
Variable-Length Segment Copy
for Compressing Index Map of Palette

Coding in Screen Content Coding

Yao-Jen Chang1, Ching-Chieh Lin1, Chao-Hsiung Hung1,
Jih-Sheng Tu1, Chun-Lung Lin1(&), and Pei-Hsuan Tsai2

1 Industrial Technology Research Institute, Hsinchu, Taiwan
{britpablo,JackLin,chhung,sunriseJSTu,

Chunlung}@itri.org.tw
2 Institute of Manufacturing Information and Systems,

National Cheng Kung University, Tainan, Taiwan
peihsuan.tsai@gmail.com

Abstract. With the emerging applications, such as screen mirroring, and
remote play, screen contents coding (SCC) plays important role in video coding
recently. Since the characteristics of screen contents are different from nature
contents, palette coding is adopted in the current draft standard of HEVC-SCC.
The basic idea of the palette coding is to represent the colors of a coding unit
(CU) by the indices of selected representative colors. This paper presents that
the produced index maps exhibit considerably high spatial correlation. To utilize
the spatial correlation among indices, a general 2-D search method is proposed
firstly for index map compression. To reduce the memory access and imple-
mentation complexity, three simplified search schemes are proposed to balance
the coding performance and complexity. The experimental results show that the
three simplified methods can achieve 0.6 %, 0.5 % and 0.9 % BD-rate saving
respectively, as compared to HM-13.0 + RExt-6.0 test model.

Keywords: Segment matching mode � Line-based � Palette � Screen content
coding

1 Introduction

With rapid development of technologies and increased internet bandwidth, such as
GPON, 3G and 4G etc., people are no longer satisfied with only communicating with
each other via text or speech. More and More applications have started to provide
services with many still images or videos to attract more users. These multimedia
signals not only improve working efficiency but also enrich our daily life. In recent
years, wireless displaying, cloud computing and gaming, screen sharing and collabo-
ration, remote desktop, etc. are booming and have attracted a lot of attention. These
emerging use cases can obliviously re-use the existing video compression technologies
such as the state-of-the-art AVC [1] or HEVC [2] to fulfill purposes.

However, screen contents are fully or partial generated by computers. Console
desktop, spreadsheet, slides and web browsers are typical examples for the screen

© Springer International Publishing Switzerland 2016
T. Bräunl et al. (Eds.): PSIVT 2015, LNCS 9431, pp. 148–159, 2016.
DOI: 10.1007/978-3-319-29451-3_13



contents with mixing lots of text, graphics, nature still images and nature video
sequences. In addition, the screen contents usually contain sharp edges of the objects,
background with simple colors and many thin lines. On the other hand, nature contents
captured by video camcorders generally have rich colors, complex texture/shape and
smooth-edged objects. Therefore, HEVC provides up to 35 spatial directions to code
the nature contents. [2].

Since the state-of-the-art AVC and HEVC standards are mainly developed for the
nature contents, the coding efficiency may not be adequate for the screen contents
which have dissimilar characteristics from the nature contents. Therefore, ISO/IEC
Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group
(VCEG) issued a joint Call for proposal (CfP) for screen content coding (SCC) [3] in
January 2014. Several responses were proposed and evaluated by the Joint Collabo-
rative Team on Video Coding (JCT-VC) group in April 2014.

These responses all proposed two major coding tools for SCC: Intra Block Copy
(IBC) [4] and Palette mode [5, 6]. IBC mode uses an estimated block vector to locate a
similar block for the current partition in the current frame. The IBC mode is similar to
the Inter Motion Estimation; however, the IBC mode only uses the current frame as a
reference frame. The palette coding conceptually uses palette tables and index maps to
represent the current CU. Overall, the palette coding has two major processing steps:
palette table generation and index map compression. A palette table is generated by
classifying the colors in the current CU and then reordering them according to the
frequency of occurrence. After that, an index map is created by converting each sample
to indices via the established palette table. Both palette tables and index maps need to
be transmitted to the decoder.

Palette mode was proposed by Microsoft and Qualcomm in the 16th JCT-VC
meeting [7, 8]. They are named PM and PQ respectively in this paper. In order to code
the index map efficiently, we introduce advance segment matching mode on top of PM
which is a line-based palette coding. Since many blocks or lines repeatedly appear in
one frame for screen contents, similar or identical blocks/lines have high opportunities
to be found from the previous decoded indices in the current coding CU for the palette
coding. Splitting a line into several segments with various lengths plus 2-D searching is
proposed first in this paper. However, using 2-D searching with various length seg-
ments not only requires a huge amount of data access but also increases the difficulties
of the hardware implementation. Therefore, this paper further presents three simplified
methods to reduce the complexity. The maximum BD-rate saving can achieve 0.6 %,
0.5 % and 0.9 % for “YUV, text & graphics with motion, 1080p” class for All Intra test
condition.

