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Abstract We discuss the problem in which an autonomous vehicle must classify
an object based on multiple views. We focus on the active classification setting,
where the vehicle controls which views to select to best perform the classification.
The problem is formulated as an extension to Bayesian active learning, and we
show connections to recent theoretical guarantees in this area. We formally analyze
the benefit of acting adaptively as new information becomes available. The analysis
leads to a probabilistic algorithm for determining the best views to observe based on
information theoretic costs. We validate our approach in two ways, both related to
underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship
hull inspection with imaging sonar. These tasks encompass both the planning and
recognition aspects of the active classification problem. The results demonstrate that
actively planning for informative views can reduce the number of necessary views
by up to 80 % when compared to passive methods.

1 Introduction

Consider the following scenario, which occurs when observing an environment
with an underwater vehicle: given a playback of imaging sonar data from the
vehicle, the task is to determine which frames contain objects of interest (e.g., mines
[23], explosives, ship wreckage, enemy submarines, marine life [20], etc.). We will

G.A. Hollinger (&) � G.S. Sukhatme
Computer Science Department, Viterbi School of Engineering,
University of Southern California, Los Angeles, CA 90089, USA
e-mail: gahollin@usc.edu

G.S. Sukhatme
e-mail: gaurav@usc.edu

U. Mitra
Electrical Engineering Department, Viterbi School of Engineering,
University of Southern California, Los Angeles, CA 90089, USA
e-mail: ubli@usc.edu

© Springer International Publishing Switzerland 2017
H.I. Christensen and O. Khatib (eds.), Robotics Research,
Springer Tracts in Advanced Robotics 100, DOI 10.1007/978-3-319-29363-9_6

95



refer to these problems as underwater inspection, since an object is being inspected
to determine its nature. We are interested in utilizing sensor data, such as depth map
information, to determine the nature of a potential object of interest. Such problems
are typically formulated as passive classification, where some data are given, and
the goal is to determine the nature of this data.

While passive classification problems are challenging in themselves, what is
often overlooked is that robotic applications allow for active decision making. In
other words, an autonomous vehicle performing a classification task has control
over how it views the environment. The vehicle could change its position, modify
parameters on its sensor, or even manipulate the environment to improve its view.
For instance, it may be difficult to determine the nature of an object when viewed
from the top (due to lack of training data, lack of salient features, occlusions, etc.),
but the same object may be easy to identify when viewed from the side. As an
example, Fig. 1 shows an explosive device placed on a ship’s hull viewed from two
different angles with imaging sonar. The explosive is easier to identify when viewed
from the side (left image) versus from above (right image) due to the reflective
qualities of its material.

In addition to choosing the most informative views of the object, an autonomous
vehicle is able to act adaptively by modifying its plan as new information from
viewing the object becomes available. Consider an object of interest, such as an
explosive, that has an identifiable feature on a particular side. If the vehicle receives
a view that increases the likelihood of that object being in the frame, it would be
advantageous to search for that identifiable feature to either exclude or confirm the
identification of that object. A significant benefit from acting adaptively has been
shown in the stochastic optimization and planning domains [7, 11].

Fig. 1 An explosive device (circled) placed on a ship hull viewed using an imaging sonar. The
explosive is easier to identify when viewed from the side (left image) than when viewed from
above (right image). This difference motivates active planning to identify the object
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In this paper, we apply the above insights to active inspection in the underwater
domain. This paper makes three main contributions. We

1. formalize the active classification problem, combining classical work in
sequential hypothesis testing with recent work in active learning,

2. analyze the benefit of adaptivity, leading to an information theoretic heuristic
for planning informative paths for active classification, and

3. apply and test the approach to underwater classification in a simulated domain
and using real-world data.

2 Related Work

The problem of active multi-view recognition has been studied extensively in the
computer vision community, dating back to early work in active vision [1] and
next-best view planning [6]. While early work primarily optimized views using a
geometric approach, later work incorporated probabilistic models into active vision
systems [2, 8, 19].1 Such approaches have also been applied to depth maps in the
context of medical imagery [25]. While different forms of information gain play a
critical role in active vision, a key distinction in our work is the notion of adaptivity.
In active classification problems, selecting the next best observation, or even an
initial ordering of informative observations, may not result in overall performance
optimization. It is in this regard that we provide new analysis of the benefit of
adaptivity and make connections to performance guarantees in submodular opti-
mization and active learning. Our analysis is complementary to prior computer
vision work and could potentially be extended to many of these alternative
frameworks.

