
Probabilistic Collision Detection Between
Noisy Point Clouds Using Robust
Classification

Jia Pan, Sachin Chitta and Dinesh Manocha

Abstract We present a new collision detection algorithm to perform contact
computations between noisy point cloud data. Our approach takes into account the
uncertainty that arises due to discretization error and noise, and formulates collision
checking as a two-class classification problem. We use techniques from machine
learning to compute the collision probability for each point in the input data and
accelerate the computation using stochastic traversal of bounding volume hierar-
chies. We highlight the performance of our algorithm on point clouds captured
using PR2 sensors as well as synthetic data sets, and show that our approach can
provide a fast and robust solution for handling uncertainty in contact computations.

1 Introduction

The problems of collision detection and proximity computation are widely studied
in different areas, including robotics, physically-based modeling, haptics and virtual
environments. In particular, reliable and fast collision detection algorithms are
required for robot motion planning, grasping and dynamics simulation to enforce
the non-penetration constraints with the environment.

Most of the prior work on collision detection assumes an exact geometric
description of the objects in the scene, typically represented as a polygon mesh.
However, these methods may not work well for robots operating in real-world
environments, where only partial observations of the environment are possible
based on robot sensors. For example, inaccurate motor control makes a robot

J. Pan (&) � D. Manocha
The Department of Computer Science, UNC, Chapel Hill, USA
e-mail: panj@cs.unc.edu

D. Manocha
e-mail: dm@cs.unc.edu

S. Chitta
Willow Garage Inc., Menlo Park CA 94025, USA
e-mail: sachinc@willowgarage.com

© Springer International Publishing Switzerland 2017
H.I. Christensen and O. Khatib (eds.), Robotics Research,
Springer Tracts in Advanced Robotics 100, DOI 10.1007/978-3-319-29363-9_5

77

deviate from its exact configuration and the sensors tend to add noise to the
environment measurements. Current robot sensors including cameras and LIDAR
and new devices such as Kinect can easily generate detailed point cloud data of
real-world environments. However, it is hard to directly use prior collision detection
algorithms which perform a boolean query and compute a yes/no answer.
Moreover, exact collision checking may not be suitable in terms of handling
uncertainty in perception and control, which also causes uncertainty in collision
results. For many robotics applications, such as grasping or motion planning, we
need to reduce the risk of physical contacts between the robot and the environment
that may result in damages. Hence, we need to develop methods that tend to
minimize the probability of collisions. Our point cloud collision and proximity
algorithm can also be used to improve many methods’ feasibility and robustness in
real world. For example, algorithms in tactile manipulation usually require an exact
or approximated mesh model of manipulated objects (e.g., [21]) and our method
can extend them to directly handle the point clouds provided by sensors (See
Fig. 1).
Main Results: In this paper, we present a probabilistic collision detection algorithm
that can handle environments with uncertainty. Our approach can handle noisy or
inexact point data representations that are gathered using sensors. In order to handle
point cloud data with noise, we reformulate the collision detection problem as a
two-class classification problem, where points of different objects belong to dif-
ferent classes. The collision probability is directly related to the separability of the
corresponding two-class problem, which can be elegantly and efficiently solved
using support vector machines (SVMs). We accelerate the computation using
bounding volume hierarchies and perform a stochastic traversal of the hierarchies
that takes into account noise and uncertainty. These hierarchies are updated for
dynamic scenes or when the robot head or the gripper moves. Our probabilistic
collision algorithm also estimates the contact points and contact normals. We test

Fig. 1 A visual representation of the collision information generated by the sensors on the PR2
robot. (Left) The environment includes the points in a collision map (in light blue), mesh
representations for known objects detected through visual sensing (green cylindrical object on
table), and an exact geometric representation of the table surface (green flat surface). A detailed
mesh model for the robot is also seen in the picture. (Right) A representation of the collision points
(shown by red spheres) between the gripper and the object on the table

78 J. Pan et al.

our algorithm on point clouds generated from PR2 sensors and synthetic data sets.
Our method can provide robust results for probabilistic collision detection and
its run-time performance is similar to that of hierarchy-based collision detection
algorithms for triangle meshes (e.g., 500–1000 ms for 10 K points on a single
CPU core).

The rest of the paper is organized as follows. We survey related work in Sect. 2.
We introduce our notation and give an overview of the approach in Sect. 3.
Section 4 shows how probabilistic collision detection computation is reduced to
robust classification. We highlight the performance of our algorithm on different
benchmarks in Sect. 5.

2 Previous Work

The field of probabilistic robotics provides a mathematical framework to handle the
uncertainty that exists in the physical world [30]. It deals with representing
uncertainty explicitly using the calculus of probability distribution and obtains
robust control choices relative to the uncertainty in the robot system. Probabilistic
robotics can handle perception uncertainty (or environment uncertainty) due to
sensor and action errors. However, previous approaches tend to use simple methods
to model environment uncertainty, such as feature-based methods or occupancy
grid based methods [30]. These models can only provide a rough description of the
environment while many robot actions (e.g., grasping) require more detailed
information for robust computation.

2.1 Uncertainty of Point Cloud Data

Raw point cloud data obtained from sensor data can have a high degree of
uncertainty, which results mainly from discretization error and noise. As a result, it
is difficult to obtain robust estimation of high-order features like surface normals.
This causes difficulty for many applications that require precise estimates of normal
vectors at the boundary, such as grasping.

Many approaches consider uncertainty of point clouds implicitly. For example,
[25, 28] encode surface uncertainty as a parameter tolerance for learning algorithms
as they apply geometric operations (e.g., reconstruction) on the point clouds.
However, without an explicit model of uncertainty, we can only consider a single
uncertainty formulation for the overall surface, but may not be able to model
varying uncertainty at different parts of the surface for local control.

