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Abstract We survey the recent work on micro-UAVs, a fast-growing field in
robotics, outlining the opportunities for research and applications, along with the
scientific and technological challenges. Micro-UAVs can operate in
three-dimensional environments, explore and map multi-story buildings, manipu-
late and transport objects, and even perform such tasks as assembly. While
fixed-base industrial robots were the main focus in the first two decades of robotics,
and mobile robots enabled most of the significant advances during the next two
decades, it is likely that UAVs, and particularly micro-UAVs will provide a major
impetus for the third phase of development.

1 Introduction

The last decade has seen many exciting developments in the area of micro
Unmanned Aerial Vehicles (UAVs) that are between 0.1–0.5 m in length and 0.1–
0.5 kg in mass. Just as the incorporation of 2-D mobility reinvigorated robotics
research in the 1990s, the ability to operate in truly three-dimensional environments
is bringing in new research challenges along with new technologies and applica-
tions. Indeed by some estimates [51], the UAV market is estimated to exceed $60 B
in the next 3 years, and this forecast is conservative since it does not account for the
thousands of micro-UAVs that are likely to be fielded in the near future.

Our focus in this work is on UAVs that have gross weights of the order of 1 kg
and below; although as described in [5, 8, 30, 40] the platform development rep-
resents a challenge in its own right. While commercial products ranging from 5 to
350 g are available, most of these products do not carry the sensors and processors
required for autonomous flight. Many of these small aircrafts do not have the
endurance required for missions of longer than 5 min. Longer endurance requires
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bigger batteries, and with the current energy densities of Li-polymer batteries (of
the order of several hundred Watt-hr/kg), the mass fraction used by batteries is
significant, often between 25–50 % of the gross weight.

There are many types of micro-UAVs that are in various phases of research,
development and practice. Fixed-wing aircrafts are less adept than rotor crafts at
maneuvering in constrained, 3-D environments. While avian-style flapping wing
aircrafts provide more agility, our limited understanding of the aerodynamics and
the fluid-structure coupling in such aircrafts presents a formidable challenge [10].
Insect-style flapping wing vehicles provide the ability to hover in place while also
enabling forward flight [2]. However, it is unclear that they represent a significant
advantage over rotor crafts or ducted fans in terms of efficiency, endurance, or
maneuverability, and they do incur a significant increase in complexity [43].

There are two configurations of rotor crafts that have gained acceptance in the
research community. Co-axial rotor crafts, exemplified by the Skybotix Coax [8],
are equipped with two counter-rotating, co-axial rotors and with a stabilizer bar [6].
Prototypes of less than 300 g (without sensors or processors) with a hover time of
nearly 20 min make them attractive for robotics applications. In addition, the sta-
bilizer bar confers passive mechanical stability making them easy to control.

However, we argue (see next section) that multi-rotor aircrafts exemplified by
quadrotors currently represent the best bet in terms of maneuverability and their
ability to carry small payloads. Hence the rest of this paper will address the
mechanics and control of quadrotors, and approaches to state estimation, mapping,
planning, exploration and manipulation.

2 Rotor Craft Designs and Scaling Laws

In this section, we explore the effect of choosing length scales on the inertia,
payload and ultimately angular and linear acceleration. In particular, we can analyze
maneuverability in terms of the robot’s ability to produce linear and angular
accelerations from a hover state. If the characteristic length is L, the rotor radius
R scales linearly with L. The mass scales as L3 and the moments of inertia as L5. On
the other hand the lift or thrust, F, and drag, D, from the rotors scales with the
cross-sectional area and the square of the blade-tip velocity, v. If the angular speed
of the blades is defined by x ¼ v

L ;F�x2L4 and D�x2L4. The linear acceleration

a scales as a� x2L4
L3 ¼ x2L.