In this paper, we connect two classical problems: active classification and
sequential hypothesis testing. Sequential hypothesis testing arises when an observer
must select a sequence of noisy experiments to determine the nature of an unknown
[22]. A key distinction between sequential hypothesis testing and active classifi-
cation is that the type of experiment does not change in sequential testing. One of
the first applications of sequential hypothesis testing to sensor placement applica-
tions was due to Cameron and Durrant-Whyte [5]. They discuss a Bayesian
selection framework for identifying 2D images with multiple sensor placements.
This work provides a foundation for the formulation discussed in the current paper.

The active classification problem can be seen as an instance of informative path
planning [18]. Informative path planning optimizes the path of a robot to gain the
maximal amount of information relative to some performance metric. It has been
shown in several domains, including sensor placement [14] and target search [13],

1There are a number of additional active vision works relevant to the present paper. We direct the
interested reader to Roy et al. [17] for a survey.
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that many relevant metrics of informativeness satisfy the theoretical property of
submodularity. Submodularity is a rigorous characterization of the intuitive notion
of diminishing returns that arises in many active planning application.

Recent advances in active learning have extended the property of submodularity
to cases where the plan can be changed as new information is incorporated. The
property of adaptive submodularity was introduced by Golovin and Krause [11],
which provides performance guarantees in many domains that require adaptive
decision making. Their recent work examines these theoretical properties in the
context of a sequential hypothesis testing problem with noisy observations [12].
The idea of acting adaptively has also been examined in stochastic optimization and
shown to provide increases in performance for stochastic covering, knapsack [7],
and signal detection [16]. To our knowledge these ideas have not been formally
applied to robotics applications.

In the underwater inspection and surveying domains, there has been limited
work in utilizing multiple views to classify underwater mines. In some work, an
assumption is made that all views provide the same amount of information [23], and
in other work the focus is on designing high-level mission planning capabilities to
ensure coverage of the sea floor [24]. The closest prior work to our own discusses
active object recognition with imaging sonar using a Partially Observable Markov
Decision Process [15]. The authors focus on the optimal algorithm, which grows
infeasible as the number of possible viewing locations increases. This prior research
does not provide a scalable approximate algorithm, and the authors do not analyze
the benefit of adaptivity or possible performance guarantees.

3 Problem Formulation

We will now formulate the active classification problem within the sequential
hypothesis testing framework [22]. The goal is to determine the class of an
unknown object given a set of N possibilitiesH ¼ fh1; . . .; hNg: Let H be a random
variable equal to the true class of the object. In the simplest case, a binary classi-
fication task is considered (e.g., H = h0 denotes an object of interest and H = h1
denotes the lack of such an object). We can observe the object from a set of possible
locations L ¼ fL1; . . .; LMg, where the locations themselves are not informative.2

There is a cost of moving from location Li to location Lj, which we denote as dij . In
robotics applications, this cost is determined by the kinematics of the vehicle and
the dynamics of both the vehicle and environment.

A set of features F ¼ fF1; . . .;FKg is also given that distinguishes between
objects. Each feature Fi is a random variable, which may take on some values

2We formulate the problem for the case of discrete locations. If continuous locations are available,
an interpolation function can be used to estimate the informativeness of a location based on the
discrete training data (see Sect. 6).
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(e.g., binary, discrete, or continuous). Given one or more template images for each
class n, we can calculate a function GðLÞ : L ! F mapping viewing location L to
the features for which realizations will be observed from that viewing location. In
general, this mapping may be stochastic and dependent on the class. The mapping
from location to features is a key characteristic of robotics applications that dif-
ferentiates our problem from the more common problem where the features can be
observed directly [12]. Figure 2 shows a graphical model of the resulting problem.

