
Rosbridge: ROS for Non-ROS Users

Christopher Crick, Graylin Jay, Sarah Osentoski, Benjamin Pitzer
and Odest Chadwicke Jenkins

Abstract We present rosbridge, a middleware abstraction layer which provides
robotics technology with a standard, minimalist applications development framework
accessible to applications programmers who are not themselves roboticists. Rosbridge
provides a simple, socket-based programmatic access to robot interfaces and algo-
rithms provided (for now) by ROS, the open-source “Robot Operating System”, the
current state-of-the-art in robot middleware. In particular, it facilitates the use of web
technologies such as Javascript for the purpose of broadening the use and usefulness
of robotic technology. We demonstrate potential applications in the interface design,
education, human-robot interaction and remote laboratory environments.

1 Introduction

At present, we are at the cusp of a revolution in robotics. For most of the field’s
history, scientific progress has been hindered by the fact that to have a robot meant
investing a great deal in its mechanical engineering and low-level control systems.
The result being that every researcher had a different system with different

C. Crick (&)
Oklahoma State University, Stillwater, OK, USA
e-mail: chriscrick@cs.okstate.edu

G. Jay
Red Hat, Inc., Brisbane, Australia
e-mail: tjay@redhat.com

S. Osentoski
Mayfield Robotics, Redwood City, CA, USA
e-mail: sarah@mayfieldrobotics.com

B. Pitzer
Google, Mountain View, CA, USA
e-mail: pitzer@google.com

O.C. Jenkins
University of Michigan, Ann Arbor, MI, USA
e-mail: ocj@umich.edu

© Springer International Publishing Switzerland 2017
H.I. Christensen and O. Khatib (eds.), Robotics Research,
Springer Tracts in Advanced Robotics 100, DOI 10.1007/978-3-319-29363-9_28

493



capabilities. Furthermore, robots were extremely expensive, both in terms of money
and researchers’ time. Only very well-funded laboratories could have a robot, and
the scope of the robot’s activity was constrained by the resources, research focus
and imagination of the scientists and engineers that created it.

The emergence of widely-available common robot architectures promises to
mitigate the “silo effect” that has heretofore lessened the impact and wider appli-
cation of research contributions within robotics. Furthermore, developments in
robot middleware have begun to create the software engineering infrastructure vital
to fostering interoperability and code reuse, a necessary prerequisite to the use of
robots on a large scale.

However, the current state of robot middleware is such that users and developers
must make a heavy ontological commitment to a particular environment and phi-
losophy in order to use it to its full effect. Furthermore, middleware designers have
(perhaps by necessity) assumed that users of their systems would be roboticists
themselves, well-versed in the low-level systems programming and complex con-
trol and decision algorithms which have always been a part of robotics research. We
developed rosbridge to expose these systems to the much wider world of general
applications developers, with the hope of unleashing for the first time a “web-scale”
revolution in robot availability and accessibility.

2 Background

Several robot middleware system have been proposed to enable code sharing
among roboticists. These middleware systems include Player/Stage [8], the
Carnegie Mellon Navigation Toolkit (CARMEN) [24], Microsoft Robotics Studio
[13], YARP [17], Lightweight Communications and Marshalling (LCM) [12], and
ROS [20], as well as other systems [14]. These middleware systems provide
common interfaces that allow code sharing and reuse. While middleware systems
differ in their design and features, they typically provide a communication mech-
anism, an API for preferred languages, and a mechanism for sharing code through
libraries or drivers. Middleware systems typically require developers to code within
the middleware framework, and often within a specified build environment.