For multi-rotor aircrafts like the quadrotor, thrusts from the rotors produces a
moment with a moment arm L. Thus the angular acceleration a� x2L5

L5 ¼ x2.
However, the rotor speed also scales with length since smaller motors produce less
torque which limits their peak speed because of the drag resistance that also scales
the same way as lift.

There are two commonly accepted approaches to scaling: Froude scaling and
Mach scaling [55]. Mach scaling is used for compressible flows and essential
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assumes that the tip velocities are constant leading to x� 1
R : In other words, the

rotor speed scales inversely with length. Froude scaling is used for incompressible
flows and assumes that for similar aircraft configurations, the Froude number, v2

Lg is

constant. Here g is the acceleration due to gravity. This yields x� 1ffiffiffi
R

p : Neither

Froude or Mach number similitudes take motor characteristics into account. It is
clear that the motor torque (s) scales with length. The surface area, which goes as
R2 � L2, and the volume of the core which scales as R3 � L3, are both important
variables governing motor performance. It turns out Froude scaling ðx� 1

RÞ is
consistent with s � L2 while Mach scaling is consistent with s � L3. While the
reality might be somewhere in between, these two limiting cases are meaningful for
our analysis. Froude scaling suggests that the acceleration is independent of length
while the angular acceleration a � L−1. On the other hand Mach scaling leads to
the conclusion that a � L while a � L−2. In other words, smaller aircrafts are
much more agile. Note that this conclusion is based on the assumption that the
propeller blades are rigid, the efficiency of the blade is independent of the length
scale and the inertia associated with the blades can be neglected. These factors can
be important but considering the inertia of the blade further emphasizes the benefits
of scaling down—longer blades require larger cross-sections to minimize stresses
and the inertia grows faster than L5.

For other types of rotor crafts, including co-axial rotor crafts, the linear accel-
eration scales the same way but the angular acceleration does not. This is because
the moment arm associated with the rotors is exactly L. This moment arm does not
scale the same way with coaxial helicopters. Similarly the scaling law for con-
ventional helicopters and ducted fans appears to be different. Thus if our objective
is to build small, highly maneuverable aircrafts, multi-rotor helicopters like the
quadrotor appear to be the best configuration. While rotorcrafts with six and eight
rotors have been developed and are commercially available [3], the main benefits
appear to be redundancy due to the number of rotors and increased safety because
of the compactness of a six-rotor design over a four-rotor design.

There are three design points that are illustrative of the quadrotor configuration.
We use the Pelican quadrotor from Ascending Technologies [3] equipped with
sensors (approx. 2 kg gross weight, 0.75 m diameter, and 4000 rpm nominal rotor
speed at hover), consuming approximately 400 W of power. The Hummingbird
quadrotor from Ascending Technologies (500 g gross weight, approximately 0.5 m
diameter, and 5000 rpm nominal rotor speed at hover) consumes about 75 W.
Attempts to develop a smaller quadrotor at the University of Maryland [34] suggest
that a quad rotor without sensors of mass 62 g, 0.075 m diameter and 9000 rpm
rotor speed consumes a little over 10 W of power.
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3 Control

3.1 Dynamics

The dynamics of quadrotors can be simplified to rigid body dynamic models with
approximations to the aerodynamic forces [32]. In Fig. 1, the inertial frame, A, is
defined by the triad a1, a2, and a3 with a3 pointing upward. The body frame, B, is
attached to the center of mass of the quadrotor with b1 coinciding with the preferred
forward direction and b3 perpendicular to the plane of the rotors pointing vertically
up during perfect hover (see Fig. 1). Let r denote the position vector of the center of
mass C in A. The vehicle has mass m and the components of the inertia tensor is
given by the 3 � 3 matrix J along the principal axes bi. The rotation matrix
describingB inA is given by R 2 SO (3), while the angular velocity of the vehicle,
X 2 R

3, is defined as

_R ¼ RX̂

where the operator �̂ is defined such that x̂y ¼ x� y for all x; y 2 R
3.