The rest of this paper is organized as follows. Section 2 gives the overview of the
palette coding and its related works. The proposed advanced segment matching tool
and the three simplified methods are presented in Sect. 3. The performance evaluations
are carried out and discussed in Sect. 4. The concluding remarks and possible future
works are drawn in Sect. 5.

Variable-Length Segment Copy for Compressing Index Map 149



2 Overview

Palette coding has been studied in JCT-VC for many meeting cycles. It analyzes the
colors in the current CU at first to generate the palette table and transmit the converted
color indices to the decoder. Since neighboring samples in the screen contents gen-
erally have high contrasts such as sharp edges, conventional spatial coding tools may
not be able to compress the screen contents efficiently. In addition, the screen contents
contain limited colors. Therefore, the palette mode does not need to maintain a huge
palette table for a color-index mapping process. Meanwhile, less numbers of the colors
in the palette table reduce the coded bits to represent the palette indices. It improves the
index map coding performance.

During the investigation of the palette mode, there were two main solutions with
different implementations. The first one was a run-based palette coding PQ [8].
Compared with the conventional HEVC coding tools, the PQ packs the three com-
ponents, e.g. YCbCr or GBR, for the palette table generation. The encoder first gen-
erates a color histogram according to the frequency of the color appearance and then
groups similar colors together as major colors via an error allowance threshold value.
Since the palette table needs to be transmitted to the decoder, the last decoded palette
table is used as a palette table predictor in order to avoid resending the identical major
colors. This is done by simply signaling reuse flags to indicate which colors in the last
decoded palette table are reused in the current coding CU. Then, un-predicted major
colors need to be signaled directly to the decoder. After applying the color to index
mapping, the encoder can use two copy-run methods to compress the index map. When
the current and the following color indices are the same with the above indices, Copy
Above Run mode (CAR) is valid. If the current coding color index and the followed
indices are the same, the Copy Left Run mode (CLR) is available. The number of the
identical indices is defined as run value. In addition, CLR is also used for coding index
when the run value equals one. Both the mode flag for the two modes and their run
value are signaled. For the decoding process, the decoder parses the reuse flags and the
signaled major colors to regenerate the palette table for the current decoding CU at first.
After that, the index map is reconstructed by inversing the indices encoding process.
The last step is to convert the decoded indices to color samples.

The line-based palette coding PM basically shares the same ideas for palette table
generation and index map compression. Instead of packing all the three components
together for selecting the major colors, PM generates triple palette tables for each
component. In order to signal the major colors more efficiently, PM also uses the last
decoded palette tables as predictors. After converting the color samples in the current
coding CU by referencing the palette tables individually, triple index maps are created.
For index maps compression, PM provides three copy modes: Vertical, Horizontal and
Normal modes. The Vertical mode is similar to CAR in PQ. The main difference is that
Vertical mode is valid if the current line is the same as the above line. The Horizontal
mode is available when the whole color indices of the current line are all the same. For
Normal mode, there are three sub-modes inside. They are Above, Left and No Pre-
diction modes. When Normal mode is applied, each color indices will be coded in a
pixel-by-pixel manner. Above mode and Left mode use the above and the left

150 Y.-J. Chang et al.



neighboring index of the current coding index as the predictor respectively. No pre-
diction handles unpredictable indices. On the decoder side, the decoder regenerates the
three palette tables and the procedure is similar to PQ. Then, the triple index maps are
reconstructed by parsing the three modes. Lastly, the decoder converts the index map to
color samples by looking up the palette tables.

3 Proposed Algoriths

In the current PM design, Vertical mode is only allowed to use the above one
neighboring row to perform matching process. In addition, it also requires that every
index in the above row should be identical to the current line. Owing to the special
characteristics of screen contents such as repeatedly occurred objects/lines and simple
background, the decoded indices excluding the above row may have useful information
that can improve the coding efficiency. In the following sections, we first report the
analysis about the correlations between the current line and the previous decoded lines
in the current CU. After that, we present four novel methods for index map
compression.

