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Abstract The limited nature of robot sensors make many important robotics
problems partially observable. These problems may require the system to perform
complex information-gathering operations. One approach to solving these problems
is to create plans in belief-space, the space of probability distributions over the
under-lying state of the system. The belief-space plan encodes a strategy for per-
forming a task while gaining information as necessary. Most approaches to
belief-space planning rely upon representing belief state in a particular way (typi-
cally as a Gaussian). Unfortunately, this can lead to large errors between the
assumed density representation of belief state and the true belief state. This paper
proposes a new sample-based approach to belief-space planning that has fixed
computational complexity while allowing arbitrary implementations of Bayes fil-
tering to be used to track belief state. The approach is illustrated in the context of a
simple example and compared to a prior approach. Then, we propose an application
of the technique to an instance of the grasp synthesis problem where a robot must
simultaneously localize and grasp an object given initially uncertain object
parameters by planning information-gathering behavior. Experimental results are
presented that demonstrate the approach to be capable of actively localizing and
grasping boxes that are presented to the robot in uncertain and hard-to-localize
configurations.
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1 Introduction

A fundamental objective of robotics is to develop systems that can perform tasks
robustly even in unstructured environments. One way to achieve this is to create a
planner capable of simultaneously localizing the state of the system and of reaching
a particular goal state. It is common to model control problems such as these as
partially observable Markov decision processes (POMDPs). However, in general,
finding optimal solutions to POMDPs has been shown to be PSPACE complete [1].
Even many approximate approaches are computationally complex: the time com-
plexity of standard point-based algorithms, such as HSVI and SARSOP, is expo-
nential in the planning horizon [2—4]. These algorithms calculate policies in belief-
space, the space of probability distributions over the underlying state space. Very
few of these algorithms can handle continuous state and action spaces [5, 6].

In an effort to avoid the computational complexity of creating policies, a new set
of approaches have recently been proposed which create plans based on expected
information content. In one class of approaches, large numbers of candidate tra-
jectories in the underlying state space are evaluated in terms of the information that
is likely to be gained during execution [7-9]. Trajectories are selected that optimize
information content or minimize the likelihood of collisions. These approaches
work well in scenarios where the likelihood of generating information-gathering
trajectories by sampling the underlying space is high. A different class of approa-
ches create plans in a parametrization of belief-space [10-12]. These approaches are
potentially better positioned to generate complex information-gathering plans, but
since they plan directly in the belief-space, the dimensionality of the planning
problem is potentially very large. With the exception of [12], the planning
approaches listed above assume that Bayes filtering will be performed using a
Gaussian density function [7-11]. However, the popularity of the particle filter
relative to the extended Kalman filter or unscented Kalman filter suggests that in
many robot problems, belief state is not well-represented as a Gaussian.
Furthermore, simply extending an approach such as in [10, 11] to non-Gaussian
distributions quickly results in an intractable planning problem because of the high
dimensionality of typical non-Gaussian parametrizations.

This paper proposes an approach to planning in high-dimensional belief-spaces
that tracks belief state using an accurate, high-dimensional filter, but creates plans
using a fixed-dimensional sampled representation of belief. We leave the imple-
mentation of the high-dimensional filter as a design choice, but expect that it will be
a histogram filter or a particle filter. In order to create a new plan, the
high-dimensional belief state is projected onto a hypothesis in the underlying state
space and a set of sampled competing states. Plans are created that generate
observations that differentiate the hypothesis from the other samples while also
reaching a goal state. During execution, we monitor KL divergence between the
actual (high- dimensional) belief-space trajectory and a belief-space trajectory
associated with the plan. If divergence exceeds a threshold, we halt execution and
create a new plan starting from the current belief (this re-planning approach is
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similar to that taken in [10, 11]). In a technical report that expands upon this paper,
we have shown that if each new plan found has a below-threshold cost, then the
algorithm eventually localizes the true state of the system and reaches a goal region
with probability one [13]. We illustrate the approach in the context of a
one-dimensional manipulation problem and compare it to the approach proposed in
[10]. Then, we show that the approach can be used to solve a version of the grasp
synthesis problem where the robot must simultaneously localize and grasp an
object. The algorithm generates robot arm trajectories that gain information by
“scanning” the boxes using a laser scanner and pushing one of the boxes as nec-
essary in order to gain information. The algorithm terminates in a pre-grasp con-
figuration that is likely to lead to a successful grasp. The approach is tested over a
range of randomly selected box configurations.

