP0(χ) ·∏n
i=1 s

Pi(χ)
i = t̂ P̂0(χ) ·∏n

i=1 s
P̂i(χ)
i = 1 ∧ (∃i ∈ [1 .. n] : si �= 1)

⎤

⎥

⎥

⎦

≈κ 0 .

In this section, we prove that the PSP assumption holds in the generic bilinear
group model. PSP-friendliness and the PSP assumption are defined so that both
the generic model proof and the reduction from the shuffle soundness to the
PSP in Theorem 5 would go through. As in the case of SP, it is essential that
two simultaneous products have to hold true; the simpler version of the PSP
assumption with only one product (i.e., tP0(χ) · ∏n

i=1 s
Pi(χ)
i = 1) does not hold

in the generic bilinear group model. Differently from SP, the PSP assumption
incorporates possibly distinct t and t̂ since the same-message argument does not
guarantee that the randomizers of two commitments are equal.

Generic Security of the PSP Assumption. We will briefly discuss the
security of the PSP assumption in the generic bilinear group model. Simi-
larly to [15], we start by picking a random asymmetric bilinear group gk :=
(p,G1,G2,GT , ê) ← BP(1κ). We now give a generic bilinear group model proof
for the PSP assumption.

Theorem 4. Let F = (Pi(X))n
i=0 be linearly independent with 1 �∈ span(F). Let

d = max{deg Pi(X)} and let F̂ = (P̂i(X))n
i=0 be such that (d, F̂) is PSP-friendly.

The (F , F̂)-PSP assumption holds in the generic bilinear group model.

Proof. Assume there exists a successful adversary A. In the generic bilinear group
model, A acts obliviously to the actual representation of the group elements and
only performs generic bilinear group operations such as multiplying elements in
Gi for i ∈ {1, 2, T}, pairing elements in G1 and G2, and comparing elements
to see if they are identical. Hence it can only produce new elements in G1 by
multiplying existing group elements together.

Recall that the A’s input is gk and crs = (((g1, g2)χi

)d
i=0, (g1, g2)F̂(χ)). Hence,

keeping track of the group elements we get that A outputs t, t̂, si ∈ G1, where
logg1

t =
∑d

j=0 tjχ
j +

∑n
j=0 t′jP̂j(χ), logg1

t̂ =
∑d

j=0 t̂jχ
j +

∑n
j=0 t̂′jP̂j(χ), and

logg1
si =

∑d
j=0 sijχ

j +
∑n

j=0 s′
ijP̂j(χ), for known constants tj , t′j , t̂j , t̂′j , sij ,

s′
ij . Taking discrete logarithms of the PSP condition tP0(χ) · ∏n

i=1 s
Pi(χ)
i =
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t̂P̂0(χ) · ∏n
i=1 s

P̂i(χ)
i = 1, we get that the two polynomials (for known coeffi-

cients) d1(X) := (
∑d

j=0 tjX
j +

∑n
j=0 t′jP̂j(X)) · P0(X) +

∑n
i=1(

∑d
j=0 sijX

j +
∑n

j=0 s′
ijP̂j(X))Pi(X) , d2(X) := (

∑d
j=0 t̂jX

j +
∑n

j=0 t̂′jP̂j(X)) · P̂0(X) +
∑n

i=1(
∑d

j=0 sijX
j +

∑n
j=0 s′

ijP̂j(X))P̂i(X) satisfy d1(χ) = d2(χ) = 0. Since
the adversary is oblivious to the actual representation of the group elements it
will do the same group operations no matter the actual value of X(= χ); so the
values tj , . . . , s′

ij are generated (almost2) independently of χ. By the Schwartz-
Zippel lemma there is a negligible probability that di(χ) = 0, for non-zero di(X),
when we choose χ randomly. Thus, with all but a negligible probability d1(X)
and d2(X) are zero polynomials.

Since F and {Xi}2d
i=0 ∪{Xi · P̂j(X)}i∈[0 .. d],j∈[0 .. n] are both linearly indepen-

dent, {Xi}2d
i=0∪{Pi(X)P̂j(X)}i,j∈[0 .. n] is also linearly independent. We get from

d1(X) = 0 that
∑n

j=0 t′jP0(X)P̂j(X) +
∑n

i=1

∑n
j=0 s′

ijPi(X)P̂j(X) = 0, which
implies s′

ij = 0 for i ∈ [1 .. n], j ∈ [0 .. n]. Substituting these values into d2(X) =

0, we get that
(∑d

j=0 t̂jX
j +

∑n
j=0 t̂′jP̂j(X)

)
P̂0(X)+

∑n
i=1

∑d
j=0 sijX

jP̂i(X) =

0. Since F̂d is linearly independent, we get that all coefficients in the above equa-
tion are zero, and in particular sij = 0 for i ∈ [1 .. n], j ∈ [0 .. n]. Thus si = 1 for
i ∈ [1 .. n]. Contradiction to the fact that the adversary is successful. �

6 New Shuffle Argument

Let Elgamal operate in G1 defined by gk. In a shuffle argument, the prover aims
to convince the verifier that, given the description of a group, a public key, and
two vectors of ciphertexts, the second vector of the ciphertexts is a permutation
of rerandomized versions of the ciphertexts from the first vector. However, to
achieve better efficiency, we construct a shuffle argument that is only culpably
sound with respect to the next relation (i.e., Rguilt

sh -sound:

Rguilt
sh,n =

{
(gk, (pk, (zi)n

i=1, (z
′
i)

n
i=1), sk) : gk ∈ BP(1κ, n)∧

(pk, sk) ∈ genpkc(gk) ∧ (∀ψ ∈ Sn : ∃i : decsk(z′
i) �= decsk(zψ(i))

)

}

.

The argument of [15] is proven to be Rguilt
sh -sound with respect to the same

relation. See [15] or the introduction for an explanation why Rguilt
sh is sufficient.

As noted in the introduction, we need to use same-message arguments and
rely on the PSP assumption. Thus, we need polynomials P̂j that satisfy two dif-
ferent requirements at once. First, to be able to use the same-message argument,
we need that yj(ωk) = P̂j(ωk) for k ∈ [1 .. n + 1]. Second, to be able to use the
PSP assumption, we need (d, F̂) to be PSP-friendly, and for this we need P̂j(X)
to have a sufficiently large degree. Recall that yj are fixed by the unit vector
argument. We now show that such a choice for P̂j exists.

2 A generic bilinear group adversary may learn a negligible amount of information
about χ by comparing group elements; we skip this part in the proof.
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Proposition 3. Let ŷj(X) := (XZ(X) + 1)j−1(X2Z(X) + 1)yj(X) for j ∈
[1 .. n], and Ẑ(X) = ŷ0(X) := (XZ(X) + 1)n+1Z(X). Let F̂com = (ŷj(X))n

j=0.
Then ŷj(ωk) = yj(ωk) for all j, k, and (n + 1, F̂com) is PSP-friendly.

Next, we will provide the full description of the new shuffle argument. Note
that (ci)n

i=1 are commitments to the rows of the permutation matrix Ψ , proven
by the n unit vector arguments (πuv,i)n

i=1 and by the implicit computation of
cn. We denote Ê((a, b), c) := (ê(a, c), ê(b, c)).

System parameters: Let (genpkc, enc, dec) be the Elgamal cryptosystem.
Let com be the polynomial commitment scheme. Consider polynomials
Fcom = {Z(X)} ∪ (yi(X))n

i=1 from Sect. 3. Let F̂com = (ŷi(X))n
i=0 be as

in Proposition 3.
Setup setupsh(1κ, n): Let gk ← BP(1κ, n).
CRS generation gencrssh(gk): Let (g1, g2, χ, β, γ) ←r G

∗
1 × G

∗
2 ×

Z
3
p with Z(χ) �= 0. Let (crsuv,p, crsuv,v) ←r gencrsuv(gk, n),

(crssm,p, crssm,v) ←r gencrssm(gk, n), but by using the same (g1, g2, χ, β, γ)
in both cases. Let ck ← (g1, g

γ
2 )Fcom(χ) and ĉk ← (g1, g

γ̂
2 )F̂com(χ). Set

(D1,D
γ
2 ) ← com(ck;1n; 0), (D̂1, D̂

γ̂
2 ) ← com(ĉk;1n; 0). Set crssh,p ←

(crsuv,p, ĉk, g
Ẑ(χ)/Z(χ)
1 , g1, (g

(ŷi(χ)−yi(χ))/Z(χ)
1 )n

i=1,D1,D
γ
2 , D̂1, D̂

γ̂
2 ), crssh,v ←

(crsuv,v, gγ̂
2 , {g

γyi(χ)
2 , g

γ̂ŷi(χ)
2 }n

i=0,D1,D
γ
2 , D̂1, D̂

γ̂
2 ), and tdsh ← χ. Return

((crssh,p, crssh,v), tdsh).
Common input: (pk, (zi, z

′
i)

n
i=1), where pk = (g1, h) ∈ G

2
1, zi ∈ G

2
1 and z′

i =
zψ(i) · encpk(1; ti) ∈ G

2
1.

Argument prosh(gk, crssh,p; pk, (zi, z
′
i)

n
i=1;ψ, (ti)n

i=1):
(1) Let Ψ = Ψψ−1 be the n × n permutation matrix corresponding to ψ−1.
(2) For i ∈ [1 .. n − 1]:

Set ri ← Zp, (ci1, c
γ
i2) ← com(ck;Ψ i; ri), (ĉi1, ĉ

γ̂
i2) ← com(ĉk;Ψ i; ri).

(3) Set rn ← −∑n−1
i=1 ri, (cn1, c

γ
n2) ← (D1,D

γ
2 )/

∏n−1
i=1 (ci1, c

γ
i2).

(4) Set (ĉn1, ĉ
γ̂
n2) ← (D̂1, D̂

γ̂
2 )/

∏n−1
i=1 (ĉi1, ĉ

γ̂
i2).

(5) For i ∈ [1 .. n]: set πuv,i = (π∗
uv,i, c

β
i1) ← prouv(gk, crsuv,p; ci1, c

γ
i2;Ψ i, ri).

(6) Set rt ←r Zp, (d1, d
γ
2) ← com(ck; t ; rt), and (d̂1, d̂

γ̂
2) ← com(ĉk; t ; rt).

(7) For i ∈ [1 .. n − 1]:
Set (π∗

sm,i, c
β
i1) ← prosm(gk, crssm,p; ci1, c

γ
i2, ĉi1, ĉ

γ̂
i2;Ψ i, ri, ri).

(8) Set πsm,d ← prosm(gk, crssm,p; d1, d
γ
2 , d̂1, d̂

γ̂
2 ; t, rt, rt).

(9) Compute U = (U1, U2) ← pkrt ·∏n
i=1 zri

i ∈ G
2
1. // The only online step

(10) Output πsh ← ((ci1, c
γ
i2, ĉi1, ĉ

γ̂
i2)

n−1
i=1 , d1, d

γ
2 , d̂1, d̂

γ̂
2 , (πuv,i)n

i=1,
(π∗

sm,i)
n−1
i=1 , πsm,d, U)

Verification versh(gk, crssh,v; pk, (zi, z
′
i)

n
i=1, πsh):

(1) Let (cn1, c
γ
n2) ← (D1,D

γ
2 )/

∏n−1
i=1 (ci1, c

γ
i2).

(2) Let (ĉn1, ĉ
γ̂
n2) ← (D̂1, D̂

γ̂
2 )/

∏n−1
i=1 (ĉi1, ĉ

γ̂
i2).

(3) For i ∈ [1 .. n]: reject if veruv(gk, crsuv,v; ci1, c
γ
i2;πuv,i) rejects.

(4) For i ∈ [1 .. n−1]: reject if versm(gk; crssm,v; ci1, c
γ
i2, ĉi1, ĉ

γ̂
i2;πsm,i) rejects.



214 P. Fauzi and H. Lipmaa

(5) Reject if versm(gk, crssm,v; d1, d
γ
2 , d̂1, d̂

γ̂
2 ;πsm,d) rejects.

(6) Check the PSP-related verification equations: // The only online step

(a)
∏n

i=1 Ê(z′
i, g

γyi(χ)
2 )/

∏n
i=1 Ê(zi, c

γ
i2) = Ê((g1, h), dγ

2)/Ê(U, g
γZ(χ)
2 ),

(b)
∏n

i=1 Ê(z′
i, g

γ̂ŷi(χ)
2 )/

∏n
i=1 Ê(zi, ĉ

γ̂
i2) = Ê((g1, h), d̂γ̂

2)/Ê(U, g
γ̂Ẑ(χ)
2 ).

Since ck, ĉk ⊂ crssh,p, (D1,D
γ
2 ) = com(ck;1n; 0) and (D̂1, D̂

γ̂
2 ) = com(ĉk;1n; 0)

can be computed from the rest of the CRS. (These four elements are only needed
to optimize the computation of (cn1, c

γ
n2) and (ĉn1, ĉ

γ̂
n2).) For security, it suf-

fices to take crs∗sh = (gFsh,1(χ,β)
1 , g

Fsh,2(χ,β,γ,γ̂)
2 ), where Fsh,1 = Fuv,1 ∪ F̂com ∪

{Ẑ(X)/Z(X)}∪{(ŷi(X)−yi(X))/Z(X)}n
i=1 and Fsh,2 = Fuv,2∪Ŷ ·({1}∪F̂com).

Theorem 5. The new shuffle argument is a non-interactive perfectly complete
and perfectly zero-knowledge shuffle argument for Elgamal ciphertexts. If the
(n + 1)-TSDH, (n̂, n̂ + n + 2)-PCDH, (Fcom, F̂com)-PSP, (n + 1,Fsh,1 \ ({1} ∪
Fcom),Fsh,2 \ Y · ({1} ∪ Fcom), γ)-PKE, (F̂com,Fsh,1 \ F̂com,Fsh,2 \ Ŷ F̂com, γ̂)-
PKE assumptions hold, then the shuffle argument is adaptively computationally
culpably sound w.r.t. the language Rguilt

sh,n and an argument of knowledge.

When using a Barreto-Naehrig curve, exponentiations in G1 are three times
cheaper than in G2. Moreover, a single (N + 1)-wide multi-exponentiations is
considerably cheaper than N +1 exponentiations. Hence, we compute separately
the number of exponentiations and multi-exponentiations in both G1 and G2.
For the sake of the simplicity, Proposition 4 only summarizes those numbers.

Proposition 4. The prover’s CRS consists of 6n+7 elements of G1 and 2n+4
elements of G2. The verifier’s CRS consists of 4 elements of G1, 2n+8 elements
of G2, and 1 element of GT . The total CRS is 6n + 8 elements of G1, 2n + 8
elements of G2, and 1 element of GT , in total 8n + 17 group elements. The
communication complexity is 5n + 2 elements of G1 and 2n elements of G2,
in total 7n + 2 group elements. The prover’s and the verifier’s computational
complexity are as in Table 1.

Importantly, both the proving and verification algorithm of the new shuf-
fle argument can be divided into offline (independent of the common input
(pk, (zi, z

′
i)

n
i=1)) and online (dependent on the common input) parts. The prover

can precompute all elements of πsh except U (i.e., execute all steps of the proving
algorithm, except step (9)), and send them to the verifier before the inputs are
fixed. The verifier can verify πsh \ {U} (i.e., execute all steps of the verification
algorithm, except step (6)) in the precomputation step. Thus, the online com-
putational complexity is dominated by two (n + 1)-wide multi-exponentiations
for the prover, and 8n + 4 pairings for the verifier (note that Ê((g1, h), dγ

2 ) and
Ê((g1, h), d̂γ̂

2 ) can also be precomputed by the verifier).
Low online complexity is highly important in e-voting, where the online time

(i.e., the time interval after the ballots are gathered and before the election
results are announced) can be limited for legal reasons. In this case, the mix
servers can execute all but step (9) of the proving algorithm and step (6) of the
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verification algorithm before the votes are even cast, assuming one is able to
set a priori a reasonable upper bound on n, the number of votes. See [24] for
additional motivation.
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Abstract. We present the first physical side-channel attack on elliptic
curve cryptography running on a PC. The attack targets the ECDH
public-key encryption algorithm, as implemented in the latest version
of GnuPG. By measuring the target’s electromagnetic emanations, the
attack extracts the secret decryption key within seconds, from a target
located in an adjacent room across a wall. The attack utilizes a single
carefully chosen ciphertext, and tailored time-frequency signal analysis
techniques, to achieve full key extraction.

Keywords: Side-channel attack · Elliptic curve cryptography ·
Electromagnetic emanations

1 Introduction

Physical side-channel attacks exploit unintentional information leakage via low-
level physical behavior of computing devices, such as electromagnetic radiation,
power consumption, electric potential, acoustic emanations and thermal fluctua-
tions. These have been used to break numerous cryptographic implementations;
see [7,28,29] and the references therein.

Small devices, such as smartcards, RFID tags, FPGAs, microcontrollers, and
simple embedded devices, have received much research attention with numerous
published side-channel attacks. However, for more complex “PC” class devices
(laptops, dekstops, servers etc.), there are few physical side-channel attacks
demonstrated on cryptographic implementations: key extraction from RSA using
acoustic attacks [24], and key extraction from RSA and ElGamal using the
ground-potential and electromagnetic channels [22,23]. As discussed in those
works, attacks on PCs raise new and difficult challenges compared to attacking
small devices: hardware and software complexity causing unpredictable behav-
ior and noise; high clock speeds of several GHz; and attack scenarios that force
non-invasive attacks and limit signal quality, bandwidth and acquisition time. In
particular, the effective measurement bandwidth is much lower than the target
CPU’s clock rate, making it infeasible to distinguish individual instructions and
necessitating new, algorithm-specific cryptanalytic techniques.
c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 219–235, 2016.
DOI: 10.1007/978-3-319-29485-8 13
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This leaves open the question of what other cryptographic algorithm imple-
mentations on PCs are vulnerable to physical side-channel attacks, and with
what range, duration and techniques.

1.1 Our Contribution

In this paper, we preset the first physical side-channel attack on elliptic curve
cryptography running on a PC. Moreover, our attack is non-adaptive, requiring
decryption of a single, non-adaptively chosen ciphertext in order to extract the
whole secret key by monitoring the target’s electromagnetic (EM) field for just
a few seconds.

We empirically demonstrate our technique on the ECDH public-key encryp-
tion algorithm used in OpenPGP [13], as specified in RFC 6637 [27] and NIST-
SP800-56A [8] and as implemented in Libgcrypt 1.6.3 (which is the latest version
at the time of writing this paper). To extract the secret key from the observed
electromagnetic leakage, we utilize intricate time-frequency analysis techniques.

We demonstrate the attack’s effectiveness by extracting keys from unmodi-
fied laptops running GnuPG, using their EM emanations as measured from an
adjacent room through a wall (see Fig. 6).

1.2 Attack Overview

The ECDH decryption consists primarily of multiplying the secret key (a scalar)
by the curve point. The multiplication contains a sequence of point addition, dou-
bling and inversion, and our approach utilizes the relation between the operands
of these operations and the scalar. By asking for a decryption of a carefully-
chosen ciphertext, we cause a specific curve point to appear as the operand in
the elliptic curve additions. This point has a specific structure which causes
an easy-to-observe effect on GnuPG’s modular multiplication code. During the
decryption of the chosen ciphertext, we measure the EM leakage of the target lap-
top, focusing on a narrow frequency band (frequencies in the range 1.5–2 MHz).
After suitable signal processing, a clean trace is produced which reveals informa-
tion about the operands used in the elliptic curve operations. This information,
in turn, is used in order to reveal the secret key.

Our attacks do not assume any correlation between the sequence of elliptic
curve double and add operations and the secret key. In particular, they work even
if the scalar-by-point multiplication is implemented using only point additions.

1.3 Targeted Software and Hardware

Hardware. We target commodity laptop computers. During our experiments,
we have tested numerous computes of various models and makes. The exper-
iments described in this paper were conducted using a Lenovo 3000 N200
laptops, which exhibit a particularly clear signal. The attacks are completely
non-intrusive: we did not modify the targets or open their chassis.
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Software. We focus on Libgcrypt, which is popular cryptographic library that
includes elliptic curve cryptography. Libgcrypt is used, in particular, by used
in particular, by GnuPG 2.x [2], which is very popular implementation of the
OpenPGP standard [13] used in applications such as encrypted mail and files.
Concretely, we targeted Libgcrypt 1.6.3 (the latest versions at the time of writ-
ing), compiled using the MinGW GCC 4.6.2 [4].

Current Status. We are currently working with the developers of Libgcrypt
and GnuPG to evaluate and deploy countermeasures preventing the attacks
described in this paper (CVE 2015-7511). A new version of Libgcrypt will be
released simultaneously with the publication of this paper.

Chosen Ciphertext Injection. Our attack requires decryption of chosen
ciphertexts. Conveniently, GnuPG and Libgcrypt are used by various applica-
tions, where they are used to decrypt externally-controlled inputs (the list of
GnuPG frontends [3] contains dozens of such applications). One concrete attack
vector was observed in [24], where Enigmail [18], a plugin for the Mozilla Thun-
derbird e-mail client, automatically decrypts incoming emails by passing them
to GnuPG. Thus, it is possible to close the attack loop by remotely injecting the
chosen ciphertext required by our attack into GnuPG via PGP/MIME-encoded
e-mail [17]. Similar observations hold for the GnuPG Outlook plugin, GpgOL.

1.4 Related Work

For small devices, side-channel attacks have been demonstrated, on numerous
cryptographic implementations, using various channels, and in particular the
EM channel starting with [5,21,35]. See [7,28,29] and the references therein.

Physical Attacks on ECC. Since the first attacks by Coron [16], there have
been numerous physical side-channel attacks on implementations of Elliptic
Curve Cryptography (ECC) on small devices; see the surveys [19,20] and the ref-
erences therein. However, such attacks typically target small devices and either
utilize subtle physical effects which are only visible at bandwidths exceeding the
device’s clock rate, or attack naive implementations (such as the double-and-add
algorithm). Three notable exceptions to the above approach are the attacks of
Okeya and Sakura [30] and Walter [38] attacking the Oswald-Aigner scalar ran-
domization algorithm [33] assuming only the ability to distinguish between point
addition and multiplication; the Refined Power Analysis attack of Goubin [26];
and the Zero-Value Point Attacks of Akishita and Takagi [6].

Unfortunately, all of the above approaches have significant drawbacks in the
case of GnuPG executed on PCs. Recording clock-rate scale signals (required
for most attacks) from a full-fledged PCs computer running a GHz-scale CPU
is difficult and requires expensive, cumbersome, and delicate lab equipment.
The attacks of Okeya and Sakura [30] and Walter [38] are only applicable
to the Oswald-Aigner scalar randomization algorithm [33] (utilizing its non-
determinism across various executions), which is not used by GnuPG. Finally,
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the attacks of Goubin [26] and Akishita and Takagi [6] utilize adaptive cho-
sen ciphertexts, requiring hundreds of ciphertexts in order to extract the secret
scalar. Since in order to obtain a noise-free aggregate-trace several traces are
required per ciphertext, overall the attacks of [26] and [6] require the execution
of several thousands of scalar-by-point multiplication operation, which is easily
detectable.

Physical Side-Channel Attacks on PCs. Physical side-channel leakage from
PCs have been demonstrated via voltage on USB ports [31] and power consump-
tion [15]. Cryptographically, physical side-channels were exploited for extract-
ing keys from GnuPG’s RSA and ElGamal implementations, using the acoustic
channel [24], the chassis-potential channel [23] and the electromagnetic chan-
nel [22,23] (across several GnuPG versions, including both square-and-always-
multiply and windowed exponentiation). On a related class of devices, namely
smartphones, Goller and Sigl [25] showed electromagnetic attacks on square-and-
sometimes-multiply RSA.

Software Side-Cache Attacks on GnuPG. Software-based side-channel key-
extraction attacks on PCs were demonstrated using timing differences [11,12]
and contention for various microarchitectural resources, such as caches [10,32,34].
Recently such attacks were shown against GnuPG’s implementation of RSA and
ElGamal [39,40], as well as elliptic-curve DSA [9,37]. The latter attacks rely on the
ability to distinguish between point doubling and point addition via cache access
patterns, in order mount a lattice attack on DSA using partially known nonces.
However, such types of attacks are not applicable for ECDH.

2 Cryptanalysis

2.1 GnuPG’s Elliptic Curve Encryption Implementation

We attack OpenPGP’s elliptic-curve public-key encryption scheme, called ECDH
encryption, as specified in RFC 6637 [27] and defined as method C(1,1,ECC CDH)
in NIST-SP800-56A [8]. In a nutshell, ECDH encryption is essentially Diffie-
Hellman key exchange over a suitable elliptic curve, where one party’s Diffie-
Hellman message serves as that party’s public key. The encryption operation
runs the other party’s part of the key exchange protocol against the public key,
yielding a shared key. Decryption recomputes that shared key. Concretely, the
ECDH encryption combines an elliptic-curve based Diffie-Hellman key exchange
protocol and a symmetric-key cipher (typically AES), as follows. Given an elliptic
curve group generator G, key generation consists of generating a random scalar k.
The secret key is then defined to be k while the public key is set to be [k]G (here
and onward, we use additive group notation, and [k]G denotes scalar-by-point
multiplication). Encryption of a message m is performed by generating a random
scalar k′, computing [k′]([k]G) and using the result in order to derive (using a
key derivation function) a key x for the symmetric encryption algorithm. The
message m is then symmetrically-encrypted using x, resulting in a ciphertext c′.
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Algorithm 1. GnuPG’s scalar-by-point multiplication operation (simplified).
Input: A positive scalar k and an elliptic-curve point P, where kn−1 · · · k0 is the

NAF representation of k, that is k =
∑n−1

i=0 2i · ki and ki ∈ {−1, 0, 1} for all
i = 0, · · · , n − 1.

Output: [k]P.
1: procedure point mul(k,P)
2: A ← P

3: for i ← n − 1 to 0 do
4: A ← [2]A
5: if ki = 1 then
6: A ← A + P

7: if ki = −1 then
8: P

′ ← [−1]P
9: A ← A + P

′

10: return A

The overall ciphertext is set to be c = (c′, [k′]G). Decryption of a ciphertext c =
(c′, [k′]G) is done by computing [k]([k′]G), applying the key derivation function
on the result to obtain a key x′ for the symmetric encryption algorithm, and
decrypting c′ using x′, resulting in a message m′. Since [k]([k′]G) = [k′]([k]G),
we obtain that x′ = x, resulting in m′ = m.

Our attack deduces the secret key k from the side-channel leakage during the
scalar-by-point multiplication [k]G′ in the decryption.

GnuPG’s Scalar-by-Point Multiplication. We now review GnuPG’s imple-
mentation of the scalar-by-point multiplication operation which is used during
the ECDH encryption protocol. In order to perform the elliptic curve group oper-
ations as well as the large integer operations, GnuPG uses an internal mathe-
matical library called MPI (based on GMP [1]). For Weierstrass curves, GnuPG
performs the scalar-by-point multiplication operation using the standard double-
and-add algorithm (Algorithm1), maintaining the scalar in non-adjacent form
(NAF) which we now discuss.

Non-Adjacent Form Representation. Introduced by Reitwiesner [36], the
non-adjacent form is a common generalization of the standard binary represen-
tation of integers, allowing for both positive and negative bits. For example, the
4-digit NAF representation of 7 is (1, 0, 0,−1) compared to its binary represen-
tation (0, 1, 1, 1). The main advantage of using a NAF representation is that
it minimizes the number of non-zero digits from about 1/2 for the binary rep-
resentation to about 1/3. Since every non-zero digit requires a point addition
operation, using a NAF representation minimizes the number of point additions.
Thus, most modern representations of elliptic curve cryptography typically rep-
resent scalars in using NAF.

We proceed to describe GnuPG’s point addition operation, used in lines 6
and 9. Later in Sect. 2.2 we will show how to exploit GnuPG’s implementation
of point addition in order to achieve key extraction.
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Algorithm 2. GnuPG’s point addition operation (simplified).
Input: Two points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in projective coordinates on

an elliptic-curve based group of order p.
Output: A point P3 = (x3, y3, z3) in projective coordinates such that P3 = P2 + P1.
1: procedure point add(P1,P2)
2: if z1 = 0 then
3: return P2 � P1 is at infinity
4: if z2 = 0 then
5: return P1 � P2 is at infinity
6: l1 ← x1z

2
2 mod p

7: l2 ← x2z
2
1 mod p

8: l3 ← l1 − l2 mod p
9: l4 ← y1z

3
2 mod p

10: l5 ← y2z
3
1 mod p

11: l6 ← l4 − l5 mod p
12: if l3 = 0 and l6 = 0 then
13: return (1, 1, 0) � P1 is the inverse of P2 thus the result is infinity
14: l7 ← l1 + l2 mod p
15: l8 ← l4 + l5 mod p
16: z3 ← z1z2l3 mod p
17: x3 ← l26 − l7l

2
3 mod p

18: l9 ← l7l
2
3 − 2x3 mod p

19: y3 ← (l9l6 − l8l
3
3)/2 mod p

20: return (x3, y3, z3)

GnuPG’s Point Addition. GnuPG stores elliptic curve points using projec-
tive coordinates. Each point is a tuple (x, y, z) where each element is a large
integer stored using GnuPG’s mathematical library, MPI. Large integers are
stored by MPI as arrays of limbs, which are 32-bit words (on the x86 architec-
ture used in our tests). Algorithm2 is a pseudocode of GnuPG’s point addition
operation. Notice the multiplication by y2 in line 10. We will now show how this
multiplication can be exploited in order to distinguish between −1 and 1 valued
NAF digits of k, resulting in a complete key extraction.

2.2 ECDH Attack Algorithm

Let DA-sequence denote the sequence of double and add operations performed
in lines 4, 6 and 9 of Algorithm1. Notice that it is possible to deduce all the
locations of zero valued NAF digits of k by simply observing the DA sequence
performed by Algorithm1. However, since k is given in a NAF representation,
recovering the DA-sequence alone is not enough for achieving key extraction:
there remains an ambuguity between −1 and 1 valued NAF digits of k, since
point addition is executed in both cases (in addition to point doubling).

Observing Point Inversions. An immediate approach for distinguishing
between 1 and −1 valued NAF digits would consist of attempting to observe the
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point inversion operation performed in line 8. However, for Weierstrass curves,
inverting a point P = (x, y) on an elliptic-curve group of order p, simply requires
computing the inverse of y modulo p. This operation is too fast for us to observe
in our low-bandwidth setting. Moreover, fact that point inversion is performed at
every −1-valued digit of the NAF form of k constitutes a side-channel weakness
in GnuPG’s point multiplication code, which is unlikely to be present in a more
robust implementation. We thus do not utilize this observation for our attack.

We proceed to describe how, by using a chosen ciphertext, an attacker can
distinguish between the add operations performed by line 6 and the add oper-
ations performed by line 9. This information, together with the DA-sequence is
enough to recover the secret scalar k.

Distinguishing Between the NAF Digits of k. Let Q = (x, y) be a point
with small y (containing few limbs) and a random-looking (full-sized) x. Consider
performing an ECDH encryption operation of a ciphertext (c′,Q) for some c′.
Since GnuPG’s internal representation uses projective coordinates, the point Q

converted to a P in a projective representation P = (x, y, 1) and it is then passed
to Algorithm 1. Next, P is used in lines 6 and 9 thereby affecting the leakage
produced by each iteration of the main loop of Algorithm1 as follows.

1. ki = 0. In this case only a point doubling operation is performed by Algo-
rithm1. Thus, as mentioned before, these digits are immediately recoverable
from the DA-sequence since any double operation which is not followed by an
add operation corresponds to a zero valued digit of k.

2. ki = 1. In this case P is passed as is to the point addition routine (Algo-
rithm2) as its second argument P2. Since y is small, the first operand, y2, of
the multiplication in line 10 is only a few limbs long.

3. ki = −1. In this case the point P is first inverted by line 8. For Weierstrass
curves, point inversion corresponds to computing the modular inverses of the
y coordinate, so the y coordinate of P′ is random looking. This P

′ is passed
to the point addition routine (Algorithm2) as its second argument P2. This
makes the first operand, y2, of the multiplication in line 10 be random looking
and (likely) full length.

By observing the side-channel leakage produced by Algorithm1, we will be able
to recover the DA-sequence, and also distinguish, in each invocation the mul-
tiplication in line 10 of Algorithm2, whether the first operand is short or full
length. This information is enough in order to recover the secret scalar k.

2.3 Attacking the Always-Add Algorithm

In this section we generalize the above method for attacking a variant of Algo-
rithm1 where the point doubling operation is implemented using point addition.
That is, we assume that line 4 is replaced by A ← A + A. In particular, in this
section, we do not assume that it is possible to immediately distinguish the
point additions performed by lines 6 and 9 from the point doublings performed
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by line 4. As we show, it is possible to utilize two chosen ciphertexts in order
to recover the DA-sequence as well as, for every addition operation, whether the
corresponding NAF digit is 1 or −1.

Revealing the 1 Digits of k. As in Sect. 2.2, the attacker requests a decryption
of a point P with small y coordinate. As discussed in Sect. 2.2, this creates a
distinguishable leakage every time that ki = 1 during the execution of the main
loop of Algorithm 1, thereby revealing the locations in the DA-sequence of all
such digits.

Revealing the −1 Digits of k. Next, the attacker selects a point P whose
inverse has a small y coordinate, and requests an ECDH decryption of (c,P)
for some arbitrary value c. During the main loop of Algorithm1 every time that
ki = −1 the inversion of P, denoted by P

′, is passed to the point addition routine.
Since P was chosen such that P′ has a small y coordinate, as discussed in Sect. 2.2
this creates a distinguishable leakage every time that ki = −1 during the main
loop of Algorithm 1, thereby revealing the locations in the DA-sequence of all
such digits.

Key Extraction. At this point the attacker has recovered the locations in the
DA-sequence of all point additions as performed by lines 6 and 9 of Algorithm1.
Moreover, for each point addition, the attacker has recovered the corresponding
value of ki. Thus, all remaining operations in the DA-sequence are in fact points
doublings. Using this information at hand, the scalar k can be recovered.

3 Signal Analysis and Experimental Results

3.1 Experimental Setup

This section describes the lab setup used for characterizing the EM leakage from
target computers at frequencies of 0–5 MHz. We have also constructed a more
realistic setup, described in see Sect. 3.3.

Probe. To measure the EM leakage from the target laptop with high spatial
precision, we used a Langer LF-R 400 near field probe (a 25 mm loop probe,
0–50 MHz). The location of the probe relative to the laptop body greatly affects
the measured signal. In our experiments, the best signal quality was obtained
close to the CPU’s voltage regulator, which on most laptops is located in the
rear left corner. We thus placed the probe at that position, without any chassis
intrusion or other modification to the target laptop.

Amplification and Digitization. To amplify the signal measured by the probe
we used a (customized) Mini-Circuits ZPUL-30P amplifier, providing 40 dB of
gain. The output of the amplifier was then low-pass filtered at 5 MHz and dig-
itized using a National-Instruments PCI 6115 data acquisition device sampling
at 10Msample/s with 12 bits of ADC resolution.
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3.2 Signal Analysis

Scalar-Dependant Leakage. As an initial confirmation of the existence of
scalar-dependent leakage from the point multiplication, Fig. 1 shows five distinct
leakage patterns, obtained by multiple invocation (in sequence) of Algorithm1
using the same point P with small y coordinate and five different values of the
scalar k. Such key-dependent leakage was observed on many target laptops, often
in multiple frequency bands.

Fig. 1. EM measurement (0.5 s, 1.95-2.15 MHz) of five scalar-by-point multiplication
operations using the NISTP-521 curve executed on a Lenovo 3000 N200 laptop. The
scalar was overridden to be the 521-digit number obtained by repeating the pattern
written to the right. In all cases, the curve point had the same random-looking x
coordinate and a small y coordinate.

Observing Fig. 1, notice that for periodic scalars the spectral signature of
the leakage signal has strong side-bands surrounding a central carrier frequency.
This is a strong indication of a key-dependent modulation signal on a carrier
frequency (analogously to modulations observed in [22,23])

Demodulation. We proceed to describe our signal processing methodology
demodulating the acquired signal and deducing the DA-sequence, as well as for
distinguishing between −1 and 1 NAF digits, for complete key extraction.

For each target, we manually scanned the spectrum and chose the carrier
frequency exhibiting the clearest modulation side-bands. After analog filtering
and sampling, we used a digital band pass filter to suppress all frequencies out-
side the band of interest. As in the case of [22,23], the key-dependent signal
turned out to be frequency modulated (FM) on the carrier signal. Demodu-
lation was performed using the digital Hilbert transform, followed by further
filtering. Figure 2(a) shows an example of the resulting trace.

Obtaining a Clear Trace. Similarly to [22,23], parts of each demodulated
decryption trace were occasionally corrupted by strong disturbances, e.g., due
to timer interrupts in the target laptop. But even ignoring these, a simple visual
inspection of the trace in Fig. 2(a) reveals no immediately obvious patterns or
clues about the scalar k or the inner workings of Algorithm1. In order to obtain a
clearer trace and remove the interrupts, we used a multi-step procedure involving
the aggregation of several dozen recorded decryption traces, as follows.
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(a) Part of a trace obtained during a single
decryption (after FM demodulation and fil-
tering). Note the interrupt corrupting part
of the signal.

(b) Two demodulated traces obtained
during two decryption operations, using
the same ciphertext and key. Note the
loss of alignment due to the interrupt.

Fig. 2. Frequency demodulated traces obtained from a single decryption operation.

Interrupts and Drifts. To aggregate traces, we first attempted simple align-
ment via correlation. Unfortunately, the traces exhibited slow random drifts
relative to each other, so that full alignment of entire traces proved difficult.
In addition, interrupts induced further random delays in each trace relative to
other traces, as well as signal distortion. See Fig. 2(b).

Initial Alignment. Despite the relative distortion between decryption traces,
we did notice that a short trace segment immediately preceding each decryp-
tion operation was relatively similar across all measurements, rarely having any
interrupts or drifts. We thus used this common segment to perform an initial
alignment of all decryption traces, using simple correlation, as follows. We first,
chose a reference trace at random and aligned the initial segment of all other
traces relative to it. If the initial segment of the reference trace was corrupted
due to noise or distortion, the current reference trace was discarded and a new
one chosen. If the initial segment of one of the other traces did not align well
with that of the reference trace, it was also discarded.

Gradual Alignment Correction. After achieving initial alignment of all
decryption traces, we compensated for the gradual drifts of the traces relative
to the reference trace by performing individual alignment correction as follows.
Each trace was independently compared with the reference trace, by simulta-
neously inspecting it from beginning to end. Periodically, the relative phase lag
between the two traces was estimated by cross-correlating a short local section in
both traces. Any detected misalignment was immediately corrected. If an inter-
rupt was detected in one of the traces during this process, the delay it induced
was also corrected. Interrupts are easily detectable since they cause large fre-
quency fluctuations. The above process was performed independently for each
trace, always in respect to the original reference trace.

Trace Aggregation. Even after the alignment correction process described
above, direct aggregation of the traces did not produce an aggregated trace
with sufficient fidelity. In order to fine-tune the alignment and facilitate the
aggregation process, we broke each trace down into shorter segments, each cor-
responding to roughly 20 double and add operations. These were in turn aligned
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Fig. 3. Part of an aggregated trace obtained from several decryption operations during
our attack. The double operations is marked with D and the add operations are marked
with the corresponding bit of ki (either 1 or −1). The red arrows mark the differences
between additions performed by lines 6 and 9 of Algorithm 1. Notice that the difference
occurs at the begining of each addition operation, as expected from Algorithm 2 (color
figure online).

again across all traces via correlation with a corresponding randomly-chosen ref-
erence segment. After this final alignment step, segments were aggregated across
all traces via a mean-median filter hybrid. For each segment and at each time
point, the samples across all traces were sorted, and several lowest and highest
values discarded. The rest of the samples were averaged, resulting in distortion-
free aggregate trace segments. Figure 3 shows an example of such an aggregate
segment. The individual double and add operations can now clearly be seen.

Key Extraction. For key extraction, we must deduce from each aggregated
segment the partial DA-sequence it contains, as performed by Algorithm 1. More-
over, for each addition operation in the partial DA-sequence, we must also some-
how distinguish whether the corresponding NAF digit is 1 or −1. Obtaining this
information will result in several dozen sequences of trinary bits each represent-
ing a fragment of the NAF representation of the secret constant k. To facilitate
the reconstruction of k from its fragments, we chose to take the aggregate trace
segments mentioned in the previous section to be largely overlapping. In such
a case, consecutive fragments of the NAF representation of k will have many
overlapping bits, allowing for a unique reconstruction.

We now describe the process of extracting the partial DA-sequence from
each aggregated segment as well as the process of determining whether the cor-
responding NAF digit is 1 or −1.

Extracting the Partial DA-Sequence. Although the sequence of double and
add operations can be identified in Fig. 3 by careful observation, it is not clear
how it can be extracted automatically and reliably. Attempting this in the (post-
FM-demodulation) time domain appears difficult since both double and add
operations are comprised of largely similar peaks. Instead, we utilize an alterna-
tive approach, utilizing the information present in the (post-FM-demodulation)
frequency domain. The top and middle parts of Fig. 4 show an aggregated seg-
ment along with its corresponding spectrogram. It can be seen that the addi-
tion and doubling operations generate energy in two mostly separate frequency
bands. We thus focus on the upper band which contains most of the energy of
addition operations, and filter each aggregated segment around this frequency-
band. Notice that each doubling operation also contributes some small amount
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Fig. 4. Several stages of our approach for distinguishing between double and add oper-
ations. The topmost figure is the aggregated segment corresponding to the bottom
two figures, with the locations of addition operations marked. The middle figure is the
spectrogram of the aggregated segment with blue denotes frequencies with low-energy
while red denotes frequencies with high energy. In this figure the horizontal frequency
is time (0–1.6 ms) while the vertical axis is frequency (0–400 kHz). The bottom figure
represents the final result of our approach clearly showing the locations of the addition
operations, obtained by performing the procedure described above (color figure online).

of energy to this band, which may create false positives. In order to reliably
extract the timings of all addition operations, we multiply the energy in the
upper band with its own derivative with respect to time. In this manner we are
able to enhance energy peaks that are already both strong and sharply-rising,
and attenuate any other peaks. After additional smoothing and equalization,
we obtain the trace in the bottom part of Fig. 4 in which the occurrences of
addition operations are clearly visible. The timings of doubling operations are
then inferred by the time-lapse between additions, thus recovering the partial
DA-sequence present in each aggregated segment.

Distinguishing Between 1 and −1. While the spectrogram in Fig. 4 proved
very useful in identifying sequences of double and add operations, it is far less
effective in determining whether the NAF digit corresponding to an add opera-
tion is 1 or −1. The leakage induced by our chosen ciphertext is slight and only
affects one of several modular multiplications performed by Algorithm 2. Since
the leakage is so short lived, it is difficult to differentiate between the frequency
signatures of the two cases. In order to overcome the issue we use the exact
timings of the add operations (which are already known from the previous step).
For each add operation we zoom in on each addition operation in the original
aggregated trace using the timings obtained from the previous step. In this man-
ner we discard anything unrelated to the addition operation itself. We then plot
a spectrogram using a large time window, thereby increasing the frequency reso-
lution at the price of time resolution. This reveals consistent differences between
addition operations corresponding to 1 and −1 NAF digits, in two frequency
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(a) An aggregated segment of an ad-
dition operations corresponding to a 1
NAF digit

(b) An aggregated segment of an addi-
tion operations corresponding to a −1
NAF digit

Fig. 5. Zoomed-in views (bottom) and spectrograms (top) of add operations corre-
sponding to 1 and −1 NAF digits. Note the energy difference in the 50–125 kHz band
between the two signals. This difference is consistent across all add operations, and can
be used to differentiate between them.

bands, see Fig. 5. This difference allows us to consistently differentiate between
the two add operations (corresponding to 1 and −1 NAF digits), resulting in a
reliable key extraction.

Overall Attack Performance. Applying our attack to a randomly generated
ECDH NISTP-521 key, by measuring the EM emanations of a Lenovo 3000 N200
target, we have extracted the secret scalar except its first 5 NAF digits, with
an error of two digits. During the attack we have used traced obtained form 75
decryption operations, each lasting about 0.05 s, yielding a total measurement
time of about 75 · 0.05 = 3.75 s.

3.3 Measuring the EM Leakage Through a Wall

In order to eavesdrop on the EM leakage of target computers in surrounding
rooms, we constructed a more portable experimental setup which we now discuss.

Antenna. We have used an Aaronia Magnetic Direction Finder MDF 9400
antenna, designed for 9 kHz–400 MHz. This is essentially a tuned loop antenna.

Amplification and Digitization. The signals produced by the antenna were
amplified first by a Mini-Circuits ZFL-1000 amplifier and then by a (customized)
Mini-Circuits ZPUL-30P amplifier, providing a total of gain of approximately
60 dB (at the frequency of interest). The resulting signal was then low-pass
filtered at 5 MHz and digitized using an Ettus Research USRP N200 software
defined radio, equipped with a LFRX daughter board, at 10 Msample/s.
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(a) Attacker’s setup for capturing EM emanations.
Left to right: power supply, antenna on stand, am-
plifiers, software defined radio (white box), analy-
sis computer.

(b) Target (Lenovo 3000 N200),
performing ECDH decryption
operations, on the other side of
the wall.

Fig. 6. Attacking a target computer in an adjacent room, across a wall.

Target Placement. The target laptop was placed in a room adjacent to the
attacker’s experimental setup, separated by a standard drywall (15 cm thick,
reinforced with metal studs). The location and orientation of the antenna greatly
affects the resulting signal. In our experiments, we have placed the antenna on
the opposite side of the wall from the target computer’s voltage regulator, with
the antenna’s loop plane parallel to the wall surface. See Fig. 6.

Attack Performance. Applying our attack and signal processing techniques
to a target laptop (Lenovo 3000 N200) located in the adjacent room, we have
successfully extracted the secret scalar of a randomly generated ECDH NISTP-
521 key except its first 5 NAF digits and with an error of two digits. For the
attack we have used traces collected by measuring the target’s EM leakage during
66 decryptions, each lasting about 0.05 s. This yields a total measurement time
of about 3.3 s.

4 Conclusion

This paper demonstrates the first side-channel attack on PC implementations of
elliptic curve cryptology. Our techniques do not assume the leakage of secret-key
material via the sequence of elliptic curve double and add operations. Instead
our attacks rely on a strong correlation between the operands of elliptic curve
addition operation and the secret key. By injecting chosen ciphertexts, we make
the operands to GnuPG modular multiplication routine highly distinguishable,
even by low-bandwidth measurements. Since the operands of the elliptic curve
additions are highly correlated with the secret key, we are able to completely
recover the key within only a few seconds of measurements.
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Software Countermeasures. Our attacks extract the secret key by observing
the leakage created during the decryption of a carefully chosen ciphertext (curve
points) which creates some mathematical structure in the operands of the elliptic
curve addition operation. We now review the common set of countermeasures for
preventing such chosen ciphertext attacks, see [19,20] for extended discussions.

Scalar Randomization and Splitting. Many side-channel attacks relay on
averaging the leakage during several decryption operations on order to achieve
key extraction. A scalar randomization countermeasure [16] prevents such aver-
aging by adding to the scalar a random multiple of the group order before per-
forming the scalar-by-point multiplication operation. This changes the sequence
of elliptic curve double and add operations performed during different decryption
operations, thus hindering the averaging operation. Another common and simi-
lar countermeasure splits the secret scalar k in into n parts k1, · · · , kn such that
k =

∑n
i=1 ki, performs the scalar-by-point multiplication operation separately

on each ki and them combines the result [14].
While such a countermeasure is indeed effective against our attack (since

it requires traces obtained from several decryption operations), it will not stop
chosen ciphertext attacks that only rely on a single trace for key extraction.

Point Blinding. This method protects the scalar k multiplied with a ciphertext
point P, by first generating a random point R, computing k(P + R) and then
subtracting kR from the result [16]. Such a countermeasure will completely block
chosen ciphertext attacks since the attacker is no longer able to carefully chose
a point P to be multiplied with k. However, the effect on performance of this
countermeasure is often significant, since now two scalar-by-point multiplication
operations have to be performed per decryption.

Future Work. While in the past few years there have been several physical
key-extraction attacks on full fledged-PC computers [22–24], all of these attacks
relied on a carefully chosen ciphertext and targeted various public key encryption
schemes. We pose, as intriguing open problems, the challenges of non-chosen
ciphertext attacks as well as attacking other cryptographic primitives (such as
symmetric encryption). Finally, our attacks utilized traces obtained from about
70 decryption operations in order to extract the secret key. We pose the task of
minimizing this number as another open problem.
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Abstract. In this paper, we study the side-channel resistance of the
implementation of the ECDSA signature scheme in Android’s standard
cryptographic library. We show that, for elliptic curves over prime fields,
one can recover the secret key very efficiently on smartphones using elec-
tromagnetic side-channel and well-known lattice reduction techniques.
We experimentally show that elliptic curve operations (doublings and
additions) can be distinguished in a multi-core CPU clocking over the
giga-hertz. We then extend the standard lattice attack on ECDSA over
prime fields to binary Koblitz curves. This is the first time that such
an attack is described on Koblitz curves. These curves, which are also
available in Bouncy Castle, allow very efficient implementations using
the Frobenius operation. This leads to signal processing challenges since
the number of available points are reduced. We investigate practical side-
channel, showing the concrete vulnerability of such implementations. In
comparison to previous works targeting smartphones, the attacks pre-
sented in the paper take benefit from discernible architectural features,
like specific instructions computations or memory accesses.

1 Introduction

Side-Channel Analysis is an important set of techniques allowing to recover secret
information. Isolation breaches are exploited during the execution of a sensitive
algorithm [16,17]. Various sources of leakage can be used, such as physical ones
(e.g., power consumption [17], electromagnetic emanations, or execution tim-
ing [16]), or microarchitectural ones (e.g., cache state or branch prediction).

Physical side-channels have been used for more than 15 years to assess the
security of smartcards, ASIC and FPGA. Security vulnerabilities have been a
real concern for embedded devices like smartcards that hold sensitive data and
can be accessed by an adversary. These integrated circuits were thought to hold
c© Springer International Publishing Switzerland 2016
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and protect only a few applications. But the upcoming of smartphones allowed
all kinds of applications to be run on a unique mobile device, which was thought
to be a mobile computer rather than a generalized smartcard. As a consequence,
the hardware is not designed to be protected against physical attacks. This
problem has been studied for many years by mobile operators to protect private
data on these devices. Mobile operators standardized the SIM card which is used
in many countries and is built to prevent any leakage of information. This chip
is still used in today’s phones. But the quantity of data processed nowadays is
increasing exponentially, leading to a dead-end when considering the computing
limitations of SIM cards and the latency of communication with smartphone
hardware.

Sensitive applications are now developed on smartphones and software secu-
rity vulnerability is an important issue. However, if the cryptographic library
is not protected against physical attacks, the secret keys can be extracted and
data protection becomes useless.

Our Contributions. With this evolution in mind we assess the security of
Android smartphones against electromagnetic analysis. We show that the stan-
dard implementation of elliptic curve cryptography, which has been provided
since the version 4.4 of the Android operating system, is not protected against
these attacks and that the manipulated secret key can be extracted using a
few hundreds of measurements. Many issues remained in the related litera-
ture [1,14,21,28] in order to mount a real and practical attack on mainstream
libraries running on smartphones. No article address the security of widely used
library such as Bouncy Castle and actual implementation. For instance, in [21],
authors show that we can distinguish square and multiplication in the usual
square-and-multiply algorithm. However, since in Bouncy Castle the implemen-
tation uses a sliding windows algorithm, this information is not sufficient to
recover the secret key. Here, we show that on real implementation that calls this
library we can recover the secret key.

On the hardware side, modern smartphone processors have interesting fea-
tures which make physical attack harder: many cores, fast clock (GigaHertz,
while smartcards are clocked at around 20 MHz), and the leaking parts of the
circuit under focus are integrated into hundred millions of transistors. This makes
the leaking signal much harder to acquire and interpret. Moreover, Android is a
rich OS that use many threads running concurrently and the software is executed
in an applicative virtual machine. Thus the abstraction layers induce many sys-
tem activities and it is not really easy to get the full trace during cryptographic
computation. Previous work mainly focused on simpler processors and OSes,
with the noticeable exceptions of Genkin et al.’s works [10,11] and Zajic and
Prvulovic’s experiments [27]. Nevertheless, in the two first papers, exponenti-
ations were not observed, and in the third paper, no cryptographic algorithm
was evaluated. A more detailed review of related work, as well as of the Android
smartphone architecture, is provided in the full version of this paper [6].

On a cryptanalytical viewpoint, implementations that were previously
attacked on general-purpose devices, processed each bit independently. In order



238 P. Belgarric et al.

to have efficient cryptographic codes, sliding window algorithms are used in
Bouncy Castle, and it is no more possible to mount the attacks described in
related work. This explains the use of the lattice-based technique which only
uses the last iterations of the trace. We can detect the last bits since we are able
to identify a specific pattern that ends the computation. These attacks can be
used even though we do not have the whole electromagnetic (EM) curve: with
windowing algorithms, we cannot distinguish between the additions of different
precomputed values and multi-threading can interrupt the double-and-add algo-
rithm with different operations. Even in these difficult scenarios, we are able
to identify the number of zero bits at the beginning or at the end of ECDSA
nonces, leading to a successful lattice-based cryptanalysis.

Furthermore, the security of the windowing algorithm on Koblitz curves has
not been investigated yet. Arithmetic on such curves is very efficient on hard-
ware, and it has recently been shown that the new carryless vector instructions
make these curves also appealing in software. It raises new signal processing
challenge since the Frobenius endomorphism, which plays a role in the Koblitz
curve setting analogous to doublings in standard scalar multiplications, is a very
efficient operation, and is implemented through precomputed tables in Bouncy
Castle. These operations are successfully monitored through EM side-channel.
Lattice-based cryptanalysis has also been modified to address the specificities of
these curves. In Bouncy Castle, the implementation of elliptic curves uses affine
coordinates, but our attack can still be applied on other coordinates system
such as Jacobian or lambda [19,25] coordinates if the most significant bits of the
nonces leak. Indeed, we learn these bits since we can distinguish the addition
and double (frobenius in the case of binary curves) operations. Being able to dis-
tinguish them depends on their actual implementations, but in any coordinates
systems, the internal operations are usually rather different and timing or power
consumption are different if no careful protection are added.

We implement two EM side-channel attacks on smartphones running Android
standard ECDSA implementations. We recover the private key using very few
signatures either on prime field curves or on Koblitz ones. In the first attack,
defined over prime field, we show that, even on systems as complex as smart-
phones, it is possible to distinguish exponentiation operations via EM side-
channels. It allows to recover the least significant bits of the nonces during the
execution of the sliding window exponentiation algorithm. Then, we conduct
classical lattice-based cryptanalysis. The second attack is new and is an adapta-
tion of the lattice-based attack in the case of Koblitz curves. In addition to this
new technique, the efficient Frobenius operation is retrieved via EM side-channel.
It allows to break these specific kind of curves even on complex devices.

Finally, as an application, we show that attacking Koblitz curves are inter-
esting in order to mount an attack on Bitcoin. Indeed, Bitcoin uses a Koblitz
curves and the cryptographic library uses Bouncy Castle. We propose a scenario
which allows an attacker to stole the secret key of a user and spend his digital
wallet.
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Organization of the Paper. In Sect. 2, we describe some background on
Android security and elliptic curve over prime field and binary field and their
implementations in Bouncy Castle. In Sect. 3, we present how we acquire and
process the signal. In Sect. 4, we show how we can recover the secret for prime
field and binary curves and finally we address the possible countermeasures.

2 Background on Elliptic Curve Cryptography

The security of elliptic curve cryptography is based on the computational com-
plexity of the discrete logarithm problem over the additive group of points of
an elliptic curve. This problem is stated as follows: given P and Q two points
such that Q = k · P , finding k is difficult when the group order is a large prime.
Let P be a publicly known generator point and a scalar k in the finite field.
Efficient algorithms allow to compute a new point Q = k ·P . Here, we work with
prime and binary curves. The arithmetic used to compute with Jacobian coordi-
nates on prime field curves and affine coordinates for binary curve, and the exact
implementations used in Bouncy Castle with NAF and TNAF representation is
detailed in the full version of this paper [6]. Computations are done on large
integers, using the BigInteger class. In Android, the class functions ultimately
bind to native ones through the JNI. These native functions are implemented in
an OpenSSL class.

Prime Field Elliptic Curve. An elliptic curve can be defined over some finite
field K of characteristic different from 2 and 3 by its short Weierstrass equation
E(K) which is the set of points on:

E : y2 = x3 + ax + b, (1)

where a, b ∈ K and the points (x, y) ∈ K×K are solution of Eq. (1). To serve as
a neutral element, a point at infinity (∞) is added to the other points to form a
group. The addition of two points, needed to efficiently compute k ·P , is defined
for two points P1 = (x1, y1) ∈ E(K) and P2 = (x2, y2) ∈ E(K) by the new point
P3 = (x3, y3) ∈ E(K) (see [12]): P3 = (λ2 − x1 − x2, λ(x1 − x3) − y1), where
λ = (y1 − y2)/(x1 − x2) if P1 �= P2 and λ = (3x2

1 + a)/(2y1) if P1 = P2.
The computation of these new coordinates requires to compute inversion

which is time consuming. Consequently, the elliptic curve points are represented
in Jacobian coordinates in Bouncy Castle. To reduce the number of additions,
the nonces are represented in NAF and scalar multiplication is performed using
a sliding window implementation.

Koblitz Curve. Koblitz curves are anomalous binary curves defined over F2 and
considered over the extension field F2m . The advantage of these curves is that
scalar multiplication algorithms can avoid using point doublings and are very
efficient on hardware. Recently, carryless instructions have been added to general
processors which makes binary curves appealing as well for software [25]. In the
case of Koblitz curve, it is shown in [3], that such curves are competitive. They
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have been discovered by Koblitz [15], efficient algorithms have been proposed
by Solinas [26] and treated formally in [12]. Their equations have the following
form Ea(F2m):

y2 + xy = x3 + ax + 1, and a = 0 or 1. (2)

The interest of these curves resides in some tricks in the arithmetic of point
calculus. The Frobenius map τ : Ea(F2m) → Ea(F2m) is defined as

τ(∞) = ∞, and τ(x, y) = (x2, y2).

It can be efficiently computed because squaring in F2m is inexpensive since it
consists in adding a bit to zero between each bit of the binary representation of
an element and then reducing it modulo the polynomial defining the finite field.
It is known that

(τ2 + 2)P = μτ(P ) for all P ∈ Ea(F2m),

where μ = (−1)a. Hence, the Frobenius map can be seen as a complex number τ
satisfying τ2 + 2 = μτ so that τ = (μ +

√−7)/2. We can then consider Z[τ ] the
ring of polynomials in τ and in order to multiply points in Ea(F2m) by elements
of the ring Z[τ ]: ul−1τ

l−1 + · · · + u1τ + u0. Consequently, we have very efficient
computation if we are able to efficiently convert any integer k as

∑l−1
i=0 kiτ

i where
l is small and ki ∈ {−1, 0, 1}. Such representation is called the TNAF repre-
sentation of the integer k. Moreover, there are efficient algorithms to compute it
(see [12]). Finally, since τ2 = μτ − 2, every element α ∈ Z[τ ] can be written in
canonical form as α = a0+a1τ where a0, a1 ∈ Z. The implementation of Bouncy
Castle in order to represent an integer in WTNAF representation (TNAF rep-
resentation with window) is recalled in the full version of this paper [6].

ECDSA. The ECDSA signature scheme has been standardized by NIST in [24]
and allows to sign any message m using two scalars (r, s) such that r is the
abscissae of k · P and s is computed as s = (rx + h)/k mod q, where q is a large
prime, h = H(m) and x is the signer’s ECDSA secret key.

3 Signal Processing

In this section, we explain the experimental setup used to acquire the signal.
The acquisition bench is described in details in the full version of this paper [6].
We present how we synchronize the signal and we show how to distinguish dou-
bling and addition operations. We observe that the number of multiplications is
different for doubling and addition, the time intervals between these multiplica-
tions being a characteristic of each operation. Then, we explain some particular
issue according to the Bouncy Castle code. Finally, we show that the multiplica-
tions, corresponding to a decrease in signal energy, are used in a different CPU
mode than the other executed instructions. It may possibly explain the observed
leakage.
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3.1 Synchronizing the Acquisitions

In [1], the oscilloscope is triggered at acquisition time through SD Card com-
munication. The voltage of one of the data pins is monitored while a message
is sent to the card. There are a few issues with that method. The SD Card is
not used in all the smartphones. It is problematic to easily evaluate all devices.
The mechanical base is not the same on all the platforms and much of them are
difficult to access. The time is not very stable between the communication on
the SD card and the beginning of the processing of interest. It is not an issue for
so-called horizontal attacks (where the leakage patterns are a function of time)
where only one trace is required, but for vertical attacks, it is important to have
a stable and generic synchronizing signal. Finally, the phone is dismounted and
a wire is melted on each evaluated phones.

To address these problems, we trigger on USB channel, which is the only
standard I/O on smartphones. We send 120 bytes equal to 0 on the channel just
before cryptographic computation. Low-pass filtering the USB physical signal
gives a good approximation of a square signal, because the high frequencies of
the succession of fronts are filtered. The pattern is clearly visible on Fig. 1, while
sniffing the USB voltage signal. The oscilloscope triggers on a wide enough square
pattern. Similarly a message can be sent just after the cryptographic processing
to surround the interesting leakage in time. Other signals with the same values
could transit on the channel triggering the oscilloscope on a wrong pattern. The
probability of such an occurrence is low, and experimentally the problem did
not occur during our experiments.

Fig. 1. USB voltage: synchronization message pattern sent on USB channel before the
signature.

There is still significant jitter between oscilloscope triggering and the begin-
ning of cryptographic computation. To improve the acquisitions, a “sleep” oper-
ation was added just before the sensitive computation. The CPU does not con-
sume power during that period. It is easily detectable on EM signals as can be
seen on Fig. 3(a). There are other time periods where the processor is idle. We
forced this state to be long enough in order to discriminate it with other idle
states between USB pattern and cryptographic computations.
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tusb tsleep beg tsleep end tcrypto beg tcrypto end

ΔT1

ΔT2trigger condition 1

trigger condition 2
var(ΔT1) � var(ΔT2)

Fig. 2. Triggering sequence: first USB pattern (less false positives); second sleep state
(less variance between adc triggering and algorithm start).

The coupling of USB channel pattern with CPU idle state (Fig. 2) leads to
a precise synchronization stage. The jitter is only a few instructions long, which
is very interesting, especially for investigations of Differential Power Analysis.

3.2 Energy Variations - Leakage Frequencies

Zooming on EM signal of Fig. 3(a), there are time locations when the AC absolute
magnitude decreases, characteristic of signal energy variations. In signal process-
ing, the energy of a signal is given by the integration over time of its squared
absolute values: Es =

∫ ∞
−∞ |x(t)|2dt.

To locally evaluate the signal energy around a point in time, the integral is
computed on a window centered on that point. It is equivalent to convoluting a
square window centered on that point, and summing the values of the convoluted
signal. Applied to all signal points, the output signal is a low-pass filtered signal
of the original one. This filter has some drawbacks. The sharp edges of the square
window involve important ripples in the frequency domain. Alternatively, we
used a FIR (Finite Impulse Response) filter weighted with a Hamming window.
The cutting frequency was taken at 50 KHz, a value giving a good SNR ratio.
Then a high-pass filter was applied to the signal. As a consequence, the signal
was band-pass filtered around the frequency band of compromission [2,9].

High energy variations are visible on the filtered signal (Fig. 3(b)). They
happen during signature computation as we show later. Energy variations during
the computation of sensitive values has long been of interest in the field of
computer security. In the particular case of ECDSA, being able to differentiate
the leakage patterns of the doubling and addition operations is a big security
threat, because the flow of operations is directly linked to secret data.