The forces on the system are gravity, in the −a3 direction, the lift forces from
each of the rotors, Fi, and the drag moments from the rotors Mi, all in the b3
direction. Each rotor has an angular speed xi and produces a lift force Fi = kF xi

2

and drag moment Mi = kMxi
2. The constants, kF and kM, are related to the drag and

lift coefficients, the cross sectional area and the rotor speed as discussed in Sect. 2.
However, for a specific rotor, it is quite easy to determine these empirically. The
thrust input is given by:

u1
X4
i¼1

Fi

Fig. 1 The vehicle model.
The position and orientation
of the robot in the global
frame are denoted by r and R,
respectively
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while the moment input vector is

u2 ¼ L
0 1 0 �1
�1 0 1 0
l �l l �l

2
4

3
5

F1

F2

F3

F4

2
664

3
775

where L is the distance of the rotor axis from C, and l ¼ kM
LkF

is a non dimensional
F coefficient that relates the drag (moment) to the lift (force) produced by the
propellor blades.

The dynamic model is given by:

m€r� mge3 ¼ u1Re3 ð1Þ

J _XþXþ J X ¼ u2 ð2Þ

where e3 = [0, 0, 1]T.

3.2 Control

The control problem, to track smooth trajectories (Rdes(t), rdes(t)) 2 SE(3), is
challenging for several reasons. First, the system is underactuated—there are four
inputs (u1, u2) while SE(3) is six dimensional. Second, the aerodynamic model
described above is only approximate. Finally, the inputs are themselves idealized.
In practice, the motor controllers must generate the required speeds to realize these
inputs. The dynamics of the motors and their interactions with the drag forces on
the propellers can be quite difficult to model, although first order linear models are a
useful approximation.

The first challenge, the underactuation, can be overcome by recognizing that the
quadrotor is differentially flat. See [36, 38] for a discussion of differential flatness.
To see this, we consider the outputs r and w as shown in Fig. 1, and show that we
can write all state variables and inputs as functions of the outputs and their
derivatives. Derivatives of r yield the velocity v, and the acceleration,

a =
1
m
u1b3 þ g

By writing the unit vector:

e1 ¼ ½cosw; sinw; 0�T

we can define the body frame from w and a as follows:
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b3 ¼ a� g
a� gk k ; b2 ¼

b3 � e1
b3 � e1k k ; b1 = b2 � b3

provided e1 � b3 6¼ 0. This defines the rotation matrix R as a function of a and w .
To write the angular velocity and the inputs as a function of the outputs and their
derivatives, we write the derivative of acceleration or jerk,

j ¼ 1
m

_u1b3 þ 1
m
u1X� b3

and finally, the snap or the derivative of jerk:

s ¼ 1
m
€u1b3 þ 2

m
_u1X� b3 þ 1

m
u1 _X� b3 þ 1

m
u1X� ðX� b3Þ

where

_X ¼ J�1ðu2 � X� J XÞ

From the equations above it is possible to verify that there is a diffeomorphism
between the 18 � 1 vector:

½rT; vT; aT; jT; sT;wT; _wT; €wT�

and

R� rT; _rT;XT; u1; _u1; €u1; uT2
� �T

Accordingly define the vector of flat outputs to be:

z ¼ ½r; v; a; j;w; _w�T ¼ ½z1; z2; z3; z4; z5; z6�T

We can also define a vector of fictitious inputs

v ¼ vT1 ; v2
� �T

related to the original inputs by a nonlinear transformation of the form:

v1
v2

� �
¼ gðzÞ €u1

u2

� �
þ hðzÞ ð3Þ

46 V. Kumar and N. Michael



so the state equations are linear:

_z ¼ AzþBv ð4Þ

with

A ¼

03�3 I3�3 03�3 03�3 03�1 03�1

03�3 03�3 I3�3 03�3 03�1 03�1

03�3 03�3 03�3 I3�3 03�1 03�1

03�3 03�3 03�3 03�3 03�1 03�1

01�3 01�3 01�3 01�3 0 1
01�3 01�3 01�3 01�3 0 0

2
6666664

3
7777775
; B ¼

03�3 03�1

03�3 03�1

03�3 03�1

I3�3 03�1

01�3 0
01�3 1

2
6666664

3
7777775

This obviously makes the control problem trivial. See Fig. 2 for a graphical
description of the controller design.