3.1 Previous Line Matching Analysis and General 2-D Index-Segment
Copy Scheme

Our analyzing result is illustrated in Table 1. In this table, “occur once” means that only
one matched line is found. “Occur twice” and “occur repeatedly” represent two and
more than two matched lines, respectively.

As an obvious consequence, once the Vertical mode has been selected, it is highly
possible to find an exactly matched line in the same CU (more than 90 % in Table 1).
Hence, we can make a hypothesis based on the results in Table 1. If the current line
differs from its above one, it still may find a matched line in the current CU. We can
further extend this hypothesis by supposing that partial concatenation indices called a
“segment” in the current line may find a matched segment in the already decoded part
of the current CU. According to this hypothesis, a palette coding improvement algo-
rithm is proposed. This algorithm includes two parts:

Extremely Search. For a current line, it can be considered as a combination result of
segments. And there may be many possible combination results for the current line. For
the segments in one combination result, the encoder could find their matched segments
in the previous lines. If a matched segment is found, a shift vector and a segment length
need to be recorded. The vector and the length are used to indicate where and how long
do the start position of a segment can copy the indices from the reconstructed frame. If
the current start position can’t find any matched index, then it is coded as Normal
mode.

Calculate the Cost of the Coded-Bins. If several search results are found in the search
stage, the encoderwouldcalculate the cost of the coded-binsof eachpair’s vector and length.

Variable-Length Segment Copy for Compressing Index Map 151



Thepairs of the vector and the lengthwith theminimumcost for the current linewould be the
final search result. Figure 1 illustrates an example of this search method.

Table 1. The analysis result of Vertical mode

Category Test Sequence QP Occur
once
(%)

Occur
twice
(%)

Occur
repeatedly
(%)

RGB, text & graphics
with motion, 1080p

Flyinggraphicstext 27 4.80 4.65 90.54
37 4.33 4.16 91.51

Desktop 27 5.27 5.10 89.63
37 4.50 4.50 91.00

Console 27 3.87 3.87 92.26
37 3.49 3.44 93.07

RGB, text & graphics
with motion,720p

WebBrowsing 27 4.34 4.34 91.32
37 3.27 3.27 93.45

Map 27 15.48 12.50 71.43
37 5.63 4.93 89.44

Programming 27 7.33 7.33 85.34
37 6.47 6.47 87.06

SlideShow 27 10.00 10.00 83.33
37 5.45 5.45 90.91

RGB, mixed content,
1440p

BasketballScreen 27 5.97 5.60 88.43
37 4.92 4.92 90.15

MissionControlClip2 27 6.94 6.36 86.71
37 4.04 4.04 91.93

YUV, text & graphics
with motion, 1080p

Flyinggraphicstext 27 4.82 4.65 90.53
37 3.86 3.86 92.27

Desktop 27 4.41 4.35 91.19
37 3.89 3.89 92.22

Console 27 3.14 3.14 93.68
37 2.97 2.97 94.06

YUV, text & graphics
with motion,720p

WebBrowsing 27 4.44 4.44 91.24
37 2.50 2.50 95.01

Map 27 9.33 8.00 81.33
37 4.49 4.49 89.89

Programming 27 7.82 7.41 84.77
37 7.04 7.04 85.92

SlideShow 27 8.57 8.57 85.71
37 2.78 2.78 93.06

YUV, mixed content,
1440p

BasketballScreen 27 5.73 5.73 88.89
37 4.65 4.65 90.70

MissionControlClip2 27 4.48 4.48 91.42
37 4.59 4.59 89.91

152 Y.-J. Chang et al.



In Fig. 1, it is an 8 × 8 block and the 8th line is the current line. The current line is
separated into two segments after the search stage. For these two segments, the mat-
ched segments locate in the 6th and the 2nd line. The shift vector and length of the first
segment are (0, –2) and 3. Those of second segment are (–1, –6) and 5. These infor-
mation all need to be coded.

However, there is no doubt that the high complexity of the aforementioned algo-
rithm would lead to a huge overhead in computing time or memory usage. Therefore,
we provide three simplified designs for the proposed algorithm. In the next sections, we
will introduce these methods in detail.

3.2 1st Simplified Mode: Copy 2nd Above Mode

As the analysis shown in Sect. 3.1, the encoder and the decoder may find an identical
line in the decoded indices for the current line easily. It is straightforward to force the
encoder and the decoder to search one more line instead of only using the above line.
Compared with the original three mode in PM for index map compression, we intro-
duce an additional mode: copy 2nd above mode. When the current line and the above
line are different, the encoder will bypass the Vertical mode and use the second line
above the current line as a reference in our proposed mode. If the second line above the
current line is identical to the current line, the proposed mode is valid. The decoder can
parse the mode flag and copy the second line above the current line to the current line.

