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    Chapter 21   
 The Role of DNA Repair in Photoprotection                     

       Nevena     Karaman-Jurukovska      and     Daniel     B.     Yarosh     

21.1          DNA Damage Induced by Light 

21.1.1     Light Sources 

 Life on earth evolved utilizing solar electromagnetic energy, but at the same time, 
this energy has adverse biological effects. The extent of the effects on the skin 
depends greatly on the wavelength of light absorbed by its biomolecules. The most 
damaging are the shorter wavelengths in the ultraviolet (UV) region because they 
are most readily absorbed by the skin. 

 By convention, UV wavelengths are designated as UVA (320–400 nm), UVB 
(290–320 nm), and UVC (200–290 nm). The shorter the wavelength, the greater 
absorption of the UV energy by earth’s atmosphere. UVC, the shortest wavelength 
band, is effectively absorbed by atmosphere stratospheric gases and therefore fails 
to reach the surface of the earth. The ozone molecules and atmosphere effi ciently 
fi lter UVB, so that only a small fraction actually reaches the earth surface (around 
5 %). Its local intensity may vary with the solar zenith angle, which differs by the 
time of day, the year, the latitude, and the local cloud density. For the long UV 
wavelengths, 95 % of UVA energy reaches the earth with its steady presence during 
the day, making it the most abundant [ 35 ]. 

 Artifi cial light from incandescent light bulbs and compact fl uorescent lamps 
present an additional source of UV exposure, mostly UVA. The International 
Commission on Illumination recommends maximal UV radiation of 30 J/m 2  within 
8 h. While the average daily exposure from outdoors is much lower, the cumulative 
effects might be signifi cant due to prolonged and continual daily exposures [ 41 ].  
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21.1.2     Direct DNA Damage 

 DNA directly absorbs the energy of UVC and UVB irradiation. The adsorbed energy 
causes intranucleotide cross-linking by dimerization of pyrimidines and formation 
of  cis - syn  cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6–4) pyrimidone 
photoproducts (6-4PP) [ 30 ,  49 ]. To a much lesser extent, purine dimers and pyrimi-
dine photohydrates are formed as well. The cyclobutane rings of CPDs are formed 
between the 5,6 bonds of two adjacent pyrimidine bases (thymine, cytosine, or 
5-methylcytosine). CPD formation is infl uenced by sequence context [ 42 ] and 
formed exclusively at dipyrimidines and preferentially at TT sites. The effi ciency of 
CPD formation at different dipyrimidine sequences is estimated at a ratio of 
55:33:11:1 for TT > TC > CT > CC [ 10 ]. In addition to the nucleotide sequences, the 
chromatin structure and its environment have a signifi cant impact on the distribution 
of CPDs and the rate of their repair. Effi cient repair in regions of DNA damage 
requires nucleosomal rearrangements to allow DNA repair complex initiation. 

 The formation of (6–4)PPs arise through a complex electron rearrangement result-
ing in generation of a single covalent bond between position 6 and position 4 of two 
adjacent pyrimidine bases [ 27 ]. The frequency of (6–4)PPs formation by UVB is at 
the same level as the formation of CPDs but is repaired at much faster rate [ 49 ]. 

 For a while it was assumed that UVA could not induce CPDs due to the inability 
of DNA to effi ciently absorb in the UVA range. However, CPDs were readily 
detected upon UVA exposures [ 2 ,  33 ]. After exposure of cultured cells and the skin 
to large doses of UVA, higher ratios of oxidized purines to CPDs are found than in 
naked DNA [ 4 ]. Analysis of the CPDs produced by UVA revealed that the 
predominant site for CPD formation is at TT compared to TC and CT sites and that 
(6–4)PPs are almost undetectable. 

 The exact mechanism of CPD formation upon UVA irradiation is still subject of 
debate. Some data suggests involvement of yet undetermined UVA chromophore 
that is capable of transferring energy to DNA by photosensitization – a triplet energy 
transfer mechanism [ 13 ]. Other evidence supports direct DNA absorption, with 
much lower effi ciency than that of UVB. This absorption has a very distinctive 
signature – exclusive TT dimer formation [ 15 ]. 

 Recently, a new pathway for formation of CPDs has been described wherein 
fragments of melanin are excited by UV-induced reactive oxygen and nitrogen 
species and then transfer the energy to DNA to form CPDs [ 32 ] This process is 
remarkable in that CPDs continue to form even in the dark. The relative importance 
of this photochemical reaction in the overall yield of DNA damage in intact human 
skin is an exciting new area of research.  