Distinguishing EC Operations Patterns. The evaluation of a white box
scalar multiplication, with a known scalar, and Bouncy Castle’s doubling and
addition implementations, allows the discrimination of the two operations pat-
terns (Fig. 4(a)). Each operation is characterized by a specific set of low power
peaks, defined by the number of peaks and the timing intervals between succes-
sive peaks.

If the number of operations to extract is low enough, a manual observation
is possible, as is the case for the cryptanalysis presented in Sect. 4 where a few
hundreds of operations are needed.
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Fig. 3. (a) Measured signal: Noisy curve, visible period when processor is idle (Qual-
comm MSM 8225 ) – (b) After signal filtering: higher energy variations during scalar
multiplication (less time samples because of subsampling - Qualcomm MSM 8225 )

Fig. 4. (a) doubling and addition leakage patterns (Qualcomm MSM 8225 ) – (b) pat-
tern of a doubling operation preceding an addition operation (Qualcomm MSM 8225 )

The regularity of the peaks is compared to the code of both the doubling and
the addition operations. Considering the doubling implementation (recalled in
the full version of this paper [6]), the number of multiplications is the same as
the number of peaks in the doubling leakage pattern. The number of additions
and subtractions between successive multiplications ({3, 0, 1, 3, 6, 1, (1)}), which
is plotted on Fig. 5(b), evolves similarly to the timing intervals on Fig. 4(b).

An interesting part of the doubling algorithm is the block condition (line 14
in the listing given in the full version [6]), which is executed if the operation
is followed by another doubling. If it is followed by an addition, the block is
not executed, and so, there is one less modular multiplication at the end of the
function. This is clearly visible on the doubling pattern preceding the addition
on Fig. 6(a). This explains the parentheses surrounding the last value of the list.

The addition sums a precomputed point to an intermediate one during expo-
nentiation. The precomputed points have their coordinate Z set to one. It leads
to computation simplifications since the field operations involving this value, its
square, or its cubic value, do not need to be computed. If we consider the point P1
to be precomputed in addition algorithm (also listed in the full version [6]), the
conditional blocks executed if the bit length of Z1 is different from one, are never
computed. As a consequence, the number of additions and subtractions between
successive multiplications gives the list {0, 0, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0}, plotted on
Fig. 6(b). It has the same look as the curve on Fig. 5(a). The same conclusions



244 P. Belgarric et al.

Fig. 5. (a) Mean and standard deviation of doubling operation time intervals – (b)
Number of basic operations between multiplications in double BC source code

Fig. 6. (a) Mean and standard deviation of addition operation time intervals – (b)
number of basic operations between multiplications in add BC source code

may be drawn from the Android debugger DDMS as described in the full version
of this paper [6].

Attacker’s Strength Considerations. The Qualcomm MSM 8225 processor,
clocked at 1.2 GHz, leaks in a frequency range which is under 50 KHz. This rel-
atively low frequency can be explained by leaking operations executing during
multiple clock ticks. An analog-to-digital converter with a sampling frequency
of a few hundreds of kilo-hertz, allows to mount the attack with low invest-
ment costs. In the paper, the measurements were obtained by decreasing our
oscilloscope bandpass cutting frequency to the minimum available one (20 MHz)
and choosing a sampling frequency of 50 MHz. It is small in comparison to the
smartphone’s CPU clock frequency.

Contrary to the works of Genkin et al. [10,11], our attack is not subject to
system interruptions (Fig. 3(b)). In fact in their paper, the frequency contents
of exponentiation vary with computed values. If the OS cuts the processing
in different chunks, the frequency spectrum of exponentiation will be greatly
affected. Consequently, the specificities of the inputs will not be discernible with
their method.

A Possible Explanation for the Leakages. Field multiplications are com-
puted with the Java class BigInteger. These class functions ultimately bind to
the native class NativeBN through the JNI. The native methods call binary
code in shared library. Disassembling the library of interest, the machine code
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is executed in ARM mode during multiplication, contrarily to usual THUMB-2
mode for other instructions, e.g. addition instruction. Looking at the ARM ref-
erence manual for Thumb-2 [5], multiplication instructions are one of the few
which have distinct features in ARM mode and in THUMB-2 mode. In partic-
ular, conditional flags can be modified in ARM mode, which is important for
vectorial operations. It may explain this change of the CPU mode, and con-
sequently the difference observed in the leakage. However, the impact on the
leakage is difficult to establish.

One track that may be explored is the way integer pipelines are implemented.
However, documentation is not always accessible. For example, the ARM Cortex-
A8 architecture (which is not targeted in the paper) implements two ALUs, but
only one implements a multiplier (see [4]). Consequently, depending on how the
processor is able to fill both of the ALUs (e.g. because of data dependences or the
number of successive multiplication in the program) may affect the amount of
processing done at a given time. Similar design choices for the targeted processors
may explain some leakage variations.

4 Lattice Attack on ECDSA

Monitoring EM radiation during EC scalar multiplication, it may be possible to
recover the succession of doublings and additions. With Left-to-Right scalar mul-
tiplication, this information is sufficient to recover the private key from a single
signature. However, this approach does not work against Bouncy Castle, which
implements the efficient “window NAF” algorithm. A side-channel attacker can-
not distinguish which of several precomputed points is added at each iteration.
On the other hand, the number of zeros between successive additions (i.e. the
number of doublings minus one) can be recovered using Simple Power Analy-
sis. In particular, the number of doublings following the last addition reveals
the number of zeros in the least significant bit positions (because the LSB of a
window is always 1). Using that information, one can mount a full key-recovery
attack using well-known lattice-based techniques.

Indeed, in ECDSA and other Schnorr-like signature schemes, an attacker
who obtains sufficiently many signatures for which he knowns the least signifi-
cant or most significant few bits of the random nonces k can recover the private
signing key. Recovering this key from the signatures and the known bits of the
nonces reduces to an instance of Boneh and Venkatesan’s hidden number prob-
lem (HNP). The best-known variant of this attack is due to Howgrave-Graham
and Smart (and was later revisited and made more precise by Nguyen and
Shparlinski), and uses lattice reduction to solve the underlying HNP instance.
It is recalled in the full version of this paper [6]. In particular, it yields a key-
recovery attack against physical implementations of ECDSA signatures in which
the side-channel leakage of scalar multiplication can be used to reveal the least
or most significant bits of the nonce.

However, the side-channel attack does not typically apply to ECDSA signa-
tures on Koblitz curves. The scalar multiplication on such curves is normally
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carried out using the τ -adic expansion of the nonce k. Therefore side-channel
leakage can at best reveal the top or bottom bits of that τ -adic expansion, which
do not determine the top or bottom bits of (the binary representation of) k itself.

In Sect. 4.2, we describe how a similar attack can be mounted in the setting of
Koblitz curves nonetheless. More precisely, we show that the top (or bottom) bits
of the τ -adic expansion of the nonce can also be used to recover the signing key.
The problem it reduces to, can be seen as a higher-dimensional generalization
of HNP that can also be solved using lattice reduction.

4.1 ECDSA over Prime Fields

From previous section, we have shown that we are able to visualize the inner
structure of NAF representation of the secret nonce k involved in the computa-
tion of an ECDSA signature. Formally if k =

∑
i αi2i is such a NAF representa-

tion of the secret k, then one can determine the positions i for which the NAF
digit αi is valid, otherwise said, is not zero. Although the values of the digits
αi are unknown, this gives us a large amount of information. In particular, it is
sufficient to exploit the known position of the last digit: let � be the position of
the last digit in the NAF representation of k, then we know that the last � digits
in the binary representation of k, are a one, followed by d − 1 zeros.

Knowing the bits of the nonces, we can reduce the problem of recovering the
secret key x to solving the HNP, which can be described as follows: given (ti, ui)
pairs of integers such that

|xti − ui|q ≤ q/2�+1,

where � denotes the number of bits we recover, x denotes the hidden number we
are looking for and | · |q denotes the distance to qZ, i.e. |z|q = mina∈Z |z − aq|.
Such problem can be casted as a Closest Vector Problem (CVP) in a lattice and
the LLL algorithm can be used to solve it in practice very efficiently. We recall
the basic attack in the full version of this paper [6] and it can be found in [23].
The main advantage of this technique is that the number of signatures required
is usually very small, but it cannot be used all the time when the number of
bits becomes very small. Indeed, in this case for 160-bit modulus for instance,
Liu and Nguyen used BKZ 2.0 to solve such lattice and the dimension becomes
very high for lattice algorithms [18]. Following the steps used in [7,13,22] we are
able to perform the recovery of the signer’s ECDSA secret key. In our case we
chose the elliptic curve P-256 of the NIST. Using the method described in [7],
we choose to solve the HNP problem using the Shortest Vector Problem (SVP)
on some lattice. Therefore by building an adequate matrix and reducing it using
the BKZ algorithm, we find a vector, one of its coordinates being the secret key.

Experimental Results. To estimate how many signatures we need to process
the attack with a high probability of success, we first performed simulated signa-
tures and solved the problem with a Sage (version 6.2) BKZ algorithm implemen-
tation. We want to use as much information as we can and we use the technique
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developed in [7] to this end. Usually, the lattice takes only signatures that have
at least � bits and remove the other ones. Here, we want to extract as much
information as it is possible and so we put on the diagonal the number of bits
we recover. As in [7], we made experiments by varying the minimum value z of
the parameter � of the signatures selected to join the computation of the attack.
And then we discovered as a rule of thumb, that for a 256-bit secret key, and
a probability of success being nearly 100 %, the number of selected signatures
should be above 200

z , and therefore statistically, the total number of signatures
to be processed should be above 200

z 2z. As the complexity of the attack increases
with the dimension of the matrix, we found that the best compromise was z = 2.
Therefore, we processed approximately 500 signatures from which we selected
only those for which � was 2 or above, and they were 115 of such. As expected,
the SVP attack gave us the secret key in less than five minutes on a common
desktop.

4.2 New Attack on Koblitz ECDSA

Consider a Koblitz curve E with a subgroup G of large prime order q, and let
τ be the eigenvalue of the Frobenius endomorphism of E acting on G, seen as
a quadratic integer (depending on E, we have τ = ±1+

√−7
2 ). Suppose that we

are given t ECDSA signatures (ri, si) in G, with random nonces ki for which the
top coefficients of some (signed) τ -adic expansion is known (the attack would
work similarly for the bottom coefficients). Without loss of generality (up to
the obvious affine transformation), we may assume that these known bits are all
zero, so that the ki’s can be written in the form:

ki = ki,0 + ki,1τ + · · · + ki,�−1τ
�−1 ∈ Z[τ ]

where the coefficients ki,j belong to {−1, 0, 1}, and � is some fixed integer length
(the difference between the maximum length of the τ -adic expansions and the
number of known zero nonce bits). Moreover, we can decompose ki in the form
ki = ui + viτ where ui, vi are the rational integers given by vi = (ki − ki)/

√−7
and ui = ki −viτ . Due to the fact that |τ | =

√
2 (which is crucial for our attack),

it is easy to see that both ui and vi satisfy a bound of the form O(
√

2
�
), and in

particular, there exists a constant c > 0 such that u2
i + v2

i ≤ c · 2� for all ki. A
discussion of how to estimate the constant c in cases of interest is provided in
the full version of this paper [6].

Now for each signature (ri, si), if we denote by hi the hash value of the
corresponding message, the ECDSA verification equation ensures that kisi ≡
hi + xri mod q, which we can rewrite as

x ≡ Aiui + τAivi + Bi mod q (3)

in terms of the known constants Ai = si/hi and Bi = −ri/hi in Z/qZ. Note that,
in view of the bound on u2

i + v2
i , (ui, vi) is contained in a disc of radius

√
c · 2�

centered at the origin, and the right-hand side of (3) can thus take
(
1+o(1)

)
πc·2�
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distinct values at most. As a result, as soon as � < log2(q/πc), each such equation
should reveal some information about x, and we should be able to recover x when
t is large enough, much in the same way as in the HNP setting.

We show how this can be done with lattice reduction (at least heuristi-
cally, although in principle the rigorous approach of Nguyen–Shparlinski can be
extended to this setting as well). Let the vector u = (u1, . . . , ut, v1, . . . , vt, w) ∈
Z
2t+1, where w is chosen as 	

√
c · 2�−1
. Since ‖u‖ ≤ √

t · c · 2� + w2 ≤√
c(t + 1/2) · 2�/2, its norm is bounded. Equation (3) can be rewritten in vector

form as:
x ≡ 〈Ai,u〉 mod q

where Ai = (0, . . . , 0, Ai, 0, . . . , 0, τAi, 0, . . . , 0, Bi/w) mod q ∈ Z
2t+1 has three

nonzero components in positions i, t+ i and 2t+1. In particular, u is orthogonal
modulo q to each of the vectors A1−A2,A2−A3, . . . ,At−1−At and it is short.
We can therefore hope to recover it using lattice reduction.

More precisely, consider the lattice L ⊂ Z
2t+1 of vectors that are orthogonal

modulo q to each Ai −Ai+1, i = 1, . . . , t−1, and whose last component is a mul-
tiple of w. L is the kernel of the obvious linear map Z

2t+1 → Z/wZ× (Z/qZ)t−1,
and that map is surjective with overwhelming probability (since the vectors Ai

themselves are linearly independent modulo q with overwhelming probability on
the choice of the randomness in signature generation). Therefore, L is full rank
and its volume is given by vol(L) = #(Z2t+1/L) = #Z/wZ×(Z/qZ)t−1 = wqt−1.
If the vector u ∈ L is significantly shorter than the shortest vector length pre-

dicted by the Gaussian heuristic (namely
√

2t+1
2πe · vol(L)1/(2t+1)), we should be

able to recover u as the shortest vector in L (up to sign) using lattice reduction.
This condition can be written as:

√
c(t + 1/2) · 2�/2 �

√
2t + 1
2πe

· (
wqt−1

)1/(2t+1)

or equivalently:

� � log2(q/cπe) − 1
t

· log2
(
q
√

2πe
)

which means that recovery is possible for t large enough when � � log2(q/cπe)
(which is quite close to the “information theoretic” bound mentioned above!),
and in that case, the condition on t for recovery becomes:

t �
log2

(
q
√

2πe
)

log2(q/cπe) − �
. (4)

We find that this condition is well-verified in practice, and once u is recovered,
it is clearly straightforward to find the signing key x.

Finally, we mention that, to obtain a short basis of L in practice, we use
standard orthogonal lattice techniques: we apply lattice reduction to the lattice
generated by the rows of the matrix of dimension 3t written by blocks as:
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⎛

⎜
⎜
⎜
⎝

κq 0 0
. . .

...
0 κq 0

κ(A1 − A2) · · · κ(At−1 − At) I

⎞

⎟
⎟
⎟
⎠

W

where the Ai’s are column vectors, I is the identity matrix of dimension 2t + 1,
κ is a suitably large constant, and W is the diagonal matrix diag(1, . . . , 1, w) to
account for the divisiblity condition on the last coefficient of vectors in L.

Experimental Results. We implemented our attack in Sage using BKZ-25 lat-
tice reduction, and tested it against the NIST K-163 Koblitz curve, which has a
group order of 162 bits, with random unsigned Koblitz expansions. Experimental
results are collected in Table 1. As can be seen from that table, the condition on
the number t of required signatures is very consistent with (4) with c ≈ 0.30 (as
discussed in the full version of this paper [6]). It is easy to attack up to 6 bits of
bias.

Table 1. Implementation of our new attack against Koblitz curve K-163, using Sage’s
BKZ-25, run on single core of a Core i5-3570 CPU at 3.4 GHz.

Bits of bias (log2 q − �) 9 8 7 6

Predicted t (Eq. (4)) 22 25 30 36

Experimental t 21 25 31 39

Lattice dimension 63 75 93 117

CPU time (s) 2.4 4.7 17 102

Practical SCA. We show on Fig. 7(a) and (b) that the Frobenius operation is
distinguishable on Qualcomm MSM 7225. On Fig. 7(a), there are five Frobenius
in the first succession of operations and four in the two others. Comparatively,
there is one addition of points between each succession of Frobenius. The ratio
of timing execution between addition and doubling is worse on prime field (see
Fig. 4(a)). The Frobenius on Koblitz curves is implemented with pre-computed
tables in Bouncy Castle 1.50. Thus, the leakage observed is different from the
arithmetic implementations observed on prime field. The twofold repetition of
pattern leakages in each Frobenius method is linked to the affine coordinate
representation of elliptic curve points.

5 Use Case: Bitcoin Wallet

We present a significant use case, namely the Bitcoin crypto-currency [8,20],
where our Koblitz cryptanalysis is of practical interest. A Bitcoin wallet is an
Elliptic Curve key over the Koblitz curve Secp256k1. The knowledge of the
private key allows to spend the money stored in the digital wallet. Therefore,



250 P. Belgarric et al.

Fig. 7. (a) Succession of Frobenius and one addition between them (STFT, window
length = 16000pts, Hamming window, Qualcomm MSM 7225 ) – (b) Zoom on a suc-
cession of four Frobenius operations (STFT, window length = 16000pts, Hamming
window, Qualcomm MSM 7225 )

eavesdropping some transactions may lead to the mathematical cryptanalysis
presented in Sect. 4.2. Android wallet apps are generally lightweight clients based
upon a Simplified Payement Verification (SPV) mode. These apps are usually
developed upon bitcoinj which is a Java implementation of this lightweight mode.
The core Cryptography of the library is based upon Bouncy Castle. Thus, the
practical leakages observed in Sect. 4.2 make many Bitcoin users in danger.

To support our claim, a malicious NFC reader could be used by a shop where
the Victim goes a few dozen of times and pays with Bitcoin stored in its smart-
phone. This reader could improve our lab synchronization through legitimate
contactless channel. In addition, the reader would contain a hidden EM probe,
thus monitoring a signature each time the Victim comes to the shop. The attack
is still theoretical but the difficulty to catch the Attacker after theft evidence
may motivate malevolent people. So, to become a sound technology in smart-
phone payement, crypto-currencies may integrate side-channel countermeasures,
an overview of which is provided in the full version of this paper [6].
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Abstract. At Africacrypt 2010, Medwed et al. presented Fresh Re-
Keying as a countermeasure to protect low-cost devices against side-
channel analysis. They propose to use binary-field multiplication as a
re-keying function. In this paper, we present a new side-channel attack
on this construction (and multiplication in general). By using template
attacks and the simple algebraic structure of multiplication, the problem
of key recovery can be casted to the well known Learning Parity with
Noise problem (LPN). However, instead of using standard LPN solving
algorithms, we present a method which makes extensive use of bit reli-
abilities derived from side-channel information. It allows us to decrease
the attack runtime in cases with low-to-medium error probabilities. In a
practical experiment, we can successfully attack a protected 8-bit Fresh
Re-Keying implementation by Medwed et al. using only 512 traces.

Keywords: Side-channel analysis · Multiplication · LPN · Linear
decoding

1 Introduction

Binary-field multiplication, while not cryptographically strong in itself, offers
nice properties for the design of cryptographic systems. For instance, it provides
good diffusion and is, due to its linearity, very easy to mask and thus to protect
against side-channel analysis (SCA) attacks.

These properties led Medwed et al. [16] to use it as a re-keying function in
their Fresh Re-Keying scheme. The basic idea of Fresh Re-Keying is to combine
an encryption function f , such as the AES, with a re-keying function g - namely
said multiplication. For every invocation of f , first a fresh session key is derived
by using the re-keying function g with a master key and a public random nonce.

Since no such session key is used twice in the encryption function f , Medwed
et al. argue that it suffices to protect it against Simple Power Analysis (SPA)
type attacks. However, the definition of SPA security is relatively loose. Usually
it implies that a secret, in this case the session key, cannot be recovered when
using a single trace. Yet, due to the simple algebraic structure of the re-keying
c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 255–270, 2016.
DOI: 10.1007/978-3-319-29485-8 15
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function, very limited information on this secret might be sufficient for master-
key recovery.

In fact, leakage of a single session-key bit over multiple invocations allows
to trivially reveal the master key. The remaining security of each session key
however is still 127 bit, which can still be considered SPA secure in the clas-
sic definition. Thus, the required side-channel resistance of f still guaranteeing
security of the master key is unclear.

The Attack of Beläıd et al. The above problem relates to the work of Beläıd
et al. [1,2], where they present a side-channel attack on binary-field multipli-
cations. Their attack applies to settings where a constant secret, i.e., a key, is
multiplied with several known values. This is the case with Fresh Re-Keying and
the AES-GCM, an authenticated encryption mode.

Beläıd et al. observe that a binary-field multiplication can be written as a
matrix-vector product, or system of linear equations, over bits. If one can recover
the right-hand side of this system, e.g., by using side-channel analysis, then it
can be trivially solved for the key. Beläıd et al. assume that the side-channel
adversary is able to observe a noisy Hamming weight of the n-bit multiplication
result, but does not have access to leakage of intermediate or partial results.
When observing a low or high Hamming weight, i.e., smaller or greater than
n/2, they assume that all bits of the multiplication result are 0 or 1, respectively.
The introduced errors in the system of linear equations do not allow solving by
Gaussian elimination.

The problem of solving such erroneous systems is known as Learning Parity
with Noise (LPN). The algorithms used to solve this problem tend to require a
high amount of samples, which is a scarce resource in the side-channel context.
In order to decrease this quantity, Beläıd et al. first discard observations with
Hamming weight near n/2 to decrease the error probability. Then, they use a
new LPN algorithm based on LF2 by Levieil and Fouque [13] to recover the key.

Our Contribution. In this work, we present a new side-channel attack on
Fresh Re-Keying. Similarly though, our attack also applies to other scenarios
using binary-field multiplication, such as AES-GCM.

Our attack makes use of side-channel templates, i.e., device profiling. These
templates are used to derive reliability information on each of the session-key
bits. We then present a new algorithm aimed at recovering the key when given
an erroneous system of equations. This algorithm makes extensive use of the fact
that, unlike in standard LPN, we possess said reliability information.

Our analysis suggests that, when compared the previous work, the presented
attack can decrease runtime in practical settings. Namely, it performs well if the
adversary is able to gather enough LPN samples exhibiting a low-to-medium
error probability (e.g., up to 0.2). This makes it particularly well suited for
adversaries having access to leakage of partial multiplication results, such as
individual bytes.

We use our algorithm to mount an attack on an 8-bit software implementa-
tion of Fresh Re-Keying presented by Medwed et al. [15]. Their implementation
uses shuffling as means to protect the AES against SPA and algebraic side-
channel attacks. We use templates to circumvent this countermeasure without
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making any major assumptions on the implemented shuffling algorithm. We can
successfully attack this implementation while only requiring a very small number
of traces.

Outline. In Sect. 2, we describe Fresh Re-Keying and side-channel template
attacks. Then, in Sect. 3 we define the Learning Parity with Noise problem and
discuss algorithms aimed at solving this problem. After having introduced the
groundwork, we give an attack outline and discuss the first steps in Sect. 4. In
Sect. 5, we present our attack algorithm. Finally, in Sect. 6 we show an analysis
of the attack performance by presenting outcomes of real and simulated experi-
ments.

Notation. We now introduce some notation that is used throughout this paper.
We denote bit vectors of length n as GF(2n), 〈·, ·〉 denotes the binary inner
product of the two such vectors.

We denote the probability of an event e as P (e). For a random variable X,
we use E(X) to denote its mean. In this paper, we use side-channel information
to derive the probability that a bit b is set to 1. We write pb = P (b = 1). We use
τb as the respective bias, i.e., τb = |pb − 1/2|. When performing a classification,
we set b = �pb�, with �·� the rounding operator. This classification has an error
probability εi = 1/2 − τi.

The above is exactly the Bernoulli distribution with parameter pb, we denote
it as Ber(pb). We also make use of the so-called Poisson binomial distribu-
tion. This distribution describes the sum of N independent Bernoulli trials,
where each trial has a possibly different Bernoulli parameter pk. Given the vec-
tor (p1, . . . , pN ), the respective density function can be computed by using the
closed-form expression by Fernandez and Williams [10].

2 Fresh Re-Keying and Template Attacks

We now describe Fresh Re-Keying in more detail. Additionally, we recall side-
channel template attacks. They will later allow us to derive probabilities for bits
of the session key.

2.1 Fresh Re-Keying

Medwed et al. [16] introduced Fresh Re-Keying as a method to protect low-cost
devices, such as RFID tags, against side-channel and fault attacks. The idea is
to combine an encryption function f , e.g., the AES, with a re-keying function g.
Every plaintext is encrypted using a fresh session key k∗. This k∗ is obtained by
invoking the re-keying function g with a fixed master key k and an on-tag gener-
ated public nonce r. This basic principle is shown in Fig. 1. Medwed et al. claim
that this approach is particularly suited for challenge-response authentication
protocols.

Medwed et al. claim that, as session keys k∗ are never reused, it suffices to
protect the encryption function f against Simple Power Analysis (SPA) type
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Fig. 1. Schematic of Fresh Re-Keying

attacks. The re-keying function g still requires protection against more powerful
DPA-like attacks, but it does not need to be a cryptographically strong function.
Instead, it should provide good diffusion and it should be easy to protect against
DPA. They propose to use the following modular polynomial multiplication over
GF(28):

g : (GF(28)[y]/p(y))2 → GF(28)[y]/p(y) : (k, r) → k ∗ r (1)

The polynomial p(y) = yd+1, with d ∈ {4, 8, 16}. We solely use p(y) = y16+1,
as it is the most difficult to attack. For multiplication in GF(28), we use the AES
polynomial, i.e., GF(28) = GF(2)[x]/(x8 + x4 + x3 + x + 1).

The function g can be written as a matrix-vector product over GF(28). With
ri and ki (0 ≤ i < 16) the bytes of the nonce and master key, respectively, the
bytes of the session key k∗ can be computed according to Eq. (2). Analogously,
multiplications in GF(28) can be written as matrix-vector products over GF(2).
Thus, g can be restated as a linear system over bits.
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While this simple and regular structure makes implementation and masking
easy, it is a potential risk when considering algebraic side-channel analysis. In
fact, Medwed et al. were well aware of this threat, and they claim that cheap
countermeasures are sufficient for protection. Concretely, they present a pro-
tected implementation of fresh re-keying running on an 8-bit microcontroller [15].
The re-keying function g is protected by means of masking and shuffling, whereas
the encryption function f uses just the latter.

Fresh Re-Keying and Birthday-bound Security. Dobraunig et al. [8]
showed that the Fresh Re-Keying scheme by Medwed et al. offers only birthday-
bound security. They present a chosen-plaintext key-recovery attack having a
time complexity of only 2 · 2n/2 (instead of 2n) for an n-bit key. However, their
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attack requires to pre-compute and store 2n/2 (key, ciphertext) pairs. Addition-
ally, the attacked device, e.g., a low-cost tag featuring high execution times,
needs to be queried 2n/2 times. These drawbacks make the attack impractical if,
like in this paper, 128-bit AES is used. However, for weaker primitives, such as
80-bit PRESENT, the attack might be feasible.

In a follow-up work, Dobraunig et al. [9] proposed ways to provide higher
security levels with Fresh Re-Keying. Yet, when using the same re-keying func-
tion g our attack still works. Thus, we omit the details of their work and focus
on the original construction of Medwed et al.

2.2 Template Attacks and Leakage Model

Throughout this paper, we make extensive use of side-channel template
attacks [6]. Instead of assuming a predetermined power model, such as Hamming-
weight leakage, these attacks first profile the side-channel information of the
attacked device. This requires possession of an identical device which is used for
this profiling and whose key is already known.

When using an 8-bit device running the AES, an exemplary template attacks
work as follows. One first profiles the side-channel information (on the profiling
device) for each of the 256 possible inputs of the S-box. Then, templates typically
following a multivariate Gaussian distribution are built. In the attack phase, each
template is matched with the attack trace l coming from the attacked device.
This results in a vector of conditional probabilities p(s = v|l), 0 ≤ v < 28, with
s the S-box input. Note that side-channel leakage can vary between otherwise
identical devices. This might lead to inaccurate templates and conditional prob-
abilities. We briefly discuss the impact on our attack later on.

For simulation of leakage, we use the common assumption that the device
leaks a noisy Hamming weight of the processed data. The noise is assumed to
be additive Gaussian with zero mean and variance σ2

N. Thus, for a bit vector
z ∈ GF(2n), we assume leakage L(z) = HW(z)+ε, with ε ∼ N (0, σN). A common
metric for the quality of the traces is the signal-to-noise ratio SNR = σ2

S/σ2
N [14].

In the Hamming-weight leakage model, the signal variance σ2
S = n/4.

3 LPN and Solving Algorithms

Side-channel attacks on multiplication relate to the well known LPN problem.
In this section, we restate its definition and give a brief overview of algorithms
aimed at solving this problem. We then give a more in-depth explanation of LPN
algorithms originating from coding theory.

3.1 Learning Parity with Noise

We now recall the formal definition of LPN (or more correctly of LPN’s search
version).
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Definition 1 (Learning Parity with Noise). Let k ∈ GF(2n) and ε ∈ (0, 0.5)
be a constant noise rate. Then, given ν vectors ai ∈ GF(2n) and noisy observa-
tions bi = 〈ai,k〉+ei, the ai sampled uniformly, and the ei sampled from Ber(ε),
find k.

The first algorithm to solve this problem in sub-exponential time was pre-
sented by Blum, Kalai, and Wassermann (BKW) [4]. Their algorithm was later
improved by, e.g., Levieil and Fouque [13] and by Guo et al. [12]. A major draw-
back of BKW and its variants is the high number of required LPN samples ν.
Especially in a side-channel context, this resource is somewhat scarce. This is
even more so the case for Fresh Re-Keying, as it is targeted at low-resource
devices typically featuring high execution times.

Connection to Random Linear Codes. The above LPN problem can be
restated as decoding a random linear code over GF(2) [17]. Let A = [ai]0≤i<ν

be the matrix whose rows are the ai. Further, let b and e be row vectors of
the bi and ei, respectively. Then, one can think of A as generator matrix of a
random linear code. Decoding requires to find the message k given a noisy word
b = kA + e, which is exactly search LPN.

Linear codes are characterized by the three main parameters [n, k, d], with n
the code length, k the code dimension, and d the minimum Hamming distance
between any two valid codewords. In the case of LPN, the dimension k is equal to
the size of the secret. For random linear codes, the obtained code rate R = k/n
is, with very high probability, close to the Gilbert-Varshamov bound [7]. That
is, R ≈ 1 − H(d/n), with H the binary entropy function. The code length n is
chosen according to this bound, with d/n ≈ ε.

Decoding random linear codes is an NP-hard problem, and decoding algo-
rithms feature a runtime exponential in the code length. However, the sample
requirements are much smaller when compared to BKW-style algorithms. We
now give a brief introduction.

3.2 Algorithms for Decoding Random Linear Codes

The fastest algorithms for decoding random linear codes rely on Information-
Set Decoding (ISD). First proposed by Prange in 1962 [18], these algorithms
have quite a long history, with probably the most notable version being Stern’s
algorithm [19].

Syndrome Decoding. Before discussing decoding algorithms in detail, we
briefly describe syndrome decoding. For a (k × n) generator matrix G in stan-
dard form, i.e., G = (Ik|Q), the so-called parity-check matrix H is given as
H = (−QT |In−k), with Q a (k × (n − k)) matrix. The set of valid codewords
C forms the kernel of the check matrix, i.e., Hc = 0,∀c ∈ C. For a noisy word
y = c + e, we have Hy = He = s. s is called the syndrome, it only depends on
the error e.

For decoding, we now want to find an error term e with some maximum
weight w such that He = s. In other words, we are searching for at most w
columns of H summing up to s.
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Stern’s Attack (and Improvements). We now review Stern’s algorithm. This
algorithm takes as input a check matrix H, a syndrome s, and a maximum error
weight w.

In a first step, Stern partitions the n columns of the parity-check matrix H
into two distinct sets I,Q. I is made up of (n − k) randomly selected columns
which must form an invertible subset. Q is comprised of the remaining k columns.
For simplicity, we assume that the columns of the check matrix are permuted
such that H′ = (Q|I). Note that such a permutation also affects the syndrome
and the position of error bits.

Next, he selects a size � subset Z of I, where � is an algorithm parameter. Q
is randomly split into two size k/2 subsets X ,Y. The second part of H′ is then
transformed into identity form by applying elementary row operations. Stern
then searches for (permuted) error terms e with a maximum weight w having
exactly p nonzero bits in X , p nonzero bits in Y, no nonzero bits in Z, and at
most w − 2p in the remaining columns. This is visualized in Eq. (3). This search
uses a collision technique. If it fails, then the algorithm is restarted by selecting
new Q and I. For more details on the algorithm we refer to [3].

H′ = (Q|I) =
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⎜
⎜
⎝

k/2: p err.
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Canteaut and Chabaud [5] proposed an improvement of this algorithm, which
was later refined by Bernstein et al. [3]. Instead of choosing Q, I randomly at
each iteration and spending considerable time to transform H′ to the desired
form, one can use a simple column swapping. In each iteration, c elements of Q
are exchanged with c from I, where c is an algorithm parameter.

Stern and Reliability. The possibility of enhancing the performance of
Stern’s algorithm by using reliability information was briefly mentioned by
Valembois [20]. However, thus far it was not used in a cryptographic or side-
channel context. Also, it lacks proper description and an in-depth runtime
analysis.

4 Attack Outline and Setup

In this section, we give a brief outline of our attack. Then, we describe in more
detail the attack setup, i.e., how we compute bit probabilities from side-channel
information. This is done for both the 8-bit leakage case and for the 128-bit case.

4.1 Outline

Before diving into the details, we now give a brief outline of our attack on Fresh
Re-Keying. Here we focus on attacking the 8-bit software implementation by
Medwed et al. [15].
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In the very first step, we perform a template attack on the multiplication out-
put k∗. Considering that the re-keying function g is (supposedly) implemented
in a DPA-secure fashion, e.g., features masking and shuffling, attacking the mul-
tiplication result k∗ directly seems unnecessarily difficult. Instead, we make use
of the fact that k∗ is used as (session) key in the following invocation of the
AES. Thus, we use templates on the first-round S-box.

We then use the outcome of the template matching to derive a probability pb

for each session-key bit b. These probabilities are then used as input to our attack
algorithm, which starts off by performing a filtering on the samples. Only those
bits with low error probability are kept, while all others are discarded. The
remaining equations are finally fed to a decoding algorithm, which solves the
LPN problem and thus, allows master-key recovery. This algorithm is tweaked
to use the reliability of the samples.

Why Decoding? Decoding is not the fastest way of solving LPN. However,
in contrast to BKW-style algorithms it has very low sample requirements. In
conjunction with filtering, this allows us to keep only the few best samples.
Thus, we can reach a low average error rate. With BKW on the other hand, the
higher number of required samples results in an increased expected error rate.

4.2 Fresh Re-Keying and 8-Bit Leakage

For the 8-bit implementation of Fresh Re-Keying, we perform a template attack
on the first round of the AES. For each session key byte k∗

i , the vector of con-
ditional probabilities P (k∗

i = v|l)0≤v<28 is converted to bit-wise probabilities
pi,j =

∑
v:v[j]=1 P (k∗

i = v|l), with v[j] the j-th bit of v.

Circumventing the Shuffling Countermeasure. As pointed out in Sect. 2.1,
Medwed et al. [15] propose to use shuffling as a simple protection mechanism
against algebraic attacks.

We circumvent this countermeasure by using a particular chosen constant
plaintext m = (00)||(FF)15, i.e., the first byte is set to 0 and all other bits
are set to 1. Assuming a Hamming weight (or distance) leakage characteristic of
the device, this particular choice maximizes the difference in power consumption
during the initial AES key addition. By using templates on said key addition, it is
possible to reveal the shuffled position of the 0 byte with probability significantly
better than guessing.1 In our attack, we use only the most likely position and
thus can use 8 linear equations per trace. The bias of the corresponding S-box
bits is multiplied with the probability of the classified shuffling position to obtain
the final bias τ .2

The assumption of chosen plaintexts is reasonable in this context. The main
proposed use case of Fresh Re-Keying is challenge-response authentication. In
this setting, the attacked device chooses the nonce r, and the reader/attacker

1 This method is only of limited use in a standard DPA, where the device uses a fixed
key, as it strictly limits the number of observable plaintexts per key byte.

2 This assumes that there is no reshuffling between key addition and S-box processing.
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selects the challenge m. Observe that this attack technique does not make any
assumptions on the implemented shuffling permutation-generation algorithm.

4.3 128-Bit Leakage

In the setting considered by Beläıd et al. [1], the attacker does not have access to
partial results and can only observe the Hamming weight of the multiplication
output. In this case, deriving bit probabilities is trivial. For an observed leakage
HW(z), with z ∈ GF(2n), we have for each of the n bits pi,0≤i<n = HW(z)/n.

5 Using Reliability to Increase Attack Performance

In this section, we explain our new attack algorithm and thus show how reliability
information can be leveraged to reduce the computation time for the attack. First
however, we introduce a new version of LPN which better describes the problem
at hand.

5.1 LPVN: A New LPN Variant

In standard LPN (Definition 1), the error probability ε is constant for all sam-
ples. This, however, does not reflect the reality of the side-channel information,
where every LPN sample can be assigned a possibly different error probability.
We formalize this by introducing a new problem dubbed Learning Parity with
Variable Noise (LPVN).

Definition 2 (Learning Parity with Variable Noise). Let k ∈ GF(2n) and
ψ be a probability distribution over [0, 0.5]. Then, given ν vectors ai ∈ GF(2n),
v error probabilities εi, and noisy observations bi = 〈ai,k〉 + ei, the ai sampled
uniformly, the εi sampled from ψ3, and the ei sampled from Ber(εi), find k.

Casting LPVN to LPN is possible by simply setting ε = E(εi). However, the
additional information in form of the εi allows to design more efficient algorithms.
Also, it is easy to see that with a non-zero meta-probability distribution ψ in
close vicinity of 0, the problem becomes trivial given enough samples.

5.2 Filtering

In the context of side-channel analysis, the overall average error rate E(εi) can
be expected to be high, i.e., beyond 0.25. The resulting large code length n (cf.
Sect. 3.1) might lead to excruciating decoding runtimes.

In order to cut this time down drastically, we perform a filtering of the
samples. When given a certain number ν of LPVN samples, only the n with the
lowest error probability are kept. All other samples are simply discarded. This
3 This is not entirely correct for the attack of [1], in which each sampled error rate is

applied to n samples instead of a single one. We neglect this minor difference.
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approach differs from the filtering proposed by Beläıd et al. in that we can, at
least in the 8-bit setting, filter individual bits. For 128-bit leakage however, the
filtering methods are equivalent.

The number of available samples ν plays a crucial role in the expected attack
runtime. By increasing ν, the quality of the best samples is also expected to
rise. This in turn decreases the required code length n and the runtime of the
decoding algorithm. Hence, a trade-off between the number of samples ν and
computational complexity is possible. This is in stark contrast to standard LPN,
where the decoding runtime is mostly independent of the number of samples.

Choosing the Code Length n. Thus far, we did not address the problem of
selecting the code length n. In a heuristic approach, we choose the smallest n
such that R = k/n ≥ 1 − H(d/n). We set d to the 75 % quantile of the error
distribution function (computed using the Poisson binomial distribution) for the
current n.

5.3 Using Reliability in Stern’s Attack

After filtering, the n remaining samples are used as input for Stern’s algorithm.
More concretely, we use the improved version described by Bernstein et al. [3].
This algorithm does not directly cope with reliability information. Hence, by
setting bi = �pi� a classification is performed.

Instead of discarding the reliability information at this point, we use it to fur-
ther speed up the decoding process. Recall that the attack described in Sect. 3.2
involves a column-swapping step. We now tweak the algorithm by replacing the
uniform selection of the swapped columns with a reliability-guided one. Goal is
to minimize the expected error in Q, while still assuring a high randomness in
the chosen columns.

Column-Swapping Procedure. The probability that a column t ∈ Q is dese-
lected in the next step is set to be directly proportional to its error probability
εt, i.e., P (t) = εt/

∑
t∗∈Q εt∗ . Analogously, we use the squared bias to select the

new column, i.e., for every u ∈ I, P (u) = τ2
u/

∑
u∗∈I τ2

u∗ . Experimentally we
found that this combination gives the best performance.

We use rejection sampling in order to sample from these continuously chang-
ing probability density functions. Rejection sampling is a basic method to gen-
erate samples from a target probability distribution f(x) when given sam-
ples from a different distribution g(x). Concretely, we sample a t ∈ Q and a
u ∈ [0,max0≤i<n(εi)] uniformly and accept t if u < εt. Note that computation
of the normalized probabilities P (t) is not required for this method.

Runtime Analysis. The runtime of ISD algorithms is typically measured in
the number of required bit operations. As the amount of operations per iteration
of Stern’s algorithm does not change when using our tweak, we refer to [3] for
the calculation of this quantity. The number of required iterations however is
expected to decrease. We now sketch our analysis.

In a first step, for each column t we retrieve P (t ∈ Q), i.e., the average
probability of t being part of Q when using above replacement rules. This is done
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by using a modified Markov-chain analysis. Then, we compute the probability
density function for the error count for both Q and I. For that we acquire the
Poisson binomial PDF with εt · P (t ∈ Q) and εt · (1 − P (t ∈ Q)), respectively.
Finally, a Markov-chain analysis similar to [3] is used to estimate the number of
expected iterations. Due to space limitations, the detailed runtime analysis will
appear in the full version of this paper.

The memory requirements of our decoding algorithm are negligible. They are
limited to a single copy of the algorithm input per thread.

The Impact of Inaccurate Templates. As mentioned in Sect. 2.2, the leakage
characteristic of the profiling device can slightly differ from that of the attacked
device. This might lead to inaccurate templates and matching probabilities. As
long as the profiling error is not too large, the attack will still work. However,
the algorithm runtime and its analysis might suffer from inaccuracies.

6 Simulation and Practical Experiments

In order to show the real-world performance of our attack, we now present the
outcome of our practical experiments. The focus is put upon the attack on 8-bit
leakage, and more concretely on the software implementation of fresh re-keying
proposed by Medwed et al. [15]. For completeness, the complexities for attacks
on 128-bit leakage are also given.

6.1 Fresh Re-Keying on an 8-Bit Platform

We now report the outcome of both simulated and real attacks on the fresh
re-keying implementation of [15]. We use the strategy described in Sect. 4.2, i.e.,
chosen plaintexts, to counter the proposed shuffling.

It is worth mentioning that both the simulated and real attack target only
the block cipher fk∗ . Thus, it is independent of any countermeasures used to
protect the re-keying function g. Also, we do not make any assumption on the
generation of the permutation used for shuffling.

Simulation. For the simulated attack, traces according the Hamming-weight
leakage model and some chosen SNR is generated. For each leaking S-box 3
samples (corresponding to the plaintext, the S-box input, and the S-box output)
are generated. Due to the chosen plaintexts, the key is equivalent to the S-box
input. Thus, it does not reveal any further information and was not included in
simulation.

The SNRPT for plaintext leakage was chosen to be smaller than SNRSB used
for S-box simulation. This was done in order to match the characteristic of the
real device. Leakage and attack simulation was performed for two such SNR sets,
namely for (SNRSB = 1,SNRPT = 0.2) and for (SNRSB = 0.5,SNRPT = 0.2).
An estimation of the meta-probability distribution ψ(ε) is shown in Fig. 2.

Figure 3 depicts the expected attack runtime as a function of the available
traces. Solid lines denote performed experiments, whereas dots show estimates.
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Fig. 2. Meta-probability ψ for simulated traces

We also compare the runtime of our tweaked decoding algorithm described with
an untweaked version.4 When using the parameters of Fig. 3b and 212 traces,
the attack requires approximately 250 bit operations. Our attack implementation
required, on average, 4 hours to recover the key, using 6 out of 8 virtual cores
on a recent Intel Core i7 CPU.
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Fig. 3. Runtime complexity of the attack

Real Traces. We measured the power consumption of a shuffled AES software
implementation running on an AVR ATxmega256A3. Using a separate set of
200.000 profiling traces, we built Gaussian templates for each of the 256 possible
input values of the S-box and for the two chosen plaintext bytes.5 The points
of interest were chosen according to a student t-test, as proposed by Gierlichs
et al. [11]. The attack was then performed on the same device.

Figure 4 depicts the outcome of the template attack. Figure 4b shows the
estimated distribution of the confidence in the attack on the shuffling. The peak
4 Beware that due to the strong dependency on the quality of the samples and the

exponential complexity, the runtime can still vary greatly for a certain trace count.
5 For the plaintext, we only consider leakage during the key addition. The initial

operand fetching was ignored, as this can be implemented without leaking the shuf-
fling position.
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at 0 shows that there is an acceptable number of traces with high confidence in
the identified shuffling position. The overall success rate is roughly 44 %.

Figure 4a shows the resulting ψ(ε). As it turns out, the density near 0 is
relatively high. With a reasonable amount of traces, one can expect the 128 best
equations to be error free. Thus, the system can be solved by using straight-
forward Gaussian elimination.6 Still, the number of traces can be further reduced
by using our attack. As shown in Fig. 5, 512 traces are sufficient to recover the
master key in reasonable time.
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6.2 128-Bit Leakage

For completeness, we now give some runtime estimates for the setting of Beläıd
et al. In their first example, they recover a 96-bit secret with the lowest error
probability being 0.26. These numbers translate to a complexity of approxi-
mately 255 for our attack. When comparing it to the above stated runtimes, this
6 In fact, Beläıd et al. [15] present an attack on an 8-bit implementation using this

approach. However, they do not consider the shuffling countermeasure and use
Hamming-weight filtering instead of S-box templates.
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is still well within the realms of feasibility. When attacking a 128-bit secret (with
best error probability 0.28), the complexity rises to 275. Feasibility cannot be
claimed anymore in this case.

6.3 Comparison of Algorithms

We now discuss the performance increase by using reliabilities in Stern’s algo-
rithm. As can be seen above, this speed-up varies greatly. In the attack on the
real device it is substantial, whereas it becomes smaller in the simulations. All
cases share the property that the speed-up is excepted to rise for rising attack
complexity.

The most likely explanation lies in the distribution of the used εi. Simply
speaking, a higher variance in these probabilities allows a more effective selection
of the swapped columns. We can expect such a high variance if the number of
filtered samples n gets close to the number of available samples ν. This is, e.g., the
case in the attack on the real device. If, on the other hand, the probabilities are
all within a narrow region, then the tweaked algorithm is essentially equivalent
to its base version.

Comparison to Beläıd et al. We did not implement the algorithm of
Beläıd et al., thus making a detailed and fair comparison difficult. Nonethe-
less, we now try to provide a point of reference. Beläıd et al. report that the
attack on a 96-bit secret took 6.5 hours on a 32-core machine with 200 GB RAM.
When using these parameters in their runtime analysis, one gets a complexity
of roughly 244.

The same complexity is achieved when using their runtime analysis with
the parameters of Fig. 3b and 212 traces.7 For this same attack, we require 4
hours for 250 operations using 6 cores. Thus, the differing time constants in the
exponential notation cannot be neglected. This example suggests that our new
attack outperforms the algorithm by Beläıd et al. in this case. We performed
further such evaluations. They suggest that our attack performs better for cases
where the error rate of the filtered samples is low, e.g., up to 0.2, yet not low
enough to allow a trivial solution. For high error rates, such as in the 128-bit
leakage scenario, their algorithm performs clearly better.

7 Conclusion and Future Work

The results from the previous section clearly show that the simple structure of
the re-keying function makes algebraic side-channel attacks a real threat. Also, it
seems that shifting the task of DPA security to a dedicated re-keying function is
not trivial. Leakage of its output must be considered in all subsequent operations

7 Note that we already used our S-box templates and bit-wise filtering for this esti-
mation. When using the extreme Hamming weight method proposed in [1] (on 8-bit
data), then the expected error and thus runtime increases.
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and simple protection mechanisms, such as shuffling, might not be sufficient for
protection.

There exist multiple thinkable ways of protecting Fresh Re-Keying against
the presented attacks. An obvious one is to add further countermeasures to
the AES, which however increases protection overhead. Alternatively, one could
change the re-keying function g, e.g., to polynomial multiplication over a prime
field instead of GF(28).

In future work, we intend to apply the idea of using reliability to BKW-style
algorithms, such as LF1 [13]. Also, we would like to present an in-depth runtime
comparison of solving algorithms.
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Abstract. The use of Physically Unclonable Functions (PUFs) in cryp-
tographic protocols attracted an increased interest over recent years.
Since sound security analysis requires a concise specification of the
alleged properties of the PUF, there have been numerous trials to pro-
vide formal security models for PUFs. However, all these approaches have
been tailored to specific types of applications or specific PUF instanti-
ations. For the sake of applicability, composability, and comparability,
however, there is a strong need for a unified security model for PUFs (to
satisfy, for example, a need to answer whether a future protocol require-
ments match a new and coming PUF realization properties).

In this work, we propose a PUF model which generalizes various exist-
ing PUF models and includes security properties that have not been
modeled so far. We prove the relation between some of the properties,
and also discuss the relation of our model to existing ones.

Keywords: Physically unclonable function · Security model · Specifi-
cations

1 Introduction

Physically Unclonable Functions (PUFs) are functions represented by physical
objects which are mainly provided by unavoidable arbitrary variations during
the manufacturing process. PUFs can be used to secure secret key generation
and key management as an alternative to achieving this by dedicated (more
expensive) security processors, such as Trusted Platform Module (TPM) and
employing random number generation. Currently, there are three major research
topics regarding PUFs:

1. Hardware: Proposing a new construction of PUF or evaluating existing PUFs
based on implementation (FPGA, ASIC, etc.) [12,13,18,19,22,26].

2. Protocol Design: Considering a PUF as an abstract building block and propos-
ing new cryptographic primitives or protocols [4,6,7,14,21,23,29,31].

c© Springer International Publishing Switzerland 2016
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3. Modeling: Investigating theoretical perspectives on PUFs and describing a
security model [1,2,6,12,13,25,26].

In particular, we note that there have been, obviously, multiple attempts to
come up with security models for PUFs, these often aimed for specific types
of applications and/or PUF hardware types. This results in the very unsatis-
fying situation that, up to now, there is no one-for-all PUF model (or super-
model) which covers all desired properties. This deficiency has some serious con-
sequences. For example, protocols where security has been shown under different
models cannot be easily combined without requiring a new security analysis. In
the worst case, formalizations may be even incompatible, which would demand
a complete reevaluation of these parts. Another problem is that protocol design-
ers face the challenge of choosing the “right” security model among the existing
ones, and mapping models to devices is not often clear. In fact, as we will discuss,
there exist PUF-based protocols which require a selection of security properties
that are not covered by a single model yet.

Contribution

In this work, we aim at closing this gap, by comparing the various existing
models, describing a new security model which unifies and extends them, and
confront its properties against hardware devices and protocols in the field.

First, the new model covers the most relevant security properties of PUFs.
The overall situation is depicted in Table 1. Here, the columns display the con-
sidered security properties. In the upper part of the table, we mark for a variety
of security models, and which of these properties is covered by the respective
model. Each model, indeed, covers some (or all) of the following notions: suffi-
cient min-entropy of the outputs, one-wayness, unforgeability, and unclonability.
To motivate the necessity of a unifying model, in the lower part we give examples
of three previously published protocols, which security properties need to hold
for these protocols to be secure. As one can observe, some models would not be
suitable to analyze the security of some of the protocols. In fact only the model
of Brzuska et al. [6] includes all four properties.

Unfortunately, even this model is not sufficiently comprehensive. For exam-
ple, the RFID authentication scheme described in [29] requires that the PUF out-
puts are pseudorandom, a property not included into any of these models. Thus,
our model does not only unify these models but formalizes three novel security
properties: indistinguishability, pseudorandomness, and tamper resilience.

A further extension given by our model is the output distributions of PUFs.
Due to the fact that PUF outputs are noisy, all models include the notion of
intra-distance of outputs. This refers to the distance (with respect to an accord-
ing metric) between several outputs of the same PUF on the same input. How-
ever, we argue that in addition two types of inter-distance should be part of a
comprehensive security model. By inter-distance I we consider the variation of
outputs of a single PUFs when queried on multiple input while inter-distance II
is about the distance between the outputs of multiple PUFs on the same input.
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Table 1. Comparison of several existing PUF security model and overview of required
security properties for different protocol examples. One can analyze other PUF-based
schemes or protocols so that which properties are required with this table.

Security Min- One- Unforge- Unclon- Indistin- Pseudo- Tamper-

model entropy wayness ability ability guishability randomness resilience

Pappu [26] - X X - - - -

Gassend et al. [12] - - X - - - -

Guajardo et al. [13] - - X - - - -

Armknecht et al. [2] X - - X - - -

Armknecht et al. [1] X - X X - - -

Brzuska et al. [6] X X X X - - -

Maes [20] - X X X - - -

Ours X X X X X X X

Example Min- One- Unforge- Unclon- Indistin- Pseudo- Tamper-

protocols entropy wayness ability ability guishability randomness resilience

Challenge-response [26] - - X - - - -

PUF-PRF [2] X - X X - - -

RFID Authentication [29] - - - X - X -

So far, inter-distance I has been covered only by the model of Gassend et al.
[12], while inter-distance II is only part of the model by Maes [20].

Since all these properties are covered by our model, it represents the most
comprehensive model so far. We discuss the relation of our model to existing
works in more detail at the end of this paper.

Important note: We have to stress that we do not claim that a single PUF
should meet all these properties. This is clearly not the case. However, each of
the properties covered in our model has been considered in previous work or is
natural to be considered (e.g., tamper resilience). In that sense, we see our model
as the most general (i.e., a super-model) and flexible one, that when given a PUF-
based protocol requirements, allows to express the necessary security properties.

Outline. Section 2 summarizes the preliminaries. Section 3 describes our model in
detail, and explains relations between the covered security properties. Section 4
compares our model to related work, while Sect. 5 concludes the paper.

2 Notations

For a probabilistic machine or algorithm A, the term A(x) denotes the random
variable of the output of A on input x. a ← A(x) indicates the event that A

outputs a on input x the value a. When A is a set, y
U← A means that y is

uniformly selected from A. |A| ≤ poly(x) indicates that the number of elements
in A is polynomially bounded by x. When the parameter x is clear from the
context, we omit it. When a is a value, y := a denotes that y is set as a. For
two values a, a′, the expression Dist(a, a′) denotes the distance between a and
a′ according to some metrics (e.g., Hamming distance, edit distance). H̃∞(A)
indicates the min-entropy of A and H̃∞(A | B) evaluates the conditional min-
entropy of A given B.
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3 Security Model: Properties and Their Relationships

In this section, we describe our model. We start with a specification of the overall
system and then formalize various properties of PUFs which are security relevant.
A PUF is a probabilistic mapping f : D → R where D is a domain space and
R is an output range of PUF f . The creation of a PUF is formally expressed by
invoking a manufacturing process MP. That is a MP is a randomized procedure
which takes inputs from a range of parameters and outputs a new PUF. We do
not specify the input range of MP in purpose as it strongly depends on the
concrete PUF but also on the considered attacker model. For example, in the
weakest attacker model the input range of MP is empty. This would model the
case that there is one legitimate process for creating the PUF and an attacker can
only invoke exactly this procedure. The other extreme is that MP is a kind of
“universal creation process” where for any product an according parameter input
does exist. In general, one may imagine that MP represents a class of creating
processes which is parameterized. Next, we formalize the security properties with
respect to a given security parameter λ and PPT attackers (polynomial in λ).

3.1 Output Distribution

Due to the fact that PUFs have noisy outputs, considering the output distrib-
ution is important. In the following, we specify four different requirements with
respect to different aspects of the output distribution. Depending on the con-
crete application, one would have to choose a PUF where some or all of these
conditions are met. We first give a formal definition and explain its rationale
afterwards. The following definitions are parametrized by some thresholds δi,
the number of iterations t, the number of inputs �, the number of devices n, a
negligible function ε(·), and the security parameter λ.

Intra-Distance Requirement: Whenever a single PUF is repeatedly evalu-
ated with a fixed input, the maximum distance between the corresponding
outputs is at most δ1. That is for any created PUF f ← MP(param) and
any y ∈ D, it holds that

Pr
[
max({Dist(zi, zj)}i�=j) ≤ δ1 | y ∈ D, {zi ← f(y)}1≤i≤t

]
= 1 − ε(λ).

Inter-Distance I Requirement: Whenever a single PUF is evaluated on dif-
ferent inputs, the minimum distance among them is at least δ2. That is for
a created PUF f ← MP(param) and for any y1, . . . , y� ∈ D, we have

Pr
[

min({Dist(zi, zj)}i�=j) ≥ δ2

∣
∣
∣
∣

y1, . . . , y� ∈ D,
{zi ← f(yi)}1≤i≤�

]

= 1 − ε(λ).

Inter-Distance II Requirement: Whenever multiple PUFs are evaluated on
a single, fixed input, the minimum distance among them is at least δ3. That
is for any created PUF fi ← MP(param) for 1 ≤ i ≤ n and any y ∈ D, we
have

Pr [min({Dist(zi, zj)}i�=j) ≥ δ3 |y ∈ D, {zi ← fi(y)}1≤i≤n ] = 1 − ε(λ).



Towards a Unified Security Model for Physically Unclonable Functions 275

Min-Entropy Requirement: Whenever multiple PUFs are evaluated on mul-
tiple inputs, the min-entropy of the outputs is at least δ4, even if the other
outputs are observed. Let zi,j ← fi(yj) be the output of a PUF fi on input
yj where fi ← MP(param). Then

Pr

⎡

⎣H̃∞(zi,j | Zi,j) ≥ δ4

∣
∣
∣
∣
∣
∣

y1, . . . , y� ∈ D,
Z := {zi,j ← fi(yj)}1≤i≤n,1≤j≤�,

Zi,j := Z \ {zi,j}

⎤

⎦ = 1 − ε(λ)

holds for sufficiently large δ4.

Definition 1. A PUF f : D → R has (MP, t, n, �, δ1, δ2, δ3, ε)-variance if the
PUF’s output has inter and intra distances as described above, parameterized by
(MP, t, n, �, δ1, δ2, δ3).

Definition 2. A PUF f : D → R has (MP, n, �, δ4, ε)-min-entropy if the PUF
satisfies the min-entropy requirement explained above.

The intra-distance and the two metrics of inter-distance are very important
notions, crucial to ensure the correctness of schemes built on top of the PUF.
For example, if δ1 ≥ δ2 then outputs from the same inputs may exhibit a higher
distance than outputs coming from different inputs. Similarly, δ1 ≥ δ3 would
result in the situation that outputs of the same PUF have a larger distance than
outputs of other PUFs. This is, for example, critical when PUFs are used as
authenticating devices. Therefore, δ1 < δ2 and δ1 < δ3 are necessary conditions
to allow for a clear distinction between different inputs and different PUFs. These
are fundamental issues to assure the uniqueness for each output.

One popular method to assert the uncertainty of the PUF’s output is the
notion of min-entropy. For example the min-entropy is an important aspects if
combined with a fuzzy extractor [11] to ensure outputs with a sufficient level of
randomness can be reconstructed nonetheless. Consequently, Bzruska et al. [6]
included the notion of min-entropy in their model, but limited their definition to
the case that the inputs have all a certain Hamming distance, which we omit in
our model. Since the restriction of the inputs requires extra cost for the scheme
layer itself, and correlated inputs may influence the min-entropy evaluation,
we define the min-entropy for arbitrary chosen yi ∈ D. Furthermore, our min-
entropy evaluation is more general than [6], so that outputs from other devices
are also included to evaluate the conditional entropy. This is useful when we
consider a multi-party setting where each party holds his own PUF.

Next, we provide formal security definitions for PUF properties that are based
on security notions from “classical” cryptographic primitives. Throughout the
rest of the paper, we assume that the number of PUFs created by a specific
parameter via Create is polynomially bounded in λ and we simply denote the
upper bound as n. Similarly, the Response query issued by a malicious adversary
to obtain the PUF’s response is also polynomially bounded. We also assume
that intra-distance δ1 is strictly smaller than any of the inter-distances (δ2, δ3)
(except with negligible probability ε).



276 F. Armknecht et al.

3.2 One-Wayness

One of the most basic security requirements in cryptography is one-wayness.
This is formalized by the following game between a challenger and an adversary
A = (A1,A2).

Setup. The challenger selects a manufacturing process MP and initial para-
meter param. The challenger sends (1λ,MP, param) to adversary A1. In
addition, the challenger creates a list List which is initially empty and ini-
tializes two counters (c0, c1).

Phase 1. A1 can adaptively issue the following oracle queries.
– When A1 issues Create(param′), the challenger checks param′. If

param′ = param, the challenger increments c0 and creates a new PUF
fc0 ← MP(param). If param′ �= param and param′ is a valid input
to the manufacturing process, the challenger increments c1 and invokes
f ′

c1 ← MP(param′). Otherwise, the challenger responds with ⊥.
– When A1 sends Response(b, i, yj) with b ∈ {0, 1}, the challenger proceeds

as follows. If b = 0 (indicating that a correctly constructed PUF shall be
queried) and if i ≤ c0, the challenger responds zi,j ← fi(yj). If b = 1 and
i ≤ c1, the challenger responds z′

i,j ← f ′
i(yj). Otherwise, the challenger

outputs ⊥.
Challenge. When A1 finishes Phase 1, A1 sends an index i∗ ≤ c0 to the chal-

lenger and outputs state information st. Then the challenger selects y∗ U← D
and responds z∗ ← fi∗(y∗) to A.

Phase 2. Given z∗ and st, A2 continuously issues the oracle query as Phase 1.
Guess. Finally, A2 outputs y∗

1 .

The advantage of the adversary for the above game is defined by

AdvOW
A (λ, δ1) := Pr[y∗ = y∗

1 ] − (� + 1)/|D|

where � denotes the number of queries the adversary issued to the i∗-th PUF.
The adversary wins the above game if AdvOW

A (λ, δ1) > 0 holds with non-negligible
probability in λ.

In Phase 1 and 2, the adversary can submit Create(param′) to create a new
PUF. If param′ = param, a PUF is created by the default parameter originally
chosen by the challenger. Otherwise, a PUF is created with a different parame-
ter specified by the adversary to generate a malicious PUF [8,25] or bad PUF
[10,27]. A malicious PUF may leak extra information to the adversary. This is
necessary as in general, one cannot exclude that an attacker could learn valuable
information from evaluating PUF which are created with (possibly only slightly)
different parameters. The adversary can obtain the output of PUFs via oracle
query regardless of the parameter setting whenever the PUF has been created.
We note that the attack target, chosen in the challenge phase and evaluated in
the guess phase, is a PUF created by the default parameter param. As we will
see later, the concept of malicious PUFs, i.e., PUFs being created by different
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parameters, are also useful to discuss the relationship to the notion of unclon-
ability. (� + 1)/|D| gives the probability that the adversary trivially breaks the
one-wayness with random guess when we faithfully cover the noise from the
PUF; more detailed discussion is appeared in the full version of this paper.

Definition 3. A PUF provides (MP, n, �, δ1, ε)-one-wayness if for any PPT
adversary A, Pr[AdvOW

A (λ, δ1) > 0] ≤ ε(λ) holds.

3.3 Unforgeability

Many PUF-based protocols base their security on the assumption that estimat-
ing the output of a PUF should not be possible without having access to the
device. While several previous works call this notion as unpredictability, we refer
to this property as unforgeability. The main reason is that, as we will show,
it shares many similarities with the typical security notions in the context of
digital signature schemes or MACs, being Universal Unforgeability (UUF) and
Existential Unforgeability (EUF). Both notions are considered in the context of
different attack types: Key Only Attack (KOA), Known Message Attack (KMA),
and Chosen Message Attack (CMA). In some cases, One Time (OT) security is
also considered which refers to the case that the involved oracle can be queried
only once.