There is recent work on explicitly modeling the uncertainty of point cloud data
for different applications. Bae et al. [1] present a closed-form expression for the
positional uncertainty of point clouds. Pauly et al. [20] propose two methods,
confidence map and likelihood map, to analyze shape uncertainty in point clouds

Probabilistic Collision Detection Between Noisy … 79

for resampling and reconstruction applications. Jenke et al. [11] describe a Bayesian
model for point cloud uncertainty for surface reconstruction.

2.2 Collision Detection

Prior collision detection methods mainly focus on performing efficient and accurate
contact computations between objects represented by triangulated primitives [17].

In terms of collision checking with point clouds, there are several simple
methods. For example, we can first reconstruct triangle meshes from point clouds
and then perform exact collision checking between the reconstructed surfaces.
However, this approach suffers from inefficiency (>10 s for 10 K points) and
robustness issues that arise in terms of using reconstruction algorithms (e.g.,
reconstruction quality, sensitiveness to parameter and noise, etc.). We can also
simply expand every point as a sphere with suitable radius and approximate the
object as a union of spheres [10] for collision checking. The main difficulty is in
terms of automatically choosing different sphere radii for different points. Other
direct collision checking methods for point cloud data are based on using bounding
volume hierarchies [13, 27] and reconstructing implicit functions at the leaf nodes,
which are prone to robustness issues. Minkowski sums of point clouds have also
been used for collision queries [16]. Sucan et al. [29] describe a collision map data
structure, which uses axis aligned cubes to model the point cloud and to perform
collisions with a robot. Some applications, including virtual reality and haptics,
need real-time collision checking, and use probabilistic criteria based on minimum
distance computation between the point sets [15]. However, these methods do not
take into account point cloud data’s inherent shape uncertainty that arises from
discretization or sampling [20].

There has been relatively little work in terms of handling uncertainty in collision
detection. A special type of collision uncertainty is discussed in [7], which projects
objects onto different image planes to perform collision culling using GPU-based
computation. Guibas et al. [8] propose a method to compute the collision proba-
bility between 2D objects composed of line segments in a 2D environment with
uncertainty. In order to estimate the collision uncertainty, this method models the
endpoints of a line segment as probability distributions with a rectangular support
region. Missiuro et al. [18] also try to model uncertainty in probabilistic roadmaps
by using the collision probability of a configuration to bias the sampling process for
roadmap computation.

3 Overview

In this section we introduce the notation used in the rest of the paper and give an
overview of our approach.

80 J. Pan et al.

The main pipeline of our system consists of three steps: (1) Obtain raw data from
sensors and filter the point clouds to remove points on the robot and reduce the
shadow effect [29]; (2) Compute the separating surface between two point clouds
by estimating the noise from sensor parameters (Sects. 4.1–4.3); (3) Estimate the
collision probability for each point and the overall collision probability between
two point clouds (Sect. 4.4). Moreover, we use bounding volume hierarchies to
accelerate the computation and recompute the hierarchies for dynamic environ-
ments (Sect. 4.5).

The inputs to our collision detection algorithm are the point clouds. In some
cases, we need to perform the collision query between two different point clouds or
between a point cloud and a polygonal object (e.g., when the mesh representation of
a robot hand or gripper is available). We first present our approach for two different
point clouds, and later show how it can be applied to a point cloud and a polygonal
object.

Let the two point clouds be denoted as C1 and C2. We assume that each point
cloud C is obtained from sensors and is a partial and noisy representation of the
underlying exact surface S. There are two kinds of errors introduced in the gen-
eration of point clouds: discretization errors and position errors or noise uncer-
tainty. Intuitively, the discretization error refers to how these point samples are
distributed on the boundary of the surface and the position error measures the
imprecision in the coordinates of each point. Formally, we assume C is generated
from S according to the following process: first a series of n sample points xi′ is
generated according to some sampling process and we use the symbol p(xi′|S) to
represent the distribution of coordinates for a random point xi′, i.e., it models the
discretization error. Next, xi is generated from xi′ according to some noise distri-
bution p(xi|xi’; Ri), i.e., it models the position error. Generally p(xi′|S) is not given,
but we can estimate it based on the observed point-cloud data with some
assumptions about surface smoothness and sampling density. The symbol Ri is used
to model point cloud’s uncertainty due to noise, and is typically computed based on
the sensor characteristics. For example, Ri may measure the level of noise that is a
combination of sensing noise, motion uncertainty and deformation error. Then the
overall uncertainty of a point xi can be modeled as

xijS� pðxijSÞ ¼
Z

pðx0ijSÞpðxijx0i;RiÞdx0i: ð1Þ

In this formulation, we have an implicit assumption that the sensor is able to capture
the features of the underlying surface. For example, more sample points xi′ are
generated near the sharp features so that we can reconstruct the necessary features
of the original model.

The output of the collision detection algorithm is a probability PC1;C2 that esti-
mates whether two point clouds C1 and C2 are in-collision.

Probabilistic Collision Detection Between Noisy … 81

3.1 Separating Surface

Given a point cloud, we can possibly reconstruct a triangulated surface represen-
tation using Bayesian optimization. That is, the underlying surface should be the
one with the maximum probability:

Ŝ ¼ argmax
S

pðSjfxigni¼1Þ ¼ argmax
S

pðSÞ
Y
i

pðxijSÞ: ð2Þ

Next, we can perform collision checking based on reconstructed models. However,
reconstruction process is only an estimation and the collision computation based
reconstruction can be rather inaccurate. Our formulation is based on the theory of
convex sets: two convex sets are non-intersecting if there exists an oriented sepa-
rating plane P so that one set is completely in the positive (open) halfspace P+ and
the other completely in the negative (open) halfspace P− [19]. For non-convex sets,
we extend the concept of separating plane to the separating surface: two sets are
non-intersecting (or separable) if and only if there exists a separating surface
P between them. Previous work in collision detection [19, 22] is limited to the
special case when P is composed of multiple planes.

