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      Optical Coherence Tomography: Role 
in Percutaneous Coronary Intervention                     

     David     L.     Ain      ,     Robert     Gallagher      , and     Ik-Kyung     Jang     

    Abstract  

  Optical coherence tomography (OCT) is an imaging modality that utilizes back-refl ection 
of near-infrared light. Superior resolution intra-coronary imaging, including assessment of 
plaque morphology and characteristics as well as imaging stents and post-stent complications 
have made OCT a powerful research tool, and more recently a clinical tool for guidance of 
PCI. Visualization of coronary lesions with OCT and their characterization as lipid-rich, 
fi brous, or fi bro-calcifi c plaque can infl uence percutaneous coronary intervention (PCI) 
procedural planning. OCT has contributed signifi cantly to the understanding of culprit 
lesion pathophysiology in acute coronary syndromes (ACS). ACS culprit lesions have been 
categorized by OCT features as resulting from plaque rupture, calcifi c nodule, or plaque 
erosion. Finally, OCT has proven to be an ideal imaging modality for ensuring optimal 
results after PCI. OCT can be used to assess for appropriate stent expansion and apposition 
of the stent with the vessel wall, and is an effective modality for the detection and assessment 
of stent-edge dissection, incomplete stent apposition, and in-stent tissue protrusion. The 
resolution of OCT allows for detection and assessment of in-stent neointima proliferation 
and neoatherosclerosis. A demonstrated safe and effective research instrument, OCT has 
shown great potential in this clinical role as an adjunctive imaging modality for PCI.  
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      Background 

 Optical coherence tomography (OCT) is an imaging modal-
ity that utilizes back-refl ection of near-infrared light. OCT 
was initially developed at the Massachusetts Institute of 
Technology, and demonstrated ex vivo imaging of the ret-
ina as well as atherosclerotic plaque in 1991 [ 1 ]. Its intra-
vascular use was subsequently developed in the late 1990s. 
For coronary imaging, OCT is performed using an intra-
coronary catheter that directs near-infrared light toward the 
coronary arterial walls and then measures the magnitude 
and echo time delay of the refl ected light signal to generate 
an image. This is analogous to intravascular ultrasound 
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(IVUS), which is being widely utilized in intracoronary 
imaging, except that OCT generates images by measuring 
the echo time delay and magnitude of backscattered light 
instead of sound [ 1 ]. OCT imaging has superior spatial 
resolution compared with IVUS, with current OCT systems 
providing an axial resolution of 10–15 µm and lateral reso-
lution of 20−30 µm, but with tissue depth limited to 2–3 mm 
[ 2 ]. By comparison, IVUS has a spatial resolution of 
approximately 150–250 µm with tissue depth up to 10 mm 
[ 3 ]. A recently introduced Ilumien Optis OCT system uti-
lizes a rapid automated pullback to image up to 75 mm 
coronary segments at a rate of 35 mm/s. OCT has been 
safely incorporated into cardiac catheterization procedures 
with low rates of complications [ 4 ]. Superior resolution 
coronary imaging, including assessment of plaque mor-
phology and characteristics as well as imaging stents and 
post-stent complications have made OCT a powerful 
research tool, and more recently a clinical tool for guidance 
of percutaneous coronary interventions (PCI).  

    OCT of Coronary Atherosclerosis 

 Practical application of OCT during coronary angiography 
in current cardiac catheterization procedures involves 
tracking of the OCT catheter into the coronary artery over a 
standard 0.014 in. coronary guidewire with image acquisi-
tion then performed during automated pullback of the 
imaging transducer within the OCT catheter. Because intra-
luminal blood produces signifi cant scatter artifact on OCT 
images, image acquisition must be performed simultane-
ously with catheter injection of contrast, dextran, or saline 
to fully displace blood from the imaged coronary segments. 
For this reason, careful guiding catheter engagement for 
injection is critical to ensuring adequate image quality. 
Similarly, aorto- ostial segments of the left main and right 
coronary arteries are often diffi cult to adequately image 
with OCT, as imaging these locations prohibits full engage-
ment of the guiding catheter, making displacement of blood 
by injection of these segments diffi cult. Once acquired, 
images are recorded and can be reviewed and manipulated 
in axial and longitudinal views to allow for analysis of the 
coronary anatomy and pathology, also facilitating measure-
ments for guidance of PCI. 