At their heart, many of these middleware packages provide a messaging and
marshalling protocol between processes running on multiple machines connected in
some fashion to robotic hardware. The framework permits, say, a stereo camera to
deliver images to a stereo image processor, which in turn can send a depth map to
an object recognition routine, which then routes coordinates to an inverse-
kinematics driver, which sends motor commands to processes delivering voltages to
individual servos. In a complex robot architecture, the number of independent
processes and the information that interconnects them quickly becomes massive.
Even so, deep down, the system is merely serializing and routing messages, and
rosbridge takes advantage of this fact. By way of analogy, web applications have
developed huge and complex backends that span continents and perform

494 C. Crick et al.



breathtaking feats of traffic analysis, shaping, routing, data acquisition and con-
glomeration, but still communicate with browsers and each other over the HTTP
protocol. Likewise, robots and their controlling middleware can grow arbitrarily
complex on the back end, but with rosbridge they can communicate with an
application layer over a single socket and a plain-text protocol.

3 ROS

Rosbridge is designed to work initially within the paradigm established by the ROS
middleware system currently maintained by theOpen Source Robotics Foundation.
ROS uses a peer-to-peer networking topology; systems running ROS often consist
of a number of processes called nodes, possibly on different machines, that perform
the system’s computation. Nodes communicate with each other by passing mes-
sages. Under ROS, messages are data structures made up of typed fields. Messages
may be made up of standard primitive data types, as well as arrays of primitives.
Messages can include arbitrarily nested structures and arrays.

Nodes can use two types of communication to send messages within the ROS
framework. The first is synchronous and is called a service. Services are much like
function calls in traditional programming languages. Services are defined by a
string name and a pair of messages: a request and a response. The response returns
an object which may be arbitrarily complex, ranging from a simple boolean indi-
cating success or failure to a large point cloud data structure. Only one node can
provide a service of a specific name.

The second type of communication is asynchronous and is called a topic. Topics
are streams of objects that are published by a node. Other nodes, “listeners”, may
subscribe by registering a handler function that is called whenever a new topic
object becomes available. Unlike services, listener nodes are unable to use their
subscription to the topic to communicate to the publisher. Multiple nodes may
concurrently publish and/or subscribe to the same topic and a single node may
publish and/or subscribe to multiple topics.

Unlike many other robot middleware systems, ROS is more than a set of libraries
that provide only a communication mechanism and protocol. Instead, nodes are
developed within a build system provided by ROS. The intent is that a system
running ROS should be comprised of many independent modules. The build system
is built on top of CMake [16], which performs modular builds of both nodes and the
messages passed between them.

Furthermore, ROS has assimilated a number of tools, algorithms and systems
which can serve as a basis for complex robot control. Thus a full suite of ROS
packages provides vision processing algorithms [3], 3D point cloud interpretation
[21] and simultaneous localization and mapping (SLAM) [10], among many others.
This represents the largest effort to date to foster a robotics community that supports
code-sharing and building on the prior work of others. This alone serves as reason
for applying the rosbridge architecture to ROS initially.

Rosbridge: ROS for Non-ROS Users 495



4 Rosbridge

Rosbridge provides an additional level of abstraction on top of ROS, as depicted in
Fig. 1. Rosbridge treats all of ROS as a “back end”. This shields application
developers from needing intimate knowledge of low-level control interfaces,
middleware build systems and sophisticated robotic sensing and control algorithms.
At a bare minimum they must understand the build and transportation mechanisms
of the middleware package. Rosbridge layers a simple socket serialization protocol
over all of this complexity, on top of which application developers of all levels of
experience can create applications.

ROS abstracts individual robot capabilities, allowing robots to be controlled
through messages. It also provides facilities for starting and stopping the individual
ROS nodes providing these capabilities. Rosbridge encapsulates these two aspects
of ROS, presenting to the user a unified view of a robot and its environment. The
Rosbridge protocol allows access to underlying ROS messages and services as
serialized JSON objects, and in addition provides control over ROS node execution
and environment parameters (Fig. 2).