21.1.3     Indirect DNA Damage 

 Indirect DNA damage is a result of UV energy absorption by either proteins or 
DNA-bound chromophores through photosensitization. As a result of photooxidation, 
the generated superoxide radicals or singlet oxygens react with nucleotides and 
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form several kinds of base lesions. The  8 - oxo - 7 , 8 - dihydro - 2 ′- deoxyguanosine  
(8-oxo-dGua) is the most frequent and therefore most studied UVA-induced 
oxidative base lesion. If not repaired prior to the DNA replication, 8-Oxo-dGua 
mispairs with 2′-deoxyadenosine (dA) and induces G → T transversion mutations 
which are considered the fi ngerprint mutations of UVA-induced oxidized guanines 
in human skin carcinogenesis [ 4 ]. UVA induces DNA strand breaks and oxidized 
pyrimidines at a much lower frequency. 

 Melanocytes that secrete UV-absorbing melanin provide localized protection 
from the sun’s electromagnetic energy. Just in the recent decade, the accumulated 
evidence reveals that the melanin, an optical absorber, free radical scavenger, and 
antioxidant, can also form melanin radicals in the presence of metal ions. In such a 
way, the melanin becomes a strong oxidant and might be involved in a UV-mediated 
DNA damaging events [ 38 ] and as noted above perhaps even CPD formation. 
Partially polymerized melanin is particularly effective in photooxidation in that it 
promotes 8-oxo-dGua formation in presence of singlet oxygen [ 29 ]. In an animal 
model, the incidence of UVA-induced melanoma was associated with oxidative 
DNA damage, and the increase in production of 8-oxo-dGua required both UVA 
and melanin [ 28 ].   

21.2     DNA Repair 

 The knowledge of DNA repair pathways has gone from an arcane corner of nucleic 
acid biochemistry to the subject of a college textbook [ 11 ]. The molecular details of 
the reactions that lead to reversal, or removal and resynthesis, of damaged DNA can 
be found there. Here we discuss the particular aspects of DNA repair that can 
prevent photodamage and their sequelae. 

 DNA damage induced either directly or indirectly by sunlight is roughly 
randomly distributed among the target nucleotides in the genome. However, because 
the information content of the nucleotides is not randomly distributed within the 
genome, the biological consequences of DNA lesions are not of equal importance. 
As a result, repair of a minority of lesions, such as in the exons or on the transcribed 
strand, has much greater biological importance than repair of others in the introns 
or non-transcribed strands. DNA repair systems, both endogenous and therapeutic, 
have indeed focused on repairing some regions, such as transcribed strands, faster 
than others, in order to relieve phototoxic effects. 

 Here we will focus only on the main DNA repair pathways for photodamage. 

21.2.1     Nucleotide Excision 

 Nucleotide excision employs a complex of enzymes to recognize gross distortions 
in the double helix and cut out a strip of approximately 30 nucleotides surrounding 
the lesion causing the distortion. The bulkier the lesion, the more readily nucleotide 
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excision repair recognizes it, and conversely, the more subtle the nucleotide 
modifi cation, the longer it takes to fi nd and remove them. The great advantage of 
this system is that it is not lesion specifi c, so that nucleotide excision repair can 
remove damage that the organism has never experienced before, including modern 
chemical carcinogen adducts that were invented in the last 100 years. 

 This pathway has many substrates, but it is not fast. It may take only 10 min to 
incise UV-induced lesions [ 18 ], but following a sunburn it may take 12 h to remove 
half the cyclobutane pyrimidine dimers in exposed skin [ 43 ].  

21.2.2     Base Excision 

 Base excision repair uses one lead glycosylase enzyme that recognizes a small class 
of modifi ed bases and releases them from the phosphodiester backbone to create 
vacant (abasic) sites in DNA. These sites are then repaired by a common set of 
enzymes that remove the damaged regions on one strand and replace only about 4 
nucleotides. The lead enzymes have narrow substrate specifi city, but fortunately, 
several are custom fi t for DNA damage induced by sunlight. Important oxidation 
photoproducts, particularly 8-oxo-dGua, are quickly and effi ciently repaired by 
base excision repair in about 6 h. 

 One strategy for enhancing DNA repair is to introduce into skin cells glycosylases 
specifi c for cyclobutane pyrimidine dimers. This shifts the repair pathway from 
nucleotide to base excision repair. Not only does it speed up repair but it also reduces 
the frequency of mutagenic mistakes [ 46 ].  