We extend the idea of separating surfaces to handle point clouds. Given two
point clouds C1 ¼ fx1i gn1i¼1 and C2 ¼ fx2i gn2i¼1 with n1 and n2 elements, respectively,
a separating surface P is a surface that can separate the two sets completely with C1

in P+ and C2 in P
−. In this case, P+ and P− represent a partition of the space R3 into

two parts. Notice that here P should not be an arbitrary surface, i.e., it should not be
a very complex function in terms of acting as a valid separating surface. Otherwise,
even if P can completely separate the point clouds, it may not be able to separate the
underlying surfaces. Such a problem is called overfitting in machine learning lit-
erature, i.e., the statistical model biases too much on the observed data and may not
be able to predict the underlying model correctly. In order to avoid overfitting, we
need to assume regularity conditions for P, which intuitively impose suitable
smoothness constraints on the separating surface. For example, we represent P as a
parameterized implicit surface {x : f (x; h) = 0} with h as its parameters. In this
case, the regularity condition can limit the value of f′(x; h). Moreover, P+ and P−

can be represented as {x : f (x; h) > 0} and {x : f (x; h) < 0}, respectively. As a
result, collision detection problem is reduced to finding the separating surface, i.e.,
deciding the parameter set h, that can separate C1 and C2.

There is one major difference between point clouds and convex/non-convex sets.
In particular, for point cloud data, the existence of a separating surface is not a

necessary or sufficient condition for non-intersection between the two sets. If two
point clouds are noise-free and separable, their underlying surfaces may still be
collision-free or in-collision, as shown in Fig. 2a, b. This is due to the discretization
error from point-cloud sampling. The issue becomes more complicated when point
clouds have position errors, as shown in Fig. 2c, d. This property of point cloud sets
makes it difficult to perform exact collision checking, but is suitable for statistical

82 J. Pan et al.

learning approaches like SVM [3]. As a result, the probabilistic collision detection
problem can be reduced to computing the optimal separating surface that minimizes
the separating error for underlying surfaces: i.e., find h that minimizesZ

x2 S1

1fx2PðhÞ�gdxþ
Z
x2 S2

1fx2 pðhÞþ gdx; ð3Þ

where S1 and S2 are the underlying surfaces for point clouds C1 and C2,
respectively.

3.2 Probabilistic Model for Point Cloud Collision

We now present the probabilistic model for point cloud collision checking to
compute the optimal separating surface. We rewrite xli with l 2 {1, 2} as (xi, ci),
where xi ¼ xli and ci = (−1)l+1 2 {−1, 1} denotes which object the point xi belongs
to. As a result, we have n1 + n2 elements in {(xi, ci)}. As discussed in Sect. 3.1,
collision checking between two point sets reduces to finding an optimal separating
surface P. In machine learning terminology, this corresponds to finding an optimal
classifier that can minimize the expected risk on the classification problem whose
data is drawn from fx : x2 S1

S
S2g and its training set is {(xi, ci)}. As a result, the

collision detection problem is reduced to a machine learning problem. However,
unlike typical machine learning algorithms which only deal with cases where (xi, ci)
are specified exactly, we also need to take into account the noise in xi. Our solution

(a) (b) (c) (d)

Fig. 2 Separating surface for point cloud sets. Point clouds in (a) and (b) are noise-free and are
separable. However, due to discretization uncertainty, the underlying surfaces can be collision-free
(a) or in-collision (b). Point clouds in (c) and (d) have some noise and may not be separable. And
the underlying surfaces can be collision-free (c) or in-collision (d). Notice that we require suitable
regularity or smoothness on the separating surface to avoid overfitting. For example, the separating
surface provided in (c) has too large curvature and therefore is not valid. It in fact does not provide
a good estimation for how to separate the underlying clouds. Collision result based on
reconstructed meshes may not be reliable in all four cases due to discretization error (a, b) or
position noise (c, d) or unsuitable parameters

Probabilistic Collision Detection Between Noisy … 83

is based on the maximum-likelihood (ML) scheme, i.e., the optimal surface should
maximize the probability on the observed inputs {(xi, ci)}.

Similar to Eq. (1), the joint probability for (xi, ci) can be expressed as

pðxi; ciÞ ¼
Z

pðx0i; ci; hÞpðxijx0i;RiÞdx0i: ð4Þ

Here h is the parameter set used to represent the separating surface P. For example,
P is {x : wT x + b = 0} if P is a plane and h = {w, b}. Or P is {x : wT U
(x) + b = 0} if P is a hyper-plane in some high-dimensional inner product space H
and U is the mapping U : R3 7!H. The unknown surface parameter h can be
estimated from the point cloud data using ML:

h� ¼ argmax
h

X
h

In
Z

pðx0i; ci; hÞpðxijx0i;RiÞdx0i ð5Þ

In practice, the integration over the unknown underlying surface sample xi′ makes it
hard to compute the surface parameter. As a result, we consider an alternative form
that is computationally more efficient. Specifically, we use an approximation
to Eq. (5) based on a widely used heuristic for mixture estimation: we simply
regard xi′ as a parameter of the model instead of a random variable. Then Eq. (5)
reduces to:

h� ¼ argmax
h

X
i

ln sup
x0i

pðx0i; ci; hÞpðxijx0i;RiÞ: ð6Þ

We present an algorithm to solve Eq. (6) in Sect. 4.