Figure 2 is an example for the first simplified mode. For the original Vertical mode,
the 5th and the 6th lines are different. Therefore, the Vertical mode is unavailable.
Meanwhile, in our proposed copy 2nd above mode, the 4th line is the same as the
current 6th line. In this case, our proposed mode can be used here to improve the coding
efficiency.

Fig. 1. An example of “segment search” result.

Variable-Length Segment Copy for Compressing Index Map 153



The extra hardware complexity for the copy 2nd above mode is almost negligible.
However, this mode may not be able to use the full information in the decoded indices.
To approach the general 2-D searching, we propose the following two simplified
designs.

3.3 2nd Simplified Mode: Sliding Half Line Mode

Our previous analysis shows a line has matched one in above processed region with
high probability. Thus we partition a Normal-processed line into small segments and
find matched ones. We provide two more simplified modes based on this idea.

Figure 3(a) shows an example of sliding half line mode based on this idea. The
half-length segment L1 is located arbitrarily within the current line. This simplified
mode is also called match mode. This is a new model and proposed to replace original
Normal mode.

Figure 4 illustrates the operation of the match mode. In the match mode, each
current segment L1 has many reference segments R1 * Ri above in Fig. 4(a). In Fig. 4
(b), the match mode will evaluate whether the current segment L1 matches one of the

Fig. 2. An example of “Copy 2nd Above” mode.

Fig. 3. (a) Sliding half line mode (b) splitting half line mode.

154 Y.-J. Chang et al.



above reference segments. In order to simplify and accelerate the matching process, we
take previous two indices before each segment for pre-matching process. This group of
indices is preamble indices in Fig. 4(b). The preamble indices and the reference seg-
ments R1 * Ri are already decoded while the current segment L1 is going to be coded
now.

If the current line is processed by the match mode, there are four steps to code L1 in
Fig. 4(b).

Step 1: For the preamble indices before L1, it finds the matched preamble indices of
Ri above. If the preamble indices have no matched ones, the first index of L1 will be
processed by three sub-modes in original Normal mode. Then it goes to next index and
re-starts the step 1.

Step 2: If the matched preamble indices of Ri exist, it then checks the corresponding
Ri and L1.

Step 3: If no Ri matches L1, it transmits a flag “0” and codes the first index of L1 by
three sub-modes in original Normal mode. Then it goes to the next index and re-starts
the step 1.

Step 4: If at least one Ri match L1, it labels these reference segments by matching
indices starting from 0. It then transmits the flag “1” and the corresponding matching
index. Then it goes to the index next to the end of L1 and re-starts the step 1.

For the decoding process, the decoder has to parse the specific flag and the cor-
responding matching index at first. With the inversed encoding steps, the decoder then
can use the matching index to find the preamble. After that, the decoder can copy the
half line width indices after the preamble to the current decoding position.

3.4 3rd Simplified Mode: Splitting Half Line Mode

Previous simplified mode requires the additional pre-matching process which may
complicate the hardware implementation. In consequence, we propose another sim-
plified mode, splitting half mode in Fig. 3(b). This simplification is a modified Normal
mode.

Fig. 4. Match mode. (a) Reference segments Ri above current segment L1. (b) Operation of
match mode.

Variable-Length Segment Copy for Compressing Index Map 155



It splits the Normal mode line into two segments, L1 and L2 at first. The width of
L1 and L2 are equal. Then it finds a matched segment R1 for L1 vertically in above
processed region. If R1 exists, the shift vector V1 will be coded. Otherwise, a zero
vector will be coded and L1 will be processed by the original Normal mode. The other
half segment L2 is processed similarly.

On the decoder side, if the parsed mode flag is the half line mode, the decoder
decodes the shift vector at first. If the shift vector is zero, the decoder decodes this half
segment by the original Normal mode. Otherwise, the decoder finds the identical
segment according to the shift vector and then copies the indices to the current
decoding position.

4 Experimental Results

We integrated the line-based palette coding PM [2] into MPEG reference software
HM-13.0+RExt-6.0. We then compare the coding performance of integrated software
(PM+HM-13.0+RExt-6.0) and the reference software (HM-13.0+RExt-6.0). The
experimental conditions are subject to the test conditions issued by JCT-VC in the 16th
meeting [9]. Each test sequences must be tested under All Intra, Random Access, and
Low-delay B conditions.

