
Chapter 2
Inductive Properties of Electric Circuits

Characterizing the inductive properties of the power and ground interconnect is
essential in determining the impedance characteristics of a power distribution
system. Several of the following chapters are dedicated to the inductive properties of
on-chip power distribution networks. The objective of this chapter is to introduce the
concepts used in these chapters to describe the inductive characteristics of complex
interconnect structures.

The magnetic properties of circuits are typically described using circuits with
inductive coils. The inductive characteristics of such circuits are dominated by
the self- and mutual inductances of these coils. The inductance of a coil is well
described by the classical definition of inductance based on the magnetic flux
through a current loop. The situation is more complex in circuits with no coils
where no part of the circuit is inductively dominant and the circuit elements are
strongly inductively coupled. The magnetic properties in this case are determined
by the physical structure of the entire circuit, resulting in complex inductive
behavior. The loop inductance formulation is inconvenient to represent the inductive
characteristics of these circuits. The objective of this chapter is to describe various
ways to represent a circuit inductance, highlighting specific assumptions. Intuitive
interpretations are offered to develop a deeper understanding of the limitations and
interrelations of these approaches. The variation of inductance with frequency and
the relationship between the absolute inductance and the inductive behavior are also
discussed in this chapter.

These topics are discussed in the following order. Several formulations of the
circuit inductive characteristics as well as advantages and limitations of these
formulations are described in Sect. 2.1. Mechanisms underlying the variation of
inductance with frequency are examined in Sect. 2.2. The relationship between the
absolute inductance and the inductive behavior of circuits is discussed in Sect. 2.3.
The inductive properties of on-chip interconnect structures are analyzed in Sect. 2.4.
The chapter is summarized in Sect. 2.5.
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24 2 Inductive Properties of Electric Circuits

2.1 Definitions of Inductance

There are several ways to represent the magnetic characteristics of a circuit.
Understanding the advantages and limitations of these approaches presents the
opportunity to choose the approach most suitable for a particular task. Several
representations of the inductive properties of a circuit are presented in this section.
The field energy formulation of inductive characteristics is described in Sect. 2.1.1.
The loop flux definition of inductance is discussed in Sect. 2.1.2. The concept of
a partial inductance is described in Sect. 2.1.3. The net inductance formulation is
described in Sect. 2.1.4.

2.1.1 Field Energy Definition

Inductance represents the capability of a circuit to store energy in the form of
a magnetic field. Specifically, the inductance relates the electrical current to the
magnetic flux and magnetic field energy. The magnetic field is interrelated with the
electric field and current, as determined by Maxwell’s equations and constitutive
relations,1

rD D �; (2.1)

rB D 0; (2.2)

r � H D J C @D
@t

; (2.3)

r � E D �@B
@t

; (2.4)

D D �E; (2.5)

B D �H; (2.6)

J D �E; (2.7)

assuming a linear media. The domain of circuit analysis is typically confined
to those operational conditions where the electromagnetic radiation phenomena
are negligible. The direct effect of the displacement current @D

@t on the magnetic
field, as expressed by (2.3), can be neglected under these conditions (although
the displacement current can be essential to determine the current density J).
The magnetic field is therefore determined only by the circuit currents. The local
current density determines the local behavior of the magnetic field, as expressed by
Ampere’s law in the differential form,

1Vector quantities are denoted with bold italics, such as H.
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r � H D J: (2.8)

Equivalently, the elemental contribution to the magnetic field dH is expressed in
terms of an elemental current dJ, according to the Biot-Savart law,

dH D dJ � r
4�r3

; (2.9)

where r is the distance vector from the point of interest to the current element dJ
and r D jrj.

It can be demonstrated that the magnetic energy in a linear media can be
expressed as [43]

Wm D 1

2

Z
J � A dr ; (2.10)

where A is the magnetic vector potential of the system, determined as

A.r/ D �

4�

Z
J.r0/ dr0

jr � r0j : (2.11)

Substituting (2.11) into (2.10) yields the expression of the magnetic energy in terms
of the current distribution in a system,

Wm D �

8�

“
J.r/ � J.r0/

jr � r0j dr dr0: (2.12)

If the system is divided into several parts, each contained in a volume Vi, the
magnetic energy expression (2.12) can be rewritten as

Wm D �

8�

X
i

X
j

Z

Vi

Z

Vj

J.r/ � J.r0/
jr � r0j dr dr0: (2.13)

Assuming that the relative distribution of the current in each volume Vi is indepen-
dent of the current magnitude, the current density distribution J can be expressed
in terms of the overall current magnitude I and current distribution function u.r/,
so that J.r/ D Iu.r/. The magnetic field energy can be expressed in terms of the
overall current magnitudes Ii,

Wm D 1

2

X
i

X
j

LijIiIj; (2.14)

where

Lij � �

4�

Z

Vi

Z

Vj

u.r/ � u.r0/
jr � r0j dr dr0 (2.15)
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is a mutual inductance between the system parts i and j. In a matrix formulation, the
magnetic energy of a system consisting of N parts can be expressed as a positively
defined binary form2 L of a current vector I D fI1; : : : ; INg,

Wm D 1

2
ITLI D 1

2

NX
iD1

NX
jD1

LijIiIj: (2.16)

Each diagonal element Lii of the binary form L is a self-inductance of the
corresponding current Ii and each non-diagonal element Lij is a mutual inductance
between currents Ii and Ij. Note that according to the definition of (2.15), the induc-
tance matrix is symmetric, i.e., Lij D Lji.

While the field approach is general and has no limitations, determining the circuit
inductance through this approach is a laborious process, requiring numerical field
analysis except for the simplest structures. The goal of circuit analysis is to provide
an efficient yet accurate description of the system in those cases where the detail
and accuracy of a full field analysis are unnecessary. Resorting to a field analysis
to determine specific circuit characteristics greatly diminishes the efficiency of the
circuit analysis formulation.

2.1.2 Magnetic Flux Definition

The concept of inductance is commonly described as a constant L relating a
magnetic flux ˚ through a circuit loop to a current I0 in another loop,

˚ D LI0: (2.17)

In the special case where the two circuit loops are the same, the coefficient is referred
to as a loop self-inductance; otherwise, the coefficient is referred to as a mutual loop
inductance.