In our model, we adopt these established security notions for PUFs. The
EUF-CMA security game against a PUF is described by the following:

Setup. The challenger proceeds as the setup phase in the one-wayness game
and sends (1λ,MP, param) to adversary A.

Learning. A can adaptively issue oracle queries (Create and Response) as
defined in the one-wayness game.

Guess. After the learning phase, A outputs (i∗, y∗, z∗).

We disallow the adversary to submit Response(param, i∗, y∗) in the learning
phase. The advantage of the adversary is defined by

AdvEUF-CMA
A (λ, δ1) := Pr[Dist(z∗, fi∗(y∗)) ≤ δ1] − |Z ′|/|R|

where f∗
i has been produced by a challenger in the learning phase and Z ′ := {z |

zi∗ ← fi∗(y∗),Dist(zi∗ , z) ≤ δ1}. We say that the adversary wins the unforge-
ability game iff AdvEUF-CMA

A (λ, δ1) > 0 holds with non-negligible probability in λ.
A similar definition can be found in [1] but their security model considers

only PUFs which are combined with a fuzzy extractor. We do not make any
assumption on a post-processing mechanism and consider the security issue for
the PUFs itself. Therefore, we do not evaluate the equality but (appropriate) dis-
tance between z∗ and fi∗(y∗) (interestingly, the existing security models except
[1] only consider the equality against the stand-alone PUFs). Since we adopt
the intra-distance notion here, there are |Z ′| candidates for fi∗(y∗) in R. Hence,
the advantage is defined as the probability to output a candidate minus the
probability to simply pick a random element of this set.
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Definition 4. A PUF provides (MP, n, �, δ1, ε)-EUF-CMA security if for any
PPT adversary A, Pr[AdvEUF-CMA

A (λ, δ1) > 0] ≤ ε(λ) holds.

3.4 Unclonability

As the name physically unclonable function indicates, an important assumption
with respect to a PUF is that it should be hard for an adversary to come up with
two PUFs that exhibit quite similar input-output behavior. We capture this by
an unclonability game, formalized as follows:

Setup. The challenger proceeds as the setup phase in the one-wayness game
and sends (1λ,MP, param) to adversary A.

Learning. A can adaptively issue the oracle queries (Create and Response) as
defined in the one-wayness game.

Guess. After the learning phase, A outputs a triple of the form (i∗, b, j∗) with
b ∈ {0, 1} and (b, i∗) �= (b′, j∗).

The goal of the attacker is to create a clone to a PUF which stems from the
set of PUFs that have been created under the parameters param. We refer to
these as the original parameters. The first entry i∗ of the output refers to the
i∗-th PUF within this set. The other two parameters (b, j∗) are interpreted as
follows. If b = 0 then it refers to j∗-th PUF created under the original parameters
param otherwise to the j∗-th PUF created under the modified parameters. Let
fi∗ and f ′

j∗ denote these two PUFs. The adversary wins the unclonability game
if PUF f ′

j∗ performs sufficiently similar to fi∗ . More formally, the advantage of
the adversary is defined as

AdvCloneA (λ, δ1) := Pr[∀y ∈ D,Dist(fi∗(y), f ′
j∗(y)) ≤ δ1].

Definition 5. A PUF provides (MP, n, �, δ1, ε)-unclonability if for any PPT
adversary A, AdvCloneA (λ, δ1) ≤ ε(λ) holds.

Recall that an adversary may use parameters param′ for the manufacturing
process that are different to the originally used parameters param. However,
she is only successful if she can clone a PUF that results from the original
manufacturing process. On the other hand, the clone itself may result from
different parameters params′. This has some fundamental consequences. For
example, when |D| ∈ poly(λ) holds, the adversary can learn all input-output
pairs {(yj , zj)}j in the learning phase and select param′ such that the input-
output behavior includes the complete lookup table provided by {(yj , zj)}j . This
means (MP, n, |D|, δ1, ε)-unclonability cannot be satisfied in such cases. Various
memory-based PUFs belong to this class. We stress, however, that this does not
mean that such PUFs are of no value, but rather that such PUFs need to be
protected by additional measures.

The above definition aims to comprehensively capture the notion of unclon-
ability. To this end, we have to consider two relaxed notions of unclonability. One
approach is that the adversary may only create PUFs according to the original
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manufacturing process, i.e., param′ = param in all queries. We call this variant
as target unclonable. Another way to cover a relaxed notion of unclonability is
that we explicitly restrict the upper bound of oracle queries the adversary issues
in the learning phase as � < |D|. Since |D| ∈ poly(λ) holds for memory-based
PUFs, it is useful to consider this restriction. We call this variant as restricted
unclonable.

Observe that our model covers scenarios like building attacks [28,30] and
fault injection attacks [24]. The supervised learning in the machine learning
attack analyzes a set of training data as input and estimates an unobserved
output, so it is considered as an attack for the EUF-KMA security.

3.5 Indistinguishability

For many cryptographic schemes and protocols, the notion of indistinguisha-
bility is fundamental to providing security or privacy. Although it is useful for
designers to capture the notion that a PUF’s output is indistinguishable from
another output, former models ignored this aspect and mainly concentrate on the
unforgeability. Consider a simple challenge-response authentication performed
by a PUF’s input-output pair. The unforgeability against the PUF provides the
security against impersonation attack, but the privacy aspect cannot be argued
with this notion only. When a PUF satisfies indistinguishability, it means, in
principle, that no one can deduce from observed output which PUF has been
in use. Therefore, the notion of indistinguishability for PUFs is important with
respect to privacy-preserving protocols. The indistinguishability game between
a challenger and adversary A := (A1,A2) is defined as follows:

Setup. The challenger proceeds as the setup phase in the one-wayness game
and sends (1λ,MP, param) to adversary A.

Phase 1. A1 can adaptively issue the oracle queries (Create and Response) as
defined in the one-wayness game.

Challenge. The adversary submits two tuples (i∗0, y
∗
0) and (i∗1, y

∗
1) which are not

issued as Response(param, i∗0, y
∗
0),Response(param, i∗1, y

∗
1) in Phase 1. Then

the challenger flips a coin b
U← {0, 1} and responds z∗

b ← fi∗
b
(y∗

b ) to the
adversary.

Phase 2. A2 receives st and can continuously issue (Create,Response) except
Response(param, i∗0, y

∗
0) and Response(param, i∗1, y

∗
1).

Guess. Finally, the adversary outputs a guess b′.

The adversary wins the indistinguishability game if b′ = b holds with probability
more than 1/2.

While the PUF is not a deterministic function, the adversary can estimate
the challenger’s coin if he can obtain fi∗

0
(y∗

0) or fi∗
1
(y∗

1) by checking the distance
from z∗

b . Thus we cannot allow the adversary to issue Response(param, i∗0, y
∗
0)

nor Response(param, i∗1, y
∗
1). Instead, A can choose i∗0 = i∗1 to distinguish the

output difference from one device or y∗
0 = y∗

1 to consider the output variance
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between two devices with same input. The advantage of the adversary in the
above indistinguishability-based game is defined by

AdvIND
A (λ) := |2 · Pr[b′ = b] − 1|.

Definition 6. A PUF satisfies (MP, n, �, ε)-indistinguishablility if for any
PPT adversary A, AdvIND

A (λ) ≤ ε(λ) holds.

3.6 Pseudorandomness

Some protocols consider a PUF as a kind of physical pseudorandom function
that cannot be shared simultaneously by two different parties (e.g., [29]). In
fact, depending on how sensitive the PUF behavior is with respect to the phys-
ical state, such assumptions may be justified. In any case, a comprehensive
model should cover a notion of pseudorandomness. Our definition is based on
the pseudorandomness game described below:

Setup. The challenger proceeds as the setup phase in the one-wayness game
and sends (1λ,MP, param) to adversary A. In addition, the challenger flips
a coin b

U← {0, 1}, creates a list List which is initially empty and prepares
counter (c0, c1) and truly random function RF, i.e., a random oracle.

Learning. The adversary can issue (Create and Response) queries as
defined in the one-wayness game. When the challenger receives a
Response(param′, i, yj) query, the challenger performs the following :
– If param′ �= param or b = 1, performs as in the one-wayness game.

When param′ = param and i ≤ c0, responds with zi,j := fi(yj). When
param′ �= param and i ≤ c1, respond zi,j := f ′

i(yj). In other cases,
respond ⊥.

– If param′ = param and b = 0, the challenger inputs (i, yj) to RF and
obtains z′

i,j ∈ R. Then he selects some random noise and applies it to z′
i,j

to derive zi,j which satisfies Dist(zi,j , z
′
i,j) ≤ δ1. If i ≤ c0, respond zi,j .

Otherwise, output ⊥.
Guess. Finally, A outputs a guess b′.

The adversary wins the pseudorandomness game iff b′ = b.
The main difference from the canonical pseudorandom function is that the

challenger does not directly hands outputs z′
i,j which came from the truly ran-

dom function but adds some noise bounded by δ1. This additional procedure is
critical to emulate the actual PUF’s behavior from intra-distance perspective.
Our description is more suitable to minimize the gap between the real output
and ideal output. Even if b = 0, the challenger selects the same value z′

i,j for a
fixed input from RF and adds appropriate noise against z′

i,j . The advantage of
the adversary in the above pseudorandomness game is defined by

AdvPRA (λ, δ1) := |2 · Pr[b′ = b] − 1|.
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Definition 7. A PUF has (MP, n, �, δ1, ε)-pseudorandomness if for any PPT
adversary A, AdvPRA (λ, δ1) ≤ ε(λ) holds.

Sadeghi et al. [29] assumed an ideal PUF which achieves idealized behavior of
PUFs and argued that the ideal PUF must satisfies the same notion. While the
ideal PUF assumes no noise (i.e., δ1 = 0), we carefully defined this notion in a
formal way to capture the intrinsic noise observed in real PUFs.

3.7 Tamper-Resilience

One of the motivations to employ a PUF in cryptographic schemes and protocols
is to provide resilience to physical attacks at cheaper costs compared to other
measures like using a Trusted Platform Module (TPM). Though the existing
security models for PUFs do not formally define this property, physical attack
against the PUF should not leak any internal structure of the device. We con-
sider the following simulation based definition of tamper-resilience. That is, we
consider two parties: an adversary A and a simulator S. The adversary A can
issue (Create,Response) queries as in the previous definitions. Moreover, when-
ever Create(param) is launched, A receives the produced PUF fi and can analyze
it physically. That is, A can mount arbitrary physical attacks on the PUF (e.g.,
power analysis, probing attack, etc.). On the other hand, the algorithm S can
only adaptively issue (Create,Response) but does not get physical access to the
created PUFs. Both of them finally output internal state st. The idea is that if
for any adversary A who has physical access to a PUF, there exists a simula-
tor S which behaves practically the same but without physical access, then the
consequence is that the physical access does not provide any advantage. In this
case, we say that the PUF is tamper resilient. The advantage of A in the above
experiment is defined by

AdvTamp
A,S,B(λ) :=

∣
∣
∣
∣
Pr[B(1λ, st) → 1 |st ← ACreate,Response(1λ,MP, param, f1, f2, . . .)]

−Pr[B(1λ, st) → 1 |st ← SCreate,Response(1λ,MP, param)]

∣
∣
∣
∣

where B is a distinguisher who tries to distinguish st generated by A/S.

Definition 8. A function f is a (MP, n, �, ε)-tamper resilient PUF if for any
PPT adversary A, there exists a PPT algorithm S, for any PPT distinguisher
B, AdvTamp

A,S,B(λ) ≤ ε(λ) holds.

As explained above, the intuition is that the adversary A actually receives PUFs
themselves and hence can conduct different actions in principle, e.g., see the
structure of the chip and gate-delay, and launch arbitrary side-channel analysis1.
These results can be contained in st and B tries to distinguish whether st is
1 We do not limit the number of physical attacks the adversary can mount as defined

in [17]. Instead, the pamter-resilience assures there is no extra information is leaked
by the physical attacks.
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output from A or S. Therefore, if B cannot distinguish A’s output and S’s
output, this means that no additional information which is not trivially derived
from challenge-response pairs is extracted by the physical attack (regardless of
what they are).

3.8 Relationships Between the Security Properties

While each of the security properties had its own separate motivation, we show
in the following that these are not completely independent. More precisely, we
point out several relationships between these and show the following statements
as described in Fig. 1 (full formal security proofs are in the full version):

– Restricted unclonability is equivalent to EUF-CMA security
– Indistinguishability implies EUF-CMA security and one-wayness
– No implication between one-wayness and EUF-CMA security
– Pseudorandomness implies indistinguishability
– (MP, n, |R|, λ, ε)-min-entropy implies (MP, n, �, δ1, ε)-EUF-CMA security
– (MP, n, |R|, log |R|, ε)-min-entropy implies (MP, n, �, ε)-pseudorandomness.

Fig. 1. Relationship among the security properties and min-entropy. For simplicity, we
exclude several parameters corresponding to the number of devices, oracle queries and
negligible fractions except the amount of min-entropy.

4 Comparison to Existing Security Models

In this section, we compare our model to previous models [1,2,6,12,13,20,26].
An overview is given in Tables 2 and 3. Due to the page limit, we provide the
prior security definitions in the full version and discuss here only the differences
with our definition.

In all previous models PUF outputs are noisy and hence they consider their
intra-distance of outputs. However, the two metrics of inter-distance which refer
to evaluations on either multiple inputs or multiple devices are not comprehen-
sively discussed but have been considered in [12] and [20], respectively. This
is somewhat surprising, since if the intra-distance is not smaller than the two
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Table 2. Comparison of output distribution defined in the security models

Intra- Inter- Inter- Min- Number Number

distance distance I distance II entropy of PUFs of queries

Pappu [26] Yesa - - - 1 1

Gassend et al. [12] Yes Yes - - 1 poly

Guajardo et al. [13] Yesa - - - 1 1

Armknecht et al. [2] Yes - - Yesb 1 poly

Armknecht et al. [1] Yes - - Yes poly poly

Brzuska et al. [6] Yes - - Yes 1 poly

Maes [20] Yes - Yes - 1 poly

Ours Yes Yes Yes Yes poly poly
aThey do not formally define the intra-distance but their implementation results or
arguments implicitly show the intra-distance.
bTheir definition is not information-theoretical min-entropy but computational ver-
sion of min-entropy called HILL entropy [15]

inter-distances (see discussion in Sect. 3.1), many security properties are triv-
ially broken (including the unforgeability defined in each paper). In fact, the
notions of intra-distance and inter-distance are widely known to implementation
designers, but have not been formally captured, e.g., see [13,18,19,22].

As one can see from Table 3 (and as discussed in Sect. 1), our model cov-
ers more security properties than the previous models. This flexibility allows
us to express more combinations of different security properties which, in turn,
is advantageous for protocol designers to capture needed underlying security
assumptions. A further difference is that previous work hardly discussed the rela-
tion between different security properties (and if, then often only in a heuristic

Table 3. Comparison of security properties proposed in the security models

one- Unforge- Unclon- Indistin- Pseudo- Tamper- Evaluation

wayness ability ability guishability randomness resilience

Pappu [26] Yes UUF-KOA - - - - Equality

Gassend et al. [12] - UUF-KMA - - - - Equality

Guajardo et al. [13] - UUF-OT-KMA - - - - Equality

Armknecht et al. [2] - - Yes - - - -

Armknecht et al. [1] - UUF-KMA Yes - - - Equalitya

EUF-CMA Equality

Brzuska et al. [6] Yes EUF-CMA Yes - - -b Equality

Maes [20] Yes UUF-CMA Yes - - - Distance

Ours Yes EUF-CMA Yes Yes Yes Yes Distance
aAs we noted in Sect. 3.3, this model concentrates on a combination of PUF and fuzzy extractor and

the evaluation with equality is a natural result
bThey argue the necessity of the tamper-resilience in the full version of [6], but no formal definition is

described
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sense, e.g., [6]) while, for reasoning about realization, it is crucial to prove which
notion is stronger/weaker than another.

Another advantage of our definitions from a theoretical view point is that
the intrinsic noise caused by the device is accurately reflected in the definition
of an adversary’s advantage. It is well known for implementation designers that
PUFs output noisy data, and further how to efficiently derive a random but fixed
output with a fuzzy extractor or other techniques; see [3,16,22]. On the other
hand, the previous security models except [1] do not cover the noise in evaluat-
ing the advantage of the adversary in their security properties. Estimating the
exact noise is intractable and their models cannot fairly evaluate the adversar-
ial advantage. We argue that this neglects an important aspect of PUFs. For
example, the higher the noise in the output distribution, the more likely it gets
that two PUFs show indistinguishable behavior, and the easier it may become
to create clones. Similar thoughts regarding noise apply to almost all security
properties. Of course, one possible solution to the above specific issue would be
to consider not the PUF alone but only in combination with an appropriate
fuzzy extractor as in [1]. However, this approach does not capture the actual
requirements for the PUF itself and may fail to cover cases where a PUF is not
combined with a fuzzy extractor. Apart from this, a cryptographic protocol may
require dedicated security properties of the deployed fuzzy extractor, e.g., see
[5]. Hence, we think that the security for PUFs should be argued separately from
its typically adjoined building blocks.

Somewhat surprising, we observed that even a seemingly straightforward
notion of unforgeability has been treated differently in existing literature. To
highlight these differences, we express them using the canonical terminology
used for digital signatures and MACs (see Table 3). We specifically stress that
our definition of unforgeability covers a stronger attack model compared to other
models, since we allow the adversary to obtain direct PUF responses from mul-
tiple devices and oracle queries.

Finally, we want to point to the work of Delvaux et al. [9] where different
security aspects of PUF-based protocols are discussed. Since their work does
not treat security properties for PUFs formally, we do not compare our security
model with their informal arguments.

5 Conclusion

In this paper, we proposed a new extended security model for PUFs motivated
by existing models, typical demands of cryptographic protocols, but also based
on our own considerations about the nature of PUFs. Compared to the existing
works, our model is more comprehensive, and presents security definitions that
are either new or stronger, (e.g., by allowing an adversary to query multiple
devices). We also extended these definitions by taking PUF output distributions
directly into account.

Formalizing security definitions with multiple properties, first, helps proto-
col designers to extract the actual requirements for PUF constructions, and,
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secondly, helps implementation designers to easily find which security properties
the proposed PUF construction possesses. Moreover, having a unified security
model allows to compare the security of different PUFs and different PUF mod-
els. We see our model as a significant step towards this goal.

In light of our methodology, various open questions remain. For example:
Are all relevant security properties included in the model or are some missing?
Furthermore, due to the physical nature of PUFs, it is often difficult to assess
given a concrete PUF, if and what security properties are met. Thus, for the sake
of applicability, a PUF security model should allow an engineer to evaluate for a
PUF whether certain properties are fulfilled (at least to some extent). While our
model follows common cryptographic considerations and models, one cannot rule
out that adaptations of the definitions (within our methodology) would make
them more applicable for engineers. This clear interdisciplinary task, is a natural
open question.
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Abstract. At Asiacrypt 2014, Hanser and Slamanig presented a new
cryptographic primitive called structure-preserving signature scheme on
equivalence classes in the message space (G∗

1)
�, where G1 is some addi-

tive cyclic group. Based on the signature scheme, they constructed an
efficient multi-show attribute-based anonymous credential system that
allows to encode an arbitrary number of attributes. The signature scheme
was claimed to be existentially unforgeable under the adaptive chosen
message attacks in the generic group model. However, for � = 2, Fuchs-
bauer pointed out a valid existential forgery can be generated with over-
whelming probability by using 4 adaptive chosen-message queries. Hence,
the scheme is existentially forgeable under the adaptive chosen message
attack at least when � = 2. In this paper, we show that even for the
general case � ≥ 2, the scheme is existentially forgeable under the non-
adaptive chosen message attack and universally forgeable under the adap-
tive chosen message attack. It is surprising that our attacks will succeed
all the time and need fewer queries, which give a better description of
the scheme’s security.
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1 Introduction

Structure-preserving signatures introduced by Abe et al. [2] have many appli-
cations in cryptographic constructions, such as blind signatures [2,7], group
signatures [2,7,13], homomorphic signatures [3,12], and tightly secure encryp-
tion [1,11]. Typically, the structure-preserving signatures are defined over some
groups equipped with a bilinear map. The public key, the messages and the
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signatures in a structure-preserving signature scheme consist only of group ele-
ments, and the signature can be verified just by deciding group membership and
by evaluating some pairing-product equations.

At Asiacrypt 2014, Hanser and Slamanig [9] proposed a new cryptographic
primitive called structure-preserving signature scheme on equivalence classes
(SPS-EQ), which allows to sign at one time an equivalence class of a group-
element vector instead of just the vector itself. As shown in [9], the SPS-EQ
scheme asks for some additional conditions to enable its applications to con-
struct an efficient attribute-based multi-show anonymous credential systems.
First, given a message-signature pair (here the message can be seen as a repre-
sentative of some class), another valid signature for every other representative
of the class can be efficiently produced, without knowing the secret key. Second,
any two representatives of the same class with corresponding signatures seem
unlinkable, which was called class hiding in [9].

Hanser and Slamanig [9] also presented a concrete SPS-EQ scheme on equiva-
lence classes in the message space (G∗

1)
�, where G1 is some additive cyclic group.

Any two vectors in the same equivalence class are equal up to a scale factor. The
scheme is claimed to be existentially unforgeable under adaptive chosen message
attack (EUF-CMA) in the generic group model for SXDH groups [4]. However,
Fuchsbauer [5] later pointed out their claim is flawed when � = 2 by showing
how to generate a valid existential forgery with overwhelming probability with
4 chosen message queries. For � ≥ 3, Fuchsbauer [5] did not give any discussion
and it seems not trivial to generalize his attack to the case when � ≥ 3. Hence,
the signature scheme can not be EUF-CMA secure, at least when � = 2.

In this paper, we study its security further. Both of the cases when � = 2
and � ≥ 3 are considered.

First, we show that the scheme is existentially forgeable under the non-
adaptive chosen message attack. More precisely, we present a polynomial-time
attack which can generate a valid existential forgery with just 2 (resp. 3) non-
adaptive chosen message queries for � = 2 (resp. � ≥ 3), which is half of the
number of the queries needed in Fuchsbauer’s adaptive chosen message attack.

Second, we show that the scheme is in fact universally forgeable under the
adaptive chosen message attack. In our polynomial-time attack, we can forge the
valid signature for any given message with 3 (resp. 4) chosen message queries for
� = 2 (resp. � ≥ 3), which is also less than the number of the queries needed in
Fuchsbauer’s attack.

Moreover, both of our attacks will always succeed, whereas Fuchsbauer’s
attack succeeds with overwhelming probability.

In a revised version [10], Hanser and Slamanig recently pointed out that the
original security proof in [9] was incorrect since in it just the non-adaptive mes-
sage queries were considered, but the adaptive message queries were neglected.
They also proved the scheme can at least provide existential unforgeability under
random message attacks (EUF-RMA). Together with our results, the security of
this scheme is much more clear, which can be summarized as in Table 1.
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Table 1. The security of the Hanser-Slamanig SPS-EQ scheme

Attack model Security �

Random message attack Existential unforgeability [10] � ≥ 2

Non-adaptive chosen message attack Existential forgeability [this work] � ≥ 2

Adaptive chosen message attack Existential forgeability [5] � = 2

Universal forgeability [this work] � ≥ 2

To fix the Hanser-Slamanig scheme, Fuchsbauer, Hanser and Slamanig [6]
presented a new SPS-EQ scheme which is proved to be secure under adaptive
chosen message attacks. We have to point out that the new scheme can resist
our attack.

Roadmap. The remainder of the paper is organized as follows. In Sect. 2,
we give some preliminaries needed. We describe the Hanser-Slamanig SPS-EQ
scheme in Sect. 3, and present our attacks in Sect. 4. Finally, a short conclusion
is given in Sect. 5.

2 Preliminaries

We denote by Z the integer ring, by Zp the residue class ring Z/pZ and by Z
∗
p

the group of all the invertible elements in Zp. Let G be the cyclic group and
G

∗ be the set of all the non-zero elements in G. Denote by 1G (resp. 0) the
identity element when G is multiplicative (resp. additive). We denote by ker(ϕ)
the kernel of map ϕ.

2.1 Bilinear Map

As in [9], we first give some definitions about bilinear map.

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime
order p, where G1 and G2 are additive and GT is multiplicative. Let P and P ′

generate G1 and G2, respectively. We call e : G1 × G2 → GT a bilinear map if
it is efficiently computable and satisfies

– For any a, b ∈ Zp, e(aP, bP ′) = e(P, P ′)ab = e(bP, aP ′).
– e(P, P ′) �= 1GT

.

Definition 2 (Bilinear Group Generator). A bilinear-group generator is a
probabilistic polynomial-time (PPT) algorithm BGGen that on input a security
parameter 1κ outputs a bilinear group description BG = (p,G1,G2,GT , e, P, P ′)
which satisfies the definition of bilinear map and p is a κ-bit prime.
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2.2 Structure-Preserving Signature Scheme on Equivalence Classes

Given a cyclic group G of prime order p and an integer � > 1, we first define the
equivalence relation R on length-� vectors of nontrivial group elements as used
in [9]:

R = {(M,N) ∈ (G∗)� × (G∗)� : ∃ρ ∈ Z
∗
p s.t. N = ρM}.

Then we denote by [M ]R all the elements in (G∗)� equivalent to M ∈ (G∗)� with
relation R, that is,

[M ]R = {N ∈ (G∗)� : ∃ρ ∈ Z
∗
p s.t. N = ρM}.

We next give the definition of SPS-EQ as in [9].

Definition 3 (Structure-Preserving Signature Scheme for Equivalence
Relation R (SPS-EQ-R)). An SPS-EQ-R scheme consists of the following
polynomial-time algorithms:

– BGGenR(1κ): Given a security parameter κ, outputs a bilinear group descrip-
tion BG.

– KeyGenR(BG, �): Given BG and vector length � > 1, outputs a key pair
(sk,pk).

– SignR(M, sk): On input a representative M of equivalence class [M ]R and
secret key sk, outputs a signature σ for the equivalence class [M ]R.

– ChgRepR(M,σ, ρ,pk): On input a representative M of an equivalence class
[M ]R, the corresponding signature σ, a scalar ρ and a public key pk, outputs
(ρM, σ̂), where σ̂ is the signature on ρM .

– VerifyR(M,σ,pk): Given a representative M of equivalence class [M ]R, a
signature σ and public key pk, outputs true if σ is a valid signature for [M ]R
and false otherwise.

2.3 Security of Digital Signature Scheme

As in [8], the security of digital signature scheme can be considered under random
message attack, non-adaptive chosen message attack, adaptive chosen message
attack and so on. We just briefly introduce these three attacks.

– Random message attack: The polynomial-time adversary A has access to a
signing oracle which on every call randomly chooses a message M from the
message space, generates the signature σ on M and returns (M,σ).

– Non-adaptive chosen message attack (directed chosen message attack): The
polynomial-time adversary A has access to a signing oracle and is allowed
to obtain valid signatures for a chosen list of messages M1,M2, · · · ,Mpoly(κ)

after seeing the public key but before knowing any signatures from the signing
oracle.

– Adaptive chosen message attack: The polynomial-time adversary A has access
to a signing oracle and can query it with any chosen message anytime.
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A digital signature scheme is considered to be existentially unforgeable under
some attack if any PPT adversary A will generate a valid message-signature
pair with only negligible probability, where the message has not been queried to
the signing oracle. To define the existentially unforgeability for the SPS-EQ-R
scheme, a little adaption is needed, that is, not just the message but also the
equivalence class of the message has not been queried. For example, we give the
definition of EUF-CMA as in [9].

Definition 4 (EUF-CMA for SPS-EQ-R Scheme). An SPS-EQ-R scheme
on (G∗)� is called existentially unforgeable under adaptive message chosen attack
if for any PPT adversary A having access to a signing oracle O(sk, ·), there is
a negligible function ε(·) such that:

Pr

[
BG ← BGGenR(κ), (sk,pk) ← KeyGenR(BG, �), (M∗, σ∗) ← AO(sk,·)(pk) :

[M∗]R �= [M ]R ∀M ∈ Q ∧ V erifyR(M∗, σ∗,pk) = true

]

≤ ε(κ),

where Q is the set of queries which A has queried to the signing oracle O.

Similarly we can also define the existentially unforgeability for non-adaptive
chosen message attack and random message attack.

Under any attack model, the SPS-EQ-R scheme is called universal forgeable
if there is a polynomial-time adversary A who can forge with overwhelming
probability valid signature on any message, whose equivalence class has not been
queried to the signing oracle.

3 The Hanser-Slamanig SPS-EQ Scheme

3.1 Description of the Hanser-Slamanig SPS-EQ Scheme

As follows we describe the SPS-EQ scheme proposed by Hanser and Slamanig.

– BGGenR(1κ): Given a security parameter κ, outputs

BG = (p,G1,G2,GT , P, P ′, e),

where prime p is the order of cyclic groups G1, G2, and GT , and G1 and G2 are
additive but GT is multiplicative where there is a bilinear map e : G1 ×G2 →
GT , P and P ′ generate G1 and G2 respectively.

– KeyGenR(BG, �): Given a bilinear group description BG and vector length
� > 1, chooses x

R← Z
∗
p and (xi)�

i=1
R← (Z∗

p)
�, sets the secret key as

sk ← (x, (xi)�
i=1),

computes the public key

pk ← (X ′, (X ′
i)

�
i=1) = (xP ′, (xixP ′)�

i=1)

and outputs (sk,pk).
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– SignR(M, sk): On input a representative M = (Mi)�
i=1 ∈ (G∗

1)
� of equivalence

class [M ]R and secret key sk = (x, (xi)�
i=1), chooses y

R← Z
∗
p and computes

Z ← x

�∑

i=1

xiMi, V ← y

�∑

i=1

xiMi, (Y, Y ′) ← y · (P, P ′).

Then, outputs σ = (Z, V, Y, Y ′) as signature for the equivalence class [M ]R.
– ChgRepR(M,σ, ρ,pk): On input a representative M = (Mi)�

i=1 ∈ (G∗
1)

� of
an equivalence class [M ]R, the corresponding signature σ = (Z, V, Y, Y ′), a
scalar ρ ∈ Z

∗
p and a public key pk, this algorithms picks ŷ

R← Z
∗
p and returns

(M̂, σ̂) where σ̂ ← (ρZ, ŷρV, ŷY, ŷY ′) is the update of signature σ for the new
representative M̂ ← ρ(Mi)�

i=1.
– VerifyR(M,σ,pk): Given a representative M = (Mi)�

i=1 ∈ (G∗
1)

� of equiv-
alence class [M ]R, a signature σ = (Z, V, Y, Y ′) and public key pk =
(X ′, (X ′

i)
�
i=1), checks whether

�∏

i=1

e(Mi,X
′
i)

?= e(Z,P )
∧

e(Z, Y ′) ?= e(V,X ′)
∧

e(P, Y ′) ?= e(Y, P ′)

or not and outputs true if this holds and false otherwise.

3.2 Fuchsbauer’s Attack to Break the EUF-CMA of the Scheme

For completeness, we describe Fuchsbauer’s attack [5] for l = 2 briefly. Consider
the following polynomial-time adversary A:

1. A receives pk and has access to a signing oracle.
2. A makes a signing query (P, P ) and receives the signature (Z1, V1, Y1, Y

′
1).

3. A makes a signing query (Z1, P ) and receives the signature (Z2, V2, Y2, Y
′
2).

4. A makes a signing query (P,Z1) and receives the signature (Z3, V3, Y3, Y
′
3).

5. A makes a signing query (Z1, Z2) and receives the signature (Z4, V4, Y4, Y
′
4).

6. A outputs (Z4, V4, Y4, Y
′
4) as a forgery for the equivalence class represented

by (Z3, Z1).

Fuchsbauer showed that (Z4, V4, Y4, Y
′
4) is a valid signature of (Z3, Z1) and

with overwhelming probability the equivalence class of (Z3, Z1) has not been
queried to the signing oracle. However, Fuchsbauer gave no discussions about
the case when � ≥ 3 and it seems not trivial to generalize his attack to the case
when � ≥ 3. Moreover, Fuchsbauer neglected to check whether (Z3, Z1) is in
(G∗

1)
2 or not in his proof.

4 Our Attacks

4.1 Key Observation of Our Attacks

We first give the key observation of our attacks:
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Lemma 1. Consider the following map:

ϕ : (G1)� → G1

(Mi)�
i=1 �→

�∑

i=1

xiMi.

For any K = (Ki)�
i=1 ∈ ker(ϕ), if σ = (Z, V, Y, Y ′) is a valid signature on

message M = (Mi)�
i=1, then σ is also a valid signature on M+K = (Mi+Ki)�

i=1.

Proof. Notice that to verify the signature σ for M + K, the only thing we need
check is

∏�
i=1 e(Mi + Ki,X

′
i)

?= e(Z,P ). Assume Mi = miP and Ki = kiP .
Since (Ki)�

i=1 ∈ ker(ϕ), we have (
∑�

i=1 xiki)P = 0 which yields
∑�

i=1 xiki = 0
mod p. Then we have

∏�
i=1 e(Mi + Ki,X

′
i) = e(P, P ′)

∑�
i=1 xxi(mi+ki) mod p

= e(P, P ′)
∑�

i=1 xximi+
∑�

i=1 xxiki mod p

= e(P, P ′)
∑�

i=1 xximi mod p

=
∏�

i=1 e(Mi,X
′
i)

= e(Z,P ).

The last equation holds since σ is a valid signature on M .

By Lemma 1, if we can find any nontrivial K ∈ ker(ϕ), we can forge the
signature on any message M by querying the signing oracle with M − K and
outputting the returned signature. Next we will show the nontrivial K can be
obtained efficiently under the non-adaptive chosen message attack.

4.2 Procedure to Find Nontrivial Element in ker(ϕ)

We claim that

Lemma 2. Under the non-adaptive chosen message attack, there is a polyno-
mial time adversary A who can find a nontrivial element in ker(ϕ). Moreover,

– If � = 2, A needs two non-adaptive chosen message queries;
– If � ≥ 3, A needs three non-adaptive chosen message queries.

Proof. We present the polynomial-time procedures FindKernel for adversary
A to obtain a nontrivial element in ker(ϕ) in two cases respectively.

i. Case � = 2

Consider the following procedure FindKernel for adversary A:

1. A receives pk and has access to a signing oracle.
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2. A first chooses any invertible matrix
(

a1 a2

a3 a4

)

∈ Z
∗2×2
p

and computes its inverse (
b1 b2
b3 b4

)

∈ Z
2×2
p ,

such that (
b1 b2
b3 b4

)(
a1 a2

a3 a4

)

=
(

1 0
0 1

)

mod p.

3. A makes a signing query with (a1P, a2P ) and gets its signature
(Z1, V1, Y1, Y

′
1).

4. A makes a signing query with (a3P, a4P ) and gets its signature
(Z2, V2, Y2, Y

′
2).

5. A computes ((b3Z1 + b4Z2),−(b1Z1 + b2Z2)).

We claim that

((b3Z1 + b4Z2),−(b1Z1 + b2Z2)) = (xx2P,−xx1P ) ∈ ker(ϕ)\(0,0).

It is obvious that (xx2P,−xx1P ) ∈ ker(ϕ)\(0,0) since x, x1, x2 are not zero. It
remains to prove ((b3Z1 + b4Z2),−(b1Z1 + b2Z2)) = (xx2P,−xx1P ). Notice that

Z1 = x(a1x1 + a2x2)P, Z2 = x(a3x1 + a4x2)P.

Hence
b3Z1 + b4Z2 = b3x(a1x1 + a2x2)P + b4x(a3x1 + a4x2)P

= x((b3a1 + b4a3)x1 + (b3a2 + b4a4)x2)P
= xx2P

and
b1Z1 + b2Z2 = b1x(a1x1 + a2x2)P + b2x(a3x1 + a4x2)P

= x((b1a1 + b2a3)x1 + (b1a2 + b2a4)x2)P
= xx1P.

ii. Case l ≥ 3

We can generalize the procedure above for the case � ≥ 3 by involving an l-by-l
invertible matrix. However, notice that (xx2P,−xx1P,0,0, · · · ,0) is a nontrivial
element in the corresponding ker(ϕ). We have a more clever procedure Find-
Kernel for adversary A to obtain (xx2P,−xx1P,0,0, · · · ,0).

1. A receives pk and has access to a signing oracle.
2. A makes a signing query with (P, P, P, · · · , P ) and gets (Z1, V1, Y1, Y

′
1).

3. A makes a signing query with (2P, P, P, · · · , P ) and gets (Z2, V2, Y2, Y
′
2).

4. A makes a signing query with (P, 2P, P, · · · , P ) and gets (Z3, V3, Y3, Y
′
3).

5. A computes (Z3 − Z1, Z1 − Z2,0, · · · ,0).
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We claim that

(Z3 − Z1, Z1 − Z2,0, · · · ,0) = (xx2P,−xx1P,0, · · · ,0) ∈ ker(ϕ)\(0, · · · ,0).

Notice that

Z1 = x(x1+x2+
�∑

i=2

xi)P,Z2 = x(2x1+x2+
�∑

i=2

xi)P,Z3 = x(x1+2x2+
�∑

i=2

xi)P,

which implies
Z3 − Z1 = xx2P,
Z1 − Z2 = −xx1P.

Hence the lemma follows.

Remark 1. For the FindKernel procedure when � ≥ 3, notice that once the
difference of two messages queried to the oracle is (P,0, · · · ,0), we can recover
xx1P . Similar results hold for xxiP . In fact, we can get all the integer coefficient
combination of the elements in the set {xkxi1xi2 · · · xik

P |k = 1, 2, · · · } with only
non-adaptive chosen message quries.

4.3 Breaking the EUF-Non-Adaptive-CMA of the Scheme

Notice that to find the nontrivial element in ker(ϕ), we just need the non-
adaptive queries. To complete the non-adaptive chosen message attack, it
remains to decide which message-signature pair should be outputted. Note that
the outputted message should satisfy

– The equivalence class of the message has not been queried to the signing
oracle;

– The message must be in (G∗
1)

�, that is, every component of the message is not
zero.

Before giving our attack, we first present some lemmas.

Lemma 3. There is a polynomial time algorithm on input (αP, βP ) ∈ (G∗
1)

2

and ai, aj ∈ Z
∗
p that can decide whether (αP, βP ) is equivalent to (aiP, ajP ) or

not without knowing α and β.

Proof. Recall that (αP, βP ) is equivalent to (aiP, ajP ) if and only if there exits
ρ ∈ Z

∗
p such that ρ(αP, βP ) = (aiP, ajP ), which means that (αP, βP ) is equiv-

alent to (aiP, ajP ) if and only if

det
(

α β
ai aj

)

= 0 mod p,

that is,
aiβ = ajα mod p.

Hence we can decide the equivalence between (αP, βP ) and (aiP, ajP ) by check-
ing if ai(βP ) = aj(αP ) in the group G1, which can be done in polynomial time.
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Lemma 4. For any (αP, βP ) ∈ (G∗
1)

2 and ai, aj ∈ Z
∗
p, there must be at least

one element Q in the set {(aiP + ραP, ajP + ρβP ) : ρ = 1, 2, 3}, such that
Q ∈ (G∗

1)
2.

Proof. For contradiction, suppose that every element in the set has at least one
0 as its component. Then there must be a k ∈ {1, 2} such that there are at
least two 0’s in the k-th components of all the three elements. Without loss of
generality, suppose aiP + ρsαP = aiP + ρtαP = 0, then it can be concluded
that ρs = ρt, which contradicts the fact that ρs �= ρt.

By the two lemmas above, we have

Theorem 1. The Hanser-Slamanig SPS-EQ scheme is existentially forgeable
under the non-adaptive chosen message attack. Moreover,

– If � = 2, two non-adaptive chosen message queries is needed;
– If � ≥ 3, three non-adaptive chosen message queries is needed.

Proof. We prove the theorem for two cases respectively.

i. Case � = 2

We give our non-adaptive chosen message attack as follows:

1. A runs FindKernel to get (xx2P,−xx1P ) ∈ (G∗
1)

2
⋂

ker(ϕ), the signa-
ture (Z1, V1, Y1, Y

′
1) for (a1P, a2P ) and the signature (Z2, V2, Y2, Y

′
2) for

(a3P, a4P ).
2. If (xx2P,−xx1P ) is equivalent to neither (a1P, a2P ) nor (a3P, a4P ), A can

output the message M = (xx2P,−xx1P ) and the corresponding signature
σ = (0,0, yP, yP ′) for any y ∈ Z

∗
p.

3. If (xx2P,−xx1P ) is equivalent to (a1P, a2P ), A can output the message
M = (a3P + ρxx2P, a4P − ρxx1P ) and the corresponding signature σ =
(Z2, V2, Y2, Y

′
2), where ρ is chosen as in Lemma 4 such that M ∈ (G∗

1)
2.

4. If (xx2P,−xx1P ) is equivalent to (a3P, a4P ), A can output the message
M = (a1P + ρxx2P, a2P − ρxx1P ) and the corresponding signature σ =
(Z1, V1, Y1, Y

′
1), where ρ is chosen as in Lemma 4 such that M ∈ (G∗

1)
2.

It is obvious that M ∈ (G∗
1)

2 and σ is indeed a valid signature on M by
Lemma 1 since (ρxx2P,−ρxx1P ) ∈ ker(ϕ).

By Lemma 3, the equivalence can be checked in polynomial time. It is easy
to check the attack can be completed in polynomial time.

It remains to show [M ]R has not been queried.
If (xx2P,−xx1P ) is equivalent to neither (a1P, a2P ) nor (a3P, a4P ), [M ]R

has not been queried obviously.
If (xx2P,−xx1P ) is equivalent to (a1P, a2P ), we can write xx2 = ka1 and

−xx1 = ka2 for some k ∈ Z
∗
p. We claim that now (a3P + ρxx2P, a4P − ρxx1P )

can not be equivalent to either (a1P, a2P ) or (a3P, a4P ), since
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det
(

a1 a2

a3 + ρxx2 a4 − ρxx1

)

= det
(

a1 a2

a3 + kρa1 a4 + kρa2

)

= det
(

a1 a2

a3 a4

)

�= 0 mod p

and

det
(

a3 + ρxx2 a4 − ρxx1

a3 a4

)

= det
(

a3 + kρa1 a4 + kρa2

a3 a4

)

= kρdet
(

a1 a2

a3 a4

)

�= 0 mod p.

If (xx2P,−xx1P ) is equivalent to (a3P, a4P ), the proof is similar as above.

ii. Case l ≥ 3

Similarly, we give our non-adaptive chosen message attack as follows:

1. A runs FindKernel to get (xx2P,−xx1P,0, · · · ,0) ∈ (G∗
1)

�
⋂

ker(ϕ) and
the signature (Z1, V1, Y1, Y

′
1) for (P, P, P, · · · , P ).

2. A finds ρ ∈ {1, 2, 3} such that P + ρxx2P �= 0 and P − ρxx1P �= 0.
3. A outputs M = (P + ρxx2P, P − ρxx1P, P, · · · , P ) and the corresponding

signature σ = (Z1, V1, Y1, Y
′
1).

It is easy to check that the attack can be completed in polynomial time, M ∈
(G∗

2)
� and σ is indeed a valid signature on M . It remains to show [M ]R has not

been queried, which can be concluded from the fact that

– (P + ρxx2P, P − ρxx1P, P, · · · , P ) is not equivalent to (P, P, P, · · · , P ), since
ρxx1 and ρxx2 are not 0;

– (P +ρxx2P, P −ρxx1P, P, · · · , P ) is not equivalent to (2P, P, P, · · · , P ), since
−ρxx1 is not 0;

– (P +ρxx2P, P −ρxx1P, P, · · · , P ) is not equivalent to (P, 2P, P, · · · , P ), since
ρxx2 is not 0.

4.4 The Universal Forgery Attack Against the Scheme

To commit a universal forgery attack, a natural idea is as follows. The adversary
A runs FindKernel first to find a nontrivial K in ker(ϕ) and then runs the
following Forge procedure to forge the valid signature on any given message M .

1. A first finds ρ ∈ {1, 2, 3} such that M − ρK ∈ (G∗
1)

�.
2. A then makes a signing query with M − ρK and gets the signature σ =

(Z, V, Y, Y ′).
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3. A outputs σ as the signature on M .

However, to avoid that the equivalence class of M has been queried, a little more
attention should be paid. First notice that

Lemma 5. If M �∈ ker(ϕ), then M can not be equivalent to M + K for any
nontrivial K ∈ ker(ϕ).

Proof. For contradiction, if M is equivalent to M + K for some nontrivial K ∈
ker(ϕ), then it can be easily concluded that M ∈ ker(ϕ).

Then we can show that

Theorem 2. The Hanser-Slamanig SPS-EQ scheme is universally forgeable
under the adaptive chosen message attack. Moreover,

– If � = 2, three chosen message queries is needed;
– If � ≥ 3, four chosen message queries is needed.

Proof. We prove the theorem for two cases respectively.

i. Case � = 2

We give our universal forgery attack as follows:

1. A receives pk and has access to a signing oracle.
2. Given M , if σ = (0,0, P, P ′) is a valid signature on M , then A outputs σ as

the signature on M .
3. Otherwise, M �∈ ker(ϕ). If M is equivalent to (P, P ) or (P, 2P ), then A

chooses the invertible matrix
(

a1 a2

a3 a4

)

to be
(

1 −1
−1 2

)

, otherwise, A chooses

the invertible matrix
(

a1 a2

a3 a4

)

to be
(

1 1
1 2

)

.

4. A runs FindKernel to get a nontrivial K ∈ ker(ϕ).
5. A runs the Forge procedure to find a valid signature on M .

Notice that if M is equivalent to (P, P ) or (P, 2P ), then M must be equivalent to
neither (P,−P ) nor (−P, 2P ) since the order p of G1 is greater than 3. Together
with Lemma 5, it can shown that [M ]R has not been queried.

ii. Case � ≥ 3

We give our universal forgery attack as follows:

1. A receives pk and has access to a signing oracle.
2. Given M , if σ = (0,0, P, P ′) is a valid signature on M , then A outputs σ as

the signature on M .
3. Otherwise, we know that M �∈ ker(ϕ). If M is equivalent to (P, P, P, · · · , P ),

or (2P, P, P, · · · , P ), or (P, 2P, P, · · · , P ), A runs the FindKernel algo-
rithm with querying messages (P,−P, P, · · · , P ), (2P,−P, P, · · · , P ), and
(P,−2P, P, · · · , P ) to get K = (Z1 − Z3, Z1 − Z2,0, · · · ,0) ∈ ker(ϕ).
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4. Otherwise, A runs FindKernel as before to get K ∈ ker(ϕ).
5. A runs the Forge procedure to find a valid signature.

Note that if the message M is equivalent to (P, P, P, · · · , P ), or (2P, P, P, · · · , P ),
or (P, 2P, P, · · · , P ), it must be equivalent to neither (P,−P, P, · · · , P ), nor
(2P,−P, P, · · · , P ), nor (P,−2P, P, · · · , P ). Together with Lemma 5, it can
shown that [M ]R has not been queried.

For both of the two attacks, it is easy to check the correctness, the complexity.

4.5 Interesting Observations

By Lemma 1, we know that the signature is not only valid for the original message
M , but also valid for any other message in another equivalent class M +ker(ϕ) ∈
G

�
1/ ker(ϕ). Interestingly, we can conclude that

Proposition 1. For any M �∈ ker(ϕ),
.⋃

ρ∈Zp

(ρM + ker(ϕ)) = G
�
1.

Proof. Recall that
ϕ : (G1)� → G1

(Mi)�
i=1 �→

�∑

i=1

xiMi.

Assume that Mi = αiP where αi ∈ Zp, we know that
∑�

i=1 xiMi = 0 if and
only if

∑�
i=1 xiαi = 0 mod p. Hence | ker(ϕ)| = p�−1. Notice that ϕ is a group

homomorphism, so we have

|G�
1/ ker(ϕ)| = p.

On the other hand, since M �∈ ker(ϕ), then for any i, j ∈ Zp, i �= j, iM and jM
fall into different classes in G

�
1/ ker(ϕ). Therefore, iM + ker(ϕ)’s (i ∈ Zp) are

exactly the p different classes in G
�
1/ ker(ϕ), which yields the proposition.

By the proposition, given any message-signature pair (M,σ) where M �∈ ker(ϕ),
we can forge the signature on any message M ′, if we could find the unique ρ
such that M ′ ∈ ρM + ker(ϕ). What we need do is computing the signature on
ρM with the algorithm ChgRepR(M,σ, ρ,pk), and then outputting it.

Another discussion is about the leakage of the private keys. Although the
private keys consist of x1, x2, · · · , x�, the scheme will be insecure when just xi

and xj are leaked since from any two of x1, x2, · · · , x� we can get a nontrivial
element in ker(ϕ).

5 Conclusion

In this paper, we show that the Hanser-Slamanig SPS-EQ scheme is existen-
tially forgeable under a non-adaptive chosen message attack and is universally
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forgeable under an adaptive chosen message attack. More precisely, we can pro-
duce a valid existential forgery with just 2 (resp. 3) non-adaptive chosen-message
queries for l = 2 (resp. l ≥ 3). Under the adaptive chosen message attack, we
can forge the valid signature for any given message with just 3 (resp. 4) chosen-
message queries for l = 2 (resp. l ≥ 3). Both of the attacks need fewer queries,
which give a better description of the scheme’s security.

Acknowledgments. We very thank the anonymous referees for their valuable sug-
gestions on how to improve the presentation of this paper.
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Short Structure-Preserving Signatures
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Abstract. We construct a new structure-preserving signature scheme
in the efficient Type-III asymmetric bilinear group setting with signa-
tures shorter than all existing schemes. Our signatures consist of 3 group
elements from the first source group and therefore they are shorter than
those of existing schemes as existing ones have at least one component in
the second source group whose elements bit size is at least double that
of their first group counterparts.

Besides enjoying short signatures, our scheme is fully re-randomizable
which is a useful property for many applications. Our result also consti-
tutes a proof that the impossibility of unilateral structure-preserving
signatures in the Type-III setting result of Abe et al. (Crypto 2011) does
not apply to constructions in which the message space is dual in both
source groups. Besides checking the well-formedness of the message, ver-
ifying a signature in our scheme requires checking 2 Pairing Product
Equations (PPE) and require the evaluation of only 5 pairings in total
which matches the best existing scheme and outperforms many other
existing ones. We give some examples of how using our scheme instead of
existing ones improves the efficiency of some existing cryptographic pro-
tocols such as direct anonymous attestation and group signature related
constructions.

Keywords: Structure-preserving · Digital signatures · Bilinear groups

1 Introduction

Structure-Preserving Signatures (SPS) [3] are digital signature schemes defined
over bilinear groups (e : G × G̃ → T). Their messages, verification key and
signatures are all group elements and signature verification involves evaluating
Pairing Product Equations (PPE). They are a useful tool for the design of modu-
lar cryptographic protocols since they compose nicely with existing popular tools
such as Groth-Sahai proofs [31] and ElGamal encryption scheme [20]. They are
prominently used in combination with Groth-Sahai proofs and other tools to
design cryptographic protocols that do not rely on heuristic assumptions such
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as random oracles [21]. They have numerous applications which include group
signatures, e.g. [3,34,35], blind signatures, e.g. [3,23], tightly secure encryp-
tion schemes, e.g. [2,32], malleable signatures, e.g. [9], anonymous credentials,
e.g. [23], network coding, e.g. [9], oblivious transfer, e.g. [28].

Related Work. The notion was formally defined by Abe et al. [3] but earlier
schemes conforming to the definition were given by Groth [29] and Green and
Hohenberger [28]. Because of its importance, the notion has received a signifi-
cant amount of attention from the cryptographic community and many results
relating to proving lower bounds for the design of such schemes as well as new
schemes meeting those lower bounds have been published in the literature. Abe
et al. [3] gave two constructions of structure-preserving signatures both rely-
ing on non-interactive intractability assumptions. Abe et al. [4] proved that
any structure-preserving signature scheme in the most efficient Type-III bilinear
group setting (cf. Sect. 2.1) must have at least 3 group elements and 2 pairing
product verification equations. They also ruled out the existence of unilateral
signatures and argued that the signature must contain elements from both source
groups. They also gave constructions meeting the lower bound and proved them
secure in the generic group model [40]. Abe et al. [5] proved the impossibility of
the existence of a 3 group element structure-preserving signature in the Type-III
setting that is based on non-interactive intractability assumptions. In essence,
their result implies that in the Type-III setting, the only way to meet the 3 group
element lower bound is to either employ interactive intractability assumptions or
resort to direct proofs in the generic group model. Ghadafi [25] gave a structure-
preserving variant of the Camenisch-Lysyanskaya signature scheme [15] that is
secure under an interactive assumption in the Type-III setting. Abe et al. [7]
constructed a scheme in the Type-II setting (where there is an efficiently com-
putable isomorphism from the second source group to the first) which contains
only 2 group elements. Chatterjee and Menezes [17] revisited the work of [7] and
showed that Type-III constructions outperform their Type-II counterparts [17]
also gave constructions in Type-III setting meeting the 3 group element lower
bound. Barthe et al. [10] also gave optimal constructions of structure-preserving
signatures in Type-II setting. Constructions relying on standard assumptions
(such as DLIN and DDH) were given by [1,2,14,16,33,35]. Constructions based
on standard assumptions are less efficient than those based on non-standard
assumptions or proven directly in the generic group model. Recently, Abe
et al. [8] and Groth [30] gave fully structure-preserving constructions where even
the secret key consists of only group elements.

While by now there exist a number of schemes, e.g. [4,6,10,17,30], with
signatures meeting the 3 group element lower bound in the Type-III setting
proved by Abe et al. [4], all those schemes have at least one component of the
signature in group G̃ whose elements bit size is at least double that of those in
G. To the best of our knowledge, the only existing structure-preserving signature
scheme in the Type-III setting whose all signature components are in G is that
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of Ghadafi [25]. However, signatures of latter consist of 4 group elements and
require 3 pairing-product verification equations.

Our Contribution. We construct a (unilateral) structure-preserving signature
scheme with signatures shorter than all existing structure-preserving signatures.
Our scheme yields fully re-randomizable signatures consisting of 3 group ele-
ments from the first short source group.

Our results also serve as a proof that the impossibility of unilateral structure-
preserving signature schemes in the Type-III setting result of Abe et al. [4] does
not apply when the message space is dual in both source groups. We stress
that Abe et al. never claimed that their Type-III lower bounds apply to this
setting since their proofs only considered schemes with unilateral messages. As
is the tradition with most existing structure-preserving schemes, we prove the
security of our scheme directly in the generic group model. Our scheme can be
viewed as an extension of the recent non-structure-preserving signature scheme
of Pointcheval and Sanders [38].

We show that replacing some existing schemes used as building blocks in
some protocols with ours improves the efficiency of those protocols which include
direct anonymous attestation and group signature related constructions.

Paper Organization. In Sect. 2, we give some preliminary definitions. In
Sect. 3, we present our signature scheme and prove its security. We give some
applications of our signature scheme in Sect. 4.

Notation. We write y = A(x; r) when the algorithm A on input x and ran-
domness r outputs y. We write y ← A(x) for the process of setting y = A(x; r)
where r is sampled at random. We also write y ← S for sampling y uniformly at
random from a set S. A function ν(.) : N → R

+ is negligible (in n) if for every
polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By
PPT we mean running in probabilistic polynomial time in the relevant security
parameter. By [k], we denote the set {1, . . . , k}.

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G, G̃,T, p,G, G̃, e) where G, G̃ and T are groups
of a prime order p, and G and G̃ generate G and G̃, respectively. The function
e is a non-degenerate bilinear map e : G × G̃ −→ T.

For clarity, elements of G̃ will be accented with .̃ We use multiplicative
notation for all the groups. We let G

× := G \ {1G} and G̃
× := G̃ \ {1

G̃
}. In this

paper, we work in the efficient Type-III setting [24], where G �= G̃ and there
is no efficiently computable isomorphism between the source groups in either
direction. We assume there is an algorithm BGSetup that on input a security
parameter λ, outputs a description of bilinear groups.
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The message space of our signature scheme are elements of the subgroup Ĝ
of G × G̃ defined as the image of the map

ψ :
{
Zp −→ G × G̃

x �−→ (Gx, G̃x)

Given an element (M, Ñ) ∈ G× G̃, one can efficiently test whether (M, Ñ) ∈ Ĝ
by checking e(M, G̃) = e(G, Ñ).1

2.2 Complexity Assumptions

Definition 1 (Decisional Diffie-Hellman (DDH) Assumption). The
DDH assumption holds relative to a group setup G if for all PPT adversaries A

Pr
[

(G, G, p) ← G(1λ); r, s, t ← Zp; b ← {0, 1};
R := Gr; S := Gs; T := Gbrs+(1−b)t : A(G,R, S, T ) = b

]

≤ 1
2

+ ν(λ) ·

Definition 2 (Symmetric External Diffie-Hellman (SXDH) Assump-
tion). Given a bilinear group P := (G, G̃,T, p,G, G̃, e), the SXDH assumption
requires that the DDH assumption holds in both groups G and G̃.

2.3 Digital Signatures

A digital signature scheme (over a bilinear group P generated by BGSetup) for a
message space M is a tuple DS := (KeyGen,Sign,Verify) whose definitions are:

• KeyGen(P) this probabilistic algorithm takes as input a bilinear group P and
outputs a pair of secret/verification keys (sk, vk).

• Sign(sk,m) this probabilistic algorithm takes as input a secret key sk and a
message m ∈ M, and outputs a signature σ.

• Verify(vk,m, σ) this deterministic algorithm outputs 1 if σ is a vlaid signature
on m w.r.t. the verification key vk.

Definition 3 (Correctness). A signature scheme DS over a bilinear group
generator BGSetup is (perfectly) correct if for all λ ∈ N

Pr
[ P ← BGSetup(1λ); (sk, vk) ← KeyGen(P);

m ← M;σ ← Sign(sk,m) : Verify(vk,m, σ) = 1

]

= 1.

Definition 4 (Existential Unforgeability). A signature scheme DS over a
bilinear group generator BGSetup is existentially unforgeable against adaptive
chosen-message attack if for all λ ∈ N for all PPT adversaries A

Pr

[P ← BGSetup(1λ); (sk, vk) ← KeyGen(P); (σ∗, m∗) ← ASign(sk,·)(P, vk)
: Verify(vk, m∗, σ∗) = 1 and m∗ /∈ QSign

]

≤ ν(λ),

where QSign is the set of messages queried to Sign.
1 The elements of this group are called Diffie-Hellman pairs in [3,22].
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We consider schemes which are re-randomizable (i.e. weakly unforgeable)
in the sense that given a signature on a message m, anyone without knowl-
edge of the signing key, can compute a fresh signature on the same message. A
desirable property for such class of schemes is that randomized signatures are
indistinguishable from fresh signatures on the same message. Thus, we define an
algorithm Randomize which on input (vk,m, σ), where σ being a valid signature
on m, outputs a new signature σ′ on m.

Definition 5 (Randomizability). A signature scheme DS over a bilinear
group generator BGSetup is randomizable if for all λ ∈ N for all stateful adver-
saries A

Pr

⎡

⎢
⎢
⎣

P ← BGSetup(1λ); (sk, vk) ← KeyGen(P);
(σ∗,m∗) ← A(P, sk, vk); b ← {0, 1};
σ0 ← Sign(sk,m∗);σ1 ← Randomize(vk,m∗, σ∗);

: Verify(vk,m∗, σ∗) = 1 and A(σb) = b

⎤

⎥
⎥
⎦ ≤ 1

2
+ ν(λ).

We say the scheme has Perfect Randomizability when ν(λ) = 0. Note that the
above definition of randomizability is stronger than the variant where the signa-
ture σ∗ is generated by the challenger rather than the adversary herself.

Structure-Preserving Signatures. Structure-preserving signatures [3] are
signature schemes defined over bilinear groups where the messages, the veri-
fication key and signatures are all group elements and verifying signatures only
involves deciding group membership of the signature components and evaluating
Pairing Product Equations (PPE) of the form of Eq. 1.

∏

i

∏

j

e(Ai, B̃j)ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ G̃ are group elements appearing in P,m, vk, σ, whereas
ci,j ∈ Zp are constants.

2.4 Randomizable Weakly Blind Signatures

A randomizable weakly blind signature scheme, as defined by Bernhard et al. [12],
is similar to a standard blind signature scheme [18] but unlike the latter,
in the former, the signer never gets to see the signed message. More pre-
cisely, in the blindness game of the former (referred to as weak blindness),
the challenge messages are chosen by the challenger rather than the adver-
sary and are never revealed to the adversary. Formally, a randomizable weakly
blind signature scheme BS (with a two-move signature request phase) for
a message space MBS consists of the following polynomial-time algorithms
BS := (SetupBS,KeyGenBS,RequestBS, IssueBS,VerifyBS,RandomizeBS). All algo-
rithms (bar SetupBS) are assumed to take as (implicit) input a parameter set
paramBS output by SetupBS.
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• SetupBS(1λ) outputs public parameters paramBS.
• KeyGenBS(paramBS) outputs a public/secret key pair (vkBS, skBS) for the signer.
• (Request0BS, Issue

1
BS,Request

1
BS) is an interactive protocol run between a

user and a signer. The protocol is initiated by the user by calling
Request0BS(vkBS,m) to obtain a value ρ0 and some state information st0R (which
is assumed to contain the message m). Then the signer and user execute,
respectively,

(β1, st
1
I) ← Issue1BS(skBS, ρ0) and σ ← Request1BS(β1, st

0
R),

where σ is a signature on the message m (or the reject symbol ⊥). We write
σ ← 〈RequestBS(vkBS,m), IssueBS(skBS)〉 for the output of correct running of
this protocol on the given inputs.

• VerifyBS(vkBS,m, σ) outputs 1 if σ is a valid signature on m and 0 otherwise.
• RandomizeBS(vkBS, σ) given a signature σ on an unknown message m, produces

another valid signature σ′ on the same message.

Definition 6 (Correctness). A randomizable weakly blind signature scheme is
(perfectly) correct if for all λ ∈ N

Pr

⎡

⎢
⎢
⎣

paramBS ← SetupBS(1λ); (vkBS, skBS) ← KeyGenBS(paramBS);
m ← MBS;σ ← 〈RequestBS(vkBS,m), IssueBS(skBS)〉;
σ′ ← RandomizeBS(vkBS, σ)

: VerifyBS(vkBS,m, σ) = 1 and VerifyBS(vkBS,m, σ′) = 1

⎤

⎥
⎥
⎦ = 1.

Definition 7 (Unforgeability). A randomizable weakly blind signature
scheme is unforgeable if for all λ ∈ N, all PPT adversaries A have a negli-
gible advantage in the game in Fig. 1.

Experiment: ExpUnforge
BS,A (λ):

− paramBS ← SetupBS(1λ).
− (vkBS, skBS) ← KeyGenBS(paramBS).
−

(
(m1, σ1), . . . , (mn+1, σn+1)

)
← AIssueBS(·,·)(vkBS, paramBS).

− Return 0 if any of the following holds. Otherwise, Return 1:
◦ A called its oracle more than n times.
◦ ∃i, j ∈ {1, . . . , n + 1} s.t. i �= j, but mi = mj .
◦ ∃i ∈ {1, . . . , n + 1} s.t. VerifyBS(vkBS, mi, σi) = 0.

Fig. 1. The unforgeability game for randomizable weakly blind signatures

Definition 8 (Weak Blindness). A randomizable weakly blind signature
scheme is weakly blind if for all λ ∈ N, all PPT adversaries A have a neg-
ligible advantage in the game in Fig. 2.
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Experiment: ExpwBlind
BS,A (λ):

− paramBS ← SetupBS(1λ).
− (vkBS, skBS) ← KeyGenBS(paramBS).
− m0, m1 ← MBS.
− (ρ0, st0R) ← Request0BS(vkBS, m0).
− (β1, stA) ← A(paramBS, vkBS, skBS, ρ0).
− σ0 ← Request1BS(β1, st

0
R).

− If σ0 =⊥ or VerifyBS(vkBS, m0, σ0) = 0 Then Return 0.
− b ← {0, 1}.
− If b = 0 Then σ1 ← RandomizeBS(vkBS, σ0).
− Else σ1 ← 〈RequestBS(vkBS, m1), IssueBS(skBS)〉.
− b∗ ← A(stA, σ0, σ1).
− Return 1 If b = b∗ Else Return 0.