2 Problem Statement

This paper is concerned with the problem of reaching a desired goal state when the
initial state is uncertain and may only be estimated based on partial or noisy
observations. Consider a discrete-time system with continuous non-linear deter-
ministic' process dynamics,

Xe41 :f<xt7ut)7 (1>

where state, x € R", and action, u € R’, are column vectors. At each time step, the
system makes an observation, z € R”, that is a non-linear stochastic function of state:

z = h(x,) + v, (2)

where v, ~ N(0, Q) is zero-mean Gaussian noise with variance Q.

Bayesian filtering can be used to estimate state based on actions taken and ob-
servation perceived. The state estimate is represented by a probability distribution
function, 7(x; b), that is a function of the parameter vector, b € %4. We will refer to
b, (and sometimes the probability distribution, 7(x; b)) as the belief state. Suppose
that at time ¢, the system starts in belief state, b,, takes action, u,, and perceives
observation, z, 1 1. Then, belief state can be updated to incorporate the new infor-
mation using the Bayesian filter update equation. For deterministic process
dynamics, it is:

7(o; b ) Pz 4 1|x, 1)
P(Zz+l) 7

n(f(x,u);bys) = 3)

lAlthough we have formally limited ourselves to the case of zero process noise, we find in Sect. 4
that empirically, our algorithm performs well in environments with bounded process noise.
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where we implicitly assume that P(z, ;) # 0. Although, in general, it is impossible
to implement Eq.3 exactly using a finite-dimensional parametrization of
belief-space, a variety of approximations exist in practice [14].

The objective of belief-space planning is to achieve task objectives with a given
minimum probability. Specifically, we want to reach a belief state, b, such that

@(b,r,xg) = / n(x+xg;b) > m, (4)

XEB,(r)

where B,(r) = {x € R",x"x<r?*} denotes the r-ball in R", for some r > 0, x, €
R”" denotes the goal state, and ® denotes the minimum probability of success. It is
important to notice the similarities between this problem and the more general
partially observable Markov decision process (POMDP) framework. Both problems
are concerned with controlling partially observable systems. However, whereas in
the POMDP formulation, the objective is to minimize the expected cost, in our
problem, the objective is to reach a desired region of state space with a guaranteed
minimum probability of success.

3 Algorithm

This paper extends the approach proposed in [10] to non-Gaussian belief spaces.
Our algorithm iteratively creates and executes a series of belief-space plans.
A replanning step is triggered when, during plan execution, the true belief state
diverges too far from the nominal trajectory.

3.1 Creating Plans

The key to our approach is a mechanism for creating horizon-T belief-space plans
that guarantees that new information is incorporated into the belief distribution on
each planning cycle. The basic idea is as follows. Given a prior belief state, by,
define a “hypothesis” state to be at the maximum of the distribution,

x' = argmax n(x; by).
xeR"

Then, sample k — 1 states from the prior distribution,
X ~m(xby), i € (2,4, ()

such that the pdf at each sample is greater than a specified threshold,
n(xi;b1) > @ > 0, and there are at least two unique states (including x"). We search
for a sequence of actions, wy.7_; = (uy, . ..,ur_1), that result in as wide a margin as
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possible between the observations that would be expected if the system were in the
hypothesis state and the observations that would be expected in any other sampled
state. As a result, a good plan enables the system to “confirm” that the hypothesis
state is in fact the true state or to “disprove” the hypothesis state. If the hypothesis
state is disproved, then the algorithm selects a new hypothesis on the next
re-planning cycle, ultimately causing the system to converge to the true state.