Since the palette coding is one of the intra-prediction coding tools, we are more
interested in evaluating the All Intra experimental results. Our proposed methods are
tested only under All Intra test conditions. The integrated software and the four sim-
plified methods run on the different simulation platform. Encoding time and decoding
time may not be reliable. Therefore, the comparisons of the averaged encoding and
decoding time are not reported in our experimental results.

The improvement of the integrated software is investigated at first. Table 2 gives
the All Intra results in BD-rate. The more negative value means better coding per-
formance. Table 2 shows that the palette coding improves the coding performance,
especially for the screen content test sequences.

Table 2. All Intra experimental results. The test algorithm and the anchor are the integrated
software and the reference software respectively.

Y U V
RGB, text & graphics with motion, 1080p -8.3% -8.0% -8.4%
RGB, text & graphics with motion,720p -3.8% -3.5% -3.7%
RGB, mixed content, 1440p -1.0% -0.8% -1.0%
RGB, mixed content, 1080p -1.3% -1.1% -1.2%

%0.0%1.0-%1.0p027,noitaminA,BGR
YUV, text & graphics with motion, 1080p -8.7% -6.7% -7.4%
YUV, text & graphics with motion,720p -3.0% -2.8% -4.0%
YUV, mixed content, 1440p -1.2% -1.4% -1.4%
YUV, mixed content, 1080p -1.1% -0.9% -0.9%

%0.0%0.0%1.0p027,noitaminA,VUY

All Intra 

156 Y.-J. Chang et al.



The integrated software is the platform for implementation of our proposed modes.
Tables 3, 4 and 5 give the All Intra experimental results. The anchors are the integrated
software. It shows that the proposed simplified modes improve the palette coding
performance.

Our proposed copy 2nd above mode achieves 0.5 % and 0.6 % BD-rate saving in
“RGB, text & graphics with motion, 1080p” and “YUV, text & graphics with motion,
1080p” classes with minor change. However, there is no coding gain in the rest of the
testing classes. The reason may be caused by not using the full information provided by
the decoded indices in the current CU.

Meanwhile, the sliding half mode provides much adaption of the current segment
location with maximum 0.5 % coding gain as shown is Table 4. Comparing to the
splitting half mode, the slightly worse coding performance may be caused by the
pre-matching process. The size of the preamble indices is two in our current design to
reduce the computations and accelerate the matching process. However, the preamble
indices, which can be considered as predictors, cannot perfectly reflect the matching
process. It is a tradeoff between coding performance and complexity.

Table 3. All Intra experimental results. The test algorithm and the anchor are the copy 2nd above
mode and the integrated software respectively.

Y U V
RGB, text & graphics with motion, 1080p -0.5% -0.5% -0.5%
RGB, text & graphics with motion,720p 0.0% 0.0% -0.1%
RGB, mixed content, 1440p 0.0% 0.0% 0.0%
RGB, mixed content, 1080p 0.0% 0.0% 0.0%

%0.0%0.0%0.0p027,noitaminA,BGR
YUV, text & graphics with motion, 1080p -0.6% -0.3% -0.4%
YUV, text & graphics with motion,720p 0.0% 0.0% 0.0%
YUV, mixed content, 1440p 0.0% 0.0% 0.0%
YUV, mixed content, 1080p 0.0% 0.0% 0.0%

%0.0%0.0%0.0p027,noitaminA,VUY

All Intra 

Table 4. All Intra experimental results. The test algorithm and the anchor are the sliding half
line mode and the integrated software respectively.

Y U V
RGB, text & graphics with motion, 1080p -0.5% -0.5% -0.5%
RGB, text & graphics with motion,720p -0.2% -0.2% -0.2%
RGB, mixed content, 1440p -0.1% 0.0% -0.1%
RGB, mixed content, 1080p -0.1% -0.1% -0.1%

%0.0%0.0%0.0p027,noitaminA,BGR
YUV, text & graphics with motion, 1080p -0.5% -0.3% -0.3%
YUV, text & graphics with motion,720p -0.2% -0.3% -0.2%
YUV, mixed content, 1440p -0.1% -0.1% -0.1%
YUV, mixed content, 1080p -0.1% -0.1% -0.1%

%0.0%0.0%0.0p027,noitaminA,VUY

All Intra 

Variable-Length Segment Copy for Compressing Index Map 157



The final proposed mode, the splitting half mode, provides better coding perfor-
mance with the simple and clear design. It handles each line with the simple process
and consumes less computing resources. In Table 5, the splitting half mode can achieve
0.8 % and 0.9 % BD-rate saving in “ RGB, text & graphics with motion, 1080p” and
“ YUV, text & graphics with motion, 1080p” classes. For all the three proposed
methods, there is no improvement for the animation classes. It may be caused by too
many rich colors and complicated textures in the class.