We assume knowledge of a prior distribution for each class P(H), as well as a
conditional probability for each feature given the class P(Fk | H). The conditional
distribution represents the probability of each feature taking on each of its possible
values given the class. These probabilities can be estimated via training data. The
features that have been viewed evolve as the robot moves from location to location.
At a given time t, the robot is at location L(t), and we observe realizations of some
new features Ft � F: Let us define F1:t :=

St
i¼1 Fi as the features observed up

until time t. If we assume that the features are conditionally independent given the
class, we can calculate a distribution bðtÞ ¼ fb1; :. . .bNg using standard recursive
Bayesian inference [21]:

bðtÞ :¼ PðH jF1:tÞ ð1Þ

¼ g bðt � 1Þ
Y

F2Ft

PðF jHÞ; ð2Þ

where g is a normalizing constant.
The goal is to find a policy p that takes a belief distribution b(t), current location

L(t), and observation history F1:t and determines the next location from which to
view the object. Note that the dependence on the observation history and current
distribution allows the policy to be adaptive as new information becomes available.

Fig. 2 Graphical model of an active classification problem. The goal is to determine the value of
the hypothesis H by observing a subset of features F1; . . .;FK : The features cannot be viewed
directly, but must instead be viewed by moving to some locations L1; . . .; LM . The solid lines
denote stochastic dependence, and the dashed lines denote which features can be viewed by
visiting each location. Dependencies between the features could also exist, which would break the
conditional independence assumption
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3.1 Noiseless Case

Ideally, we would like to run the policy until we know the object’s class. If the
observations do not contain any noise, this goal is reachable. For each hypothesis h,
a policy p will have a cost cðp; hÞ associated with the locations the policy visits. We
define the expected cost of this policy relative to a distribution on hypothesis
P(H) as:

cðpÞ :¼ EH ½cðp; hÞ�: ð3Þ

This equation represents the expected cost for the policy p . For the noiseless
case, we assume that each hypothesis h has an associated vector Vh ¼ ½f1; . . .; fK � of
feature values that always occur for that hypothesis. As a result, PðF1; . . .;FK jHÞ
only takes on the values of one or zero. An incomplete feature vector V is said to be
consistent with a hypothesis h if for all f 2 V ; we have f 2 Vh .

Without observation noise, we may fully determine the hypothesis by observing
some features (in some cases all features). Let VðVÞ represent the number of
classes that are consistent with partial feature vector V (also referred to in prior
work as the version space [12]). Let Vðp; hÞ be the feature vector that results from
executing policy p with hypothesis h. The optimal policy is now the one that
optimizes the equation below:

p� ¼ argmin
p

cðpÞ s:t: VðVðp; hÞÞ ¼ 1 for all h 2 H: ð4Þ

Even in the noiseless case, there may be insufficient features to determine the
exact class of the unknown object. In these cases, the goal would be to observe the
fewest number of features that reduce the number of consistent classes as much as if
all features were observed.

3.2 Noisy Observations

When the observations are noisy, it will likely be impossible to determine the class
of an unknown object with certainty. However, as in the decision theory literature,
we minimize the expected loss (also known as the Bayes’ risk [22]) of the final
classification decision. We will now formulate the problem of minimizing Bayes’
risk for the case of noisy observations. With noisy observations, P(F | H) takes on
values other than one or zero. As a result, there is no longer a deterministic vector
Vh associated with each hypothesis, and typically we cannot uniquely determine the
hypothesis even by observing all features.

In the noisy observation case, we can generate a policy that minimizes a loss
function l(d, h) associated with making a decision d for that object (i.e., deciding on
the object’s class). For instance, if the object is an explosive, a false negative could
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incur a very high cost, but a false positive would be a lower cost. If we select the
class with maximum a posteriori probability after running a policy p, we can
calculate the expected loss for running that policy to completion:

lðpÞ :¼ EH ½lðd; hÞ j p�: ð5Þ

Let s be an acceptable threshold on expected loss. A natural goal is to incur the
lowest cost and achieve the same expected loss. The resulting optimization problem
is given below:

p� ¼ argmin
p

cðpÞ s:t: lðpÞ� s: ð6Þ

4 Proposed Solution

The goal is to optimize the expected loss for a policy p. The expected loss is a
function of the final belief b(T), which represents PðH jF1:TÞ: Calculating this loss
on an infinite horizon would require examining an exponential number of paths in
the horizon length. To make the computation feasible, we can use the truncated
expected loss:

p� ¼ argmin
p2Pð1:TÞ

EH ½lðd; hÞ j pð1 : TÞ�: ð7Þ

A related measure of the quality of b(T) is the information gain of the class given
the features observed: IGðH;F1:TÞ ¼ HðHÞ �HðH jF1:TÞ; where H is the
entropy. We will motivate the use of information gain further in Sect. 5. A heuristic
for solving the active classification problem using information gain can be for-
mulated as below:

p� ¼ argmax
p2Pð1:TÞ

EH ½IGðH;F1:TÞ j pð1 : TÞ�; ð8Þ

where Pð1 : TÞ is the set of all possible policies truncated at time T. If this opti-
mization is performed on the receding horizon, it allows for adaptive decision
making with a finite lookahead. The path costs can be implicitly incorporated by
looking ahead to a “cost horizon.” This approach has been shown to perform well in
similar information gathering domains [13].

For some loss functions, the information gain objective is equivalent to mini-
mizing the Bayes’ risk. One such function for the binary hypothesis case is the
standard 0/1 loss, where cost of one is incurred for an incorrect classification, and
no cost is incurred for a correct classification.
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5 Theoretical Analysis

We next relate the active classification problem to recent advances in active
learning theory that allow us to analyze the performance of both non-adaptive and
adaptive policies. Prior work in active vision does not provide tools for analyzing
the performance of approximate solutions. With the goal of generating approxi-
mation guarantees for scalable algorithms, we provide a preliminary analysis of the
theoretical properties of active classification objective functions.

Active classification can be seen as an instance of informative path planning
[18]. Given some potential locations to make observations, the informative path
planning problem is to maximize a function F (A), where A ¼ fL1; L2; . . .; LTg is a
set of locations visited by the vehicle up to an end time T. In most cases, the sets of
possible locations to visit are constrained by obstacles, vehicle kinematics, or other
factors. For the active classification problem, FðAÞ ¼ �EH ½lðd; hÞ jA�; the negative
expected loss after observing along path A.

5.1 Performance Guarantees

A non-adaptive policy is one that generates an ordering of locations to view and
does not change that ordering as features are observed. The non-adaptive policy
will typically be easier to compute and implement, since it can potentially be
computed offline and run without modification. Performance guarantees in the
non-adaptive informative path planning domain are mainly dependent on the
objective function (i.e., the informativeness of the views) being non-decreasing and
submodular on the ground set of possible views. A set function is non-decreasing if
the objective never decreases by observing more locations in the environment. A set
function is submodular if it satisfies the notion of diminishing returns (see Singh
et al. [18] for a formal definition).

Information gain has been shown to be both non-decreasing and submodular if
the observations are conditionally independent given the class [14], as is assumed in
this paper (see Sect. 3). Thus, if the loss function is equivalent to information gain
(e.g., 0/1 loss with binary hypotheses), then the active classification problem opti-
mizes a non-decreasing, submodular function. Let AIG be the set of locations visited
by the information gain heuristic with a one-step lookahead. For non-adaptive
policies without path constraints (e.g., when traversal costs between locations are
negligible compared to observation cost), we have the following performance
guarantee: FðAIGÞ� ð1� 1=eÞFðAoptÞ [14].

When path constraints are considered, the recursive greedy algorithm, a modi-
fication of greedy planning that examines all possible middle locations while
constructing the path, can be utilized to generate a path Arg [18]. Recursive greedy
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provides a performance guarantee of FðArgÞ�FðAoptÞ=logðjAoptjÞ; where jAoptj is
the number of location visited on the optimal path. However, the recursive greedy
algorithm requires pseudo-polynomial computation, which makes it infeasible for
some application domains. To our knowledge, the development of a fully poly-
nomial algorithm with performance guarantees in informative path planning
domains with path constraints is still an open problem. Hence, we utilize a one-step
heuristic in our experiments in Sect. 6.

The performance guarantees described above do not directly apply to adaptive
policies. An adaptive policy is one that determines the next location to select based
on the observations at the previously viewed locations. Rather than a strict ordering
of locations, the resulting policy is a tree of locations that branches on the obser-
vation history from the past locations. As noted earlier, the concept of adaptive
submodularity [11] allows for some performance guarantees to extend to adaptive
policies as well. When the observations are noiseless, the information gain heuristic
satisfies the property of adaptive submodularity. This result leads to a performance
guarantee on the cost of the one-step information gain adaptive policies in
sequential hypothesis testing domains without path constraints: cðpIGÞ� cðpoptÞ
ðlnð1=pminÞþ 1Þ; where pmin :¼ minh2H PðhÞ: When noisy observation are con-
sidered, a reformulation of the problem is required to provide performance guar-
antees (i.e., information gain is not adaptive submodular). However, Golovin et al.
[12] show that the related Equivalence Class Determination Problem (ECDP)
optimizes an adaptive submodular objective function and yields a similar loga-
rithmic performance guarantee. The direct application of ECDP to active classifi-
cation is left for future work.