21.2.3     Photoreactivation 

 Photoreactivation is a direct reversal of DNA damage mediated by a light-activated 
enzyme that uses the energy captured from light to reverse aberrant covalent bonds 
formed in DNA by photon absorption from sunlight. These enzymes are found 
ubiquitously in plants, reptiles, and marsupials but not mammals including humans. 
It seems our photolyase gene has been hijacked by evolution to become a blue light 
sensor for the circadian rhythm! 

 Photolyases have been found for both CPD and (6–4)PPs, the two most common 
direct forms of photodamage. Despite being derived from another kingdom, these 
enzymes perform a quick and effi cient repair inside human cells [ 39 ].  

21.2.4     Lesion Bypass by Polymerase 

 Human cells harbor a fail-safe mechanism for handling DNA photodamage. They 
have polymerase η (eta) that, during replication of a photodamaged DNA template, 
quickly and effi ciently inserts the correct nucleotide opposite a pyrimidine lesion. 
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Although this doesn’t remove the damage, it preserves the genome integrity until an 
excision mechanism can recognize and remove it. A genetic defect in this fail-safe 
mechanism produces the cancer-prone xeroderma pigmentosum variant 
phenotype.  

21.2.5     Cellular Regulation of DNA Repair 

 DNA repair enzymes and pathways are closely coordinated with the rest of the 
cell’s functions. Foremost among these coordinators is the p53 protein. Loss of its 
function is a perquisite for many skin cancers. DNA damage triggers release of p53 
protein from its inhibitor, which frees it to form a transcription activator for its tar-
get genes. Most of these genes code for cell cycle checkpoints, inhibitors of prolif-
eration and activators of DNA repair. Sustained activation of p53 protein leads to 
apoptosis and cell death. In this way, p53 gives the cell a greater opportunity to 
repair its DNA and, failing that, a road to suicide to avoid mutations and oncogenic 
transformation. 

 A large number of DNA Damage Response (DDR) proteins, many of them 
activated by p53, work together to signal that cell cycling should stop [ 7 ]. DNA 
repair activity is further tied to the health status of the cell through AMPK 
(5’-AMP- activated protein kinase), which senses energy levels in cells and whose 
activation increases DNA repair [ 44 ]. Furthermore, single-stranded breaks in DNA 
produced during repair can activate poly(ADP-ribose) polymerase to consume 
NAD, which saps the cell of molecules essential to production of ATP and lower 
cellular energy. 

 DNA repair is tied not only to the cell cycle but also to the circadian 
rhythm. This should not be surprising since the risk of photodamage to skin 
DNA is directly related to the presence of the sun in the sky. The genes and 
proteins in human cells that produce a feedback loop to create the circadian 
clock (BMal1, Clock, Cryptochrome, and Period) also regulate the cell cycle 
and DNA repair [ 34 ]. The peak of DNA repair capacity is late afternoon, just 
as the accumulation of daytime sun damage to skin DNA is reaching its 
maximum. 

 The DDR genes, including p53, work through regulation of transcription. 
Downstream of transcription, miRNA (micro-RNA) are also modulated following 
UV, and they further regulate the DDR genes by increasing or decreasing gene 
silencing complexes [ 31 ]. Cell survival after UV is dependent on the proper 
functioning of the gene silencing apparatus. 

 Many of the steps of the DDR pathways involve protein modifi cation of the 
downstream target. These modifi cations include classical phosphorylation, 
acetylation, and, as we have discussed, poly(ADP-ribosyl)ation, which serve to 
activate or inhibit enzyme activity. Another form of modifi cation is ubiquitin and/or 
SUMO (small ubiquitin-related modifi er) additions to protein, which may coordinate 
assembly of protein complexes or designate them for destruction to make way for a 
repair response [ 40 ].  
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21.2.6     Therapeutic Intervention with DNA Repair 

 The simplest way to intervene in DNA repair is to accelerate the fi rst step of DNA 
repair, the recognition and incision of damaged bases. This has been accomplished 
by encapsulating various enzymes in liposomes for delivery into skin cells, including 
T4 endonuclease V [ 47 ] and  M. luteus  UV endonuclease [ 8 ] for CPDs, OGG1 for 
8-oxo-dGua [ 45 ], and photolyase for direct reversal of CPDs [ 39 ]. These exogenous 
but small enzymes are indeed able to enter the nucleus and recognize and then repair 
DNA damage in mammalian skin. 