For example, consider two isolated complete current loops ` and `0, as shown in
Fig. 2.1. The mutual inductance M between these two loops is a coefficient relating
a magnetic flux ˚ through a loop ` due to a current I0 in loop `0,

˚ D
“

S

B0 � n ds; (2.18)

where S is a smooth surface bounded by the loop `, B0 is the magnetic flux created
by the current in the loop `0, and n is a unit vector normal to the surface element ds.
Substituting B0 D r � A0 and using Stokes’s theorem, the loop flux is expressed as

2Matrix entities are denoted with bold roman symbols, such as L.
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Fig. 2.1 Two complete
current loops. The relative
position of two differential
loop elements dl and dl0 is
determined by the vector
r � r0 dl

� �′

dl′r − r
′

˚ D
“

S

.r � A0/ � n ds D
I

`

A0 dl; (2.19)

where A0 is the vector potential created by the current I0 in the loop `0. The magnetic
vector potential of the loop `0 A0 is

A0.r/ D �

4�

Z

V

J0.r0/ dr0

jr � r0j D I0 �

4�

I

`0

dl0

jr � r0j ; (2.20)

where jr� r0j is the distance between the loop element dl0 and the point of interest r.
Substituting (2.20) into (2.19) yields

˚ D I0 �

4�

I

`

I

`0

dl dl0

jr � r0j D MI0; (2.21)

where

M � �

4�

I

`

I

`0

dl dl0

jr � r0j (2.22)

is a mutual inductance between the loops ` and `0. As follows from the derivation,
the integration in (2.20), (2.21), and (2.22) is performed in the direction of the
current flow. The mutual inductance (2.22) and associated magnetic flux (2.21) can
therefore be either positive or negative, depending on the relative direction of the
current flow in the two loops.
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Note that the finite cross-sectional dimensions of the loop conductors are
neglected in the transition between the general volume integration to a more
constrained but simpler contour integration in (2.20). An entire loop current is
therefore confined to an infinitely thin filament.

The thin filament approximation of a mutual inductance is acceptable where the
cross-sectional dimensions of the conductors are much smaller than the distance
jr � r0j between any two points on loop ` and loop `0. This approximation
becomes increasingly inaccurate as the two loops are placed closer together.
More importantly, the thin filament approach cannot be used to determine a self-
inductance by assuming ` to be identical to `0, as the integral (2.22) diverges at the
points where r D r0.

To account for the finite cross-sectional dimensions of the conductors, both (2.19)
and (2.20) are amended to include an explicit integration over the conductor cross-
sectional area a,

˚ D 1

I

I

`

Z

a

A0 Jdl da; (2.23)

and

A0 D �

4�

I

`0

Z

a0

J0 dl0 da0

jr � r0j ; (2.24)

where a and a0 are the cross sections of the elemental loop segments dl and dl0,
da and da0 are the differential elements of the respective cross sections, jr � r0j is
the distance between da and da0, and J is a current density distribution over the
wire cross section a, dJ D J dl da, and I D R

a J da. These expressions are more
general than (2.19) and (2.20); the only constraint on the current flow imposed
by formulations (2.23) and (2.24) is that the current flow has the same direction
across the cross-sectional areas a and a0. This condition is satisfied in relatively
thin conductors without sharp turns. Formulas (2.23) and (2.24) can be significantly
simplified assuming a uniform current distribution (i.e., J D const and I D aJ) and
a constant cross-sectional area a,

˚ D 1

a

I

`

Z

a

A0 dl da; (2.25)

and

A0 D �

4�

I0

a0

I

`0

Z

a0

dl0 da0

jr � r0j : (2.26)
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The magnetic flux through loop ` is transformed into

˚ D �

4�

I0

a a0

I

`

I

`0

Z

a

Z

a0

da da0 dl dl0

jr � r0j D MI0: (2.27)

The mutual loop inductance is therefore defined as

M``0 � �

4�

1

a a0

I

`

I

`0

Z

a

Z

a0

da da0 dl dl0

jr � r0j : (2.28)

The loop self-inductance L` is a special case of the mutual loop inductance where
the loop ` is the same as loop `0,

L` � M`` D �

4�

1

a2

I

`

I

`

Z

a

Z

a

da da0 dl dl0

jr � r0j : (2.29)

While straightforward and intuitive, the definition of the loop inductance as
expressed by (2.17) cannot be applied to most practical circuits. Only the simplest
circuits consist of a single current loop. In practical circuits with branch points, the
current is not constant along the circumference of the conductor loops, as shown in
Fig. 2.2. This difficulty can be circumvented by employing Kirchhoff’s voltage law
and including an inductive voltage drop within each loop equation. For example,
two independent current loops carrying circular currents IA and IB can be identified
in the circuit shown in Fig. 2.2. The inductive voltage drops VA and VB in loops A
and B are

Fig. 2.2 A circuit with
branch points. The current in
each loop is not uniform
along the circumference of
the loop

IA

IB

I0

I1 I2
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�
VA

VB

�
D

�
LAA LAB

LAB LBB

� �
IA

IB

�
: (2.30)

The magnetic energy of the system is, analogous to (2.16),

Wm D 1

2
ITLI D 1

2

�
IA IB

� �
LAA LAB

LAB LBB

� �
IA

IB

�
: (2.31)

Note that in a circuit with branch points, two current loops can share common
parts, as illustrated in Fig. 2.2. The inductance between these two loops is therefore
a hybrid between the self- and mutual loop inductance, as defined by (2.28)
and (2.29).

The flux formulation of the inductive characteristics, as expressed by (2.29)
and (2.31), is a special case of the field formulation, as expressed by (2.15)
and (2.16). The magnetic field expressions (2.16) and (2.31) are the same, while the
definition of the loop inductance as expressed by (2.29) is obtained from (2.15) by
assuming that the current flows in well formed loops; the thin filament definition
of the mutual inductance (2.22) is the result of further simplification of (2.15).
The magnetic energy and field flux derivations of the inductance are equivalent;
both (2.15) and (2.29) can be obtained from either the energy formulation expressed
by (2.31) or the flux formulation expressed by (2.22).