 OCT has proven useful in identifying plaque character-
istics with more accuracy and detail than other modalities, 
including IVUS [ 5 – 10 ]. Visualization of coronary lesions 
with OCT and their characterization as lipid-rich, fi brous, 
or fi bro-calcifi c plaque (Figs.  12.1 ,  12.2 , and  12.3 ) can 
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  Fig. 12.1    Lipid-rich plaque ( L ) is characterized by a signal-poor 
region with diffuse borders. The OCT catheter ( C ) and coronary guide-
wire ( arrow ) can be seen within the artery lumen. The guidewire causes 
a backscatter imaging artifact ( A ) at the top of the image       
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  Fig. 12.2    Fibrous plaque ( F ) is characterized by a homogenous signal- 
rich region. Again, the OCT catheter ( C ) and coronary guidewire 
( arrow ) can be seen within the artery lumen, with the guidewire causing 
characteristic backscatter imaging artifact ( A )       
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infl uence PCI procedural planning. Furthermore, OCT has 
contributed signifi cantly to the understanding of culprit 
lesion pathophysiology in acute coronary syndromes 
(ACS). ACS culprit lesions have been categorized by OCT 
features as resulting from plaque rupture, calcifi c nodule, 
or plaque erosion. Thrombus associated with culprit 
lesions is well visualized by OCT and can be characterized 
as platelet rich white thrombus or platelet poor red throm-
bus based on backscatter and attenuation characteristics 
(Fig.  12.4 ). Other  non-traditional causes of ACS culprit 
lesions can also be well characterized by OCT. These 
include spontaneous coronary artery dissection, mural 
hematoma, and recanalized thrombus.

      Although still primarily an area of research with a yet 
undefi ned clinical role, OCT imaging of vulnerable coro-
nary plaques has been a vibrant area of research and discov-
ery. Vulnerable plaques are those that have a high risk of 
rupture and resultant ACS. Histologic features of such vul-
nerable plaques include thin fi brous caps (<65 µm), large 
lipid cores (more than 40 % of overall plaque volume), and 
increased macrophage infi ltration. OCT, with its resolution 
of 10–15 µm, is the only modality capable of visualizing the 
thin fi brous cap for identifi cation of a thin cap fi broatheroma 
(TCFA) (Fig.  12.5 ). OCT identifi cation of TCFA has been 
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  Fig. 12.3    Fibrocalcifi c plaque ( Ca ) is characterized by well-delin-
eated, signal-poor regions with sharp borders. Circumferential calcifi -
cation is seen in this image. Again, the OCT catheter ( C ) and coronary 
guidewire ( arrow ) can be seen within the artery lumen, with the guide-
wire causing characteristic backscatter imaging artifact ( A )       
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  Fig. 12.4    Thrombus is clearly visible by OCT. ( a ) Red thrombus ( RT ) 
is erythrocyte-rich, platelet-poor and has a high degree of backscatter-
ing and attenuation ( a ). ( b ) White thrombus ( WT ) is platelet-rich and 

has homogenous backscatter and low attenuation. Structure including 
stent struts is visible behind thrombus. Metallic stent struts ( arrows ) are 
clearly visible and produce characteristic attenuation artifact ( a )       
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shown to correlate well with histology [ 11 ,  12 ]. Clinically 
correlated, patients with ACS are signifi cantly more likely 
to have disrupted thin fi brous caps overlying their culprit 
lesions and thinner mean cap thickness compared with 
patients presenting with stable angina [ 9 ,  13 ].

       OCT-Guided PCI 

 Before PCI, OCT can be used to accurately determine tar-
get vessel and lesion dimensions and characteristics to 
inform optimal stent sizing and procedural execution. If 
possible, OCT imaging can be performed prior to any 
manipulation of the target lesion, other than guidewire pas-
sage. In the event of a very severe stenosis or occlusive 
thrombus precluding OCT catheter passage, gentle balloon 
angioplasty pre- dilation can be performed to allow passage 
of the OCT catheter without gross disruption of the lesion 
if possible. Pre-PCI imaging is used to measure reference 
vessel diameter both proximal and distal to the target lesion, 
as well as lesion length (Fig.  12.6 ). These measurements 
are used to determine stent sizing, and a phantom-con-
trolled study comparing OCT to IVUS for measurement of 
luminal dimensions found that OCT was more accurate and 
more reproducible than IVUS for making these measure-
ments [ 14 ]. Lesion and reference vessel measurements are 
then used to select optimal stent diameter and length as 
well as appropriately size pre-dilation and post-dilation 
angioplasty balloons.

