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Series Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as follows: biomechanics, haptics,
neurosciences, virtual simulation, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abundant
source of stimulation and insights for the field of robotics. It is indeed at the
intersection of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

As one of robotics pioneering symposia, the International Symposium on
Robotics Research (ISRR) has established over the past two decades some of the
field’s most fundamental and lasting contributions. Since the launching of STAR,
ISRR and several other thematic symposia in robotics find an important platform
for closer links and extended reach within the robotics community.

This fifteenth edition of “Robotics Research,” edited by Henrik Christensen and
Oussama Khatib, offers in its thirty-seventh-chapter volume a collection of a broad
range of topics in robotics including aerial vehicles, perception and mapping,
planning, control, systems, and integration. The content of these contributions
provides a wide coverage of the current state of robotics research: the advances and
challenges in its theoretical foundation and technology basis, and the developments
in its traditional and novel areas of applications.
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ISRR culminates with this important reference on the current developments and
new directions in the field of robotics, which also marks an important milestone in
the history of STAR since the first volume published in 2003: 100 volumes—a
collective note of thanks from the series’ editors to all volume authors and editors
for having contributed to this record!

Naples, Italy Bruno Siciliano
November 2015 STAR Editor
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Preface

The International Symposium on Robotics Research (ISRR) is a series of biennial
symposia, which began in 1989, and is sponsored by the International Foundation
of Robotics Research (IFRR). ISRR is the longest running series of robotics
research meetings and dates back to the very earliest days of robotics as a research
discipline. The first meeting was organized by Mike Brady and Richard Paul and
took place in Bretton Woods (New Hampshire, USA) in August 1983. In the
following years, the ISRR symposia were held successively in Kyoto (Japan) 1984,
Gouvieux (France) 1985, Santa Cruz CA (USA) 1987, Tokyo (Japan) 1989, Hidden
Valley PA (USA) 1993, Herrsching (Germany) 1995, Shonan Village (Japan) 1997,
Snowbird UT (USA) 1999, Lorne (Australia) 2001, Siena (Italy) 2003, San
Francisco CA (USA) 2005, Hiroshima (Japan) 2007, and Lucerne (Switzerland)
2009. The ISRR symposia are conceived to bring together in a small group setting
researchers from academia, government, and industry to assess and share their
views and ideas about the state of the art of robotics, and to discuss promising new
avenues for future research.

The Fifteenth International Symposium of Robotics Research was held in
Flagstaff, Arizona on December 9–12, 2011. Nearly 80 participants from the major
institutions of robotics research around the world joined the meeting. The technical
program featured 37 contributions, selected from open submissions and invited
contributions by the program committee and the members of IFRR. The program
was organized around oral presentation in a single-track format and included for the
first time a small number of interactive presentations.

The symposium contributions contained in this volume report on a variety of
new robotics research results. The technical program was organized in 10 sessions
covering a broad spectrum of robotics research. The session topics included per-
ception, manipulation, grasping, vehicles and design, navigation, control and
integration, estimation and SLAM. In addition to the technical sessions, the pro-
gram included two forums: (i) the Frontier Forum was chaired by Prof. Hirochika
Inoue (JSPS), with the participation of Robert Ambrose (NASA), Thomas Bongrath
(KUKA), Herman Bruynincks (KU Leveun), Steve Cousin (Willow Garage),
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Sadao Kawamura (RSJ), Kazuhiro Kosuge (IEEE-RAS), Yoshi Nakamura (Tokyo
University), Gill Pratt (DARPA), Chuck Thorpe (OSTP), and Richard Voyles
(NSF); (ii) the Pioneer Forum was chaired by Ruzena Bajcsy (Berkeley) with the
participation of Bob Bolles (SRI), Rodney Brooks (Rethink Robotics), Raja Chatila
(LAAS), Paolo Dario (SSSA), Shigeo Hirose (TITECH), John Hollerbach (Utah),
Hirochika Inoue (JSPS), and Yoshiaki Shirai (Ritsumei University). These forums
brought a global view of the field and generated much discussion on the challenges
in robotic research and its future perspective. The technical program was comple-
mented by a rich social program and a unique technical field visit to NASA test site
in Arizona with spectacular demonstrations of NASA’s robotic platforms.

We are grateful to Robert Ambrose and his team for organizing the exceptional
field visit to NASA test site. We would like also to express our special thanks to
Marie Johnson for all the efforts she devoted to the management and local orga-
nization of the symposium.

The greatest words of thanks go of course to the authors and participants who
have all contributed to the success of this symposium by bringing an outstanding
program, excellent technical presentations, and stimulating and insightful
discussions.

Atlanta, GA, USA Henrik I. Christensen
Stanford, CA, USA Oussama Khatib
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Part I
Aerial Vehicles



Progress on “Pico” Air Vehicles

Robert J. Wood, Benjamin Finio, Michael Karpelson, Kevin Ma,
Néstor O. Pérez-Arancibia, Pratheev S. Sreetharan, Hiro Tanaka
and John P. Whitney

Abstract As the characteristic size of a flying robot decreases, the challenges for
successful flight revert to basic questions of fabrication, actuation, fluid mechanics,
stabilization, and power—whereas such questions have in general been answered
for larger aircraft. When developing a flying robot on the scale of a common
housefly, all hardware must be developed from scratch as there is nothing
“off-the-shelf” which can be used for mechanisms, sensors, or computation that
would satisfy the extreme mass and power limitations. This technology void also
applies to techniques available for fabrication and assembly of the aeromechanical
components: the scale and complexity of the mechanical features requires new
ways to design and prototype at scales between macro and MEMS, but with rich
topologies and material choices one would expect in designing human-scale
vehicles. With these challenges in mind, we present progress in the essential
technologies for insect-scale robots, or “pico” air vehicles.