4 Probabilistic Collision Checking Between Point Clouds

In this section, we present our probabilistic algorithm for collision checking
between point clouds using two-class classification. This reduces to computing the
optimal separating surface that minimizes the function in Eq. (6).

4.1 Basic Formulation

For convenience, we first assume that the separating surface is a plane, i.e., P = {x :
wT x + b = 0}. We also assume that the uncertainty due to noise can be described
by a Gaussian distribution. We will relax these assumptions later. Based on these
two assumptions, we have

84 J. Pan et al.

pðx0i; ci; hÞ� pðx0iÞ expð�
ðwTx0i þ b� ciÞ2

r2 Þ and

pðxijx0i;RiÞ� expð�ðxijx0iÞTR�1
i ðxi � x0iÞÞ;

ð7Þ

where r and Ri are the covariance parameters of a Gaussian distribution.
As we will show in Sect. 5, the discretization uncertainty at x0i can also be

estimated as a Gaussian distribution with the observation xi as mean. That is
pðx0iÞ� expð�ðx0i � xiÞTW�1

i ðx0i � xiÞÞ, where Wi is the covariance parameter for
discretization uncertainty. Here we assume that the observed data xi is fixed and the
true value x0i is subject to random errors. This is equivalent to the so-called
Berkson’s model in statistics literature [2]. Then Eq. (6) becomes

h� ¼ argmax
h

X
i

inf
x0i

ðwTx0i þ b� ciÞ2
r2 þðxi � x0iÞT eR�1

i ðxi � x0iÞ
" #

; ð8Þ

where h = {w, b} and eR�1
i ¼ R�1

i þW�1
i .

Moreover, notice that if ðxi � x0iÞT eR�1
i ðxi � x0iÞ is large, then pðx0i; ci; hÞ term

will have a small value and can be ignored in the integration for p(xi, ci). As a
result, we can constrain xi to lie within the ellipsoid Ei ¼ fx0i : ðxi � x0iÞT eR�1

i ðxi �
x0iÞ� r2i g and this will not influence the final result considerably. Also considering
the regularity of separating surfaces, Eq. (8) can be approximated by an opti-
mization formulation that is similar to support vector machine (SVM):

minimize
w;b;ni

1
2 wk k2 þ k

Pn
i¼1

ni

subject to ciðwTx0i þ bÞ� 1� ni; 8x0i2Ei81� i� n;
ni � 0; 81� i� n:

ð9Þ

The above formulation minimizes the upper bound on the classification error, which
is equivalent to separating error in Eq. (3). Errors occur when ni � 1, as x0i lies on
the wrong side of P. The quantity k is the penalty for any data point x0i that either
lies within the margin on the correct side of P (0 < ni � 1) or on the wrong side of
P (ni > 1). wk k is the regularization term which controls the smoothness of the
separating surface.

It is easy to verify that ciðwTx0i þ bÞ reaches its minimum at point xi �
riðwTfRiwÞ1=2fRiw and the minimum value is ciðwTxi þ bÞ � riðwTfRiwÞ1=2. As a
result, Eq. (9) can be further written as:

minimize
w;b;ni

1
2 wk k2 þ k

Pn
i¼1

ni

subject to ciðwTxi þ bÞ� 1� ni þ ri eR1=2
i w

��� ���; 81� i� n;

ni � 0; 81� i� n:

ð10Þ

Probabilistic Collision Detection Between Noisy … 85

Such optimization problems have been studied in the literature [26] and can be
solved using second order cone programming (SOCP) methods. Once w and b are

computed, we can compute ni ¼ maxð0; 1� ciðwTxi þ bÞþ ri eR1=2
i w

��� ���Þ.

4.2 Non-Gaussian Uncertainty

The uncertainty of real-world sensors may not be accurately modeled using a
Gaussian distribution. Our approach can also handle non-Gaussian uncertainty.

Shivaswamy et al. [26] point out that the ellipsoid radius ri is related to the
confidence of the classification result when the training data contains noise. Briefly,
if we desire the underlying surface point x0i with Gaussian distribution to lie on the
correct side of the separating surface with a probability greater than ji

P
x0i �Nðxi;eR iÞ

ðciðwTx0i þ bÞ� 1� ni
� �� ji; ð11Þ

then ri = cdf−1(ji), where cdfðuÞ¼ 1ffiffiffiffi
2p

p
R u
�1 exp �s2

2

� �
ds. Using multivariate

Chebyshev inequality, this relationship between ji and ri can be further extended to
the case when x0i follows non-Gaussian distribution. That is, if x0i �ðxi; eRiÞ repre-
sents a family of distributions with a common mean and covariance given by xi andeRi, and we want xi to lie on the correct side of the separating surface with a
probability greater than ji

sup
x0i �ðxi;eR iÞ

Px0i ðciðwTx0i þ bÞ� 1� ni
� �� ji; ð12Þ

then ri ¼
ffiffiffiffiffiffiffiffi
ji

1�ji

q
. This formulation implies that we can perform collision detection

using Eq. (10) even when the uncertainty is non-Gaussian.