There are several difficulties following this naive approach. First, the linear
controller based on (4) works only if the dynamics can be effectively linearized.
This in turn depends on the cancelation of the dynamics in (3) which is difficult
because the dynamic model only represents an approximation of the aerodynamic
forces and our knowledge of the parameters in the model is not perfect. While
parameter estimation and adaptive control techniques (e.g., [39]) can be used to
learn and adapt to these parameters, it is often not possible to get access to the low
level signals involving higher order derivatives of the state and the inputs.

Indeed, the second challenge is to derive estimators that yield the extended state,
z, which includes not only the position and velocity, but also the acceleration and
jerk. Knowledge of the thrust (u1) and attitude (b3) allows us to estimate acceler-
ation. Similarly, measuring the derivative of the thrust ( _u1), which is related to the
rate of change of motor speeds, and the angular rates (Ω) allows us to estimate the
jerk. However, this information is not usually available from motor drivers.

However, this model of exact linearization is useful since it allows us to design
trajectories in the 18-dimensional space of flat outputs and their derivatives which
are guaranteed to respect the dynamics and constraints we might want to impose on
the state variables.

Fig. 2 Nonlinear feedback allows us to reduce the nonlinear system to a linear system (4)
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In most previous work [8, 14, 42], the control problem is addressed by decou-
pling the position control and attitude control subproblems as illustrated in Fig. 3.
The position controller is obtained by projecting the position error (and its
derivatives) along b3 and applying the input u1 that cancels the gravitational force
and provides the appropriate proportional plus derivative feedback:

u1 ¼ mbT3 €rdes þKd _rdes � _rdes
� �þKp rdes � rdes

� �� g
� �

: ð5Þ

The attitude controller varies based on the representation which is either using Euler
angles, quaternions or rotation matrices. Euler angle representations have singu-
larities and are suitable only for small excursions from the hover position. In most
cases, it is sufficient to use linear controllers that are based on the linearization of
the plant dynamics around the hover position [8, 15, 28, 32, 42]. The use of
quaternions permits the exact cancellation of dynamics and a nonlinear controller
that is exponentially stable almost everywhere in SO(3) [53]. A similar result with
rotation matrices is available in [22]. In both these papers, the error is defined on the
rotation group and does not require the error to be small.

In [22], the two controllers are shown to result in a nonlinear controller that
explicitly track trajectories in SE(3). The key idea is to design exponentially con-
verging controllers in SO(3) using an accurate measure of the error in rotations
instead of taking linear approximations:

êR ¼ 1
2

Rdes� �T
R� RTRdes

	 

ð6Þ

which yields a skew-symmetric matrix representing the axis of rotation required to
go from R to Rdes and with the magnitude that is equal to the sine of the angle of
rotation. Computing the proportional plus derivative of the error on SO(3) and
compensating for the nonlinear inertial terms gives us:

u2 ¼ Jð�kReR � kXeXÞþX� J X; ð7Þ

If we do not consider constraints on the state or the inputs, (6–7) achieve asymptotic
convergence to specified trajectories in SE(3) [22]. From a practical standpoint it is
possible to neglect the nonlinear Ω � JΩ term in the controller and achieve sat-
isfactory performance [26]. Finally, as shown in [28], it is possible to combine this

Fig. 3 The attitude controller achieves the desired orientation, which is in turn computed from the
errors in position
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controller with attitude only controllers to fly through vertical windows or land on
inclined perches with close to zero normal velocity.