1 Introduction

Over the past two-plus decades there have been multiple research projects aimed at
the development of a flapping-wing robotic insect. These include a butterfly-like
ornithopter from the University of Tokyo [1], the “Micromechanical Flying Insect”
project at Berkeley [2, 3], and the Harvard “RoboBee” project [4]. These efforts are
motivated by tasks such as hazardous environment exploration, search and rescue,
and assisted agriculture—similar to the tasks cited for many autonomous robots
regardless of scale or morphology. Using swarms of small, agile, and potentially
disposable robots for these applications could have benefits over larger, more
complex individual robots with respect to coverage and robustness to robot failure.

R.J. Wood (&) � B. Finio � M. Karpelson � K. Ma � N.O. Pérez-Arancibia � P.S. Sreetharan �
H. Tanaka � J.P. Whitney
Harvard School of Engineering and Applied Sciences, 33 Oxford St, Cambridge, MA 02138,
USA
e-mail: rjwood@seas.harvard.edu

© Springer International Publishing Switzerland 2017
H.I. Christensen and O. Khatib (eds.), Robotics Research,
Springer Tracts in Advanced Robotics 100, DOI 10.1007/978-3-319-29363-9_1
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But the interest in these types of robots goes well beyond the expected tasks; use as
tools to study open scientific questions (e.g. fluid mechanics of flapping flight,
control strategies for computation and sensor-limited systems) and the necessary
technological achievements that must accompany these projects are the real
motivations.

Work in unmanned aerial vehicles has a rich history that spans from scientific
inquiry to congressional policy.1 In 1997, the United States Defense Advanced
Research Projects Agency (DARPA) announced its “Micro Air Vehicle” program
which defined an MAV as being 15 cm or less in largest linear dimension, have a
range of 10 km, peak velocities over 13 m/s, and operate for more than 20 min.2

Performers in this program developed multiple successful MAV prototypes
including the Black Widow and Microbat [6] as well as some of the first examples
of piezoelectrically actuated MAVs [2, 7]. In 2005, DARPA again pushed the limits
of aerial robotics by announcing the “Nano Air Vehicle” program3 which had the
requirements of 10 g or less vehicles with 7.5 cm maximum dimension, able to fly
1 km or more. Results include the 16 cm, 19 g “Nano Hummingbird” from
Aerovironment,4 the maple seed-inspired Lockheed “Samarai”,5 and a coaxial
helicopter from a Draper Labs led team.6 There are also a number of recent
commercially-available flapping-wing toy ornithopters and RC helicopters on the
scale of micro air vehicles such as the Silverlit ‘iBird’ and the Wowwee Flytech
toys.7

Using these trends, we define a “pico” air vehicle as having a maximum takeoff
mass of 500 milligrams or less and maximum dimension of 5 cm or less. This is in
the range of most flying insects [8], and thus for pico air vehicles we look primarily
to insects for inspiration. An example prototype pico air vehicle, a prototype from
the Harvard RoboBee project8 is shown in Fig. 1.

Regardless of the classification, the challenges of creating effective flying robots
span many disciplines. For example, fluid mechanics changes as a function of
characteristic length and velocity: micro air vehicles on the scale of large birds
(Re > 10,000) exist in a regime of turbulent flow and steady lift to drag ratios
greater than 10 [8]. Nano air vehicles may exist in the transition region
(1000 < Re < 10,000) and thus the impact of boundary layer separation (and
potential reattachment) becomes particularly relevant. Whereas for pico air vehicles

1Section 220 of the National Defense Authorization Act for Fiscal Year 2001 states that, “It shall
be the goal of the Armed Forces to achieve the fielding of unmanned, remotely controlled tech-
nology such that… by 2010, one-third of the aircraft in the operational deep strike force aircraft
fleet are unmanned” [5].
2http://www.defense.gov/releases/release.aspx?releaseid=1538.
3DARPA BAA-06-06.
4http://www.avinc.com/nano/.
5http://www.atl.lmco.com/papers/1448.pdf.
6http://www.draper.com/Documents/explorations_summer2010.pdf.
7http://www.wowwee.com/en/products/toys/flight/flytech.
8http://robobees.seas.harvard.edu.
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(Re < 3000), the flow is almost entirely laminar and thus so-called unsteady
mechanisms can be employed to enhance lift beyond what would be achievable
from constant velocity alone. Nonetheless, it appears that the energetic cost for
flight—when considering a metric similar to cost of transport—increases with
decreasing characteristic length. Where we could expect a larger-scale aircraft (tens
of meters in characteristic dimension) to stay aloft for many hours or even days,
flight times for micro, nano, and pico air vehicles are expected to be on the order of
an hour, a few tens of minutes, and less than ten minutes respectively [9].

Similar scaling trends also exist for device manufacturing. It is useful to make a
distinction between feature size and characteristic size as pertaining to a vehicle:
the former refers to the smallest dimension of the mechanical components of the
system—the pitch of gear teeth, thickness of a constituent material, and length of a
flexure are examples—while the latter is more descriptive of the overall scale of the
vehicle and can refer to the wingspan, chord length, or some similar quantity. We
make the argument that as the characteristic size of a vehicle is reduced, feasible
approaches to fabrication and assembly of the various propulsion and control
mechanisms makes a distinct transition between more standard approaches using
“off-the-shelf” components and machining and assembly tools to requiring entirely
novel methods. This is one of the fundamental challenges for creating a pico air
vehicle. As the feature sizes of the mechanical components are decreased below
around 10–100 μm, the designer can no longer rely on standard macro-scale
machining techniques. Even high resolution CNC mills,9 with positioning accuracy
down to one micron, require end mills that are rare or non-existent below 50–
100 μm. Furthermore, the physics of scaling dictates that as the feature size is

Fig. 1 Example of a recent prototype of a “RoboBee”. These two-wing, 100 mg robots are
capable of controlled thrust and body moments