4.3 Non-linear Separating Surface

Linear separating surface is mainly limited to the case when all the underlying
surfaces are convex. If any one of them is non-convex, a separating plane may not
exist even when the surfaces are collision-free. Therefore, we need to extend our
algorithm to non-linear P. Similar to typical SVM algorithms [31], we can remove
the linear separating surface assumption by applying a kernel trick on the dual form
of Eq. (10). Briefly, kernel trick is a method that transforms the Euclidean space Rn

86 J. Pan et al.

into another inner space H using mapping U and then replaces the inner product
y; zh iRn by the new inner product Kðy; zÞ ¼ ðUðyÞ;UðzÞÞH in space H. Here K(�,
�) is called the kernel function. Usually a hyper-plane in H will correspond to a
non-linear surface in Rn, which is a popular way to construct non-linear classifiers
in machine learning [9]. Some of the widely used kernel functions include linear (K
(y, z) = yT z) and Gaussian ðKðy; zÞ ¼ expð�c y� zk k2ÞÞ.

Based on the kernel trick, the non-linear separating surface can be formulated as
P = {x : wT U (x) + b = 0}. To compute P, we first transform Eq. (10) into its dual
form. Next, based on the Taylor-expansion technique [3], we replace yT z∂ z by

kernel function K(y, z) and replace y by the kernel gradient @ Kðy;zÞ@ z and finally obtain
the optimization formulation in non-linear case as

maximize
ai;vi

Xn
i¼1

ai � 1
2
ð
Xn
i¼1

Xn
j¼1

aiajcicjKðxi; xjÞþ
Xn
i¼1

Xn
j¼1

aiciðeR1=2
j

@ Kðxi; xjÞ
@ xj

ÞTvj

þ
Xn
i¼1

Xn
j¼1

ajcjðeR1=2
j

@ Kðxi; xjÞ
@ xj

ÞTvj þ
Xn
i¼1

Xn
j¼1

vTi ðeR1=2
j

@2 Kðxi; xjÞ
@ xi@ xj

eRT=2
j ÞvjÞ

subject to vik k� riai; 0� ai �C;81� i� n; and
Pn
i¼1

aici ¼ 0;

ð13Þ

where C is a regularity term similar to k in Eq. (10). Once ai and vi are computed,
we can compute the formulation for the separating surface P

f ðxÞ ¼ bþ
Xn
j¼1

ajcjKðxj; xÞþ
Xn
j¼1

vTj eR1=2
j

@ Kðxj; xÞ
@ xj

ð14Þ

and ni ¼ maxð0; n0iÞ, where

n0i ¼ 1� cif ðxiÞþ ri eR1=2
i f 0ðxiÞ

��� ���: ð15Þ

Notice that the surface parameter b does not appear in the dual form, but it can be
computed based on Karush–Kuhn–Tucker conditions [5]. We first choose i so that
0\ai\C; vik k\riai and then set n0i ¼ 0 in Eq. (15) to obtain b. Moreover, notice
that all the results for non-linear separating surface are consistent with those for
linear separating surface, which use a linear kernel K(y, z) = yT z.

4.4 Probabilistic Collision Decision

Based on the computed separating surface, we present a simple scheme to perform
probabilistic collision detection between the point clouds. First, we compute the

Probabilistic Collision Detection Between Noisy … 87

collision probability for each point, i.e., the probability that x0i lies on the wrong side
of separating surface:

P
x0i �Nðxi;eR iÞ

ðcif ðx0iÞ� 0Þ ¼ cdfð�cif ðxiÞ= eR1=2
i f 0ðxiÞ

��� ���Þ: ð16Þ

We denote this per-point probability as PðxiÞ. Next, we need to use an appropriate
metric to measure the collision probability between two point clouds. For two exact
models, collision occurs if any subsets of them are in-collision. Therefore, for point
clouds C1 and C2, it seems to be reasonable to define the collision probability
between them as 1�Q

x2fC1

S
C2g½1� PðxÞ�. However, this metric may have some

issues: when the number of points increases, its value will go to zero instead of
converging to the real collision probability. The reason is that this metric does not
consider the dependency between collision states of nearby points. Our approach
for computing collision probability only involves far-away points with large
per-point collision probability. First, we compute the maximum per-point collision
probability maxx PðxÞ. Next, we find all the points whose per-point collision
probabilities are near the maximum value, e.g., more than 0.8 maxx PðxÞ. For points
that are close to each other, we only use one of them in the whole body collision
probability computation. The first rule filters out points whose collision probabil-
ities are not large enough so as to improve the stability of collision results while the
second rule filters out points that are closely correlated. Finally, we compute the
collision probability between point clouds based on the left m 	 n points
f~xig : PC1;C2 ¼ 1�Qm

i¼1 ½1� Pð~xiÞ�. We can also use a simpler version of this
metric which only considers the point with the maximum collision probability:
PC1;C2 ¼ maxx2C1

S
C2
PðxÞ. For collision between exact models, the two metrics

are equivalent, as Pð~xiÞ ¼ maxxPðxÞ ¼ 1, for all i. The simpler metric can not
distinguish the collision states when point clouds have one or more far-away points
with large per-point collision probability, but it is more convenient to distinguish
between collision-free and in-collision cases.

4.5 Acceleration Using Bounding Volume Hierarchies

We have reduced the problem of collision detection between two point clouds to a
two-class classification problem and can solve it with SVM. However, performing
collision detection by directly using Eq. (13) introduces some challenges. First, the
timing complexity of SVM can be Oðn3Þ, where n = n1 + n2 is the number of points
in the two point clouds. As a result, the underlying algorithm can be slow for dense
point clouds. Second, the two point clouds corresponding to different objects may
have different numbers of points, which can result in unbalanced training data in
terms of using machine learning algorithms. Moreover, if the two point clouds
under consideration correspond to objects with different sizes (e.g., a large room

88 J. Pan et al.

and a small robot), it will cause the optimization algorithm to have a lower sepa-
rating error for the large object and higher error for the small object.