To be more specific, consider that if the system starts in state x, and takes a
sequence of actions u;,_;, then the most likely sequence of observations is:

by (6w 1) = ()T, h(F(xu0)) T, B3 (6, u1)T - (Fo(xyupa1))T)

where F;(x,u;,,_1) denotes the state at time ¢ when the system begins in state x and
takes actions, uj,_;. We are interested in finding a sequence of actions over a
planning horizon 7, u;.7_;, that maximizes the squared observation distance

by (¢, wpr—1) — by (x', upr—y) ||g,

summed over all i € [2, k], where ||a||,= Va’A~'a denotes the Mahalanobis dis-
tance and Q = diag(Q, ..., Q) denotes a block diagonal matrix of the appropriate
size composed of observation covariance matrices. The wider the observation
distance, the more accurately Bayes filtering will be able to determine whether or
not the true state is near the hypothesis in comparison to the other sampled states.
Notice that the expression for observation distance is only defined with respect
to the sampled points. Ideally, we would like a large observation distance between a
region of states about the hypothesis state and regions about the other samples.
Such a plan would “confirm” or “disprove” regions about the sampled points - not
just the zero-measure points themselves. We incorporate this objective to the first
order by minimizing the Frobenius norm of the gradient of the measurements,

6ht(x7 ul:t—l)

H,(x,u, ) = o

These dual objectives, maximizing measurement distance and minimizing the
Frobenius norm of the measurement gradient, can simultaneously be optimized by
minimizing the following cost function:

k

( xkulrl == Z XU1T1 (6)

where

® (' ur—1) = ||hr (3, wgoy) — hT(Xl,llLT—l)||i(x;,uhm)~
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The weighting matrix (i.e. the covariance matrix) in the metric above is defined

x,upr 1) =2Q+ Hy(x,upr ) VHz(x, a7 )"

1 1 r (7)
+ Hy (x' upr— ) VHz (x gy

where V € R"*" is a diagonal weighting matrix.

In order to find plans that minimize Eq. 6, it is convenient to restate the problem
in terms of finding paths through a parameter space. Notice that for any positive
semi-definite matrix, A, and vector, x, we have x” Ax > x” Ax, where A is equal to
A with all the off-diagonal terms set to zero. Therefore, we have the following
lower-bound,

T
D(x',upyy) Zﬁ‘b Fi(x upy), Fr(x' upr)),
P

where

1
P, y) =7 [lAx) - R |2
7(6,y) =20+ H(0)H(x)" +Hy)H(y)",
and H(x) = Oh(x)/0x. As a result, we can upper-bound the cost, J (Eq. 6), by
k

Ze sz SUp— 1)F,(X],I.l1;,,1))

1

J( )J(ulT1<

2 =

(8)

IN
2wl —

k T
He ¢ Fy(x Fz(xl-ulzt—]))

1 =1

As a result, the planning problem can be written in terms of finding a path
through a parameter space, (x}:k , w,”‘) € R%, where x! denotes the state associated
with the ith sample at time 7 and the weight w', denotes the “partial cost” associated

with sample i. This form of the optimization problem is stated as follows.

Problem 1

subjectto  x,, , =f(x,u,),i € [1,] (10)
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wi, = wie ¥ e (1,4 (11)
X=X wh =1,i€[l,k] (12)
xp = Xg (13)

Problem 1 should be viewed as a planning problem in (x!*, w!*) € R* where
Eqgs.12 and 13 set the initial and final value constraints, Eqs. 10 and 11 define the
“belief space dynamics”, and Eq. 9 defines the cost. Notice that we have incor-
porated a quadratic cost into the objective in order to cause the system to favor short
paths. Problem 1 can be solved using a number of planning techniques such as
rapidly exploring random trees [15], differential dynamic programming [16], or
sequential quadratic programming [17]. We use sequential quadratic programming
to solve the direct transcription of Problem 1. The direct transcription solution will
be denoted

Uy = DIRTRAN(X"K,)(G,T)7 (14)

for the sample set, XUk goal state constraint, x,, and time horizon, 7. Sometimes, we
will call DIRTRAN without the final value goal constraint (Eq. 13). This will be
written, up.7_; = DIRTRAN(XIZK,T). It is important to recognize that the computa-
tional complexity of planning depends only on the number of samples used (the size
of k in step 3 of Algorithm 1) and not strictly on the dimensionality of the
underlying space. This suggests that the algorithm can be efficient in
high-dimensional belief spaces. In fact, we report results in [13] from simulations
that indicate that the algorithm can work well when very few samples (as few as
three or four) are used.