9For example, Microlution 5100: http://microlution-inc.com/products/5100.php.
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decreased, area-dependent forces (e.g. friction, electrostatic, and van der Waals)
become dominant, causing more traditional bearing joints to be very lossy with
respect to power transmission [10]. Similar arguments can be made for transducers.
As the feature size is reduced, friction losses and limits on current density decrease
the effectiveness of electromagnetic motors [10]. For example, the induction motor
in a Tesla Roadster can produce over 7 kW/kg at nearly 90 % transduction effi-
ciency10 whereas the smallest DC motors commercially available can produce
39 W/kg at less than 18 % efficiency.11,12 A deeper discussion of actuator
geometries and materials will be presented in Sect. 2.2. Regardless of the trans-
duction mechanism, it is clear that a pico air vehicle will require non-traditional
solutions to device fabrication. MEMS (microelectromechanical systems) surface
micro machining techniques offer one path to achieve micron-order feature sizes.
However, these techniques are hindered by the time-consuming serial nature of the
process steps, limited three dimensional capabilities, and the high cost of proto-
typing using MEMS foundries. A solution for fabrication and assembly of a pico air
vehicle will be described in Sect. 2.4 and examples of both ends of the fabrication
spectrum are shown in Fig. 2.

Challenges for control are also scale-dependent. Larger-scale vehicles can take
advantage of passive stability mechanisms (e.g. positive wing dihedral) and gen-
erally have larger mass and power capacity for various sensors and computer
architectures. An insect-scale device will have significantly reduced payload
capacity as compared to a micro or even nano air vehicle. Therefore, the control
challenges for a pico air vehicle are currently centered around flight stabilization
using limited sensing and computation capabilities. This is in contrast to
“higher-level” control problems of autonomous navigation [12] and coordination of
multiple unmanned air vehicles [13].

Beyond aeromechanics, actuation, fabrication, and control, there are numerous
additional issues including power, system-level design, integration, and mass pro-
duction. Thus the challenges for a pico air vehicle are daunting, yet form a set of
exciting and well-posed engineering questions and scientific opportunities. The
remainder of this article will discuss recent progress in a number of these areas.

2 Overview of a Pico Air Vehicle

This article will focus on some of the key components of a flapping-wing pico air
vehicle, as shown in Fig. 3, based on the design of the Harvard RoboBee. These
components make up the majority of the power and mass budget for the pico air

10http://www.teslamotors.com/roadster/specs.
11SBL02-06H1 from Namiki: http://www.namiki.net/product/dcmotor/pdf/sbl02-06ssd04_01_e.
pdf.
12Note that this does not include drive circuitry, which is also exacerbated at small scales.
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Fig. 2 At two ends of the fabrication and assembly spectrum: MEMS surface micromachined
mirrors from a Texas Instruments DLP display (left, images courtesy of Jack Grimmet and Martin
Izzard, Texas Instruments) and a “nuts-and-bolts” approach to assembly of a complex macro-scale
device: an experimental “human-scale” hover-capable aircraft, the “Avrocar” [11] (right)

Fig. 3 Components of a pico air vehicle
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vehicle, which is shown in Fig. 4 for a hypothetical 100 mg robot. Note the
dominance of battery and actuator mass and actuator power, which is indicative of
the energetic cost of flight at these scales.

2.1 Aeromechanics

Due to the scaling of fluid properties, insects operate in a way fundamentally
different from conventional aircraft. Although there are many, sometimes subtle,
differences between the flight apparatuses of individual species, in general, insects
have one or two pairs of wings, driven in multiple rotational degrees of freedom by
flight musculature, and powered by metabolic processes which convert chemical
energy for flight. For a flapping-wing pico air vehicle, we derive some design
principles from Dipteran (two-winged) insects. We assume that each wing has two
rotational degrees of freedom (DOFs): flapping and rotation about an axis
approximately parallel to the leading edge (i.e. pronation and supination). During
flapping, the up-stroke and downstroke are assumed to be nominally symmetric
with no stroke plane deviation. The wing motion is illustrated in Fig. 5. Thinking

Fig. 4 Mass (left) and power (right) budgets for a 100 mg robot, derived using the method in [9]

Fig. 5 Illustration of one-half cycle of wing motion (i.e. the down-stroke) for a Diptera assuming
negligible stroke plane deviation. Top row lateral perspective. Bottom row dorsal perspective
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about the propulsion mechanism as a lumped-parameter 2nd order system, the
dominant components are the inertia of the wing, potential energy storage in the
muscles, plates, and joints of the thorax, and the damping due to interaction
between the wing and the air. As with Diptera and other insects which use indirect
flight muscles, we assume that the wing drive for a flapping-wing pico air vehicle
will also operate at resonance to amplify the wing stroke [8].

In order to control motion in these two DOFs, the actuators are coupled to the
wings using a flexure-based articulated transmission mechanism (see Fig. 3).
Previous designs utilized a spherical five-bar mechanism to map two linear actuator
inputs to the two wing DOFs [14]. Kinematically, this allows direct control over the
phasing of wing rotation and any asymmetries in between the upstroke and
down-stroke. However, dynamic coupling between the two degrees of freedom
creates challenges for controlled trajectories at the flapping resonant frequency.
Instead, an under-actuated version of the transmission includes a passive flexure
hinge at the wing base such that flapping is commanded by a single power actuator
and rotation is passive [15]. Tuning the dynamics of the system at design time
places the rotational resonance well above the flapping resonance such that we can
assume quasi-static wing rotation while driving the actuator at the first flapping
resonant frequency. There is evidence that wing rotation in some insects is driven
by inertial and aerodynamic forces, as opposed to directly activated by thoracic
musculature [16–18].