5.2 Benefit of Adaptivity

We now examine the benefit of adaptive selection of locations in the active clas-
sification problem. As described above, the non-adaptive policy will typically be
easier to compute and implement, but the adaptive policy could potentially perform
better. A natural question is whether we can quantify the amount of benefit to be
gained from an adaptive policy for a given problem. To begin our analysis of
adaptivity, we consider the problem of minimizing the expected cost of observation
subject to a hard constraint on loss.3

Problem 1 Given hypotheses H ¼ fh1; h2; . . .; hNg, features F ¼ fF1;F2; . . .;
FKg, locations L ¼ fL1; . . .; LMg, costs cðLi; LjÞ ¼ dij for observing location

3Note that the related problem of minimizing expected loss subject to a hard constraint on budget
is also relevant. While similar examples show that there is a benefit to acting adaptively in this
case, we defer detailed analysis to future work.
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i when at location j, and a loss function defined as l(d, h) for selecting hypothesis
d when the true hypothesis is h. We wish to select a policy p such that:

p� ¼ argmin
p

cðpÞ s:t: lðpÞ� s; ð9Þ

where lðpÞ :¼ EH ½lðd; hÞ j p�; cðpÞ :¼ EH ½cðp; hÞ�; and s is a scalar threshold.

We now show that the optimal non-adaptive policy can require exponentially
higher cost than an adaptive policy for an instance of this problem:

Theorem 1 Let padapt be the optimal adaptive policy, and pnon�adapt be the optimal
non-adaptive policy. There is an instance of Problem 1 where cðpadaptÞ ¼ logðNÞ
and cðpnon�adaptÞ ¼ N � 1; where is N is the number of hypotheses.

Proof We adopt a proof by construction. Let s ¼ 0; i.e., the required expected loss
is zero. Let the features be observed directly through the corresponding locations
(i.e., GðLiÞ ¼ Fi and M = K). Let there be N hypotheses and M = N − 1 features.
Assign a cost c(F) = 1 for all features. The loss l(d, h) = 1 for all d 6¼ h and l(d,
h) = 0 for d = h.

Let PðhÞ[ 0 for all h 2 H. Let PðF1 j hiÞ ¼ 1 for all i 2 f1; . . .;N=2g and
PðF1 j hiÞ ¼ 0 for all i 2 fN=2þ 1;Ng. That is, feature F1 is capable of deter-
ministically differentiating between the first half and second half of the hypotheses.
PðF2 j hiÞ ¼ 1 for all i 2 f1;N=4g; PðF3 j hiÞ ¼ 0 for all i 2 fN=4þ 1; N=2g, and
PðF2 j hiÞ ¼ 1=2 for all i 2 fN=2þ 1; Ng. That is, feature F2 is capable of deter-
ministically differentiating between the first fourth and second fourth of the
hypothesis space but gives no information about the rest of the hypotheses.
Similarly, define PðF3 j hiÞ ¼ 1 for all i 2 fN=2þ 1; 3N=4g; PðF3 j hiÞ ¼ 0 for all
i 2 f3N=4þ 1; Ng, and PðF2 j hiÞ ¼ 1=2 for all i 2 f1; N=2g. The remaining
features are defined that differentiate progressively smaller sets of hypotheses until
each feature differentiates between two hypotheses.