The loop inductance approach provides a more convenient description of the
magnetic properties of the circuit with little loss of accuracy and generality, as
compared to the field formulation as expressed by (2.16). Nevertheless, significant
disadvantages remain. In the magnetic flux formulation of the circuit inductance,
the basic inductive element is a closed loop. This aspect presents certain difficulties
for a traditional circuit analysis approach. In circuit analysis, the impedance
characteristics are described in terms of the circuit elements connecting two circuit
nodes. Circuit analysis tools also use a circuit representation based on two-terminal
elements. Few circuit elements are manufactured in a loop form. In a strict sense,
a physical inductor is also a two terminal element. The current flowing through a
coil does not form a complete loop, therefore, the definition of the loop inductance
does not apply. The loop formulation does not provide a direct link between the
impedance characteristics of the circuit and the impedance of the comprising two
terminal circuit elements.

It is therefore of practical interest to examine how the inductive characteristics
can be described by a network of two terminal elements with self- and mutual
impedances, without resorting to a multiple loop representation. This topic is the
subject of the next section.
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2.1.3 Partial Inductance

The loop inductance, as defined by (2.28), can be deconstructed into more basic
elements if the two loops are broken into segments, as shown in Fig. 2.3. The loop
` is broken into N segments S1; : : : ; SN and loop `0 is broken into N0 segments
S0

1; : : : ; S0
N0 . The definition of the loop inductance (2.28) can be rewritten as

M``0 D
NX

iD1

N0X
jD1

�

4�

1

ai a0
j

I

Si

I

S0j

Z

ai

Z

a0j

dai da0
j dl dl0

jr � r0j D
NX

iD1

N0X
jD1

Lij; (2.32)

where

Lij � �

4�

1

ai a0
j

I

Si

I

S0j

Z

ai

Z

a0j

dai da0
j dl dl0

jr � r0j : (2.33)

The integration along segments Si and S0
j in (2.32) and (2.33) is performed in the

direction of the current flow.
Equation (2.33) defines the mutual partial inductance between two arbitrary

segments Si and S0
j. Similar to the loop inductance, the mutual partial inductance

can be either positive or negative, depending on the direction of the current flow in
the two segments. In the special case where Si is identical to S0

j, (2.33) defines the
partial self-inductance of Si. The partial self-inductance is always positive.

The partial inductance formulation, as defined by (2.33), is more suitable for
circuit analysis as the basic inductive element is a two terminal segment of
interconnect. Any circuit can be decomposed into a set of interconnected two
terminal elements. For example, the circuit shown in Fig. 2.2 can be decomposed

Fig. 2.3 Two complete
current loops broken into
segments

dl
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S2
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S5
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S′
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S′
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S′
N′

S′
N

′−1
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into three linear segments instead of two loops as in the case of a loop analysis.
The magnetic properties of the circuit are described by a partial inductance matrix
L D fLijg. Assigning to each element Si a corresponding current Ii, the vector of
magnetic electromotive forces V across each segment is

V D L
dI
dt

: (2.34)

The magnetic energy of the circuit in terms of the partial inductance is determined,
analogously to the loop inductance formulation (2.31), as

Wm D 1

2
ITLI D 1

2

NX
iD1

NX
jD1

LijIiIj: (2.35)

The partial inductance has another practical advantage. If the self- and mutual
partial inductance of a number of basic segment shapes is determined as a function
of the segment dimensions and orientations, the partial inductance matrix of any
circuit composed of these basic shapes can be readily constructed according to the
segment connectivity, permitting the efficient analysis of the magnetic properties
of the circuit. In this regard, the partial inductance approach is more flexible than
the loop inductance approach, as loops exhibit a greater variety of shapes and are
difficult to precharacterize in an efficient manner.

For the purposes of circuit characterization, it is convenient to separate the
sign and the absolute magnitude of the inductance. During precharacterization, the
absolute magnitude of the mutual partial inductance Labs

ij between basic conductor
shapes (such as straight segments) is determined. During the process of analyzing
a specific circuit structure, the absolute magnitude is multiplied by a sign function
sij, resulting in the partial inductance as defined by (2.33), Lij D sijLabs

ij . The sign
function equals either 1 or �1, depending upon the sign of the scalar product of the
segment currents: sij D sign .Ii � I0

j/.
The case of a straight wire is of particular practical importance. A conductor of

any shape can be approximated by a number of short straight segments. The partial
self-inductance of a straight round wire is [44]

Lline D �l

2�

�
ln

2l

r
� 3

4

�
; (2.36)

where l is the length of the wire and r is the radius of the wire cross section, as
shown in Fig. 2.4. The precise analytic expressions for the partial inductance are
generally not available for straight conductors with a radially asymmetric cross
section. The partial inductance of a straight line with a square cross section can be
evaluated with good accuracy using approximate analytic expressions augmented
with tables of correction coefficients [44], or expressions suitable for efficient
numerical evaluation [45].
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l

2r

Fig. 2.4 A straight round wire

The partial self-inductance, as expressed by (2.33), depends only on the shape
of the conductor segment. It is therefore possible to assign a certain partial self-
inductance to an individual segment of the conductor. It should be stressed, however,
that the partial self-inductance of the comprising conductors by itself provides
no information on the inductive properties of the circuit. For example, a loop of
wire can have a loop inductance that is much greater than the sum of the partial
self-inductance of the comprising segments (where the wire is coiled) or much
smaller than the sum of the comprising partial self-inductances (where the wire
forms a narrow long loop). The inductive properties of a circuit are described by all
partial inductances in the circuit, necessarily including all mutual partial inductances
between all pairs of elements, as expressed in (2.32) for the specific case of a current
loop.