The presence of unsteady flow features arising from wing-wake and wing-wing
interactions, aeroelastic coupling between fluid pressure and wing bending [19, 20],
and the significance of vortex formation and shedding [21] result in challenges for a
succinct description of the relationship between wing properties (geometric, inertial,
and elastic), wing motions and deformation, and resulting flow and force genera-
tion. To study the aeromechanics of flapping-wing flight, researchers have
employed a variety of methods including dynamic scaling [21], computational fluid
dynamics (CFD) methods [22], and direct biological observation [23]. Each of these
has led to significant insights into the details of flow structure, performance of many
flying insects, and the function of various morphological features. A combination of
these methods, the blade-element method [24], merges quasi-steady flow analysis
with empirically-fit force and torque coefficients which hide all the unsteady terms
behind these coefficients. This has allowed designers to study a variety of wing
morphologies and trajectories. However, in some cases, the aeroelastic interaction
between strain energy in the airfoil and fluid pressure may have a non-negligible
effect on the dynamics and energetics of the vehicle. In such cases, it is valuable to
study the fluid mechanics using either a moving-mesh CFD code or at-scale
experiments which do not make any scaling assumptions on wing compliance.

Given the ability to manufacture insect-scale airfoils, such as the Eristalis wing
in Fig. 6 [25], and actuate with insect-like trajectories and wingbeat frequencies, we
have begun multiple experiments which are aimed at a deeper understanding of the
fluid mechanics for a pico air vehicle with emphasis on learning design rules to
enhance aerodynamic efficiency—and thus overall performance of the robot.
Recent experiments include:
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• Multiple methods to create biomimetic airfoils and verification that the static
characteristics are consistent with biological wings [25, 26].

• Established a blade-element based model of under-actuated flapping dynamics
(i.e. passive rotation) and validated using a custom-made single flapping-wing,
high resolution force sensing [27], and high speed motion reconstruction [24].

• Explored the function of distributed versus localized wing compliance on lift
force generation [28].

2.2 Actuation

As previously discussed, the physics of scaling requires us to seek an alternative to
electromagnetic actuation for a pico air vehicle. But there are more subtle reasons
for this as well. Even if the power densities and efficiencies were comparable, the
unloaded RPM of a rotary electromagnetic motor will typically increase with
decreasing size, thus requiring substantial gearing to produce useful work and
increasing the overall complexity of the transmission system. Furthermore, as we
are assuming a reciprocating flapping motion, a rotary motor would require addi-
tional transmission components (and rotary bearings) to convert the rotation to wing
flapping, again increasing part count and complexity. Instead we look to oscillatory

Fig. 6 Photo of a micromolded polymer wing mimicking the features of a Eristalis wing (top).
This wing was created in a single molding step and includes veins ranging from 50 to 125 µm
thick, 100 µm corrugation, and a 10–20 µm membrane. A sample of the wing motion (dorsal
perspective) at 150 Hz flapping frequency taken from a high speed video (bottom)
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actuators based on induced-strain materials. Induced-strain materials respond to an
applied stimulus with a simple change in geometry. There are multiple options
including piezoelectric, electroactive polymers, solid-state phase transitions, elec-
trostriction, and thermal expansion. There have also been many demonstrations of
relatively simple geometries for producing linear actuation from electrostatic forces
[29], clever piezoelectric linear motors,13 piezoelectric stacks and “moonie” type
actuators [30], and many dielectric elastomer configurations [31]. Each material and
actuator morphology can be evaluated based on the standard metrics of blocked
force, free displacement (and thus energy), density (and thus energy density),
bandwidth (and thus power density), and efficiency. However, the focus is not only
on performance, but also practicality. Therefore, additional considerations include
fabrication complexity, cost, robustness, the drive method, and linearity of the
input–output response and any related control issues. Table 1 qualifies actuation
options relative to some of these metrics. A more comprehensive study of actuation
choices for a pico air vehicle is presented in [32] with reference to multiple
flapping-wing design break points.

Given the needs of a pico air vehicle, we chose clamped-free bending bimorph
polycrystalline piezoelectric actuators as a local minimum in complexity while
meeting the key specifications for bandwidth, power density, and efficiency.
Furthermore, we can rapidly prototype many geometries and obtain all necessary
materials commercially. Note that the use of these piezoelectric actuators also

Table 1 Qualitative comparison of actuation technologies

Type Example Efficiency Toughness Bandwidtha Max. ε Max. σ Density

Bulk piezo. PZT-5Hb

Single
crystal

PZN-PTc

SMA Nitinold

IPMC Nafione

EAP DEf

Electromag. Brushlessg NA NA NA

highest, high, moderate, low, lowest
aDepends upon structure geometry
bFrom Piezo Systems: http://www.piezo.com
cSingle crystal piezoelectric ceramics, see [33]
dShape memory alloy: http://www.dynalloy.com
eFrom DuPont, see [34]
fDielectric elastomers, see [31]
gFor example, 0308 DC micro-motor from Smoovy: http://www.faulhaber-group.com

13“Squiggle” motors: http://www.newscaletech.com/squiggle_overview.html.
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carries some important scaling decisions since we are assuming a resonant primary
drive. The resonant frequency will monotonically increase with decreasing size (this
trend can be seen clearly in insects [8]). For quasi-static operation of piezoelectric
actuators, power density will increase roughly linearly with operating frequency.
Thus for smaller devices, this type of actuator is attractive and can out perform
insect flight muscle by a factor of two or more [35]. The opposite trend is true as
well: it is clear that, for direct-drive transmissions, above a certain size these
actuators will not be able to deliver sufficient power due to a fixed (either fracture or
breakdown-limited) energy density and reduced operating frequencies. The specific
cutoff is highly dependent on the details of the vehicle design and will not be
discussed here. Finally, we do not assume that piezoelectric actuation is the best
choice for all functions of a pico air vehicle. As discussed in Sect. 2.3, we divide
actuation between power delivery and control. The previous discussions have
focused on maximizing resonant power delivery in order to generate thrust to
maintain flight, however the requirements for a control actuator could be rather
different than a power actuator, thus a hybrid solution is a potentially viable option.