The adaptive policy will select F1 first. If F1 is realized positive, it will select F2.
If F1 is realized negative, it will select F3. It will continue to do a binary search until
log(N) features are selected. The true hypothesis will now be known, resulting in
zero expected loss. In contrast, the non-adaptive policy must select all N −1 features
to ensure realizing the true hypothesis and reducing the expected loss to zero. □

The adaptivity analysis in Theorem 1 requires multiple hypotheses, and the
potential benefit of adaptivity increases as the number of hypotheses increases. For
the two hypothesis case, however, the benefit of adaptivity may be very small. In
the binary examples we have examined, all cases showed little or no benefit from
adaptivity. Furthermore, if there is a strict ordering on the informativeness of the
viewing locations independent of the current distribution on the hypotheses, we
conjecture that the benefit of acting adaptively will be zero [16].
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6 Implementation and Experiments

In this section, we examine the active classification problem experimentally through
the use of both synthetic images and data from imaging sonar during ship hull
inspection. The results confirm the benefit of active view selection in these appli-
cation domains as well as the benefit of adaptivity when more than two hypotheses
are considered. For all experiments, we assume a simple 0/1 loss model, where a
cost of one is incurred for a false classification, and a cost of zero is incurred for a
correct classification.

6.1 Synthetic Images

The goal of our first experiments is to differentiate between possible polyhedra
using depth maps from different views. The relevance of polyhedra recognition to
underwater inspection is direct, as explosive devices are often cubic or pyramidal in
shape [9]. This is a particularly challenging active recognition problem due to
similarities and symmetries between polyhedra. These experiments are designed to
(1) demonstrate the benefit of selecting the views with the highest potential for
information about the unknown object, and (2) examine the benefit of acting
adaptively when multiple possible objects are examined.

To identify the polyhedra, we utilize salient features extracted from the synthetic
depth map. Training images were created from 24 different viewpoints around the
objects, and the OpenCV [4] SURF feature extractor [3] was used to extract features
for the different object and viewpoints viewpoints. Noisy test images were then
created with Gaussian white noise ðr ¼ 0:23 mÞ: Figure 3 shows SURF features
extracted from synthetic depth maps of the polyhedra. The number of SURF fea-
tures is greater when viewing the polyhedra vertices when compared to viewing the
faces.

Fig. 3 SURF features extracted from depth maps of tetrahedron and cubes viewed from different
angles. Viewing the vertices provides more distinguishing information than viewing the faces
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6.1.1 Two Objects

The intuition is that it will be easier to identify the object in some viewpoints than
in others, due to the presence of additional salient features. We analyze this claim
by comparing informative view selection to random view selection on synthetic
depth map data from a cube and tetrahedron. The information gain of each view
was calculated based on the number of expected salient features corresponding to
the true object minus the expected number of false correspondences. This calcu-
lation requires comparing all views to the corresponding views of each other object
(O(N2) computation in the number of hypotheses). After the cross-correlations were
computed, planning was completed in milliseconds. To apply adaptive view
selection, we calculate the information gain from the current distribution over the
features, which changes as new views are observed.

In these experiments, path constraints are not considered, though the view
ordering could easily be used to generate a feasible path on the finite horizon.
Figure 4 shows results comparing the information gain heuristic with random view
orderings. Number of correct correspondences are reported based on the assumption
that the object with the largest number of correspondences will be selected.
Utilizing the information gain heuristic to determine the most informative views
leads to as much as a 35 % increase in the number of correct feature correspon-
dences with limited views. Adaptive view selection does not provide much benefit
over the non-adaptive technique, as expected from the small adaptivity gap in the
binary hypothesis case (see Sect. 5). Note that, for comparison, only 24 views are
considered, and all methods will provide the same performance after seeing all
these views.
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Fig. 4 Multi-view classification experiments with synthetic images of a cube and tetrahedron
viewed from 24 different angles (best viewed in color). Utilizing the expected information gain of
the next view improves the number of SURF feature correspondences when limited views are
used. Random view results are averaged over 100 orderings; error bars are one standard deviation
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6.1.2 Multiple Objects

The benefit of active classification is now examined for cases where more than two
object classes are considered. In addition to the cube and tetrahedron, we include
training images of the icosahedron, octahedron, and dodecahedron as possible
object classes. The theoretical analysis in Sect. 5 suggests that acting adaptively
should improve performance for the multi-hypothesis problem. Figure 5 shows
results for classifying the cube and tetrahedron when additional hypotheses are
considered for the other three platonic solids. The adaptive policy outperforms both
random view selection and the non-adaptive policy the majority of the time. The
difference is particularly significant for the tetrahedron. Note that the dominance of
the adaptive policy is not true at all data points. These results suggest that adding
additional hypotheses in some cases reduces the performance of active view
selection.