Fig. 1 Recreating traditional abstraction layers in robotics with rosbridge. As depicted at left,
software development depends on well-established layers of abstraction. Developers and engineers
working at each layer possess very different skill sets, but the enterprise succeeds due to
well-defined abstractions and interfaces. At present, robotics must deal with all of these layers at
once, limited by both their own skills and by the unwieldiness inherent in poorly-abstracted
systems (center). At right, rosbridge attempts to establish a more clear abstraction boundary to
address this problem

496 C. Crick et al.



Rosbridge allows simple message handling over both HTML5 websockets and
standard POSIX IP sockets. For example, a simple Python client which handles data
being published on a ROS topic called “/sensorPacket” can be written, simply, as

host_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host_sock.connect((host_address, host_port))
host_sock.send(’raw\r\n\r\n’)
host_sock.send(’\x00{"receiver":"/rosbridge/subscribe","msg":["/sensorPacket",0,]}\xff’)
while True:

incoming = source_socket.recv(1024)
#handle sensorPacket data

This paradigm can be exploited in any language that supports IP sockets, which
is to say, all of them. Thus rosbridge enables robot application development in a
user’s language of choice.

5 ROSJS

Computing paradigms have developed over the years, from batch systems to
timeshared mainframes to standalone desktops to client-server architectures to
ubiquitous web-based applications. Current technology allows transparent admin-
istration, redundant storage, and instantaneous deployment of software running on
wildly heterogenous platforms, from smartphones to multicore desktops. This rel-
atively new and extremely ecosystem has spawned a population of users who
understand basic web technologies such as HTML and Javascript [7]. Familiarity
with basic web technologies extends beyond expert application developers to users
who would not necessarily call themselves programmers, but who nevertheless use
the web for all manner of creation and communication and are familiar with the
basic technologies. One of the goals of rosbridge is to broaden robotics to this vast

Fig. 2 Rosbridge serializes all applicable ROS topics and services over a single socket interface

Rosbridge: ROS for Non-ROS Users 497



untapped population of writers, artists, students, and designers. Javascript has
become the default language of the web and as such is one of the most popular
languages in the world. We hope to leverage a small part of that popularity to open
robotics to an entirely new audience and to make working with robotics easier for
those who are already familiar.

Because this is one of rosbridge’s primary goals, we have provided a large and
full-featured rosbridge library in Javascript, known as rosjs. rosjs is designed to
integrate ROS with the web as unobtrusively and universally as possible. Its only
advanced dependency is on the HTML5 [19] technology of websockets. Currently
browsers such as Safari, Opera, and Chrome fully support them, as does the nightly
build of Firefox. Universality has been one of the key factors in the success of the
web, and accordingly rosjs is implemented as a simple Javascript library, com-
pletely agnostic with respect to preferred development frameworks. Rosbridge is
built using serialized JSON objects, which are themselves basic Javascript object
syntax.

rosjs is now a large library supporting many complex features for visualization
and interaction with sophisticated ROS-based manipulation and navigation algo-
rithms. However, it can be used for extremely simple code. The following
demonstrates how little Javascript code is required to send navigation commands to
a robot.

<html><head>
<script>type="text/javascript" src="ros.js"</script>
...
var ros = new connection("ws://10.100.0.100:9090")
...
ros.publish(’/cmd_vel’,’geometry_msgs/Twist’,

’{"linear:{"x":’+x+’,"y":0,"z":0},"angular:{"x":0,"y":0,"z":’+z+’}}’);
...

JSON is simple enough that the serialization can be done by hand, as in the
above example. However, many JSON libraries exist to make the construction
easier and less error-prone.

rosjs was designed to meet the needs of developers with web programming
experience. There are multiple advantages to the ability to develop robot applica-
tions in the browser. Web browsers are familiar and widely-used interfaces, even by
non-techical users. Allowing users to access robots through the internet may pro-
vide insights into new applications for robotics, as well be used as a tool to recruit
potential scientists to the field. Javascript allows for rapid and flexible user interface
and visualization development. Applications developed within a web browser are
also portable across platforms, and updates and new functionality can be easily
provided.