3.2 Re-planning

After creating a plan, our algorithm executes it while tracking belief state using an
accurate, high-dimensional filter chosen by the system designer. We denote this
Bayesian filter update as

b1 = G(btvutazﬂrl)'

If the true belief state diverges too far from a nominal trajectory derived from the
plan, then execution stops and a new plan is created. The overall algorithm is
outlined in Algorithm 1. Steps 2 and 3 sample & states from the distribution with the
hypothesis state, x! = arg max,cg» (x; b), located at the maximum of the prior
distribution. The prior likelihood of each sample is required to be greater than a
minimum threshold, 1 > @ > 0. In step 4, CREATEPLAN creates a horizon-T plan,
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u;.7—1, that solves Problem 1 and generates a nominal belief-space trajectory, by.T.
Steps 6 through 12 execute the plan. Step 8 updates the belief state given the new
action and observation using the Bayes filter implementation chosen by the
designer. Step 9 breaks plan execution when the actual belief state departs too far
from the nominal trajectory, as measured by the KL divergence,
Dy[n(x;b, 1), 7(x; b, 1)] > 0. The second condition, j(x, .. .,x’ﬂul;,,l) <1-—p,
guarantees that the while loop does not terminate before a (partial) trajectory with
cost J < 1 executes. The outer while loop terminates when there is a greater than ®
probability that the true state is located within r of the goal state, @(b, r,xg) >
(Eq. 4). In the technical report that expands upon this paper [13], we show that if,
for each iteration of the while loop, the two conditions in step 9 are met on some
time step, ¢ < 7T, then it is possible to guarantee that Algorithm 1 will eventually
localize the true state of the system and the while loop will terminate.

Input : initial belief state, b, goal state, x¢, planning horizon, T, and belief-state update, G.

1 while ©(b,r,xg) < @ do

2 x! = argmax,cpn m(x;b);

3 Vi € [2,k],x" ~ m(x;B) : m(x';b) > @;

4 bi.r,u;.7—| = CreatePlan (b,xl,...,xk.,xg, T);
5 by =b;

6 fort+< 1to7T—1do

7 execute action u,, perceive observation z;11;

8 b1 = G(buuuzzﬂ);_ _

9 if Dy [(x;by41), (x;6141)] > 0 and J(x',...,x* ,ujy—1) < 1 —p then
10 ‘ break

11 end

12 end

13 b=bi1;

14 end

Algorithm 1: Belief-space re-planning algorithm

Algorithm 2 shows the CREATEPLAN procedure called in step 4 of Algorithm 1.
Step 1 calls DIRTRAN parametrized by the final value constraint, x,. If DIRTRAN fails
to satisfy the goal state constraint, then the entire algorithm terminates in failure.
Step 2 creates a nominal belief-space trajectory by integrating the user-specified
Bayes filter update over the planned actions, assuming that observations are gen-
erated by the hypothesis state. If this nominal trajectory does not terminate in a
belief state that is sufficiently confident that the true state is located within 7 of the
hypothesis, then a new plan is created in steps 4 and 5 that is identical to the first
except that it does not enforce the goal state constraints. This allows the algorithm
to gain information incrementally in situations where a single plan does not lead to
a sufficiently “peaked” belief state. When the system gains sufficient information,
this branch is no longer executed and instead plans are created that meet the goal
state constraint.
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Input : initial belief state, b, sample set, X xk, goal state, x,, and time horizon, 7.
Output: nominal trajectory, by.7 and uj.7—;

1 upr—; =DirTran (x',... X x,T);

2 by =bVt€[1:T—1], by = G(by,u, h(x)));