Fig. 2. The weak blindness game for randomizable weakly blind signatures

2.5 Groth-Sahai Proofs

Groth-Sahai (GS) proofs [31] are non-interactive proofs in the CRS model. We
will use GS proofs that are secure under the SXDH assumption, which is the
most efficient instantiation of the proof system [27], and that prove knowledge
of witnesses to pairing-product equations of the form

n∏

j=1

e(Aj , Ỹj)
m∏

i=1

e(Xi, B̃i)
m∏

i=1

n∏

j=1

e(Xi, Ỹj)γi,j =
k∏

�=1

e(G�, H̃�) (2)

All underlined variables are part of the witness whereas the rest of the val-
ues are public constants. The language for these proofs is of the form L :=
{statement | ∃witness : E(statement,witness) holds }, where E(statement, ·)
is a set of pairing-product equations. The system is defined by a tuple
of algorithms (GSSetup,GSProve,GSVerify,GSExtract,GSSimSetup,GSSimProve).
GSSetup takes as input the description of a bilinear group P and outputs a binding
reference string crs and an extraction key xk.GSProve takes as input the string crs, a
set of equations statement and a witness, and outputs a proof Ω for the satisfiability
of the equations.GSVerify takes as input a set of equations, a string crs andaproofΩ
and outputs 1 if the proof is valid, and 0 otherwise.GSExtract takes as input a bind-
ing crs, the extraction key xk and a valid proof Ω, and outputs the witness used for
the proof. GSSimSetup, on input a bilinear group P, outputs a hiding string crsSim
and a trapdoor key tr that allows to simulate proofs. GSSimProve takes as input
crsSim, a statement and the trapdoor tr and produces a simulated proof ΩSim with-
out a witness. The distributions of strings crs and crsSim are computationally indis-
tinguishable and simulated proofs are indistinguishable from proofs generated by
an honest prover. The proof system has perfect completeness, (perfect) soundness,
composable witness-indistinguishability/composable zero-knowledge. We refer to
[31] for the formal definitions and the details of the instantiations.
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3 Our Structure-Preserving Signature Scheme

Given the description of Type-III bilinear groups P output by BGSetup(1λ), our
scheme is given by the following four algorithms.

• KeyGen(P): Select x, y ← Z
×
p . Set sk := (x, y) and vk := (X̃, Ỹ ) := (G̃x, G̃y).

• Sign(sk, (M, Ñ)): To sign a message (M, Ñ) ∈ Ĝ, (i.e. (M, Ñ) ∈ G × G̃ and
e(M, G̃) = e(G, Ñ)), select a ← Z

×
p , and set A := Ga, B := Ma, C := Ax ·By.

Return σ := (A,B,C) ∈ G
3.

• Verify(vk, (M, Ñ), σ = (A,B,C)): Return 1 iff A ∈ G
× (i.e. A �= 1G), B,C ∈

G, (M, Ñ) ∈ Ĝ, and all of the following hold:

e(A, Ñ) = e(B, G̃)

e(C, G̃) = e(A, X̃)e(B, Ỹ )

• Randomize(vk, (M, Ñ), σ = (A,B,C)): Select r ← Z
×
p , and set A′ := Ar,

B′ := Br, C ′ := Cr. Return σ′ := (A′, B′, C ′).

Remark 1. Note that verifying the well-formedness of the message pair, i.e. that
(M, Ñ) ∈ Ĝ, need only be done once when verifying multiple signatures on the
same message. A similar argument applies to signature schemes with the same
message space, e.g. [3,22,25].

Also, note that requiring checking that A �= 1G in the verification can in some
sense be considered a slight deviation from the rigorous variant of the definition
of structure-preserving signatures. However, since A is information-theoretically
independent of the message, even when proving knowledge of a signature, one
can reveal A after re-randomizing it which allows for verifying such a condition
for free. We end by noting that Ghadafi [25] gave efficient Groth-Sahai proofs
that a committed Groth-Sahai value is not the identity element.

Correctness of the scheme follows by inspection and is straightforward to
verify. Also, that the signature is perfectly randomizable is straightforward. The
distributions of valid signatures returned by the Randomize algorithm are iden-
tical to those returned by the Sign algorithm on the same message. Also, note
that assuming the signature to be re-randomized is valid, one only needs the old
signature to be able to produce a new one.

The following theorem proves that the scheme is unforgeable in the generic
group model [37,40]. We note here that the unforgeability of the scheme could
also be based on an interactive assumption.

Theorem 1. The structure-preserving signature scheme is (weakly) existentially
unforgeable against adaptive chosen-message attack in the generic group model.

Proof. The proof follows from the proof of the following theorem:



Short Structure-Preserving Signatures 313

Theorem 2. Let A be an adversary in the generic group model against our
scheme. Assume A makes qG group operation queries, qP pairing queries, and
qS sign queries. The probability ε of adversary A winning the game is bounded
by ε ≤ (qG+qP+3qS+4)2·3

p , where p is the (prime) order of the generic groups.

Proof. We start by re-stating the following Schwartz Zippel lemma [39]:

Lemma 1. Let p be a prime and P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] be a non-zero
polynomial with a total degree ≤ d. Then the probability that P (x1, . . . , xn) = 0
is ≤ d

p .

Adversary A interacts with those oracles via group handles. We define three
random encoding functions ξ1 : G −→ {0, 1}∗, ξ2 : G̃ −→ {0, 1}∗ and ξ3 :
T −→ {0, 1}∗ where ξi maps elements from the corresponding group into random
strings. The challenger keeps three lists L1,L2,LT which contain pairs of the
form (τ, P ) where τ is a “random” encoding of the group element (i.e. τ is an
output of the map ξi) and P is some polynomial in Fp[X,Y,A1, . . . , AqS ].

To each list we associate an Update algorithm, that takes as input the specific
list Li and a polynomial P . The algorithm Update(Li, P ) searches the list in
question for a pair whose second component is equal to P , if such a pair is
found, the algorithm returns its first component as a result. Otherwise, a new
random encoding τ , different from all other elements used so far, is chosen and
the pair (τ, P ) is added to the list Li. The value τ is then returned. Note that
at no point A gets access to the second element in the pairs.

The challenger starts by calling: Update(L1, 1), Update(L2, 1), Update(L2,X)
and Update(L2, Y ). Those correspond to the group elements G ∈ G and
G̃, X̃, Ỹ ∈ G̃ of the verification key and public elements the adversary gets
in the scheme.

The oracles used in the game are defined as follows:

• Group Oracles: Oracles O1, O2 and OT allow A access to the group operations
in groups G, G̃ and T, respectively, via subtraction/addition operations. On a
call to Oi(τ1, τ2) B searches list Li for pairs of the form (τ1, P1) and (τ2, P2).
If both pairs exist, B returns the output of Update(Li, P1 ±P2). Otherwise, it
returns ⊥. Note that exponentiation operations can be performed by calls to
the group operation oracles.

• Pairing Oracle: Oracle OP allows A to perform pairing operations. On a call
to OP (τ1, τ2), B searches the list L1 for the pair (τ1, P1), and the list L2 for the
pair (τ2, P2). If both pairs exist, B returns the output of Update(LT , P1 · P2).
Otherwise, it returns ⊥.

• Sign Oracle: The adversary may make up to qS queries OS(τ1, τ2).
The challenger searches list L1 for a pair (τ1, P1) and list L2 for a pair (τ2, P2).
If they do not exist or P1 �= P2, B returns ⊥. Otherwise, it executes the
following operations, where Ai,X and Y are indeterminants:
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τAi
← Update(L1, Ai),

τBi
← Update(L1, Ai · P1),

τCi
← Update(L1, Ai · (X + P1 · Y )).

Returning the tuple (τAi
, τBi

, τCi
) to A.

By using the above oracles, we can simulate the entire run of the adversary. At
the end of the game, the total number of non-constant polynomials contained in
the three lists L1,L2 and LT is bounded from above by t = qG + qP + 3qS + 4.

TheAdversaryOutput.Eventually,Aoutputsa tuple (τA∗ , τB∗ , τC∗ , τM∗ , τÑ∗),
where τA∗ , τB∗ , τC∗ , and τM∗ are on list L1 while τÑ∗ is on list L2. Let
PA∗ , PB∗ , PC∗ , PM∗ , PÑ∗ denote their associated polynomials. For A’s output
to be valid, those polynomials can be assumed to satisfy, for some assignment
(x, y, a1, . . . , aqS ) ∈ F

2+qS
p to the variables (X,Y,A1, . . . , AqS ), the equations:

PB∗ = PA∗ · PÑ∗ (3)
PC∗ = PA∗ · X + PB∗ · Y (4)
PM∗ = PÑ∗ (5)

From this we derive a contradiction, i.e. conclude that the adversary cannot
win the game. To achieve this, we need to first ensure that these polynomial
identities cannot hold identically, i.e. regardless of any particular assignment
(x, y, a1, . . . , aqS ) ∈ F

2+qS
p to the variables (X,Y,A1, . . . , AqS ).

Let (Mi, Ñi) denote the i-th signing query where we discount queries where
(Mi, Ñi) /∈ Ĝ. Note that PÑi

can only be a linear combination of the terms 1,X
and Y . Thus, we have PÑi

= ri + si · X + ti · Y . Since we must have PMi
= PÑi

,
this implies that the above polynomials must also appear on the list L1. However,
there is no operation in G which creates a polynomial with a monomial term of
X, nor one of Y . Thus, we conclude that all queries to the sign oracle correspond
to elements whose polynomials are a constant term of the form PMi

= PÑi
= ri.

By a similar argument, we can also deduce that the output of the adversary
corresponds to polynomials with PM∗ = PÑ∗ = r∗. This is precisely where we
use the property that the oracle will return ⊥ unless the input query lies in Ĝ.

Note that PA∗ , PB∗ , and PC∗ can only by a linear combination of the poly-
nomials appearing on the list L1. Therefore, we have:

PA∗ = w1 +
q∑

i=1

u1,i · Ai +
q∑

i=1

v1,i · Ai · (X + ri · Y ) (6)

PB∗ = w2 +
q∑

i=1

u2,i · Ai +
q∑

i=1

v2,i · Ai · (X + ri · Y ) (7)

PC∗ = w3 +
q∑

i=1

u3,i · Ai +
q∑

i=1

v3,i · Ai · (X + ri · Y ), (8)

where wj , uj,i, vj,i ∈ Fp.
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Note that PC∗ , i.e. Eq. (8), there is no monomial with a power > 1 of Y . Also,
there is no monomial in X · Y . Thus, by Eq. (4), we must have v1,i = v2,i = 0
for all i. Thus, we have

PA∗ = w1 +
q∑

i=1

u1,i · Ai PB∗ = w2 +
q∑

i=1

u2,i · Ai

Now by Eq. (3) we must have that

w2 +
q∑

i=1

u2,i · Ai = r∗ · w1 +
q∑

i=1

r∗ · u1,i · Ai

For the above to hold, we must have w2 = r∗ · w1 and r∗ · u1,i = u2,i for all i.
By Eq. (4), we must have

w3 +
q∑

i=1

u3,i · Ai +
q∑

i=1

v3,i · Ai · (X + ri · Y )

= w1 · X +
q∑

i=1

u1,i · Ai · X + r∗ · w1 · Y +
q∑

i=1

r∗ · u1,i · Ai · Y

There is no term in X on the left-hand side so we must have w1 = 0. Also, no
constant terms or terms in Ai on the right-hand side so we must have w3 = 0
and u3,i = 0 for all i. Thus, we must have

q∑

i=1

v3,i · Ai · X +
q∑

i=1

v3,i · ri · Ai · Y =
q∑

i=1

u1,i · Ai · X +
q∑

i=1

r∗ · u1,i · Ai · Y

By the monomial Ai · X, we must have u1,i = v3,i for all i. Since we must have
A∗ �= 1G, we must have at least one pair u1,i = v3,i �= 0 for some i. By the
monomial Ai · Y , we must have v3,i · ri = r∗ · u1,i. Since as we have seen we
must have u1,i = v3,i, we have ri = r∗ which contradicts the unforgeability
requirement as the forgery is on a message pair that was queried to the sign
oracle.

Thus, the adversary must win, or tell it is in a simulation, via a specific
(random) assignment to the variables. We now turn to bounding the probability
that the adversary wins (or detects the simulation) in this case.

The Simulation. Now the challenger chooses random values x, y, ai ∈ Fp and
evaluates the polynomials. We need to show that the challenger’s simulation is
sound. If A learned it was interacting in a simulated game, there would be two
different polynomials Pi,j(x, y, ai) = Pi,j′(x, y, ai) in list Li where Pi,j �= Pi,j′ .
The simulation will fail if any of the following is correct:

P1,j(x, y, ai) = P1,j′(x, y, ai) (9)
P2,j(x, y, ai) = P2,j′(x, y, ai) (10)
PT,j(x, y, ai) = PT,j′(x, y, ai) (11)
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Since the maximum degree of any polynomial in list L1 ≤ 2, by applying
[40][Lemma 1], we have that the probability of Eq. (9) holding is ≤ 2

p . Simi-
larly, since the maximum degree of any polynomial in list L2 ≤ 1, we have that
the probability of Eq. (10) holding is ≤ 1

p . Finally, the probability of Eq. (11)
holding is ≤ 3

p .
Summing over all possible values of j in each case, we have

ε ≤
( |L1|

2

)
2
p

+
( |L2|

2

)
1
p

+
( |LT |

2

)
3
p
,

where |Li| denotes the size of list Li.
In conclusion, the probability that an adversary wins the unforgeability game

is bounded by ε ≤ (qG+qP+3qS+4)2·3
p . �

3.1 Efficiency Comparison

We compare in Table 1 the efficiency of our scheme with that of existing schemes
for a single a message in the Type-III setting. For concrete comparison, for
instance, at 128-bit security, elements of G and G̃ in Type-III are 256 and
512 bits long, respectively. Therefore, our signatures at this security level are
at least 256 bits shorter than the best existing scheme. The efficiency gain is
even better as the security level increases. Also, as can be seen, our scheme
compares favorably to existing ones in terms of the efficiency of the verification
equation. For the schemes whose message space is Ĝ, the cost does not include
checking membership of the message in the relevant group. As discussed earlier,
such a check only needs to be performed once when verifying multiple signa-
tures on the same message. Note that many applications require the signer to
prove possession of/provide multiple signatures/credentials (possibly from dif-
ferent signers/issuers).

Also, our scheme works well in association with the (less efficient) automor-
phic structure-preserving signature scheme of [3,22] since the message and key
spaces of the latter lie in the message space of our scheme.

It is obvious that structure-preserving signatures (on unilateral messages) in
the Type-III setting have shorter messages than schemes, including ours, whose
message space is Ĝ. However, we stress that this is a small price to pay to get
shorter signatures and more efficient verification while remaining in the most
efficient Type-III bilinear group setting.

4 Applications of Our Scheme

In this section we give some examples of how using our signature scheme improves
the efficiency of some existing cryptographic protocols.
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Table 1. Efficiency comparison between our scheme and other schemes

Scheme Size Randomize? Assumptions Verification

σ vk Param m #PPE #Pairings

[28]a G
4 × G̃ G̃

2 - G Yes q-HLRSW 4 8

[22] G
3 × G̃

2
G × G̃ G

3 Ĝ No q-ADHSDH +

AWFCDH

3 7

[3] I G
5 × G̃

2
G

10 × G̃
4 - G Partially q-SFP 2 12

[3] II G
2 × G̃

5
G

10 × G̃
4 - G̃ Partially q-SFP 2 12

[4] I G
2 × G̃ G × G̃

3 - G × G̃ No GGM 2 7

[4] II G
2 × G̃ G × G̃ - G̃ Yes GGM 2 5

[25] G
4

G̃
2 - Ĝ Yes DH-LRSW 3 6

[17] I G × G̃
2

G
2 - G̃ No GGM 2 5

[17] II G × G̃
2

G
2 - G̃ Yes GGM 2 6

[17] III G
2 × G̃ G̃

2 - G Yes GGM 2 6

[6] I G
3 × G̃ G̃ G G Yes GGM 2 6

[6] II G
2 × G̃ G̃ G G No GGM 2 6

[10] G × G̃
2

G
2 - G̃ Yes GGM 2 5

[30] I G × G̃
2

G G̃ G̃ Yes GGM 2 6

[30] II G × G̃
2

G G̃ G̃ No GGM 2 7

Ours G
3

G̃
2 - Ĝ Yes GGM 2 5

aThis scheme is only secure against a random message attack.

4.1 Direct Anonymous Attestation

Bernhard et al. [11] gave the first instantiations of Direct Anonymous Attesta-
tion (DAA) [13] which do not rely on random oracles. Their constructions are
instantiations of Bernhard et al. [12] generic construction. Among other things,
the generic construction of the latter requires a randomizable weakly blind signa-
ture. The weakly blind signature is used in the join protocol to issue a credential
to the user without learning her secret key. Note that unlike in group signatures
[19], in DAA users do not have public keys matching their secret keys.

To get an efficient instantiation of the notion and hence an efficient instanti-
ation of DAA (without relying on random oracles), the efficient instantiation of
Bernhard et al. [11] combined Ghadafi’s structure-preserving signature scheme
[25] with Groth-Sahai proofs [31] to construct an efficient weakly blind signature
scheme. Their weakly blind signature instantiation yields signatures of size G

4

and require 3 PPE equations (7 pairings or 6 pairings and 1 elliptic curve point
addition in total) to verify. Exploiting the fact that our signature scheme has a
similar structure to Ghadafi’s scheme but yet has shorter signatures and the veri-
fication algorithm is more efficient, we get a more efficient instantiation of weakly
blind signatures and hence DAA by using our scheme instead. The weakly blind
signature (see Fig. 3) obtained by combining our signature scheme with Groth-
Sahai proofs yields signatures of size G

3 and require only 2 PPE equations
(5 pairings in total) to verify. Also, the communication complexity of both the
user and the signer in the signing protocol is the same as that in the instan-
tiation in [11]. Thus, using our scheme one gets more efficient instantiations of
DAA without relying on random oracles.
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SetupBS(1
λ)

P ← BGSetup(1λ). (crs1, xk1) ← GSSetup(P).
(crs2, xk2) ← GSSetup(P).
Return paramBS := (P, crs1, crs2).

KeyGenBS(paramBS)

x, y ← Zp. X̃ := G̃x; Ỹ := G̃y.

Return skBS := (x, y), vkBS := (X̃, Ỹ )
)
.

Request0BS(vkBS, (M, Ñ))

π ← GSProve
(
crs1, {Ñ , G̃′} : M ∈ L1

)
.

Return (ρ0 := (M, π), st0R := (M, Ñ)).

Issue1BS(skBS, ρ0)
Parse ρ0 as (M, π).
If GSVerify(crs1, M ∈ L1, π) = 0, Return ⊥ .
a ← Z

×
p ; A := Ga; B := Ma; C := Ax · By.

Ω ←GSProve(crs2, {Ã, G̃′} : (A, B, M) ∈ L2).
Return β1 := (A, B, C), Ω

)
.

Request1BS(vkBS, β1, st
0
R)

Parse β1 as ((A, B, C), Ω).

Parse st0R as (M, Ñ).
Return ⊥ if any of the following hold:
◦ A = 1G.

◦ e(C, G̃) �= e(A, X̃)e(B, Ỹ ).
◦ GSVerify(crs2, (A, B, M) ∈ L2, Ω) = 0.

Return σ ← RandomizeBS vkBS, (A, B, C)
)
.

VerifyBS(vkBS, (M, Ñ), (A, B, C))

If A = 1G or e(A, Ñ) �= e(B, G̃)

or e(C, G̃) �= e(A, X̃)e(B, Ỹ )
Then Return 0.

Else Return 1.

RandomizeBS(vkBS, σ)
Parse σ as (A, B, C).
r ← Z

×
p ; A′ := Ar; B′ := Br; C′ := Cr.

Return (A′, B′, C′).

Fig. 3. Our weakly blind signature scheme

In the construction detailed in Fig. 3, we use the following languages for the
zero-knowledge proofs for the user and signer respectively2:

L1 :
{(

M, (Ñ, G̃′)
)
: e(G, Ñ) = e(M, G̃′) ∧ G̃′ · G̃−1 = 1

G̃

}

L2 :
{(

(A, B, M), (Ã, G̃′)
)
: e(G, Ã) = e(A, G̃′) ∧ e(M, Ã) = e(B, G̃′) ∧ G̃′ · G̃−1 = 1

G̃

}

We prove following theorem in the full version of the paper [26].

Theorem 3. If the SXDH assumption holds and the signature scheme is exis-
tentially unforgeable, the weakly blind signature scheme in Fig. 3 is secure.

4.2 Group Signatures and Similar Primitives

In all constructions of group signatures [19], the issuer (the group manager) issues
membership certificates by certifying users’ verification keys. The message space
of our scheme being the set of Diffie-Hellman pairs makes our scheme ideal to be
combined with the automorphic structure-preserving signature scheme of Fuchs-
bauer [3,22]. For instance, combining our signature scheme with Fuchsbauer’s
blind signature scheme [3,22], we get more efficient instantiations of group blind
signatures [25,36] (without relying on random oracles) than those in [25]. An
instantiation using our signature scheme yields group blind signatures of size
36 · |G| + 34 · |G̃| compared to 38 · |G| + 36 · |G̃| and 42 · |G| + 38 · |G̃| for the
original constructions given in [25]. Also, since the final signature involves less
2 The purpose of the two multi-scalar multiplication equations is to make the equations

simulatable so that the proofs are zero-knowledge [31].
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Groth-Sahai proofs, the verification algorithm is much more efficient as each
Groth-Sahai proof requires a few pairings to verify.

Acknowledgments. We thank anonymous CT-RSA reviewers for their comments.
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Abstract. The purpose of this paper is to compare side-by-side the
NTRU and BGV schemes in their non-scale invariant (messages in the
lower bits), and their scale invariant (message in the upper bits) forms.
The scale invariant versions are often called the YASHE and FV schemes.
As an additional optimization, we also investigate the ffect of modulus
reduction on the scale-invariant schemes. We compare the schemes using
the “average case” noise analysis presented by Gentry et al. In addition
we unify notation and techniques so as to show commonalities between
the schemes. We find that the BGV scheme appears to be more efficient
for large plaintext moduli, whilst YASHE seems more efficient for small
plaintext moduli (although the benefit is not as great as one would have
expected).

1 Introduction

Some of the more spectacular advances in implementation improvements for
Somewhat Homomorphic Encryption (SHE) schemes have come in the context
of the ring based schemes such as BGV [3]. The main improvements here have
come through the use of SIMD techniques (first introduced in the context of
Gentry’s original scheme [7] by Smart and Vercauteren [17], but then extended to
the Ring-LWE based schemes by Gentry et al. [3]). SIMD techniques in the ring
setting allow for a small overall asymptotic overhead in using SHE schemes [8]
by exploiting the Galois group to move data between slots. The Galois group can
also be used to perform cheap exponentiation via the Frobenius endomorphism
[9]. Other improvements in the ring based setting have come from the use of
modulus switching to a larger modulus, so as to perform key switching [9], the use
of scale invariant versions [1,6], and the use of NTRU to enable key homomorphic
schemes [14].

The scale invariant schemes, originally introduced in [2], are particularly
interesting, they place the message space in the “upper bits” of the decryption
equation, as opposed to the lower bits. This enables a more effective noise control
mechanism to be employed which does not on the face of it require modulus
switching to keep the noise within bounds. However, the downside is that they
require a more complex rounding operation to be performed in the multiplication
procedure.
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However each paper which analyses the schemes uses a different methodology
for deriving parameters, and examining the noise growth. In addition not all
papers utilize all optimizations and improvements available. For example papers
on the NTRU scheme [5,14], and its scale invariant version YASHE [1], rarely,
if at all, make mention of the use of SIMD techniques. Papers working on scale
invariant systems [1,6] usually focus on plaintext moduli of two, and discount
larger moduli. But many applications, e.g. usage in the SPDZ [4] MPC system,
require the use of large moduli.

We have therefore conducted a systematic study of the main ring-based SHE
schemes with a view to producing a fair comparison over a range of possible
application spaces, from low characteristic plaintext spaces through to large
characteristic ones, from low depth circuits through to high depth ones. The
schemes we have studied are BGV, whose details can be found in [3,8,9], and its
scale-invariant version [6] (called FV in what follows), the basic NTRU scheme
[5,14], and its scale-invariant version YASHE [1]. A previous study [12] only
compared FV and YASHE, restricted to small plaintext spaces (in particular
characteristic two), and did not consider the various variants in relation to key
switching and modulus switching which we consider. Our results are broadly in
line with [12] (where we have a direct comparison) for YASHE, but our estimates
for FV appear slightly better.

On the face of it one expects that YASHE should be the most efficient, since
it is scale invariant (which often leads to smaller parameters) and a ciphertext
consists of only a single ring element, as opposed to two for the BGV style
schemes. Yet this initial impression hides a number of details, wherein one can
find a number of devils. It turns out that which is the most efficient scheme
depends on the context (message characteristic and depth of admissible circuits).

To compare all four schemes fairly we apply the same API to all schemes,
and the same optimizations. In particular we also investigate applying modulus
switching to the scale invariant schemes (where its use is often discounted as not
being needed). The use of modulus switching can be beneficial as it means cipher-
texts become smaller as the function evaluation proceeds, resulting in increased
performance. We also examine two forms of key switching (one based on the
traditional decomposition technique and one based on raising the modulus to a
larger value). For the decomposition technique we also examine the most efficient
modulus to take in the modular decomposition, which turns out not to the two
often seen in many treatments.

To compare the schemes we use the average distributional analysis first intro-
duced in [9], which measures the noise in terms of the expected size in the canon-
ical embedding norm. The use of the canonical embedding norm also deviates
from some other treatments. For general rings the canonical embedding norm
provides a more accurate measure of noise growth, over norms in the polynomial
embedding, when analysed over a number of homomorphic operations. The noise
growth of all of our schemes is analysed in the same way, and this is the first time
(to our knowledge) that all schemes have been analysed on an equal footing.
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The first question when performing such a comparison is how to compare
security of differing schemes. On one hand one could take the standpoint of an
exact security analysis and derive parameter sizes from the security theorems.
However, even this is tricky when comparing schemes as the theorems may reduce
security of different schemes to different hard problems. So instead we side-step
this issue and select parameters according to an analysis of the best known
attack on each scheme; which is luckily the same in all four cases. Thus we
select parameters according to the Lindner-Peikert analysis [13]. To also afford a
fair comparison we use similar distributions for the various parameters for each
scheme; e.g. small Hamming weight for the secret key distributions etc.

The next question is how to measure what is “better”. In the context of
a given specific scheme we consider one set of parameters to be better than
another, for a given plaintext modulus, level bound and security parameter, if
the number of bits to represent a ring element is minimized. After all this corre-
sponds directly to the computational overhead when implementing the scheme.
When comparing schemes one has to be a little more careful, as ciphertexts in
the BGV family consist of two ring elements and in the NTRU family they con-
sist of one element, but still ciphertext size is a good crude measure of overall
performance. In addition, the operations needed for the scale invariant schemes
are not directly compatible with the efficient double-CRT representation of ring
elements introduced in [9], thus even if ciphertext sizes for the scale invariant
schemes are smaller than for the non-scale invariant schemes, the actual compu-
tation times might be much larger.

As one can appreciate much of the analysis is an intricate following through
of various inequalities. The full derivations can be found in the full version of
this paper. We find that the BGV scheme appears to be more efficient for large
plaintext moduli, whilst YASHE seems more efficient for small plaintext moduli
(although the benefit is not as great as one would have expected).

2 Preliminaries

In this section we outline the basic mathematical background which forms the
basis of our four ring-based SHE schemes. Much of what follows can be found
in [8,9], we recap on it here for convenience of the reader. We utilize rings
defined by cyclotomic polynomials, A = Z[X]/Φm(X). We let Aq denote the set
of elements of this ring reduced modulo various (possibly composite) moduli q.
The ring A is the ring of integers of the mth cyclotomic number field K = Q(ζm).
We let [a]q for an element a ∈ A denote the reduction of a modulo q, with the
set of representatives of coefficients lying in (−q/2, . . . , q/2], hence [a]q ∈ Aq.
Assignment of variables will be denoted by a ← b, with equality being denoted
by = or ≡.

Plaintext Slots: We will always use p for the plaintext modulus, and thus
plaintexts will be elements of Ap, and the polynomial Φm(X) factors modulo p
into � irreducible factors, Φm(X) = F1(X) · F2(X) · · · F�(X) (mod p), all of
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degree d = φ(m)/�. Just as in [3,8,9,17] each factor corresponds to a “plaintext
slot”. That is, we view a polynomial a ∈ Ap as representing an �-vector (a
mod Fi)�

i=1. We assume that p does not divide m so as to enable the slots to
exist. In a number of applications p is likely to split completely in A, i.e. p ≡ 1
(mod m). This is especially true in applications not requiring bootstrapping, and
hence only requiring evaluation of low depth arithmetic circuits.

Canonical Embedding Norm: Following the work in [15], we use as the
“size” of a polynomial a ∈ A the l∞ norm of its canonical embedding. Recall
that the canonical embedding of a ∈ A into C

φ(m) is the φ(m)-vector of complex
numbers σ(a) = (a(ζi

m))i where ζm is a complex primitive m-th root of unity and
the indexes i range over all of (Z/mZ)∗. We call the norm of σ(a) the canonical
embedding norm of a, and denote it by

∥
∥a

∥
∥can

∞ =
∥
∥σ(a)

∥
∥

∞. We will make use of
the following properties of

∥
∥ · ∥

∥can

∞ :

– For all a, b ∈ A we have
∥
∥a · b

∥
∥can

∞ ≤ ∥
∥a

∥
∥can

∞ · ∥
∥b

∥
∥can

∞ .

– For all a ∈ A we have
∥
∥a

∥
∥can

∞ ≤ ∥
∥a

∥
∥
1
.

– There is a ring constant cm (depending only on m) such that
∥
∥a

∥
∥

∞ ≤ cm ·
∥
∥a

∥
∥can

∞ for all a ∈ A.

where
∥
∥a

∥
∥

∞ and
∥
∥a

∥
∥
1

refer to the relevant norms on the coefficient vectors
of a in the power basis. The ring constant cm is defined by cm =

∥
∥CRT−1

m

∥
∥

∞
where CRTm is the CRT matrix for m, i.e. the Vandermonde matrix over the
complex primitive m-th roots of unity. Asymptotically the value cm can grow
super-polynomially with m, but for the “small” values of m one would use in
practice values of cm can be evaluated directly. See [4] for a discussion of cm.

Sampling From Aq: At various points we will need to sample from Aq with
different distributions, as described below. We denote choosing the element a ∈ A

according to distribution D by a ← D. The distributions below are described as
over φ(m)-vectors, but we always consider them as distributions over the ring
A, by identifying a polynomial a ∈ A with its coefficient vector.

The uniform distribution Uq: This is just the uniform distribution over
(Z/qZ)φ(m), which we identify with (Z ∩ (−q/2, q/2])φ(m)).

The “rounded Gaussian” DGq(σ2): Let N (0, σ2) denote the normal (Gaussian)
distribution on real numbers with zero-mean and variance σ2, we use drawing
from N (0, σ2) and rounding to the nearest integer as an approximation to the
discrete Gaussian distribution. The distribution DGqt(σ

2) draws a real φ-vector
according to N (0, σ2)φ(m), rounds it to the nearest integer vector, and outputs
that integer vector reduced modulo q (into the interval (−q/2, q/2]).

Sampling small polynomials, ZO(p) and HWT (h): These distributions produce
vectors in {0,±1}φ(m).
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– For a real parameter ρ ∈ [0, 1], ZO(p) draws each entry in the vector from
{0,±1}, with probability ρ/2 for each of −1 and +1, and probability of being
zero 1 − ρ.

– For an integer parameter h ≤ φ(m), the distribution HWT (h) chooses a
vector uniformly at random from {0,±1}φ(m), subject to the condition that
it has exactly h nonzero entries.

Canonical Embedding Norm of Random Polynomials: In the coming
sections we will need to bound the canonical embedding norm of polynomials
that are produced by the distributions above, as well as products of such poly-
nomials. Following the work in [9] we use a heuristic approach, which we now
recap on.

Let a ∈ A be a polynomial that was chosen by one of the distributions
above, hence all the (nonzero) coefficients in a are independently identically
distributed. For a complex primitive m-th root of unity ζm, the evaluation a(ζm)
is the inner product between the coefficient vector of a and the fixed vector
zm = (1, ζm, ζ 2

m , . . .), which has Euclidean norm exactly
√

φ(m). Hence the
random variable a(ζm) has variance V = σ2φ(m), where σ2 is the variance of
each coefficient of a. Specifically, when a ← Uq then each coefficient has variance
(q−1)2/12 ≈ q2/12, so we get variance VU = q2·φ(m)/12. When a ← DGq(σ2) we
get variance VG ≈ σ2 ·φ(m), and when a ← ZO(ρ) we get variance VZ = ρ·φ(m).
When choosing a ← HWT (h) we get a variance of VH = h (but not φ(m), since
a has only h nonzero coefficients).

Moreover, the random variable a(ζm) is a sum of many independent identi-
cally distributed random variables, hence by the law of large numbers it is distrib-
uted similarly to a complex Gaussian random variable of the specified variance.1

We therefore use 6
√

V (i.e. six standard deviations) as a high-probability bound
on the size of a(ζm). Since the evaluation of a at all the roots of unity obeys
the same bound, we use six standard deviations as our bound on the canonical
embedding norm of a. (We chose six standard deviations since erfc(6) ≈ 2−55,
which is good enough for us even when using the union bound and multiplying
it by φ(m) ≈ 216.)

In this paper we model all canonical embedding norms as if from a random
distribution. In [9] the messages were always given a norm of

∥
∥m

∥
∥can

∞ ≤ p·φ(m)/2,
i.e. a worst case bound. We shall assume that messages, and similar quantities,
behave as if selected uniformly at random and hence estimate

∥
∥m

∥
∥can

∞ ≤ 6 ·
p · √

φ(m)/12 = p · √
3 · φ(m). This makes our bounds better, and does not

materially affect the decryption ability due to the larger effect of other terms.
However, this simplification makes the formulae somewhat easier to parse.

In many cases we need to bound the canonical embedding norm of a product
of two or more such “random polynomials”. In this case our task is to bound the
magnitude of the product of two random variables, both are distributed close to

1 The mean of a(ζm) is zero, since the coefficients of a are chosen from a zero-mean
distribution.
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Gaussians, with variances σ2
a, σ2

b , respectively. For this case we use 16 · σa · σb as
our bound, since erfc(4) ≈ 2−25, so the probability that both variables exceed
their standard deviation by more than a factor of four is roughly 2−50. For a
product of three variables we use 40 · σa · σb · σc, since erfc(3.4) ≈ 2−19, and
3.43 ≈ 40.

3 Ring Based SHE Schemes

We refer to our four schemes as BGV, FV, NTRU and YASHE. The various
schemes have been used/defined in various papers: for example one can find
BGV in [3,8,9], FV in [6], NTRU in [5,14] and YASHE in [1]. In all four schemes
we shall use a chain of moduli for our homomorphic evaluation2 by choosing L
“small primes” p0, p1, . . . , pL−1 and the tth modulus in our chain is defined as
qt =

∏t
j=0 pj . A chain of L primes allows us to perform L − 1 multiplications.

The primes pi’s are chosen so that for all i, Z/piZ contains a primitive m-th root
of unity, i.e. pi ≡ 1 (mod m). Hence we can use the double-CRT representation,
see [9], for all Aqt .

For the BGV and NTRU schemes we additionally assume that pi ≡ 1
(mod p). This is to enable the Scaling operation to work without having to addi-
tionally scale by pi (mod p), which would result in slightly more noise growth.
A disadvantage of this is that the moduli pi will need to be slightly larger than
would otherwise be the case. The two scale invariant schemes (FV and YASHE)
will make use of a scaling factor Δq defined by Δq =

⌊
q
p

⌋
= q

p − εq, where
0 ≤ εq < 1.

3.1 Key Generation

We utilize the following methods for key generation, they sample the secret key
in all cases, from a sparse distribution, this follows the choices made in [9]. This
leads to more efficient homomorphic operations (since noise growth depends on
the size of the secret key in many situations). However, such choices might lead
to security weaknesses, which would need to be considered in any commercial
deployment.

KeyGenBGV(): Sample sk ← HWT (h), a ← UqL−1 , and e ← DGqL−1(σ
2). Then set

the secret key as sk and the public key as pk ← (a, b) where b ← [a ·sk+p ·e]qL−1 .

KeyGenFV(): Sample sk ← HWT (h), a ← UqL−1 , and e ← DGqL−1(σ
2). Then set

the secret key as sk and the public key as pk ← (a, b) where b ← [a · sk + e]qL−1 .

KeyGenNTRU(): Sample f, g ← HWT (h). Then set the secret key as sk ← p ·f +1
and the public key as pk ← [p · g/sk]qL−1 . Note, if p · f + 1 is not invertible in
AqL−1 we repeat the sampling again until it is.

2 This is not strictly needed for the Scale invariant version if modulus switching is not
performed.
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KeyGenYASHE(): Sample f, g ← HWT (h). Then set the secret key as sk ← p·f +1
and the public key as pk ← [p · g/sk]qL−1 . Again, if p · f + 1 is not invertible in
AqL−1 we repeat the sampling until it is.

3.2 Encryption and Decryption

The encryption algorithms for all four schemes are given in Fig. 1. As for key
generation we select slightly simpler distributions than the theory would imply
so as to ensure noise growth is not as bad as it would otherwise be. The output of
each algorithm is a tuple c consisting of the ciphertext data, the current level, plus
a bound on the current “noise” B∗

clean. This bound is on the canonical embedding
norm of a particular critical quantity which comes up in the decryption process;
a different critical quantity depending on which scheme we are using. If the
critical quantity has canonical embedding norm less than a specific value then
decryption will work, otherwise decryption will likely fail. Thus having each
ciphertext carry around an upper bound on the norm of this quantity allows us
to analyse noise growth dynamically.

Fig. 1. Encryption algorithms for BGV, FV, NTRU and YASHE

To understand the critical quantity we have to first look at the decryption
procedure in each case. Then we can apply our heuristic noise analysis to obtain
an upper bound on the canonical embedding norm of the critical quantity for a
fresh ciphertext, and so obtain B∗

clean; a process which is done in the full version
of this paper.

DecBGVpk (c): Decryption of a ciphertext (c0, c1, t, ν) at level t is performed by
setting m′ ← [c0 − sk · c1]qt , and outputting m′ mod p. If we define the critical
quantity to be c0 − sk · c1 (mod qt), then this procedure will work when ν is an
upper bound on the canonical embedding norm of this quantity and cm · ν <
qt/2. If ν satisfies this inequality then the value of c0 − sk · c1 (mod qt) will be
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produced exactly with no wrap-around, and will hence be equal to m + p · v, if
c0 = sk · c1 + p · v + m (mod qt). Thus we must pick the smallest prime q0 = p0
large enough to ensure that this always holds.

DecFVpk (c): Decryption of a ciphertext (c0, c1, t, ν) at level t is performed by setting

m′ ←
⌈ p

qt
· [c0 − sk · c1]qt

⌋
,

and outputting m′ mod p. Consider the value of [c0 − sk · c1]qt computed during
decryption, suppose this is equal to (over the integers before reduction mod qt)
m ·Δqt +w+r ·qt. Then another way of looking at decryption is that we perform
rounding on the value

p · Δqt · m

qt
+

p · w

qt
+

p · r · qt

qt
=

p · ( qt
p − εqt) · m

qt
+

p · w

qt
+ p · r

= m + p · w − εqt · m

qt
+ p · r

and then take the result modulo p. Thus the critical quantity in this case is the
value of w − εqt · m. So that the rounding is correct we require that ν is an
upper bound on

∥
∥w− εqt ·m∥

∥can

∞ . The decryption procedure will then work when
cm · ν < Δqt/2, since in this case we have

∥
∥
∥p · w − εqt · m

qt

∥
∥
∥

∞
≤ cm · p

qt
· ∥
∥w − εqt · m

∥
∥can

∞ ≤ Δqt · p

2 · qt
<

1
2
.

Thus again we must pick the smallest prime q0 = p0 large enough, to ensure
that cm · ν < Δqt/2.

DecNTRU
pk (c): Decryption of a ciphertext (c, t, ν) at level t is performed by setting

m′ ← [c · sk]qt , and outputting m′ mod p. Much as with BGV the critical quan-
tity is [c · sk]qt . If ν is an upper bound on the canonical embedding norm of c · sk,
and we have c = a · pk + p · e + m modulo qt, for some values of a and e, then
over the integers we have

[c · sk]qt = m + p · (a · g + e + f · m) + p2 · e · f,

which will decrypt to m. Thus for decryption to work we require that cm · ν <
qt/2.

DecYASHEpk (c): Decryption of a ciphertext (c, t, ν) at level t is performed by setting

m′ ←
⌈ p

qt
· [c · sk]qt

⌋
,

and outputting m′ mod p. Following the same reasoning as for the FV scheme,
suppose c · sk is equal to (again over the integers before reduction mod qt) m ·
Δqt +w + r · qt. Then for decryption to work we require ν to be an upper bound
on

∥
∥w − εqt · m

∥
∥can

∞ and cm · ν < qt/2.
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3.3 Scale

These operations scale a ciphertext, reducing the corresponding level and more
importantly scaling the noise. The syntax is Scale∗(c, tout) where c is at level tin
and the output ciphertext is at level tout with tout ≤ tin. The noise is scaled by
a factor of approximately qtin/qtout

, however an additive term of B∗
scale is added.

For each of our variants see the full version of this paper for a justification of
the proposed method and an estimate on B∗

scale.
For use in one of the SwitchKey∗ variants we also use a Scale which takes a

ciphertext with respect to modulus Q and produces a ciphertext with respect to
modulus q, where q|Q. The syntax for this is Scale∗(c, Q); the idea here is that
Q is a “temporary” modulus unrelated to the actual level t of the ciphertext,
and we aim to reduce Q down to qt. The former scale function can be defined in
terms of the latter via

Scale∗(c, tout):

– Write c = (c, t, ν).
– c′ ← Scale∗((c, tout, ν), qt).
– Output c′.

The Scale∗ function was originally presented in [3] as a form of noise control
for the non-scale invariant schemes. However, the use of such a function within
the scale invariant schemes can also provide more efficient schemes, as alluded to
in [6]. This is due to the modulus one is working with which decreases as homo-
morphic operations are applied. It is also needed for our second key switching
variant. We thus present a Scale∗ function for all our four schemes in Fig. 2.

Fig. 2. Scale algorithms for BGV, FV, NTRU and YASHE. In all methods Q = qt · P ,
and for the BGV and NTRU schemes we assume that P ≡ 1 (mod p).
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3.4 Reduce Level

For all schemes we can define a ReduceLevel∗ operation which reduces a cipher-
text level from level t′ to level t where t′ ≥ t. For the non-scale invariant schemes
when we reduce a level we only perform a scaling (which could be an expensive
operation) if the noise is above some global bound B. This is because for small
noise we can easily reduce the level by just dropping terms off the modulus, since
the modulus is a product of primes. For the scale invariant schemes we actually
need to perform a Scale operation since we need to modify the Δqt term. See the
full version of this paper for details. In our parameter estimation evaluation we
examine the case, for FV and YASHE, of applying modulus switching to reduce
levels and not applying it. In the case of not applying it all ciphertexts remain
at level L − 1, and ReduceLevel∗ becomes a NOP.

3.5 Switch Key

The switch key operation is needed to relinearize after a multiplication, or after
the application of a Galois automorphism (see [8] for more details on the latter).
For all schemes we present two switch key operations:

– One based on decomposition modulo a general modulus T . See [11] for this
method explained in the case of the BGV scheme. Unlike prior work we do not
take T = 2, as we treat T as a parameter to be optimized to achieve the most
efficient scheme. Although to ease parameter search we restrict to T being a
power of two.

– Our second method is based on the raising the modulus idea from [9], where
it was applied to the BGV scheme. Here we adopt a more complex switching
operation, and a potentially larger parameter set, but we gain by reducing the
size of the switching “matrices”.

For each variant we require algorithms SwitchKeyGen and SwitchKey; the first
generates the public switching “matrix”, whilst the second performs the actual
switch key. In the BGV and FV schemes we perform a general key switch of the
underlying decryption equation of the form d0−sk ·d1+sk′ ·d2 −→ c0−sk ·c1. For
the NTRU and YASHE schemes the underlying key switch is of the form c·sk′ −→
c′ · sk. In Fig. 3 we present the key switching methods for the BGV algorithm.
See the full version of this paper for the methods for the other schemes, plus
derivations of upper bounds on the constants BKs,∗ ∗ (∗).

In the context of BGV the first method requires us to store logT (qL−1)
“encryptions” of sk′, each of which is an element in R2

qL−1
. The second method

requires us to store a single “encryption” of P · sk′, but this time as an ele-
ment in R2

P ·qL−1
. The former will require more space than the latter as soon as

log2 P < logT (qL−1). In terms of noise the output noise of the first method is
modified by an additive constant of

BBGV
Ks,1 (t) =

8√
3

· p ·
⌈
logT qt

⌉
· σ · φ(m) · T.
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Fig. 3. The two variants of Key Switching for BGV.

whilst the output noise of the second method is modified by the additive constant

BBGV
Ks,2 (t)
P

+ B∗
scale =

8 · p · qt · σ · φ(m)√
3 · P

+ B∗
scale.

As the level decreases this becomes closer and closer to B∗
scale, as the P in the

denominator will wipe out the numerator term. Thus the noise will grow of
the order of O(

√
φ(m)) using the second method and as O(φ(m)) using the

first method. A similar outcomes arises when comparing the two methods with
respect to the other three schemes.

3.6 Addition and Multiplication

We can now turn to presenting the homomorphic addition and multiplication
operations. For reasons of space we give the addition and multiplication methods
in the full version of this paper. In all methods the input ciphertexts ci have
level ti, and recall our parameters are such that we can evaluate circuits with
multiplicative depth L − 1.

3.7 Security and Parameters

In this section we outline how we select parameters in the case where
ReduceLevel∗ is not a NOP (a no-operation). An analysis, for the FV and YASHE
schemes, where ReduceLevel∗ is a NOP we defer the analysis to the full version
of this paper. We let B denote an upper bound on ν at the output of any
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ReduceLevel∗ operation. Following [9] we set B = 2 ·B∗
scale. We assume that oper-

ations are performed as follows. We encrypt, perform up to ζ additions, then do
a multiplication, then do ζ additions, then do a multiplication and so on, where
we assume decryption occurs after a multiplication.

Security: We assume, as a heuristic assumption, that if we set the parameters
of the ring and modulus as per the BGV scheme then the other schemes will also
be secure. We follow the analysis in [9], which itself follows on from the analysis
by Lindner and Peikert [13]3. We therefore have one of two possible lower bounds
for φ(m), for security parameter k

φ(m) ≥

⎧

⎪

⎨

⎪

⎩

log(qL−1/σ)·(k+110)

7.2
If the first variant of SwitchKey is used,

log(P ·qL−1/σ)·(k+110)

7.2
If the second variant of SwitchKey is used.

(1)

Note the logs here are natural logarithms.

Bottom Modulus: To ensure decryption correctness at level zero we require
that

4 · cm · B∗
scale = 2 · cm · B <

⎧
⎪⎪⎨

⎪⎪⎩

p0 For BGV and NTRU

⌊
p0
p

⌋
For FV and YASHE.

(2)

Top Modulus: At the top level we take as input a ciphertext with noise B∗
clean,

perform ζ additions to produce a ciphertext with noise B1 = ζ · B∗
clean. We then

perform a multiplication to produce something with noise

B2 =

⎧
⎪⎪⎨

⎪⎪⎩

F ∗(B1, B1) +B∗
Ks,1(L− 1) If the first variant of SwitchKey is used,

F ∗(B1, B1) +
B∗

Ks,2(L−1)

P
+B∗

scale If the second variant of SwitchKey is used.

We then scale down a level to obtain something at the next level down. Thus
we obtain something with noise bounded by B3 = B2

pL−1
+ B∗

scale. We require, for
our invariant, B3 ≤ B = 2 · B∗

scale. Thus we require,

pL−1 ≥ B2

B∗
scale

. (3)

3 One could take into account a more elaborate analysis here, for example looking at
BKW style attacks e.g. [10]. But for simplicity we follow the same analysis as in [9].
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Middle Moduli: A similar argument applies for the middle moduli, but now
we start off with a ciphertext with bound B = 2 · B∗

scale as opposed to B∗
clean.

Thus we form

B′(t) =

⎧
⎪⎨

⎪⎩

F ∗(ζ · B, ζ · B) + B∗
Ks,1(t) First variant of SwitchKey,

F ∗(ζ · B, ζ · B) + B∗
Ks,2(t)

P + B∗
scale Second variant of SwitchKey.

after which a Scale operation is performed. Hence, the modulus pt for t �= 0, L−1
needs to be selected so that

pt ≥ B′(t)
B∗

scale

. (4)

Note, in practice we can do a bit better in the second variant of SwitchKey by
merging the final two final scalings into one.

Putting it All Together: We are looking for parameters which satisfy Eqs. (1),
(2), (3) and (4), and which also minimize the size of data being processed,
which is

φ(m) ·
(

L−1∑

t=0

pt

)

.

To do this we iterate through all possible values of log2 qL−1 and log2 T (resp.
log2 P ). We then determine φ(m), as the smallest value which satisfies Eq. (1).
Here, we might need to take a larger value than the right hand side of Eq. (1)
due to application requirements on p or the amount of packing required.

We then determine the size of pL−1 from Eq. (3), via

pL−1 ≈
⌈ B2

B∗
scale

⌉
.

We can now iterate downwards for t = L − 2, . . . , 1 by determining the size of
log2 qt, via

log2 qt = log2 qt+1 − log2 pt+1.

If we obtain log2 qt < 0 then we abort, and pass to the next pair of (log2 qL−1, T )
(resp. (log2 qL−1, log2 P )) values. The value of pt being determined by Eq. (4), via

pt ≈
⌈B′(t)
B∗

scale

⌉
.

Finally we check whether a prime p0 the size of log2 q0, will satisify Eq. (2), if
so we accept this set of values as a valid set of parameters, otherwise we pass to
the next pair of (log2 qL−1, T ) (resp. (log2 qL−1, log2 P )) values.
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Fig. 4. Size of required ciphertext for various sizes of plaintext modulus when L = 5.
The graph on the left zooms into the portion of the right graph for small values of
log2 p (Color figure online).

4 Results

In the full version of this paper one can find a full set of parameters for each
scheme, and variant of key switching, for various values of the plaintext modulus
p and the number of levels L. In this section we summarize the overall conclusion.
As a measure of efficiency we examine the size of a ciphertext in kBytes; this is
a very crude measure but it will capture both the size of any data needed to be
transmitted as well as the computational cost of dealing with a single ciphertext
element within a calculation. In the full version of this paper we also examine
the size of the associated key switching matrices, which is significantly smaller
for the case of our second key switching method. In a given application this
additional cost of holding key switching data may impact on the overall choices,
but for this section we ignore this fact.

For all schemes we used a Hamming weight of h = 64 to generate the secret
key data, we used a security level of k = 80 bits of security, a standard deviation of
σ = 3.2 for the roundedGaussians, a tolerance factor of ζ = 8and a ring constant of
cm = 1.3. These are all consistent with the prior estimates for parameters given in
[9]. The use of a small ring constant can be justified by either selecting φ(m) to be a
power of two, or selecting m to be prime, as explained in [4]. As a general conclusion
we find that for FV and YASHE the use of modulus switching to lower levels results
in slightly bigger parameters to start for large values of L; approximately a factor of
two for L = 20 or 30. But as a homomorphic calculation progresses this benefit will
drop away, leaving, for most calculations, the variant in which modulus switching is
applied the most efficient. Thus in what follows we assume that modulus switching
is applied in all schemes.

Firstly examine the graphs in Figs. 4 and 5. We see that for a fixed number
of levels and very small plaintext moduli the most efficient scheme seems to be
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Fig. 5. Size of required ciphertext for various sizes of plaintext modulus when L = 30.
The graph on the left zooms into the portion of the right graph for small values of
log2 p (Color figure online).

YASHE. However, quite rapidly, as the plaintext modulus increases the BGV
scheme quickly outperforms all other schemes. In particular for the important
case of the SPDZ MPC system [4] which requires an SHE scheme supporting
circuits of multiplicative depth one, i.e. L = 2, for a large plaintext modulus p,
the BGV scheme is seen to be the most efficient.

Examining Fig. 6 we see that if we fix the prime and just increase the number
of levels then the choice of which is the better scheme is be very consistent. Thus
one is led to conclude that the main choice of which scheme to adopt depends on
the plaintext modulus, where one selects YASHE for very small plaintext moduli
and BGV for larger plaintext moduli.
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Abstract. Recent years have witnessed an increased interest in lattice
cryptography. Besides its strong security guarantees, its simplicity and
versatility make this powerful theoretical tool a promising competitive
alternative to classical cryptographic schemes.

In this paper, we introduce NFLlib, an efficient and open-source
C++ library dedicated to ideal lattice cryptography in the widely-spread
polynomial ring Zp[x]/(xn + 1) for n a power of 2. The library com-
bines algorithmic optimizations (Chinese Remainder Theorem, optimized
Number Theoretic Transform) together with programming optimization
techniques (SSE and AVX2 specializations, C++ expression templates,
etc.), and will be fully available under an open source license.

The library compares very favorably to other libraries used in ideal lat-
tice cryptography implementations (namely the generic number theory
libraries NTL and flint implementing polynomial arithmetic, and the
optimized library for lattice homomorphic encryption HElib): restricting
the library to the aforementioned polynomial ring allows to gain several
orders of magnitude in efficiency.

Keywords: C++ library · Implementation · Ideal lattice cryptography ·
Number theoretic transform · Chinese remainder theorem · SEE special-
izations

Note: NFLlib is available under an open source license at https://github.com/
quarkslab/NFLlib

1 Introduction

Lattice cryptography is often praised for its simplicity, its versatility and its
possible resistance to quantum attacks. However, its large memory requirements
makes its practical use strenuous. The introduction of ideal lattice cryptography
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completely reshaped this belief [24,27]. In ideal lattice cryptography, primitives
rely on the hardness of problems involving polynomial rings in which lattices can
be represented by a few polynomials. In recent years, several hardware and soft-
ware implementations of lattice signatures and encryption have been developed.
These implementations show performances competitive with (or even surpassing)
those of currently used primitives such as RSA or elliptic curves (see e.g. [9,26]).
Due to its efficiency and security arguments, ideal lattice cryptography starts to
be deployed in products1 and is promised a bright future.

Besides signature and encryption, lattice cryptography has shown to be amaz-
ingly versatile. In particular, most of the homomorphic encryption (HE) schemes
rely on lattices. The latter research area is really active, and recent years have
seen loads of HE implementations using polynomial rings. Lattices are also used
to instantiate schemes with advanced properties, such as identity-based encryp-
tion (IBE), functional encryption or multilinear maps.

To work efficiently over polynomials rings in software, we are aware of three
main approaches:

(1) Use the generic number theory library NTL [30]. This is the approach used
in lots of HE implementations (and in particular HElib [16,17]), and in the
IBE implementation of [10].

(2) Use the generic number theory library flint [18]. This is the approach used
in [22] to implement two HE schemes, and in [1] for multilinear maps.

(3) Use home-made libraries that implement operations in the polynomial ring
Zp[x]/(xn + 1).
This is the approach used in the open-source VPN implementation [31],
Microsoft homomorphic encryption implementation [4], SIMD-optimized
implementations [12,15], GPU implementations [7,21] and also [9,26].

Note that all the aforementioned implementations consider uniquely (or may
be instantiated with) the polynomial ring

Rp
def= Zp[x]/(xn + 1)

for a modulus p ≡ 1 (mod 2n) and n some power of 2. This setting is wide-
spread in ideal lattice cryptography because of its simplicity of exposition and of
implementation. Among other advantages, in that setting, polynomials can be
multiplied in quasi-linear time using the Number Theoretic Transform (NTT),
a Fast Fourier Transform on finite rings [28]. Now, home-made implementations
(i.e. item (3)) of polynomial operations in the latter setting have shown to achieve
better performances than using the generic libraries NTL or flint (see e.g. [22,
Table 4]).2 This leads us to the following question:
1 The open-source IPsec-based VPN solution strongSwan [31] includes the BLISS lat-

tice signature [9] as an IKEv2 public key authentication method starting from version
5.2.2.

2 This is also hinted at in the HElib library [16,17] which modifies the internal routines
of NTL to achieve better performances — although for any cyclotomic polynomial
ring Zp[x]/(Φ).



NFLlib: NTT-Based Fast Lattice Library 343

How fast can a specialized polynomial library dedicated to lattice cryptography
over Rp be?

1.1 Our Contribution: NFLlib

In this work, we present NFLlib, an efficient and scalable C++ library special-
ized for cryptography over Rp = Zp[x]/(xn + 1). NFLlib includes optimized
subroutines to perform arithmetic operations over polynomials and allows to
easily implement ideal lattice cryptography.3 The library contains algorithmic
optimizations (Double-CRT representation, Number-Theoretic Transform, lazy
modular reduction), and programming optimizations (Streaming SIMD Exten-
sions, Advanced Vector Extensions, C++ expression templates).

We benchmarked the library’s arithmetic operations over Rp against the
generic libraries NTL, flint, and against the HE library HElib. Our results
show that focusing on a setting widely used in ideal lattice cryptography allowed
to gain several orders of magnitude of efficiency compared to generic libraries.

NFLlib will be open-source and available under the GNU General Public
License v3.0. It is designed for ideal lattice cryptography, provides a complete
set of operations, and minimizes the amount of new code needed to add new
features. In short, one of our hopes is that making this library open-source
(and thus seeking for contributions) spurs on the development of ideal lattice
cryptography in prototypes in the very near future.

1.2 Related Work

Libraries. The NFLlib library is specialized for a particular polynomial ring and
therefore differs completely from the generic libraries NTL [30] and flint [18].
These latter libraries allow to perform powerful number theory, while NFLlib
focus on a particular polynomial ring. This specialization allowed us to opti-
mize the underlying operations while being designed to be used for ideal lat-
tice cryptography. Another library that implements lattice cryptography is
HElib [16,17], which uses NTL. HElib has become a reference to benchmark
HE because it implements a full-fledged HE scheme [5] and features efficient
packing techniques and other optimizations. Note that NFLlib does not com-
pare to HElib in term of functionality, but NFLlib could replace NTL in HElib
when working over Rp, and would yield a much more efficient implementation.

Double-CRT Representation. Using moduli that split completely to store the
polynomial coefficients in CRT form (first layer of CRT), and using the NTT
representation of the polynomials (second layer of CRT) is a technique that
has been used previously in lattice cryptography. In particular, it is used in the

3 Even though architecture-optimized implementations will always outperform generic
libraries, this paper tackles the issue of designing an efficient library that can be
used on a large range of architecture. Also, NFLlib includes state-of-the-art SSE
and AVX2 optimizations for the NTT and the modular multiplication operation.



344 C. Aguilar-Melchor et al.

HElib library [13,16,17] and in the GPU implementation [7]. However, NFLlib
features specific primes in the moduli decomposition, chosen to optimize the
NTT and allow lazy modular multiplication.

1.3 Outline

In Sect. 2 we describe the basic cryptographic and mathematical notions needed
in our paper. In Sect. 3 we present our library, its main components and how
these allowed us to get our performance results. In Sect. 4 we compare the
performance of our library with other libraries on different algorithms (NTT,
multiplications, additions, etc.). Finally, in Sect. 5, we describe some implemen-
tations of lattice cryptographic algorithms and highlight the performance results
obtained.

2 Preliminaries

Throughout the paper, we let n be a power of 2 and p > 0 be a modulus (not

necessarily prime as we will see later). Define R to be the ring Rp
def= Zp[x]/(xn+1),

i.e. the ring of polynomials having integer coefficients, modulo xn + 1. For any
integer p, define Rp

def= Zp[x]/(xn + 1) the ring R modulo p, i.e. polynomials
modulo xn +1 with coefficients modulo p. We denote by a mod b the remainder
of the euclidean division of a by b, and c ≡ a (mod b) represents any number
such that c mod b = a. We use the classical Landau notation.

Ideal Lattice Cryptography. In most of existing implementations, the structured
lattices used in ideal lattice cryptography have an interpretation in terms of
arithmetic in the ring Zp[x]/(xn + 1), for n a power of 2. Jumping ahead, note
that we will chose particular values for p in order to optimize the polynomial
multiplications when using the Number Theoretic Transform (see also [9,15,29])
in combination with the Chinese Remainder Theorem.

The Chinese Remainder Theorem (CRT). Throughout the paper, the modulus
p will be composite and square-free, and its factorization is denoted p = p1 · · · p�.
The CRT yields an isomorphism Zp � Zp1 × · · ·×Zp�

, which extends directly to
polynomials rings. In particular, we have that Rp � Rp1 × · · · × Rp�

. Jumping
ahead of Sect. 3.1, the latter equivalence shows that, instead of working with a
polynomial a(x) ∈ Rp, we will choose p = p1 · · · p� with particular pi’s and work
with � polynomials ai(x) ∈ Rpi

.

The Number Theoretic Transform (NTT). To multiply polynomials efficiently,
we use the quasi-linear polynomial multiplication algorithm called the NTT [28].
The advantages of using NTT for ideal lattice cryptography were recently demon-
strated in hardware and software implementations [9,14,15,29].
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3 NFLlib: A Library for Ideal-Lattice Cryptography

In this section, we introduce NFLlib, a C++ library for ideal-lattice cryp-
tography, i.e. for manipulating polynomials of Rp = Zp[x]/(xn + 1). The
entry point to our library is a templated class poly < class T, size t degree,
size t sizeModulus >.

To obtain a usable class, one must define three parameters before compilation:
the word type (uint16 t, uint32 t or uint64 t), the degree n of the polynomial
xn + 1 that defines Rp (which must be a power of two), and the bit-size of the
modulus p, which will be internally constructed as a product of � fixed-size
primes: p = p1 × · · · × p� .

The poly class features: overloaded operators for modular arithmetic and
data manipulation (and the associated static functions); C++ template expres-
sions to minimize the inherent performance degradation of overloaded operator;
functions to sample polynomials in Rp with different distributions for the coeffi-
cients (uniform distribution modulo p, uniformly bounded distribution, discrete
Gaussian distribution); transformation-related functions (NTT, CRT, export,
import); SSE and AVX2 optimizations for compatible architectures.

The word type T is the most critical parameter. It defines which (and how
many) primes pi’s are available, what is the maximal polynomial degree n possi-
ble, and which underlying code is used. Indeed, the code is specialized and might
feature SIMD optimizations (especially when using 32-bit and 16-bit words).

All the functions provided by the poly class have been developed from
scratch, and are based on the native (scalar or vectorial) instructions of a mod-
ern CPU. Only exceptions, the Salsa20-based pseudo-random number generator,
and the CRT inversion function which uses GMP if the modulus used is too large
for native instructions.

NFLlib is a specialized polynomial library dedicated to ideal-lattice cryp-
tography. It is well known that in this setting representing polynomials by their
values instead of their coefficients (i.e. representing them in NTT form) and using
the CRT to represent values is very beneficial for performance. We therefore use
such a representation.

