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Abstract. This paper approaches to the scalability problem of face
recognition using the weight equations in a universal eigenface. Since
the weight equations are linear equations, the optimal solution can be
generated even when the number of registered faces exceeds the dimen-
sionality of universal eigenface. Based on the characteristics of the under-
determined linear systems, this paper shows that effective preliminary
elimination is possible with little loss by the parallel underdetermined
systems. Finally, this paper proposes a preliminary elimination followed
by a small-scale face recognition for a scalable face recognition.
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1 Introduction

Eigenspaces have been widely utilized in computer vision for various appli-
cations, including object recognition [6,8]. Eigenspaces constructed from face
images are often called eigenfaces [11] and widely used in face recognition [1,7],
tracking [2] , and so on. On the other hand, face recognition has still been a hot
topic in computer vision and discussed from various view points [10,12], since
this problem is a big problem for computer vision applications. Among them,
Oka and Shakunaga [9] proposed an efficient method for real-time face tracking
and recognition to cover pose and photometric changes. In their method, linear
equations, called the weight equations, are used for both the face recognition
(person identification) and the shape inference. Although the number of faces
was at most 25in their implementation, and the scalability seemed severe in this
approach, Chugan et al. [3] showed that the weight equations also work in under-
determined systems, and they are effective for 100-face tracking and recognition
when 140d eigenface is used.

This paper will show how much more faces can be recognized using the under-
determined systems. For the purpose, a framework of face recognition by weight
equations is shown in Sect. 2. Section 3 discusses details of the parallel underde-
termined approach. Section 4 shows final challenge to 2197-face recognition using
169d eigenface.
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2 Framework of Face Recognition by Weight Equations

2.1 Universal and Individual Eigenfaces

Let Vy; denote an n-d intensity vector of k-th person under [-th lighting con-
dition. K and L indicate the number of persons, and the number of lighting
conditions, respectively. The universal and individual eigenfaces are constructed
and used as follows:

(1) Construction of universal eigenface. When a set of intensity vec-
tors, {vi} are calculated by vy = Vkl/lTVkl, the universal eigenface is con-
structed by average vector v and m-principal eigenvectors ®,,,. Let it described
as (v, ®,,).

(2) Projection to universal eigenface. Let PV denote a part of image, where
P is an n x n diagonal matrix, of which each diagonal element is 1 or 0. The
projection s of PV is calculated by

§=(P3,)"(PV) (1)

when ®,, = [®,, V] and § = [asT a}—r, and (P&)m)“‘ denotes (Moore-Penrose)
pseudo inverse of P®,,. Once § is calculated from a given part of image PV,
the normalized projection of § is given by § = [sT 1] T

(3) Construction of individual eigenfaces. In the learning stage, an individ-
ual eigenface is constructed in the universal eigenface, from a set of face images.
When a set of s-representations, S, = {sw | I = 1,---,L}, are calculated for
person k by projection of a set of intensity vectors {Vy, |l =1,---,L} to the
universal eigenface, the k-th individual eigenface (Sg, 7 ) is constructed from Sy
in s-domain, where S; and 7 denote the average and k-th individual eigenspace.

2.2 Face Recognition by Weight Equations

In Oka and Shakunaga [9], linear equations, called the weight equations, are
proposed for both the face recognition (person identification) and the shape
inference. The weight equations are used for face recognition in this paper, as
follows:

(1) Projection to universal eigenface. When an unknown image vector V
is given, the projection s of PV to the universal eigenface is calculated using
Eq. (1) where P is an appropriate part indicator matrix. We can set P = I,
when a full projection is necessary. If a set of parts are required, a set of partial
projections might be used. (Refer to Oka and Shakunaga [9].)

(2) Photometric adjustment. In s-domain, for each k, a projection of s to
the k-th individual eigenface is calculated by

Sk = Mk (S —5k) + 5. (2)
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(3) Fundamental weight equations. After all s, are calculated from s, the
following linear equations are given, named the fundamental weight equations

§KW = g (3)
where S = [§; -+ Sk] and w = [w; --- wk]T. The optimal solution of Eq. (3)
is given by

w=2S}% (4)

and the optimal solution indicates the weights of individual persons.