3 if O(b,r,xg) < o then

4 ui.7_] =DirTran (x',... x5 T);

5 | by=bVre[l:T—1], by = G(br,up, h(x)));

6

end
Algorithm 2: CREATEPLAN procedure

3.3 Illustration

Figures 1 and 2 illustrate the process of creating and executing a plan in a robot
manipulation scenario. Figure 1 shows a horizontal-pointing laser mounted to the
end-effector of a two-link robot arm. The end-effector is constrained to move only
vertically along the dotted line. The laser points horizontally and measures the
range from the end-effector to whatever object it “sees”. There are two boxes and a
gap between them. Box size, shape, and relative position are assumed to be per-
fectly known along with the distance of the end-effector to the boxes. The only
uncertain variable in this problem is the vertical position of the end-effector mea-
sured with respect to the gap position. This defines the one-dimensional state of the
system and is illustrated by the vertical number line in Fig. 1. The objective is to
localize the vertical end-effector with respect to the center of the gap (state) and
move the end-effector to the center of the gap. The control input to the system is the
vertical velocity of the end-effector.

Figure 2a illustrates an information-gathering trajectory found by DIRTRAN that
is expected to enable the Bayes filter to determine whether the hypothesis state is

Fig. 1 Localization scenario. / |
The robot must I laser
. . — — -+ 5
simultaneously localize the /
gap and move the end-effector T4
in front of the gap /] | 1 ;
} arm : 4+ 1
| gap 1 0
/ | {1
|
| + 2
/] ' 13
| T -4
| + 5
/ |
I
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indeed the true state while simultaneously moving the hypothesis to the goal state
(end-effector at the center of the gap). The sample set used to calculate the trajectory
wasx',...,x¥ =5,2,3,4,6,7,8, with the hypothesis sample located at x' = 5. The
action cost used while solving Problem 1 was o = 0.0085. DIRTRAN was initialized
with a random trajectory. The additional small action cost smooths the trajectory by
pulling it toward shortest paths without changing information gathering or goal
directed behavior much. The trajectory can be understood intuitively. Given the
problem setup, there are two possible observations: range measurements that “see”
one of the two boxes and range measurements that “see” through the gap. The plan
illustrated in Fig. 2a moves the end effector such that different sequences of mea-
surements would be observed depending upon whether the system were actually in
the hypothesis state or in another sampled state.

Figure 2b, ¢ show the nominal belief-space trajectory and the actual trajectory,
respectively, in terms of a sequence of probability distributions superimposed on
each other over time. Each distribution describes the likelihood that the system
started out in a particular state given the actions taken and the observations per-
ceived. The nominal belief-space trajectory in Fig. 2b is found by simulating the

(a) (b) (©
o s
s, 1 08
12 0.7
5 s 08 06
S .
Z 2 2 2 o5
g 50 50
a 1 g g 0.4
.
5o 2o 2o
o 1
£ ! 02 0.2
- 0.1
2
- 0 e 0
w "o 1 2 3 4 5 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
(d) Time ( ) End-effector position (f) End-effector position
(3
ﬁ 5 14 16
R 1.2 1.4
S s > 5 12
= 19 2 3 08
2 <) <)
g & & 06
£ 0.4
57 02
-2 0
0 1 2 3 4 5 12 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9
Time End-effector position End-effector position