Unlike the loop inductance, the partial inductance cannot be measured experi-
mentally. The partial inductance is, essentially, a convenient mathematical construct
used to describe the inductive properties of a circuit. This point is further cor-
roborated by the fact that the partial inductance is not uniquely defined. An
electromagnetic field is described by an infinite number of vector potentials. If a
specific field is described by a vector potential A, any vector potential A0 differing
from A by a gradient of an arbitrary scalar function ‰, i.e., A0 D A C r‰, also
describes the field.3 The magnetic field is determined through the curl operation
of the vector potential and is not affected by the r‰ term, r � A D r � A0
as r � r‰ D 0. The choice of a specific vector potential is inconsequential.
The vector potential definition (2.11) is therefore not unique. The choice of a
specific vector potential is also immaterial in determining the loop inductance as
expressed by (2.28), as the integration of a gradient of any function over a closed
contour yields a null value. The choice of the vector potential, however, affects
the value of the partial inductance, where the integration is performed over a
conductor segment. Equation (2.33) therefore defines only one of many possible
partial inductance matrices. This ambiguity does not present a problem as long as all
of the partial inductances in the circuit are consistently determined using the same
vector potential. The contributions of the function gradient to the partial inductance
cancel out, where the partial inductances are combined to describe the loop currents.

In the case of straight line segments, the partial inductance definition expressed
by (2.33) has an intuitive interpretation. For a straight line segment, the partial

3This property of the electromagnetic field is referred to in electrodynamics as gauge invariance.
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I

S

S′

Fig. 2.5 Self- and mutual partial inductance of a straight segment of wire. The partial self-
inductance of a segment S, as described by Rosa [46], is determined using the magnetic flux
created by current I in segment S through an infinite contour formed by wire segment S (the bold
arrow) and two rays perpendicular to the segment (the dashed lines). Similarly, the partial mutual
inductance with another wire segment S0 is determined using the flux created by current I through
the contour formed by the segment S0 and straight lines originating from the ends of the segment
S0 and perpendicular to segment S

self-inductance is a coefficient of proportionality between the segment current and
the magnetic flux through the infinite loop formed by a line segment S and two rays
perpendicular to the segment, as illustrated in Fig. 2.5.

This flux is henceforth referred to as a partial flux. This statement can be proved
as follows. The flux through the aforementioned infinite loop is determined by
integrating the vector potential A along the loop contour, according to (2.25).
The magnetic vector potential A of a straight segment, as determined by (2.11),
is parallel to the segment. The integration of the vector potential along the rays
perpendicular to the segment is zero. The integration of the vector potential along the
segment completing the loop at infinity is also zero as the vector potential decreases
inversely proportionally with distance. Similarly, the mutual partial inductance
between segments S and S0 can be interpreted in terms of the magnetic flux through
the infinite loop formed by segment S0 and two rays perpendicular to the segment S,
as illustrated in Fig. 2.5.

This interpretation of the partial inductance in terms of the partial flux is in fact
the basis for the original introduction of the partial inductance by Rosa in 1908
in application to linear conductors [46]. Attempts to determine the inductance of
a straight wire segment using the total magnetic flux were ultimately unsuccessful
as the total flux of a segment is infinite. Rosa made an intuitive argument that only
the partial magnetic flux, as illustrated in Fig. 2.5, should be associated with the
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self-inductance of the segment. The concept of partial inductance proved useful and
was utilized in the inductance calculation formulæ and tables developed by Rosa and
Cohen [47], Rosa and Grover [48], and Grover [44]. A rigorous theoretical treatment
of the subject was first developed by Ruehli in [45], where a general definition of
the partial inductance of an arbitrarily shaped conductor (2.33) is derived. Ruehli
also coined the term “partial inductance.”

Connections between the loop and partial inductance can also be established in
terms of the magnetic flux. The magnetic flux through a specific loop is a sum of
all of the partial fluxes of the comprising segments. The contribution of a magnetic
field created by a specific loop segment to the loop flux is also the sum of all of the
partial inductances of this segment with respect to all segments of the loop. This
relationship is illustrated in Fig. 2.6.

2.1.4 Net Inductance

The inductance of a circuit without branch points (i.e., where the current flowing in
all conductor segments is the same) can also be expressed in a form with no explicit
mutual inductances. Consider a current loop consisting of N segments. As discussed
in the previous section, the loop inductance Lloop can be described in terms of the
partial inductances Lij of the segments,

Lloop D
NX

iD1

NX
jD1

Lij: (2.37)

This sum can be rearranged as

Lloop D
NX

iD1

Leff
i ; (2.38)

where

Leff
i �

NX
i;jD1

Lij: (2.39)

The inductance Leff
i , as defined by (2.39), is often referred to as the net inductance

[49–51]. The net inductance also has an intuitive interpretation in terms of the
magnetic flux. As illustrated in Fig. 2.6, a net inductance (i.e., the partial self-
inductance plus the partial mutual inductances with all other segments) of the
segment determines the contribution of the segment current to the overall magnetic
flux through the circuit.
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Fig. 2.6 The contribution of
a current in a specific loop
segment (shown with a bold
arrow) to the total flux of the
current loop is composed of
the partial flux of this
segment with all other
segments of the loop; (a) a
piecewise linear loop, (b)
partial flux of the segment
with all other segments
carrying current in the same
direction (i.e., the scalar
product of the two segment
vectors is positive)—this flux
is positive, (c) the partial flux
of the segment with all other
segments carrying current in
the opposite direction (i.e.,
the scalar product of the two
segment vectors is
negative)—this flux is
negative, (d) the sum of the
positive and negative fluxes,
shown in (b) and (c) (i.e., the
geometric difference between
the contours (b) and (c)), is
the overall contribution of the
segment to the magnetic flux
of the loop—this contribution
is expressed as the net
inductance of the segment

a

c

d

b

The net inductance describes the behavior of coupled circuits without using
explicit mutual inductance terms, simplifying the circuit analysis process. For
example, consider a current loop consisting of a signal current path with inductance
Lsig and return current path with inductance Lret, as shown in Fig. 2.7. The mutual
inductance between the two paths is M. The net inductance of the two paths is
Leff

sig D Lsig � M and Leff
ret D Lret � M. The loop inductance in terms of the net

inductance is Lloop D Leff
sig CLeff

ret . The inductive voltage drop along the return current

path is Vret D Leff
ret

dI
dt .

The net inductance has another desirable property. Unlike the partial inductance,
the net inductance is independent of the choice of the magnetic vector potential,
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a

b

c

M

Lsig

Lret

Lsig − M

Lret − M

Fig. 2.7 The signal and return current paths. (a) The physical structure of the current loop. (b) The
equivalent partial inductance model. (c) The equivalent net inductance model

because, similar to the loop inductance, the integration of the vector potential
is performed along a complete loop, as implicitly expressed by (2.39). The net
inductance is therefore uniquely determined.