498 C. Crick et al.



6 Rosbridge in Remote Laboratories

While middleware systems allow for code sharing and reuse, many researchers are
limited by the overhead (and sometimes pure impossibility) of reproducing results
on similar platforms. Large platforms like mobile manipulators are expensive and
difficult to obtain for researchers at smaller institutions or companies. It is rare for
researchers to have access to common platforms, let alone shared data, especially in
fields focused on active learning or those requiring user studies. Additionally, the
great difficulty in reproducing experimental results has hindered the robotics field
for many years. It is often difficult to assess which proposed approaches per- form
best. In fields where online learning and user demonstrations are required,
researchers do not perform research on common platforms, let alone on shared data.
A remote lab where users can compare results and share experimental data will help
provide a more scientific basis for comparison.

A remote robotic laboratory would allow researchers to run experiments and
compare against results produced on a common platform. We developed rosbridge
and its supporting rosjs libraries in part to support the development of experimental
infrastructure for the creation of remote robotic laboratories.

Figure 3 depicts a remote lab interface developed with rosjs to support research
into learning from demonstration. Users can access a PR2 robot to demonstrate
pick-and-place tasks, specifically setting a table. In addition, they can observe the
robot’s actions through a variety of sensors and camera streams, all provided
through the rosbridge framework. During each session data is logged and stored in a
publicly available repository. Custom controllers and learning algorithms, provided
in public code repositories, can use the data and provide policies for desired tasks
on the robot.

Fig. 3 A complex remote lab interface using rosjs and WebGL

Rosbridge: ROS for Non-ROS Users 499



There are many technical challenges to address when creating such a remote lab.
The functionality provided by rosjs is instrumental to overcoming them. A web
interface is required so that users can work with the robot remotely. The user must
have some way of controlling the robot, either with code or through teleoperation.
Users must also be able to visualize the result of the control. Security measures are
required for the safety of the robot.

7 Rosbridge in Human-Robot Interaction

One of the strengths of rosbridge (and its Javascript application-layer library rosjs)
is its support for quickly and easily creating remote user interfaces. Much of the
teleoperation work in robotics has traditionally been aimed at tasks where robots
operate in environments that are hazardous to human users, such as robotic surgery
[18], search and rescue [5], and outer space [1]. In these applications, users are
typically experts who have devoted a significant amount of training time to the
difficult task of controlling the robot and interacting with its interfaces. Our goal
with rosbridge is to allow application developers to create interfaces that are
intuitive even for novice users.

Furthermore, even expert user interface designers are not necessarily experts in
ROS or robotics generally. The expertise needed for developing rewarding and
intuitive interactions over a simple Javascript web interface, however, is widespread
and generally available.

Rosbridge has the potential to increase the number of people using, interacting
with and programming robots. A recent trend in machine learning has examined the
use of truly large data sets for learning rather than attempting to generalize from a
small amount of data. Researchers in data mining and machine translation have able
to take advantage of Google’s index of billions of crowdsourced documents and
trillions of words to show that simple learning algorithms that focus upon recog-
nizing specific features outperform more conceptually sophisticated ones [11]. We
conjecture that similar successes would be observed if large amounts of data could
be collected for learning with robots. Human-robot interaction studies, to date, more
often number in the dozens of subjects [2]. Opening up robots to the vast number of
users on the world wide web provides the opportunity to gain a large number
demonstrations from many different users.

The robotics community has made a few forays into human robot interaction
over the internet. Goldberg et al. placed a robot in a garden and allowed users to
view and interact with the robot over the web. Users were able to plant seeds, water,
and monitor the garden [9]. Taylor and Trevelyan created a remote lab in which
users perform tasks involving brightly colored blocks [23]. Schulz et al. examined
the use of web interfaces to remotely operate mobile robots in public places [22].
This worked focused on letting remote users interact with humans within the
robots’ environment and did not examine the effect of the visualizations in a
learning task. Burgard and Schulz have explored handling delay in remote

500 C. Crick et al.



operation/teleoperation of mobile robots using predictive simulation for visualiza-
tion [4].

In previous work, we have used rosbridge to leverage precisely this large net-
work effect [6]. HRI research into the character of interfaces and visualizations
which lead to successful human teaching of robot behavior was able to draw on a
large pool of participants and develop 276 use cases and eighty thousand points of
data.