NFLlib’s performance results are mainly due to the fact that most of the
functions have been developed directly based on native operations, and to four
major choices that have proven to be very efficient. These choices are:

– the fixed-size CRT representation — see Sect. 3.1;
– the modular multiplication for scalars — see Sect. 3.2;
– the NTT algorithm — see Sect. 3.3.
– the SSE and AVX2 optimizations — see Sect. 4.

In the aforementioned sections, we describe the particular choices we made
in NFLlib, and discuss their respective impacts.
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3.1 Fixed-Size CRT Representation

For efficiency reasons, we selected the moduli p used in our ideal lattice setting
as a product of � fixed-size primes pi’s fitting on one word.4 Thus, one can
work with the CRT representation (a1(x), . . . , a�(x)) ∈ Rp1 × · · · × Rp�

of a
polynomial a(x) ∈ Rp, where ai(x) = a(x) mod pi. All the ai(x) can then be
processed independently.

The primes forming the moduli are chosen with the following constraints:

Constraint 1. Their size must be at most the word size minus two bits, so
that we can do lazy modular reductions in the NTT algorithm (which gives
roughly a 30% speedup);

Constraint 2. They must satisfy Eq. (1) for a given parameter s0, in order to
use the modular multiplication algorithm of Sect. 3.2;

Constraint 3. For any possible value of n — the degree of the quotient poly-
nomial in Rp — they must be congruent to 1 (mod 2n), so that we can find
n-th roots of −1 to use the NTT algorithm of Sect. 3.3 and do polynomial
multiplications modulo xn + 1.

Constraint 2 will ensure that Constraint 1 is satisfied when s0 ≥ 2. By default,
NFLlib sets s0 = 2. In order to satisfy Constraint 3, we had to arbitrarily select
a maximal polynomial degree nmax in NFLlib. (Note that the constraint is
then satisfied for any degree n � nmax). The higher nmax is, the less primes
verify Constraint 3. When the word size is 16 bits, these constraints are stronger
than for larger words. For example for nmax = 2048, only one 14-bit prime
verifies Constraint 3 (supposing s0 = 2). For 64-bit words on the other hand,
it is possible to find thousands of primes verifying the constraints even for very
large polynomial degrees such as nmax = 220. Algorithm 1 returns the primes
satisfying Contraints 1–3.

Defining these primes statically is beneficial for performance, and therefore
they have been included in a parameter file params.hpp with nmax = 512 when
s = 16 (2 primes), nmax = 215 when s = 32 (291 primes), and nmax = 220 when
s = 64 (primes limited voluntarily to one thousand). All of these have been
chosen with s0 = 2 as explained before. Of course other values of s0 and nmax

may be defined by the user of NFLlib.5

4 At the heart of many kinds of ideal-lattice schemes (ranging from classical encryp-
tion to fully homomorphic encryption and multilinear maps) is the decision-Ring-
Learning-With-Errors (dRLWE) assumption. Working with cyclotomic polynomials
Φ(x) = xn + 1 implies that we have provable worst-case hardness for dRLWE with
essentially any large enough p — splitting, inert, or anywhere in between [6]. In
NFLlib, we therefore chose a p that splits completely for efficiency reasons.

5 NFLlib has been designed to work with a wide range of parameters: polynomial
degrees 2 � n � 220 and moduli 213 < p < 21000·62. However, the users of NFLlib
are responsible for selecting parameters (n, p) that ensure κ bits of security for the
specific application they are developing. We refer to [2,3,23] for selecting concrete
security parameters of lattice encryption schemes.
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Algorithm 1. Prime selection algorithm
Input: s word size, s0 margin bits, nmax maximum polynomial degree
Output: (p1, . . . , pt) a list of primes satisfying Constraints 1-3

1 β = 2s, i = 1, outputList = ()
2 do
3 c = β/2s0 − i · 2nmax+1 + 1
4 if isPrime(c) and c > (1 + 1/23s0) · β/(2s0 + 1) then
5 Add c to outputList

6 end
7 i = i+1

8 while c > (1 + 1/23s0) · β/(2s0 + 1)
9 return outputList

3.2 Optimizing the Modular Multiplication

As explained in Sect. 3.1, NFLlib includes invariant primes of 14, 30 and 62 bits,
and computations are performed independently over these primes. However — as
already emphasized in [25] — computing modular reductions with an invariant
integer using a well-tuned Newton reciprocal followed by multiplications and
adjustments wins over the hardware division instructions.

During the library construction, we observed that the gcc compiler automat-
ically optimized the modular multiplications when working with 16-bit or 32-bit
words (i.e. for 14- and 30-bit primes), but not with 64-bit words. In this section,
we consider the problem of dividing a two-word integer by a single word integer.
This problem was extensively studied in [25] which proposed a new algorithm
(Algorithm 4 in the latter paper) giving a speedup of roughly 30% over the
Newton reciprocal algorithm [25, Algorithm 1]. The former algorithm was
included in the version 4.3 of the gmp library.

However, in NFLlib, the primes are feature so that their (two) most signif-
icant bits equal to 0, and the algorithms in [25] are optimized for numbers with
their most significant bit equal to 1. In the rest of the section, we describe a new
algorithm which significantly improves over [25] for numbers p smaller than the
word base β = 2s, as illustrated in Table 1.

Table 1. Time per componentwise multiplication of polynomials of degree 1024 modulo
a 62-bit prime (average over 100,000 polynomial multiplications on an Intel Xeon CPU
E5-2666 v3 at 2.90GHz). We implemented Algorithms 1 and 4 of [25] (with 4p instead
of p and two conditional subtractions at the end), but they perform one order of
magnitude slower than our improved algorithm.

Algorithm Naive [25] [25] Ours

(i.e. using %) Algorithm 1 Algorithm 4 Algorithm 2

Polynomial Modular
Mult. (µs)

29.8µs 15.5µs 12.9µs 2.90µs
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Algorithm 2. Modular reduction with a modulus verifying Eq. (1)
Input: u = 〈u1, u0〉 ∈ [0, p2), p verifying Eq. (1), v0 = �β2/p� mod β,

1 � s0 � s − 1 margin bits
Output: r = u mod p

1 q ← v0 · u1 + 2s0 · u mod β2

2 r ← u − �q/β� · p mod β
3 if r � p then r ← r − p
4 return r

Assume that one wants to compute a modular reduction with a modulus p
such that

(1 + 1/23s0) · β/(2s0 + 1) < p < β/2s0 , (1)

for an integer 1 � s0 � s − 1 (note that all our 62-bit primes verify Eq. (1)).
For any number u ∈ [0, β2), denote 〈u1, u0〉 its decomposition in words smaller
than β, so that u = u1 · β + u0. We describe our new modular reduction in
Algorithm 2.

We have the following theorem. For space constraints, we defer its proof to
the final version of the paper.

Theorem 1. Assume 1 � s0 � s − 1 and p verifies Eq. (1) and u = 〈u1, u0〉 ∈
[0, p2). Let v = 〈v1, v0〉 = �β2/p	. Then Algorithm 2 with input (u, p, v0, s0)
outputs (u mod p).

3.3 A Lazy NTT Algorithm

We use Harvey’s NTT algorithm [14]. This algorithm uses two techniques to
reduce its computational costs: pre-computed quotients to accelerate modular
multiplications, and lazy reductions (i.e. inputs and outputs can be up to twice
the modulus). Quotient pre-computations in the NTT was already performed by
NTL [30] but Harvey proves elegantly that the NTT butterflies can be modified
so that the output is in [0, 2p) when the input is in [0, p), using only one condi-
tional subtraction (instead of three in the initial algorithm). This gives a very
nice performance boost of about 30%, as shown in [14]. Note that this justifies
to select primes ad in Sect. 3.2.

As usual, before applying the NTT we multiply the i-th coordinate of the
polynomial we are going to transform by ψi, where ψ is an n-th root of −1
which allows us to have negatively wrapped convolutions when we multiply two
elements (i.e. reductions modulo xn + 1). After the NTT, we reduce the coeffi-
cients to [0, p) but we do not apply the bit-reverse permutation by default. The
reason for this is that, in lattice based cryptography, we often want to offload
work from the NTT to the inverse NTT. For example in an LWE encryption
scheme, at encryption time one needs to: (1) generate multiple noise polynomi-
als, (2) convert each of them with an NTT, and (3) multiply/add them. In the
decryption phase, on the other hand, there is no noise polynomials to generate
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and there is just one multiplication, one addition and a single inverse NTT.
If in a given case, such as the one described in Sect. 5.1 we want to balance both
transformations, such a change can be activated with a compilation option.

Our library has no particular contribution concerning the NTT, we just show
in this paper that it is a lot more efficient than the Bluestein FFT used in HElib
(see Sect. 4). Our implementation does not use assembly language, but it is quite
efficient, scalable and general.

4 Performances Evaluation and Comparison with NTL,
FLINT and HElib

In this section we analyze the performance of our library and report comparative
benchmarks with the NTL [30], flint [18] and HElib [16] libraries.

Recall that NTL and flint are generic libraries that allow to work with
polynomials in any modular rings, and HElib is a software library (based
on NTL) that implement an optimized version of the Brakerski-Gentry-
Vaikuntanathan [5] (BGV) homomorphic encryption scheme. We chose to com-
pare to these libraries because they are widely used in the literature on lat-
tice cryptography implementations. We restricted them to the same settings as
NFLlib, i.e. to work over Rp = Zp[x]/(xn + 1) with moduli p as in Sect. 3.1.
Setting. We benchmarked NFLlib against NTL, flint and HElib on random
polynomial generation, NTT and inverse NTT, modular addition and multipli-
cation in NTT representation. All the benchmarks were made using the following
fixed parameter sets:

(1) n = 256 with a modulus p of 14 bits,
(2) n = 512 with a modulus p of 30 bits,
(3) n = 1024 with a modulus p of 62 bits,
(4) n = 1024 with a modulus p of about 6200 bits (product of 100 62-bit moduli).

As expected, NFLlib has been instantiated with 16-bit words and 32-bit words
respectively for the parameters sets 1 and 2. For NTL, we used the zz pX objects
for the parameters sets 1 and 2, and ZZ pX otherwise. For flint, we used the
type fmpz mod poly t. Finally, HElib includes a DoubleCRT class with the same
representation as NFLlib.6

We performed all our benchmarks on a c4.2xlarge instance of Amazon Web
Services with an Intel Xeon CPU E5-2666 v3 (Haswell) at 2900 Mhz and 15 GB
of RAM with gcc 4.9, GMP 6.0, NTL 8.1, flint 2.5.7

6 In HElib, the instantiation of a FHEContext — storing the modulus decomposition —
is needed to use DoubleCRT objects. Now, this constructor try to produced primes of a
size close to 44 bits and this size is hard-coded in the value FHE p2Size (maybe to fit
largely the long primitive type and be able to do specific homomorphic operations?).

For the sake of comparison, we kept this hardcoded value. Therefore the bench-
marks of HElib are with a 44-bit prime for parameters (1) and (2), with two 44-bit
primes for parameters (3) and 141 44-bit primes for parameters (4).

7 TurboBoost and Hyperthreading were disabled during the benchmarks. We chose an
AWS machine as a typical cloud environment which allows reproductibility of the
results.
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Remark 1. To demonstrate the performance of our library on different architec-
tures, we also benchmarked the NTT transformation on a MacBook Air (called
macbookair) with an Intel Core i7-4650U Processor at 1700 Mhz and 8 GB of
RAM, using the native clang++ (Apple LLVM version 6.0), GMP 6.0, NTL 8.1,
flint 2.5. (We restricted ourselves to the benchmark of the NTT transform to
be concise.)

Random Polynomial Generation. To benchmark random generation, we used
the ntl::random function of NTL, the fmpz mod poly randtest function of
flint and the default random generator of NFLlib (described only in the full
version due to space constraints). We present our results in Table 2. Note that
the flint library implements the Mersenne Twister algorithm that is unsuitable
for a cryptographic use.

Table 2. Timings to generate random polynomials in Zp[x]/(xn +1) using the built-in
functions of different libraries on c4.2xlarge.

Library NTL flint HElib NFLlib

random fmpz mod poly randtest nfl::uniform

(1) = (256, 14) 9.2µs 4.8µs 69µs 0.6µs

(2) = (512, 30) 23.2µs 9.1µs 135.5µs 2.6µs

(3) = (1024, 62) 173.0µs 18.3µs 540.0µs 9.7µs

(4) = (1024, 6200) 8675µs 1082µs 37929µs 1029.6µs

NTT and iNTT. Working with the NTT representation of polynomials (after
the negative wrapped convolution) is a cornerstone of our optimization, since
additions and multiplications become essentially linear in the number of coeffi-
cients. We report in Table 3 the benchmarks of the NTT (including the negative
wrapped convolution). Note that NTL provides an NTT functions thanks to
TofftRep and to toFFTRep (resp. for zz pX and ZZ pX); no such functions seem
to be available in the flint library.8 In HElib, the DoubleCRT class has two
functions to convert from (via negative wrapped convolution and NTT) and to
(via inverse NTT and inverse of the convolution) a polynomial ZZX. (For space
constraints, the timings of the inverse NTT are provided in the full version of
the paper).

SEE and AVX2 Optimizations. Because of the highly parallel nature of oper-
ations over polynomials (the same operations are to be performed on multiple
data objects), using Streaming SIMD Extensions (SSE) and Advanced Vector
Extensions (AVX) instructions might greatly increase performance. This has
been shown in [12,15] respectively for lattice signature and encryption.
8 We neglected the cost of the (linear) negative wrapped convolution computation in
NTL to mitigate the impact of a non highly-optimized hand-made implementation;
one would therefore have to expect slightly worse timings when working over Rp.
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Table 3. Timings to compute the Number Theoretic Transform of a polynomial in
Zp[x]/(xn + 1) using (when possible) the built-in functions of different libraries.

(a) NTT on c4.2xlarge using gcc

Library NTL flint HElib NFLlib

toFFT/ToFFT conv(DoubleCRT,ZZX)

(1) = (256, 14) 7.2µs – 33.7µs 2.5µs

(2) = (512, 30) 14.7µs – 70.7µs 4.5µs

(3) = (1024, 62) 45.7µs – 317.7µs 13.9µs

(4) = (1024, 6200) 33921µs – 23240µs 1341.0µs

(b) NTT on macbookair using clang

Library NTL flint HElib NFLlib

(1) = (256, 14) 7.7µs – 37.6µs 1.7µs

(2) = (512, 30) 16.0µs – 74.9µs 5.7µs

(3) = (1024, 62) 47.5µs – 333.8µs 15.3µs

(4) = (1024, 6200) 34799µs – 24713µs 1163.4µs

NFLlib includes SSE and AVX2 specializations of the NTT algorithm and
of the modular operations for 16-bit and 32-bit words. We compared NFLlib’s
NTT to Güneysu et al. AVX-optimized NTT [15] (where once again the NTT
includes the negative wrapped convolution Ψ) on c4.2xlarge.

The GOPS implementation works with the double type for a 23-bit modulus
p (lazy-reduction) and takes 5030 cycles. NFLlib can be instantiated with 14-bit
primes or 30-bit primes and takes respectively 3324 and 7334 cycles when using
SSE4 instructions, and 2767 and 5956 cycles when using AVX2 instructions. As
a comparison, the 62-bit version (i.e. non-SIMD) of the NTT takes 10020 cycles.

5 Implementing Ideal Lattice Cryptography with NFLlib

5.1 High Performance Key Exchange

In this section, we consider an equivalent of the key transport protocol RSASVE
of NIST SP 800 56B, using [23] encryption scheme, to illustrate the performances
of our library in a concrete setting. The client chooses a random message and
encrypts it with the server public key then, the server decrypts this random
value that is used to derivate (with a hashing function) a common secret.

Server-Side Focus. As a server usually has to handle many clients, the main issue
is how costly is the server-side computation. Thus, we focus on the server cost.

Server Authentication and Forward Secrecy. The public key sent by the server
may be a certificate signed by any algorithm (e.g. DSA) so that the client is able
to be convinced of the server’s identity. Since this has no cost for the server we do
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not focus on which signature scheme is used. We note that as suggested in [20],
the server can send two keys: one signed to prove his identity, and one ephemeral
key generated to ensure forward secrecy. Then the client sends two secrets and
the common secret is derived from both initial secrets with a key derivation
function (e.g. a hash function). Due to the signature of one of the public keys,
the client knows that only the server can get the common secret and if the
ephemeral key is destroyed at the end of the key exchange, forward secrecy is
ensured. This means that from the server side multiplying the communication
and computational costs just by two, allows to have a forward secrecy property.

The algorithm we implemented is the RLWE encryption scheme of [23].9

The code for the encryption and decryption functions (see [23]) is presented
in Algorithms 3 and 4. This code highlights how simple is to implement algo-
rithms with NFLlib: the encryption function and decryption functions are very
readable, and have respectively 9 and 4 lines of code.

Algorithm 3. Ring-LWE based public key encryption function
Input: P a polynomial type, g prng Gaussian generator, pka, pkb public key, m

the message
Output: resa, resb an encryption of m

using value_t = typename P::value_type;

P tmpu = nfl::gaussian<value_t>(g_prng); // no noise multiplier

P tmpe1 = nfl::gaussian<value_t>(g_prng, 2); // noise multiplier: 2

P tmpe2 = nfl::gaussian<value_t>(g_prng, 2); // noise multiplier: 2

tmpe2 += m;

tmpu.ntt_pow_phi();

tmpe1.ntt_pow_phi();

tmpe2.ntt_pow_phi();

resa = tmpu * pka + tmpe1;

resb = tmpu * pkb + tmpe2;

Table 4 shows the performances of the protocols for 80, 128 and 256 bits of
security. In RSA and NFLlib, the server needs to do a decryption, while in
ECDH it performs a modular exponentiation. NFLlib allows to deal with more
clients or to use less CPU time for the same amount of clients. The gap is around
a factor 200, so it is possible to process 10 times more clients with 10 times less
CPU time and to increase by a factor two the security with respect to ECDH
(or maintain the security level and add forward secrecy).
9 We choose two parameter sets from [23], a 14-bit modulus with polynomials of degree

256, and the same modulus with polynomials of degree 512. These two parameter
sets correspond roughly to 128 and 256 bits of security. Note that if these estimates
are too low it is possible to choose parameters such as (14, 1024) and the performance
presented in Table 4 is just divided by two.
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Algorithm 4. Ring-LWE based public key decryption function
Input: P a polynomial type, resa, resb a ciphertext, s a secret key, p a modulus
Output: A polynomial m

m = resb - resa * s;

m.invntt_pow_invphi();

for(auto & v : m)

v = (v<modulus/2) ? v%2 : 1-v%2;

Table 4. Number of key exchanges per second on a server with an i7-4770 processor
using only one core. When the four cores are used, performance are multiplied by a
factor four. There is no standard implementation of RSA15360 and our library does
not work with 80 bits of security for this application (hence the input N/A). RSA and
ECDH (p curves) results have been obtained with the speed test of openssl 1.0.1f. The
results noted NFLlib correspond to the amount of decryptions per second with our
implementation of the RLWE scheme of [23].

Protocol 80 bits 128 bits 256 bits

RSA 7.95 Kops/s 0.31 Kops/s N/A

ECDH 7.01 Kops/s 5.93 Kops/s 1.61 Kops/s

NFLlib N/A 1020 Kops/s 508 Kops/s

5.2 Using NFLlib for Homomorphic Encryption

A trending application of ideal lattice cryptography is homomorphic encryption;
a fully homomorphic encryption (FHE) scheme enables one to process any func-
tion on encrypted data. The first implementations of FHE were quite inefficient,
but in six years the landscape has considerably changed and recent implementa-
tions run in reasonable time [11,17]. However, the bootstrapping procedure —
necessary to achieve fully homomorphic encryption — remains a bottleneck.

To overcome thereof, the cryptographic community focused on somewhat
homomorphic encryption (SHE) schemes, i.e. schemes only able to handle a
bounded number of homomorphic operations (and especially of homomorphic
multiplications). However, even for this simplified setting, to homomorphically
evaluate non trivial functions the parameter sizes remain very large (see e.g. [8,
22]); to handle around 40 levels, one usually works with parameters such that
210 � n, log q � 220.

These large parameters explain why the static parameters in NFLlib were
selected to handle polynomials up to degree 220 and modulus up to 62, 000 bits.
Now, from the results of Sect. 4, we estimate that implementations using NTL
or flint with Rp should immediately gain a factor 15 to 50 in performances by
using NFLlib. As an example, we modified the open-source implementation of
the somewhat homomorphic encryption scheme FV of [22] and directly replaced
flint by NFLlib— we obtained the improvements described in Table 5.
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Table 5. Using NFLlib in the FV implementation of [22], instead of flint. The
polynomial degree is n = 4096 and the modulus p has 124 bits. The relatively small
gain on the homomorphic multiplication can be explained by the fact that the scale-
invariant procedure is essentially constituted of operations independent of NFLlib,
such as divisions and rounding.

Encrypt Decrypt Hom. Add. Hom. Mult.

[22] with flint 26.7 ms 13.3 ms 1.1 ms 91.2 ms

[22] with NFLlib 0.9ms 0.9ms 0.01ms 17.2ms

Gain ×30 ×15 ×110 ×5.5

6 Conclusion

This work introduces NFLlib, an optimized open-source C++ library designed to
handle polynomials over Zp[x]/(xn+1), a widespread setting in ideal lattice cryp-
tography. Because of its algorithmic and programming optimizations, NFLlib
is much faster than NTL and flint, and as fast as AVX-optimized implementa-
tions of the literature. We hope the library will help building efficient prototypes
using lattice cryptography in the very near future.
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Abstract. GSM (Global System for Mobile Communications) commu-
nication is a ubiquitous technology developed by European Telecommu-
nications Standards Institute for cellular network. To ensure the con-
fidentiality of the user communication, it is protected against eaves-
droppers by the A5/1 cryptographic algorithm. Various time-memory
trade-off (TMTO) techniques have been proposed to crack A5/1. These
techniques map the keystreams to the initial states of the algorithm at a
reasonable success rate. Among TMTO techniques, rainbow table is an
efficient method that allows a good trade-off between run-time and stor-
age. The link between rainbow table parameters and the success rate is
not well established yet. In view of this, a statistical success rate model is
proposed in this paper, which takes various parameters of a given TMTO
structure into consideration. The developed success rate model can be
used to optimize the TMTO parameters for the best performance. Com-
prehensive experiments show that A5/1 can be broken with 43 % success
rate in 9 s using 1.29 TB rainbow tables, which is consistent with the
theoretically predicted success rate. When using 3.84 TB rainbow tables,
the extrapolated success rate is 81%.

Keywords: GSM · Rainbow table · Keystream space · Success rate
model

1 Introduction

The A5/1 cryptography algorithm in the GSM protocol, used by many cell-
phones, protects user communication. GSM is also used for text messaging and
some other wireless communications. The first information about the design of
A5/1 appeared in 1994 [1], accompanied by an attack on alleged A5/1 [10], and
the algorithm was reverse engineered from actual GSM equipment by Briceno
et al. [7].

The general idea of the attack is to determine the encryption key for a sample
of encoded information bits (keystream). Some practical methods of breaking the
c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 359–377, 2016.
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encryption for a keystream involve the inversion of the one-way function used
in the cryptography algorithm. Brute force (no storage, long attack time) and
dictionary attacks (large storage, instantaneous) are two extremes of generic
cryptographic attacks. A space-time trade-off exists between the two extremes.
Hellman [11] was the first to explore this trade-off. In 1982, Rivest et al. sug-
gested using distinguished points (DPs) as endpoints (EPs) for the generated
chains [18]. In 2003, Oechslin [2,17] proposed the Rainbow Table technique, as
an extension of the Hellman Table technique. It applies XOR operations to dif-
ferent columns to reduce collision rates of EPs. A more detailed survey of TMTO
techniques is available in [14].

Amongst the most successful GSM attacks, a rainbow table structure is used
to map the keystream to the initial state of the algorithm [16]. The cracking rate
of A5/1 algorithm is 87% in about 10 s, using eight 114-bit keystreams, showing
that A5/1 encryption is not secure. The implementation details of the project
were not revealed, and parameters of the rainbow table are not optimized in
theory. Recently, Lu et al. reconstructed the technique, and revealed the imple-
mentation details for the first time [14]. A variation of rainbow table structure
is used, achieving similar performance. However, the underlying mechanics that
a rainbow table with given TMTO parameters can produce a certain success
rate is not well established yet, making it experimentally instead of theoretically
guided.

In view of this aspect, both a comprehensive insight in the A5/1 encryption
algorithm and the rainbow table statistics are presented in this work. Through
the theoretical analysis, the success rate can be predicted based on given para-
meters and a given rainbow table structure, which is perfectly validated by the
experimental results. Thus the optimal rainbow table parameters can be auto-
matically selected. The proposed method is believed to be able to further adapt
to break other ciphers based on TMTO techniques.

This paper is organized as follows: Sect. 2 shows the related work in cracking
GSM A5/1. In Sect. 3 the characteristics of applying TMTO to A5/1 is analyzed
based on statistical models. Section 4 briefs the implementation details of A5/1
TMTO and shows the experimental results of the success rate and speed when
using the optimal parameters to crack GSM A5/1. The experimental results
validate that the theoretical model predicts the success rate accurately. Section 5
sums up this paper and gives a brief view of future work.

2 GSM and Related Work

A5/1 is a commonly used symmetric cipher for encrypting over-the-air transmis-
sions in the GSM standard. Although A5/3 and GEA3, which are more secure
key stream generators built around the KASUMI core block cipher, have been
standardized for use in GSM and GPRS, most over-the-air conversations are still
protected by A5/1 encryption. A5/1 is a synchronous stream cipher based on
linear feedback shift registers (LFSRs), and has a 64-bit secret key. A GSM con-
versation is transmitted as a sequence of 228-bit frames. Each frame is XORed



Optimization of Rainbow Tables for Practically Cracking GSM A5/1 361

(Exclusive OR operation) with a 228-bit keystream produced by the A5/1 func-
tion. Phone calls and text messages can be encrypted between a phone and a
base station. The first 114 bits of keystream constitute the downlink keystream
and the second half the uplink keystream.

The initial state IS of this A5/1 encryption depends on the 64-bit secret key,
denoted by Kc and a 22-bit public frame counter, denoted by Fn. Kc is derived
from a unique SIM card number and a unique network random number gener-
ated by the A8 hash function. It is fixed during the conversation. Fn is assigned
in every frame, and the frame counter is changed approximately every 4.615 ms.
After the conversation is encrypted by the keystream, the ciphertext is trans-
mitted over the GSM channel. In order to obtain the keystream from ciphertext
using TMTO, some of the corresponding plaintext must be known. In typical
settings, several chunks of consecutive 64 bits of keystreams are required, relying
on knowing some formatting in encrypted control messages, or guessing the con-
tent. Commercial A5/1 crackers leverage the Cipher Mode Complete message,
which is the first encrypted message in an encrypted transaction and usually
contains constant data, mostly empty padding bytes. Empty dummy frames are
also encrypted even though they carry zero information, making them a prime
target for key crackers. After obtaining at least a chunk of 64-bit keystream,
software can be used to map the keystream to the corresponding 64-bit session
key, which is bijection of the initial state, based on TMTO.

Fig. 1. A5/1 algorithm diagram

The principle of A5/1 cipher is shown in Fig. 1. Internally the generator
consists of three Linear Feedback Shift Registers (LFSR): R1, R2 and R3, which
are clocked according to the majority rule. The 64-bit initial state IS is initialized
by Kc and Fn in the three registers. The clocking rule of the LFSRs works as
follows: The clocking bits of each LFSR R1, R2 and R3 are the bits 8, 29 and
51, respectively. The values of these bits are compared and the LFSRs where the
clocking bit agrees with the majority are clocked. Therefore at each clock cycle
either two or three of the LFSRs are clocked. Each keystream bit is generated by
XORing the most significant bits of the three LFSRs at each clock cycle. A5/1
encryption includes 100 clocks for bit-mixing without output and 64 clocks for
outputting keystream bits.
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Since A5/1 algorithm was revealed, a number of attacks have been published
[5,6,8,9,12,16,19]. The work [8] exploits some weaknesses of the key initializa-
tion procedure. The attack needs a few minutes of computation time with a
data requirement of two to five minutes of conversation plaintext. The work [9]
requires at least a few seconds of conversation and run very fast. However, it
needs both huge precomputation time and huge memory. More practical results
are achieved by TMTO attacks, e.g. Biham and Dunkelman [5], by Biryukov
et al. [6], and Nohl [16], “A5/1 Security Project”. In the last work, the rainbow
table structure is integrated with DPs, and the implementation is carried out
using specialized processors such as GPUs and PS3 cells, with about 4 Terabytes
pre-computation data (about 2 TB after compression). However, the theoretical
aspects are not revealed. Hong et al. proposed theoretical TMTO success rate
models [13,15], which are complete and sophisticated. However, it is generic
analysis not customized for a specific cipher algorithm and of insufficient accu-
racy to optimize TMTO parameters in practical scenarios. In 2015, Lu et al. ana-
lyzed the computational complexity of several TMTO table structures, worked
out the detailed GSM cracking procedure, and carried out a commodity GPGPU
implementation [14]. Based on a combination of the rainbow table structures pro-
posed in [3] and the DP technique [18] as well as an optimized implementation,
the GSM A5/1 cracking efficiency is slightly better than that reported in [16].
However, the statistical analysis of the success model is still not well established,
and thus the link between the TMTO parameters and the cracking success rate
remains unknown.

In this work, the state space shrinking characteristic of A5/1 cipher is spe-
cially investigated, the rainbow table characteristics are analyzed, and the suc-
cess rate when A5/1 function is applied to TMTO tables will be accurately
predicted by the proposed models rather than heuristic approach in prior work.
The success rate of cracking GSM A5/1 is guaranteed to be optimal given a
specific rainbow table structure.

3 Analysis of A5/1 TMTO Characteristics

In TMTO, a subset of the keyspace is pre-computed, which limits subsequent
search operations. The whole search space exists because the encryption function
is applied iteratively from the keystream forward through the keyspace. The
larger the subset of keyspace pre-computed, the shorter the time needed for
online computation. An effective technique to further reduce search operations is
the distinguished point, which is a value that satisfies some easily tested criteria,
e.g. the LSBs of a keystream are all zeros. Given a keystream to be cracked, a
chain of intermediate keystreams is calculated iteratively until a DP is generated.
Only then it is looked up as in endpoint (EP) stored in a TMTO table. This
establishes which chain of the TMTO table the keystream was found in, and then
the corresponding startpoint (SP) of that chain is obtained. Finally the chain is
regenerated from the SP to check if the keystream to be cracked can be reached.
If successful, the initial state of the keystream of the encryption algorithm is
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obtained. Otherwise it is a false alarm. Using DP, the number of the slow TMTO
table lookup operations will be reduced. Typically, each keystream in the chain
is XORed with its color, i.e. the number of DPs the chain has generated from
its SP. In this way, the collision rates of TMTO can be greatly reduced.

3.1 Chain Characteristics

Now we consider the chain length of TMTO when combining the standard rain-
bow table structure and the DP technique [18]. During pre-computation of the
rainbow tables, the chains that costs too many A5/1 functions, such as an infi-
nite loop, are discarded. The threshold is set to r = 16 in this work, so that
1 � t � r · D A5/1 functions are applied to each intermediate point until it
reaches a DP. The probability that a DP is reached after at most t operations of
the A5/1 function is clearly pDP (t) = 1− (1 − 1

D

)t, where D = 2d and d is length of
zero-bit mask in DP. Then the probability that a SP can successfully generate an
EP is PDP (r) = (pDP (r · D))S =

(

1 − (1 − 1
D

)r·D)S , where S = 256 is a typical number
of DPs in a chain in rainbow tables. The expected number of chains that are not
discarded is M = M0 · PDP =

(

1 − (1 − 1
D

)r·D)S, where M0 and M are total number
and the valid number of SPs, respectively. When M0 = 236.678 (which corresponds
to 1.6 TB), we have PDP = 0.9999721, then M0 − M = 221.55 SPs that cannot suc-
cessfully generate EPs will be discarded. This perfectly matches the experimental
result that 221.55 startpoints are actually discarded, thus M ≈ 236.678

≈ M0. The
average number of A5/1 function operations T required for the M valid chains
can be approximated by T ≈

1
M

∑r
t=1 M0 (PDP (t) − PDP (t − 1)) t ≈ D · S which

can be interpreted as each DP section is on average about D = 2d = 256 and
there are S = 256 such DP sections in each chain in this work. This corresponds
to chain length of T = 216 in standard rainbow table without DP.

3.2 Keystream Space Shrinking

Due to imperfect non-linear behavior of A5/1, multiple initial states can be
mapped to the same internal state, thereby decreasing the number of valid
internal states for each added clock. As a result, the 100 bit-mixing clocks of
each A5/1 operation shrinks the Kc state to 15.3 % of the original size, effec-
tively reducing key size by 2.71 bits. Here we investigate how the initial state of
A5/1 encryption can be reversed from an internal state after multiple bit-mixing
clocks.

First consider one reverse clocking, which is well studied in [10]. By reversing
an internal state by 1 clock, we have up to 4 previous states, and the probabilities
are: P1 (0) = C1

2C
1
3

( 1
2

)4 = 3
8 , P1 (1) = C1

2C
1
3

( 1
2

)4 + C1
2

( 1
2

)6 = 13
32 , P1 (2) = C1

2C
1
3

( 1
2

)6 = 3
32 ,

P1 (3) = C1
2C

1
3

( 1
2

)6 = 3
32 , P1 (4) = C1

2

( 1
2

)6 = 1
32 , where P1 (k) = P (#solution = k). See

AppendixA for more details. These P1 (0) randomly distributed states which have
no ancestors are called illegal states, and others are legal states. As such, the
keystream space is shrunk to 1 − P1 (0) = 62.5% of the original Kc space.

In this work, we consider the reverse (backward) clocking by more than
1 clock, which is not shown in previous literature. The calculation is based on
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Table 8 in AppendixA, which is iterated for each reverse clocking. The calcula-
tion becomes much more tedious when reverse clocking by more than 3 clocks
since each reverse clocking can produce multiple solutions, because the current
reverse clocking depends on all previous reverse clockings and the solutions by
the current reverse clocking are also dependent upon each other.

Since 1-clock reverse can generate up to 4 solutions, it is intuitive that 2-
clock reverse generates up to 42 = 16 solutions, so on and so forth. However, it
is not the case because some states die out in the procedure of reverse clock-
ing. 3

8
of the states have no ancestors after 1-clock reverse, and the obtained

backward solutions may also have no ancestors. As a result, the summations of
distributions of 1-clock, 2-clock and 3-clock reverse are 1.0, 0.625 and 0.578125,
respectively. The distributions of number of solutions when reverse clocking by
1 to 3 clocks are shown in Table 1. Note that the discrete distribution cannot
be exactly represented by continuous distribution as in [10]. For example, it is
impossible for 3-clock reverse to generate 8 or 9 solutions, but 10-solutions is
possible.

Table 1. Conditional distribution of #solutions

#reverse\#solution 0 1 2 3 4 5 6 7 8 9 10

1 12
32

13
32

3
32

3
32

1
32

0 0 0 0 0 0

2 12
256

97
256

12
256

27
256

8
256

3
256

0 1
256

0 0 0

3 36
2048

733
2048

108
2048

204
2048

60
2048

27
2048

3
2048

12
2048

0 0 1
2048

Consider the mapping between initial states and the internal space with one
backward clocking. On average, 12

32
states of internal space are illegal and have

no corresponding initial states, 13
32

internal states have one-to-one mapping, 3
32

internal states reverses to 2 states each, another 3
32

states reverses to 3 each, and
1
32

states will be reversed to 4 states each. When the internal states are randomly
chosen by uniform distribution, the average number of solutions in the initial
state space is 12

32
×0+ 13

32
×1+ 3

32
×2+ 3

32
×3+ 1

32
×4 = 1.0, which means backward

clocking will not produce more states on average. However, the internal states
are not chosen by uniform distribution in real scenario, but generated by forward
clocking from initial states following uniform distribution instead. As a result, 13

32

states have one-to-one mapping, 3×2
32

states reproduce 2 states each, 3×3
32

states
reproduce 3 states each, and 1×4

32
states reproduce 4 states each. The expectation

of the backward clocking solutions is 13
32

× 1+ 6
32

× 2+ 9
32

× 3+ 4
32

× 4 = 17
8

= 2.125,
which means 1-clock forward-backward clocking will reproduce 2.125 times states
on average. Note that although it seems the internal state space is 1

2.125
= 8

17
of

the initial state space, the fact is that the internal state space is 5
8

of the initial
state space. This seemingly inconsistency is due to the fact that A5/1 cipher
has a preference towards a smaller group of favored states instead of a perfect
uniform mapping.
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Since 1 more reverse clock will increase the maximum number of solutions
by 3 (see AppendixA), the expected number of solutions after r-clock reverse
can be represented as

∑3r+1
i=1 Pr (i) · i2, where Pr (i) is the probability of number

of solutions, and the square operation comes from the non-uniform mapping
between the states before and after the clocking. For up to 3-clock reverse, the
expectations are calculated as

∑4
i=1 P1 (i) ·i2 = 17

8
= 2.1250,

∑7
i=1 P2 (i) ·i2 = 160

26
=

2.5000,
∑10

i=1 P3 (i)·i2 = 1358
29

= 2.6523, which perfectly match experimental results.
As the calculation of Pr (i) becomes tedious for more clocks, the expectations
are obtained by experiments:

∑13
i=1 P4 (i) · i2 ≈ 2.78,

∑31
i=1 P10 (i) · i2 ≈ 3.54, and

∑301
i=1 P100 (i) · i2 ≈ 13.04. The internal state space after the 100-clock bit-mixing

in A5/1 function 1 − P100 (0) ≈ 0.153 = 15.3 % of the initial state space, instead
of 1

13.04
≈ 7.7 %. An example of 15 clocks forward and backward clocking is

illustrated in Fig. 5 in AppendixB, where all connected states can be revisited
from any internal or initial state by traversing the paths, and the number along
with each path indicates its index.

Fig. 2. Forward-backward clockings (a) proportion of illegal internal states
(b) expected number of initial state solutions (c) occurrence of solution numbers

To verify the above space shrink theory, we simulate the reverse clocking by
randomly choosing 1 million legal states in the internal state space. It is achieved
by forward clocking from initial states to generate legal states and then backward
clocking by the same number of clocks. Figure 2(a) shows the proportion of
illegal states by reverse clocking, which is close to an exponential function. It
indicates that proportion of illegal states of the 100-clocked internal states is
P100 (0) ≈

847435
1000000

≈ 84.7 %, which is consistent to the theoretical prediction. The
expected number of initial state solutions by reverse clocking from legal internal
states is shown in Fig. 2(b). It is noticed that the expected number of solutions is
approximately exponential within 10 clocks and linearly proportional to a larger
number of bit-mixing clocks. Figure 2(c) simulates the distribution of number of
initial states by 100-clock reverse from a legal state, which is close to a Gamma-
distribution. By assuming a uniform mapping between the initial state space
and the internal state space, one would expect the number of solutions to be

1
1−0.847

= 6.538 which is around the peak in Fig. 2(c). However, the assumption
does not hold true. Instead, the expected number of solutions for reverse clocking
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from legal states is 13.04. For reverse clocking from random states, including legal
and illegal ones, the expected number of initial state solutions is exactly 1.00
in obvious. Since the keystream space shrinks to only 15.3 % after 100 forward
clockings, the effective keystream space of A5/1 is no bigger than 264 × 0.153 =

261.29. Thus an ideal TMTO technique will need 261.29 pre-computation of A5/1
functions. However, redundancy is inevitable in TMTO due to the imperfect
mapping of A5/1 cipher, resulting in collisions among different chains.

3.3 Intermediate Space and Chain Collisions

We have the parameter (M,S,D), where M is the number of SPs to generate
each rainbow table, S is the expected number of DP sections in each chain, and
D = 2d is the average length of DPs. In rainbow table, at first the M distinct
initial states are bit-mixed by 100 clocks of A5/1, which shrinks the state space
to N = 264

K
, where K ≈ 6.538 is the space shrink rate for each f . Then these

internal states are mapped to keystreams, XORed with colors and used as input
of the next A5/1 operation, which is assumed to be a random mapping from the
internal state space to the original 264 space again. This procedure is expected
to be repeated T = D · S times on average in each chain.

It can be inferred that, through t A5/1 operations, the effective space size of
a DP is approximately St = N

D·t = 264
K·D·t , where N = 264

K is the maximum keystream
space for A5/1 algorithm, and 1 ≤ t ≤ T is the column number. Since the prob-
ability a keystream A is identical to a keystream B is 1

N , the probability M − 1

other keystreams are not the same as A is (

1 − 1
N

)M−1. Therefore, the expected
number of keystreams that do not appear in other keystreams is M

(

1 − 1
N

)M−1.

For a chain with expected length T = D · S probability that the EPs,
which are also DPs, having zero, one and two collision(s) are calculated P0 =
(

(

1 − D
N

)M−1
)T

≈
D·K·T ·M

264
, P1 ≈

D(M−1)

N
(

1− D
N

)

(

1 − 2D
N

)(M−3)T ∑T
t=1

(

N−D
N−2D

)(M−3)t (
1 − D

N

)2t,

and P2 ≈
D(M−1)

N

(

1 − D
N

)M−2∑T
t=1

(

1 − D
N

)(M−1)(t−1), respectively. According to
experiments with M = 236.678 and T = 216, the actual ratio of EP redundancy
is about 40 %, which is close to the estimation 1 − P0

1
− P1

2
− P2

3
≈ 36 %. The

difference is partially because we appended new EPs to the rainbow table by
several times instead of one time generation with distinct SPs, thus more col-
lisions occurred. However, the difference is not large. Theoretical probability of
non-collision points is shown in Fig. 3. It is noted the rate of non-collisions in EPs
can be as low as 64%. After removing the duplicate EPs to generate the perfect
TMTO table, the actual rainbow table size is 1.6 TB × (1 − 40%) ≈ 0.96 TB.

3.4 Success Rate

An accurate statistical model for predicting the success rate of rainbow table
Prainbow has been an open problem. Existing success probability formula for rain-
bow table cryptanalysis is not validated by experiments on real data, including
some descriptive models that are not computationally feasible [14]. Prior work
[13,15] has not considered the A5/1 internal space characteristics when comput-
ing success rate for rainbow table cryptanalysis while the cryptographic primitive
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Fig. 3. Theoretical probability of non-collision points after A5/1 operations

is actually A5/1. In this work, we accurately predict the success rate of rainbow
tables with A5/1 as the cryptographic primitive.

In standard rainbow tables with DPs [16], the keystreams differ by applying
different colors, and will unlikely to generate identical A5/1 output since their
effective space size is 264 instead of 264

K
. We are only concerned with the colli-

sions that occur in the same DP section with the same color, i.e. the columns
� t
D

� · D + 1, � t
D

� · D + 2, . . . , t − 1, t. Let Mt denote the expected number of dis-
tinct intermediate points in column t of the standard rainbow table with DP.
The points are called “distinct” in the sense that, each of the Mt points is
different from other points in t-th column and also does not appear in any
previous columns. Obviously the initial condition is M1 = M . The numbers
Mt, t = 2, 3, . . . , T , are determined iteratively: after (t − 1)-th A5/1 operations
have be calculated, there are PoolR =

∑t−1

j=� t
D

�·D+1
Mj distinct points in all chains.

Therefore the probability that a point in the t-th column is distinct from PoolR
is ppre (t) = 1− PoolR

N
, where N = 264

K
is the shrunk space due to one operation of

A5/1. In addition, the probability that the points in the t-th column are distinct
from each other is pcur (t) =

(

1 − 1
N

)Mt−1 since Mt is derived from Mt−1. As a
result, the probability that a point in t-th column is a distinct one is as follow:

Pdist (t) = ppre (t) · pcur (t) =

⎛

⎝1 − 1
N

t−1∑

j=� t
D �·D+1

Mj

⎞

⎠

(

1 − 1
N

)Mt−1

(1)

The expected number that a point in space N does not occur in columns
1, 2, . . . , t is N ·Pdistinct (t). Therefore, we can calculate the number of new distinct
points in column t as

Mt = N − N · Pdist (t) −
t−1
∑

j=� t
D

�·D+1

Mj ≈

⎛

⎝N −
t−1
∑

j=� t
D

�·D+1

mj

⎞

⎠

(

1 − e− Mt−1
N

)

(2)
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Hence the expected coverage rate (ECR) of all the distinct points gen-
erated by rainbow tables over all the possible keystreams is estimated as
ECR = 1

S·D·M
∑S·D

t=1 Mt, where M1 = M and Mt can be obtained iteratively for
t > 1 based on Eq. (2). Note that a 114-bit keystream is comprised of fifty-one
64-bit overlapping but independent samples, each having a chance p to obtain
the initial state by reverse clocking. By utilizing all the 51 samples upon the rain-
bow tables, the probability that at least one sample of the 114-bit keystream is
contained in a standard rainbow table is Phit = 1− (1 − M·S·D

N · ECR
)51. This is one

crucial technique worked out to enhance the success rate by about 51 times.
Note that although about 13 candidates of initial states (one-to-one mapping

to Kc) can be obtained by forward clocking from a pre-image of the keystream
to a legal internal state and then reverse clocking, exactly only one of them
corresponds to the ground-truth Kc that was really used for generating the
keystream to be cracked. Thus the success rate will be only Phit

13.04
in terms of

finding out the ground-truth Kc, which is the ultimate goal of cracking. In this
regard, at least two 114-bit keystreams of two frames (different Fn) are used in
order to find out the ground-truth Kc, as in [14]. The Kc candidates obtained
from one frame will be verified: they are initialized with the Fn of the other
frame and, most probably only one of them can produce the other keystream.
In the rare case more than one Kc remain, an additional frame will be used to
further verify, which never occurred in a real scenario. This is the second crucial
technique that enhances the success rate to Phit by about 13 times. Finally, the
success rate is similar to that of [16], indicating the two crucial techniques are
correctly worked out. The final success rate by utilizing 4 keystreams is

Prainbow = 1 −
(

1 − 1

N
·
S·D
∑

t=1

Mt

)51×4

(3)

and the success rate based on 4 rainbow tables with different color configurations
will be approximated as P4

rainbow = 1 −
(

1 −
(

1 − 1
N

·∑S·D
t=1 Mt

)51×4
)4.
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When considering the success rate of the unified rainbow table structure
proposed in [14], the case is similar since unified rainbow table is essentially
repetitions of standard rainbow table horizontally. The difference is the color
configuration. Given the column number t, the number of the repeated color
patterns in previous columns is u = �

(

� t
D

�·D+1
)

·U
S·D �, where U is the total number of

color pattern repetition. Then distinct points in all chains are

PoolU =

t−1
∑

j=� t
D

�·D+1

Mj +

u−1
∑

i=1

t−1−i· S·D
U

∑

j=� t
D

�·D+1−i· S·D
U

Mj (4)

which is larger than that of standard rainbow table PoolU > PoolR. Accordingly,
Pdistinct (t) decreases, and the final success rate Prainbow also decreases. The ratio
of new distinct intermediate points in each column, i.e. Mt

M
, t = 1, 2, . . . , S·D, is shown

in Fig. 4, where more distinct points are generated by standard rainbow tables.

Table 2. Theoretical success rate of standard rainbow table with DP with T = 216

M\ (S,D)
(

26, 210
) (

27, 29
) (

28, 28
) (

29, 27
)

Precomputation

237.678 89.3 % 94.6 % 97.0 % 98.1 % 253.678

236.678 76.7 % 82.7 % 86.1% 87.9 % 252.678

235.678 58.4 % 62.6 % 65.2 % 66.5 % 251.678

234.678 38.9 % 41.0 % 42.1 % 42.8 % 250.678

Basically, the success rate is Phit (M,S,D) and it is also constrained by storage
size and table lookup time, false alarm, etc. Provided the same precomputation
time, when the chain length T = S ·D decreases, the number of chains M has to
be increased, resulting in more storage size of the rainbow tables. It is a four-
dimensional space curve which cannot be visualized. Now we try some reasonable
parameters. Table 2 lists the theoretical success rates with average chain length of
216. When M or S increases, the success rates increase, which is obvious. However,
the penalty of the increase of success rate is more offline pre-computation time
and more online lookup time. As a compromise, we choose the setting (M,S,D) =
(

236.678, 28, 28
)

.

Table 3. Theoretical success rate of standard rainbow table with DP with D ·S = 215

M\(S,D)
(

25, 210
) (

26, 29
) (

27, 28
) (

28, 27
) (

29, 26
)

Precomputation

238.678 94.6 % 97.0 % 98.1 % 98.5 % 98.7 % 253.678

237.678 82.7 % 86.1 % 87.9% 88.8 % 89.3 % 252.678

236.678 62.7 % 65.2 % 66.5 % 67.2 % 67.6 % 251.678

235.678 41.0 % 42.1 % 42.8 % 43.1 % 43.2 % 250.678
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Table 4. Theoretical success rate of unified rainbow table with DP with D ·S ·U = 216

M\ (S · U,D)
(

26, 210
) (

27, 29
) (

28, 28
) (

29, 27
)

Precomputation

237.678 74.5 % 85.4 % 92.4 % 96.0 % 253.678

236.678 61.7 % 72.4 % 80.0% 84.7 % 252.678

235.678 47.5 % 55.4 % 60.8 % 64.2 % 251.678

234.678 33.2 % 37.4 % 40.1 % 41.7 % 250.678

Table 3 lists the theoretical success rates of standard rainbow table with aver-
age chain length of 215. Theoretical success rates of unified rainbow table with
DP with 4 repetitions and chain length of T = S ·D ·U = 216 are listed in Fig. 4.
By comparing with Table 2, unified rainbow table is inferior than standard rain-
bow tables in terms of success rate. However, it allows less online computation
with the same table lookup, as shown in [14]. It is a trade-off of rainbow table
structure between success rate and online cracking time.

Based on experimental results, using 4 keystreams on a 0.96 TB rainbow
table with parameters (M,S,D,U) =

(

236.678, 26, 28, 4
)

, the success rate of crack-
ing A5/1 cipher is 33.85 %, which corresponds to 1 − (1 − 33.85 %)4 = 80.85 %

success rate by using four 0.96 TB rainbow tables with different color con-
figurations (zero-bit masks are at different bit positions). This is consistent
with the 80.0% theoretical success rate in Table 4. Note that according to
Hong’s model in [13], in every of the U color pattern section in rainbow table,

Mt = 2Mt−1/

(

1 +

√

1 +
2Mtt

2
N0

)

, where t is the column index in its section, and

N0 = 264 without considering the state space shrinking in Sect. 3.2. Although it
is an elegant close form model, its theoretical success rate is about 12% for uni-
fied rainbow table, which is not accurate compared to the experimental result
81 %. As such, a generic analysis of rainbow table success rate without consid-
ering the specific characteristic of the actual cipher is insufficient for parame-
ter optimization. In this work, the optimal configuration (M,S,D,U) of rain-
bow tables can be automatically set in minutes by searching in the limited dis-
crete space, e.g. M ∈ (234.678, 235.678, 236.678, 237.678, 238.678

)

, S ∈ (25, 26, 27, 28, 29
)

,
D ∈ (26, 27, 28, 29, 210

)

and U ∈ (1, 2, 4, 8).

3.5 False Alarms

In actual online cracking, each keystream Ks will generate S ·D ·U = 256 DPs by
assuming Ks to be in various positions in its chain. These 256 DPs are all poten-
tial endpoints, and on average around 90 DPs can be found in EPs stored in
unified rainbow tables. Unfortunately, Ks may not be reproduced from the SPs
that correspond to the 90 EPs stored in tables. This is called false alarm since
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the keystream is found in rainbow tables but its pre-image cannot be retrieved.
Essentially the false alarm is caused by the duplication of the EP in the previous
intermediate DPs in a chain. False alarm rate based on Rainbow tables can be
estimated as FalseAlarm ≈

K·M·T2

264·D . With a fixed pre-computation task, a longer
DP section will reduce the false alarm. When using unified rainbow table with
parameters (M,S,D,U) =

(

236.678, 26, 28, 4
)

, theoretical false alarm rate is about
36%, which is close to the experimental false alarm rate 90

256
= 35.2 %.

4 System Evaluation

4.1 Implementation and Settings

The workstation setup consists of a host system of a dual XEON CPU at 2.0 GHz
with 32 GB ECC RAM, 1 Quadro 600 GPU for the display and 3 GeForce
GTX690 (equivalent to 6 GTX680 cards) for parallel computation. The NVidia
GTX690 chip was launched as a high-end member of GeForce family in 2012.
GTX690 is equivalent to fitting two GTX680 chips onto the same circuit board,
and contains 8 graphic processing clusters (GPCs), 16 streaming multiprocessors
(SMs), each of which contains 192 streaming processors (SPs). There are in total
3072 cores with processor clock of 915MHz, and the on-chip memory is 2 × 2GB

GDDR5 with 2 × 256 bit width.
A pedagogical implementation of A5/1 is available in [7]. It is further opti-

mized on the host side first, and then migrated to the GPU side using Compute
Unified Device Architecture (CUDA). The implementation mainly consists of
A5/1 computation and the TMTO table access time. The computation consists
of an offline table generation phase and an online cracking phase. For offline gen-
eration of the unified tables, we used bitslice optimization [4] to process multiple
data simultaneously. As a result, the throughput for generating rainbow tables
of A5/1 is about 3247 Megabytes per second using all GPUs.

The online computational cost when cracking A5/1 cipher includes table
lookup time and chain regeneration time. For rainbow table structures, table
lookup is much more time consuming than online computation and is thus the
bottleneck for computational cost. To address the hard disk bottleneck, several
table lookup acceleration strategies are used:

1. Distinguished points can reduce the harddisk access chance to 1
D (typically

D = 256);
2. We set up 10 × 447GB Solid State Disks (SSDs) to store the rainbow tables;
3. Several multi-threading techniques are used to reduce access time, including

cached binary search, endpoint indexing, and thread pool, speeding up 3
times, 8 times, and 9 times, respectively;

4. Designing an fast harddisk I/O method to access only one of the L small table
files of a single TMTO table (typically L = 512), reducing the access time to
1
L of the full search.
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To carry out 256 lookups for 51 keystream samples on 512 rainbow tables of
1 TB, the final optimized speed by using all the four optimization techniques is
256×51
0.43

≈ 30, 000 searches per second, which is higher than 20, 000 searches per sec-
ond reported in the “A51 security project” [16]. To speed up online computation,
three strategies are used:

1. 4-bit patterns of A5/1 registers are pre-computed and a tabular method is
implemented for speeding up the online computation.

2. A unified rainbow table structure [14] is used in this work. A unified rainbow
table structure reduces online chain regeneration computation to approxi-
mately 1

U of the rainbow table with DP, where U is a positive integer.

Setting up the workstation following up the above configurations needs less than
10,000USD in 2015. Besides the standard workstation, the extra expense includes
3 NVidia GTX690 chips each worth 1,000USD and ten 447 GB SSDs each worth
200USD. We will show that the GSM conversation can be cracked in several
seconds using this low cost setting. For the task of pre-computation of rainbow
tables, the SPs can be processed by 6 GTX680s in parallel, which needs 6 CPU
threads to control 6 GPUs respectively. An additional thread is used to store the
rainbow tables. Since a GPU can modify the host memory via Direct Memory
Access (DMA), the host can check the generated DPs in real time before the
whole DP computation task in GPU is finished. Because optimized lookup time
is shorter than DP computation time, it has virtually no time cost. The total
online crack time is approximately the summation of online DP computation
time and the online regeneration time of the false alarms. For more details of
the GSM A5/1 crack procedure, one can refer to [14].

4.2 Performance Evaluation of the Project

At first, a standard rainbow table and a unified rainbow table, both 95 GB, are
generated for comparison in small scale. The performance is shown in Table 5,
using 1, 4, and 16 114-bit keystreams for cracking. The results are reported on
an average of 20,000 experiments. The success rates based on unified rainbow
table is slightly lower than those of standard rainbow table. However, the online
cracking phase for the unified rainbow table is lower. Note that the experimental
success rates match the theoretical predictions by Eq. (2) perfectly.

Table 5. Success rate of standard and unified rainbow tables

95 GB\#keystream 1 4 16

Unified rainbow tables 1.26 % 5.0 % 18.5 %

Standard rainbow tables 1.28 % 5.0 % 18.6 %

“Unified” online time 6.3 s 9.0 s 17.5 s

“Standard” online time 7.1 s 9.5 s 18.5 s
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Table 6. Success rate of finding the correct Kc on 0.9612 TB unified table

#keystream 1 4 8 16

Success rate 9.8 % 33.8 % 56.2 % 80.8 %

Computation time in GPU 4.1 s 5.0 s 9.0 s 18 s

False alarm time in CPU 2.0 s 4.0 s 7.5 s 15 s

Lookup time in CPU 0.7 s 1.4 s 2.8 s 5.8 s

Total online time 6.1 s 9.0 s 16.5 s 33 s

Based on the theoretical model of success rate, the success rate of unified
rainbow table (U = 4) will be about 6 % less than that of the standard rainbow
table (U = 1). Therefore it is believed that when rainbow table structure is
changed to the standard rainbow table, the success rate will be 87% in about
10 s, the same as [16], indicating that the implementation is correctly worked
out. As we select unified table method for a higher efficiency, a large unified
table (0.9612 TB) is generated for further verification of the proposed theoretical
success rate model.

According to careful parameter selection based on the success rate model,
a reasonable setting is (M,D, S, U) =

(

236.68, 28, 26, 4
)

of unified rainbow table.
The performance using 1 GTX680 GPU is shown in Table 6, where the total
online time is decomposed to online computation time, false alarm removal time,
and table lookup time. By utilizing 4, 8, and 16 114-bit known keystreams of
different frames, the success rate is 33.8 %, 56 % and 81%, in 9 s, 16.5 s, and
33 s, respectively. The experimental success rates perfectly match the theoretical
predictions.

In order to increase the scale of unified tables, 3 additional unified tables
are generated. The 4 unified tables differ in color configurations of the A5/1
function variations, in order to avoid the substantial collisions when increas-
ing startpoints in a single unified table. Finally, four unified tables (0.961 TB,
0.093 TB, 0.093 TB, 0.140 TB, respectively) are generated in 75 days. Using 4
GTX680 GPUs in parallel, the success rate of finding the correct Kc based on
the 1.29 TB unified rainbow tables is 43 % in 9 s, as shown in Table 7. The extrap-
olated results when increasing each unified table to 0.961 TB are also shown in
Table 7. The success rate will increase to 56 % and 81 % based on 1.92 TB and
3.84 TB, using 2 and 4 unified rainbow tables, respectively, with the same online
crack time. By extrapolating our results on four 0.96 TB tables and 8 keystreams,
the success rate will be 96 %, but the online time will also increase to 16.5 s.
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Table 7. Time and success rate using 4 keystreams and 4 unified tables

Table sizes Time Success rate

DP comp False alarm Lookup Online

0.961+0.093+0.093+0.140=1.29TB 5 s 4 s 2 s 9 s 43%

0.961+0.961=1.922TB 5 s 4 s 2.8 s 9 s 56%

0.961+0.961+0.961+0.961=3.84TB 5 s 4 s 4 s 9 s 81%

According to Nohl [16], 129 GB × 30 = 3.78 TB and 8 keystreams are used
to achieve final success rate of 87% in about 10 s. Their GPU device is AMD
ATI5970, similar to our Nvidia GTX 690 in terms of total computation power.
Considering that online cracking time has a constraint in practical operations
and the availability of 8 known keystreams is limited in certain GSM modes, we
only use 4 keystreams on unified rainbow tables. The success rate in this work
will be 81% in 9 s on 3.84 TB tables using 4 GPUs by extrapolation.

5 Conclusions and Future Work

This paper presents a study of statistical characteristics of A5/1 encryption
algorithms of GSM and the rainbow table time-memory trade-off, and estab-
lished an accurate link between the TMTO parameters and the success rate of
the cracking procedure. The experiments show consistent performance with the
theoretical model proposed in this paper. They show that the characteristics of
the targeted cipher needs to be carefully analyzed when applying the TMTO
techniques, instead of the general assumption as used in existing cryptanalysis.
The proposed framework can be extended to practically breaking other ciphers
using TMTO techniques in future.

A Appendix

Refer to A5/1 algorithm flowchart in Fig. 1. Denote the clock-bits as c1 = R (8),
c2 = R (29) and c3 = R (51), where R (l) is the l-th bit of the initial state after
the frame number Fn is mixed in Ks. The bits previous to them are c

′
1 = IS (9),

c
′
2 = IS (30) and c

′
3 = IS (52). When reversing one clock in LFSR registers in

A5/1, the following six cases can occur [10]:

1 For any k, if c
′
i = c

′
j �= c

′
k = ck , then the i-th and j-th LFSRs clocked;

2 For any k, if c
′
i = c

′
j �= c

′
k �= ck , then this state has no reverse clocking result;

3 If c
′
i = c

′
j = c

′
k = ci = cj = ck, then all the LFSRs clocked;

4 For any k, if c
′
i = c

′
j = c

′
k = ci = cj �= ck, then there are 2 possibilities: the

i-th and j-th LFSRs clocked, or all the LFSRs clocked;
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5 For any i, if c
′
i = c

′
j = c

′
k = ci �= cj = ck, then there are 3 possibilities: the

i-th and j-th LFSRs clocked, or the i-th and k-th LFSRs clocked, or all the
LFSRs clocked.

6 If c
′
i = c

′
j = c

′
k �= ci = cj = ck, then there are 4 possibilities: every pair among

the 3 LFSRs clocked or all the LFSRs clocked;

Table 8. Number of previous states (solutions) for reverse clocking

(

c
′
ic

′
jc

′
k

)

\ (cicjck) (000) (001) (010) (011) (100) (101) (110) (111)

(000) 1 2 2 3 2 3 3 4

(001) 0 1 0 1 0 1 0 1

(010) 0 0 1 1 0 0 1 1

(011) 1 1 1 1 0 0 0 0

(100) 0 0 0 0 1 1 1 1

(101) 1 1 0 0 1 1 0 0

(110) 1 0 1 0 1 0 1 0

(111) 4 3 3 2 3 2 2 1

Suppose that c1, c2 and c3 are randomly chosen under uniform distribution
(which is the case keystreams are randomly chosen), then the number of the
solutions for c

′
1, c

′
2 and c

′
3 follow a probability distribution: P1 (0) = C1

2C
1
3

( 1
2

)4 = 3
8 ,

P1 (1) = C1
2C

1
3

( 1
2

)4 + C1
2

( 1
2

)6 = 13
32 , P1 (2) = C1

2C
1
3

( 1
2

)6 = 3
32 , P1 (3) = C1

2C
1
3

( 1
2

)6 = 3
32 ,

P1 (4) = C1
2

( 1
2

)6 = 1
32 , where P1 (k) = P (#solution = k). When c1 = 0, c2 = 1, c3 =

1 and c
′
1 = 1, c

′
2 = 0, c

′
3 = 1, it is easy to observe that this is an illegal state

because of a contradiction when the majority clocking function is performed
after the inverse clocking step is applied. The calculation is based on Table 8.
After a solution is guessed in the current reverse clocking, (ci, cj , ck) are replaced
by

(

c
′
i, c

′
j , c

′
k

)

, and
(

c
′
i, c

′
j , c

′
k

)

are replaced by the previous bits
(

c
′′
i , c

′′
j , c

′′
k

)

, where
c

′′
1 = IS (10), c

′′
2 = IS (31) and c

′′
3 = IS (53). This procedure repeats for every reverse

clocking. When reversing one more clock, each pair among the 3 LFSRs in the
abovementioned case 6 can produce 2 solutions, and the 3 LFSRs can produce
1 solutions, according to Table 8. Consequently, the 4-solution case grows to
7-solution case with a certain probability, and each reverse clock will constantly
increase the maximum number of solutions by 3.
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B Appendix

Fig. 5. An example of the paths of forward and backward clocking
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Abstract. To reduce the cost in hardware, key schedules of lightweight
block ciphers are usually simple and some even are direct linear transfor-
mations on master keys. Designers always add some asymmetry round-
dependent constants to prevent the well-known slide attack. For linear
key schedules, the choice of round constants becomes important but
lacks principles. In this paper, we aim at evaluating the robustness of
the key schedule algorithm and summarizing some design principles for
simple key schedules. We define a special kind of weak keys named linear-
reflection weak keys and their existence breaks the independence between
different keys. For one weak key k, we can find another related weak
key k′ such that the decryption under k′ can be linearly represented
by the encryption under k. For a block cipher, the number of rounds
that exhibits linear-reflection weak keys should be as small as possible.
Besides, an automatic searching algorithm is designed to find weak keys
for Piccolo ciphers. Results show that 7-round Piccolo-80 and 10-round
Piccolo-128 both have many weak keys. Furthermore, we also find some
special features for the key schedule of Piccolo-128. One of them is used
to extract that the round permutation RP in Piccolo-128 should not be
allowed to be self-inverse. Another is applied to show an efficient pseudo-
preimage attack on hash function based on full-round Piccolo-128. The
results do not threaten the application of Piccolo in secret-key setting
but reveal the weakness of Piccolo-128’s key schedule algorithm to some
extent. We expect the results of our paper may guide the design of key
schedules for block ciphers especially for the design of round constants
for simple key schedules.