Trajectory controllers allows the robot to build up momentum and reorient itself
while coasting with the generated momentum.

3.3 Adaptation and Learning

The dynamic models suffer from two types of limitations. First, such parameters as
the location of the center of mass, the moments of inertia and the motor time
constants are not precisely known. Second, the aerodynamic models are only
approximate.

The first difficulty is overcome using parameter estimation algorithms. Because
the unknown parameters appear linearly in the equations of motion (as in the case
for robot manipulators [9, 37, 54]), we can write the state equations in discrete time
as follows,

ykþ 1 ¼ hTUk

h is the parameter vector, Uk and yk are the regressor and the measurement at the
kth time step. A simple linear least-squares method can be used to estimate the
unknown parameters as shown in [27] either in a batch or in a recursive algorithm
provided the dynamics are persistently excited. These methods can also be used to
determine the offsets in IMU readings and for online calibration [47].

Adapting to varying aerodynamic conditions such as those encountered in nar-
row passages or perturbations due to wind gusts is harder because of the interaction
between the time scales of estimation and control. Model Reference Adaptive
Control techniques can be used in such settings, although it is necessary to get good
measurements of the inputs (motor currents or speeds) and state variables for
effective adaptation.

Iterative learning has been used effectively in [25, 28] for acrobatic maneuvers.
Such techniques allow the robot to learn trajectories and inputs without knowing a
precise aerodynamic model.

Regardless of the specific platform, it is unlikely that a conventional
model-based approach to control can work without a robust adaptation mechanism.
The small length scales and inertias lead to variations in dynamics that are very
difficult to model and impossible to reason about in real time. However it is also
unlikely if purely data-driven approaches can be used for control of micro-UAVs.
While apprenticeship methods and variants of reinforcement learning algorithms
(see, for example, [1]) have achieved remarkable results, they require an expert
human operator to generate data for model and control identification. Further, it is
unclear if these methods can generalize the results to cases not a priori encountered,
where training data is not available. Indeed, in much of the work considered in our
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own group [28, 50], it is very challenging if not impossible for a trained human
operator to fly the robot in the specified manner.

4 Planning

Incremental search [23] and sampling based techniques [21], which are excellent
for planning in configuration spaces, are not particularly well-suited for planning
motions for underactuated systems. RRT methods and their variants can solve
problems with dynamic constraints. For example, in [47], a RRT planner is used to
generate trajectories online through a cluttered environment with models acquired
by a laser and a camera, but for dynamic models obtained by linearization around
the hover operating point. However, the complexity of a 12-dimensional state space
with four inputs makes such techniques impractical for planning fast motions
through constrained environments. Smaller problems, for example planning
motions in the plane, can be solved using reachability algorithms [12], but it is
difficult to explore using the full state space using such approaches.

An alternative approach is to use a combination of planning algorithms for
configuration spaces along with controller synthesis techniques to ensure the UAVs
can execute the planned trajectory. For example, RRT-like techniques have been
used with LQR-like control synthesis techniques to find trajectories and sufficing
(and even optimal) control policies [49]. Similarly, uncertainty in dynamics and
estimation can be addressed using LQG techniques with motion planners [52].
However, techniques like this have yet to be applied to 3-D motion planning of
UAVs.

Model predictive control (MPC) techniques represent a third approach that can
be used to solve planning and control problems for underactuated systems [19, 56].
These techniques are promising since they combine open loop (optimal) motion
planning with feedback control—by generating open loop trajectories based on
environmental models periodically with a time interval that is much smaller than the
horizon of planning, corrective motions can be generated to accommodate changes
in the environment. However, with such approaches, convergence guarantees are
difficult to prove. It is possible to prove stability of the MPC algorithm when the
linearized model is fully controllable about the goal position [56] (which is gen-
erally possible when the goal corresponds to a static hover position), or if a control
Lyapunov function can be synthesized for goal positions [16]. Guarantees aside, the
synthesis of optimal control solutions even with a finite horizon and a terminal cost
function can be difficult with limiting on-board processing resources. Thus it
appears to be difficult to directly apply such techniques to the trajectory generation
of a quadrotor with guarantees.