2.3 Control

The challenges for control for a pico air vehicle are not in planning and navigation,
but rather more fundamental topics of stabilization, sensing, and electromechanical
design. Flapping-wing robots similar to the one in Fig. 1 are designed such that the
mean lift vector passes through the center of mass and the periodic drag forces are
symmetric on the upstroke and downstroke, thus there are nominally zero body
torques during flight. However, fabrication errors and external disturbances can
easily excite instabilities in the roll, pitch, or yaw angles which need to be actively
suppressed. Figure 7 displays a typical behavior in the absence of any controller or
constraints on the body degrees of freedom for a flapping-wing pico air vehicle. It is
worth noting that the robot in Fig. 7 survived over ten such crashes without any
damage, which demonstrates the robustness of the materials and components that
constitute the robot.

Our control efforts to date have concentrated on (a) development of the thoracic
mechanics to enable modulation of wing trajectories and hence body torques,

t = 0.000s t = 0.111s t = 0.165s t = 0.204s t = 0.252s

1cm

Fig. 7 When driven open-loop, the RoboBee prototypes are very unstable in body rotations and
crash shortly after takeoff
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(b) exploration of appropriate sensor technologies, and (c) methodologies for
controller synthesis and related demonstrations. Recent progress in these areas
include:

• We have demonstrated the ability to generate lift greater than body mass and
perform uncontrolled takeoff experiment such as shown in Fig. 7 [4]. This
provides the baseline aeromechanical design and allows us to quantify the thrust
the robot can achieve to help bound payload for sensing and power.

• The original designs presented in [4] only had the ability to control thrust and
one body torque (i.e. pitch torques). We have demonstrated the ability to gen-
erate bilateral asymmetry in stroke amplitude using multiple thoracic mechanics
configurations [36, 37]. This involves a morphological separation of power and
control actuation similar to the role of the indirect and direct flight muscles in
the thoracic mechanics of Dipteran insects [38].

• Similarly, we have performed experiments with stroke plane deviation as an
alternative method for torque generation in [39].

• Beyond modulating the wing trajectory, we have performed torque measure-
ment experiments which verify that there is a one-to-one relationship between
dorsoventral mean stroke angle bias and the resulting pitch torque [40].

• Through collaborations with Centeye, Inc,14 insect-inspired optical flow sensors
have been integrated on-board a gliding micro air vehicle [41].

• Work at U.C. Berkeley has prototyped a number of insect-inspired inertial and
horizon-detection sensors such as a biomimetic haltere (similar to the Coriolis
force sensing structures in Diptera [42]) and photoreceptive ocelli similar to the
horizon detection sensors in insects [43].

• Finally, we have implemented an adaptive control scheme to control the mean
lift force during flapping [44].

These efforts are primarily focused on the standard feedback control strategy in
which a disturbance is detected by a proprioceptive sensor, a computer chooses a
compensatory action according to some control law, and the action is then imple-
mented by a system of amplifiers and electromechanical structures. We refer to
devices which perform such complex tasks without the intervention of electrical
circuits (i.e. analog or digital computers) as examples of mechanical intelligence.
There are many everyday examples including windshield wipers, whippletrees, and
automobile differentials. In these examples, feedback control is performed as a
consequence of the mechanical design. For example, automobile differentials
automatically distribute equal torques to the wheels regardless of differences in
wheel velocities. We have applied this concept to the passive regulation of wing
motions by a modified version of the flexure-based transmission called PARITy:
“Passive Aeromechanical Regulation of Unbalanced Torques” [45]. The PARITy
design equally distributes torques to the wings in response to perturbations, due to
either external disturbances or fabrication errors, without the need for sensors or

14http://www.centeye.com.
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computation. This allows an active controller to operate on a much longer time
scale since short time scale perturbations are eliminated, thereby reducing the
required sensor bandwidth and computation power.

2.4 Fabrication

The integrated circuit revolution of the 1950s and 1960s now enables the majority
of the consumer electronics that are enjoyed daily. As these techniques evolved in
the 1980s to include electromechanical components, an even greater space of
applications emerged including sensors, optics, and even actuation [46].
Microrobots have been made using MEMS surface and bulk micromachining
techniques [47, 48]. However, there are many drawbacks to using integrated circuit
(IC) and MEMS technologies to create a pico air vehicle. First is the dramatic
difference between the material properties of silicon and insect tissue: the former
being rigid and brittle while the latter exhibits a large range of material properties, is
generally quite resilient, and is approximately the density of water. Second,
although the suite of techniques for high resolution machining is an appealing
aspect of MEMS processes, the resulting structures are typically “2.5D”, with high
aspect ratio components being extremely challenging in terms of machining or
requiring hinged structures [49]. Finally, although MEMS foundries exist (e.g. the
Multi-User MEMS Process, MUMPS15 and Sandia’s SUMMiT16), cost and turn-
around time are generally prohibitive to rapid prototyping. With the advent of
mesoscopic manufacturing methods [50], we have demonstrated key components of
the flight apparatus of robotic insects [15, 51] and recently the first demonstration of
a 60 mg flapping-wing device which can produce thrust greater than its body
weight [4] has proven the feasibility of creating insect-scale flying robots using
these techniques.

Mesoscopic manufacturing based on lamination and folding is depicted in
Fig. 8. Here a spherical five-bar mechanism is created in three steps. First, the
constituent materials—typically thin sheets of polymers, metals, ceramics, or
composites—are laser micromachined to the desired planform geometries. These
layers are then aligned and laminated using thermoset sheet adhesives and a heated
press. Second, the quasi-planar devices are released using a final laser machining
step. Lastly, the devices are folded into their final configuration. In the case in
Fig. 8, tabs and slots are integrated to assist with alignment during folding,
although there are other methods to ensure precision in this final step including
fixturing, surface tension, differential thermal expansion, and even embedded
actuation [52]. This process enables the development of articulated components
with any number of DOFs, layered actuators such as the piezoelectric bending

15http://www.memscapinc.com.
16http://www.mems.sandia.gov/tech-info/summit-v.html.
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actuators described in Sect. 2.2, and integrated electronics, all with feature sizes
ranging from micron to centimeter. The concept of folding as an assembly process
has been further developed into the a larger space of applications for
“Programmable Matter” using robotic origami to produce arbitrary shapes and
functional structures [53].