Fig. 2 Illustration of CREATEPLAN. a An information-gathering trajectory (state as a function of
time) found using direct transcription. Blue denotes the trajectory that would be obtained if the
system started in the hypothesis state. Red denotes the trajectory obtained starting in the true state.
b The planned belief-space trajectory illustrated by probability distributions superimposed over
time. Distributions early in the trajectory are light gray while distributions late in the trajectory are
dark. The seven “X” symbols on the horizontal axis denote the positions of the samples (red
denotes the true state while cyan denotes the hypothesis). ¢ The actual belief-space trajectory
found during execution. d—f Comparison with the EKF-based method proposed in [10]. d The
planned trajectory. e The corresponding nominal belief-space trajectory. f Actual belief-space
trajectory
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belief-space dynamics forward assuming that future observations will be generated
by the hypothesis state. Ultimately, the planned trajectory reaches a belief state
distribution that is peaked about the hypothesis state, x; (the red “X”). In contrast,
Fig. 2c illustrates the actual belief-space trajectory found during execution. This
trajectory reaches a belief state distribution peaked about the true state (the cyan
“X”). Whereas the hypothesis state becomes the maximum of the nominal distri-
bution in Fig. 2b, notice that it becomes a minimum of the actual distribution in
Fig. 2c. This illustrates the main idea of the algorithm. Figure 2b can be viewed as
a trajectory that “trusts” that the hypothesis is correct and takes actions that confirm
this hypothesis. Figure 2c illustrates that even when the hypothesis is wrong, the
distribution necessarily gains information because it “disproves” the hypothesis
state (notice the likelihood of the region about the hypothesis is very low).

Figure 2d—f compares the performance of our approach with the extended
Kalman filter-based (EKF-based) approach proposed in [10]. The problem setup is
the same in every way except that cost function optimized in this scenario is:

1 T
J(upro1) = E( 2) 0% +0.0085u} ;_urr_1,

where 6% denotes covariance. There are several differences in performance Notice
that the two approaches generate different trajectories (compare Fig. 2a, d).
Essentially, the EKF-based approach maximizes the EKF reduction in variance by
moving the maximum likelihood state toward the edge of the gap where the gra-
dient of the measurement function is large. In contrast, our approach moves around
the state space in order to differentiate the hypothesis from the other samples in
regions with a small gradient. Moreover, notice that since the EKF-based approach
is constrained to track actual belief state using an EKF Bayes filter, the tracking
performance shown in Fig. 2f is very bad. The EKF innovation term actually makes
corrections in the wrong direction. However, in spite of the large error, the EKF
covariance grows small indicating high confidence in the estimate.

4 Simultaneous Localization and Grasping

In real-world grasping problems, it is just as important to localize an object to be
grasped as it is to plan the reach and grasp motions. We propose an instance of the
grasp synthesis problem that we call simultaneous localization and grasping
(SLAG) where the localization and grasp planning objectives are combined in a
single planning problem. In most robot implementations, the robot is able to affect
the type or quality of information that it perceives. For example, many robots have
the ability to move objects of interest in the environment or move a camera or
LIDAR through the environment. As a result, SLAG becomes an instance of the
planning under uncertainty problem. The general SLAG problem is important
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because good solutions imply an ability to grasp objects robustly even when their
position or shape is uncertain.

4.1 Problem Setup

Our robot, Paddles, has two arms with one paddle at the end of each arm (see
Fig. 3a). Paddles may grasp a box by squeezing the box between the two paddles
and lifting. We assume that the robot is equipped with a pre-programmed “lift”
function that can be activated once the robot has placed its two paddles in oppo-
sition around the target box. Paddles may localize objects in the world using a laser
scanner mounted to the wrist of its left arm. The laser scanner produces range data
in a plane parallel to the tabletop over a 60° field of view.

We use Algorithm 1 to localize the planar pose of the two boxes parametrized by
a six-dimensional underlying metric space. The boxes are assumed to have been
placed at a known height. We reduce the dimensionality of the planning problem by
introducing an initial perception step that localizes the depth and orientation of the
right box using RANSAC [18]. From a practical perspective, this is a reasonable
simplification because RANSAC is well-suited to finding the depth and orientation
of a box that is assumed to be found in a known region of the laser scan. The
remaining (four) dimensions that are not localized using RANSAC describe the
horizontal dimension of the right box location and the three-dimensional pose of the
left box. These dimensions are localized using a Bayes filter that updates a his-
togram distribution over the four-dimensional state space based on laser measure-
ments and arm motions measured relative to the robot. The histogram filter is
comprised of 20000 bins: 20 bins (1.2 cm each) describing right box horizontal
position times 10 bins (2.4 cm each) describing left box horizontal position times
10 bins (2.4 cm each) describing left box vertical position times 10 bins (0.036
radians each) describing left box orientation. While it is relatively easy for the
histogram filter to localize the remaining four dimensions when the two boxes are
separated by a gap (Fig. 3b), notice that this is more difficult when the boxes are