Keywords: Lightweight block cipher · Key schedule · Round constants ·
Piccolo · Hash function

1 Introduction

With the large development of communication and electronic applications, the
low resource devices such as RFID tags and sensor nodes have been used in many
aspects of our life such as access control, parking management, eHealth and so
c© Springer International Publishing Switzerland 2016
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on. This kind of new cryptography environment is ubiquitous but constrained.
Traditional block ciphers are not suitable for this extremely constrained envi-
ronment. The new cipher should provide the best security possible while under
tight constraints. New innovative and unconventional designs pose new chal-
lenges. For instance, to reduce the power consumption of the encryption algo-
rithm, new lightweight block ciphers, such as KATAN & KTANTAN [1], Piccolo
[2], PRINTcipher [3], LED [4] and Zorro [5] with very simple key-schedules or
even without key-schedule, have been proposed.

Avoiding MITM (Meet-in-the-Middle) attacks [6–8], related-key differential
attack [9] and key bits leakage [10] are three main goals in the design of key sched-
ules. Designers tend to exploit relatively fast diffusion or avalanche to achieve
these goals, which is infeasible for lightweight key schedules. The resistent to
MITM attacks is usually claimed by ensuring that all master key bits are used
within several rounds. Huang et al. proposed a measure called actual key infor-
mation(AKI) to evaluate the effective speed of diffusing key bits and claimed that
a computation path should have as high AKI as possible [11,12]. For related-key
attack, designers usually search for the largest probability related-key differential
trail or the minimum differential active s-boxes for a given cipher to illustrate the
security against related-key attack [13]. Besides, a formulated necessary criterion
for key schedule design is proposed to guide to avoid key bits leakage within a
given number of rounds [12]. However, the choice of round constants makes no
influence on the security of block ciphers against the above three attacks. That
is to say, the security against them does not guide the design of round constants.

Slide cryptanalysis [14,15] is a well-known attack method on block ciphers
and it utilizes the symmetry properties of the cipher to show a related-key attack.
The condition for a block cipher to be vulnerable to the slide attack is that the
sliding of all subkeys derived from a given key by one round (or eventually more)
gives rise to a sequence or subkeys that can be derived from another key. To resist
the slide attack, designers usually add some asymmetry round-dependent con-
stants to the data input at each round to make the rounds different. At FSE 2014
[16], a probabilistic slide cryptanalysis is proposed and it takes advantage of the
round constant differences to slide the partial function with a high probability.
The slide and probability slide attacks both utilize the similarity properties to
attack the ciphers. Differently, Leander et al. proposed a new attack technique
named invariant subspace attack in Crypto 2011, which breaks the PRINTci-
pher in a practical setting [17]. As the following work, they presented a generic
algorithm to detect invariant subspaces and improved the general understanding
of invariant subspace [18]. Their attacks showed the existence of weak keys in
some block ciphers, including Zorro block cipher. However, as mentioned by the
authors, all attacks can be prevented by a careful choice of round constants,
which reflects the significant role of round constants.

In this paper, we take the Piccolo block cipher as a target cipher to reveal some
new design principles on round constants. For one key k, if there exists another
related key k′ such that the decryption with k′ can be linearly determined by
the encryption under k, then two keys k and k′ are called linear-reflection weak
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keys. The linear-reflection property reveals that the key schedule algorithm is
lack of robustness. We also design a specific algorithm to search weak keys for
both Piccolo-80 and Piccolo-128. The searching results show that 7-round Piccolo-
80 and 10-round Piccolo-128 both have linear-reflection weak keys. Besides, the
searching algorithm can also be modified and extended to arbitrary given block
cipher to check the existence of linear-reflection weak keys. Furthermore, we find
some interesting characteristics on the key schedule algorithm of Piccolo-128. Gen-
erally speaking, there exist several key pairs (k and k′) such that round keys under
k′ for 30 rounds among total 31 rounds are equal to that under k. Among them, two
special features are respectively used to extract the design principle of encryption
process and reveal the weakness of Piccolo-128 from the hash function respective.
Firstly, if we replace theRP inPiccolo-128 by a self-inverse permutationRP ′, there
exist 232 weak keys for the full-round new cipher. They can be parted into 231 pairs
(k, k′) such that the decryption under k′ can be represented by a non-linear func-
tion of the encryption under k and the degree of the non-linear function is equal to
the degree of F function in Piccolo. Secondly, we find an efficient pseudo-preimage
attack on the hash function constructed from Piccolo-128 by using DM mode [19],
which extracts the weakness of key schedule of Piccolo-128. We hope our analysis
contributes some insight for the choice of round constants in cryptographic per-
mutations.

This paper is organized as follows. Section 2 provides a detailed description
of Piccolo. Section 3 describes the linear-reflection weak keys for Piccolo ciphers.
Section 4 presents two observations on Piccolo-128. Finally, Sect. 5 concludes the
whole paper.

2 Description of Piccolo

Piccolo is a 64-bit blockcipher supporting 80 and 128-bit keys. Two different
key modes are referred as Piccolo-80 and Piccolo-128, respectively. Both ciphers
consist of an encryption algorithm and a key schedule algorithm.

2.1 Encryption Algorithm

The general structure of Piccolo is a variant of Generalized Feistel Network,
which is depicted in Fig. 1. The number of iterative rounds is 25 for Piccolo-80
and is 31 for Piccolo-128. Each round is made up of two functions F : {0, 1}16 →
{0, 1}16 and one round permutation RP : {0, 1}64 → {0, 1}64. F consists of two
S-box layers separated by a diffusion matrix M . RP divides a 64-bit input into
eight bytes and then permutes them.

2.2 Key Schedule Algorithm

To reduce the cost of hardware and to decrease key set-up time, key schedules
of Piccolo, denoted by KS80

r and KS128
r , are rather simple. Firstly, a series of
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16-bit constants, con80
i and con128

i , are generated as follows:
{

(con80
2i ||con80

2i+1) ← (ci+1||c0||ci+1||{00}(2)||ci+1||c0||ci+1) ⊕ 0x0f1e2d3c
(con128

2i ||con128
2i+1) ← (ci+1||c0||ci+1||{00}(2)||ci+1||c0||ci+1) ⊕ 0x6547a98b

,

where b denotes the bit length of a in a(b) and ci is a 5-bit representation of i in
binary, e.g., c11 = {01011}(5).

Fig. 1. Description of the block cipher Piccolo

Key Schedule for 80-Bit Key Mode: The key scheduling function divides
an 80-bit master key k(80) into five 16-bit words ki (0 ≤ i < 5) and provides the
subkeys as follows:

Algorithm KS80
r (k(80)) :

wk0 ← kL
0 |kR

1 , wk1 ← kL
1 |kR

0 , wk2 ← kL
4 |kR

3 , wk3 ← kL
3 |kR

4

for i ← 0 to (r − 1) do

(rk2i, rk2i+1) ← (con80
2i , con

80
2i+1) ⊕

⎧
⎨

⎩

(k2, k3) if i mod 5 = 0 or 2
(k0, k1) if i mod 5 = 1 or 4
(k4, k4) if i mod 5 = 3

The notations kL
i and kR

i stand for the left and right 8-bit values of ki
respectively.
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Key Schedule for 128-Bit Key Mode: It divides the 128-bit master key
k(128) into eight 16-bit words ki(0 ≤ i < 8) and provides subkeys as follows:

Algorithm KS128
r (k(128)) :

wk0 ← kL
0 |kR

1 , wk1 ← kL
1 |kR

0 , wk2 ← kL
4 |kR

7 , wk3 ← kL
7 |kR

4

for i ← 0 to (2r − 1) do
if (i + 2) mod 8 = 0 then

(k0, k1, k2, k3, k4, k5, k6, k7) ← (k2, k1, k6, k7, k0, k3, k4, k5)
rki ← k(i+2) mod 8 ⊕ con128

i

3 Linear-Reflection Weak Keys of Piccolo

For block cipher cryptanalysis, since the attacker can not control the key input he
looks for the biggest possible class of weak keys, so as to get the highest possible
probability that a weak key will indeed be chosen. Differently from the traditional
case, we aim at discussing the robustness of the key schedule algorithm and
assume that attackers are able to know and choose the underlying master key.
Previously, cryptanalysts may expect that the ciphers under different master
keys are independent from each other for a good key schedule algorithm. Thus,
if the encryption under one key is the same to the decryption under another
key, the two keys are both regarded as weak keys when both encryption and
decryption oracle are accessible. Furthermore, if two ciphers under two related
keys have some simple relationship, such as linear transformation or non-linear
transformation with small degree and so on, it also reflects the weakness of the
key schedule algorithm to some extent. In this section, we first define one special
kind of weak keys named linear-reflection weak keys and discuss the existence
of weak keys for Piccolo cipher.

3.1 Definition of Weak Key

As mentioned above, if two ciphers under two related keys have linear relation-
ship, then the keys may be regarded weak because the linear correlation breaks
the rule of independence and only one key leakages the information for two
related keys. If the linear relationship is built between both encryption ciphers
or both decryption ciphers, it results a related-key differential trail with prob-
ability 1. In this paper, we default that the cipher is secure against related-key
differential attacks and we focus on the cases for which the linear relationship is
built between the encryption under one key and the decryption under another
key. Thus, the weak keys are named linear-reflection weak keys and defined as
follows:

Definition 1 (Weak Key). Let k and k′ are two different master keys of cipher
E. Given arbitrary (P,C) with C = Ek(P ), we can obtain a corresponding pair
(P ′, C ′) such that C ′ = Ek′(P ′). Furthermore, {(P ′, C ′)} is a linear transforma-
tion of {(P,C)} and P ′ can be linearly represented by C while C ′ can be linearly
represented by P . Then, the key k and k′ are both linear-reflection weak keys.
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The fact that the encryption algorithm under some weak key is completely
determined by the decryption under the related key reflects the weakness of
the key schedule algorithm. If there exist linear-reflection weak keys for a given
cipher, we can easily distinguish the cipher from random permutations in the
chosen-key setting. Furthermore, the maximum number of rounds that exhibit
weak keys should be as small as possible because the linear transformation
implies a reflective differential trail with probability 1 and the number of rounds
with non-random property can be extended based on the completely non-random
part. Up to now, readers may wonder how to determine the maximum number
of rounds that exhibit linear-reflection weak keys. We will take the Piccolo block
cipher as an example to show the searching process. For convenience, we first
describe the property of permutation RP used in Piccolo and use 4-round Piccolo
to explain the condition for existing linear-reflection weak keys.

Observation 1 (Property of RP ). The permutation RP used in Piccolo has
some relationships with its inverse RP−1:

1. If the input of permutation RP is X(64) and the corresponding output is
denoted by (Y1(32), Y2(32)), then the output of RP−1 with the same input will
be (Y2(32), Y1(32)).

2. RP 2 = (RP−1)2 = (RP 2)−1. The fact reveals that RP 2 is self-inverse and
the period of permutation RP is 4.

Combining the property of RP with the variant of Generalized Feistel Net-
work, we obtain some interesting results between the encryption and decryption
of 4-round Piccolo block cipher (Fig. 2).

Fig. 2. Weak keys for 4-round Piccolo

Weak Key for 4-round Piccolo For 4-round Piccolo block cipher without
whitening keys,
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1. if there are two keys k and k′ such that: rk0 = rk′
6, rk1 = rk′

7, rk2 = rk′
5, rk3 =

rk′
4, rk4 = rk′

2, rk5 = rk′
3, rk6 = rk′

1, rk7 = rk′
0, then the keys k and k′ are

both linear-reflection weak keys. Meanwhile, an arbitrary plaintext-ciphertext
pair (P,C) under key k results in a right pair (C ≫ 32, P ) under k′.

2. if there are two master keys k and k′ such that rk2 = rk′
5, rk3 = rk′

4, rk4 =
rk′

2, rk5 = rk′
3, then k and k′ are also linear-reflection weak keys. Specif-

ically, when (P,C) is a plaintext-ciphertext pair under key k, ((C ≫
32)⊕(0,�3, 0,�4), P ⊕(0,�1, 0,�2)) is a plaintext-ciphertext pair under k′,
where �1 = rk0 ⊕ rk′

6, �2 = rk1 ⊕ rk′
7, �3 = rk7 ⊕ rk′

0 and �4 = rk6 ⊕ rk′
1.

Proof. The proof for above two cases are similar, we will describe the proof of
the first one in detail and that of the second case in simple.

1. We input the same P to the encryption cipher with k and the decryption
algorithm with k′, the outputs of the first nonlinear function are the same
value because rk0 = rk′

6 and rk1 = rk′
7. Meanwhile, X1 = (X ′

1) ≫ 32
because of the first property of Observation 1. Next, the equations rk2 = rk′

5

and rk3 = rk′
4, the same 16-bit F functions and the special RP result in

X2 = X ′
2. Similarly, X3 = (X ′

3) ≫ 32 and X4 = (X ′
4) ≫ 32 are obtained due

to the equations of round keys. Therefore, (C ≫ 32, P ) is a right plaintext-
ciphertext pair under k′ when P is encrypted to C under k.

2. Compared with the above case, the differences between the related keys for
the first and last rounds are not restricted to be zero. We use the differ-
ences of plaintexts and ciphertexts to eliminate the influence of the non-zero
differences and obtain the similar conclusion. ��
Note that if we add the pre- and post-whitening keys to the 4-round cipher,

the linear-reflection weak keys remain weak because the difference between the
whitening keys can also be canceled by adding the same difference to the related
plaintext and ciphertext. To reveal the property of Piccolo block cipher, we
design an algorithm to search linear-reflection weak keys for arbitrary round
reduced Piccolo block cipher.

3.2 Searching Weak Keys for Piccolo

Given the specific key schedule algorithm and the number of rounds, we want to
know if there are weak keys for the given cipher and how many there are in total.
Thus, we design an algorithm to search out the number of linear-reflection weak
keys for Piccolo block cipher. The algorithm can be described as Algorithm 1,
where r, KS and n are all positive integers.

Firstly, process the corresponding key schedule algorithm for the given value
of KS and two master keys are denoted by k and k′. If KS = 80, the round keys
rk{0,1,··· ,2r−1} are represented by five unknown 16-bit variables k{0,1,2,3,4} and
determined constants con80

{0,1,··· ,2r−1}. Meanwhile, all 2r rk′s are also described
with k′

{0,1,2,3,4} and constants. In total, there are 10 unknown 16-bit variables
for Piccolo-80. Similarly, all round keys under k and k′ for Piccolo-128 can be
represented by 16 unknown variables k{0,1,··· ,7} and k′

{0,1,··· ,7}.
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Secondly, construct the system of linear equations between corresponding rk
and rk′ to guarantee that the keys are linear-reflection weak keys. Avoiding the
whitening keys and the first and last rounds, there are 2(r − 2) equations for a
r-round Piccolo cipher.

Finally, use the method of Gaussian Elimination to solve the linear equations
and denote the dimension of solutions as n. As the size of each variable is 16-bit,
thus the number of pairs of weak keys is 216n.

Algorithm 1. SearchWK(r,KS)
Require: Number of rounds r, key schedule algorithm KS
Ensure: Dimension of solutions n
1: if (KS=80) then
2: KS80

r (k80);
3: KS80

r (k′
80);

4: Set the number of variables to 10: lenC = 10;
5: else
6: KS128

r (k128);
7: KS128

r (k′
128);

8: Set the number of variables to 16: lenC = 16;
9: end if

10: Set the number of equations: lenR = 2 × (r − 2);
11: Construct the system of linear equations with lenR equations and lenC variables
12: for (i = 1; i < r − 1; i + +) do
13: if (i mod 2=0) then
14: rk2i ⊕ rk′

2(r−1−i) = 0;
15: rk2i+1 ⊕ rk′

2(r−1−i)+1 = 0;
16: else
17: rk2i ⊕ rk′

2(r−1−i)+1 = 0;
18: rk2i+1 ⊕ rk′

2(r−1−i) = 0;
19: end if
20: end for
21: Solve the system of linear equations using the Gaussian Elimination method and

record the dimension of solutions as n
22: return n;

For completeness, we will show the specific linear relationships between two
ciphers under the related weak keys k and k′. The influence of whitening keys is
avoided due to the complex expression. To present the detailed correlation, we
first assume that (P0, P1, P2, P3)

k−→ (C0, C1, C2, C3). The values of corresponding
pair under the related key k′ differ to the clarity of the number of rounds r.

1. For odd r, (C0, C1, C2, C3)⊕(0,Δ3, 0,Δ4)
k′
−→ (P0, P1, P2, P3)⊕(0,Δ1, 0,Δ2),

where �1 = rk0 ⊕ rk′
2(r−1), �2 = rk1 ⊕ rk′

(2r−1), �3 = rk2(r−1) ⊕ rk′
0 and

�4 = rk(2r−1) ⊕ rk′
1.
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2. For even r, (C0, C1, C2, C3) ≫ 32 ⊕ (0,Δ3, 0,Δ4)
k′
−→ (P0, P1, P2, P3) ⊕

(0,Δ1, 0,Δ2), where �1 = rk0 ⊕ rk′
2(r−1), �2 = rk1 ⊕ rk′

(2r−1), �3 =
rk(2r−1) ⊕ rk′

0 and �4 = rk2(r−1) ⊕ rk′
1.

The above algorithm can also be modified to search linear-reflection weak
keys for some other ciphers and we can set the starting round be arbitrary
internal round to find the maximum number of rounds that exhibit weak keys.

3.3 Weak Keys of Piccolo

After searching all possible reduced and starting rounds for both Piccolo-80 and
Piccolo-128, we conclude two interesting results.

Observation 2. There are 249 linear-reflection weak keys for 6-round Piccolo-
80 cipher. Besides, if we change the starting of cipher to the first round, there
are 249 weak keys for 7-round Piccolo-80.

Proof. To illustrate the correctness of the above statement, we will show the
process to find linear-reflection weak keys for 6-round original Piccolo-80 in
detail. The detailed proof for the second conclusion is avoided due to the similar
process. In the system of linear equations, the number of unknown variables is
10 and the number of linear equations is 8.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k0 ⊕ k′
1 = 0x2623

k1 ⊕ k′
0 = 0x022a

k2 ⊕ k′
4 = 0x380e

k3 ⊕ k′
4 = 0x1c07

k4 ⊕ k′
3 = 0x0e29

k4 ⊕ k′
2 = 0x2a20

k0 ⊕ k′
0 = 0x380e

k1 ⊕ k′
1 = 0x1c07

The dimension of solutions for the above system of linear equations is 3 and
we denote the bases as x, y and z. Correspondingly, the 248 pairs of master
keys can be represented as k = (x, x ⊕ 0x3a24, y ⊕ 0x380e, y ⊕ 0x1c07, z) and
k′ = (x⊕0x380e, x⊕0x2623, z⊕0x2a20, z⊕0x0e29, y). The number of whole weak
keys is 249 because k 	= k′ is always true. At the same time, if P = (P0, P1, P2, P3)
and C = (C0, C1, C2, C3) is a right plaintext-ciphertext pair of 6-round Piccolo-
80 under master key k, then (P ′, C ′) is the corresponding pair under the related
key k′, where

P ′ = (C2, C3 ⊕ k3 ⊕ 0x353a ⊕ k′
2 ⊕ 0x071c, C0, C1 ⊕ k2 ⊕ 0x3f12 ⊕ k′

3 ⊕ 0x293d)
= (C2, C3 ⊕ y ⊕ z ⊕ 0x0401, C0, C1 ⊕ y ⊕ z ⊕ 0x2008),

C′ = (P0, P1 ⊕ k2 ⊕ 0x071c ⊕ k′
2 ⊕ 0x3f12, P2, P3 ⊕ k3 ⊕ 0x293d ⊕ k′

3 ⊕ 0x353a)
= (P0, P1 ⊕ y ⊕ z ⊕ 0x2a20, P2, P3 ⊕ y ⊕ z ⊕ 0x0e29). ��
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Observation 3. There are 217 weak keys for 10-round Piccolo-128 cipher.

Proof. There are 16 unknown variables and 16 linear equations in the system of
linear equations.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k4 ⊕ k′
5 = 0xf8c1

k5 ⊕ k′
4 = 0x8cdc

k6 ⊕ k′
6 = 0x5816

k7 ⊕ k′
1 = 0x2c0b

k2 ⊕ k′
5 = 0xf0c3

k1 ⊕ k′
4 = 0xe4c6

k6 ⊕ k′
0 = 0x1806

k7 ⊕ k′
3 = 0x0c03

k0 ⊕ k′
7 = 0xe8c5

k3 ⊕ k′
6 = 0xfcc0

k4 ⊕ k′
2 = 0x1806

k5 ⊕ k′
1 = 0x0c03

k6 ⊕ k′
7 = 0x80df

k1 ⊕ k′
6 = 0xf4c2

k4 ⊕ k′
4 = 0x5816

k5 ⊕ k′
5 = 0x2c0b

The dimension of solutions for the system of linear equations is only 1 and the
base is denoted by x. Correspondingly, k = (x⊕0x781e, x⊕0xbcd0, x⊕0x0802, x⊕
0xb4d2, x, x⊕0xd4ca, x⊕0x1004, x⊕0xf4c2) and k′ = (x⊕0x0802, x⊕0xd8c9, x⊕
0x1806, x ⊕ 0xf8c1, x ⊕ 0x5816, x ⊕ 0xf8c1, x ⊕ 0x4812, x ⊕ 0x90db). If P =
(P0, P1, P2, P3) and C = (C0, C1, C2, C3) is a right plaintext-ciphertext pair of
10-round Piccolo-128 under master key k, then (P ′, C ′) is the corresponding pair
under the related key k′, where

P ′ = (C2, C3 ⊕ k7 ⊕ 0x8181 ⊕ k′
2 ⊕ 0x6d45, C0, C1 ⊕ k2 ⊕ 0x3553 ⊕ k′

3 ⊕ 0xad8a)
= (C2, C3, C0, C1 ⊕ 0x681a),

C′ = (P0, P1 ⊕ k2 ⊕ 0x6d45 ⊕ k′
2 ⊕ 0x3553, P2, P3 ⊕ k3 ⊕ 0xad8a ⊕ k′

7 ⊕ 0x8181)
= (P0, P1 ⊕ 0x4812, P2, P3 ⊕ 0x0802).

Note that the values of k and k′ are always different and the length of the
base x is 16-bit, the number of weak keys for 10-round Piccolo-128 is 217. ��

The existence of linear-reflection weak keys reflects the weakness of design of
block ciphers obviously and the maximum number of rounds that exhibit weak
keys should be as small as possible. This property should be evaluated for new
designed block ciphers especially for ciphers with simple key schedules.

4 New Observations on Piccolo-128

In this section, we show two surprising observations on Piccolo-128 cipher and
they are largely due to the property of key schedule algorithm.
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4.1 Property of Key Schedule of Piccolo-128

From the key schedule of Piccolo-128, we observe that rk2i are only influenced
by the even-th 16-bit blocks of the master key and rk2i+1 are only influenced by
the odd-th blocks for all i. Thus, we fix the values of the even-th blocks of the
master key including (k0, k2, k4, k6) to be even(16) and the values of the odd-th
blocks (k1, k3, k5, k7) are fixed to be odd(16). For simplicity, the 128-bit master
keys is also denoted by (even, odd). Interestingly, for a fixed (even, odd), there
exist 31 different (even′, odd′)s such that the round keys for 30 rounds under
(even′, odd′) are equal to that under (even, odd). The total number of rounds for
Piccolo-128 is 31 and we use a permutation including 30 integers and one signal
′∗′ to present the corresponding relation, where ′∗′ means that the subkey is
not equal to all 31 subkeys under (even, odd). We denote the difference between
(even, odd) and (even′, odd′) as (�0,�1), and the relationships are described as
Table 1.

We will take (�0,�1) = (0x1806, 0x0c03) as an example to explain the
specific meaningless of Table 1. We denote the original master key as k =
(even, odd), and the related key is k′ = (even′, odd′) = (even ⊕ 0x1806, odd ⊕
0x0c03). As shown in the table, the permutation is (1, 0, ∗, · · · ). The first two
values mean that the 0-th round key under k′ is equal to the 1-st round key under
k and 1-st round key with k′ is the 0-th round key with k. Beside, the position of
the 2-nd round is filled with ′∗′. It is impossible to find a round key under k which
is equal to the 2-nd round key under k′. However, the difference between two
different 2-nd round keys under k and k′ is equal to (�0,�1) = (0x1806, 0x0c03).

4.2 Observations on Piccolo-128

We focus on two rows where the differences between two keys are respectively
(0x8020, 0x4010) and (0xf83e, 0x7c1f). For (0x8020, 0x4010), the round keys in
the former continuous 15 rounds under the related key are equal to the keys in
the last continuous 15 rounds under the original key. For (0xf83e, 0x7c1f), the
first 30 values in the corresponding permutation is a reverse order of 0−29. Two
interesting or surprising results are observed based on these two special cases.

Observation 4. If we replace the RP in Piccolo-128 by a self-inverse permuta-
tion RP ′, there exists 232 weak keys for the full round new cipher and they can
be parted into 231 pairs (k, k′) such that the decryption under k′ can be repre-
sented by a non-linear function of the encryption under k and the degree of the
non-linear function is equal to the degree of F function in Piccolo.

Proof. Note that the full-round cipher consists of all the whitening keys before
and after the 31-round encryption. One of the weak key can be represented by
k = (e, o) and the related weak key is k′ = (e′, o′) = (e ⊕ 0xf83e, o ⊕ 0x7c1f).
The relationship between the encryption under k and the decryption under k′ is
shown in Fig. 3.
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Fig. 3. Weak keys for modified Piccolo-128

Assume that (P,C) is a plaintext-ciphertext pair under (e, o) and the related
plaintext-ciphertext pair under related key (e′, o′) is denoted by (P ′, C ′). As
shown in Table 1, the round keys of first 30 rounds under k′ is the inverse order
of round keys under k. Besides, the new round permutation RP ′ is self-inverse
and the iterative structure of Piccolo cipher is the Generalized Feistel Structure.
Thus, the encryption from X0 to X31 is the same transformation as the decryp-
tion from X ′

31 to X ′
0. To obtain the relationship between (P,C) and (P ′, C ′),

we try to guarantee that X0 = X ′
31 and X31 = X ′

0 and obtain the following
equations:

P ′ = RP ′(C0 ⊕ (eL||oR), F (C0 ⊕ (eL||oR)) ⊕ C1 ⊕ e ⊕ 0x9d79, C2 ⊕
(oL||eR), F (C2 ⊕ (oL||eR)) ⊕ C3 ⊕ o ⊕ 0xd594) ⊕ (e′L||o′R, 0, o′L||e′R, 0),

C ′ = (P ∗
0 ⊕ (e′L||o′R), F (P ∗

0 ⊕ (e′L||o′R)) ⊕ P ∗
1 ⊕ e′ ⊕ 0x9d79, P ∗

2 ⊕
(o′L||e′R), F (P ∗

2 ⊕ (o′L||e′R)) ⊕ P ∗
3 ⊕ o′ ⊕ 0xd594),

where P ∗ = RP ′((P0, P1, P2, P3) ⊕ (eL||oR, 0, oL||eR, 0)).
As a result, the set {(P ′, C ′)} can be described as a non-linear transforma-

tion on set {(P,C)} and the only non-linear function is the F function, which
is a known permutation on {0, 1}16. The low degree of F function results in
an efficient distinguisher between full-round modified Piccolo-128 and random
permutations in the chosen-key setting. ��

In summary, this simple non-linear relationship between two related ciphers
also reflects the weakness of key schedule algorithm. Luckily, the round permu-
tation RP used in Piccolo block cipher is not self-inverse. The fact may also
reveal the design principle of the round permutation of RP from one aspect.

Observation 5. The time complexity of pseudo-preimage attack on the hash
function constructed from Piccolo-128 by using DM (Davies-Meyer) mode is less
than the brute-force attack.

Proof. DM (Davies-Meyer) is the most usual simple-length mode among all
12 secure PGV modes [19]. Let Mi−1, Hi−1 and Hi be the input message block,
the input chaining value, and the output, respectively. E denotes a block cipher,
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Fig. 4. Pseudo-preimage attack on hash function based on Piccolo-128

and EK denotes its encryption algorithm with a key K. The new chaining value
Hi under the DM mode is computed as:

Hi = EMi−1(Hi−1) ⊕ Hi−1.

The target of pseudo-preimage attack is to find right (Hi−1,Mi−1) for arbitrary
given Hi. We can see that the message M is regarded as the underlying key of
the block cipher and it can be chosen and known. We mainly use the relationship
between two master keys k = (e, o) and k′ = (e′, o′) = (e ⊕ 0x8020, o ⊕ 0x4010)
to show an efficient pseudo-preimage attack on the hash function based on the
full-round Piccolo-128. The full-round cipher consists of all the whitening keys
before and after the 31-round encryption. The main idea can be described as
Fig. 4 and the time complexity of the attack is mainly computed based on the
number of non-linear F functions.

Firstly, choose an arbitrary 64-bit value of Hi−1 and encrypt it for 31 rounds
under the key k = (e, o). During the computation to the corresponding cipher-
text, record the value of the internal state after 16 rounds because the xorring of
the state and new pre-whitening key is chosen as the new input(Hi−1) to the next
Piccolo-128 cipher under k′ = (e′, o′). If the difference k⊕k′ = (0x8020, 0x4010),
the computation of first 15 rounds under k′ is the similar process as the previous
last 15 rounds under k and the difference only occurs in the linear computation
of the last round. The time for xorring with the whitening keys and processing
the round permutation RP can be avoided because they are largely less than
the time for computing the nonlinear F function. Thus, the computation for the
first 15 rounds can be avoided which is denoted in gray. Similarly, the last 15
round encryption can also be reused for the next full-round computation. Let us
focus on the example shown in Fig. 4, 5 (Hi−1,Mi−1)s are tested to verify if they
are the right pseudo-preimages. It only costs 3 full-round encryptions and two
round encryptions to obtain the 5 candidates. If we want to obtain n candidates,
it spends (n/2+1) full-round encryptions and (n/2−1) round encryptions, which
is about (n/2+1) full-round encryptions for large n. In average, there is one right
solution among 264 candidates. Thus, the time for finding one pseudo-preimage
solution is about 263 full-round encryption, which is half time of the brute force
attack. ��

The last observation reveals that the security of the hash function based on
the full-round Piccolo-128 is insufficient. It also extracts some weakness of the
key schedule algorithm of Piccolo-128 as it is a security evaluation in the chosen-
key setting. This weakness can be avoided by changing the round constants or
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the permutation used in the key schedule simply. Generally speaking, designers
should avoid this similarity when choosing the round constants for a new block
cipher.

5 Conclusion

We have evaluated the security of Piccolo block cipher from the known and
chosen key respective. To clarify the property of key schedule, we defined the
linear-reflection weak keys. For one weak key k, we can find another related
weak key k′ such that the cipher with k′ can be completely determined by the
cipher under k. The existence of weak keys reveals that the key schedule algo-
rithm is lack of independence and the maximum number of rounds that exhibit
linear-reflection weak keys should be as small as possible. We also designed an
algorithm to search linear-reflection weak keys for Piccolo ciphers. The results
show that 7-round Piccolo-80 and 10-round Piccolo-128 both exist this kind of
weak keys (Observation 2 and Observation 3). Furthermore, some interesting
characteristics of key schedule algorithm for Piccolo-128 are summarized. Two
of them are respectively used to extract the design principle of Piccolo block
ciphers and reveal the weakness of Piccolo-128 from the hash function respec-
tive (Observation 4 and Observation 5). One is that the round permutation RP
should not be allowed to be self-inverse. The other is that the security of hash
function based on full-round Piccolo-128 is insufficient. It does not threaten the
application of Piccolo-128 in secret-key setting but reveals the weakness of key
schedule algorithm of Piccolo-128 to some extent.

We have evaluated the property of key schedule algorithm from a new specific
aspect. In future, the similar method can also be applied to some other block
ciphers with simple key schedules. We expect that the results of our paper may
guide the design of round constants for some simple key schedules.
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family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

2. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

3. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a
block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)



New Observations on Piccolo Block Cipher 393

4. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

5. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

6. Isobe, T., Shibutani, K.: Security analysis of the lightweight block ciphers XTEA,
LED and Piccolo. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS,
vol. 7372, pp. 71–86. Springer, Heidelberg (2012)

7. Zhu, B., Gong, G.: Multidimensional meet-in-the-middle attack and its applications
to KATAN32/48/64. Cryptogr. Commun. 6(4), 313–333 (2014)

8. Derbez, P., Fouque, P.-A.: Exhausting Demirci-Selçuk meet-in-the-middle attacks
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Abstract. In this paper, we study the MAC- and the PRF-security of
HMAC in the sense of generic security when replacing SHA-2 with SHA-3.
We first consider the generic security of the SHA-3-based HMAC construc-
tion: Sponge-based HMAC. We provide (nearly) tight upper-bounds on the
MAC- and the PRF-security of Sponge-based HMAC, which are O( nq

2n ) and

O( q2

2n ), respectively. Here, q is the number of queries to HMAC and n is
the output length of the hash function.

We then compare the MAC- and the PRF-security of Sponge-based
HMAC with those of the SHA-2-based HMAC constructions: MD- (Merkle-
Damg̊ard) or ChopMD-based HMAC. It was proven that the upper-bounds

on the MAC- and the PRF-security of MD-based HMAC are both O( �q2

2n ),

and those for ChopMD-based HMAC are both O( q2

2n + �q2

2n+t ). Here, q is the
number of queries to HMAC, � is the maximum query length, n is the
output length of the hash function, and t is the number of truncated
bits in ChopMD. Hence, replacing SHA-2 with SHA-3 enhances the MAC-
security of HMAC. Replacing SHA-2 having the MD construction with SHA-
3 enhances the PRF-security of HMAC, and if � > 2t then replacing SHA-2
having the ChopMD construction with SHA-3 enhances the PRF-security
of HMAC.

Keywords: HMAC · Replacing SHA-2 with SHA-3 · MD · ChopMD ·
Sponge · MAC-security · PRF-security

1 Introduction

HMAC [3] is a very popular message authentication code (MAC) that is based on
a cryptographic hash function. It is standardized by NIST [18], IETF RFC [14],
etc., and has been widely used, being implemented in various worldwide security
protocols such as SSL, SSH, IPSec, TLS, etc. HMAC is used as a pseudo-random
function (PRF) in addition to a MAC function. This is the case for example when
used for key-derivation in TLS and IKE (the Internet Key Exchange protocol
of IPSec). Hence HMAC is required to have MAC-security (unforgeability under
chosen message attack) and PRF-security.
c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 397–412, 2016.
DOI: 10.1007/978-3-319-29485-8 23
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Hereafter, we assume that hash functions have n-bit outputs and r-bit blocks.
We then briefly explain the HMAC construction using a hash function H, where for
an input m, the response HMAC(m) is defined as follows. If a secret key K ∈ {0, 1}k

is such that k > r then refine K ← H(K). Then, let K ′ be the padded key where
the sufficiently many zeros are appended to the suffix of K to get a r bit string.
Finally, compute the response as HMAC(m) := H(K ′ ⊕ opad‖H(K ′ ⊕ ipad‖m)),
where ipad and opad are distinct r-bit constant values.

So far, hash functions with the Merkle-Damg̊ard MD construction [9,17] or
the ChopMD construction have been implemented as the underlying hash func-
tions of HMAC. Especially, SHA-2 family [19] has been mainly implemented. The
members of SHA-2 family are SHA-n (n = 224, 256, 384, 512) and SHA-n/512
(n = 224, 256), where SHA-n (n = 256, 512) use the MD construction, and SHA-
n (n = 224, 384) and SHA-n/512 (n = 224, 256) use the ChopMD construction.
MD is the construction of iterating a compression function with n-bit outputs,
and ChopMD has the MD construction with output truncation. By t, we denote
the number of the truncated bits. Namely, the output length of the compression
function used in ChopMD is n+t bits. It was proven that the upper-bounds on the
PRF- and the MAC-security of MD-based HMAC (HMAC MD) are both O( �q2

2n ), and
those for the ChopMD-based HMAC (HMAC ChopMD) are both O( q2

2n + �q2

2n+t ) [2,3,11].1

Here, q is the total number of online queries (queries to HMAC), � is the maximum
number of message blocks by an online query. Note that these upper-bounds hold
under the assumption that compression functions are PRFs.

Recently, variants of Keccak [6] were selected as the new hash function stan-
dard SHA-3, and they were standardized by NIST in FIPS202 [20], where the
following sentences are written.

Page 20: SHA3-224, SHA3-256, SHA3-384, and SHA3-512 are approved
cryptographic hash functions. One of the approved uses of cryptographic
hash functions occurs within the Keyed-Hash Message Authentication
Code (HMAC).
Page 24: The four SHA-3 hash functions are alternatives to the SHA-2
functions, . . ..

Hence, SHA-2 hash functions may be replaced with SHA-3 hash functions in
the several systems. The standardization motivates us to study the MAC- and
the PRF-security of HMAC corresponding with the replacement. In this paper, we
first provide (nearly) tight upper-bounds on the MAC- and the PRF-security
of the SHA-3 based HMAC construction in the sense of generic security. Namely,
this paper considers the security of HMAC using the Sponge function [7]. By
HMAC Sponge, we denote Sponge-based HMAC. Then, by using the upper-bounds
for HMAC MD, HMAC ChopMD, and HMAC Sponge, we compare the MAC- and the
PRF-security of HMAC-SHA-3 with those of HMAC-SHA-2.
1 Although the proofs in [2,3,11] deal with only HMAC MD, these can be applied to
HMAC ChopMD. Their proofs only depend on � and the output length of a compression
function. The upper-bounds for HMAC ChopMD are obtained by adding the probability
corresponding with the truncated output length.
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Previous Results of HMAC Sponge. The Sponge function is a permutation-
based hash construction. By P , we denote the underlying permutation. We
assume that the size of P is b bits with b ≥ r. Then, for an input m, the output
Sponge(m) is defined as follows. Firstly, the (padded) message is partitioned into
r-bit message blocks m1, . . . , ml, and let s0 ← 0b. Then, for i = 1, . . . , l, com-
pute si ← P ((mi‖0c) ⊕ si−1). Finally return the first n bits of sl as the output.
Hereafter, we assume that 3n ≤ b and c (= b − r) = 2n. Note that SHA-3 hash
functions satisfy the conditions.

Sponge was designed with the goal of behaving as a random oracle (in the
sense of indifferentiability [15]). It was proven that the upper-bound on the indif-
ferentiability of Sponge is O(σ2

2c ) [7] when P is a random permutation. Here, σ is
the total number of P calls. Note that when the underlying hash function of HMAC
is a random oracle, the upper-bounds on the MAC- and PRF-security of HMAC
are both O( q2

2n ) [2,3,10]. Hence, by combining these upper-bounds, we obtain
the upper-bounds on the MAC- and PRF-security of HMAC Sponge: O(σ2

2c + q2

2n ).
Here q is the number of online queries, � is the maximum length of message
blocks, Q is the number of offline queries (queries to P ), and σ = �q + Q.2

However, these upper-bounds are not tight. For the lower-bound on the MAC-
security, one can forge a tag by guessing a tag randomly, and thus the lower-
bound is Ω( q

2n ). For the lower-bound on the PRF-security, by using a collision
in outputs of the “inner” function H(K ′ ⊕ ipad‖·), one can distinguish HMAC from
a random function, and thus the lower-bound is Ω( q2

2n ).

Our Results. In this paper, we give more strict upper-bounds on the MAC-
and PRF-security of HMAC Sponge. In Sects. 3, 4, and 5, we prove that the upper-
bounds on the MAC- and the PRF-security are O( �qQ+�2q2

2b + nQ
2b−n + ( qQ

2b )1/2 +
nq
2n + q

2n ) and O( �qQ+�2q2

2b + nQ
2b−n + ( qQ

2b )1/2 + q2

2n ), respectively. In SHA-3 hash
functions, b is large enough (b = 1600) and 3n ≤ b. So it seems reasonable to
suppose that Q ≤ 2b/2 and �q ≤ 2b/2.3 Then the bounds on the MAC- and
PRF-security become O(nq

2n ) and O( q2

2n ), respectively. Hence, the upper-bound
on the MAC-security is nearly tight, and that on the PRF-security is tight.

SHA-3 vs. SHA-2 for HMAC. In Table 1, we summarize the MAC- and the
PRF-security of HMAC-SHA-3 and of HMAC-SHA-2 in the sense of generic security.
The table compares q’s such that the security bounds become constants.

SHA-3 family has SHA3-n (n = 224, 256, 384, 512). We put n’s to the upper-
bounds for HMAC Sponge. Then the results are shown in the column for HMAC-
SHA3-n, where the left (resp., right) side shows q’s for the MAC-security (resp.,
the PRF-security). For SHA-2 family, the truncated bits of SHA-n (n = 224, 384)
and SHA-n/512 (n = 224, 256) are t = 32, t = 128, t = 288, and t = 256,

2 Note that for the sake of simplicity, we omit the discussion for the probability of
recovering a secret key that is O( Q

2k ).
3 Note that |K′| = r holds. Hence one can recover K′ with Q ≤ 2r. In the case of

SHA3-512 (c = 1024, r = 574 and n = 512), 2r ≤ 2b/2 holds, thereby, in order to
obtain the bounds, we require the assumption that Q ≤ 2574.
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Table 1. Comparisons security of HMAC Sponge with security of HMAC MD

and HMAC ChopMD

Size HMAC-SHA3-n HMAC-SHA-n HMAC-SHA-n/512

n q (MAC) q (PRF) q (MAC,PRF) q (MAC,PRF)

224 2216.192... 2112 min{2112, 2128/�1/2} 2112

256 2248 2128 2128/�1/2 2128

384 2375.415... 2192 min{2192, 2256/�1/2} –

512 2503 2256 2256/�1/2 –

respectively. We put n’s and t’s of SHA-2 family to the upper-bounds for HMAC MD

(O( �q2

2n )) and HMAC ChopMD (O( q2

2n + �q2

2n+t )). The results are shown in the columns
for HMAC-SHA-n and HMAC-SHA-n/512. Since the upper-bounds on the MAC- and
PRF-security are the same, we group q’s of the MAC- and PRF-security together.
Note that the exact values of q’s for HMAC-SHA-224/512 and HMAC-SHA-256/512
are min{2112, 2256/�1/2} and min{2128, 2256/�1/2}, respectively. In the table, we
assume that � ≤ 2256.

From the table, when fixing the output length n ∈ {224, 256, 384, 512},
replacing the SHA-2 hash function with the SHA-3 hash function enhances
the MAC-security of HMAC. For n ∈ {256, 512}, replacing SHA-n with SHA3-n
enhances the PRF-security of HMAC. Replacing SHA-256 with SHA3-256 enhances
the PRF-security of HMAC if � > 264, and does not otherwise. Replacing SHA-
384 with SHA3-384 enhances the PRF-security of HMAC if � > 2128, and does
not otherwise. For n ∈ {224, 256}, replacing SHA-n/512 with SHA3-n does not
enhance the PRF-security of HMAC.

Finally, we remark that the above discussion relies on the known upper-
bounds for HMAC MD and HMAC ChopMD. The upper-bounds on the PRF-security
of HMAC MD and HMAC ChopMD are tight, since a collision on internal states offers
a distinguishing attack. The upper-bound on the MAC-security of HMAC MD is
also tight, since a collision on internal states of the inner function offers a
forgery attack. On the other hand, the upper-bound on the MAC-security of
HMAC ChopMD may not be tight, since ChopMD has the wide size internal state
which ensures that the collision probability in the internal states is smaller than
the known upper-bound. We conjecture that our proof of HMAC Sponge (Proof
of Theorem 1) is applicable to HMAC ChopMD, and thus the upper-bound on the
MAC-security becomes O(nq

2n + �q2

2n+t ).

Previous Works for Other SHA-3 based MACs. Bertoni et al. [7] sug-
gested the use of the keyed Sponge construction with the structure
Sponge(K‖m), which we denote by PrefixMAC. PrefixMAC calls Sponge one
time, while HMAC calls it twice. Hence PrefixMAC is more efficient than
HMAC Sponge. At CRYPTO 2015, Gaži et al. [12] proved the tight upper-bound
on the PRF-security of PrefixMAC, where the upper-bound is O( q2

2b−d + Qq
2b−n ),

assuming �q ≤ 2b/2 and Q ≤ 2b/2. Since the PRF-security is carried over into the
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MAC-security, the bound on the MAC-security is O( q
2n + q2

2b−n + Qq
2b−n ). When

3n ≤ b, PrefixMAC has higher security than HMAC Sponge. We note that our goal
is to study the security of HMAC when replacing SHA-2 with SHA-3 and is not to
study the advantage of HMAC Sponge over PrefixMAC.

Several papers have studied the generic security proofs of keyed Sponge con-
structions [1,5,13,16], which consider the single-user or the multi-user settings
(not related key setting). We note that HMAC uses related keys K ′ ⊕ ipad and
K ′ ⊕ opad and these proofs don’t cover the related key setting. Hence, these
generic security proofs cannot be applied to HMAC Sponge.

2 Preliminaries

Notation. For a bit string x of b bits, x[i, j] is its substring between the left i-th

bit to the left j-th one, where 1 ≤ i ≤ j ≤ b. For a finite set X, x
$←− X means

that an element is randomly drawn from X and assigned to x. For a set X, let
Perm(X) be the set of all permutations on X. For sets X and Y , let Func(X,Y )
be the set of all functions: X → Y .

Security Definitions. Through this paper, an adversary A is a computa-
tionally unbounded probabilistic algorithm. It is given query access to one
or more oracles O, denoted AO. Its complexity is solely measured by the
number of queries made to its oracles. Let FK : {0, 1}∗ → {0, 1}d be a
keyed function based on a permutation having keys K ∈ {0, 1}k. Let VK :
{0, 1}∗ ×{0, 1}d → {accept, reject} be a verification function. VK(m, tag) returns
accept if FK(m) = tag, and reject otherwise. The security proofs will be done in
the ideal model, regarding the underlying permutation as a random permutation
P $←− Perm({0, 1}b). We denote by P−1 its inverse.

� Indistinguishability: In this paper, we use the security in terms of indistin-
guishability between the real world and the ideal world. Let OR be the oracle in
the real world, and let OI be the oracle in the ideal world. The indistinguisha-
bility considers the case where an adversary A has query access to (OR,P,P−1)
in the real world and (OI ,P,P−1) in the ideal world, and after A’s interaction,
it outputs a result y ∈ {0, 1}. We call queries to OR/OI “online queries” and
queries to (P,P−1) “offline queries.” We define the advantage function as

Advind
OR,OI

(A) := Pr[AOR,P,P−1 ⇒ 1] − Pr[AOI ,P,P−1 ⇒ 1] .

� PRF-Security: The PRF-security of FK is the indistinguishability between

the real world and the ideal world, where OR = FK for K
$←− {0, 1}k and

OI = R for a random function R $←− Func({0, 1}∗, {0, 1}d). By q and Q, we
denote the numbers of online queries and offline queries, respectively. We define
the advantage function as

Advprf
FK

(A) := Advind
FK ,R(A) .
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� MAC-Security: The standard MAC-security is unforgeability under cho-
sen message attack. In this game, an adversary A has query access to
(FK ,VK ,P,P−1) for K

$←− {0, 1}k and P $←− Perm({0, 1}b). We call queries
to FK “MAC queries” and queries to VK “verification queries.” By qM , qV , and
Q, we denote the numbers of MAC queries, verification queries, and queries to
P and P−1, respectively. We let q := qM + qV . We define the advantage function
as

Advmac
FK

(A) = Pr[AFK ,VK ,P,P−1
forges]

where by “forges” we mean the event that VK returns accept. We forbid A to
make a trivial verification query (m, tag), where A already made m to FK and
obtained the response tag.

3 Specification of HMAC Sponge and Security Results

In this section, we give the specification of the HMAC Sponge construction, and
show the security results for the MAC- and the PRF-security.

3.1 Specification of HMAC Sponge

The Sponge function is a permutation-based one. We assume that the underlying
permutation has b-bit blocks. Then the size of the internal states Sponge becomes
b bits, where the first r bits (0 < r ≤ b) are assigned to be the so-called rate
bits and the remaining c (= b − r) bits are assigned to be the so-called capacity
bits. Let P ∈ Perm({0, 1}b) be the underlying permutation, and by SpongeP

we denote Sponge using P . In SpongeP , by using the rate part, input message
blocks are absorbed, and after message blocks are absorbed, output blocks are
squeezed. In this paper, we assume that the output length of Sponge is n bits
with n ≤ r. Note that SHA-3 hash functions satisfy the condition n ≤ r.

Fig. 1. The procedure of HMAC SpongeP
K with �out = 2

Let HMAC Sponge be the Sponge-based HMAC construction. We assume that the
output length of HMAC Sponge is d bits with d ≤ n. By HMAC SpongeP

K , we denote
HMAC using SpongeP and having a key K ∈ {0, 1}k. For the sake of simplicity,
we assume that k ≤ r. For a message m, the response HMAC SpongeP

K(m) = tag
is defined as follows. Here, let KI := (K‖0r−k) ⊕ ipad be the inner key and
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KO := (K‖0r−k) ⊕ opad the outer key where ipad and opad are distinct r-bit
constant values, and let pad the padding function, where for a bit string x,
pad(|x|) is a bit string such that the bit length of x‖pad(|x|) becomes a multiple
of r and the last r bits are not zeros.

1. Partition KI‖m‖pad(|KI‖m|) into r-bit blocks m1,m2, . . . , ml

2. v0 ← 0b; For i = 1, . . . , l do ui ← (mi‖0c) ⊕ vi−1; vi ← P (ui)
3. w ← vl[1, n]
4. Partition KO‖w‖pad(|KO‖w|) into r-bit blocks w1, . . . , w�out

5. s0 ← 0b; For i = 1, . . . , �out do ti ← (wi‖0c) ⊕ si−1; si ← P (ti)
6. tag ← s�out [1, d]; Return tag

The Fig. 1 shows the HMAC Sponge construction with �out = 2. Thought this
paper, assume that number of message blocks is at most �in − 1 blocks, that is,
l ≤ �in. We let � := �in + �out.

3.2 Security Results

The following theorem shows the MAC-security of HMAC SpongeP
K in the random

permutation model, where e = 2.71 . . . is the base of the natural logarithm.

Theorem 1. Let A be an adversary. Then we have Advmac
HMAC SpongePK

(A)

≤2Q

2k
+

4�qQ + 2�2q2

2b
+

2dQ

2b−d
+

(
16eqQ

2b

)1/2

+
dqV

2n
+

qV

2d
+

( qM

2d−1

)d

.

The following theorem shows the PRF-security of HMAC SpongeP
K in the ran-

dom permutation model.

Theorem 2. Let A be an adversary. Then we have Advprf
HMAC SpongePK

(A)

≤2Q

2k
+

4�qQ + 2�2q2

2b
+

2dQ

2b−d
+

(
16eqQ

2b

)1/2

+
q2

2n+1
.

4 Proof of Theorem1

This proof uses a function H := RO ◦RI where RI
$←− Func({0, 1}∗, {0, 1}n) and

RO
$←− Func({0, 1}∗, {0, 1}d) are random functions. In the proof, firstly, we show

that HMAC SpongeP
K is indistinguishable from H (Lemma 1). Secondly, we show

that H is a secure MAC (Lemma 4). Finally, we combine the two results. Since
the first result ensures that HMAC SpongeP

K behaves like H, the second result is
carried over into the MAC-security of HMAC SpongeP

K . Hence, by Lemmas 1 and
4, we can conclude that HMAC SpongeP

K is a secure MAC.

Lemma 1. Let A be an adversary. Then we have

Advind
HMAC SpongePK ,H ≤ 2Q

2k
+

4�qQ + 2�2q2

2b
+

2dQ

2b−d
+

(
16eqQ

2b

)1/2

.
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Proof of Lemma 1. We prove Lemma 1 via four games. We denote these games
by Game 1, Game 2, Game 3, and Game 4. In each game, A has query access to
(Li,P,P−1) for P $←− Perm({0, 1}b). We let L1 := HMAC SpongeP

K and L4 := H.
Note that L2 and L3 will be defined later. For i ∈ {1, 2, 3, 4}, we let Gi :=
(Li,P,P−1). Note that in each game, P is independently chosen. Then we have

Advind
HMAC SpongePK ,H =

3∑

i=1

(
Pr[AGi ⇒ 1] − Pr[AGi+1 ⇒ 1]

)
.

Hereafter, for i ∈ {1, 2, 3} we upper-bound Pr[AGi ⇒ 1] − Pr[AGi+1 ⇒ 1].
For α ∈ {1, . . . , Q}, we denote an α-th offline query by xα or yα, and the

response by yα or xα, where yα = P(xα) or xα = P−1(yα). For α ∈ {1, . . . , q},
we denote an α-th online query by mα and the response by tagα. We also use
superscripts for internal values e.g., v1

2 , u
1
2, etc.

Fig. 2. The procedure of L2

Upper-Bound of Pr[AG1 ⇒ 1] − Pr[AG2 ⇒ 1]. We start by defining

L2. Let P1
I ,P2

I , . . . ,P�in
I ,P1

O,P2
O, . . . ,P�out

O
$←− Perm({0, 1}b) be random per-

mutations. Let K
$←− {0, 1}k be a secret key. Let KI = (K‖0r−k) ⊕ ipad and

KO = (K‖0r−k) ⊕ opad. For a message m ∈ {0, 1}∗, the response L2(m) = tag
is defined as follows, and the Fig. 2 shows the procedure of L2 with �out = 2.

1. Partition KI‖m‖pad(|KI‖m|) into r-bit blocks m1,m2, . . . , ml

2. v0 ← 0b; For i = 1, . . . , l do ui ← (mi‖0c) ⊕ vi−1; vi ← Pi
I(ui)

3. w ← vl[1, n]
4. Partition KO‖w‖pad(|KO‖w|) into r-bit blocks w1, . . . , w�out

5. s0 ← 0b; For i = 1, . . . , �out do ti ← (wi‖0c) ⊕ si−1; si ← Pi
O(ti)

6. tag ← s�out [1, d]; Return tag

Transcript. Let τL = {(m1, tag1), . . . , (mq, tagq)} be online query-response pairs
and τP = {(x1, y1), . . . , (xQ, yQ)} be offline query-response pairs. Additionally
we define the following sets. τI [1] := {(u1, v1)}, τI [i] := {(u1

i , v
1
i ), . . . , (uq

i , v
q
i )}

for i ∈ {2, . . . , �in}, τO[1] := {(t1, s1)}, and τO[i] := {(t1i , s
1
i ), . . . , (t

q
i , s

q
i )} for

i ∈ {2, . . . , �out}. We let τI =
⋃�in

i=1 τI [i] be all input-output pairs in the inner
function, and let τO =

⋃�out
i=1 τO[i] all input-output pairs in the outer function.

In this proof, A is permitted obtaining τI , τO, and K after A’s interaction but



Replacing SHA-2 with SHA-3 Enhances Generic Security of HMAC 405

before it outputs a result. Then A’s interaction is summarized into the transcript
τ = (K, τL, τI , τO, τP).

Let T1 be the transcript in Game 1 obtained by sampling K
$←− {0, 1}k and

P $←− Perm({0, 1}b). Let T2 be the transcript in Game 2 obtained by sampling

K
$←− {0, 1}k and P,P1

I , . . . ,P�in
I ,P1

O, . . . ,P�out
O

$←− Perm({0, 1}b). We call τ valid
if an interaction with their oracles could render this transcript, namely, Pr[Ti =
τ ] > 0. Then Pr[AG1 ⇒ 1] − Pr[AG2 ⇒ 1] is upper-bounded by the statistical
distance of transcripts, i.e.,

Pr[AG1 ⇒ 1] − Pr[AG2 ⇒ 1] ≤ SD(T1,T2) =
1
2

∑

τ

|Pr[T1 = τ ] − Pr[T2 = τ ]| ,

where the sum is over all valid transcripts.

H-coefficient Technique. We upper-bound the statistical distance by using H-
coefficient technique [8,21]. In this technique, firstly, we need to partition the
set of valid transcripts into good transcripts Tgood and bad transcripts Tbad. Then
we can bound the statistical distance by the following lemma.

Lemma 2 (H-coefficient Technique). Let 0 ≤ ε ≤ 1 be such that for all
τ ∈ Tgood,

Pr[T1=τ ]
Pr[T2=τ ] ≥ 1 − ε. Then, SD(T1,T2) ≤ ε + Pr[T2 ∈ Tbad].

We refer the proof of the lemma to [8]. Hence, we can upper-bound the statistical
distance by defining good and bad transcripts and evaluating ε and Pr[T2 ∈ Tbad].

Good and Bad Transcripts. We define Tbad that satisfy one of the following con-
ditions.

– hitux,vy: ∃(u, v) ∈ τI , (x, y) ∈ τP s.t. u = x ∨ v = y.
– hittx,sy: ∃(t, s) ∈ τO, (x, y) ∈ τP s.t. t = x ∨ s = y.
– hitut: ∃(u, v) ∈ τI , (t, s) ∈ τO s.t. u = t.
– hituu: ∃i, j ∈ {1, . . . , �in} with i = j s.t. ∃(ui, vi) ∈ τI [i], (uj , vj) ∈ τI [j] s.t.

ui = uj .
– hittt: ∃i, j ∈ {1, . . . , �out} with i = j s.t. ∃(ti, si) ∈ τO[i], (tj , sj) ∈ τO[j] s.t.

ti = tj .

Hence, in Tbad, these sets does not overlap each other. Tgood is defined such that
the above conditions are not satisfied.

Upper-Bound of Pr[T2 ∈ T bad]. Note that the following inequation holds.

Pr[T2 ∈ Tbad] = Pr[hitux,vy ∨ hittx,sy ∨ hitut ∨ hituu ∨ hittt]
≤ Pr[hitux,vy] + Pr[hittx,sy] + Pr[hitut] + Pr[hituu] + Pr[hittt] .

� We upper-bound Pr[hitux,vy]. We note that hitux,vy implies that ∃α ∈
{1, . . . , q}, i ∈ {1, . . . , lα}, β ∈ {1, . . . , Q} s.t. uα

i = xβ ∨ vα
i = yβ . We consider

the following cases.
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– hitux,vy ∧ uα
i = xβ ∧ i = 1: Since uα

1 = (KI‖0c) ⊕ 0b, KI = (K‖0r−k) ⊕ ipad

and K
$←− {0, 1}k, the probability that the case holds is at most Q/2k.

– hitux,vy∧uα
i = xβ∧i = 1: Since uα

i = (mα
i ‖0c)⊕vα

i−1 holds and vα
i−1 is randomly

drawn from at least 2b − q values, the probability that the case holds is at
most (�in − 1)q × Q/(2b − q).

– hitux,vy ∧ vα
i = yβ : Since vα

i is randomly drawn from at least 2b − q values in
b bits, the probability that the case holds is at most �inq × Q/(2b − q).

Hence we have

Pr[hitux,vy] ≤ Q

2k
+

2(2�in − 1)qQ
2b

, assuming q ≤ 2b−1.

� We upper-bound Pr[hittx,sy]. First we define a ρ-multi-collision event which is
defined as follows. Let S :=

⋃q
α=1{sα

�out
}. Note that S does not include duplex

elements.

– mcoll ⇔ ∃s(1), s(2), . . . , s(ρ) ∈ S s.t. s(1)[1, d] = · · · = s(ρ)[1, d],

where ρ is a free parameter which will be defined later. Then we have

Pr[hittx,sy] ≤ Pr[mcoll] + Pr[hittx,sy|¬mcoll] .

We first upper-bound Pr[mcoll]. Since for all s ∈ S, s is randomly drawn from

at least 2b − q values, we have Pr[mcoll] ≤ 2d × (
q
ρ

) ×
(

2b−d

2b−q

)ρ

≤ 2d ×
(

2eq
2dρ

)ρ

,

using Stirling’s approximation (x! ≥ (x/e)x for any x) and assuming q ≤ 2b−1.
We next upper-bound Pr[hittx,sy|¬mcoll]. Note that hittx,sy implies that ∃α ∈

{1, . . . , q}, i ∈ {1, . . . , �out}, β ∈ {1, . . . , Q} s.t. tαi = xβ ∨ sα
i = yβ . We consider

the following cases.

– hittx,sy ∧ tαi = xβ ∧ i = 1: Since tα1 = (KO‖0c) ⊕ 0b, KO = (K‖0r−k) ⊕ opad,

and K
$←− {0, 1}k, the probability that the case holds is at most Q/2k.

– hittx,sy∧ tαi = xβ ∧ i = 1: Note that tαi has the form tαi = (wα
i ‖0c)⊕sα

i−1, where
sα

i−1 is randomly drawn from at least 2b−q values. Hence, the probability that
the case holds is at most (�out − 1)q × Q/(2b − q).

– hittx,sy ∧ sα
i = yβ ∧ i = �out: Since sα

i is randomly drawn from at least 2b − q
values, the probability that the case holds is at most (�out − 1)q × Q/(2b − q).

– hittx,sy∧sα
i = yβ∧i = �out: By ¬mcoll, the number of elements whose first d bits

are equal to yβ [1, d] is at most ρ. Since sα
�out

is randomly drawn from at least
2b − q values, the probability that the case holds is at most Q × ρ2d/(2b − q).

Hence we have Pr[hittx,sy|¬mcoll] ≤ Q
2k + 4(�out−1)qQ

2b + 2ρQ
2b−d , assuming q ≤ 2b−1.

We put ρ = max
{

d,
(

2b−deq
2dQ

)1/2
}

. Then we have

Pr[hittx,sy] ≤ Q

2k
+

4(�out − 1)qQ
2b

+
2dQ

2b−d
+

(
16eqQ

2b

)1/2

.
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� We upper-bound Pr[hitut]. Note that hitut implies that ∃α, β ∈ {1, . . . , q},
i ∈ {1, . . . , �in}, j ∈ {1, . . . , �out} s.t. uα

i = tβj . We consider the case i = 1.
Note that in this case, j = 1 holds. Since tβj has the form tβj = wj‖0c ⊕ sβ

j−1

and sβ
j−1 is randomly drawn from at least 2b − q values, the probability that

uα
1 = tβj holds is at most (�out − 1)q/(2b − q). Next we consider the case i = 1.

Note that uα
i has the form uα

i = (mα
i ‖0c) ⊕ vα

i−1, where vα
i−1 is randomly drawn

from at least 2b − q values. Hence, the probability that uα
i = tβj holds is at most

(�in − 1)q × �outq/(2b − q). We thus have

Pr[hitut] ≤ 2�in�outq
2

2b
, assuming q ≤ 2b−1.