6.2 Imaging Sonar Data

To examine the benefit of active classification on real-world data, we utilize data
from imaging sonar depth maps taken from a ship hull inspection with an under-
water vehicle. The vehicle has already executed a path, and we utilize the proposed
framework to order the viewpoints based on informativeness. Such information
could then be utilized to plan additional inspection paths of the object.

The goal of the inspection is to determine whether an explosive has been placed
on the ship hull. The explosive appears as a small patch of bright pixels on the
imaging sonar depth map. Since the sonar data is not dense enough to provide
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Fig. 5 Classification experiments with synthetic images of the five platonic solids (best viewed in
color). The results for a cube and tetrahedron test object are shown. Adaptively selecting the most
informative views based on past information tends to improve classification accuracy, and acting
adaptively increases this benefit. Random view results are averaged over 100 random orderings;
error bars are one standard deviation

Active Classification: Theory and Application … 107



salient features, we take a simpler approach of using the brightness of the pixels as
the feature base. A brightness threshold was learned by minimizing the number of
misclassified pixels in labeled data. The performance metric is the total number of
pixels correctly classified as part of the explosive device. We utilize this metric
because images with a large number of corresponding pixels may provide addi-
tional information during post-processing or to a human operator.

A separate test set was held out of the labeled set to determine if the most
informative views could be predicted using the learned threshold and expected view
quality. There were 100 frames in the training and 75 frames in the test set. The
training and test frames were from different trajectories, but with the same back-
ground. The frame rate was approximately 2 fps. The information gain in these
experiments was calculated based on the expected number of pixels corresponding
to the explosive in a given view, which was found using an average of the
hand-labeled pixels in the training set images weighted by their distance (using data
from a DVL sensor). A squared exponential weighting was used.

Figure 6 shows the results of running the information gain approach versus ran-
dom views. We also compare to the initial (very poor) view ordering from the data as
well as two simple ordering methods: sorting the views based on minimum distance
to the object and sorting based on the maximum angle of view (see Fig. 1 for the
intuition behind this method). The results show that actively choosing the views with
the highest expected information improves classification performance. For example,
choosing informative views reduces the number of views for 15 correct pixel iden-
tifications by nearly 80 % versus random selection (from 38 views to 8 views).

For visual reference, Fig. 7 shows images of decreasing expected pixel classi-
fications. Intuitively, the images where the explosive stands out from the back-
ground should provide the most information. Despite some incorrect predictions, it
is clearly beneficial to examine those viewpoints predicted to be informative. It
should be noted that the informativeness of the images depends on the quality of the
low-level sonar processing. With perfect low-level data processing, all images may
have high informativeness, which would reduce the benefit of active classification.
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7 Conclusions and Future Work

This paper has shown that actively choosing informed views improves performance
for inspection tasks in the example underwater domain. The experimental results
demonstrate that depth map information can be utilized to recognize objects of
interest, and that (compared to passive methods) up to 80 % fewer views need to be
examined if the views are chosen based on their expected information content. In
addition, acting adaptively by re-evaluating the most informed views as new
information becomes available leads to improvement when more than two classes
are considered. These results are consistent with theoretical analysis of the benefit
of adaptivity.

Future work includes further theoretical analysis of performance guarantees,
particularly in the case of path constraints. The analysis and tools developed in this
paper can also be applied to related underwater inspection problems, such as
reconstructing ocean floors or ship hulls for inspection [10]. Such tasks have typ-
ically been formulated as coverage problems, but the use of alternative objective
functions based on uncertainty reduction could both improve performance and
allow these problems to be analyzed in the context of active classification. Finally,
the analysis in this paper has applications beyond underwater inspection. Tasks
such as ecological monitoring, reconnaissance, and surveillance are just a few
domains that would benefit from active planning for the most informed views.
Through better control of the information we receive, we can improve the under-
standing of the world that we gain from robotic perception.
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Fig. 7 Imaging sonar depth maps of an explosive device (circled) placed on a ship’s hull. The
depth maps are ordered based on the expected number of pixels in the image corresponding to a
possible explosive. Note that the explosive is easy to identify in image (a), more difficult to
identify in image (b), and very difficult to identify in image (c). Image d is expected to be a low
information view, when in fact the explosive is relatively easy to identify. a Exp. gain: 3.7,
b Exp. gain: 2.1, c Exp. gain: 1.5, d Exp. gain: 0.8
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