(4) Face recognition. Face recognition is accomplished by selecting

kmas = argmax wy. (5)

2.3 Scalability Problem with Face Recognition

In the face recognition scheme mentioned above, the weight equations serve an
essential role. Let K and M denote the number of persons and m + 1, where
m is the dimensionality of the universal eigenface. Then, the computational
cost for solving the weight equations is O(MK?)(O(KM?)) in the overdeter-
mined(underdetermined) system. In the overdetermined system, K should be
sufficiently less than M for reliable solutions. On the other hand, M could not
be so large because the dimensionality of the universal eigenface cannot be too
big. To solve the dimensionality problem, Chugan et al. [3] has shown a solution
in the underdetermined system. In [3], the case of M = 141 and K = 249 was
solved by parallel underdetermined approach. This paper discusses, from now
on, the parallel underdetermined approach for K >> M, and how and why the
approach is possible.

3 Parallel Underdetermined Approach

3.1 Solution of Underdetermined Weight Equations

Let us summarize characteristics and properties of the parallel underdetermined
approach according to Chugan et al. [3]. When the fundamental weight equations
are underdetermined, Eq. (4) provides w so as to minimize w ' w in the solution
space of Eq. (3).

When B is a K x K diagonal matrix defined by

B =diag (d""(s,s1)---d " '(s,sk)) (6)

where d(s,s) = \/(S—sk)T(S—Sk), (7)

diagonal terms of B indicate inverse distances from s to each s;. When s; = s,
a large number should be used for the k-th diagonal term instead of oc.
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By substituting w = Bw’ to Eq. (3), the biased weight equations are pro-
vided in

§K BW/ = § (8)
From the optimal solution of Eq. (8), the weight vector is estimated in
w = B[SkB]*s. (9)

Equation (9) still provides a solution of the fundamental weight equations,
Eq. (3). Since w’ "W’ is minimized in the biased weight equations, w is opti-
mized with considering distances between s and each sg.

As shown in [3], there is a simple relation between the biased weight equations
and nearest neighbor criterion. When the weight equations are specified in 0d
space, Eq. (9) becomes

d=%(s,sy)

1
w=B[1'B]" =

Yo d2(s, sp) (10)

d=2%(s,sk)

Therefore, the heaviest person indicated by Eq.(5) becomes equivalent to the
nearest person.

3.2 Parallel Underdetermined Systems

A simple parallelism is implemented by partitioning the universal eigenface
into subspaces. When m’ denotes the dimensionality of each subspace in m-d
eigenspace, and m = Jm’ holds, J-parallel underdetermined systems are imple-
mented.

In the parallel implementation, the j-th fundamental weight equations are
represented as

S o _ [sY
[ﬂ woh = |37, (11)
where w) = [ng) wg)]—r, (12)
T
Sk =[s@PT .87 (13)

and s=[sDT ...sHT]T, (14)

After solving all the equations, average over all the solutions
12
—— ()
W= ;21 wt (15)

provides a final weight vector. In the parallel implementation, each underdeter-
mined system could be transformed to the biased weight equations with using
the same distances measured in the universal eigenface.
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Fig. 1. Example of orthogonal subspace partitions

(1) Concurrency by orthogonal subspace partitions. In the parallel under-
determined approach, the entire eigenfaces should be decomposed into exclusive
subspaces. Let us call the decomposition a subspace partition. This paper pro-
poses a parallel implementation of the underdetermined weight equations using
a set of subspace partitions to improve recognition performance.

In the parallel implementation, a set of subspace partitions should satisfy
the following requirement: Between a subspace in a partition and a subspace in
another partition, intersection of them is at most 1d subspace.

When a set of subspace partitions satisfy it, let these partitions called orthog-
onal subspace partitions. An example of orthogonal subspace partitions is as
shown in Fig. 1 when 25 eigenbases are arranged in a 5 x 5 matrix. In each parti-
tion, 5 colors indicate 5d subspaces, respectively. Since any two partitions in the
figure satisfy the above requirement, they are orthogonal subspace partitions.
For example, Partitions 1 and 2 are row-wise and column-wise partitions and
they obviously satisfy the requirement. Since the other partitions are complete
Latin squares [5], they are mutually orthogonal and orthogonal to Partitions
1 and 2, too. Note that when K is a prime number, there are exactly K + 1
orthogonal subspace partitions for K2-d eigenface, since K — 1 complete Latin
squares and row-wise and column-wise partitions are orthogonal to each other.