Fig. 3 Illustration of the grasping problem (a). The robot must localize the pose and dimensions
of the boxes using the laser scanner mounted on the left wrist. This is relatively easy when the
boxes are separated as in (b) but hard when the boxes are pressed together as in (c)
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pressed together (Fig. 3c). In this configuration, the laser scans lie on the surfaces of
the two boxes such that it is difficult to determine where one box ends and the next
begins. Note that it is difficult to locate the edge between abutting boxes reliably
using vision or other sensor modalities in general this is a hard problem.

Our implementation of Algorithm 1 used a set of 15-samples including the
hypothesis sample. The algorithm controlled the left paddle by specifying Cartesian
end-effector velocities in the horizontal plane. These Cartesian velocity commands
were projected into the joint space using standard Jacobian Pseudoinverse tech-
niques [19]. The algorithm was parametrized by process dynamics that modeled
arms motions resulting from velocity commands and box motions produced by
pushes from the arm. Box motions were modeled by assuming zero slip while
pushing the box and assuming the center of friction was located at the center of the
area of the box “footprint”. The observation dynamics described the set of range
measurements expected in a given paddle-box configuration. For planning pur-
poses, the observation dynamics were simplified by modeling only a single
forward-pointing scan rather than the full 60° scan range. However, notice that
since this is a conservative estimate of future perception, low cost plans under the
simplified observation dynamics are also low cost under the true dynamics.
Nevertheless, the observation model used for tracking (step 8 of Algorithm 1)
accurately described measurements from all (100) scans over the 60° range. The
termination threshold in Algorithm 1 was set to 50 % rather than a higher threshold
because we found our observation noise model to overstate the true observation
noise.

Our hardware implementation of the algorithm included some small variations
relative to Algorithm 1. Rather than monitoring divergence explicitly in step 9, we
instead monitored the ratio between the likelihood of the hypothesis state and the
next most probable bin in the histogram filter. When this ratio fell below 0.8, plan
execution was terminated and the while loop continued. Since the hypothesis state
must always have a maximal likelihood over the planned trajectory, a ratio of less
than one implies a positive divergence. Second, rather than finding a non-goal
directed plan in steps 3-5 of Algorithm 2, we always found goal-directed plans.

Figure 4 illustrates an example of an information-gathering trajectory. The
algorithm begins with a hypothesis state that indicates that the two boxes are 10 cm
apart (the solid blue boxes in Fig. 4a). As a result, the algorithm creates a plan that
scans the laser in front of the two boxes under the assumption that this will enable
the robot to perceive the (supposed) large gap. In fact, the two boxes about each
other as indicated by the black dotted lines in Fig. 4a. After beginning the scan, the
histogram filter in Algorithm 1 recognizes this and terminates execution of the
initial plan. At this point, the algorithm creates the pushing trajectory illustrated in
Fig. 4b. During execution of the push, the left box moves in an unpredicted way
due to uncertainty in box friction parameters (this is effectively process noise). This
eventually triggers termination of the second trajectory. The third plan is created
based on a new estimate of box locations and executes a scanning motion in front of
the boxes is expected to enable the algorithm to localize the boxes with high
confidence.
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Fig. 4 Example of a box localization task. In a, d, the robot believes the gap between the boxes is
large and plans to localize the boxes by scanning this gap. In b, e, the robot has recognized that the
boxes abut each other and creates a plan to increase gap width by pushing the right box. In c, f, the
robot localizes the boxes by scanning the newly created gap

4.2 Localization Performance

At a high level, the objective of SLAG is to robustly localize and grasp objects even
when the pose or shape of those objects is uncertain. We performed a series of
experiments to evaluate how well this approach performs when used to localize
boxes that are placed in initially uncertain locations. On each grasp trial, the boxes
were placed in a uniformly random configuration (visualized in Fig. 5a, c). There
were two experimental contingencies: “easy” and “hard”. In the easy contingency,
both boxes were placed randomly such that they were potentially separated by a
gap. The right box was randomly placed in a 13 x 16 cm region over a range of
15°. The left box was placed uniformly randomly in a 20 x 20 cm region over 20°
measured with respect to the right box (Fig. 5a). In the hard contingency, the two
boxes were pressed against each other and the pair was placed randomly in a
13 x 16 cm region over a range of 15° (Fig. 5b).