It appears that a hierarchical approach that combines incremental search or
sampling based techniques in configuration space with optimal control techniques
that refines configuration space trajectories in state space is the best framework to
solve such problems. If a configuration space planner can be used first to establish
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waypoints and constraints, optimal trajectories that respect these constraints and the
dynamics of the UAV can be generated as a second step. In [26], the property of
differential flatness is used to develop an algorithm that enables the generation of
optimal trajectories through a series of keyframes or waypoints in the set of posi-
tions and orientations, while ensuring safe passage through specified corridors and
satisfying constraints on achievable velocities, accelerations and inputs. Since the
cost function and all the constraints can be written as algebraic functions of the flat
output vector, z, the general setting reduces to solving the problem:

min
vðtÞ

ZT

0

LðzÞdt; s:t: gðzÞ� 0 ð8Þ

A simple choice for L(z) is the square of the norm of the input vector, which
turns out to be the equivalent of finding the trajectory that minimizes the snap and
the yaw acceleration along the trajectory. It also has the added benefit of yielding a
convex cost function. Recall that trajectories in this flat space automatically satisfy
the dynamic equations of motion. Thus the only constraints in g(z) � 0 are those
on the position (obstacles), velocity (maximum angular rates because of gyro sat-
uration), accelerations (saturation of the IMU), and inputs (propellers can only exert
positive lift). All except the position constraints are linear. By linearizing the
position constraints the optimization in (8) becomes a convex program. The
unconstrained problem, the minimum snap trajectory optimization, yields an ana-
lytical solution—a seventh degree polynomial function of time for which we can
introduce a polynomial basis for the trajectories. We can similarly use polynomial
functions (if necessary of higher order) to satisfy all the constraints in (8). The
resulting trajectories have interesting time scaling properties [26] and can be refined
efficiently for different values of T to obtain the fastest trajectory to satisfy all the
constraints. Finally the quadratic program can be solved in real time quite effi-
ciently, and even in a distributed MPC-like setting for multiple quadrotors at speeds
approaching 20 Hz [50].

5 State Estimation and Perception

State estimation is a fundamental necessity for any application involving autono-
mous UAVs. However, platform design, mobility and payload constraints place
considerable restrictions on available computational resources and sensing. The
agility and three-dimensional mobility of the vehicle require sensors that provide
low-latency information about the three-dimensional environment surrounding the
vehicle. Although in open outdoor domains, this problem is seemingly solved with
onboard GPS, IMU and camera sensors [44, 46], indoor domains and cluttered
outdoor environments still pose a considerable challenge. In such complex
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environments, the vehicle must be able to localize, detect or perceive obstacles,
generate trajectories to navigate around the obstacles and track the trajectories with
reasonable accuracy. Any failure to successfully achieve any of these requirements
may in fact lead to a complete failure of the vehicle. Further, outdoor environmental
effects (e.g. obscurants [45], wind, direct sunlight, GPS-shadowing) and indoor
structural considerations (e.g. obstacles, tight corridors, vehicle-induced wind [32])
can challenge the consistency and accuracy of estimation algorithms that are not
designed to directly consider these issues.

The fusion of information from multiple onboard sensors such as IMU, laser and
cameras (monocular, stereo and RGB-D) do much to address these issues but come
with a cost on processing demands, payload and power. Thus there is a real need to
find a balance between sensor availability, onboard and offboard processing and
operating conditions (which in turn lead to restrictions on the kind of environments
in which the UAV can operate).