(2) Face recognition by orthogonal partitions. Let C' and WEZ ; denote the
number of orthogonal subspace partitions and the optimal weight vector of the
j-th subspace of the c-th partition. Then, average over all the optimal vectors is
represented in

W= S wl), (16)

and used for face recognition.

(3) Utilization of parallel partial projections. It is widely known that
parallel partial projections are also useful for robust face recognition [9]. When
partial projections are combined with weight equations, partial sub images are
more precisely approximated by weighted averages of dictionary images. In the
cases, weights are calculated in each sub image in each underdetermined sys-
tem. In this paper, face recognition is performed by combining the orthogonal
subspace partitions and the parallel partial projections.
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Let B and WEZZ) denote the number of partial projections and the optimal
weight vector for the b-th partial projection of the j-th subspace in the c-th
partition. Then, average over all the optimal vectors is represented in

J

1 B C )
W= e D00 Wiy (17)

b=1c=1 j=1

3.3 Preliminary Elimination by Parallel Underdetermined System

In conventional pattern recognition, supervised learning is performed before
recognition. When a big number of classes should be learned, however, clus-
tering is widely used for efficient selection of candidate classes from all classes.
In these approaches, if clustering (or unsupervised learning) is accomplished for
all the classes a priori, a smaller number of clusters are considered in the first
stage of recognition. However, the clustering problems often suffer from compu-
tational cost and quality of clustering result. These problems are often serious
for scalability of recognition algorithm.

In unsupervised learning, all the classes should be considered between each
other without knowing what input is provided. Although the rough optimization
seems valid for a wide variety of unknown inputs, only a small part of the rough
optimization works for each particular input in the recognition stage.

In the parallel underdetermined approach, the number of classes has no limit
in principle, and no clustering is necessary before the recognition stage. However,
an average of a set of the weight equations can provide a weight ranking list of
all the classes for each particular input. The result is regarded as a local but
precise clustering result just around the particular input.

4 Experimental Challenge to Scalability

4.1 Construction of Scalable Database

In this paper, a subset of CMU Multi-PIE [4] is used for construction of the
universal eigenface. The subset is composed of 141 faces (included in 249 neu-
tral faces in session 1) of CMU Multi-PIE. The subset, called Data-1, is com-
posed of 141 faces taken under 20 lighting conditions. The other 108 faces are
excluded from the subset because they include glasses, mustache or teeth in
his/her images.

Face shapes are different from person to person. The fact means that a geo-
metric normalization is required for making a meaningful eigenface used in recog-
nition of faces in monocular images. For this purpose, three points, which are
located in centers of right and left eyes, and a center of lips on each face surface,
are transposed to standard positions by affine transform in this paper, as shown
in Fig.2. After the geometric normalization, a normalized face image is made
up by cropping a face region. In the current implementation, the face region is
fixed as shown in Fig. 2(b).



Challenge to Scalability of Face Recognition Using Universal Eigenface 57

v BULCE VR

(b) (c) (d>

Fig. 2. Example of geometric normalization: (a) and (b) show a face image before/after
geometric normalization. (c) and (d) show 4 images for an individual person and con-

structed individual eigenface, respectively.
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Fig. 3. Example of 20 images for an individual; (a) and (b) show a face image
before/after image correction.

4.2 Refinement of Universal Eigenface

After the geometric normalization, 169d universal eigenface, called EF-1, was
constructed by PCA on all (141x20) images in Data-1. In this process, universal
eigenface was refined by the method described as follows:

Since the original image set includes a lot of kinds of noise including reflec-
tions and shadows, the universal eigenface is affected by these noise factors if
the original images are directly used for the eigenface construction.

In order to suppress these noise factors in the original images, the following
image correction is applied to the original images. Then, the universal eigenface
is reconstructed from the corrected images.

For the image correction, 2d individual eigenface, as shown in Fig.2(d), is
constructed from 4 images (No. 0, 6, 8, 16) of 20 original images, as shown in
Fig. 2(c).

Then, each original image is projected to the 2d individual eigenface, denoted
by W, and the following equation corrects each original image, V, to

V = 0¥tV. (18)

Figure3 (a) shows an example of 20 original images, and (b) shows images
after the image correction.
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Fig. 4. Example of image composition.

When all the original images are corrected by the image correction algorithm,
refined universal eigenface can be constructed by the method shown in Sect.2.1.