   Plaque characteristics such as fi brous, lipid content and 
degree of calcifi cation can also be determined on pre-PCI 
OCT imaging. These characteristics, as defi ned by OCT 
correlate with the risk of post-PCI complications [ 15 – 18 ]. 
These features may further infl uence choices regarding 
lesion preparation prior to stenting (i.e. use of pre-dilatation, 
cutting balloon, rotational atherectomy, etc.). 

 Minimal luminal area (MLA) of the target lesion can also 
be determined by OCT prior to any intervention (Fig.  12.6 ). 
OCT-derived MLA is moderately accurate, using fractional 
fl ow reserve (FFR) as the gold standard, in determining 
lesion severity, and similar in accuracy to IVUS [ 19 ]. OCT, 
although sensitive in this regard, has lower specifi city and 
therefore limited positive predictive value for defi ning severe 
stenoses [ 20 ].  

    OCT for the Detection of Post-PCI 
Complications 

 While steady advances in PCI techniques and 
stent  technology—including composition, design, and 
 pharmacology—have made the fi eld of interventional cardi-
ology remarkably safe and effective, complications related to 
stent placement continue to limit procedural success in cer-
tain cases [ 21 ]. Understanding the mechanisms behind stent 
thrombosis and restenosis provides a potential opportunity to 
alter procedural elements in order to prevent adverse events. 
Intracoronary imaging has emerged as a key element in both 
defi ning stent complications and attempting to prevent 
untoward outcomes related to stenting. Research utilizing 
IVUS has laid the groundwork for this understanding, and 
IVUS has been the predominant mode of this type of imag-
ing in clinical practice [ 22 – 27 ]. With its higher resolution 
and sensitivity, OCT has however emerged as an attractive 
modality for the characterization of both acute and chronic 
complications of intracoronary stenting. 

 Over the past decade, several studies have examined 
the feasibility of OCT for the detection of complications 
that arise post-PCI [ 28 – 31 ], and additional work has 
explored the connection between OCT-identifi ed compli-
cations and adverse cardiac events [ 32 ]. OCT has proven 
to be an ideal imaging modality for ensuring appropriate 
stent expansion and evaluating apposition of the stent 
with the vessel wall [ 33 ,  34 ]. In addition to being an accu-
rate tool for the evaluation of stent expansion and stent-
vessel apposition, OCT has been demonstrated to be an 
effective modality for the detection and assessment of 
stent-edge dissection (disruption of the intima) (Fig.  12.7 ) 
[ 28 ,  30 ,  31 ,  35 ], incomplete stent apposition [ 28 ,  34 ] 
(Fig.  12.8 ), and in-stent tissue protrusion (protrusion of 
tissue between stent struts) [ 32 ,  36 ] (Fig.  12.9 ). More 
recent work has focused on the clinical implications of 
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  Fig. 12.5    Thin-cap fi broatheroma is characterized by a large lipid core 
( L ) under a thin fi brous cap of <65 µm thickness       
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OCT-identifi ed complications that arise after PCI [ 37 ], 
and sought to identify stent complications that are associ-
ated with increased rates of adverse outcomes [ 32 ].

     Measurement of minimal stent area is an important 
assessment that can be made with intravascular imaging. 
Accurate stent area measurements have been made with 
greater ease using OCT due to its high resolution and some 
system  features such as automatic edge detection. There 

appears to be a clear association between small minimal 
stent area and restenosis [ 22 – 24 ], and stent underexpan-
sion has been found to be an independent predictor of 
major adverse cardiac events and target lesion revascular-
ization [ 32 ]. Research done with IVUS led to a range of 
cutoff values of 5.0–5.7 mm 2  to predict restenosis. A recent 
study of OCT-defi ned acute stent complications, the larg-
est to date, found the best minimal lumen cutoff to predict 

  Fig. 12.6    OCT-guided PCI: lesion length is measured using the longitu-
dinal view ( bottom ) and proximal ( right ) and distal ( left ) reference vessel 
diameters as well as MLA ( center ) are measured in the axial views. In 
this case the mean proximal reference vessel diameter is 3.37 mm and 

mean distal reference vessel diameter is 2.79 mm, with an MLA of 
1.41 mm 2 . Lesion length is 18.9 mm. Based on these OCT measurements, 
appropriate PCI for this lesion consisted of deployment of a 2.75 × 20 mm 
stent, followed by post-dilation to 3.5 mm in the proximal segment       
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target lesion revascularization by OCT is 5.0 mm 2 , and 
smaller values were independent predictors of both major 
adverse cardiac events (MACE) and target lesion revascu-
larization (TLR) [ 32 ]. 