Initial developments in the area focused on systems capable of navigating indoor
environments with algorithms leveraging laser and IMU information to generate a
map and localize within the map [4, 13]. Processing for estimation and mapping is
shared between local and external computational resources. Unlike the previous
work, a monocular camera approach is employed for full pose estimation and
localization of ground terrain in GPS-denied environments in [7] but with offboard
processing. However, a major concern with offboard processing is the need to
maintain uninterrupted, low-latency communication. While this is possible in some
indoor and outdoor environments, it inhibits the ability of the system to operate
autonomously throughout more general and complex environments. Additionally,
the added time cost of external information exchange reduces the performance of
the onboard feedback control due to the communication incurred time-delays.

To address these issues, in [47] we considered a similar problem but required the
development of an implementation that permitted all processing to occur on the
vehicle in real-time. The advancements made in this work were in the form of
system design and algorithm optimization to permit autonomous navigation using
an IMU, camera and laser to generate three-dimensional maps throughout large and
multi-story environments using only limited onboard processing. Further, as all
processing occurred in real-time and on the vehicle, we were able to leverage the
feedback from the state estimation to drive model-based adaption to account for
external disturbances due to gusting wind and ground effects.

Thus far, the discussion focuses on autonomous navigation, where the vehicle
plans and controls to goals provided by an external entity. A remaining question is
the introduction of perception, planning and control to permit autonomous explo-
ration, where perception algorithms must also allow the UAV to reason about the
environment to determine control policies that will yield maximal information for
mapping. However, a major challenge in moving toward this direction is the lack of
three-dimensional sensors that can be mounted on UAVs, which are required for
3-D exploration. Unfortunately, rich sensor sources such as three-dimensional laser
range finders and omni-directional cameras either do not fit the vehicle payload
constraints or are prohibitive given the limited computational resources. As such, it
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is necessary to focus on new algorithmic methods to explore an environment given
limited sensing and computational resources. A current strategy we are pursuing in
ongoing research [48] is the application of stochastic-differential equations to
establish information frontiers between spatial regions that represent the known,
explored environment and regions that represent the unexplored environment. The
approach strives to find a balance between the computationally complexity of
analyzing a full three-dimensional map and the limited field-of-view of onboard
sensing. The area of autonomous exploration and perception is clearly an area with
rich research possibilities that will become increasingly viable as computing and
sensing options improve in time.

6 Other Challenges

6.1 Scaling and SWaP Constraints

One of the key challenges in creating small autonomous UAVs are the so-called
size, weight and power constraints. Packaging constraints are severe. Sensors and
processors have to be smaller due to the limitations on payload. Because of this, it is
difficult to create autonomous quadrotors (with onboard computation and sensing)
at small length scales. The smallest autonomous quadrotors capable of exploring,
mapping and scouting an unknown three-dimensional building-like environment
have a characteristic length of approximately 0.75 m, mass of a little less than
2 kg., and power consumptions over 400 W leading to a mission life of around 10–
20 min [47]. The main reason for the size is the need to carry three-dimensional
sensors like Hokuyo laser range finders or Microsoft Kinect cameras. This in turn
leads to high power consumption. Many impressive advances have been made in
mapping and estimation for autonomous navigation using just an IMU and a camera
[7]. Recent results point to algorithms that yield estimates of 3-D metric information
from just monocular vision combined with a good IMU [20, 35]. This suggests that
the sensor payload challenges associated with scaling can be overcome in the near
future.