Note that the net inductance of a conductor depends on the structure of the overall
circuit as indicated by the mutual partial inductance terms in (2.39). Modifying
the shape of a single segment in a circuit changes the net inductance of all of
the segments. The net inductance is, in effect, a specialized form of the partial
inductance and should only be used in the specific circuit where the net inductance
terms are determined according to (2.39).

2.2 Variation of Inductance with Frequency

A circuit inductance, either loop or partial, depends upon the current distribution
across the cross section of the conductors, as expressed by (2.23) and (2.24). The
current density is assumed constant across the conductor cross sections in the
inductance formulas described in Sect. 2.1, as is commonly assumed in practice.
This assumption is valid where the magnetic field does not appreciably change
the path of the current flow. The conditions where this assumption is accurate
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are discussed in Sect. 2.2.1. Where the effect of the magnetic field on the current
path is significant, the current density becomes non-uniform and the magnetic
properties of the circuit vary significantly with frequency. The mechanisms causing
the inductance to vary with frequency are described in Sect. 2.2.2. A circuit analysis
of the variation of inductance with frequency is performed in Sect. 2.2.3 based on
a simple circuit model. The section concludes with a discussion of the relative
significance of the different inductance variation mechanisms.

2.2.1 Uniform Current Density Approximation

The effect of the magnetic field on the current distribution can be neglected in two
general cases. First, the current density is uniform where the magnetic impedance
L dI=dt is much smaller than the resistive impedance R of the interconnect structure.
Under this condition, however, the magnetic properties of the circuit do not
significantly affect the circuit behavior and are typically of little practical interest.
The second case is of greater practical importance, where the magnetic impedance
to the current flow, although greater than R, is uniform across the cross section
of a conductor. This condition is generally satisfied where the separation between
conductors is significantly greater that the cross-sectional dimensions. It can be
shown by inspecting (2.11) that at a distance d much greater than the conductor
cross-sectional dimension a, a non-uniform current distribution within the conductor
contributes only a second order correction to the magnetic vector potential A. The
significance of this correction as compared to the primary term decreases with
distance as a=d.

Where the separation of two conductors is comparable to the cross-sectional
dimensions, the magnetic field significantly affects the current distribution within
the conductors. The current density distribution across the cross section becomes
non-uniform and varies with the signal frequency. In this case, the magnetic
properties of an interconnect structure cannot be accurately represented by a
constant value. Alternatively stated, the inductance varies with the signal frequency.

The frequency variation of the current density distribution and, consequently, of
the conductor inductance can be explained from a circuit analysis point of view
if the impedance characteristics of different paths within the same conductor are
considered, as described in Sect. 2.2.2. The resistive properties of alternative parallel
paths within the same conductors are identical, provided the conductivity of the
conductor material is uniform. The magnetic properties of the paths however can
be significantly different. At low frequencies, the impedance of the current paths
is dominated by the resistance. The current density is uniform across the cross
section, minimizing the overall impedance of the conductor. At sufficiently high
frequencies, the impedance of the current paths is dominated by the inductive
reactance. As the resistive impedance becomes less significant (as compared to the
inductive impedance) at higher frequencies, the distribution of the current density
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asymptotically approaches the density profile that yields the minimum overall
inductance of the interconnect structure. The inductance of the on-chip interconnect
structures can therefore decrease significantly with signal frequency.

2.2.2 Inductance Variation Mechanisms

As discussed, the variation of inductance is the result of the variation of the current
density distribution. The variation of the current distribution with frequency can be
loosely classified into several categories.

Skin Effect

With the onset of the skin effect, the current becomes increasingly concentrated near
the line surface, causing a decrease in the magnetic field within the line core, as
illustrated in Fig. 2.8. The magnetic field outside the conductor is affected relatively
little. It is therefore convenient to divide the circuit inductance into “internal” and
“external” parts, L D Linternal C Lexternal, where Lexternal is the inductance associated
with the magnetic field outside the conductors and Linternal is the inductance
associated with the magnetic field inside the conductors. In these terms, a well
developed skin effect produces a significant decrease in the internal inductance
Linternal. For a round wire at low frequency (where the current distribution is uniform
across the line cross section), the internal inductance is 0.05 nH

mm , independent of
the radius (see the derivation in [52]). The external inductance of the round wire is
unaffected by the skin effect.

a b

Fig. 2.8 Internal magnetic flux of a round conductor; (a) at low frequencies, the current density,
as shown by the shades of gray, is uniform, resulting in the maximum magnetic flux inside the
conductor, as shown by the circular arrows, and the associated internal inductance, (b) at high
frequencies, the current flow is redistributed to the surface of the conductor, reducing the magnetic
flux inside the conductor
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Fig. 2.9 Proximity effect in two closely spaced lines. Current density distribution in the cross
section of two closely spaced lines at high frequencies is shown in shades of gray. Darker
shades of gray indicate higher current densities. In lines carrying current in the same direction
(parallel currents), the current concentration is shifted away from the parallel current. In lines
carrying current in opposite directions (antiparallel currents), the current concentrates toward the
antiparallel current, minimizing the circuit inductance

Proximity Effect

The current distribution also varies with frequency due to the proximity effect. At
high frequencies, the current in the line concentrates along the side of the line facing
an adjacent current return path, thereby reducing the effective area of the current
loop and thus the loop inductance, as illustrated in Fig. 2.9.

The skin and proximity effects are closely related. These effects represent
basically the same phenomenon—the tendency of the current to move closer to
the current return path in order to minimize the interconnect inductance at high
frequencies. When a conductor is surrounded by several alternative current return
paths, leading to a relatively symmetric current distribution at high frequency, the
effect is typically referred to as the skin effect. The classical example of such
an interconnect structure is a coaxial cable, where the shield provides equivalent
current return paths along all sides of the core conductor. In the case where the
current distribution is significantly asymmetric due to the close proximity of a
dominant return path, the effect is referred to as the proximity effect.