We use bounding volume hierarchies (BVH) to overcome these problems. These
hierarchies provide a quick identification of objects or parts of an object that can be
easily culled away and therefore perform exact collision queries on relatively few
primitives.

5 Implementation and Results

In this section, we describe some details of our implementation and highlight the
performance on several benchmarks.

5.1 Implementation

First, we discuss how to estimate the distribution of the underlying surface sample
pðx0iÞ. The mean of pðx0iÞ is xi due to our unbiased assumption. We estimate the
covariance Wi based on the formulation described in [20]:

Wi ¼
Rn
j¼1ðxj � xiÞðxj � xiÞT expð� xi�xj

�� ��2=s2i Þ
Rn
j¼1 expð� xi�xj

�� ��2=s2i Þ ; ð17Þ

where n is the total number of points and si is a parameter used to remove the
influence of points too far away from xi. We set si ¼ s � gi:s as a global scale
parameter and the variable gi ¼ rffiffi

k
p denotes the local sample spacing estimated from

k a k-neighborhood, where r is the radius of the enclosing sphere of the k-nearest
neighbors of xi.

Our algorithm is based on machine learning techniques and includes some
parameters that need to be tuned. Fortunately, we find that our method is not
sensitive to the parameter choice if we preprocess the data by scaling it to [0, 1]3

volume in 3D. Scaling is considered important in terms of robustness of SVM,
especially for the non-linear case. Moreover, scaling also helps us in computing the
parameters that are suitable for the point clouds with different sizes or configura-
tions. In practice, scaling also changes the uncertainty of each point, so we need to
update the noise level from eRi to SeRiST , where S = diag(s1, s2, s3) is the scaling
matrix.

We have used our algorithm on data captured using robot sensors. Note that our
method is designed for noisy environments where the ground-truth for collision
detection is unknown. In this case, exact collision algorithms are not applicable as
we don’t have an exact representation of the environment. Therefore, it is difficult to

Probabilistic Collision Detection Between Noisy … 89

directly compare the quality or accuracy of our algorithm with prior methods.
However, our method can guarantee: (1) For easy collision queries, i.e., when the
distance between two collision-free objects is large or the two objects are in deep
penetration, our method will give collision probability near 0 or 1. In this case, only
very large noise can reverse the outcome of the query. However, our probabilistic
algorithm would give the same result as the exact approach that first performs mesh
reconstruction from the point clouds. (2) For challenging queries, i.e., when two
objects are almost in-contact or have a small penetration, our method computes a
collision probability near 0.5, because these configurations are more susceptible to
noise. Exact collision algorithms will still provide a yes-no result, but the accuracy
of the exact algorithm is governed by the underlying sampling and mesh recon-
struction algorithm. If a yes-no collision answer is required, our algorithm uses two
thresholds A � 0.5 � B: if collision probability >A, we report collision-free; if
collision probability <B, we report in-collision; if collision probability is between
A and B, we report in-contact. For example, when collision-avoidance is critical for
the underlying applications, we can use large conservative value for A and small
conservative value for B to achieve higher guarantees.

5.2 Results

We highlight the performance of our algorithm on real-world point clouds as well
as synthetic data sets. We also compare its accuracy with prior collision detection
techniques. The running time of our probabilistic algorithm is similar to that of
exact collision detection algorithms and varies based on number of primitives and
their relative configuration.

We evaluate the performance of our algorithm on a synthetic data set corre-
sponding to a moving piano in a room with tables. We first generate a point cloud
by sampling the polygons and adding some noise. Next, we use the PQP package to
perform exact collision detection and separation distance query between the exact,
triangulated model and compared the results with probabilistic collision detection
on the resulting point cloud (see Fig. 3). We see a high correlation between our
results and the actual separation distance, and it varies based on the level of noise.
This shows that our approach is quite robust and even works well in degenerate
configurations, e.g., when the two objects are barely touching or very close to each
other.

Such configurations are more susceptible to noise and the exact collision
detection algorithms are very sensitive to these configurations.

We have applied our probabilistic collision detection to the point cloud data
generated for manipulation using the PR2 robot. Point cloud data on the PR2 robot
is generated from a scanning laser range finder (Hokuyo Top-URG(UTM-30LX))
and a stereo camera (WGE-100), which is combined with an active texture projector
to obtain good 3D data from untextured objects. The robot is placed in front of a
table with multiple household objects (e.g., bowls, cans) on the table at a distance of

90 J. Pan et al.

about 1.5 m from the robot’s sensors. The point clouds are a discretized (about
±1.5 cm in range) representation of the real environment and are generated peri-
odically by each sensor. The data is noisy and exhibits speckles especially in the
vicinity of boundaries of objects and boundaries of the field of view of the sensor.
The sensors are calibrated with respect to each other and the arms using a known
calibration pattern. The known position of the arms, measured using encoders, is
used to filter out the points corresponding to the arms from the point clouds
obtained by the sensors. Typical point clouds generated by the stereo sensors on the
PR2 robot have more than 40,000 points and are generated at 20 Hz. Point clouds
generated by the laser range scanners typically have about 10,000 points. The data
from the point clouds is aggregated into a collision map representation. The col-
lision map is a 3-dimensional occupancy grid maintained at a fixed resolution. The
resulting collision maps are at 1 cm resolution and have about 2,000 occupied cells.
A complete triangulated mesh representation of the robot, including the arms and
the gripper, is also available as input for the collision checker.

There are very few algorithms or systems available for collision checking
between noisy point clouds. As a result, we compare our algorithm with the
implementation in ROS (based on ODE) and exact collision detection on recon-
structed meshes.