 The hormone α-MSH protects the skin not only by inducing protective pigment 
but also by inducing p53 and subsequent reduction in cell cycling and initiation of 
DNA repair [ 14 ], a property that may be shared with the α-MSH analog 
afamelanotide, now undergoing clinical testing. 

 Induction and synchronization of the circadian rhythm by delivery of peptides to 
skin cells has been reported to amplify DNA repair [ 25 ]. Application of such 
peptides at night may therefore accelerate repair of DNA damage accumulated 
during the day. 

 Binding of certain ligands to receptors activates DNA repair even in the absence 
of a DNA damage inducing signal. IL-12 binding to its receptor increases repair of 
UV-induced cyclobutane pyrimidine dimers [ 36 ]. The toll-like receptors TLR-3 and 
TLR-4 mediate damage-associated pattern recognition (DAMP). Agonists of these 
receptors modulate DNA repair after UV [ 1 ,  12 ]. They may act in part by activating 
p53 [ 26 ]. Since extracellular DNA is recognized as DAMP and bound by TLRs, this 
may explain the observations that dTpT and small oligonucleotides activate DNA 
repair through a p53-dependent mechanism [ 22 ]. TLRs also distinguish pathogenic 
from benign surface bacteria, and this may also explain the long-standing observation 
that extracts of probiotic bacteria enhance DNA repair [ 3 ]. 

 HMGB1 (high-mobility group protein B1) is a component of histones but also 
participates in intercellular communication and recruitment of stem cells to the skin 
from bone marrow. It is able to activate DNA repair and increase survival after UV 
[ 21 ]. This may provide a new use for compounds modulating HMGB1 levels in the 
skin.  

21.2.7     Botanical Induction of DNA Repair 

 Antioxidants naturally block oxidation of DNA and are discussed in Chap.   20    . 
There are recurrent reports of antioxidants inhibiting the formation of cyclobutane 
pyrimidine dimers by UV (e.g., [ 23 ]). One explanation might be that antioxidant 
polyphenols, such as from green tea or polypodium leucotomos, induce IL-12, 
which then activates the DNA repair pathways to remove cyclobutane pyrimidine 
dimers [ 17 ]. Another may be that antioxidants inhibit energy transfer by oxidized 
melanin fragments [ 32 ]. 
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 Topically applied ginseng saponin and silymarin reduce UV toxicity in part by 
increasing nucleotide excision repair [ 5 ,  16 ]. Interestingly, topically applied caffeine 
may improve skin health after UV by  inhibiting  DNA repair and forcing more skin 
cells into apoptosis [ 20 ]. 

 The depletion of ATP by poly(ADP-ribose) polymerase may be countered by 
oral niacin intake and thereby prevent the energy crisis and reduction in DNA repair 
following UV [ 19 ].   

21.3     Clinical Consequences of Unrepaired Photodamage 
to DNA 

 DNA damage contributes to many of the sequelae of UV exposure, as evidenced by 
animal studies, by DNA repair defi ciency diseases, and by enhancing DNA repair in 
human skin. 

 Within a few days after suffi cient UV exposure, mouse and human skin develop 
a reduced ability to properly respond to specifi c sensitizing antigens [ 50 ]. DNA 
damage, especially CPDs, contribute to this immunosuppression by inducing the 
release of immunosuppressive soluble mediators and impairing antigen-presenting 
cells. This reduced ability to respond may allow highly antigenic precancerous skin 
cells to escape immune surveillance and form a tumor. Enhancing DNA repair 
reduces the immunosuppressive effect of UV in humans [ 24 ,  39 ]. 

 Chronic UV exposure accelerates the appearance of aging. Especially in lightly 
pigmented people, this appears as an increase in skin wrinkling and uneven 
pigmentation. DNA damage contributes to destruction of collagen by inducing the 
expression of the collagenase MMP-1 [ 9 ]. DNA damage is also a trigger for skin 
pigment production, since one of the purposes of the pigment is to absorb UV and 
block additional DNA damage [ 6 ]. 

 Finally, DNA damage is a central element in the development of skin cancers, 
including squamous and basal cell carcinoma and melanoma. Mutations in tumor 
suppressor genes are frequently identifi ed in all these cancers that have the changes 
characteristic of UV-induced DNA damage [ 37 ]. In animal models of DNA repair 
defi ciency and the human genodermatosis xeroderma pigmentosum (XP), with 
defective DNA repair, the rates of UV-induced skin cancer are greatly increased. 
Enhancing DNA repair in normal or XP patients reduced their development of new 
actinic keratoses and basal cell carcinomas [ 8 ,  48 ].     
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