� We upper-bound Pr[hituu]. Note that hituu implies that ∃i, j ∈ {1, . . . , �in} with
i = j and ∃α, β ∈ {1, . . . , q} s.t. uα

i = uβ
j . Without loss of generality, assume that

i = 1. Note that uα
i has the form uα

i = (mα
i ‖0c) ⊕ vα

i−1, where vα
i−1 is randomly

drawn from at least 2b − q values. Hence, we have

Pr[hituu] ≤
(

�in
2

)

× q2 × 1
2b − q

≤ (�inq)2

2b
, assuming q ≤ 2b−1.

� We upper-bound Pr[hittt]. Note that hittt implies that ∃i, j ∈ {1, . . . , �out} with
i = j and ∃α, β ∈ {1, . . . , q} s.t. tαi = tβj . Without loss of generality, assume that
i = 1. Note that tαi has the form tαi = (wα

i ‖0c) ⊕ sα
i−1, where sα

i−1 is randomly
drawn from at least 2b − q values in b bits. Hence we have

Pr[hittt] ≤
(

�out
2

)

× q2 × 1
2b − q

≤ (�outq)2

2b
, assuming q ≤ 2b−1.


 From the above bounds, we have

Pr[T2 ∈ Tbad] ≤2Q

2k
+

4�qQ + �2q2

2b
+

2dQ

2b−d
+

(
16eqQ

2b

)1/2

.

Upper-Bound of ε. Let τ ∈ Tgood. For i ∈ {1, 2}, let alli be the set of all oracles
in Game i. For i ∈ {1, 2}, let compi(τ) be the set of oracles compatible with τ

in Game i. Then Pr[T1 = τ ] = |comp1(τ)|
|all1| and Pr[T2 = τ ] = |comp2(τ)|

|all2| .
First we evaluate |all1| and |all2|. Since K ∈ {0, 1}k and P ∈ Perm({0, 1}b),

we have |all1| = 2k · 2n!. Since K ∈ {0, 1}k and P,P1
I , . . . ,P�in

I ,P1
O, . . . ,P�out

O ∈
Perm({0, 1}b), we have |all2| = 2k · (2n!)�in+�out+1.

Next we evaluate |comp1(τ)|. Let γI [i] (i = 1, . . . , �in) be the number of pairs
in τI [i]. Let γO[i] (i = 1, . . . , �out) be the number of pairs in τO[i]. Let γP be
the number of pairs in τP . Let γ =

∑�in
i=1 γI [i] +

∑�out
j=1 γO[i] + γP . We note

that Tgood is defined so that τI [1], . . . , τI [�in], τO[1], . . . , τO[�out], and τP do not
overlap with each other. Moreover, K is uniquely determined. Hence we have
|comp1(τ)| = (2n − γ)!.
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Finally we evaluate |comp2(τ)|. Here, γI [i] (i = 1, . . . , �in), γO[i] (i =
1, . . . , �out), γP and γ are analogously defined. Then we have

|comp2(τ)| =(2n − γP)!
�in∏

i=1

(2n − γI [i])!
�out∏

j=1

(2n − γO[j])! ≥ (2n − γ)!(2n!)�in+�out

where we use the fact that (2n − a)! · (2n − b)! ≥ (2n − a − b)! · 2n! for any a, b.
Hence we have

Pr[T1 = τ ]

Pr[T2 = τ ]
=

|comp1(τ)|
|all1| · |all2|

|comp2(τ)| ≥ (2n − γ)!

2k · 2n!
· 2k · (2n!)�in+�out+1

(2n − γ)! · (2n!)�in+�out
= 1.

We thus have ε = 0.

Bound of Pr[AG1 ⇒ 1] − Pr[AG2 ⇒ 1]. From the upper-bound of Pr[T2 ∈
Tbad] and ε, we have

Pr[AG1 ⇒ 1] − Pr[AG2 ⇒ 1] ≤ 2Q

2k
+

4�qQ + �2q2

2b
+

2dQ

2b−d
+

(
16eqQ

2b

)1/2

.

Upper-Bound of Pr[AG2 ⇒ 1]−Pr[AG3 ⇒ 1]. We start by defining L3. Let

G1
I , . . . ,G�in

I ,G1
O, . . . ,G�out

O
$←− Func({0, 1}b, {0, 1}b) be random functions. L3 has

the same structure as L2 except for the underling functions: for i = 1, . . . , �in,
Pi

I is replaced with Gi
I , and for i = 1, . . . , �out, Pi

O is replaced with Gi
O. By

PRF/PRP switching lemma [4], we have Pr[AG2 ⇒ 1] − Pr[AG3 ⇒ 1] ≤ �q2

2b+1 .

Upper-Bound of Pr[AG3 ⇒ 1] − Pr[AG4 ⇒ 1]. In Game 4, L4 = H, where
H = RO ◦ RI . We show the following lemma.

Lemma 3. L3 and L4 are indistinguishable unless the following conditions hold
in Game 3.

– collI ⇔ ∃α, β ∈ {1, . . . , q} with α = β s.t. lα = lβ and uα
lα = uβ

lβ
.

– collO ⇔ ∃α, β ∈ {1, . . . , q} with α = β s.t. wα = wβ and tα�out
= tβ�out

.

Note that collI is the collision event in the last input blocks of the inner function.
collO is the collision event in the last input blocks of the outer function.

Proof. We assume that collI ∨ collO does not hold. We consider the following
cases.

– ∀α, β ∈ {1, . . . , q} with α = β s.t. wα = wβ :
Since collO does not hold, all inputs to G�out

O are fresh, thereby, all outputs of
L3 are randomly and independently chosen from {0, 1}d. Hence in this case,
L3 and L4 are indistinguishable.

– ∃α, β ∈ {1, . . . , q} with α = β s.t. wα = wβ :
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If lα = lβ holds, then since Glα

I and Glβ

I are independent random functions,
the outputs vα

lα and vβ
lβ

are randomly and independently drawn from {0, 1}b.
If lα = lβ holds, then since collI does not hold, the inputs to Glα

I , uα
lα and uβ

lβ
,

are distinct, thereby, the outputs vα
lα and vβ

lβ
are randomly and independently

drawn from {0, 1}b. Hence in this case, L3 and L4 are indistinguishable.

From above discussions, L3 and L4 are indistinguishable unless collI ∨collO does
not hold. ��

From the above lemma, Pr[AG3 ⇒ 1|¬(collI ∨ collO)] = Pr[AG4 ⇒ 1] holds.
Hence we have

Pr[AG3 ⇒ 1] − Pr[AG4 ⇒ 1] ≤ Pr[collI ∨ collO] ≤ Pr[collI ] + Pr[collO] .

We next upper-bound Pr[collI ]. Since A makes no repeated query, collI
implies that there exists j ∈ {2, . . . , lα − 1} such that uα

lα−j = uβ
lβ−j

and

uα
lα−j+1 = uβ

lβ−j+1
, where lα = lβ . Note that for some b-bit block Mα, uα

lα−j+1 =

vα
lα−j ⊕(Mα‖0c) holds, and for some b-bit block Mβ , uβ

lβ−j+1
= vα

lβ−j ⊕(Mβ‖0c)

holds. Since uα
lα−j = uβ

lβ−j
holds, vα

lα−j and vα
lβ−j are independently and ran-

domly drawn from {0, 1}b. Hence we have Pr[collI ] ≤ (
q
2

) × �in × 1
2b ≤ �inq2

2b+1 .
We next upper-bound Pr[collO]. Since wα = wβ and tα�out

= tβ�out
hold, there

exists j ∈ {2, . . . , �out−1} such that uα
�out−j = uβ

�out−j and uα
�out−j+1 = uβ

�out−j+1.

From the same analysis as Pr[collI ], we have Pr[collO] ≤ (
q
2

)× �out × 1
2b ≤ �outq

2

2b+1 .
Hence we have

Pr[AG3 ⇒ 1] − Pr[AG4 ⇒ 1] ≤ �q2

2b+1
.

Upper-Bound of the Advantage. Finally, the sum of the above bounds offers
the following upper-bound.

Advind
HMAC SpongePK ,H ≤ 2Q

2k
+

4�qQ + 2�2q2

2b
+

2dQ

2b−d
+

(
16eqQ

2b

)1/2

.

��
Lemma 4. Let A be an adversary which interacts with (H,V). We have

Advmac
H (A) ≤ dqV

2n
+

qV

2d
+

( qM

2d−1

)d

.

Proof of Lemma 4. We first define the following conditions. Here T is the set of
query-response pairs by MAC queries.

– forge ⇔ A makes a verification query (m, tag) s.t. accept is returned,
– mcoll ⇔ ∃(m1, tag1), . . . , (mξ, tagξ) ∈ T s.t. tag1 = · · · = tagξ
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where ξ is a free parameter which will be defined later. Then we have

Pr[forge] ≤ Pr[forge ∧ ¬mcoll] + Pr[mcoll] .

�We first upper-bound Pr[forge∧ ¬mcoll]. Fix ρ ∈ {1, . . . , qV }. Let forgeρ be an
event that forge holds at the ρ-th verification query. Let (mρ, tagρ) be the ρ-th
verification query-response pair. Let T ρ be the set T before the ρ-th query. We
define a collision condition

collρ ⇔ ∃(m, tag) ∈ T ρ s.t. RI(m) = RI(mρ).

Then we have

Pr[forgeρ ∧ ¬mcoll] ≤Pr[forgeρ ∧ ¬mcoll ∧ ¬collρ] + Pr[forgeρ ∧ ¬mcoll ∧ collρ]
≤Pr[forgeρ|¬collρ] + Pr[forgeρ ∧ collρ|¬mcoll]

We upper-bound Pr[forgeρ|¬collρ]. Since ∀(m, tag) ∈ T ρ: RI(m) = RI(mρ)
holds due to ¬collρ, H(mρ) is randomly drawn from {0, 1}d and is independent
of T ρ. Thus we have Pr[forgeρ|¬collρ] ≤ 1/2d.

We upper-bound Pr[forgeρ ∧ collρ|¬mcoll]. We note that forgeρ ∧ collρ implies
that

(H(mρ) = tagρ
) ∧ (∃(m, tag) ∈ T ρ s.t. RI(m) = RI(mρ)

)
.

In this case, tag = tagρ holds. Since RI(mρ) is randomly drawn from {0, 1}n,
the probability that ∃(m, tag) ∈ T ρ s.t. RI(m) = RI(mρ) is at most ρ/2n. Since
RI(m) is enveloped by RO, A cannot find RI(m). Thus, A must choose tagρ

such that tag = tagρ without knowing the equality. By ¬mcoll, the number of
tags in T ρ is at least ρ/ξ, thereby the probability that tag = tagρ is at most
ξ/ρ. Hence we have Pr[forgeρ ∧ collρ|¬mcoll] ≤ ρ/2n × ξ/ρ = ξ/2n.

We thus have

Pr[forge ∧ ¬mcoll] ≤
qV∑

ρ=1

Pr[forgeρ ∧ ¬mcoll] ≤
qV∑

ρ=1

(
1
2d

+
ξ

2n

)

≤ qV

2d
+

ξqV

2n
.

�We next upper-bound Pr[mcoll]. Fix a value tag ∈ {0, 1}d. Then the probability
that for distinct ξ values m1, . . . , mξ, H(m1) = · · · = H(mξ) = tag holds is at
most

1
2d

×
(

1
2d

+
1
2n

)

×
(

1
2d

+
2
2n

)

× · · · ×
(

1
2d

+
ξ − 1
2n

)

≤ ξ!
(2d)ξ

.

Since tag ∈ {0, 1}d and the number of mac queries is at most qM , we have

Pr[mcoll] ≤ 2d ·
(

qM

ξ

)

· ξ!
(2d)ξ

≤ 2d ·
(qM

2d

)ξ

, using Stirling’s approximation.


Finally, we put ξ := d. Then we have

Advmac
H (A) = Pr[forge] ≤ dqV

2n
+

qV

2d
+

( qM

2d−1

)d

. ��
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Finally, by combining Lemma4 with Lemma 1, we have Advmac
HMAC SpongePK

(A)

≤ 2Q

2k
+

4�qQ + 2�2q2

2b
+

2dQ

2b−d
+

(
16eqQ

2b

)1/2

+
dqV

2n
+

qV

2d
+

( qM

2d−1

)d

. ��

5 Proof of Theorem2

As the proof of Theorem1, the proof uses a function H = RO ◦RI , where RI
$←−

Func({0, 1}∗, {0, 1}n) and RO
$←− Func({0, 1}∗, {0, 1}d) are random functions.

In this proof, firstly, we prove that H is a PRF (Lemma 5). We then combine
Lemma 1 with Lemma 5. Since Lemma 1 ensures that HMAC SpongeP

K behaves
like H, Lemma 5 is carried over into the PRF-security of HMAC SpongeP

K . Then
we can conclude that HMAC SpongeP

K is a secure PRF.

Lemma 5. Let A be an adversary. Then we have Advprf
H (A) ≤ q2

2n+1 .

Proof. Let collI be an event that a collision occurs on outputs of RI . For any
query, the output is randomly drawn from {0, 1}d as long as collI = false.
Hence Pr[AH,P,P−1 ⇒ 1|¬collI ] = Pr[AR,P,P−1 ⇒ 1] holds. We thus have
Advprf

H (A) ≤ Pr[collI ]. By the birthday analysis, we have Pr[collI ] ≤ q2/2n+1. ��

We combine Lemma 5 with Lemma 1. Then we have Advprf
HMAC SpongePK

(A)

≤2Q

2k
+

4�qQ + 2�2q2

2b
+

2dQ

2b−d
+

(
16eqQ

2b

)1/2

+
q2

2n+1
.
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Abstract. A constrained pseudorandom function F : K × X → Y for a
family T ⊆ 2X of subsets of X is a function where for any key k ∈ K and
set S ∈ T one can efficiently compute a constrained key kS which allows
to evaluate F (k, ·) on all inputs x ∈ S, while even given this key, the
outputs on all inputs x /∈ S look random. At Asiacrypt’13 Boneh and
Waters gave a construction which supports the most general set family
so far. Its keys kC are defined for sets decided by boolean circuits C
and enable evaluation of the PRF on any x ∈ X where C(x) = 1. In
their construction the PRF input length and the size of the circuits C
for which constrained keys can be computed must be fixed beforehand
during key generation.

We construct a constrained PRF that has an unbounded input length
and whose constrained keys can be defined for any set recognized by a
Turing machine. The only a priori bound we make is on the description
size of the machines. We prove our construction secure assuming public-
coin differing-input obfuscation.

As applications of our constrained PRF we build a broadcast encryp-
tion scheme where the number of potential receivers need not be fixed at
setup (in particular, the length of the keys is independent of the num-
ber of parties) and the first identity-based non-interactive key exchange
protocol with no bound on the number of parties that can agree on a
shared key.

Keywords: Constrained PRFs · Broadcast encryption · Identity-based
non-interactive key exchange

1 Introduction

Constrained PRFs. A pseudorandom function (PRF) [23] is a keyed function
F : K × X → Y for which no efficient adversary, given access to an oracle O(·),
can distinguish the case where O(·) is F(k, ·) with a random key k ∈ K from the
case where O(·) is a uniformly random function X → Y.

Three papers [10,14,28] independently introduce the concept of a constrained
PRF. Consider a set P, where each v ∈ P specifies some predicate pv : X → {0, 1}
that defines a (potentially exponential-size) subset Sv = {x ∈ X | pv(x) = 1}. A
constrained PRF for a predicate family P is a PRF F with an additional constrain
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algorithm kv ← F.Constr(k, v) that on input a key k ∈ K and a predicate v ∈ P
outputs a constrained key kv that can be used to compute F(k, x) on all x ∈ Sv,
while, given this key, all values F(k, x) for x �∈ Sv still look random.

Constrained PRFs (CPRF) have been constructed for several interesting
predicates. All three papers [10,14,28] show that the classical GGM construc-
tion [23] of a PRF with input domain {0, 1}n yields a prefix-constrained PRF.
This means P = {0, 1}≤n and for any v ∈ P the derived key kv allows to
compute F(k, x) for all x with prefix v, i.e., x = v‖x′ ∈ {0, 1}n for some x′.
Assuming (leveled) multilinear maps [15,19,30], Boneh and Waters [10] con-
struct CPRFs for much more general set systems. They present a bit-fixing PRF,
where P = {0, 1, ?}n and for v ∈ P we have pv(x) = 1 if x agrees with v on all
indices different from ‘?’, i.e., for all i = 1, . . . , n, either v[i] = ? or v[i] = x[i].
They moreover construct a circuit-constrained PRF, where the predicates are
arbitrary circuits C : {0, 1}n → {0, 1} of some fixed depth.

CPRFs have already found many interesting applications. From a prefix
CPRF, one can construct a puncturable PRF [33], which is a constrained PRF
for predicates P = {0, 1}n where for v ∈ P, the key kv lets one compute F(k, x)
on all x �= v. The GGM construction yields a puncturable PRF with punctured
keys whose length is linear in the PRF input length. Puncturable PRFs play a
crucial role in the security proofs of most of the recent constructions based on
indistinguishability obfuscation [4,20], and we will also use them in this paper.

The more general bit-fixing and circuit-constrained PRFs can be used to con-
struct a variety of sophisticated cryptographic tools including broadcast encryp-
tion (BE) and identity-based non-interactive key-exchange, as outlined next.

Broadcast encryption. In a BE scheme [8,9,11,16,32,35] there is a set of
n users, and for any given subset S ⊆ {1, . . . , n} of users, we want to be able
to encrypt a message (as a short ciphertext) that can be decrypted only by the
users included in S. This can be achieved using a bit-fixing PRF with domain
{0, 1}n: Sample a random key k, and give a constrained key kvi

to user i where
vi[i] = 1 and vi[j] = ? for any j �= i. Thus, kvi

allows to evaluate the PRF on
exactly those inputs with a ‘1’ in position i.

To broadcast a message m to a set S of users, we simply send a symmetric
encryption of m under the key F(k, xS), where xS [i] = 1 if i ∈ S and xS [i] = 0
otherwise. Note that user i can compute F(k, xS) (and thus decrypt) iff her key
kvi

satisfies vi[i] = xS [i], which by construction holds iff i ∈ S.

Non-interactive key exchange. In an identity-based non-interactive key
exchange (ID-NIKE) [10,12,17,34] scheme there are parties that each have some
identity id ∈ {0, 1}�. For any set S of at most n parties we want the parties in S
to be able to locally compute a shared key KS which is indistinguishable from
random for all parties outside of S. Such a scheme can be constructed from a
bit-fixing PRF F with domain {0, 1}n·�. At setup, sample a key k for F and give
to party id ∈ {0, 1}� a set of n constrained keys k

(1)
id , . . . , k

(n)
id , where k

(i)
id is a

key for the set ?(i−1)�‖id‖?(n−i)�. Now, only parties id1, . . . , idn can compute the
joint key KS := F(k, id1‖id2‖ . . . ‖idn).
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CPRFs with unbounded input length. The disadvantage of the BE and
ID-NIKE constructions just outlined is that the number n of possible recipients
(for BE) or parties agreeing on a key (for ID-NIKE) must be fixed when setting
up the system. Moreover, the length of the constrained keys given to every user
is at least linear in n.

In this paper we construct a constrained PRF for which there is no a priori
bound on the input length. The constraints on keys are given by Turing machines
(TM), that is, given a key k and a machine M , we can derive a constrained key
kM that allows to compute F(k, x) for any input x for which M(x) = 1. The only
thing that must be bounded beforehand is the size of the TMs that we want
to support. In our construction a constrained key for a machine M will be an
obfuscated circuit whose size only depends on the size of M .

Adaptive vs. selective security. Security of constrained PRFs is defined via
a game in which a challenger picks a random key k and the adversary chooses
x∗ ∈ X and must distinguish F(k, x∗) from random. The adversary has also
access to oracles to query constrained keys for sets S �� x∗. We prove selective
security of our CPRF where the adversary must choose x∗ before it can query
constrained keys. From a selectively secure CPRF we can get an adaptively
secure CPRF (where the adversary can decide on x∗ after its key queries) via
“complexity leveraging”—but this reduction loses a factor that is exponential in
the input length. Proving adaptive security for CPRFs without an exponential
security loss is generally hard and Fuchsbauer et al. [18] show that for the bit-
fixing CPRF from [10] any “simple” security reduction must lose an exponential
factor.

Adaptive security of CPRFs was proved for the GGM-based prefix-constrained
PRF in [18] losing only a quasi-polynomial (rather than an exponential) factor.
Moreover, Hohenberger et al. [25] construct an adaptively secure puncturable
PRF with polynomial security loss using indistinguishability obfuscation (iO)
[20,31,33]. Hofheinz et al. [24] construct an adaptively secure bit-fixing PRF, also
using iO, and additionally relying on the random-oracle model. We leave the
construction of adaptively secure constrained unbounded-length PRFs (for any
interesting set of constraints) as a challenging open problem.

Applications. As two applications of our constrained PRFs we show that they
directly yield broadcast encryption and ID-NIKE for an unbounded number of
parties. In particular, all parameters (private/public key size and for BE also
ciphertext overhead) are poly-logarithmic in the number of potential parties (or
equivalently, polynomial in the length of the identities). For BE, this has only
recently been achieved by Boneh et al. [11], who construct a BE scheme sup-
porting n parties directly from O(log(n))-way multilinear maps. For ID-NIKE,
our construction is the first to achieve this; all previous schemes require the
maximum size of the group of users agreeing on a key to be fixed at setup, and
they have parameters that depend at least linearly on this size.

Due to space constraints, we detail the applications in the full version [1].

A circuit-constrained PRF. A first idea for constructing a constrained PRF
is to start with a standard PRF F; given a key k and a set S, we can define a
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constrained key as a program PS which on input x checks whether x ∈ S, and
if so, outputs F(k, x). We cannot define the constrained key as the program PS

as such, since an adversary could extract the key k from PS , and hence F(k, ·)
would not be pseudorandom for x /∈ S given PS .

When S is decided by a circuit, the above issue can be avoided by obfuscating
PS before outputting it. The strong notion of virtual black-box obfuscation, which
requires that an obfuscated program leaks nothing about the program apart from
its input/output behavior, is not achievable for general functionalities [4]. We
therefore use indistinguishability obfuscation (iO), which only guarantees that
obfuscations of two circuits (of the same size) that output the same on any input
are indistinguishable. A candidate iO scheme was proposed by Garg et al. [20].
Although the notion seems weak, it has proven to be surprisingly useful.

Consider a CPRF derived from a puncturable PRF F for which a constrained
key kC for a circuit C is defined as an iO obfuscation of the circuit PC , which
on input x returns F(k, x) if C(x) = 1 and ⊥ otherwise. In the selective-security
game an adversary A chooses an input x∗, can then ask for constrained keys
for circuits C with C(x∗) = 0 and must distinguish F(k, x∗) from random. In
the security proof we first define a modified game where A, when asking for a
constrained key for a circuit C, is given an iO obfuscation of a circuit P ′

C that
outputs F(kx∗ , x) if C(x) = 1 and ⊥ otherwise. The difference between PC and
P ′

C is that in the latter F is evaluated using a key kx∗ that is punctured at x∗.
Recall that the adversary can only submit circuits C with C(x∗) = 0 to its

oracle. For every such C we have PC(x∗) = P ′
C(x∗) = ⊥, and on any other

input x, PC and P ′
C also return the same output (namely F(k, x) if C(x) =

1 and ⊥ otherwise). By security of iO, obfuscations of PC and P ′
C are thus

indistinguishable, which means that the modified game is indistinguishable from
the original game. From an adversary A winning the modified game we obtain
an adversary B that breaks the puncturable PRF F: When A commits to x∗,
B asks for a punctured key kx∗ , which allows B to answer A’s constrained-key
queries in the modified game. If A distinguishes F(k, x∗) from random then so
does B.

ATM-constrainedPRF. The above construction uses iO for circuits. Recently,
Koppula et al. [29] constructed iO for Turing machines. However, we cannot sim-
ply replace circuits by TMs in the construction just sketched. In the security proof
we need to upper-bound the size of the TM to be obfuscated when we switch from
a TM using k to a TM using kx∗ . This is however impossible because the size
of the underlying punctured key kx∗ cannot be a priori bounded for unbounded
inputs x∗.

To overcome this problem, we use a collision-resistant hash function H to
map long inputs to inputs of fixed length. Concretely, we define our CPRF
as F(k, x) := PF(k,H(x)), where PF is a puncturable PRF. Consequently, a
constrained key would be an obfuscation of the TM PM that checks the input
legitimacy of x, i.e., whether M(x) = 1, and evaluates PF on H(x). In order to
give a reduction of security to the puncturable PRF PF, we would, as before,
replace the obfuscation of PM by one of P ′

M , which uses kH(x∗) instead of k.
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While this solves the size-bounding problem, it poses new challenges. Namely, iO
is not sufficient as PM and P ′

M are in general not functionally equivalent: consider
a machine M with M(x∗) = 0 and M(x) = 1 for some x with H(x) = H(x∗);
then PM (x) = F(k, x), whereas P ′

M (x) = ⊥.

Differing-input obfuscation. Instead of iO, we resort to a stronger form of
obfuscation. Whereas iO yields indistinguishable obfuscations of programs that
are functionally equivalent, differing-input obfuscation (diO, a.k.a. extractabil-
ity obfuscation) introduced by [4,5] for circuits and later by [2,13] for TMs,
guarantees that from an adversary that distinguishes obfuscations of two cir-
cuits (or TMs), one can extract an input on which they differ. diO is a strong
assumption and in fact was shown to be implausible to exist [21]. We will use
a weaker assumption suggested by Ishai et al. [27] and called public-coin diO,
for which no such implausibility results are known. Informally, this notion only
implies indistinguishability for pairs of programs if it is hard to find an input on
which the two programs differ even when given the randomness used to sample
this pair of circuits.

We replace iO in our CPRF construction by public-coin diO for TMs with
unbounded inputs from [27] and define a constrained key for M as a diO obfus-
cation of PM . This solution is not without limitations; a constrained key is now
a diO-obfuscated TM and therefore keys are large and their size depends on the
running time of the constraining TM M , which we show how to avoid next.

SNARKs. We “outsource” the check of input legitimacy (whether x satisfies
M(x) = 1) to the party that evaluates the PRF. The latter first computes
a succinct non-interactive argument of knowledge (SNARK) of a legitimate x
and passes this SNARK to the obfuscated program. A SNARK system is a
computationally sound non-interactive proof of knowledge for which proofs are
universally succinct. That is, the length of a proof π for a statement η as well as
its verification time are bounded by an a-priori-fixed polynomial in the length
|η| of the statement. In particular, we use a SNARK system for the language
Llegit := {(H,M, h) | ∃x : M(x) = 1 ∧ H(x) = h}.

Instead of running M , the program PM now only needs to verify a SNARK,
which can be implemented by a circuit ; we thus only require obfuscation of
circuits. Let PM be the circuit that on input (h, π) outputs PF(k, h) iff π is a valid
SNARK for (H,M, h). A constrained key is then a public-coin diO obfuscation
of PM , whose size only depends on the size of M but not on its running time.

As we use public-coin diO, we require the hash function H to be public-coin
[26], that is, collision-resistance (CR) must hold when the adversary is given
the randomness used to sample a hash function from the family; moreover, the
SNARK must be in the common random string model. Such hash functions and
SNARKs exist as discussed in [27]. Assuming puncturable PRFs, public-coin CR
hash functions, a SNARK for the language Llegit and public-coin diO for circuits,
our construction is a TM-constrained PRF for inputs of unbounded length.
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Fig. 1. The security game for constrained PRFs.

2 Preliminaries

2.1 Constrained and Puncturable PRFs

Definition 1 (Constrained Functions). A family of keyed functions Fλ =
{F : K × X → Y} over a key space K, a domain X and a range Y is efficiently
computable if there exist a PPT sampler F.Smp and a deterministic polynomial-
time (PT) evaluator F.Eval such that:

– k ← F.Smp(1λ): On input a security parameter λ, F.Smp outputs a key k ∈ K.
– F(k, x) := F.Eval(k, x), for k ∈ K and x ∈ X .

We say Fλ is constrained w.r.t. a family Sλ of subsets of X , with constrained
key space KS such that KS ∩ K = ∅, if F.Eval accepts inputs from (K ∪ KS) × X
and there exists the following PPT algorithm:

– kS ← F.Constr(k, S): On input a key k ∈ K and a description1 of a set
S ∈ Sλ,F.Constr outputs a constrained key kS ∈ KS such that

F.Eval(kS , x) =
{
F(k, x) if x ∈ S
⊥ otherwise .

Definition 2 (Security of Constrained PRFs). A family of (efficiently com-
putable) constrained functions Fλ = {F : K × X → Y} is selectively pseudoran-
dom, if for every PPT adversary A = (A1,A2) in ExpO,b

F, A, defined in Fig. 1,
with O1 = ∅ and O2 = {Constr(·),Eval(·)}, it holds that

AdvO
F, A(λ) :=

∣
∣ Pr

[
ExpO,0

F, A(λ) = 1
] − Pr

[
ExpO,1

F, A(λ) = 1
]∣
∣ = negl(λ) . (1)

Fλ is adaptively pseudorandom if the same holds for O1 = O2 = {Constr(·),
Eval(·)}.

1 As outlined in the introduction, we assume that every set in S can be specified by
a short and efficiently computable predicate.
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Fig. 2. The selective-security game for puncturable PRFs.

Puncturable PRFs [33] are a simple type of constrained PRFs whose domain is
{0, 1}n for some n, and constrained keys can only be derived for the sets {{0, 1}n\
{x1, . . . , xm} | x1, . . . , xm ∈ {0, 1}n,m = poly(λ)}, i.e., a punctured key kx1...xm

can evaluate the PRF on all inputs except on polynomially many x1, . . . , xm. We
only require pseudorandomness to hold against selective adversaries.

Definition 3 (Puncturable PRFs [33]). A family of PRFs Fλ = {F : K ×
{0, 1}n → Y} is puncturable if it is constrainable for sets {0, 1}n \ T , where
T ⊆ {0, 1}n is of polynomial size. Fλ is (selectively) pseudorandom if for every
PPT adversary A = (A1,A2) in ExpPCT-b

F, A (λ), defined in Fig. 2, we have

AdvPCT
F, A (λ) :=

∣
∣ Pr

[
ExpPCT-0

F, A (λ) = 1
] − Pr

[
ExpPCT-1

F, A (λ) = 1
]∣
∣ = negl(λ).

Puncturable PRFs are easily obtained from prefix-constrained PRFs, which were
constructed from the GGM PRF [23] in [10,14,28].

2.2 Collision-Resistant Hash Functions

A family of hash functions is collision-resistant (CR) if given a uniformly sampled
function, it is hard to find inputs on which it collides. It is called public-coin CR
if this is hard even when given the coins used to sample the function.

Definition 4 (Public-Coin CR Hash Functions [26]). A family of (effi-
ciently computable) functions Hλ = {H : {0, 1}∗ → {0, 1}n}, for which Smp
samples a random function, is public-coin collision-resistant if for every PPT
adversary A it holds that

Pr
[

r ← {0, 1}poly(λ);H := Smp(1λ, r);
(x1, x2)←A(1λ, r)

:
H(x1) = H(x2)

∧ x1 �= x2

]

= negl(λ) .

2.3 Indistinguishability and Differing-Input Obfuscation

As a consequence of the impossibility of virtual black-box obfuscation, Barak et
al. [4], proposed two weaker notions: indistinguishability obfuscation (iO) and
differing-input obfuscation (diO). The first, iO, guarantees that obfuscations of
equivalent functionalities are computationally indistinguishable.
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Definition 5 (iO [20]). A uniform PPT algorithm iO is an indistinguishability
obfuscator for a family of polynomial-size circuits Cλ, if the following hold:

– For all λ ∈ N, C ∈ Cλ, and x: Pr
[
C̃ ← iO(1λ, C) : C(x) = C̃(x)

]
= 1.

– For every PPT adversary A and all C0, C1 ∈ Cλ s.t. ∀x,C0(x) = C1(x):
∣
∣ Pr

[A(
iO(1λ, C0)

)
= 1

] − Pr
[A(

iO(1λ, C1)
)

= 1
]∣
∣ = negl(λ) .

Differing-input obfuscation is a stronger notion which requires that for any effi-
cient adversary that distinguishes obfuscations of two functionalities, there exists
an efficient extractor E that extracts a point on which the functionalities differ.
Ishai et al. [27] weaken this to public-coin diO, where the extractor is given the
coins used to sample the functionalities. We will use this concept for circuits,
which is formalized by requiring that indistinguishability only holds for circuits
output by a sampler Samp for which no differing-input extractor exists.

Definition 6 (Public-Coin Differing-Input Sampler [27]). A non-uniform
PPT sampler Samp is a public-coin differing-input sampler for a polynomial-size
family of circuits Cλ if the output of Samp is in Cλ×Cλ and for every non-uniform
PPT extractor E it holds that

Pr
[

r ← {0, 1}poly(λ);
(C0, C1) := Samp(1λ, r);x ← E(1λ, r)

: C0(x) �= C1(x)
]

= negl(λ) . (2)

Definition 7 (Public-Coin diO [27]). A uniform PPT algorithm diO is a
public-coin differing-input obfuscator for a family of polynomial-size circuits Cλ

if the following hold:

– For all λ ∈ N, C ∈ Cλ and x: Pr
[
C̃ ← diO(1λ, C) : C(x) = C̃(x)

]
= 1.

– For every public-coin differing-input sampler Samp for a family of polynomial-
size circuits Cλ, every non-uniform PPT distinguisher D and every λ ∈ N:

∣
∣
∣
∣ Pr

[
r ← {0, 1}poly(λ); (C0, C1) := Samp(1λ, r);
C̃ ← diO(1λ, C0)

: 1 ← D(r, C̃)
]

− (3)

Pr
[

r ← {0, 1}poly(λ); (C0, C1) := Samp(1λ, r);
C̃ ← diO(1λ, C1)

: 1 ← D(r, C̃)
] ∣

∣
∣
∣ = negl(λ) .

A candidate iO was constructed based on a simplified variant of multilinear maps
and proven secure in an idealized model [20]. The candidate was conjectured to
be a diO for NC1 [13]. Unfortunately, Garg et al. [21] present an implausibility
result for diO for arbitrary distributions. However, Ishai et al. [27] argue that
current candidate constructions for iO satisfy their notion of public-coin diO.

2.4 Succinct Non-interactive Arguments of Knowledge

A succinct non-interactive argument of knowledge (SNARK) is a computation-
ally sound non-interactive proof-of-knowledge system for which proofs are uni-
versally succinct. A proof π of knowledge of a witness w to a statement η is
succinct if the proof length and its verification time are bounded by an a priori
fixed polynomial in the statement length |η|.
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Definition 8 (The Universal Relation RU [3]). The universal relation RU
is the set of instance/witness pairs of the form ((M,m, t), w) where M is a TM
accepting an input/witness pair (m,w) within t steps. In particular |w| ≤ t.

We define SNARK systems in the common-random-string model following Bitan-
sky et al. [6,7,27] as follows.

Definition 9 (SNARK). A pair of PPT algorithms (Prove,Verify) is a
succinct non-interactive argument of knowledge (SNARK) in the common-
random-string model for a language L with witness relation R ⊆ RU if there
exist polynomials p, �, q independent of R such that the following hold:

1. Completeness: For every (η = (M,m, t), w) ∈ R the following holds:
Pr

[
crs ← {0, 1}poly(λ); π ← Prove(crs, η, w) : Verify(crs, η, π) = 1

]
= 1. More-

over, Prove runs in time q(λ, |η|, t).
2. (Adaptive) Soundness: For every PPT adversary A:

Pr
[
crs ← {0, 1}poly(λ);
(η, π) ← A(crs)

: Verify(crs, η, π) = 1 ∧ η /∈ L
]

= negl(λ) .

3. (Adaptive) Argument of knowledge: For every PPT adversary A there exists
a PPT extractor EA such that

Pr
[
crs ← {0, 1}poly(λ); r ← {0, 1}poly(λ)
(η, π) := A(crs; r);w ← EA(1λ, crs, r)

:
Verify(crs, η, π) = 1

∧ (η, w) /∈ R
]

= negl(λ).

4. Succinctness: For all (crs, η, w) ∈ {0, 1}poly(λ) × R, the length of a proof
π ← Prove(crs, η, w) is bounded by �(λ, log t); moreover, the running time
of Verify(crs, η, π) is bounded by p(λ + |η|) = p(λ + |M | + |m| + log t).

Bitansky et al. [6] construct SNARKs for Rc ⊂ RU where t = |m|c and c is
a constant, based on knowledge-of-exponent assumptions [7] and extractable
collision-resistant hash functions (ECRHF) [6]. These are both non-falsifiable
assumptions, but Gentry and Wichs [22] prove that SNARKs cannot be built
from falsifiable assumptions via black-box reductions. Relying on exponentially
hard one-way functions and ECRHF, [6] construct SNARKs for RU .

3 Constrained PRFs for Unbounded Inputs

As a warm-up we first construct a constrained PRF for sets decided by
polynomial-size circuits and show how to extend it to Turing machines in
Sect. 3.2.

3.1 A Circuit-Constrained PRF

Our circuit-constrained PRF F uses a puncturable PRF PF with input space
X = {0, 1}n. The output of F(k, x) is simply PF(k, x). To constrain F w.r.t. a
circuit C, we construct a circuit Pk,C , which on input x runs C on x and outputs
PF(k, x) if C(x) = 1, and ⊥ otherwise. A constrained key kC for C is then an
indistinguishability obfuscation of Pk,C , i.e., kC ← iO(1λ, Pk,C).
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Construction 1 (Circuit-Constrained PRF). Let Cλ = {C : {0, 1}n →
{0, 1}} be a family of polynomial-size circuits, PFλ = {PF : K × {0, 1}n → Y}
a family of selectively secure puncturable PRFs, and iO an indistinguishability
obfuscator for a family of poly-size circuits Pλ that contains all circuits defined
in (4) for all C ∈ Cλ. We construct a family of PRFs Fλ = {F : K×{0, 1}n → Y}
constrained w.r.t. Cλ with a constrained-key space KC such that KC ∩ K = ∅.2

k ← F.Smp(1λ) : Given security parameter λ, output k ∈ K as k ← PF.Smp(1λ).
kC ← F.Constr(k,C) : On input a secret key k ∈ K and a description of a circuit

C ∈ Cλ, output kC ∈ KC as kC ← iO(1λ, Pk,C), with Pk,C ∈ Pλ defined as:

Pk,C(x) :=
{
PF(k, x) if |x| = n ∧ C(x) = 1
⊥ otherwise . (4)

y := F.Eval(κ, x) : On input κ ∈ K ∪ KC and x ∈ {0, 1}n, do the following:
– If κ ∈ K, output PF.Eval(κ, x).
– If κ ∈ KC, interpret κ as a circuit and output κ(x).

The proof of selective security of F , as just constructed, is relatively straight-
forward. Recall that in the selective-security game the adversary A outputs x∗,
then the challenger chooses k ← F.Smp and gives A access to a constrained-key
oracle Constr, which can be queried on any C with C(x∗) = 0. A must then dis-
tinguish F(k, x∗) from random. We modify this game by deriving from k a key kx∗

which is punctured at x∗ and computing constrained keys as obfuscations of
Pkx∗ ,C (defined like Pk,C but using kx∗ instead of k). Since PF(k, x) = PF(kx∗ , x)
for all x �= x∗, and since for any circuit C that the adversary can query we have
Pk,C(x∗) = Pkx∗ ,C(x∗) = ⊥, the circuits Pkx∗ ,C and Pk,C are functionally equiv-
alent, and thus by Definition 5 the two games are indistinguishable. Note that
we also need to ensure that these circuits are of the same size, which can be
achieved by appropriate padding.

An adversary A winning the modified game can be translated into an adver-
sary B against PF . In the security game for PF (Fig. 2), B runs (x∗, st) ← A
and outputs (x∗, {x∗}, st). Given kx∗ and y, B can simulate the modified game
and output whatever A outputs. B’s probability of breaking the security of PF
is the same as that of A winning the modified game.

3.2 A TM-Constrained PRF

In this section we construct a family of constrained PRFs for unbounded inputs
whose keys can be constrained to sets decided by Turing machines (TM). As
a first attempt, in Construction 1 we could replace C in Pk,C with a TM M ,
yielding a TM Pk,M . We would thus have to use obfuscation for Turing machines
rather than just circuits. However, the problem with this construction is that in
the proof we would have to replace the underlying PRF key k with a punctured
2 W.l.o.g. we assume from now on that K ∩ KC = ∅, as this can always be achieved by

simply prepending a ‘0’ to elements from K and a ‘1’ to elements from KC .
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key kx∗ for some x∗ whose length is not a priori bounded. It is thus not clear
how to pad the original key, which could be done in our previous construction.

To overcome this problem we compress the unbounded input to a fixed length
by applying a collision-resistant hash function H to it, that is, we evaluate the
PRF on hashed inputs. Moreover, we outsource the check of input legitimacy
outside the program Pk,M by using a SNARK. In particular, when evaluating
the PRF, the user computes a SNARK proving that a given hash is the hash
value of a legitimate input. The program Pk,M is then only given the hash of the
input to the PRF and a SNARK proof confirming the legitimacy of a preimage,
and evaluates the PRF on the hash if the proof verifies.

Note that Pk,M can now be implemented by a circuit, which means that
we can avoid obfuscation of Turing machines altogether. In our construction a
constrained key kM for a TM M is a public-coin diO obfuscation of a circuit
Pk,M which is given (h, π) and checks whether π proves knowledge of an x such
that H(x) = h and M(x) = 1, and if so, evaluates PF on h.

Let us justify the use of (public-coin) diO and SNARKs. As for our circuit-
constrained PRF, we want to reduce the selective security of the TM-constrained
PRF F to the selective security of the underlying puncturable PRF PF. In a
first game hop we replace Pk,M with Pkh∗ ,M , which is identical to Pk,M except
that the key k is replaced with a key kh∗ that punctures out h∗ := H(x∗).
Unfortunately, the two circuits Pk,M and Pkh∗ ,M are not equivalent: there
exists x �= x∗ such that H(x) = H(x∗), and on input H(x), Pk,M outputs
PF(k,H(x)) = PF(k, h∗) and Pkh∗ ,M outputs ⊥. We thus cannot use iO and
hence we use diO instead. This requires that it be hard to find an input (h, π)
on which the two circuits differ, which means that either π proves a wrong state-
ment or it proves knowledge of some x with H(x) = H(x∗). That is, finding a
differing input amounts to either breaking soundness of the SNARK or breaking
collision-resistance of H. Since both are hard even for adversaries that know the
coins used to sample the hash function or the common random string for the
SNARK, it suffices to use public-coin diO.

Finally, hash-function collisions are also the reason we need to use SNARKs
rather than SNARGs: if an adversary can distinguish obfuscations of Pk,M and
Pkh∗ ,M by finding a collision for H then we need to extract this collision in the
security proof, which SNARKs (arguments of knowledge) allow us to do.

Definition 10 (Rlegit). We define the relation Rlegit ⊂ RU , with RU defined
in Definition 8, to be the set of instance/witness pairs (((H,M), h, t), x) such
that M(x) = 1 and H(x) = h within t steps, and M is a TM and H is a hash
function. We let Llegit be the language corresponding to Rlegit . For notational
convenience, we abuse the notation and write ((H,M, h), x) ∈ Rlegit to mean
(((H,M), h, t), x) ∈ Rlegit while implicitly setting t = 2λ.

Remark 1. Let t = 2λ in the definition of Rlegit ; then by succinctness of SNARKs
(Definition 9), the length of a SNARK proof is bounded by �(λ) and its verifi-
cation time is bounded by p(λ + |M | + |H| + |h|), where p, � are a priori fixed
polynomials that do not depend on Rlegit .
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Construction 2 (TM-Constrained PRF). Let PFλ = {PF : K × {0, 1}n →
Y} be a selectively secure puncturable PRF, Hλ = {H : {0, 1}∗ → {0, 1}n}λ a
family of public-coin CR hash functions, diO a public-coin diO obfuscator for a
family of polynomial-size circuits Pλ, and SNARK a SNARK system for Rlegit

(cf. Definition 10). We construct a family of PRFs Fλ = {F : K × {0, 1}∗ → Y}
constrained w.r.t. to any polynomial-size family of TMs Mλ as follows:

K ← F.Smp(1λ) : On input a security parameter λ, sample H ← H.Smp(1λ),
crs ← {0, 1}poly(λ) and k ← PF.Smp(1λ), set pp := (H, crs)) and return
K := (k,pp).

kM ← F.Constr(K,M) : On input K = (k,pp = (H, crs)) and M ∈ Mλ, set

PM,H,crs,k(h, π) :=
{
PF.Eval(k, h) if SNARK.Verify(crs, (H,M, h), π) = 1
⊥ otherwise (5)

and compute P̃ ← diO(1λ, PM,H,crs,k). Return kM := (M, P̃ , (H, crs)).
y := F.Eval(κ, x) : On input κ ∈ K ∪ KM and x ∈ {0, 1}∗, do the following:

– If κ ∈ K, κ = (k, (H, crs)): return PF.Eval(k,H(x)).
– If κ ∈ KM, κ = (M, P̃ , (H, crs)): if M(x) = 1, let h := H(x) (thus

((H,M, h), x) ∈ Rlegit), compute π ← SNARK.Prove(crs, (H,M, h), x),
interpret P̃ as a circuit and return P̃ (h, π).

Remark 2. Note that Pλ is in fact a family of circuits with an input length
n + |π| where |π| is upper bounded by �(λ) even for an exponentially long x (cf.
Remark 1).

Theorem 1. Fλ of Construction 2 is a selectively secure family of constrained
PRFs with input space {0, 1}∗ for which constrained keys can be derived for any
set that can be decided by a polynomial-size Turing machine.

Proof. Let A be an arbitrary PPT adversary for game Exp(∅,{Constr,Eval}),b
F, A (λ),

as defined in Fig. 3, which we abbreviate as Expb for simplicity. We need to show
that Exp0 and Exp1 are indistinguishable. Our proof will be by game hopping
and we define a series of hybrid games Expb,(0) := Expb, Expb,(1) and Expb,(2),
which are all defined in Fig. 3. We show that for b = 0, 1 and c = 0, 1 the games
Expb,(c) and Expb,(c+1) are indistinguishable and that Exp0,(2) and Exp1,(2)

are also indistinguishable, which concludes the proof.

Expb,(0) is the original game Expb,(∅,{Constr,Eval})
F, A (λ) for Construction 2.

Expb,(1) differs from Expb,(0) by replacing the full key of the puncturable PRF
PF, with one that is punctured at H(x∗) in the definition of P .

Expb,(2) differs from Expb,(1) by answering Eval queries using the punctured
key kh∗ and aborting whenever the query is a collision with x∗ for H.
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Fig. 3. The original security game and hybrids used in the proof of Theorem 1.

The only difference between Expb,(0) and Expb,(1) is the definition of the
circuits P that are obfuscated when the Constr oracle is queried. In Expb,(0)

the circuit P is defined as in (5), with k ← PF.Smp(1λ). In Expb,(1), the key k
is replaced by kh∗ ← ConstrPF(k, {0, 1}n \ {H(x∗)}), a key that punctures out
H(x∗). By a hybrid argument there must exist some query (say the ith for Mi)
where the adversary distinguishes a diO obfuscation of PMi,H,crs,k from one of
PMi,H,crs,kh∗ . Thus, there exists a diO extractor that extracts an input (ĥ, π̂) on
which PMi,H,crs,k and PMi,H,crs,kh∗ differ.

By correctness of PF, the circuits only differ on inputs (ĥ, π̂), where

ĥ = H(x∗) , (6)

as that is where the punctured key behaves differently. Moreover, the extracted
proof π̂ must be valid for (H,Mi, ĥ), as otherwise both circuits output ⊥. By
SNARK extractability, we can extract a witness x̂ for (H,Mi, ĥ) ∈ Llegit, that
is, (i) Mi(x̂) = 1 and (ii) H(x̂) = ĥ. Since Mi is a legitimate query, we have
Mi(x∗) = 0, which together with (i) implies x̂ �= x∗. On the other hand, (ii) and
(6) imply H(x̂) = H(x∗). Together, this means (x̂, x∗) is a collision for H.
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Proposition 1. For b = 0, 1, Expb,(0) and Expb,(1) are computationally indis-
tinguishable if diO is a public-coin differing-input obfuscator and H is public-coin
collision-resistant.

For the game hop from games Expb,(1) to Expb,(2), indistinguishability follows
directly from collision resistance of H, as the only difference is that Expb,(2)

aborts when A finds a collision.

Proposition 2. For b = 0, 1, Expb,(1) and Expb,(2) are computationally indis-
tinguishable for if H is collision-resistant.

We have now reached a game, Expb,(2), in which the key k is only used to create
a punctured key kh∗ . The experiment can thus be simulated by an adversary B
against selective security of PF , which first asks for a key for the set {0, 1}n \
{H(x∗)} and then uses A to distinguish y∗ = PF.Eval(k,H(x∗)) from random.

Proposition 3. Exp0,(2) and Exp1,(2) are indistinguishable if PF is a selec-
tively secure family of puncturable PRFs.

Theorem 1 now follows from Propositions 1, 2 and 3. Proofs of the propositions
can be found in the full version [1]. ��
We refer to the full version for applications of our TM-constrained PRF.
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Abstract. This paper presents a new framework for constructing fully
CCA-secure predicate encryption schemes from pair encoding schemes.
Our construction is the first in the context of predicate encryption which
uses the technique of well-formedness proofs known from public key
encryption. The resulting constructions are simpler and more efficient
compared to the schemes achieved using known generic transformations
from CPA-secure to CCA-secure schemes. The reduction costs of our
framework are comparable to the reduction costs of the underlying CPA-
secure framework. We achieve this last result by applying the dual system
encryption methodology in a novel way.

Keywords: Predicate encryption schemes · Chosen-ciphertext security ·
Full security · Key-encapsulation mechanisms · Pair encoding schemes

1 Introduction

Predicate encryption (PE) with public index, as a subclass of functional encryp-
tion [7], is a powerful generalization of traditional public-key encryption (PKE).
In a PE system for a predicate R, data are encrypted under so-called cipher-
text indices cInd, which are public. A user can decrypt such a ciphertext if she
holds a secret key with a key index kInd, such that R (kInd, cInd) = 1. Identity-
based encryption (IBE) schemes realize the equality relation and are the simplest
example of PE. In general, predicate encryption schemes provide a powerful tool
for achieving fine-grained access control on confidential data.

Except for IBE, constructions of fully (also called adaptively) secure PEs
have been missing for a long time. The dual system encryption methodology,
introduced and extended by Waters and Lewko [15,19], provides fundamen-
tal techniques to achieve fully secure PE schemes which withstand chosen-
plaintext attacks (CPA). Based on this methodology, schemes for various pred-
icates such as (hierarchical) identity-based encryption [15,19], attribute-based
encryption [14,16], inner-product encryption [4,17], spatial encryption [4,11],
and schemes for regular languages [3], to name just a few, have been constructed.
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Although many PE schemes have been presented, constructions for new
predicates have each been built from the ground up until the following results
were published. Attrapadung [3] and Wee [20] independently introduced generic
frameworks for the design and analysis of PE schemes with public index from
composite-order bilinear groups. These frameworks are based on the dual sys-
tem encryption methodology and define new cryptographic primitives called pair
encoding and predicate encoding. Attrapadung and Wee showed that fully CPA-
secure PEs can be constructed from encoding schemes in a generic fashion.
This approach simplifies the development of new schemes, since the complex-
ity of security proofs is reduced. Furthermore, the properties required to achieve
secure constructions are better understood, structured, and defined in terms
of security properties of encodings. Recently, both frameworks were adapted
to prime-order groups in [1,2] and in [8], respectively. Overall, the research on
encodings resulted in new and efficient CPA-secure schemes for various predi-
cates. In this paper, we extend the framework of Attrapadung [3] to achieve fully
CCA-secure PE schemes. We chose this framework because of its powerful com-
putational (rather than information theoretic) security notion which allows to
capture involved predicates. Although this will be a non-trivial task, we believe
that our techniques can be applied to the pair encoding framework in prime
order groups [2].

Related Work. Although there exist many adaptively CPA-secure PE schemes
for various predicates, only a few papers consider the realization of fully secure
schemes which withstand chosen-ciphertext attacks (CCA), the most desirable
security notion in practice. Comparing this situation with PKE schemes and
IBE schemes, we identify the following gap. Mainly two different approaches are
known to achieve efficient CCA-secure schemes without random oracle model
in the context of PKE and IBE (cf. discussion in [6]). The first approach goes
back to the CCA-secure PKE schemes introduced in [10]. Schemes following this
approach achieve CCA-security using a kind of well-formedness proofs, exploit
specific properties of the underlying CPA-secure schemes, and sacrifice generality
for efficiency. The second approach goes back to the generic transformations
presented in [6] and uses one-time signatures or message authentication codes
as building blocks. Whereas both approaches are well studied for PKE [6,9,10]
and (hierarchical) IBE [6,12,13] this is not the case for PE with more involved
predicates.

Generic transformations of CPA-secure PE schemes into CCA-secure schemes
presented in [21,22] pursue the second approach from above and use one-time
signatures as a building block. However, the first approach of well-formedness
proofs has not been taken into account for PEs. Indeed, only a few PE schemes
are proven to be fully CCA-secure without applying the generic transformations
from [21,22]. To the best of our knowledge these are the broadcast-encryption
scheme from [18] and the (index hiding) encryption for relations that are specified
by non-monotone access structures combined with inner product relations [17].
The techniques from [18] are closely related to the techniques used for adaptively
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secure IBE schemes. The schemes from [17] achieve CCA-security using one-time
signature schemes and their techniques are closely related to [22].

We can only speculate why the non-generic approach of well-formedness
proofs from [10] has not been considered for fully secure predicate encryption
schemes. Probably because of the complex structure of the ciphertexts in PE
schemes well-formedness proofs have been assumed to be inefficient. Further-
more, the consistency checks for the ciphertexts seem to be in conflict with the
dual system encryption methodology, since an essential part of this technique
is based on incorrectly formed ciphertexts, i.e. semi-functional ciphertexts. In
this work we show that these assumptions are premature. We show that the
dual system encryption techniques can be combined with well-formedness proofs
and that the resulting fully CCA-secure PE schemes require computational over-
head, which is comparable to the additional overhead required by the generic
transformations.

Our Contribution. In this work we take a significant step to close the gap between
PKE/IBE and PE w.r.t. non-generic CCA-secure constructions. Namely, given
any pair encoding scheme (with natural restrictions) secure in terms of [3], we
construct a fully CCA-secure key-encapsulation mechanism (KEM) for the cor-
responding predicate using a kind of well-formedness proofs. Surprisingly, due
to the pair encoding abstraction, we achieve a semi-generic transformation and
still exploit structural properties of the underlying CPA-secure schemes. Since
the underlying framework of [3] is defined on composite-order groups, our con-
struction is also build on these groups. Combined with an appropriate sym-
metric encryption, our framework leads to various new fully CCA-secure PE
schemes through the usual hybrid construction. In fact, for efficiency reasons
hybrid schemes are preferred to plain encryption schemes in practice.

Although our extensions of CPA-secure schemes are similar to those used in
PKE schemes, the application to complex predicates as well as the generic nature
of our construction are novel for the underlying techniques. We achieve simpler
and usually more efficient constructions than those obtained from CPA-secure
schemes and the generic transformations based on one-time signatures [21,22].
Furthermore, we keep the advantage of tight reductions from the original frame-
work of Attrapadung [3], and the reduction costs of our CCA-secure construction
are comparable to the reduction costs of the underlying CPA-secure construc-
tion. This is indeed surprising and is due to our extension of the dual system
encryption methodology which we describe below. The only additional crypto-
graphic primitive required by our construction is a collision-resistant hash func-
tion, which is used to add a single redundant group element to the ciphertext.
Apart from that, we add two group elements to the public parameters of the
underlying CPA-secure scheme. The security of our framework is based on the
same security assumptions as the security of the original CPA-secure framework.

Moving Beyond the Dual System Encryption Methodology. Security proofs in
cryptography often consist of a sequence of probability experiments (or games)
with small differences. The first experiment is the target security experiment
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(CCA-security experiment in our case) whereas the last experiment is con-
structed in such a way, that the adversaries cannot achieve any advantage. The
task of the proof is to show that consecutive experiments are computationally
indistinguishable. This proof structure is also used in dual system encryption
methodology [19], but the changes between the experiments are quite special.
The main idea of this technique is to define so-called semi-functional keys and
semi-functional ciphertexts, which are indistinguishable from their normal coun-
terparts. In the proof sequence, the challenge ciphertext and all generated keys
are transformed from normal to semi-functional one by one. In the last exper-
iment, when all elements are modified, the challenge can be changed to the
ciphertext of a randomly chosen message.

The obvious way to apply dual system encryption methodology in the context
of CCA-security is to treat keys used to answer decryption queries in the same
way as keys queried by the adversary. This strategy was followed in [17] (see
discussion of this work below), but our proof strategy diverges from it. We deal
with decryption queries in a novel and surprisingly simple manner. As an addi-
tional advantage, the reductions of the original CPA-security proof require only
a few and simple modifications. The main idea is to answer decryption queries in
all games using separately generated normal keys. Our well-formedness checks
ensure that this modification cannot be noticed. Moreover, we ensure that normal
and semi-functional ciphertexts both pass our well-formedness checks. Mainly
because of this approach, we can keep the basic structure of the original CPA-
security proof of Attrapadung. We only have to add four additional experiments:
three at the beginning and one before the last game. In our last game we show
that by using the redundant element added to the ciphertext we can answer all
decryption queries without the user secret keys. The indistinguishability for this
experiment is again based on our well-formedness checks.

The main advantage of our construction and our proof strategy becomes
obvious if compared to the techniques in [17], where all keys are changed and
the security guarantees decrease linearly in the number of decryption queries
and the number of corrupted keys. In our approach, the number of decryption
queries influences the security guarantees only negligibly. In a realistic scenario,
the number of decryption queries must be assumed to be much larger than
the number of corrupted keys. Hence, our approach results in smaller security
parameters, which also increases efficiency.

Organization. In Sect. 2 we present the preliminaries including security defi-
nitions and assumptions. Section 3 contains our formal requirements on pair
encoding schemes and our fully CCA-secure framework. In Sect. 4 we present
our main theorem and explain our proof strategy. Finally, in Sect. 5 we compare
our resulting schemes with generic constructions and conclude.

2 Background

We denote by α := a the algorithmic action of assigning the value a to the
variable α. For n ∈ N, we denote by [n] the set {i ∈ N | 1 ≤ i ≤ n} and by [n]0 the
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set [n]∪{0}. Let X be a random variable on a finite set S. We denote by [X] the
support of X, that is [X] = {s ∈ S | Pr [X = s] > 0}. We write α ← X to denote
the algorithmic action of sampling an element of S according to the distribution
defined by X. We also write α ← S when sampling an element from S according
to the uniform distribution. Furthermore, α1, . . . , αn ← X is a shortcut for
α1 ← X, . . . , αn ← X. This notation can be extended to probabilistic polynomial
time (ppt) algorithms, since every ppt algorithm A on input x defines a finite
output probability space denoted by A (x). Finally, vectors are written in bold
and we do not distinguish between row and column vectors. It will be obvious
from context what we mean. We usually denote the components of a vector v
by (v1, . . . , vn), where n = |v |.

2.1 Predicate Families

In this work, a predicate family is a set of relations RΩ,Σ = {Rκ}κ∈Ω×Σ , where
each Rκ maps pairs (kInd, cInd) ∈ Xκ ×Yκ of a key index kInd and a ciphertext
index cInd to {0, 1}. Predicate indices des ∈ Ω specify some general description
properties of the corresponding predicates (e.g. maximal number of attributes),
and indices dom ∈ Σ specify domain properties which will depend on the secu-
rity parameter (e.g. domain of computation Zp). Our framework is defined over
composite order groups and hence, we have to take care of zero-divisors in ZN

for composite N ∈ N. The following definition is adapted from [3] to our notation
and specifies the required property of the predicate families.

Definition 2.1. A predicate family RΩ,Σ is called domain-transferable if Σ ⊂
N and there exists a ppt algorithm Factor such that for every κ = (des, N) ∈
Ω × Σ, every p ∈ N

>1 with p
∣
∣ N it holds κ′ = (des, p) ∈ Ω × Σ, and Xκ′ ⊆ Xκ,

Yκ′ ⊆ Yκ. Furthermore, there must exist projection maps f1 : Xκ �→ Xκ′ and
f2 : Yκ �→ Yκ′ such that for all kInd ∈ Xκ and cInd ∈ Yκ it holds:

Completeness: If Rκ (kInd, cInd) = 1, then Rκ′ (f1 (kInd) , f2 (cInd)) = 1.
Soundness: If Rκ (kInd, cInd) = 0 but Rκ′ (f1 (kInd) , f2 (cInd)) = 1, then a non-

trivial factor F of N can be computed by F := Factor (κ, kInd, cInd).

2.2 Predicate Key-Encapsulation Mechanisms

In this subsection we present the definition of predicate key-encapsulation mech-
anisms (P-KEMs) and the definition of full security against adaptively chosen-
ciphertext attacks (also called CCA2 attacks) for these schemes. P-KEMs com-
bined with appropriate symmetric encryption schemes lead to fully functional
predicate encryptions through the usual hybrid construction (see the full ver-
sion). Let K = {Kλ} be a family of finite sets indexed by security parameter λ
and possibly some further parameters. A P-KEM Π for predicate family RΩ,Σ

and a family of key spaces K consists of four ppt algorithms:

Setup
(
1λ,des

) → (msk,ppκ) : takes as input security parameter λ, des ∈ Ω,
and outputs a master secret key and public parameters. The algorithm also
chooses dom ∈ Σ and κ = (des,dom) is (implicitly) included in ppκ.
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KeyGenmsk

(
1λ,ppκ, kInd

) → sk : takes as input the master secret key msk
and a key index kInd ∈ Xκ. It generates a secret key sk for kInd.

Encaps
(
1λ,ppκ, cInd

) → (K,CT) : takes as input a ciphertext index cInd ∈ Yκ

and outputs a key K ∈ Kλ, and an encapsulation CT of this key.
Decapssk

(
1λ,ppκ,CT

) → K : takes as input a secret key sk and an encapsula-
tion. It outputs a key K ∈ Kλ or an error symbol ⊥ /∈ Kλ.

Correctness: For every security parameter λ, every des ∈ Ω, every (msk,ppκ) ∈[
Setup

(
1λ,des

)]
, every kInd ∈ Xκ and cInd ∈ Yκ with Rκ (kInd, cInd) = 1,

every sk ∈ [
KeyGenmsk

(
1λ,ppκ, kInd

)]
and (K,CT) ∈ [

Encaps
(
1λ,ppκ, cInd

)]

it must hold that Pr
[
Decapssk

(
1λ,ppκ,CT

)
= K

]
= 1.

We will leave out 1λ and ppκ from the input of the algorithms, if these are
obvious from the context. Furthermore, for every kInd ∈ Xκ and every cInd ∈ Yκ

we denote by SKkInd and by CcInd the sets of syntactically correct secret keys and
encapsulations, respectively. These sets are certain supersets of corresponding
correctly generated elements and represent their syntactic structure, which can
be easily checked (e.g. the correct number of group elements).

CCA Security Definition for P-KEMs. Whereas in the context of tradi-
tional PKE there is only a single secret key in question, in PE schemes there are
many user secret keys generated from the master secret key. Actually, several
users may have different keys for the same key index. In order to model this issue,
we have to give the adversary the possibility to specify not only the key index,
but also the keys which have to be used for answering decapsulation queries.
Similar to [18], we model this using so-called covered key generation queries.