2.5 Power

The power source for a pico air vehicle is the most significant delimiter to flight
time [9]. Options for power storage include electrochemical (i.e. batteries and fuel
cells [54]), electrostatic (i.e. capacitors and supercapacitors), and mechanical (i.e.
elastic strain energy).17 As with all components, practicality is a fundamental
consideration. Existing batteries have poor energy storage (approximately 500 J/g
based on existing small-scale lithium batteries from Fullriver18) compared to fuels
such as gasoline which can be two orders of magnitude greater. But energy density
alone is not sufficient to describe the effectiveness of a candidate power source.

Fig. 8 Example of the process flow for articulated microstructures. In this example, six spherical
five-bar linkages are created by a sequential micromachining and lamination process, then folded
into the final configuration (inset)

17Note that this only refers to storage, not transduction or harvesting.
18http://www.fullriver.com/.
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Conversion efficiency, storage/packaging, and operating conditions should also be
considered.

There are sub-gram batteries which are commercially available (see footnote 18).
While the lower end of this range (approximately 200 mg) could be acceptable for a
pico air vehicle, smaller batteries are feasible, though rare or non-existent as
commercial products. Since the electrochemical reactions are scale-independent (at
least for the scales considered here), creating smaller batteries becomes an exercise
in fabrication and packaging. For example, it is possible to dice and repackage
lithium-polymer batteries in an inert atmosphere.

Power distribution efficiency is also a fundamental concern. Assuming the
source will have a voltage of approximately 3.7 V, and using the piezoelectric
actuator dimensions from [51], the power distribution circuits for a pico air vehicle
will require a boost conversion stage with a step-up ratio in the range of 50–100
[55]. Options for boost conversion include piezoelectric transformers, charge pump
ladder circuits, and electromagnetic transformers. Once the source voltage is
boosted to the proper level, the actuator drive signal is generated. Considering the
low electromechanical coupling coefficients for many piezoelectric materials, it is
essential to recover remaining charge from one half cycle of the harmonic oscil-
lation of the thorax and use for the next half cycle. Charge recovery circuits for
bimorph actuators have been developed [56] and a custom integrated circuit which
generates the periodic drive signal and coordinates charge recovery has been cre-
ated and demonstrated for a flapping-wing robot [57]. Therefore, the power source
is the key remaining technology required to bring the pico air vehicle in Fig. 1 to
power autonomy.

3 Next Steps

The progress on pico air vehicles reported in this article is the tip of the iceberg. The
next steps include:

• Power source: Characterization of batteries and other viable power sources
(including supercapacitors and micro fuel cells) under appropriate loading
conditions.

• Integration: The best demonstration for any core technology involves inte-
gration onto a flight-worthy robot.

– On-board sensors: Continued collaboration with manufacturers of optical
flow sensors (Centeye, Inc.), aiming to demonstrate a flight-worthy sensor
and use in altitude control experiments.

– On-board power electronics: Integrating the components from Fig. 9 into
the airframe utilizing the layered manufacturing technique described in
Sect. 2.4.
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• Accelerator-based computation: The RoboBees project is exploring compute
architectures which employ highly specialized integrated circuits to perform a
single task (such as control or sensor processing) extremely efficiently.

• System-level design and optimization: Finally, while much attention has been
paid to each component, there has been few efforts for system-level optimization
for vehicles of this scale. The work in [9] suggests the most promising areas to
focus design efforts and how improvements to the performance of any sub-
system will contribute to increased flight time.
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Aerial Locomotion in Cluttered
Environments

Dario Floreano, Jean-Christophe Zufferey, Adam Klaptocz,
Jürg Germann and Mirko Kovac

Abstract Many environments where robots are expected to operate are cluttered
with objects, walls, debris, and different horizontal and vertical structures. In this
chapter, we present four design features that allow small robots to rapidly and safely
move in 3 dimensions through cluttered environments: a perceptual system capable
of detecting obstacles in the robot’s surroundings, including the ground, with
minimal computation, mass, and energy requirements; a flexible and protective
framework capable of withstanding collisions and even using collisions to learn
about the properties of the surroundings when light is not available; a mechanism
for temporarily perching to vertical structures in order to monitor the environment
or communicate with other robots before taking off again; and a self-deployment
mechanism for getting in the air and perform repetitive jumps or glided flight. We
conclude the chapter by suggesting future avenues for integration of multiple fea-
tures within the same robotic platform.
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1 Introduction

Many environments where robots are expected to move present complex structure,
such as walls, furniture, ceilings, trees, bushes, rocks, and so forth, that we gener-
ically refer to as clutter. For example, search-for-rescue robots may be deployed in
semi-collapsed buildings with debris on the ground or in forests with trees and
vegetation; monitoring robots may be asked to explore buildings and houses; and
environmental robots may need to disperse within urban environments to collect
pollution information.

Several articulated wheeled and legged robots have been developed for loco-
motion over irregular and cluttered terrain, but these robots tend to be rather slow in
heavily cluttered environment and may get stuck or flip over unstable objects. The
significantly longer time required to explore and find the required information may
compromise the entire mission.

In this chapter, we propose to use small robots capable of moving in 3 dimensions
in order to quickly and safely locomote through cluttered environments. Flight is an
example of 3D locomotion that would allow robots to rapidly explore cluttered
environments as long as there is an aperture sufficiently large to allow them to fly
through. Here we show that although cluttered environments present several chal-
lenges for robots moving in the air, such as small size and good perception, they also
present several opportunities for the robots to learn about their surroundings and
pause to communicate, monitor, and save energy.