However, the net payload constraints are still significant if the UAV needs to be
able to transport or manipulate a payload. Since the linear acceleration scales with
L (Sect. 2), it is impossible to design small UAVs that are able to overcome this
fundamental constraint. Current UAVs with L * 1 m have a maximum payload of
around 1 kg. One way to overcome this constraint is by using multiple UAVs to
cooperatively transport or manipulate payloads. Recent work suggests that the
challenges in coordinating multiple UAVs and adapting individual vehicles to
constraints imposed by other vehicles is possible in different settings ranging from
payloads suspended from UAVs [11, 17, 18, 31] to payloads rigidly grasped by
UAVs [29].
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6.2 Grasping and Manipulation

There are many challenges in aerial grasping for micro-UAVs. The biggest chal-
lenge arises from their limited payload. While multiple UAVs can be coordinated to
carry payloads with grippers [29], the end effector or gripper has to be light weight
and capable of grasping complex shapes. Second, the dynamics of the robot are
significantly altered by the addition of payloads. While this can be beneficial to
tasks when aerial robots need to sense the payload that has been grasped, it is
important to also be able to compensate for and adapt to changes in the dynamics
caused by the grasped payload. It is clear that the design of claws for grasping
represents a challenging mechanism design problem where the compliance and
damping must be finely tuned to grasping. Finally, all the challenges associated
with grasping objects (approaching, contacting, and securing the grasp) make this a
significant challenge.

Preliminary work in this direction has appeared in conferences over the last 2
years. The difficulties associated with the analysis of the flight dynamics and sta-
bility are explained with the help of an approximate model in [41]. The mechanics
and design for aerial grasping are addressed in [27, 29]. Parameter estimation
methods for estimating the grasped payload and the ability to adapt to the payloads
are investigated in [27]. The application to construction of structures is discussed in
[24] in which the sensed disturbance forces are used to verify successful grasping
and assembly. Micro-UAVs afford opportunities for truly three-dimensional
grasping since they can, in principle, approach objects or assemblies from any
direction, and because they can sense disturbance forces without additional sensors.
This is a fertile area of future research.

6.3 Adaptation to Complex Environments with Changing
Dynamics

As discussed earlier, it is very difficult to model micro-UAVs with a high degree of
precision because of the complexity of modeling air drag, the interactions between
the motor, rotor and the fluid through which the propellor blades must move, the
dynamics of the flexible propellor blade and the different nonlinearities and satu-
ration effects in the sensors and actuators. And such difficulties get compounded
when the rigid body dynamics interact with the aero dynamics and the
fluid-structure coupling effects become significant, as is the case in flapping-wing
vehicles or rotor crafts with long blades. As discussed earlier in Sect. 3.3, adaptive
control and iterative learning techniques can be used to handle some of these
challenges. However, parameterizing the set of uncertainties and ensuring the
appropriate level of sensing and actuation to identify these parameters may not
always be possible. Methods such as the ones described in [25, 27, 28] are good
starting points for such studies.
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The effects of changes in the aerodynamics in three-dimensional environments
are much harder to study. A study of wind gusts in [57] illustrates the challenges in
modeling and experimentation. For small aircrafts, small, local variations in wind
conditions can be significant. Transitions between indoor and outdoor environments
can induce large perturbations. Even without wind gusts, changes in elevation can
dramatically alter the lift generated by individual propellers resulting in significant
disturbances to the vehicle. Some of these phenomena are studied for modestly
changing environments in [47] where the inputs required to compensate for the
changes can be parameterized by a small set of trim parameters. In these studies the
sensed information was limited to gross position and velocity information which in
turn limits the level of adaptation that is possible. If aerial vehicles are to become as
reliable and easy-to-use as ground vehicles, it is necessary to develop techniques
that will enable safe and robust low-level navigation behaviors in complex
environments.

7 Conclusion

Micro UAVs are potentially game changers in robotics. They can operate in con-
strained three-dimensional environments, explore and map multi-story buildings,
manipulate and transport objects, and even perform such tasks as assembly. Our
recent experiments with quadrotors in collapsed buildings in Sendai, Japan in July
2011 [33] demonstrated many benefits of using autonomous quadrotors for map-
ping unknown environments, searching in collapsed buildings and exploration in
settings that are too dangerous for human rescue workers. Just as the advent of
mobile robots led to a flurry of activity with new research problem areas,
micro-UAVs will inevitably lead robotics research in new and exciting directions.
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