The collision checking procedures used in ROS are currently based on the
collision checking implementation in the ODE software package. The input to the
collision checker is a combination of mesh models for the robot and objects in the
environment and the collision map. The points in the collision map are represented
as axis-aligned box primitives whose length is equal to the resolution at which the
collision map is maintained. The current representation of the collision space
considers every point in the collision map to be a potential obstacle. Thus, noise in

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

collision query

co
lli

si
on

 fr
ee

 p
ro

ba
bi

lit
y

collision on triangle mesh (PQP)
normalized separation distance
probabilistic collision: our algorithm
regression curve for separation distance
regression curve for probabilistic collision

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

collision query

co
lli

si
on

 fr
ee

 p
ro

ba
bi

lit
y

collision on triangle mesh (PQP)
normalized separation distance
probabilistic collision: our algorithm
regression curve for separation distance
regression curve for probabilistic collision

Fig. 3 Comparison between the results for 100 random queries between prior collision detection
algorithms for exact triangle meshes and our algorithm on the point clouds (generated by sampling
and adding noise). We show the results of exact collision detection and separation distance as well.
If the noise in the point cloud is small (the left figure), our method returns 0 or 1 collision
probability for most queries. When the queries correspond to a small separation distance or
penetration depth (i.e., difficult cases), our algorithm computes collision-free probability close to
0.5. Furthermore, the collision-free probability is higher when the separation distance is large for
non-overlapping objects. If the noise is large (the right figure), fewer queries return 0 or 1 collision
probability. We see a good correlation between the regression curves computed by our algorithm
and the exact queries on these synthetic datasets

Probabilistic Collision Detection Between Noisy … 91

the sensor data can frequently lead to false positives, i.e., the detection of potential
collisions in parts of the environment where there are no obstacles. There is no
robust criterion to compute the box size, e.g., a function of noise, so we can’t
compare all the features of our method with ODE collision checking. We also use a
reconstruction algorithm to compute a triangle mesh from the point clouds and
perform triangle-based collision as well as separation distance computation using
PQP. In many ways, this formulation only provides an approximation of the ground
truth and is used to evaluate the robustness of our algorithm.

As shown in Fig. 4a, our result matches well with the exact collision detection
algorithm, especially with the separation distance computation. Furthermore, we
notice that the collision probability of our approach changes slowly when the noise
increases. It is more robust as compared to the yes-no result computed by ODE on
the point clouds, which is likely to frequently switch between collision-free and
in-contact configurations, when the noise level changes. We also apply our algo-
rithm on a dataset generated using Kinect RGB-D cameras. This dataset corre-
sponds to an indoor environment at the Intel Lab in Seattle captured using Kinect
sensors. The results of our probabilistic collision detection on this dataset are shown
in Fig. 4b.

Moreover, from Figs. 3 and 4, we observe that configurations with the same
distances to the obstacles can have large spread in the computed collision proba-
bilities. The reason is that distance is only a partial measurement of collision status
while our collision probability is a more complete description about collision status
and provides more detailed information about the relative configurations.

For one query, our method needs about 500–1000 ms for about 10,000 points on
one Intel Core i7 3.2 GHz CPU, based on BVH acceleration. It is about 5–10 times
slower than optimized collision packages on models with 10 K triangles (e.g., PQP
can compute collisions in such situations in about 50–100 ms). However, the
reconstruction algorithms take more than 10 s to compute the triangulated mesh
from the point cloud. Moreover, our current implementation can be optimized in

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

collision query

co
lli

si
on

 fr
ee

 p
ro

ba
bi

lit
y

collision on reconstructed mesh (PQP)
normalized separation distance
ROS collision using ODE
probabilistic collision: our algorithm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

collision query

co
lli

si
on

 fr
ee

 p
ro

ba
bi

lit
y

collision on triangle mesh
normalized separation distance
probabilistic collision: our algorithm

Fig. 4 a Comparison on point-cloud data generated by PR2 robot sensor: we use our probabilistic
collision detection on the noisy point cloud versus results computed by ODE package used in ROS
versus exact collision and distance queries on the reconstructed mesh model. Our results on the
point cloud are more robust as compared to the ODE package. b Result of our algorithm on Kinect
data

92 J. Pan et al.

several ways, such as replacing the non-linear kernel by approximated linear kernel
[23] and using more efficient SVM methods designed for large scale data [6]. We
expect an optimized probabilistic collision method to have similar speed to the PQP
algorithm. Furthermore, our approach can provide more detailed information and
can be easily combined with planning/reasoning algorithms. For example, we can
combine it with trajectory optimization algorithms (e.g., CHOMP [24], STOMP
[12]) to find a smooth path that has a minimum probability of colliding with the
obstacles.

6 Conclusions and Future Work

We have presented a novel and robust method for contact computation between
noisy point cloud data using machine learning methods. We reformulate collision
detection as a two-classification problem and compute the collision probability at
each point using support vector machines. The algorithm can be accelerated by
using bounding volume hierarchies and performing a stochastic traversal. We have
tested the results on synthetic and real-world data sets and the preliminary results
are promising.

There are many avenues for future work. We need to test the performance on
different robotic systems and evaluate its performance on tasks such as planning
and grasping. It would be useful to extend this approach to continuous collision
checking, which takes into account the motion of the robot between discrete
intervals along the path. Similar probabilistic methods can also be developed for
other queries, including separation and penetration depth computation. Finally, we
are interested in improving the algorithm to handle dynamic environments where
points may change position or can be added or removed from the environment due
to movement, occlusion or incremental data, based on incremental SVM [4] and
BVH refitting techniques [14].