Multi-path Current Redistribution

The concept of current density redistribution within a conductor can be extended
to redistribution of the current among several separate parallel conductors. This
mechanism is henceforth referred to as multi-path current redistribution. For
example, in standard single-ended digital logic, the forward current path is typically
composed of a single line. No redistribution of the forward current occurs. The
current return path, though, is not explicitly specified (although local shielding for
particularly sensitive nets is becoming more common [53, 54]). Adjacent signal
lines, power lines, and the substrate provide several alternative current return
paths. A significant redistribution of the return current among these return paths
can occur as signal frequencies increase. At low frequencies, the line impedance
Z.!/ D R.!/ C j!L.!/ is dominated by the interconnect resistance R. In this case,
the distribution of the return current over the available return paths is determined
by the path resistance, as shown in Fig. 2.10a. The return current spreads out far
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Forward currenta

b

I0

Return 1, low L1, high R1I1

Return 2, high L2, low R2I2

I1 ≈ I0
R2

R1+R2
I2 ≈ I0

R1
R1+R2

Low frequency, R jωL

Forward currentI0

Return 1, low L1, high R1I1

Return 2, high L2, low R2I2

I1 ≈ I0
L2

L1+L2
I2 ≈ I0

L1
L1+L2

High frequency, R jωL

Fig. 2.10 Current loop with two alternative current return paths. The forward current I0 returns
both through return path one with resistance R1 and inductance L1, and return path two with
resistance R2 and inductance L2. In this structure, L1 < L2 and R1 > R2. At low frequencies
(a), the path impedance is dominated by the line resistance and the return current is distributed
between two return paths according to the resistance of the lines. Thus, at low frequencies, most of
the return current flows through the return path of lower resistance, path two. At high frequencies
(b), however, the path impedance is dominated by the line inductance and the return current is
distributed between two return paths according to the inductance of the lines. Most of the return
current flows through the path of lower inductance, path one, minimizing the overall inductance of
the circuit

from the signal line to reduce the resistance of the return path and, consequently,
the impedance of the current loop. At high frequencies, the line impedance Z.!/ D
R.!/ C j!L.!/ is dominated by the reactive component j!L.!/. The minimum
impedance path is primarily determined by the inductance L.!/, as shown in
Fig. 2.10b. Multi-path current redistribution, as described in Fig. 2.10, is essentially
a proximity effect extended to several separate lines connected in parallel. In power
grids, both the forward and return currents undergo multi-path redistribution as both
the forward and return paths consist of multiple conductors connected in parallel.

The general phenomenon underlying these three mechanisms is, as viewed from
a circuit perspective, the same. Where several parallel paths with significantly
different electrical properties are available for current flow, the current is distributed
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among the paths so as to minimize the total impedance. As the frequency increases,
the circuit inductance changes from the low frequency limit, determined by the
ratio of the resistances of the parallel current paths, to the high frequency value,
determined by the inductance ratios of the current paths. At high signal frequencies,
the inductive reactance dominates the interconnect impedance; therefore, the path of
minimum inductance carries the largest share of the current, minimizing the overall
impedance (see Fig. 2.10). Note that parallel current paths can be formed either
by several physically distinct lines, as in multi-path current redistribution, or by
different paths within the same line, as in skin and proximity effects, as shown in
Fig. 2.11. The difference is merely in the physical structure, the electrical behavior
is fully analogous. A thick line can be thought of as being composed of multiple thin
lines bundled together in parallel. The skin and proximity effects in such a thick line
can be considered as a special case of current redistribution among multiple thin
lines forming a thick line.

2.2.3 Simple Circuit Model

A simple model of current redistribution provides deeper insight into the process of
inductance variation. This approach can be used to estimate the relative significance
of the different current distribution mechanisms in various interconnect structures
as well as the frequency characteristics of the inductance. Consider a simple case
of two current paths with different inductive properties (for example, as shown in
Fig. 2.11). The impedance characteristics are represented by the circuit diagram
shown in Fig. 2.12, where the inductive coupling between the two paths is neglected
for simplicity. Assume that L1 < L2 and R1 > R2.

For the purpose of evaluating the variation of inductance with frequency, the
electrical properties of the interconnect are characterized by the inductive time

2 1 Return
path

Fig. 2.11 A cross-sectional view of two parallel current paths (gray circles) sharing the same
current return path (gray rectangle). The path closest to the return path, path 1, has a lower
inductance than the other path, path 2. The parallel paths can be either two physically distinct
lines, as shown by the dotted line, or two different paths within the same line, as shown by the
dashed line

Fig. 2.12 A circuit model of
two current paths with
different inductive properties

R2
i2 L22

L11
R1 i1

L12
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Fig. 2.13 Impedance
magnitude versus frequency
for two paths with dissimilar
impedance characteristics
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constant � D L=R. The impedance magnitude of these two paths is schematically
shown in Fig. 2.13. The impedance of the first path is dominated by the inductive
reactance above the frequency f1 D 1

2�
R1

L1
D 1

2��1
. The impedance of the second

path is predominantly inductive above the frequency f2 D 1
2�

R2

L2
D 1

2��2
, such

that f2 < f1. At low frequencies, i.e., from DC to the frequency f1, the ratio of
the two impedances is constant. The effective inductance at low frequencies is
therefore also constant, determining the low frequency inductance limit. At high
frequencies, i.e., frequencies exceeding f2, the ratio of the impedances is also
constant, determining the high frequency inductance limit, L1L2

L1CL2
. At intermediate

frequencies from f1 to f2, the impedance ratio changes, resulting in a variation of
the overall inductance from the low frequency limit to the high frequency limit. The
frequency range of inductance variation is therefore determined by the two time
constants, �1 and �2. The magnitude of the inductance variation depends upon both
the difference between the time constants �1 and �2 and on the inductance ratio
L1=L2. Analogously, in the case of multiple parallel current paths, the frequency
range and the magnitude of the variation in inductance is determined by the
minimum and maximum time constants as well as the difference in inductance
among the current paths.

The decrease in inductance begins when the inductive reactance j!L of the path
with the lowest R=L ratio becomes comparable to the path resistance R, R � j!L.
The inductance, therefore, begins to decrease at a lower frequency if the minimum
R=L ratio of the current paths is lower.