8 Rosbridge in Education

The simplicity and system independence of rosbridge make it a very powerful tool
for programming and robotics education. The ease of hooking into a robot system
using simple sockets and text-based JSON messages means that students have a
very gentle learning curve. In addition, programming languages and environments
that have been expressly designed for educational purposes can easily be extended
to communicate with rosbridge.

Figure 4 shows robotics development in the Scratch environment [15], a visual
programming system designed for children to learn and understand programming
concepts. A very simple extension to Scratch allows students interact with robots
programmatically. The system has been used by middle-school students, who were
able to program robots to perform basic closed loop behaviors such as line fol-
lowing and bump exploration, without ever being aware of the underlying com-
plexities of ROS itself.

We are currently developing higher-level courses to take advantage of rosbridge,
as well. At the college level, robotics classes have traditionally spent a great deal of
time just “hacking on the machine”, dealing with and learning about the massive
infrastructure necessary to get robots to do useful things. Rosbridge short-circuits
this process, allowing students to spend more time learning about higher-level

Fig. 4 Robotic control using
the Scratch educational
programming environment

Rosbridge: ROS for Non-ROS Users 501



control and perception and less time wondering how to extract images from a
camera stream or compile behaviors in an abstruse and poorly-documented pro-
gramming environment.

9 Rosbridge Without ROS

In addition to extending ROS, rosbridge can be extended to provide similar func-
tionality for other middleware systems. The messaging protocol at the core of most
robot middleware can be translated into JSON objects just as ROS messages can,
and passed through the same sockets using the same interface. Our goal is to not
only extend ROS to but to also advocate that this additional level of abstraction may
be beneficial to other middleware systems.

We are currently developing rosbridge support for the LCM system [12]. This
will create a common interface for robots running ROS and LCM to send messages
to each other, and for application developers to write software that can support
robots running either system.

10 Conclusions and Future Work

In this paper, we described rosbridge, a high-level middleware abstraction layer that
exposes robot functionality to developers as a simple interaction over a socket. In
addition, we have developed rosjs, a Javascript library on top of rosbridge, that
supports extensive interaction and visualization of higher-level ROS constructs. We
believe that web-based interaction with robots provides the largest potential pool of
new users and developers, and so expanding and enhancing rosjs has consumed the
largest share of our development resources. However, the rosjs framework also
serves as a model for the development of other libraries for other languages.
Interaction with rosbridge can be as simple as desired—no more than sending text
strings over sockets—but of course advanced functionality should be developed to
support whatever tasks a user wishes. Rosbridge enables that development in purely
agnostic fashion.

We plan to develop rosbridge as much as possible into a simple nexus for
robotics technology to meet general application development. Already we have
begun work on an LCM component for rosbridge, with the hope of supporting
general application development for robots using either form of middleware. In
addition, we hope to support device manufacturers who need a simple,
low-overhead means of interfacing with other computer systems. An embedded
robot system might not be able to accommodate the computational demands of a
ROS system onboard, but if it can send and receive plain-text messages over a
POSIX socket, it can easily interface with ROS over rosbridge. This would greatly
expand the technological resources available to the robot.

502 C. Crick et al.



Rosbridge enables ROS to communicate with the web, applications developers
to communicate with robots, and robotics researchers to communicate with each
other. All of these are necessary for robots to succeed in the world.

References

1. H. Aldridge, W. Bluethmann, R. Ambrose, M. Diftler, Control architecture for the robonaut
space humanoid, in Proceedings of the First IEEE/RAS Conference on Humanoid Robotics
(2000)

2. C.L. Bethel, R.R. Murphy, Use of large sample sizes and multiple evaluation methods in
human-robot interaction experimentation, in AAAI Spring 2009 Symposium: Experiment
Design for Real-World Systems (2009)

3. G.R. Bradski, V. Pisarevsky, Intel’s computer vision library: applications in calibration, stereo
segmentation, tracking, gesture, face and object recognition, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2000)