 Malapposition of the stent with the arterial wall is seen 
by OCT in anywhere from 10 % to 70 % of stents post- 
implantation [ 31 – 33 ], and incomplete apposition has been 
associated with late stent thrombosis [ 38 – 40 ]. OCT per-
mits visualization of individual stent struts and determina-
tion of the distance of each strut from the vessel [ 33 ]. 
Research using OCT has demonstrated that reendothelial-
ization occurs more slowly when stent struts are malap-
posed with the vessel wall [ 41 ]. Given what is known 
about the role of endothelialization in reducing exposure 
of the thrombogenic surface of the stent polymer and 
thereby preventing stent thrombosis, the effect of malap-
position on late stent thrombosis may be a crucial one. 
Fortunately new stent scaffolds and enhanced antiplatelet 
therapy have drastically decreased the rate of serious 
adverse events after PCI; this will, however, make identi-
fying technical factors that contribute signifi cantly to clin-
ical outcomes more diffi cult. 

 OCT’s high image resolution allows for identifi cation 
of dissections at the stent edge and within the stented 
 segment. Because of the higher resolution, stent-edge 
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  Fig. 12.7    Dissection fl ap ( f ) clearly visualized by OCT at the edge of 
a stent, both in the longitudinal view ( bottom ) and axial image ( top ). 
Groups of stent struts (*) are clearly seen in both views, with their char-
acteristic attenuation artifact       

  Fig. 12.8    ( Left ) A well-apposed stent with all struts in contact with the coronary intima. ( Right ) Malapposed stent struts with signifi cant distance 
from the intima. Struts >320–350 µm from the intima are unlikely to become endothelialized and may be associated with adverse coronary events       
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 dissection (SED) is found at least twice as often by OCT 
compared with IVUS [ 28 ,  31 ,  35 ]. OCT-detected SED is 
less likely to occur when the stent is expanded with its 
edge in a normal segment of artery compared with in an 
atherosclerotic plaque [ 42 ]. Additional research suggests 
that the type of plaque that the stent edge is placed in 
directly affects the risk of SED, with lipid and calcifi ed 
plaques posing a much higher risk than fi brous plaques 
[ 29 ,  32 ]. While several studies have not shown a relation-
ship between SED or in-stent dissection and clinical events 
[ 31 ,  32 ,  37 ,  43 ], the amount of lipid at the proximal stent 
edge has been shown to correlate with post- PCI creatinine 
kinase-MB elevation [ 44 ]. 

 One under-investigated application of OCT is the 
detection and characterization of in-stent tissue prolapse 
or protrusion. Recent work suggests that when tissue pro-
trusion is evaluated by OCT, the appearance of the protru-
sion correlates with the severity of vessel injury. Irregular 
protusion, suggesting moderate to severe vessel injury, 
was found to be an independent predictor of MACE 
and TLR. 

 Finally, OCT has the ability to identify thrombus within 
stents [ 45 ] (Fig.  12.4b ). While the clinical signifi cance of 
incidentally-discovered thrombus is unclear, it was found to 
be associated with longer stent length, smaller stent diame-
ter, and absence of neointimal formation over stent struts. In 
general, small amounts of incidentally discovered in-stent 
thrombus need not prompt thrombus aspiration in the setting 

of good angiographic fl ow, but may infl uence the intensity of 
anti-thrombotic therapy.  

    Neointimal Hyperplasia 
and Neoatherosclerosis 

 The tendency of a neointima—composed of smooth mus-
cle cells and extracellular matrix—to form within stents 
has been appreciated for years; indeed its presence is a 
surrogate for stent failure and vessel loss. The resolution 
of OCT allows for detection of neointima below the 
threshold of IVUS (Fig.  12.10 ). Three patterns of 
 neointima have been described, based on the appearance 
by OCT: homogeneous (Fig.  12.11 ), heterogeneous 
(Fig.  12.12 ), and layered (Fig.  12.13 ) [ 46 ]. Small case 
series and case reports suggest that these OCT patterns of 
neoitima have histopathologic correlates, with the homog-
enous pattern identifying tissue with abundant smooth 
muscle cells and the other patterns signalizing extracel-
lular matrix [ 47 ,  48 ].