Due to this behavior, the proximity effect becomes significant at higher fre-
quencies than the frequencies at which multi-path current redistribution becomes
significant. Significant proximity effects occur in conductors containing current
paths with significantly different inductive characteristics. That is, the inductive
coupling of one edge of the line to the “return” current (i.e., the current in the
opposite direction) is substantially different from the inductive coupling of the other
edge of the line to the same “return” current. In geometric terms, this characteristic
means that the line width is larger than or comparable to the distance between the
line and the return current. Consequently, the line with significant proximity effects
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L0 L1 L2 LN

R0 R1 R2 RN

Fig. 2.14 An RL ladder circuit describing the variation of inductance with frequency

is typically the immediate neighbor of the current return line. A narrower current
loop is therefore formed with the current return path as compared to the other lines
participating in the multi-path current redistribution. A smaller loop inductance L
results in a higher R=L ratio. Referring to Fig. 2.10, current redistribution between
paths one and two develops at frequencies lower than the onset frequency of the
proximity effect in path one.

Efficient and accurate lumped element models are necessary to incorporate
skin and proximity effects into traditional circuit simulation tools. Developing
such models is an area of ongoing research [55–61]. The resistance and internal
inductance of conductors are typically modeled with RL ladder circuits [55], as
shown in Fig. 2.14. The sections of the RL ladder represent the resistance and
inductance of the conductor parts at different distances from the current return path.
Different methods for determining the value of the R and L elements have been
developed [56–58]. Analogously, RL ladders can also be extended to describe multi-
path current redistribution [59, 60]. Techniques for reducing the order of a transfer
function of an interconnect structure have also been described [61].

2.3 Inductive Behavior of Circuits

The strict meaning of the term “inductance” is the absolute inductance, as defined in
Sect. 2.1. The absolute inductance is measured in henrys. Sometimes, however, the
same term “inductance” is loosely used to denote the inductive behavior of a circuit;
namely, overshoots, ringing, signal reflections, etc. The inductive behavior of a
circuit is characterized by such quantities as a damping factor and the magnitude of
the overshoot and reflections of the signals. While any circuit structure carrying an
electrical current has a finite absolute inductance, as defined in Sect. 2.1, not every
circuit exhibits inductive behavior. Generally, a circuit exhibits inductive behavior if
the absolute inductance of the circuit is sufficiently high. The relationship between
the inductive behavior and the absolute inductance is, however, circuit specific and
no general metrics for the onset of inductive behavior have been developed.

Specific metrics have been developed to evaluate the onset of inductive behavior
in high speed digital circuits [62–64]. A digital signal that is propagating in an
underdriven uniform lossy transmission line exhibits significant inductive effects
if the line length l satisfies the following condition [63],
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tr

2
p

LC
< l <

2

R

r
L

C
; (2.40)

where R, L, and C are the resistance, inductance, and capacitance per line length,
respectively, and tr is the rise time of the signal waveform.

The two inequalities comprising condition (2.40) have an intuitive circuit
interpretation. The velocity of the electromagnetic signal propagation along a line
is vc D 1p

LC
. The left inequality of (2.40) therefore transforms into

tr <
2l

vc
; (2.41)

i.e., the signal rise time should be smaller than the round trip time of flight.
Alternatively stated, the line length l should be a significant fraction of the shortest
wavelength of significant signal frequencies �r. The spectral content of the signal
with rise time tr rolls off at �20 dB/decade above the frequency fr D 1=� tr. The
shortest effective wavelength of the signal is therefore �r D vc=fr D �vctr. The
condition (2.41) can be rewritten as

l

�r
>

1

2�
: (2.42)

The dimensionless ratio of the physical size of a circuit to the signal wavelength,
l=�, is referred to as the electrical size in high speed interconnect design [51, 65].
Circuits with an electrical size much smaller than unity are commonly called
electrically small (or short), otherwise circuits are called electrically large (or
long) [51, 65]. Electrically small circuits belong to the realm of classical circuit
analysis and are well described by lumped circuits. Electrically large circuits require
distributed circuit models and belong to the domain of high speed interconnect
analysis techniques. The left inequality of condition (2.40) therefore restricts
significant inductive effects to electrically long lines.

With the notion that the damping factor of the transmission line is 	 D R0

2

q
C0

L0
,

where R0 D Rl, L0 D Ll, and C0 D Cl are the total resistance, inductance,
and capacitance of the line, respectively, the right inequality in condition (2.40)
transforms into

	 < 1; (2.43)

constraining the damping factor to be sufficiently small. Given a line with a specific
R, L, and C, the inductive behavior is confined to a certain range of line length, as
shown in Fig. 2.15. The upper bound of this range is determined by the damping
factor of the line, while the lower bound is determined by the electrical size of the
line.
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Fig. 2.15 The range of transmission line length where the signal propagation exhibits significant
inductive behavior. The area of inductive behavior (the unshaded area) is bounded by the
conditions of large electrical size (the dashed line) and insufficient damping (the solid line), as
determined by (2.40). In the region where either of these conditions is not satisfied (the shaded
area), the inductive effects are insignificant

Alternatively, condition (2.40) can be interpreted as a bound on the overall line
inductance L0 D Ll. The signal transmission exhibits inductive characteristics if the
overall line inductance satisfies both of the following conditions,

L0 >
t2r

4C0

(2.44)

and

L0 >
1

4
R2

0C0 : (2.45)

Conditions (2.44) and (2.45) thereby quantify the term “inductance sufficiently large
to cause inductive behavior” as applied to transmission lines. The design space for
a line inductance with the region of inductive behavior, as determined by (2.44)
and (2.45), is illustrated in Fig. 2.16.

2.4 Inductive Properties of On-Chip Interconnect

The distinctive feature of on-chip interconnect structures is the small cross-sectional
dimensions and, consequently, a relatively high line resistance. For example, the
resistance of a copper line with a 1 � 3 
m cross section is approximately 7 �=mm.
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Fig. 2.16 The design space characterizing the overall transmission line inductance is divided into
a region of inductive behavior and a region where inductive effects are insignificant. The region
of inductive behavior (the unshaded area) is bounded by the conditions of large electrical size
(the dashed line) and low damping (the solid line), as determined by (2.44) and (2.45). In the
region where either of these conditions is not satisfied (the shaded area), the inductive effects are
insignificant

The loop inductance of on-chip lines is typically between 0.4 nH/mm and 1 nH/mm.
At frequencies lower than several gigahertz, the magnetic characteristics do not
significantly affect the behavior of on-chip circuits.