5 Conclusions

In this paper, we have analyzed the probability of finding above matched lines for
current processing line at first. The analysis shows that there exists a high correlation
between the current line and the previous lines. Then, we have proposed a general 2-D
palette indices search method and three simplified methods from Sects. 3.2 to 3.4. The
first simplification use an additional mode to check the second line above the current
line. Coding improvement is only shown in the “text & graphics with motion, 1080p”
classes. The second simplified method uses our observed feature to provide obvious
coding benefit. Then, the third simplified method further reduces the syntax overhead
in coded-bins to achieve better coding gain. All of our proposed methods improve the
coding efficiency significantly on top of the line-based palette coding. As the simu-
lation results show, the third proposed simplified method gets 0.8 % to 0.9 % coding
gain at the “RGB, text & graphics with motion, 1080p” and the “YUV, text & graphics
with motion, 1080p” test sequence categories individually. Since the run-based and the
line-based palette coding share the similar ideas for compression, integrating our
proposed methods on top of the run-based palette coding will be our next step.

Table 5. All Intra experimental results. The test algorithm and the anchor are the splitting half
line mode and the integrated software respectively.

Y U V
RGB, text & graphics with motion, 1080p -0.8% -0.8% -0.8%
RGB, text & graphics with motion,720p -0.3% -0.3% -0.3%
RGB, mixed content, 1440p -0.1% -0.1% -0.1%
RGB, mixed content, 1080p -0.1% -0.1% -0.1%

%0.0%0.0%0.0p027,noitaminA,BGR
YUV, text & graphics with motion, 1080p -0.9% -0.5% -0.6%
YUV, text & graphics with motion,720p -0.3% -0.2% -0.3%
YUV, mixed content, 1440p -0.1% -0.2% -0.2%
YUV, mixed content, 1080p -0.1% -0.1% -0.1%

%0.0%1.0%0.0p027,noitaminA,VUY

All Intra 

158 Y.-J. Chang et al.



References

1. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video
coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

2. Sullivan, G.J., Ohm, J., Han, W.-J., Wiegand, T.: Overview of the high efficiency video
coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668
(2012)

3. Joint call for proposals for coding of screen content, ISO/IEC JTC1/SC29/WG11 MPEG,
MPEG N14715 (2014)

4. Chang, T.-S., Liao, R.-L., Chen, C.-C., Peng, W.-H., Hang, H.-M., Lin, C.-L., Jou, F.-D.:
RCE3: results of subtest B.1 on Nx2N/2NxN intra block copy. Document JCTVC-P0176
(2014)

5. Guo, L., Karczewicz, M., Sole, J.: RCE3: results of Test 3.1 on palette mode for screen
content coding. Document JCTVC-N0247 (2013)

6. Zhu, W., Xu, J., Ding, W.: RCE3 Test 2: multi-stage base color and index map. Document
JCTVC-N0287 (2013)

7. Guo, X., Lu, Y., Li, S.: RCE4: Test 1. Major-color-based screen content coding. Document
JCTVC-P0108 (2014)

8. Guo, L., Pu, W., Karczewicz, M., Sole, J., Joshi, R., Zou, F.: RCE4: results of Test 2 on
palette mode for screen content coding. Document JCTVC-P0198 (2014)

9. Rosewarne, C., Sharman, K., Flynn, D.: Common test conditions and software reference
configurations for HEVC range extensions. Document JCTVC-P1005 (2014)

Variable-Length Segment Copy for Compressing Index Map 159


	Variable-Length Segment Copy for Compressing Index Map of Palette Coding in Screen Content Coding
	Abstract
	1 Introduction
	2 Overview
	3 Proposed Algoriths
	3.1 Previous Line Matching Analysis and General 2-D Index-Segment Copy Scheme
	3.2 1st Simplified Mode: Copy 2nd Above Mode
	3.3 2nd Simplified Mode: Sliding Half Line Mode
	3.4 3rd Simplified Mode: Splitting Half Line Mode

	4 Experimental Results
	5 Conclusions
	References