Figure 5c, d show right box localization error as a function of the number of
updates to the histogram filter since the trial start. 12 trials were performed in each
contingency. Each blue line denotes the progress of a single trial. The termination
of each trial is indicated by the red “X” marks. Each error trajectory is referenced to
the ground truth error by measuring the distance between the final position of the
paddle tip and its goal position in the left corner of the right box using a ruler. There
are two results of which to take note. First, all trials terminate with less than 2 ¢cm of
error. Some of this error is a result of the coarse discretization of possible right box
positions in the histogram filter (note also the discreteness of the error plots). Since
the right box position bin size in the histogram filter is 1.2 cm, we would expect a
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Fig. 5 “Easy” and “hard” experimental contingencies. a Shows images of the 12 randomly
selected “easy” configurations (both box configurations chosen randomly) superimposed on each
other. b Shows images of the 12 randomly selected “hard” configurations (boxes abutting each
other). ¢, d Are plots of error between the maximum a posteriori localization estimate and the true
box pose. Each line denotes a single trial. The red “X” marks denote localization error at algorithm
termination

maximum error of at least 1.2 cm. The remaining error is assumed to be caused by
errors in the range sensor or the observation model. Second, notice that localization
occurs much more quickly (generally in less than 100 filter updates) and accurately
in the easy contingency, when the boxes are initially separated by a gap that the
filter may used to localize. In contrast, accurate localization takes longer (generally
between 100 and 200 filter updates) during the hard contingency experiments. Also
error prior to accurate localization is much larger reflecting the significant possi-
bility of error when the boxes are initially placed in the abutting configuration. The
key result to notice is that even though localization may be difficult and errors large
during a “hard” contingency, all trials ended with a small localization error. This
suggests that our algorithm termination condition in step 1 of Algorithm 1 was
sufficiently conservative. Also notice that the algorithm was capable of robustly
generating information gathering trajectories in all of the randomly generated
configurations during the “hard” contingencies. Without the box pushing trajecto-
ries found by the algorithm, it is likely that some of the hard contingency trials
would have ended with larger localization errors.
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5 Conclusions

Creating robots that can function robustly in unstructured environments is a central
objective of robotics. We argue that it is not enough to limit attention to developing
better perception algorithms. Robust localization of relevant state in real-world
scenarios is not always possible unless the robot is capable of creating and exe-
cuting information-gathering behaviors. One avenue toward achieving this is the
development of algorithms for planning under uncertainty. Our paper proposes a
new approach to the planning under uncertainty problem that is capable of rea-
soning about trajectories through a non-Gaussian belief-space. This is essential
because in many robot problems it is not possible to track belief state accurately by
projecting onto an assumed density function (Gaussian or otherwise).

The approach is illustrated in the context of a grasping task. We propose a new
setting of the grasp synthesis problem that we call simultaneous localization and
grasping (SLAG). We test our algorithm using a particular instance of a SLAG
problem where a robot must localize two boxes that are placed in front of it in un-
known configurations. The algorithm generates information gathering trajectories
that move the arm in such a way that a laser scanner mounted on the end-effector is
able to localize the two boxes. The algorithm potentially pushes the boxes as
necessary in order to gain information. Several interesting questions remain. First,
our algorithm focuses primarily on creating information gathering plans. However,
this ignores the need for “caution” while gathering the information. One way to
incorporate this into the process is to include chance constraints into Problem 1
[20]. One approximation that suggests itself is to place constraints on the sample set
used for planning. However, since we use a relatively small sample set, this may not
be sufficiently conservative. Alternatives should be a subject for future work.
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