In the following sections, we present a few design features that allow small
robots to rapidly and safely move in 3 dimensions through cluttered environments:
(a) a perceptual system capable of detecting obstacles in the robot’s surroundings,
including the ground, with minimal computation, mass, and energy requirements;
(b) a flexible and protective framework capable of withstanding collisions and even
using collisions to learn about the properties of the surroundings when light is not
available; (c) a mechanism for temporarily perching to vertical structures in order to
monitor the environment or communicate with other robots before taking off again;
(d) a selfdeployment mechanism for getting in the air and perform repetitive jumps
or glided flight.

Each section introduces a specific feature and validates it with experimental
results obtained with a custom-made robot. In the closing section, we discuss ways
in which these features could be brought together within a single robotic platform in
order to obtain an agile and resilient robot for locomotion in cluttered environments.

2 Vision-Based Flight

Flight in cluttered and indoor environments brings enormous constraints in terms of
size and energy because the flying platform must be lightweight to be maneuverable
and small to pass through doorways or between obstacles such as buildings, posts
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and trees. Therefore most perceptual systems such as scanning laser range finders
typically used by terrestrial robots [1] are too heavy and bulky to fit on small flying
robots [2]. An alternative consists in taking inspiration from the visual system of the
insect compound eye for its ability to extract visual information from an almost
omnidirectional field of view with small computational and energetic requirements.

Approximately two-thirds of the neurons in the insect brain are dedicated to
visual information processing [3, 4]. Biologists have unraveled a significant part of
their functioning. They discovered for instance that optic flow plays a predominant
role in flight control by providing information on distance to surrounding objects
[5–7]. Interestingly optic flow can be estimated using relatively low-resolution
vision sensors, which translates to small packages and limited processing needs [8].

Based on this consideration, researchers have explored what can be classified as
2D optic-flow-based control strategies. They developed autonomous systems
moving on flat surfaces [9–13], or constrained flying robots in the form of tethered
helicopters [14] or horizontally flying systems [15–17]. Here instead, we aim at
controlling aircraft moving in 3D and relying on roll and pitch movements in order
to steer. Airplanes and helicopters in translational flight indeed use rolling and
pitching movements to alter their trajectory [18].

Optic flow is the perceived visual motion of surrounding objects as projected
onto the retina of an observer [19]. Assuming a mobile observer moving in an
otherwise stationary environment, the motion field describing the projection of the
object velocities onto its retina depends on its self-motion (amplitude and direction
of rotation and translation), the distance to the surrounding objects, and the viewing
directions [20]. This intricate combination of effects makes it generally difficult to
extract useful information out of optic flow, especially with 3D moving systems.
However, in translating aircraft, one can estimate self-rotation using rate gyro-
scopes, whereas translation can be assumed to be aligned with the longitudinal axis
of the plane with an amplitude that can be measured by an onboard airspeed sensor
(anemometer or Pitot tube). In these conditions, optic-flow can be derotated using
the gyroscopic signals in order to produce an output that is proportional to the
proximity of objects in the considered viewing direction [2, 18].

Aiming at simple 3D control strategies that can fit any small translating flying
robots with limited processing power, we propose to follow a reactive paradigm
where perception is directly linked to action without intermediary cognitive layers
[19, 21–23]. Since optic flow can be turned into proximity information as seen
previously, the simplest way of achieving reactive behaviours such as obstacle
avoidance, ground following or lateral stabilization is to linearly combine a set of
derotated optic-flow sensors into rolling and pitching commands [24].

Such a control scheme is implemented on our 10 g microflyer (MC2) to
demonstrate fully autonomous flight in an enclosed environment. The robot is
equipped with two linear camera extracting optic-flow in 3 viewing directions as
shown in Fig. 1. Two rate gyroscopes provide information to derotate the optic-flow
estimates in order to map them into proximity signals. A small anemometer is used to
regulate the airspeed.
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Figure 2 shows the coverage of the frontal field of view by the MC2 onboard
cameras (left) as well as the mapping of the optic-flow values into command signals
(right) for its rudder and elevator, which will directly affect the rolling and pitching
rates, respectively. The gains X allow to tune how the plane reacts to the proximity
of objects perceived in the 3 viewing directions. What is typically desired is that an
object perceived in the ventral area pitches up the aircraft, which will make it climb
and therefore get away from the perceived object. Similarly, the left and right
weights are set so that laterally detected object will roll the aircraft away from them.

In-flight tests are carried out in a randomly textured arena of 7 by 6 m. Once
switched on, the microflyer swiftly takes off due to its airspeed controller applying
full thrust when reading zero airspeed. Once in flight, the robot will get repelled by
the ground under the effect of the ventral optic-flow detector sensing the proximity
of it. As soon as a wall is perceived in one of the two lateral viewing directions, the
microflyer will roll in the opposite direction. Once the aircraft is tilted, the ventral
detector will not be oriented towards the ground anymore, but towards the closeby
wall. It will therefore produce a pitching up reaction, which will in turn help the
aircraft to steer away from the corresponding wall. As soon as the perceived
proximities decrease close to zero, the microflyer will naturally get back to a level
and almost straight flight as it is naturally stable by design. A video showing this
autonomous behaviour is available at http://lis.epfl.ch/microflyers. More detailed
description of the results can be found in [2, 24].

This Braitenberg-inspired control strategy can easily be generalized to more than
three viewing directions [18] in order to increase robustness by limiting the regions
that are not covered by an optic-flow detector. To demonstrate how this can be
done, a larger outdoor flying robot is fitted with up to 7 optic-flow detectors
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Fig. 1 The 10 g MC2 microflyer. The on-board actuators and electronics consists of a a 4 mm
geared motor with a lightweight carbon-fiber propeller, b two magnet-in-a-coil actuators
controlling the rudder and the elevator, c a microcontroller board with a bluetooth wireless
communication module and a ventral camera with its pitch rate gyro, d a front camera with its yaw
rate gyro, e an anemometer, and f a 65 mAh lithium-polymer battery. Reprinted from [25]
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covering the viewing directions ranging from left to bottom to right at 45° with
respect to the flight direction (Fig. 3).