As the switching speed of digital integrated circuits increases with technology
scaling, the magnetic properties have become essential for accurately describing on-
chip circuit operation. The density and complexity of the on-chip interconnect struc-
tures preclude exploiting commonly assumed circuit simplifications, rendering the
accurate analysis of inductive properties particularly challenging. Large integrated
circuits contain many tens of millions of interconnect segments while the segment
spacing is typically either equal to or less than the cross-sectional dimensions.
Accurate treatment of magnetic coupling in these conditions is especially important.
Neither the loop nor the partial inductance formulation can be directly applied to an
entire circuit as the size of the resulting inductance matrices makes the process of
circuit analysis computationally infeasible. Simplifying the inductive properties of a
circuit is also difficult. Simply omitting relatively small partial inductance terms can
significantly change the circuit behavior, possibly causing instability in an originally
passive circuit. Techniques to simplify the magnetic characteristics so as to allow an
accurate analysis of separate circuit parts is currently an area of focused research
[66–69].

The problem is further complicated by the significant variation of inductance
with frequency. As discussed in Sect. 2.2, the inductance variation can be described
in terms of the skin effect, proximity effect, and multi-path current redistribution.
For a line with a rectangular cross section, the internal inductance is similar to the
internal inductance of a round line, i.e., 0.05 nH/mm, decreasing with the aspect
ratio of the cross section. Over the frequency range of interest, up to 100 GHz, the
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skin effect reduces the internal inductance by only a small fraction. The reduction in
the internal inductance due to the skin effect is, therefore, relatively insignificant, as
compared to the overall inductance. Due to the relatively high resistance of on-chip
interconnect, the proximity effect is significant only in immediately adjacent wide
lines that carry high frequency current. Where several parallel lines are available for
current flow, redistribution of the current among the lines is typically the primary
cause in integrated circuits of the decrease in inductance with frequency. The
proximity effect and multi-path current redistribution are therefore two mechanisms
that can produce a significant change in the on-chip interconnect inductance with
signal frequency.

Note that the statement “sufficiently high inductance causes inductive behavior”
does not necessarily mean “any change in the interconnect physical structure that
increases the line inductance increases the inductive behavior of the line.” In
fact, the opposite is often the case in an integrated circuit environment, where
varying a single physical interconnect characteristic typically affects many electrical
characteristics. The relationship between the physical structure of interconnect and
the inductive behavior of a circuit is highly complex.

Consider a 3 mm long copper line with a 1 � 1 
m cross section. The resistance,
inductance, and capacitance per length of the current loop (including both the line
itself and the current return path) are, respectively, R D 25 �=mm, L D 0:8 nH/mm,
and C D 100 fF/mm. The velocity of the electromagnetic wave propagation along
the line is 0.11 mm/ps. This velocity is somewhat smaller than the speed of light,
0.15 mm/ps, in the media with an assumed dielectric constant of 4 and is due to
the additional capacitive load of the orthogonal lines in the lower layer. For a signal
with a 30 ps rise time, the line is electrically long. The line damping factor, however,

is 	 D Rl
2

q
C
L D 1:33 > 1. The line is therefore overdamped and, according to

the metrics expressed by (2.44) and (2.45), does not exhibit inductive behavior, as
shown in Fig. 2.17a.

Assume now that the line width is 4 
m and the resistance, inductance, and
capacitance of the line change, respectively, to R D 10 �=mm, L D 0:65 nH=mm,
and C D 220 fF=mm. The decrease in the loop resistance and inductance are primar-
ily due to the smaller resistance and partial self-inductance of the line. The increase
in the line capacitance is primarily due to the greater parallel plate capacitance
between the signal line and the perpendicular lines in the lower layer. This capacitive
load becomes more significant, as compared to the capacitance between the line and
the return path, further slowing the velocity of the electromagnetic wave propagation
to 0.084 mm/ps. For the same signal with a 30 ps transition time, the signal line
becomes underdamped, 	 D 0:87 < 1, and exhibits significant inductive behavior,
as shown in Fig. 2.17b.

The inductive behavior has become significant while the absolute inductance
has decreased from 3 mm � 0:8 nH

mm D 2:40 to 1.95 nH. The reason for this
seeming contradiction is that the inductance is a weak function of the cross-sectional
dimensions, as compared to the resistance and capacitance. In integrated circuits, the
signal lines that exhibit inductive behavior are the lowest resistance lines, i.e., the
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a

b

Fig. 2.17 A signal line within an integrated circuit. The power and ground lines (shaded gray)
parallel to the signal line serve as a current return path. The lines in the lower metal layer increase
the capacitive load of the line. The inductive behavior of a wide line, as shown in (b), is more
significant as compared to a narrow line, as shown in (a)

wide lines in the thick upper metalization layers. These lines typically have a lower
absolute inductance than other signal lines. It would therefore be misleading to state
that the inductive behavior of on-chip interconnect has become important due to
the increased inductance. This trend is due to the shorter signal transition times
and longer line lengths, while maintaining approximately constant the resistive
properties of the upper metal layers.

2.5 Summary

The preceding discussion of the inductive characteristics of electric circuits and
different ways to represent these characteristics can be summarized as follows.

• The thin filament approximation is valid only for determining the mutual
inductance of relatively thin conductors

• The partial inductance formulation is better suited to describe the inductive
properties of circuits with branch points

• The partial inductance is a mathematical construct, not a physically observable
property, and should only be used as part of a complete description of the circuit
inductance
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• The circuit inductance varies with frequency due to current redistribution within
the circuit conductors. The current redistribution mechanisms can be classified
as the skin effect, proximity effect, and multi-path current redistribution

• Signal propagation along a transmission line exhibits inductive behavior if the
line is both electrically long and underdamped

• Characterizing on-chip inductance in both an efficient and accurate manner is
difficult due to the density and complexity of on-chip interconnect structures

• The relationship between the physical structure of on-chip interconnect and the
inductive behavior of a circuit is complex, as many electrical properties can be
affected by changing a specific physical characteristic of an interconnect line
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