4.3 Composition of Face Data

From Data-1, Extended-Data-1 is constructed by repetitive composition of faces
from original 141 persons, using projection coefficients. In the face composition,
at first, 4 different persons, q,r,q/,r/, are selected randomly from 141 persons.
Then, the whole face image is composed of a weighted average of ¢ and r, and
the eye-part image is composed of a weighted average of p/ and r/. In these
compositions, 2 parameters, ;1 and 2, randomly selected between 0 and 1, are
also used for weight control between two persons. The following equations show
how to compose the whole and eye images, when P. denotes a part indicator
matrix for eyes region.

vir = (1= Po)vj, + Trpeck Povy, (19)
where v, = Bivg + (1 — 51)vy, (20)
and V;c,l = ﬁqu/l + (1 — Bg)vm. (21)

Figure 4 shows how a virtual image is composed from four faces according to
Eq. (19).

We can make an arbitrary number of virtual faces by Eq. (19). For any vir-
tual face, 20 virtual images are synthesized that were taken under 20 lighting
conditions.

4.4 Specifications of Face Recognition Experiments

On Extended-Data-1, 4 of 20 images (No. 1, 13, 14, 18 of 20 images) were used
for training data, to construct 2d individual eigenface in EF-1. The other 16
images were used for test. The training data and the test data are exclusive to
each other.
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Fig. 5. Example of noise suppression for training data: (a) and (b) show a face image
before/after noise suppression.

In the learning stage, an input image often includes some reflections and
shadows. These noise factors directly affect the face model synthesis. In order
to suppress these noise factors in the input image, another image correction
algorithm is used. In the image correction, the universal eigenface ®,, is used.
The image correction algorithm is specified using a residue r; that is calculated
for the i-th pixel of v by

ri=el'(v—®,83), (22)

where e; is a unit vector which has 1in the i-th element and Os in the others.
When |r;| is more than 30, where ¢ is a standard deviation of the absolute resid-
uals over the input image, the i-th pixel of v should be replaced by ef(%mg)
The image correction makes an intensity value to be consistent with the pro-
jection. For example, shadows and reflection regions are corrected. It is noted
that the normality of the image doesn’t hold after the correction. Therefore, the
corrected image should be re-normalized when all the pixels are checked and

corrected (Fig.5).

4.5 Fundamental Experiments of Face Recognition

As fundamental experiments of face recognition, face recognition rates were com-
pared between the nearest neighbor (NN) method and the parallel underdeter-
mined systems (PUS). In both methods, full projection (FP) and parallel partial
projections (PPP) were also compared. In the experiments, the nearest neighbor
method was implemented by Eq. (10) since it provides equivalent results.

When K? or K2 persons were registered, the recognition rates were shown in
Table1, for K = 7,11,13. In the experiment, K2-d universal eigenface was used
for each K, and in the PUS approach K-d subspace was used in each PUS.

For the full projection, a subspace partition, which consists of K subspaces,
was used when concurrency = K. When concurrency = 4K, 4 orthogonal sub-
space partitions were used. When concurrency = (K + 1)K, K + 1 orthogonal
subspace partitions were used. Note that when K is a prime number, there are
exactly K + 1 orthogonal subspace partitions. For the parallel partial projec-
tions, 6 partial projections were used along with a full projection. Therefore,
concurrency is magnified 7 times by the parallel partial projections.

Table 1 shows that the PUS method provided much better results than the
NN method in both the full and parallel partial projections. In the PUS method,
recognition rates were improved when the concurrency increases. The table also
shows that results of full projection were worse than those of the parallel partial
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Table 1. Face-recognition rates (%) for K2 and K*® registrations

K? registration K registration
method concurrency | K=7 | K=11 | K=13 | K=7 | K=11 | K=13
NN(FP) 1 72.45|78.46 | 79.07 |62.92|64.74 | 64.96
PUS(FP) |K 92.86 | 98.50 [99.11 |84.49|95.46 |95.24

4K 90.94 | 98.30 |99.37 |83.71|95.49 |96.57
(K+1)K 90.69 | 98.45 | 99.52 |83.33|95.59 | 96.67
NN(PPP) |7 91.07 | 92.30 | 90.01 |89.50 | 87.04 | 84.22
PUS(PPP) | T*K 99.49 1 99.95 1 99.96 |98.92|99.77 1 99.73
T*4K 99.62 | 100 100 99.22199.79 |99.78
T*(K+1)K [99.62 100 100 99.23199.81 |99.80

projections for both the NN and PUS methods. In K3 registration, combination
of PUS and parallel partial projections gave the best recognition rate for each
K, but a perfect recognition could not be obtained even when the concurrency
was 7(K 4 1)K. However, it is noted that recognition rates reached 99.8 % for
K = 11,13 at the maximum concurrency. The PUS method could accomplish
almost perfect recognition for 1331 and 2197 faces. In K2 registration, the PUS
method accomplished a perfect recognition for 121 and 169 faces.