      In the last several years, post-mortem examination 
of coronary stents has demonstrated that atherosclerotic 
change within the neointima is a frequent occurrence, 
and it occurs earlier and nearly twice as often, in drug-
eluting (DES), compared with bare metal stents (BMS) 
[ 49 ]. Neoatherosclerosis is a discrete pathologic process 
in which, months or years after stent implantation, foamy 
macrophages coalesce in the neointima around stent struts 
[ 31 ,  32 ]. When this process takes hold, these areas of 
neoatherosclerosis appear to be subject to the same fates 
as atherosclerotic plaques in native vessels. Calcium 
deposition occurs, as does formation of necrotic cores, 
leading to regions vulnerable to rupture and thrombosis 
[ 52 ]. This is a key mechanism underlying very late stent 
failure. Work has shown that neoatherosclerosis can be 
detected by OCT, and OCT has demonstrated that over 
time the neointima transforms into a lipid-rich tissue 
[ 50 ,  51 ] (Fig.  12.14 ). OCT-based research has corrobo-
rated the pathologic fi ndings of earlier neoatherosclero-
sis with drug-eluting stents, but found that after 2 years, 
its frequency was the same in both drug-eluting and bare 
metal stents [ 53 ]. While evidence implicates incomplete 
endothelialization in late stent thrombosis, plaque rup-
ture in the neointima has emerged as another mechanism. 
In the modern era of PCI, late stent thrombosis is a rare 
event, but a complete understanding of its pathogenesis 
may help avert this catastrophic occurrence. The degree 
of resolution afforded by OCT makes it an ideal modal-
ity for examining neointimal formation and assessing 
neoatherosclerosis.
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  Fig. 12.9    In-stent tissue protrusion ( TP ) between stent struts (*)       
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       OCT Evaluation of Bioabsorbable Vascular 
Scaffolds 

 Ongoing research has focused on the potential for a bioab-
sorbable vascular scaffold (BVS) to replace DES for intra-
coronary stenting. Because it is eventually absorbed, leaving 
no foreign body in the artery, BVS may reduce the risk of 
late stent thrombosis and other complications of PCI. Both 

animal and human outcomes studies have used intravascular 
imaging, including OCT, to evaluate the absorption of the 
polymer and the repopulation of BVS sites with cells. BVS 
currently under investigation appear different from metallic 
stents when imaged with IVUS; the struts are translucent, 
and OCT can completely image the strut thickness as well as 
the arterial wall behind the scaffold [ 54 ]. While BVS struts 
were no longer recognizable by IVUS after 2 years, some 
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  Fig. 12.10    Neointimal hyperplasia ( NIH ) within a stent is more clearly visualized by OCT ( right ) vs. IVUS ( left ), allowing more detailed tissue 
characterization as well as luminal and stent measurements ( bottom )       
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  Fig. 12.11    Homogeneous neointimal hyperplasia       

  Fig. 12.12    Hetergeneous neointial hyperplasia       

  Fig. 12.13    Layered neointimal hyperplasia. The inner layer has high 
intensity signal, whereas the outer layer shows low signal material       

  Fig. 12.14    Neoatherosclerosis within a coronary stent as character-
ized by OCT appears as a signal-poor regions (lipid laden) within stent 
struts       

strut signals appeared to persist on OCT imaging in two 
thirds of cases. OCT was able to demonstrate a homogenous 
vessel wall at the site of the scaffold, suggesting endothelial 
healing [ 55 ]. Recent investigation employing serial OCT 

evaluation showed that, unlike BMS, self-expanding BVS 
expand over time, resulting in larger vessel diameters and 
preserved lumen size [ 56 ]. Potential applications of OCT 
continue to evolve with advances in both OCT technology 
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and stent design. Work with three- dimensional OCT has 
demonstrated the ability of reconstructions using this tech-
nology to evaluate vessel side branches jailed by 
BVS [ 57 ].  

    Conclusions 

 OCT is a safe and easily employed intravascular imaging 
modality with unmatched resolution and image quality of 
the coronary arteries. It has generated signifi cant interest 
as a research tool for the evaluation of coronary vascular 
biology and atherosclerosis pathophysiology, but only 
recently has started to emerge into routine clinical prac-
tice for optimization of PCI. OCT shows great potential in 
this clinical role as an adjunctive modality for PCI, but is 
currently limited by the lack of clinical outcomes data 
supporting its routine clinical use. Similarly, routine 
IVUS- guided PCI had not been shown to improve hard 
clinical endpoints until recent meta-analysis of IVUS-
guided DES implantation demonstrated signifi cantly 
fewer adverse end points including death and MI in the 
IVUS-guided PCI group [ 40 ]. As OCT provides similar 
and possibly superior structural information upon which 
to guide PCI it may be reasonable to hypothesize that 
OCT-guided PCI may have similar clinical benefi t. This 
has, however, yet to be rigorously studied and further out-
come studies of OCT-guided PCI will be needed to dif-
ferentiate the role of this promising technology in our 
clinical practice.     
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