Let Π be a P-KEM for predicate family RΩ,Σ and family K = {Kλ} of key
spaces. The CCA-security experiment aP-KEMaCCA

Π,A (λ,des) between challenger
C and adversary A is defined next. In this experiment, index i denotes the
number of a covered key generation query and kIndi denotes the key index used
in the query with number i. W.l.o.g. we assume, that A uses index i in the
oracle queries only after the i’th query to the covered key generation oracle. In
the security proof we will change this experiment step by step. The parts of the
experiment, which will be changed later, are framed and numbered.

aP-KEMaCCA
Π,A (λ,des):

Setup : C generates 〈1〉 and starts A (
1λ,ppκ

)
.

Phase I : A has access to the following oracles:
CoveredKeyGen (kIndi) with kIndi ∈ Xκ : C generates and stores a secret

key 〈2〉 , but returns nothing.

Open (i) with i ∈ N : C returns 〈3〉 ski . We call the corresponding key
index kIndi a corrupted key index.

Decapsulate (CT, i) with CT ∈ CcInd for some cInd ∈ Yκ, and i ∈ N: C
returns the decapsulation 〈4〉 Decapsski

(CT) .1

1 For schemes, where cInd is not efficiently computable from CT, the decapsulation
oracle requires the ciphertext index as additional input.
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Challenge : A submits a target ciphertext index cInd∗ ∈ Yκ under the restric-
tion that for every corrupted key index kInd it holds Rκ (kInd, cInd∗) = 0.
C computes 〈5〉 , chooses K1 ← Kλ, flips a bit

b ← {0, 1}, sets 〈6〉 K∗ := Kb , and returns the challenge (K∗,CT∗).
Phase II : A has access to the following oracles:

CoveredKeyGen (kIndi) with kIndi ∈ Xκ : C generates a stores a secret
key 〈7〉 , but returns nothing.

Open (i) with i ∈ N : Under the restriction that Rκ (kIndi, cInd∗) = 0, C
returns 〈8〉 ski .

Decapsulate (CT, i) with CT ∈ CcInd for some cInd ∈ Yκ, and i ∈ N:
C returns the error symbol ⊥ if CT = CT∗ and Rκ (kIndi, cInd∗) = 1.
Otherwise, C returns 〈9〉 Decapsski

(CT) .
Guess : A outputs a guess b′ ∈ {0, 1}.

〈10〉 The output of the experiment is 1 iff b′ = b .

The advantage of A in security experiment aP-KEMaCCA
Π,A (λ,des) is defined as

Adv-aP-KEMaCCA
Π,A (λ,des) :=

∣
∣Pr

[
aP-KEMaCCA

Π,A (λ,des) = 1
] − 1

2

∣
∣ .

Definition 2.2. A predicate key encapsulation mechanism Π for predicate fam-
ily RΩ,Σ is called fully (or adaptively) secure against adaptively chosen-
ciphertext attacks if for every des ∈ Ω and every ppt adversary A the function
Adv-aP-KEMaCCA

Π,A (λ,des) is negligible in λ.

2.3 Composite Order Bilinear Groups

In this section we briefly recall the main properties of composite order bilinear
groups (cf. [15]). We define these groups using a group generation algorithm G,
a ppt algorithm which takes as input a security parameter 1λ and outputs a
description GD of bilinear groups. We require that G outputs

GD = (p1, p2, p3, (g,G) ,GT, e : G × G → GT) ,

where p1, p2, p3 are distinct primes of length λ, G and GT are cyclic groups of
order N = p1p2p3, g is a generator of G, and function e is a non-degenerate
bilinear map: i.e., e

(
ga, gb

)
= e (g, g)a·b and e (g, g) �= 1GT . We require that the

group operations as well as the bilinear map e are computable in polynomial time
with respect to λ. We denote by GDN the same group description but with N
instead of the corresponding prime numbers. We require that GDN is sufficient
to perform group operations and to evaluate e.

G can be decomposed as Gp1 ×Gp2 ×Gp3 , where for every pi | N we denote
by Gpi

the unique subgroup of G of order pi and by gi a generator of Gpi
. Every

h ∈ G can be expressed as ga1
1 ga2

2 ga3
3 , where ai are uniquely defined modulo pi.

Hence, we will call gai
i the Gpi

component of h. Note that, e.g., gp1p2 generates
Gp3 and hence, given the factorization of N , we can pick random elements from
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every subgroup. An important property of composite order bilinear groups is
that for pi �= pj and gi ∈ Gpi

, gj ∈ Gpj
it holds e (gi, gj) = 1GT .

We will also use the following common shortcuts for vectors of group ele-
ments. Let g, h, r ∈ G, v ,w ,u ∈ Z

k
N , and E ∈ Z

k×d
N for k, d ∈ N. We denote

by gv the vector (gv1 , gv2 , . . . , gvk) ∈ G
k. Furthermore, we define gv · gw :=

gv+w , (gv )E := gv ·E , and e (gv , hw ) :=
∏k

i=1 e (gvi , hwi). Hence, it also holds
e (gv , hw · ru) = e (gv , hw ) · e (gv , ru) . Furthermore, given gv and E one can
efficiently compute components of (gv )E ∈ Z

d
N .

2.4 Security Assumptions

In this subsection we define the Subgroup Decision Assumptions used to prove
the security of our construction. We use exactly the same assumptions as the
original CPA-secure framework [3]. See also [15] for validity of these assumptions
in the generic group model. Let G be a group generation algorithm. Each of the
following probability experiments starts with GD ← G (

1λ
)
.

SD1 (λ) : g1 ← Gp1 , g3 ← Gp3 ,

D := (GDN , g1, g3) , Z0 ← Gp1 , Z1 ← Gp1p2 .

SD2 (λ) : g1,X1 ← Gp1 , X2, Y2 ← Gp2 , g3, Y3 ← Gp3 ,

D := (GDN , g1,X1X2, Y2Y3, g3) , Z0 ← Gp1p3 , Z1 ← G .

SD3 (λ) : g1 ← Gp1 , g2,X2, Y2 ← Gp2 , g3 ← Gp3 , α, s ← ZN

D := (GDN , g1, g
α
1 X2, g

s
1Y2, g2, g3) , Z0 ← GT, Z1 := e (g1, g1)

αs
.

The advantage of A in breaking experiment SDi (λ) is defined as AdvSDi
A (λ) :=

|Pr [A (D,Z0) = 1] − Pr [A (D,Z1) = 1]| . We say that G satisfies Assumption i
if for every ppt algorithm A the function AdvSDi

A (λ) is negligible.
The following lemma was implicitly proven in [15] (see the proof of Lemma 5).

This lemma implies, that under Assumption SD2, it is computationally infeasible
to compute a non-trivial factor of N (see the full version).

Lemma 2.1. There exists a ppt algorithm A with AdvSD2
A (λ) ≈ 1 if A is given

a non-trivial factor F of N .

3 Framework for CCA-Secure P-KEMs

In this section we recall the definition of pair encoding schemes and define two
additional properties, which are required for our CCA-secure framework. Our
framework is presented in Subsect. 3.3.

3.1 Pair Encoding Schemes

In this subsection we first recall the formal definition of pair encodings presented
by Attrapadung [3] and slightly adapted to our notation. This cryptographic
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primitive is used to construct PE schemes. Let RΩ,Σ be a domain-transferable
predicate family, κ = (des, N) ∈ Ω × Σ, kInd ∈ Xκ and cInd ∈ Yκ.

A pair encoding scheme P for RΩ,Σ consists of four ppt algorithms:

Param (κ) =: n : outputs n ∈ N, which defines the number of so-called common
variables denoted by Xh = (Xh1 , . . . ,Xhn

).
Enc1 (κ, kInd) =: (k ,m2) : outputs m2 ∈ N and a vector k = (k1, . . . , km1) of

m1 multivariate polynomials k1, . . . , km1 ∈ ZN [Xα,Xr ,Xh ]. The variables
Xα and Xr =

(
Xr1 , . . . ,Xrm2

)
are called key-specific. The ki’s are restricted

to linear combinations of monomials
{
Xα,Xri

,Xhj
Xri

}

i∈[m2],j∈[n]
.

Enc2 (κ, cInd) =: (c, w2) : outputs w2 ∈ N and a vector c = (c1, . . . , cw1) of w1

multivariate polynomials c1, . . . , cw1 ∈ ZN [Xs,Xs ,Xh ]. The vari-
ables Xs and Xs =

(
Xs1 , . . . ,Xsw2

)
are called ciphertext-specific.

The ci’s are restricted to linear combinations of monomials{
Xs,Xsi

,Xhj
Xs,Xhj

Xsi

}

i∈[w2],j∈[n]
.

Pair (κ, kInd, cInd) → E : outputs a matrix E ∈ Z
m1×w1
N , where m1 and w1 are

defined by Enc1 (κ, kInd) and Enc2 (κ, cInd), respectively.

Correctness: For formal definition we refer to [3]. Informally, if Rκ (kInd, cInd) =
1, (k ,m2) ∈ [Enc1 (κ, kInd)], and (c, w2) ∈ [Enc2 (κ, cInd)], then it holds sym-
bolically k · E · c = XαXs. Additionally, the encoding must be compatible with
the domain transferability property to a certain extent.

As a notational convention, whenever a particular relation index κ, a key
index kInd ∈ Xκ, and a ciphertext index cInd ∈ Yκ are under considera-
tion, the following values are also implicitly defined: n = Param (κ), (k ,m2) =
Enc1 (κ, kInd), m1 = |k |, and (c, w2) = Enc2 (κ, cInd), w1 = |c|. Note that
differently from [3] we allow the algorithm Pair to be probabilistic. The results
from [3] still hold with our definition.

Security Notions for Pair Encoding Schemes. We prove the security of our
framework based on the computational security notions of pair encoding schemes
presented in [3], i.e. selectively master-key hiding (SMH) and co-selectively mas-
ter-key hiding (CMH). These security notions make the pair encoding framework
so powerful.

3.2 Additional Requirements of CCA-Secure Framework

In this subsection we formalize properties of the pair encoding scheme, which
are required to achieve CCA-secure P-KEMs. As in [5] we require normality of
pair encoding P, a very natural restriction (this is also one of the restrictions of
regular encodings from [2]). A pair encoding P for RΩ,Σ is normal, if for every
κ ∈ Ω × Σ and every cInd ∈ Yκ one of the polynomials in c (Xs,Xs ,Xh) is Xs,
where (c, w2) = Enc2 (κ, cInd). W.l.o.g, we will assume that c1 = Xs.

Next, we formally define the verifiability property. For the intuition behind
this property we refer to the discussion in the next subsection. Let RΩ,Σ be a
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domain-transferable predicate family, G be a group generator and λ be a security
parameter. Let GD ∈ [G (

1λ
)]

and GDN be the same group description with
N = p1p2p3 instead of the prime numbers. Furthermore, let des ∈ Ω, kInd ∈ Xκ,
and cInd ∈ Yκ be arbitrary but fixed (κ = (des, N)).

Definition 3.1 (Verifiability). P is called verifiable with respect to G if it is
normal and there exists a deterministic polynomial-time algorithm Vrfy, which
given des, GDN , g1 ∈ Gp1 , gh1 ∈ G

n
p1

, kInd, cInd, E ∈ [Pair (κ, kInd, cInd)], and
C = (C1, . . . , Cw1) ∈ G

w1 outputs 0 or 1 such that:

Completeness: If there exist s ∈ ZN and s ∈ Z
w2
N such that the Gp1 components

of C are equal to g
c(s,s,h)
1 for (c, w2) = Enc2 (κ, cInd), then the output is 1.

Soundness: If the output is 1, then for every α ∈ ZN , r ∈ Z
m2
N it holds:

e
(
g
k(α,r,h)·E
1 ,C

)
= e (g1, C1)

α
, (1)

where (k,m2) = Enc1 (κ, kInd).

Remark 3.1. Suppose that the verification algorithm outputs 1 if and only if
there exist s ∈ ZN and s ∈ Z

w2
N such that the Gp1 components of C are equal

to g
c(s,s,h)
1 . Then, both required properties are satisfied due to the correctness of

the pair encoding scheme, which ensures that for every E ∈ [Pair (κ, kInd, cInd)]
it holds k (α, r ,h) · E · c (s, s,h) = α · s.

Collision-Resistant Hash Functions. Our construction requires a collision-
resistant hash function in order to hash elements from Yκ and a restricted num-
ber of elements from GT into ZN . Such a function can be realized using an
appropriate injective encoding function and a cryptographic hash function (see
the full version). We denote by H ← Hκ the random choice of such a function.

3.3 Fully CCA-Secure Framework

In this section we present our framework for constructing fully CCA-secure
P-KEMs from pair encoding schemes. Let P be a verifiable pair encoding scheme
for predicate family RΩ,N and Vrfy be the algorithm from Definition 3.1. Let
G be a composite order group generator, and H be a family of appropriate
collision-resistant hash functions. A P-KEM Π for R is defined as follows:

Setup
(
1λ,des

)
: If des ∈ Ω, generate GD ← G (

1λ
)
, g1 ← Gp1 and g3 ← Gp3 .

Set κ := (des, N), compute n := Param (κ) and pick h ← Z
n
N . Choose

α, u, v ← ZN and set Y := e (g1, g1)
α, U1 := gu

1 , and V1 := gv
1 . Choose H ←

Hκ and output msk := α and ppκ :=
(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
.

KeyGenmsk (kInd) : If kInd ∈ Xκ, compute (k ,m2) := Enc1 (κ, kInd) (let m1 =
|k |). Pick r ← Z

m2
N , R3 ← G

m1
p3

, compute K := g
k(msk,r ,h)
1 · R3 and output

sk := (kInd,K ). The key space for kInd ∈ Xκ is SKkInd := {kInd} × G
m1 .
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Encaps (cInd) : If cInd ∈ Yκ, compute (c, w2) := Enc2 (κ, cInd) (let w1 =
|c|). Pick s ← ZN , s ← Z

w2
N and compute C := g

c(s,s,h)
1 = (C1, . . . , Cw1).

Compute
t := H (cInd, e(g1, C1), . . . , e(g1, Cw1)) (2)

and C ′′ := (U t
1 · V1)

s. Set CT := (cInd,C , C ′′), K := Y s and output
(K,CT) . The ciphertext space for cInd ∈ Yκ is CcInd := {cInd} × G

w1+1.
Note that, given CT ∈ CcInd, the corresponding hash value can be computed
efficiently. We denote by HInput (CT) the input of the hash function as
defined in (2).

Decapssk (CT) : It must hold CT ∈ CcInd for cInd ∈ Yκ and sk ∈ SKkInd for
kInd ∈ Xκ. If RN (kInd, cInd) �= 1, output ⊥. Compute t := H (HInput (CT))
and E ← Pair (κ, kInd, cInd). Output ⊥, if one of the following checks fails:

e (C ′′, g1)
?= e

(
C1, U

t
1 · V1

)
, (3)

e (C ′′, g3)
?= 1 and ∀i∈[w1] : e (Ci, g3)

?= 1 , (4)

Vrfy
(
des,GDN , g1, g

h
1 , kInd, cInd,E ,C

) ?= 1 . (5)

Output K := e
(
KE ,C

)
.

Correctness is based mainly on the correctness of pair encoding and the
completeness of the verification algorithm (see the full version). Compared to
the original CPA-secure framework of [3] we add only the hash function H and
the group elements U1, V1 ∈ G to the public parameter. The user secret keys
are not changed at all. The encapsulation is extended by a single group element
C ′′ ∈ G. The checks in (3), (4) and (5) are new. We call them consistency checks
and explain them in more detail below.

Semi-functional Algorithms. The following semi-functional algorithms are basi-
cally from [3] and are essential to prove adaptive security of the original and our
extended framework. The main idea is to extend the keys and the ciphertexts
with components from Gp2 subgroup. Due to the subgroup decision assumptions
these modifications cannot be noticed by a ppt adversary. We extended the algo-
rithms from [3] by semi-functional components for our additional elements û2,
v̂2, and Ĉ ′′.

SFSetup
(
1λ,des

)
: Generate (msk,ppκ) ← Setup

(
1λ,des

)
, g2 ← Gp2 , ĥ ←

Z
n
N and û2, v̂2 ← ZN . Output

(
msk,ppκ, g2, ĥ , û2, v̂2

)
.

SFKeyGenmsk

(
1λ,ppκ, kInd, type, α̂, g2, ĥ

)
: Let α̂ ∈ ZN . Generate a normal

key (kInd,K ) ← KeyGenmsk (kInd), r̂ = (r̂1, . . . , r̂m2) ← Z
m2
N , and compute

K̂ := g
k(0,r̂ ,ĥ)
2 if type = 1, K̂ := g

k(α̂,r̂ ,ĥ)
2 if type = 2 or K̂ := g

k(α̂,0,0)
2 if

type = 3.
Output the semi-functional key sk :=

(
kInd,K · K̂

)
.
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SFEncaps
(
1λ,ppκ, cInd, g2, ĥ , û2, v̂2

)
: Generate normal encapsulation com-

ponents (K, (cInd,C , C ′′)) ← Encaps (cInd). Let t be the corresponding hash

value. Pick random elements ŝ ← ZN and ŝ ← Z
w2
N , compute Ĉ := g

c(ŝ,ŝ,ĥ)
2

and Ĉ ′′ :=
(
gû2t
2 · gv̂2

2

)ŝ

. Output key K and semi-functional encapsulation

CT =
(
cInd,C · Ĉ , C ′′ · Ĉ ′′

)
.

Intuition Behind the Consistency Checks. In this subsection we provide
a high-level explanation of why the consistency checks render the decapsulation
oracle useless to any ppt adversary. Our explanation leaves out many important
details of the formal proof.

Assume that A queries the decapsulation oracle with CT = (cInd,C , C ′′) ∈
CcInd such that the group elements of CT contain only Gp1 components. If

CT passes (5), then by the verifiability property e
(
KE ,C

)
= e (g1, C1)

msk.
Next, our additional element C ′′ and the check in (3) guarantee that the Gp1

component of C1 is of the form gs
1 and s is known to A. Hence, the output of the

decapsulation is e (g1, C1)
msk = Y s. Since A knows Y and s anyway, this can be

computed by A itself and the decapsulation oracle is useless for A.
We still have to justify the assumption that the elements in CT contain

only the Gp1 components. The checks in (4) guarantee that the elements of CT
contain no Gp3 components. Then, the subgroup decision assumptions ensures
that CT does not also contain Gp2 components.

Extension of Our Construction. Our framework requires additional computa-
tional overhead during the computation of the hash value. Namely, a pairing is
computed for every group element in the ciphertext. We can avoid this compu-
tation by hashing the original ciphertext (see the full version). Then, our last
reduction must be adapted in order to prove the security for this variant. We
decided to present the given less efficient construction in order to explicitly show
which parts of the ciphertext are important for the well-formedness proofs, when
the dual system encryption methodology is used to achieve CCA-secure schemes.

4 Main Theorem and Extended Proof Technique

In this section we present our main theorem and explain the proof technique.
We also state that all known pair encodings satisfy our verifiability property.

Theorem 4.1. Let Π be the P-KEM from Sect. 3.3. Suppose that the subgroup
decision assumptions from Sect. 2.4 are correct, the underlying pair encoding
scheme P is selectively and co-selectively master key hiding, and the family of
collision-resistant hash functions H is secure. Then, Π is fully CCA-secure with
respect to Definition 2.2. Furthermore, for every ppt algorithm A, there exist ppt
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algorithms B1, . . . ,B6 with essentially the same running time as A such that

Adv-aP-KEMaCCA
Π,A (λ,des) ≤ AdvCR

H,B1
(λ,des) + AdvSD1

B2
(λ) + AdvSD3

B4
(λ)

+ (2q1 + 4) · AdvSD2
B3

(λ) + AdvSMH
P,B6

(λ,des)

+q1 · AdvCMH
P,B5 (λ,des) + qdec1/p1 + negl (λ) ,

where q1 is the number of keys that are corrupted in Phase 1 and qdec1 is the
number of decapsulation queries in Phase 1 of experiment aP-KEMaCCA

Π,A (λ,des).

For simplicity, we collected some negligible terms such as 1/p1 in negl (λ). It is
important to notice that the number of decapsulation queries from Phase 1 only
appears in the term qdec1/p1 and decreases the security guarantees only negligibly.
Furthermore, compared to the CPA-secure framework of [3] we only loose the
additional terms AdvCR

H,B1
(λ,des) and AdvSD2

B3
(λ).

The structure for the proof of Theorem 4.1 is presented in Fig. 1. The nodes
represent different probability experiments. In Table 1 the modifications between
the probability experiments are defined. The first experiment is the target exper-
iment aP-KEMaCCA

Π,A (λ,des) from page 6 and the last experiment is constructed
in such a way, that the advantage of every adversary is zero. The edges represent
reduction steps and their labels the underlying security assumptions, except for
the edge labeled with Vrfy. The corresponding proof is based on the verifiability
property of the pair encoding scheme. In the proof we show that no ppt algo-
rithm can distinguish between any pair of consecutive experiments (see the full
version). Here, we explain the main steps of the proof and the proof technique.

Fig. 1. Proof structure

The structure of the proof for our CCA-secure construction is similar to the
structure of the proof for the CPA-secure construction of [3]. Experiments GresH,
GresQ, G′

0, and G′
q1+3 as well as the four reduction steps denoted by bold edges in

Fig. 1 are new. The remaining experiments and reductions are from the original
CPA-security proof from [3] and require only simple extensions.

Our first reduction GReal → GresH is based on the security of the family
of collision-resistant hash functions. In the second reduction GresH → GresQ

we separate failure events which enable us to find a non-trivial factor of N ,
which violates Assumption SD2 by Lemma 2.1. This reduction is an extension
of the first reduction step from [3]. These two steps are of a standard tech-
nical nature. Our additional games G′

0 and G′
q1+3 and the corresponding new

reductions G′
0 → G0,3 and Gq1+3 → G′

q1+3 are the most important parts of the
CCA-security proof and enable us to deal with decapsulation queries in an ele-
gant way. The major modification in G0,3 is that the decapsulation queries are
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answered using separately generated normal keys which we denote by sk′
i. We do

not change these keys to semi-functional in the following games. In particular,
using consistency check (5) we show that for every (unconditional) A, experi-
ments G′

0 and G0,3 are indistinguishable. The next important observation is that
in all reductions between G0,3 and Gq1+3, the master secret key is known to the
reduction algorithm. Hence, the normal keys for the decapsulation queries can
be generated by the key generation algorithm. The final challenge is to answer
decapsulation queries without the user secret keys in the last experiment GFinal.
Experiment G′

q1+3 and the corresponding new reduction step Gq1+3 → G′
q1+3

allow us to deal with this problem. In the proof of this reduction step we use our
additional group element from the encapsulation in order to answer the decap-
sulation queries. To prove that this modification can not be noticed, again the
consistency checks are crucial. See the full version for the formal proof.

Table 1. The probability experiments from security proof.

GresH: Modify 〈10〉 Output is 0 if there is a collision for H

GresQ: Modify 〈10〉 Output 0 if A implicitly found a factor of N .

G′
0:

Modify 〈1〉
(
msk, pp, g2, ĥ, û2, v̂2

)
← SFSetup 1λ, des

)

Modify 〈5〉 (K0, CT∗) ← SFEncaps
(
cInd∗, g2, ĥ, û2, v̂2

)

G0,3:
Modify〈4〉, 〈9〉 sk′

i ← KeyGenmsk (kIndi), Decapssk′
i
(CT)

Change Generate keys in Open oracle.

Gk,1: Modify 〈3〉

α̂j ← ZN ,

skj ←

⎧
⎪⎪⎨

⎪⎪⎩

SFKeyGenmsk (kInd, 3, α̂j , g2, ) if j < k

SFKeyGenmsk

(
kInd, 1, , g2, ĥ

)
if j = k

KeyGenmsk (kInd) if j > k

Gk,2: Modify 〈3〉

α̂j ← ZN ,

skj ←

⎧
⎪⎪⎨

⎪⎪⎩

SFKeyGenmsk (kInd, 3, α̂j , g2, ) if j < k

SFKeyGenmsk

(
kInd, 2, α̂j , g2, ĥ

)
if j = k

KeyGenmsk (kInd) if j > k

Gk,3: Modify 〈3〉
α̂j ← ZN ,

skj ←
{

SFKeyGenmsk (kInd, 3, α̂j , g2, ) if j ≤ k

KeyGenmsk (kInd) if j > k

Gq1+1: Modify 〈8〉 SFKeyGenmsk

(
kInd, 1, , g2, ĥ

)

Gq1+2:
Insert α̂ ← ZN at the beginning of Phase 2

Modify 〈8〉 SFKeyGenmsk

(
kInd, 2, α̂, g2, ĥ

)

Gq1+3: Modify 〈8〉 SFKeyGenmsk (kInd, 3, α̂, g2, )

G′
q1+3:

Insert X2 ← Gp2 in the Setup phase

Modify 〈4〉,〈9〉 Check consistency, return e gmsk
1 · X2, C1

)

GFinal: Modify 〈6〉 K∗ ← GT
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Verifiability of Pair Encoding Schemes. All (nineteen) pair encoding schemes
from [3,5] satisfy the verifiability property according to Definition 3.1. We refer
to the full version for the constructive proof of this statement.

5 Comparison with Generic Constructions and
Conclusion

In this section we compare the efficiency of our construction to the efficiency of
generic constructions for fully CCA-secure PEs from [21,22]. On the one hand
we look at the size of public parameters, user secret keys and ciphertexts. On
the other hand we look at the efficiency of the encapsulation (encryption) and
the decapsulation (decryption) algorithms.

All generic transformations from above use one-time signature schemes as a
building block and integrate the verification key vk into the ciphertexts. This
results in non-trivial extensions of public parameters, user secret keys and cipher-
texts. For example, keys and ciphertexts of PE for the dual of regular languages
are extended by 6 · |vk| and by 2 · |vk| group elements. In contrast to this, we only
add two group elements to the public parameters and a single group element to
the ciphertext independently of the predicate. Hence, with respect to the size of
public parameters, secret keys, and ciphertexts our construction is more efficient.

Considering the efficiency of the encapsulation and the decapsulation, we
further need to distinguish two types of generic transformations of CPA-secure
schemes into CCA-secure schemes: schemes based on verifiability, and schemes
based on key delegation. CCA-secure attribute-based schemes achieved from
key delegation [21] require derandomization and delegation of the user secret
keys in every decryption. Depending on the predicate, on kInd and on cInd
this can be more efficient or more costly compared to the schemes achieved
using our construction. Generic constructions based on verifiability require a
verification algorithm which ensures that decryption of a ciphertext under every
secret key for kInd and every secret key corresponding to vk will be the same.
In our construction we require that decapsulation using every secret key for
kInd will be the same. Hence, schemes from generic constructions have to check
in addition those parts of the ciphertext, that correspond to the verification
key included in the ciphertext (2 · |vk| group elements in the example from
above). This results in more costly verification algorithms compared to ours.
Furthermore, these additional elements have to be computed in the encryption
algorithm together with the one-time signature, whereas we only use a hash
function and have to compute a single group element in addition.

Summarizing, we presented a semi-generic framework to construct fully CCA-
secure PEs in composite-order groups from any verifiable pair encoding schemes
including regular pair encoding schemes. From this point of view our framework
is as generic as the underlying CPA-secure framework of [3]. Our security proofs
are based on a small but significant modification of the dual system encryption
methodology, i.e. we do not change decryption keys to semi-functional. This
results in a reduction of CCA-security to the security of pair encodings which is
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almost as tight as the reduction of CPA-security to the security of pair encodings
given by Attrapadung [3].
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Guénaël Renault2,3,4, and Rina Zeitoun5

1 University of Luxembourg, Luxembourg City, Luxembourg
jean-sebastien.coron@uni.lu

2 INRIA, POLSYS, Centre Paris-Rocquencourt, 78153 Le Chesnay, France
3 Sorbonne Universités, UPMC Univ Paris 06,
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Abstract. Boneh et al. showed at Crypto 99 that moduli of the form
N = prq can be factored in polynomial time when r � log p. Their
algorithm is based on Coppersmith’s technique for finding small roots of
polynomial equations. In this paper we show that N = prqs can also be
factored in polynomial time when r or s is at least (log p)3; therefore we
identify a new class of integers that can be efficiently factored.

We also generalize our algorithm to moduli with k prime factors
N =

∏k
i=1 p

ri
i ; we show that a non-trivial factor of N can be extracted

in polynomial-time if one of the exponents ri is large enough.

1 Introduction

At Crypto 98, Takagi [Tak98] showed that RSA decryption can be performed
significantly faster with a modulus of the form N = prq, by using a p-adic expan-
sion technique [Tak97]. However, at Crypto 99, Boneh, Durfee and Howgrave-
Graham (BDH) showed that N = prq can be factored in polynomial time for
large r, when r � log p [BDHG99]. Their algorithm is based on Coppersmith’s
technique for finding small roots of polynomial equations [Cop97], based on lat-
tice reduction. This implies that Takagi’s cryptosystem should not be used with
a large r.

In light of the BDH attack, Takagi’s cryptosystem was later extended by
Lim et al. in [LKYL00] to moduli of the form N = prqs. Namely the authors
describe a public-key cryptosystem with modulus N = prqs, and obtain even
faster decryption than in Takagi’s cryptosystem. In particular, for a 8192-bit
RSA modulus of the form N = p2q3, decryption becomes 15 times faster than
for a standard RSA modulus of the same size.

In the BDH paper, the generalization of factoring moduli of the form N = prqs

was explicitly left as an open problem. Therefore one could be tempted to use the
c© Springer International Publishing Switzerland 2016
K. Sako (Ed.): CT-RSA 2016, LNCS 9610, pp. 448–464, 2016.
DOI: 10.1007/978-3-319-29485-8 26



Factoring N = prqs for Large r and s 449

Lim et al. cryptosystem [LKYL00], since no attack is known and it offers a signif-
icant speed-up compared to standard RSA. In this paper we show that moduli of
the form N = prqs can also be factored in polynomial time for large r and/or s;
this gives a new class of integers that can be factored efficiently. Our result implies
that the Lim et al. cryptosystem should not be used for large r or s.

Factoring N = prq with Coppersmith. Coppersmith’s technique for finding
small roots of polynomial equations [Cop97] has found numerous applications in
cryptography, for example cryptanalysis of RSA with d < N0.29 [BD00] (see also
[DN00] for an extension), cryptanalysis of RSA with small secret CRT-exponents
[JM07], and deterministic equivalence between recovering the private exponent
d and factoring N [May04].

Coppersmith also showed that N = pq can be factored in polynomial time
when half of the bits of p are known [Cop97]. The BDH paper is actually an
extension of this result for moduli N = prq, using a simplification by Howgrave-
Graham [HG97]; namely the authors showed that knowing a fraction 1/(r+1) of
the bits of p is enough for polynomial-time factorization of N = prq. Therefore
when r � log p only a constant number of bits of p must be known, hence those
bits can be recovered by exhaustive search, and factoring N = prq becomes
polynomial-time [BDHG99].

As mentioned previously, in the BDH paper the generalization to moduli of
the form N = prqs (where r and s can have the same size), is explicitly left
as an open problem. To factor such N one could let Q := qs and try to apply
BDH on N = prQ; however the condition for polynomial-time factorization
becomes r � log Q � s log q; therefore this can only work if r is much larger
than s. Alternatively a natural approach to factor N = prqs would be to write
N = (P +x)r(Q+y)s and apply Coppersmith’s second theorem for finding small
roots of bivariate polynomials over Z; however from Coppersmith’s bound this
does not seem to give a polynomial-time factorization (see AppendixA).

Factoring N = prqs . In this paper we solve this open problem and describe
a new algorithm to factor N = prqs in deterministic polynomial time when r
and/or s is greater than (log p)3.

We first illustrate our technique with a particular case. Let consider a
modulus of the form N = pr+1qr. As observed in [LKYL00], we can rewrite
N = (pq)rp = P rQ with P := pq and Q := p and apply BDH to N = P rQ to
recover P and Q, which gives p and q. In that case the condition for polynomial-
time factorization becomes r = Ω(log Q) = Ω(log p), the same condition as
BDH. This shows that N = pr+1qr can also be factored in polynomial time for
large r. We note that in [LKYL00] only moduli of the form N = pr+1qr were
considered for lattice-based factorisation.

However it is easy to generalize the previous observation to any modulus of
the form N = pα·r+aqβ·r+b for small integers α, β, a and b. Namely as previously
one can let P := pαqβ and Q := paqb and apply BDH on N = P rQ to recover P
and Q, which gives p and q. The condition for polynomial-time factorization is
again r = Ω(log Q), which for small a, b gives the same condition r = Ω(log p)
as previously (assuming that p and q have similar bitsize).



450 J.-S. Coron et al.

Now it is natural to ask whether we can generalize the above method to any
modulus N = prqs. More precisely, we should determine which class of integers
(r, s) can be written as: {

r = u · α + a
s = u · β + b

(1)

with large enough integer u, and small enough integers α, β, a, b, so that we
can apply the above method; namely rewrite N = prqs as N = PuQ where
P := pαqβ and Q := paqb, and apply BDH on N = PuQ to recover P and Q
and eventually p and q. In this paper we show that it is enough that the max
of r and s is Ω(log3 max(p, q)); namely in that case we are guaranteed to find a
“good” decomposition of r and s according to (1), leading to a polynomial-time
factorization of N = prqs. Hence we identify a new class of integers that can be
efficiently factored, namely N = prqs for large enough r or s (or both).

Extension to N =
∏k

i=1p
ri

i . We extend the above technique to moduli with
k prime factors N =

∏k
i=1 pri

i . Note that with 3 prime factors or more (instead
of only 2) we cannot hope to obtain a complete factorization of N . Namely
starting from an RSA modulus N1 = pq one could artificially embed N1 into
a larger modulus N = (pq)rq′ for some known prime q′, and hope to recover
the factorization of N1 by factoring N ; clearly this cannot work. For the same
reason we cannot hope to extract even a single prime factor of N ; namely given
two RSA moduli N1 = p1q1 and N2 = p2q2 and using N = (N1)rN2, extracting
a prime factor of N would factor either N1 or N2. Instead we show that we can
always extract a non-trivial factor of N , if one of the exponents ri is large enough.
More precisely we can extract a non-trivial (not necessarily prime) factor of N
in polynomial-time if one of the k exponents ri is at least (log p)θk , with θ3 = 17,
θ4 = 61, θ5 = 257 and θk ∼ 4e · (k − 1)! for large k. Note that the exponent
θk grows exponentially with the number of prime factors k; however for a fixed
value of k extracting a non-trivial factor of N is always polynomial-time in log N .

Practical Experiments. It is well known that the BDH algorithm for fac-
toring N = prq is unpractical. Namely the experiments from [BDHG99] show
that the BDH algorithm is practical only for relatively small primes p and q,
namely 96 bits in [BDHG99], but for such small primes factors the ECM method
[Len87] performs much better. However ECM is subexponential whereas BDH
is polynomial-time, so at some point the BDH algorithm must beat ECM; the
authors conjecture that BDH should become faster than ECM in practice when
p and q are roughly 400 bits.

Needless to say, our algorithm for factoring N = prqs should be even less
practical, since for N = prqs we need much larger exponents r or s than in BDH
for N = prq. However we have performed some practical experiments, in order
to estimate the running time of our algorithm for factoring a modulus of the
form N = prqs. We describe the results in Sect. 5; unsurprisingly we observed
that for relatively small primes p and q, namely 128 bits, our algorithm performs
much worse than ECM. However as for BDH our algorithm scales polynomially
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whereas ECM scales exponentially, so our algorithm must also beat ECM for
large enough p and q.

2 Background

We first recall the following Landau notations: we write f(n) = O(g(n)) if there
exists constants n0 and c > 0 such that |f(n)| ≤ c|g(n)| for all n ≥ n0. We write
f(n) = Ω(g(n)) if g(n) = O(f(n)). Therefore f(n) = Ω(g(n)) if and only if there
exists constants n0 and c > 0 such that |f(n)| ≥ c|g(n)| for all n ≥ n0.

2.1 LLL and Simultaneous Diophantine Approximation

Let b1, . . . , bd ∈ Z
n be linearly independent vectors with d � n. A lattice L

spanned by 〈b1, . . . , bd〉 is the set of all integer linear combinations of b1, . . . , bd.
Here we consider full-rank lattices, i.e. d = n. The d×d matrix M = (b1, . . . , bd)
is called a basis of L. The algorithms described in this paper require the ability
to find short vectors in a lattice. This can be achieved by the celebrated LLL
algorithm [LLL82].

Theorem 1 (LLL). Let L be a lattice spanned by 〈b1, . . . , bd〉 ∈ Z
n. The LLL

algorithm, given 〈b1, . . . , bd〉, finds in time polynomial in the size of the entries,
a vector v such that:

‖v‖ ≤ 2(d−1)/4 det(L)1/d.

In this paper we also use an application of LLL for simultaneous Diophantine
approximation; we recall the theorem from [LLL82].

Theorem 2. There exists a polynomial time algorithm that, given a positive
integer n and rational numbers e1, e2, . . . , en, ε satisfying 0 < ε < 1, finds inte-
gers p1, p2, . . . , pn, q for which

|pi − qei| � ε for 1 � i � n, and 1 � q � 2
n(n+1)

4 ε−n.

2.2 Coppersmith’s Algorithm

We recall Coppersmith’s first theorem [Cop97] for finding small roots of univari-
ate modular polynomial equations.

Theorem 3 (Coppersmith). Let f(x) be a monic polynomial of degree r in
one variable, modulo an integer N of unknown factorization. Let X be such that
X < N1/r. One can find all integers x0 with f(x0) ≡ 0 (mod N) and |x0| < X
in time polynomial in (log N, r).

In the original Coppersmith paper the complexity is stated as polynomial in
(log N, 2r) where r is the degree of the polynomial equation, but it is well known
that the 2r is a typo and the complexity is polynomial in r only; see for example
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[BM05, Theorem 11]. We recall the main steps of Coppersmith’s algorithm in
AppendixB.

The following variant of Coppersmith’s first theorem was obtained by Blömer
and May [BM05], using Coppersmith’s technique for finding small roots of bivari-
ate integer equations.

Theorem 4 ([BM05, Corollary 14]). Let N be a composite integer of unknown
factorization with divisor b ≥ Nβ. Let f(x) =

∑
i fix

i ∈ Z[x] be a polynomial
of degree δ with gcd(f1, . . . , fδ, N) = 1. Then we can find all points x0 ∈ Z

satisfying f(x0) = b in time polynomial in log N and δ provided that |x0| ≤
Nβ2/δ.

2.3 The Boneh-Durfee-Howgrave-Graham Algorithm

At Crypto 99, Boneh, Durfee and Howgrave-Graham [BDHG99] showed that
moduli of the form N = prq can be factored in polynomial time for large r,
when r � log p. We recall their main theorem.

Theorem 5 (BDH). Let N = prq where q < pc for some c. The factor p can
be recovered from N , r, and c by an algorithm with a running time of:

exp

(
c + 1
r + c

· log p

)

· O(γ),

where γ is the time it takes to run LLL on a lattice of dimension O(r2) with
entries of size O(r log N). The algorithm is deterministic, and runs in polynomial
space.

Their algorithm is based on Coppersmith’s technique for finding small roots
of polynomial equations. We recall the main steps of the proof in AppendixC.
When p and q have similar bitsize we can take c = 1; in that case we have
(c + 1)/(r + c) = O(1/r) and therefore the algorithm is polynomial time when
r = Ω(log p). More generally one can take c = log q/ log p, which gives:

c + 1
r + c

· log p ≤ c + 1
r

· log p ≤
log q
log p + 1

r
· log p ≤ log q + log p

r

Therefore a sufficient condition for polynomial-time factorization is r = Ω(log q+
log p).

Actually by simple inspection of the proof of Theorem5 in [BDHG99] one
can obtain the slightly simpler condition r = Ω(log q). We use the following
theorem for the rest of the paper.

Theorem 6 (BDH). Let p and q be two integers with p ≥ 2 and q ≥ 2, and
let N = prq. The factors p and q can be recovered in polynomial time in log N
if r = Ω(log q).
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We provide the proof of Theorem6 in AppendixD, based on Lemma 3.3 from
[BDHG99]. Note that p and q can be any integers, not necessarily primes.

We can also obtain a proof of Theorem6 directly from [BM05, Corollary 14],
as recalled in Theorem 4. Namely given N = prq we let the divisor b := pr and:

f(x) = (V + x)r

where V is an integer such that p = V + x0 and the high-order bits of V
are the same as the high-order bits of p. One must then solve f(x0) = b, and
applying [BM05, Corollary 14] this can be done in time polynomial in log N and
r provided that |x0| < Nβ2/r. We can take β such that b = pr = Nβ . This gives
the condition:

|x0| < pβ (2)

From pr = Nβ = (prq)β we get:

β =
r log p

r log p + log q
=

1
1 + log q

r log p

≥ 1 − log q

r log p

Therefore from (2) a sufficient condition for applying [BM05, Corollary 14] is:

|x0| < p · q−1/r

Therefore one can perform exhaustive search on the high-order bits of p under
the previous condition r = Ω(log q), and eventually recover the factors p and q,
still in time polynomial in log N .

3 Factoring N = prqs for Large r

We prove the following theorem; this is the main theorem of our paper.

Theorem 7. Let N = prqs be an integer of unknown factorization with r > s
and gcd(r, s) = 1. Given N as input one can recover the prime factors p and q
in polynomial time in log N under the condition r = Ω(log3 max(p, q)).

We first provide a proof intuition. Note that given N = prqs as input we
can assume that the exponents r and s are known, since otherwise they can be
recovered by exhaustive search in time O(log2 N).

As explained in introduction, given as input N = prqs and assuming that r
and s are known, our technique consists in representing r and s as:

{
r = u · α + a
s = u · β + b

(3)

with large enough integer u, and small enough integers α, β, a, b, so that N can
be rewritten as:

N = prqs = pu·α+a · qu·β+b = (pαqβ)u · paqb = Pu · Q
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where P := pαqβ and Q := paqb. One can then apply BDH on N = PuQ to
recover P and Q and eventually p and q.

Observe that from (3) we obtain:

r · β − s · α = γ (4)

where γ := a · β − b · α must be a small integer, since α, β, a and b must be
small. This gives:

α · s ≡ −γ (mod r) (5)

Using LLL in dimension 2 (or equivalently the Gauss-Lagrange algorithm),
we can find two small integers α and γ satisfying (5) with |α| · |γ| � r. We then
recover β from (4); for integers r and s of similar bitsize, we get |β| � |α|. The
integer u is then defined as u := �r/α�, and we let a be the remainder of the
division of r by α. We obtain |a|, |β| � |α| and |b| � |γ|/|α| � r/|α|2.

Recall that the condition for BDH factorization is u = Ω(log Q); assuming for
simplicity that p and q have similar bitsize, from Q = paqb we get the condition:

u �
(

|α| +
r

|α|2
)

log p

It is therefore optimal to take |α| � r1/3, which gives u � r1/3 log p, and with
u := �r/α� � r2/3 we obtain r1/3 � log p. This gives the condition r � log3 p;
therefore we recover the condition from Theorem 7 for prime factors p and q of
similar bitsize.

We now provide a rigorous analysis. The proof of Theorem7 is based on the
following lemma.

Lemma 1. Let r and s be two integers such that r > s > 0. One can compute
in polynomial time integers u, α, β, a, b such that

{
r = u · α + a
s = u · β + b

(6)

with 0 < α ≤ 2r1/3, 0 ≤ β ≤ α, |a| < α, |b| ≤ 6r2/3/α, u > r/α − 1, where the
integers a and b are either both ≥ 0 (Case 1), or both ≤ 0 (Case 2).

Proof. We first generate two small integers α > 0 and β such that:

r · β − s · α = γ, (7)

for some small integer γ. For this we apply LLL on the following matrix M of
row vectors:

M =
(�r1/3� −s

0 r

)

.

We obtain a short non-zero vector v = (�r1/3� ·α, γ), where γ = −s ·α+ r ·β for
some β ∈ Z; hence we obtain integers α, β and γ satisfying (7). From Theorem 1
we must have

‖v‖ ≤ 21/4 · (det M)1/2 ≤ 21/4 · (�r1/3� · r)1/2 ≤ 21/4 · r2/3 (8)
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Note that by applying the Gauss-Lagrange algorithm instead of LLL one can
obtain a slightly better bound for ‖v‖, corresponding to Minkowski bound.

From (8) we obtain |α| ≤ 2r1/3 and |γ| ≤ 2r2/3. We can take α ≥ 0. Moreover
we must have α = 0 since otherwise we would have v = (0, βr) for some integer
β = 0, which would give ‖v‖ ≥ r, which would contradict the previous bound.
Therefore we must have 0 < α ≤ 2r1/3.

From (7) we have β = (γ + α · s)/r and moreover using −1 < γ/r < 1 and
0 < s < r we obtain:

−1 <
γ

r
<

γ + α · s

r
<

γ

r
+ α < 1 + α

Since α and β are integers this implies 0 ≤ β ≤ α. We now show how to generate
the integers u, a and b. We distinguish two cases.

Case 1: β = 0 or (β = 0 and �r/α� ≤ s/β). In that case we let:

u :=
⌊ r

α

⌋

and we let a := r − u · α and b := s − u · β; this gives (6) as required. Since a
is the remainder of the division of r by α we must have 0 ≤ a < α. If β = 0 we
then have b = s > 0. If β = 0 we have using �r/α� ≤ s/β:

b = s − u · β = s −
⌊ r

α

⌋
· β ≥ s − s

β
· β = 0

so in both cases b ≥ 0. Therefore in Case 1 we have that the integers a and b
are both ≥ 0. Moreover combining (6) and (7) we obtain a · β − b · α = γ, which
gives using 0 ≤ β ≤ α and 0 ≤ a < α:

0 ≤ b =
a · β − γ

α
< α +

2r2/3

α

Since 0 < α ≤ 2r1/3 we have 4r2/3/α ≥ 2r1/3 ≥ α, therefore we obtain as
required:

0 ≤ b <
6r2/3

α
Case 2: β = 0 and �r/α� > s/β. In that case we let:

u :=
⌈ r

α

⌉

As previously we let a := r − u · α and b := s − u · β, which gives again (6);
moreover we have −α < a ≤ 0. As previously using �r/α� ≥ �r/α� > s/β we
obtain:

b = s − u · β = s −
⌈ r

α

⌉
· β < s − s

β
· β = 0

Therefore in Case 2 we have that the integers a and b are both ≤ 0. As previously
using 0 ≤ β ≤ α, −α < a ≤ 0 and α ≤ 4r2/3/α we obtain as required:

|b| ≤
∣
∣
∣
∣
a · β − γ

α

∣
∣
∣
∣ < α +

2r2/3

α
≤ 6r2/3

α

This terminates the proof of Lemma 1. ��
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3.1 Proof of Theorem7

We now proceed with the proof of Theorem7. We are given as input N = prqs

with r > s > 0 and gcd(r, s) = 1. We can assume that the exponents r and s are
known, otherwise they can be recovered by exhaustive search in time O(log2 N).
We apply Lemma 1 with r, s and obtain u, α, β, a and b such that:

{
r = u · α + a
s = u · β + b

We first consider Case 1 of Lemma 1 with a ≥ 0 and b ≥ 0. In that case the
modulus N = prqs can be rewritten as follows:

N = prqs = pu·α+aqu·β+b = (pαqβ)upaqb = PuQ,

where P := pαqβ and Q := paqb. One can then apply Theorem6 on N = PuQ to
recover P and Q in polynomial time in log N under the condition u = Ω(log Q).
Since u > r/α−1, we get the sufficient condition r = Ω(α · log Q). We have from
the bounds of Lemma 1:

α · log Q = α · (a log p + b log q) ≤ α ·
(

α · log p +
6r2/3

α
· log q

)

≤ α2 · log p + 6r2/3 · log q ≤ 10 · r2/3 · log max(p, q)

which gives the sufficient condition r = Ω(r2/3 · log max(p, q)). Therefore one
can recover P and Q in polynomial time under the condition:

r = Ω(log3 max(p, q))

Alternatively the factors P and Q can be recovered by applying the variant
of Coppersmith’s theorem from [BM05, Corollary 14], i.e. Theorem 4. Namely as
explained in Sect. 2.3, given N = Puq we can let b := Pu and let:

f(x) := (V + x)u

where V is an integer such that P = V + x0 and the high-order bits of V
are the same as the high-order bits of p. One must then solve f(x0) = b, and
applying [BM05, Corollary 14] this can be done in time polynomial in log N and
u provided that |x0| < Nβ2/u. As in Sect. 2.3, we can take b = Pu = Nβ , and
we obtain the sufficient condition:

|x0| < P · Q−1/u

Therefore one can perform exhaustive search on the high-order bits of P in
polynomial time in log N under the same condition as previously, namely u =
Ω(log Q). As previously one recovers P and Q in polynomial time under the
condition r = Ω(log3 max(p, q)).

Finally the prime factors p and q can easily be recovered from P = pαqβ

and Q = paqb. Namely the matrix
(

a b
α β

)

whose determinant is aβ − bα = γ,



Factoring N = prqs for Large r and s 457

is invertible with inverse
(

β/γ −b/γ
−α/γ a/γ

)

. Namely we must have γ = 0, since

otherwise we would have β · r = α · s; since we have gcd(r, s) = 1, the integer
α would be a non-zero multiple of r, which would contradict the bound from
Lemma 1. Therefore one can retrieve p and q by computing:

{
Q

β
γ · P

−b
γ = (paqb)

β
γ · (pαqβ)

−b
γ = p

aβ−bα
γ · q

bβ−bβ
γ = p1 · q0 = p

Q
−α
γ · P

a
γ = (paqb)

−α
γ · (pαqβ)

a
γ = p

aα−aα
γ · q

aβ−bα
γ = p0 · q1 = q

.

We now consider Case 2 from Lemma 1, that is a ≤ 0 and b ≤ 0. In that case
we can write:

N = prqs = pu·α+aqu·β+b = (pαqβ)upaqb = Pu/Q

for P := pαqβ and Q := p−aq−b. Note that Q is an integer because a ≤ 0 and
b ≤ 0. We obtain Pu = Q · N which implies:

Pu ≡ 0 (mod N)

Therefore P is a small root of a univariate polynomial equation of degree u
modulo N ; hence we can apply Coppersmith’s first theorem; the condition from
Theorem 3 is P ≤ N1/u = P/Q1/u. Although the condition is not directly satis-
fied, it can be met by doing exhaustive search on the high-order (log Q)/u bits
of P , which is still polynomial time under the condition u = Ω(log Q); this is
the same condition as in Case 1 for BDH.

More precisely, we write P = X · t + x0 where X = �N1/u� and |x0| ≤ X.
We obtain the polynomial equation:

(X · t + x0)u ≡ 0 mod N

For a fixed t this is a univariate modular polynomial equation of degree u and
small unknown x0. We have X < N1/u; therefore we can apply Theorem 3 and
recover x0 in polynomial time in log N , since the degree u satisfies u ≤ r ≤ log N .
We do exhaustive search on t, where:

0 ≤ t ≤ P/X ≤ 2P/N1/u = 2Q1/u

Therefore the algorithm is still polynomial time under the same condition as in
Case 1, namely u = Ω(log Q). Since in Lemma 1 the bounds on u, a and b are
the same in both Case 1 and Case 2, we obtain that in Case 2 recovering P
and Q is polynomial-time under the same condition r = Ω(log3 max(p, q)). As
previously given P and Q one can easily recover the prime factors p and q. This
terminates the proof of Theorem 7.

4 Generalization to N =
∏k

i=1 p
ri
i for Large ri’s

We prove the following theorem, which is a generalization of Theorem7 to moduli
N =

∏k
i=1 pri

i with more than two prime factors. As explained in introduction,
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in that case we cannot hope to obtain a complete factorization of N ; however
we show that we can always recover a non-trivial factor of N in polynomial time
if the largest ri is at least Ω(logθk max pi), for some sequence θk with θ3 = 17,
θ4 = 61, θ5 = 257 and θk ∼ 4e · (k − 1)! for large k. We provide the proof of
Theorem 8 in the full version of this paper [CFRZ15].

Theorem 8. Let k ≥ 2 be fixed and let N =
∏k

i=1 pri
i where r1 = max(ri). Let

p := max{pi, 1 � i � k}. Given N as input one can recover a non-trivial factor
of N in time polynomial in log N if r1 = Ω(logθk p), where θ2 = 5 and:

θk = 4(k − 1)

⎛

⎝1 +
k−2∑

i=1

k−2∏

j=i

j

⎞

⎠ + 1,

with θk = 4e · (k − 1)! − 3 − ◦(1) for large k.

5 Experiments

We have implemented our algorithm using Magma Software V2.19-5. We con-
sidered four moduli N = prqs with r = 8, and s = 1, 3, 5, 7, with 128-bit primes
p and q. Since in Sect. 3 a fraction 1/u of the bits of Q is guessed by exhaustive
search, for each modulus N we have determined the values of α, β, a and b that
minimize the quantity log(Q)/u; such minimum is reached either by the BDH
method (Case 1), or by the Coppersmith method (Case 2). To speed up the
LLL computation we have implemented the Rounding and Chaining methods
from [BCF+14]. This consists in applying LLL on a matrix with truncated coef-
ficients (Rounding), and using partially LLL-reduced matrices when doing the
exhaustive search (Chaining); the first LLL reduction is then costlier than the
subsequent ones.

In Table 1 we give the optimal decomposition of N , using either the BDH
method (Case 1) or the Coppersmith method (Case 2), with number of bits
given, lattice dimension, running time LLLf of the first LLL reduction, and
running time LLLc of subsequent LLL reductions; finally we also estimate the
total running time of the factorization, by multiplying LLLc by 2n where n is
the number of bits given.

Table 1. Number of bits given, lattice dimension, running time LLLf of the first LLL,
running time LLLc of subsequent LLLs, and estimated total running time.

Method (pαqβ)upaqb Bits given Dim. LLLf LLLc Est. time

N = p8q BDH p8q 29 68 142 s 8.6 s 146 years

N = p8q3 Copp (p2q)4q−1 51 61 86 s 4.2 s 3 · 108 years

N = p8q5 BDH (p2q)4q 55 105 115 s 1.3 s 2 · 109 years

N = p8q7 Copp (pq)8q−1 38 81 676 s 26 s 2 · 105 years
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As observed in [BDHG99] the BDH algorithm is unpractical compared to
the ECM factorization algorithm [Len87]. Namely for 128-bit primes p and q
and N = p10q the predicted runtime of ECM from [BDHG99] is only 7000 h
[BDHG99], instead of 146 years for BDH for N = p8q. As illustrated in Table 1
for integers N = prqs our algorithm performs even worse. However the ECM
scales exponentially1, whereas our algorithm scales polynomially. Hence for large
enough primes p and q our algorithm (like BDH) must outpace ECM.

A Coppersmith’s Second Theorem for Factoring
N = prqs

A natural approach to factor N = prqs would be to write N = (P +x)r(Q+ y)s

and apply Coppersmith’s second theorem for finding small roots of bivariate
polynomials over Z. Here we show that this approach does not work. We first
recall Coppersmith’s second theorem.

Theorem 9 (Coppersmith [Cop97]). Let f(x, y) be an irreducible polynomial
in two variables over Z, of maximum degree δ in each variable separately. Let
X and Y be upper bounds on the desired integer solution (x0, y0), and let W =
maxi,j |fij |XiY j. If XY < W 2/(3δ), then in time polynomial in (log W, 2δ), one
can find all integer pairs (x0, y0) such that f(x0, y0) = 0, |x0| ≤ X, and |y0| ≤ Y .

For N = prqs we write p = P + x0 and q = Q + y0 where |x0| ≤ X and
|y0| ≤ Y for some y, and we assume that P and Q are given. Therefore (x0, y0)
is a small root over Z of the bivariate polynomial:

f(x, y) = (P + x)r(Q + y)s

Assuming that r > s, the degree of f(x, y) is at most r separately in x and y.
Therefore we must have:

XY < W 2/(3r)

where W = P rQs � N . Assuming r � s, we have:

W 2/(3r) � N2/(3r) = p2/3q2s/(3r) � (pq)2/3

Therefore one should take the bounds X � p2/3 and Y � q2/3. This implies
that to recover p and q in polynomial time we must know at least 1/3 of the
high-order bits of p and 1/3 of the high-order bits of q. Since this is a constant
fraction of the bits of p and q, Coppersmith’s second theorem does not enable
to factor N = prqs in polynomial-time.

We stress that the above reasoning does not prove that Coppersmith’s bivari-
ate technique will not work. Namely as shown in [BM05] to obtain the optimal
bound one must use the right construction corresponding to f(x, y)’s Newton
polygon. However for r � s the polynomial f(x, y) has (almost) the same degree
in x and y separately, so it is natural to use the bounds from Coppersmith’s orig-
inal bivariate theorem (Theorem 9) as above; this corresponds to the Rectangle
construction in [BM05].
1 The complexity of the ECM factorization algorithm for extracting a prime factor p

is exp
(

(
√

2 + ◦(1))
√

log p log log p
)

.
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B Coppersmith’s First Theorem

In this section we recall the main steps of Coppersmith’s algorithm for find-
ing small roots of univariate modular equations modulo N , corresponding to
Theorem 3. We follow the classical approach by Howgrave-Graham [HG97].

Let f(x) be a polynomial of degree r, with small unknown x0 such that

f(x0) ≡ 0 (mod N).

One considers the following polynomials gi,j(x), where m ≥ 1 is a given para-
meter:

gi,j(x) = xj · Nm−if i(x)

for all i and j such that 0 ≤ i < m and 0 ≤ j < r, and j = 0 for i = m. We have:

gi,j(x0) ≡ 0 (mod Nm)

Let h(x) be a linear combination of the gi,j(x); therefore we must have

h(x0) ≡ 0 (mod Nm) (9)

Let X be such that |x0| < X. If the coefficients of h(x) are sufficiently small,
since x0 is small we will have |h(x0)| < Nm and therefore Eq. (9) will hold
over Z. The root x0 of h(x0) = 0 can then be recovered using a classical
root-finding algorithm. The condition is formalized by the following lemma due
to Howgrave-Graham [HG97]. Given a polynomial h(x) =

∑
i hix

i we define
‖h(x)‖2 =

∑
i |hi|2.

Lemma 2 (Howgrave-Graham). Let h(x) ∈ Z[x] be the sum of at most d
monomials. Assume that h(x0) ≡ 0 (mod Nm) where |x0| ≤ X and ‖h(xX)‖ <
Nm/

√
d. Then h(x0) = 0 over the integers.

Proof. We have:

|h(x0)| =
∣
∣
∣
∑

hix
i
0

∣
∣
∣ =

∣
∣
∣
∣

∑
hiX

i
(x0

X

)i
∣
∣
∣
∣ ≤

∑
∣
∣
∣
∣hiX

i
(x0

X

)i
∣
∣
∣
∣

≤
∑ ∣

∣hiX
i
∣
∣ ≤

√
d‖h(xX)‖ < Nm.

Since h(x0) ≡ 0 (mod Nm), this gives h(x0) = 0. ��
It remains to show how to obtain h(x) such that ‖h(xX)‖ < Nm/

√
d. We

consider the matrix M of dimension d = rm + 1 whose row vectors are the
coefficients of the polynomials gi,j(xX). This matrix is reduced using the well-
known LLL algorithm [LLL82] or an analogous algorithm with improved com-
plexity [NS09,NSV11]. Since the matrix M is triangular, the determinant of M
is the product of its diagonal elements:

det M = N (m+1)(d−1)/2Xd(d−1)/2.
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From Theorem 1, the first resulting polynomial v(xX) of the reduced matrix is
such that ‖v(xX)‖ ≤ 2(d−1)/4(det M)1/d. As a consequence, we get:

‖v(xX)‖ ≤ 2(d−1)/4N (m+1)(d−1)/2dX(d−1)/2.

In order to fulfill the condition ‖v(xX)‖ < Nm/
√

d, we get the following condi-
tion on the upper-bound X, under which the solution |x0| < X can be retrieved:

X <
1
4

· N
1
r − 1

rd .

Eventually by using a dimension d = O(log N) and performing exhaustive search
on a constant number of high-order bits of x0, one obtains the sufficient condition
X < N1/r; this proves Theorem 3.

C The BDH Method for Factoring N = prq

In this section we recall the main steps of the BDH method from Theorem6;
we refer to [BDHG99] for more details. Let N = prq. Assume that we are also
given an integer V such that p = V + x0 where the high-order bits of V are the
same as the high-order bits of p, and x0 is a small unknown. One considers the
polynomial f(x) = (V + x)r which satisfies:

f(x0) ≡ (V + x0)r ≡ 0 (mod pr)

Moreover we also have:
N ≡ 0 (mod pr)

Therefore for a given integer m one considers the polynomials

gik(x) = Nm−kxifk(x)

for 0 ≤ k ≤ m and i ≥ 0, and we have for all k, i:

gik(x0) ≡ Nm−k · xi
0 · fk(x0) ≡ 0 (mod prm)

Let X be a bound on x0. One considers the lattice L spanned by the coefficient
vectors of gik(xX) for 0 ≤ k ≤ m − 1 and 0 ≤ i ≤ r − 1, and also gik(xX) for
k = m and 0 ≤ i ≤ d−mr−1, where d is a parameter which is actually the lattice
dimension. Since the matrix basis of the lattice is triangular, the determinant of
the lattice is the product of the diagonal entries, which gives:

detL =

(
m−1∏

k=0

r−1∏

i=0

Nm−k

)⎛

⎝
d−1∏

j=0

Xj

⎞

⎠ < Nrm(m+1)/2Xd2/2

By applying the LLL algorithm on the previous matrix, we obtain a short vector
v(xX) such that:

‖v(xX)‖d ≤ 2d2/2 det L ≤ Nrm(m+1)/2(2X)d2/2
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From Lemma 2 and omitting the
√

d factor, we must have ‖v(xX)‖ ≤ prm, which
gives the condition:

(2X)d2/2 < prmdN−rm(m+1)/2

We assume that q < pc for some c > 0. This gives N < pr+c, which gives the
condition:

(2X)d2/2 < prmd−r(r+c)m(m+1)/2.

We wish to maximize the value md − (r + c)m(m + 1)/2. Working through
tedious arithmetic allows to find that the maximum is well approximated by

d2

2(r+c)

(
1 − r+c

d

)
, which is reached for m = d

r+c − 1
2 (we assume that m ∈ N

by an appropriate choice of r and d). Therefore, this results in the following
condition on X:

X < p1− c
r+c −2 r

d ,

which proves Lemma 3.3 from [BDHG99].

Lemma 3 [BDHG99]. Let N = prq be given, and assume q < pc for some c.
Furthermore assume that P is an integer satisfying

|P − p| < p1− c
r+c −2 r

d

Then the factor p may be computed from N , r, c and P by an algorithm whose
running time is dominated by the time it takes to run LLL on a lattice of dimen-
sion d.

In [BDHG99] the authors take d = 2r(r + c), which gives:

|P − p| < p1− c+1
r+c

and therefore to factor N = prq it suffices to perform exhaustive search on a
fraction (c + 1)/(r + c) of the bits of p, and the running time becomes:

exp
(

c + 1
r + c

· log p

)

· poly(log N)

which proves Theorem 5.

D Proof of Theorem6

We start from Lemma 3 from [BDHG99] whose proof is briefly recalled in the
previous section. Note that in Lemma 3 the integers p and q can be any integers
≥ 2, not necessarily primes; namely the proof of Lemma 3 does not depend on p
and q being primes.

Instead of taking d = 2r(r + c) as in the previous section, we now take
d = 2�r · log p�, which gives:

|P − p| < p1− c
r+c − 1

log p
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and therefore to factor N = prq it suffices to perform exhaustive search on a
fraction c/(r + c) < c/r of the bits of p, which gives a running time:

exp
( c

r
· log p

)
· poly(log N)

Moreover we can take c such that (pc)/2 < q < pc, which gives pc < 2q, which
gives c log p < log q + log 2. Therefore the running time is:

exp
(

log q

r

)

· poly(log N)

and therefore a sufficient condition for polynomial-time factorization of N = prq
is r = Ω(log q); this proves Theorem 6.
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