Because the dimensionality of the universal eigenface was set to K2, recog-
nition rate got worse in NN(FP), PUS(FP) and PUS(PPP), while K decreased.
However, in NN(PPP), recognition rates of two partial projections lowered as K
increased, and affected the final recognition rates.

4.6 Fundamental Experiments of Preliminary Elimination

As fundamental experiments of preliminary elimination, face selection rates were
compared between the nearest neighbor (NN) method and the parallel underde-
termined system (PUS). In both methods, only the parallel partial projections
(PPP) was used because of the face recognition results in Sect. 4.5.

Table 2 shows K- and K?2-face selection rates for K2 faces. The result shows
that PUS method could perfectly select K candidates from K> candidates for
K = 11,13 with any concurrency, and K? candidates for K = 7. Therefore,
the PUS method is effective for preliminary selection of K? candidates from K3
faces.

The table also shows that rank-K? selection rates of the NN method could
not reach 100 %, and the simple NN method was less scalable to the number of
registered faces than the PUS method.

4.7 Challenge to Scalability of Face Recognition

From experimental results shown above, the parallel underdetermined sys-
tems could effectively work for preliminary elimination. Table2 shows that
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Table 2. Rank-K and K? selection rates (%) from K® persons

Rank-K Rank-K>
method concurrency | K=7 | K=11| K=13 | K=7 | K=11 | K=13
NN(PPP) |7 96.47 1 94.89 93.26 |99.03 | 98.50 | 98.02
PUS(PPP) | 7*K 99.98 | 100 100 100 | 100 100
T*K 99.98 | 100 100 100 | 100 100
T*(K4+1)K 99.98 100 100 100 | 100 100

Table 3. Final recognition rate and rank-13 selection rates(%) for 2,197 faces

Preliminary | Final Recognition | Rank-13
- PUS(7*13) 99.73 100

- PUS(7*14*13) | 99.80 100
PUS(7*13) | PUS(7*13) 99.85 100
PUS(7*13) | PUS(7*14*13) | 99.87 99.997

169-candidate selection was perfectly done from 2,197 faces using 169d universal
eigenface. Furthermore, Table 1 shows that face recognition from 169 was also
perfectly done using the same eigenface. Therefore, if 169 candidates selected
by the preliminary elimination has similar properties to the 169 faces used in
Table 1, combination of the two methods can accomplish a scalable face recog-
nition. Otherwise, the two methods may be inconsistent.

In order to confirm if the combination works or not, the following experiment
was tried for 2,197 faces. In the experiment, PUS was used for final recognition,
and the final recognition rate and rank-13 selection rates were compared between
the cases with/without preliminary elimination.

Experimental result as shown in Table 3 indicates that the combination of
preliminary elimination and final recognition works well. The final recognition
rates of 99.85 % and 99.87 % were better than those of the cases without using
the preliminary elimination. In our current implementation, the processing time
of the combination of preliminary elimination and final recognition using PUS
(PPP, 2,197 persons, concurrency = 7 * 14 x 13) was about 0.8 seconds/image
on Intel Corei7-5820K 3.30 GHz without any GPU.

5 Conclusions

This paper reported a challenge to scalability of face recognition using the uni-
versal eigenface and the parallel underdetermined systems of linear equations.
Based on the characteristics of the underdetermined linear systems, this paper
indicated that effective preliminary elimination is possible with little loss by the
parallel underdetermined systems. From these experimental results, this paper
proposed a preliminary elimination followed by a small-scale face recognition.



62

H. Chugan et al.

In order to confirm the effectiveness of the method, a scalable database was
constructed by an extension database of CMU Multi-PIE. Our final experiments
show that the proposed method worked well on 2,197 faces with 99.87 % correct
face recognition. Comparison of the proposed method and the state-of-the-art
methods is in future work. We hope the proposed method will effectively work
in wide variety of computer vision and pattern recognition problems.
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