Acknowledgments This work was supported in part by ARO Contract W911NF-10-1-0506, NSF
grants 0917040, 0904990, and 1000579, and Willow Garage. The dataset generated using Kinect
RGB-D cameras was provided to us by Dieter Fox and Peter Henry at the University of
Washington.

References

1. K.-H. Bae, D. Belton, D.D. Lichti, A closed-form expression of the positional uncertainty for
3D point clouds. Trans. Pattern Anal. Mach. Intell. 31, 577–590 (2009)

2. J. Berkson, Are there two regressions? J. Am. Stat. Assoc. 45(250), 164–180 (1950)
3. J. Bi, T. Zhang, Support vector classification with input data uncertainty, in Advances in

Neural Information Processing Systems (2005), pp. 161–168

Probabilistic Collision Detection Between Noisy … 93

4. G. Cauwenberghs, T. Poggio, Incremental and decremental support vector machine learning,
in Advances in Neural Information Processing Systems (2001)

5. C.-C. Chang, C.-J. Lin, LIBSVM: A Library for Support Vector Machines (2001)
6. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, C.-J. Lin, Liblinear: a library for large

linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
7. N. Govindaraju, M. Lin, D. Manocha, Fast and reliable collision culling using graphics

hardware. Trans. Vis. Comput. Graph. 12(2), 143–154 (2006)
8. L. Guibas, D. Hsu, H. Kurniawati, E. Rehman, Bounded uncertainty roadmaps for path

planning. Algorithmic Found. Robot. VIII 57, 199–215 (2009)
9. T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning. Ann. Stat. 36(3),

1171–1220 (2008)
10. P.M. Hubbard, Approximating polyhedra with spheres for time-critical collision detection.

Trans. Graph. 15, 179–210 (1996)
11. P. Jenke, M. Wand, M. Bokeloh, A. Schilling, W. Straßer, Bayesian point cloud

reconstruction, in Eurographics (2006), pp. 379–388
12. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, S. Schaal, Stomp: stochastic trajectory

optimization for motion planning, in International Conference on Robotics and Automation
(2011)

13. J. Klein, G. Zachmann, Point cloud collision detection, in Eurographics (2004), pp. 567–576
14. C. Lauterbach, Q. Mo, D. Manocha, gProximity: hierarchical gpu-based operations for

collision and distance queries. Comput. Graph. Forum 29(2), 419–428 (2010)
15. J.-K. Lee, Y.J. Kim, Haptic rendering of point set surfaces, in EuroHaptics (2007),

pp. 513–518
16. J.-M. Lien, Point-based Minkowski sum boundary, in Pacific Graphics (2007), pp. 261–270
17. M. Lin, D. Manocha, Collision and proximity queries, in Handbook of Discrete and

Computational Geometry (CRC Press, Inc., 2004), pp. 787–808
18. P.E. Missiuro, N. Roy, Adapting probabilistic roadmaps to handle uncertain maps, in

International Conference on Robotics and Automation (2006), pp. 1261–1267
19. D.M. Mount, Geometric intersection, in Handbook of Discrete and Computational Geometry

(CRC Press, Inc., 2004), pp. 857–876
20. M. Pauly, N.J. Mitra, L. Guibas, Uncertainty and variability in point cloud surface data, in

Symposium on Point-Based Graphics (2004), pp. 77–84
21. A. Petrovskaya, O. Khatib, Global localization of objects via touch. Trans. Robot. 27,

569–585 (2011)
22. M. Ponamgi, D. Manocha, M.C. Lin, Incremental algorithms for collision detection between

solid models, in Symposium on Solid Modeling and Applications (1995), pp. 293–304
23. A. Rahimi, B. Recht, Random features for large-scale kernel machines, in Advances in Neural

Information Processing Systems (2007)
24. N. Ratliff, M. Zucker, J.A.D. Bagnell, S. Srinivasa, Chomp: gradient optimization techniques

for efficient motion planning, in International Conference on Robotics and Automation (2009)
25. B. Schölkopf, J. Giesen, S. Spalinger, Kernel methods for implicit surface modeling, in

Advances in Neural Information Processing Systems (2005), pp. 1193–1200
26. P.K. Shivaswamy, C. Bhattacharyya, A.J. Smola, Second order cone programming approaches

for handling missing and uncertain data. J. Mach. Learn. Res. 7, 1283–1314 (2006)
27. D. Steinemann, M. Otaduy, M. Gross, Efficient bounds for point-based animations, in

Symposium on Point-Based Graphics (2007), pp. 57–64
28. F. Steinke, B. Schölkopf, V. Blanz, Support vector machines for 3d shape processing, in

Eurographics (2005), pp. 285–294
29. I.A. Sucan, M. Kalakrishnan, S. Chitta, Combining planning techniques for manipulation

using realtime perception, in International Conference on Robotics and Automation (2010),
pp. 2895–2901

30. S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics (The MIT Press, 2005)
31. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995)

94 J. Pan et al.

	5 Probabilistic Collision Detection Between Noisy Point Clouds Using Robust Classification
	Abstract
	1 Introduction
	2 Previous Work
	2.1 Uncertainty of Point Cloud Data
	2.2 Collision Detection

	3 Overview
	3.1 Separating Surface
	3.2 Probabilistic Model for Point Cloud Collision

	4 Probabilistic Collision Checking Between Point Clouds
	4.1 Basic Formulation
	4.2 Non-Gaussian Uncertainty
	4.3 Non-linear Separating Surface
	4.4 Probabilistic Collision Decision
	4.5 Acceleration Using Bounding Volume Hierarchies

	5 Implementation and Results
	5.1 Implementation
	5.2 Results

	6 Conclusions and Future Work
	Acknowledgments
	References