4. W. Burgard, D. Schulz, Beyond Webcams: An Introduction to Online Robots, Chap, Robust
Visualization for Online Control of Mobile Robots (MIT Press, 2002), pp. 241–258

5. J.L. Casper,R. Robin, A.J. Murphy, Workflow study on human-robot interaction in user, in
Proceedings of the 2002 IEEE International Conference on Robotics and Automation (2002)

6. C. Crick, S. Osentoski, G. Jay, O.C. Jenkins, Human and robot perception in large-scale
learning from demonstration, in Proceedings of the 6th ACM/IEEE Conference on Human—
Robot Interaction (2011)

7. ECMA-262: ECMAScript language specification, 5th edn. (2009), URL http://www.
ecmainternational.org/publications/standards/Ecma-262.htm

8. B. Gerkey, R.T. Vaughan, A. Howard, The player/stage project: tools for multi-robot and
distributed sensor systems, in Proceedings of the 11th International Conference on Advanced
Robotics (2003), pp. 317–323

9. K. Goldberg, H. Dreyfus, A. Goldman, O. Grau, M. Gržinić, B. Hannaford, M. Idinopulos, M.
Jay, E. Kac, M. Kusahara, (eds.), The Robot in the Garden: Telerobotics and Telepistemology
in the Age of the Internet (MIT Press, Cambridge, 2000)

10. G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping with
raoblackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

11. A. Halevy, P. Norvig, F. Pereira, The unreasonable effectiveness of data. IEEE Intell. Syst. 8–
12 (2009)

12. A. Huang, E. Olson, D. Moore, LCM: lightweight communications and marshalling, in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(2010)

13. J. Jackson, Microsoft Robotics Studio: A Technical Introduction. IEEE Robot. Autom. Mag.
82–87 (2007)

14. J. Kramer, M. Scheutz, Development environments for autonomous mobile robots: a survey.
Auton. Robots 101–132 (2007)

15. J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The scratch programming
language and environment. Trans. Comput. Educ. 10(4), 1–15 (2010)

16. K. Martin, B. Hoffman, Mastering CMake: A Cross-platform Build System (Kitware Inc,
2008)

17. G. Metta, P. Fitzpatrick, L. Natale, YARP: yet another robot platform. Int. J. Adv. Robot. Syst.
43–48 (2006)

18. A.M. Okamura, Methods for haptic feedback in teleoperated robot-assisted surgery. Ind.
Robot. 31(6), 499–508 (2004)

19. M. Pilgrim, HTML5: Up and Running (O’Reilly Media, 2010)

Rosbridge: ROS for Non-ROS Users 503

http://www.ecmainternational.org/publications/standards/Ecma-262.htm
http://www.ecmainternational.org/publications/standards/Ecma-262.htm


20. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng,
Ros: an open-source robot operating system, in Proceedings of the Open-Source Software
Workshop of the International Conference on Robotics and Automation (2009)

21. R.B. Rusu, S. Cousins, 3D is here: point cloud library (PCL), in Proceedings of the IEEE
Conference on Robotics and Automation (ICRA) (2011)

22. D. Schulz, W. Burgard, D. Fox, S. Thrun, A.B. Cremers, Web interfaces for mobile robots in
public places. IEEE Robot. Autom. Mag. 7, 48–56 (2000)

23. K. Taylor, J. Trevelyan, A telerobot on the world wide web, in National Conference of the
Australian Robot Association (1995)

24. K. Wyobek, E. Berger, H.V. der Loos, K. Salisbury, Perspectives on standardization in mobile
robot programming: the Carnegie Mellon Navigation (CARMEN) toolkit, in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (2003), pp. 2436–
2441

504 C. Crick et al.


	28 Rosbridge: ROS for Non-ROS Users
	Abstract
	1 Introduction
	2 Background
	3 ROS
	4 Rosbridge
	5 ROSJS
	6 Rosbridge in Remote Laboratories
	7 Rosbridge in Human-Robot Interaction
	8 Rosbridge in Education
	9 Rosbridge Without ROS
	10 Conclusions and Future Work
	References