Here again, the basic idea of the underlying control strategy is to use weighted
sums of all proximity signals coming from the various viewing directions as
commands for pitching and rolling rates (Fig. 4). We name this generalized control
strategy “optiPilot”.1 The set of gains (or weight distribution) is chosen in order to
achieve repulsion from all obstacles that could be sensed by any of the optic-flow
detectors.

Equipped with this set of divergent optic-flow detectors, the robot is capable of
taking-off automatically as it get repelled by the ground and laterally stabilized,
follow the underlying terrain at a preset height depending on the strengths of the set
of gains, reject lateral and longitudinal perturbations, and avoid collisions with
obstacles such as trees (Fig. 5), ground or water [18]. In addition, this optiPilot
control strategy can be used as a low-level control layer to ensure flight stabilization
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1Patent # PCT/IB2008/051497 & US 2011/0029161.
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Fig. 3 Left The swinglet flying wing used for the experiments. It has a wing span of 80 cm and a
total weight of 400 g including about 50 g of additional sensor payload. No particular efforts have
been made at this stage to reduce the weight of the sensor. Right Visual front-end composed of
seven optic computer mouse sensors pointed at 45◦ eccentricity with respect to the aircraft roll
axis. Reprinted from [18]
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Fig. 4 Mapping translation-induced frontal optic flow (represented by the arrows in the
periphery) into roll and pitch control signals. The left (resp. right) diagram represents a possible
weight distribution that will make the aircraft pitch (resp. roll) away from any seen objects. The
arrows in the center indicate pitch (resp. roll) direction for a positive pitch (resp. roll) signal.
Reprinted from [18]

Fig. 5 Reactive tree avoidance maneuver. From left to right swinglet approaching a tree, climbing
in reaction to the perceived ventral optic flow generated by the tree, and passing above the tree
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and collision avoidance while a GPS-driven higher layer takes care of the trajectory
control [26]. Videos of these behaviours are available for download at http://lis.epfl.
ch/microflyers.

3 Surviving and Exploiting Collisions

As the environment increases in clutter, space for maneuvering decreases and the
risk of collisions increases. Even the best perceptual systems can fail due to lack of
light or contrast for optic flow, symmetric or ambiguous information, or the small
size of obstacles. Collisions are thus inevitable, but most human-made systems are
not designed to withstand them. Exposed blades are especially sensitive and result
in catastrophic failures after contact. Though some recent platforms consider pro-
tecting propellers and moving parts [27–29], it is often included as an afterthought
and cannot protect from large collisions. Some helicopters that can land autono-
mously and take off again exist [30], though only if they land on their feet. No
provisions are made for landing upside-down, or for collisions with obstacles that
cause loss of flight control.

Insects however have evolved resilient, lightweight and flexible bodies that
allow them to frequently collide with windows or low contrast walls and continue
flying. Even when falling upside-down, insects can right themselves using their legs
and wings and quickly return to the air [31].

We have taken the protective and flexible bodies of insects as a design principle
for a new class of flying robots that can withstand collisions, resume flight, and
even fly against obstacles. Flying indoors requires small size to fit through doors
and windows, and thus a maximum dimension of 40 cm was chosen for this design.
Forward flight is useful for optic flow-based avoidance algorithms but the ability to
hover is also required for maneuvering close to obstacles. To best fulfill the size and
flight-mode requirements a hybrid airplane-rotorcraft design was selected that
features two counter-rotating propellers for ample thrust in hover mode, an elevator
and rudder for steering and a wing for forward flight and stability.

Besides the typical aerodynamic considerations that apply to all flying platforms,
two additional requirements were included specific to cluttered environments:

• Collision robustness: The platform must be able to withstand collisions at full
speed with hard objects such as walls. The ability to remain airborne after light
contact with objects is also beneficial.

• Autonomous self-recovery: The platform can take off again after contact that
results in a fall to the ground from any possible falling position without any
human intervention.

These two capabilities were included through intelligent design of the robot’s
morphology (Fig. 6a). The teardrop-shaped wing built using a single flexible car-
bon fibre rod absorbs the force of frontal collisions. A second carbon fibre rod
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surrounds the propellers, protecting them from side impacts. Sensitive electronics,
control surfaces and propellers are all housed on the main fuselage within these two
protective rods, which is decoupled from the wing (and thus the force of a collision)
through a spring. Using lightweight carbon fibre, mylar wings and miniature
3D-printed plastic components keeps the weight of the platform at a mere 20.5 g,
thus minimizing the kinetic energy that must be dissipated in a collision.

The shape and position of the carbon rods along with the intelligent placement of
the centre of gravity (COG) are also central to the autonomous self-recovery
capability. Whether the platform lands on its front (Fig. 6a) or on its side (Fig. 6b)
gravity acting on the COG will always rotate the platform about its protection ring
or wing to return it to takeoff position (Fig. 6c). The dimensioning of the different
platform components and the placement of the COG is optimized to find the best
balance between aerodynamic stability and self-recovery abilities (more informa-
tion on this process can be found in [32]).

During remote-controlled flight tests the prototype flying platform proves to be
an agile flyer in both hover and forward flight modes. The two 14 mm propellers
are each powered by a 6 mm DC motor, control surfaces are actuated by two
miniature servo-motors, and energy is provided by a 110 mAh battery (enough for
around 10 min of flight). Transition between the two modes is smooth and easily
controllable, partially due to the low placement of the COG. During flight tests the
platform was intentionally flown against walls and the ceiling during both hover
and forward-flight modes to qualitatively assess its robustness to collisions and
self-recovery capabilities. Several observations were made during these tests:

Fig. 6 Left Initial design of platform morphology to resist collisions and to upright autonomously
after a fall. Right Passive uprighting based on platform morphology. Whether the platform falls on
its front (a) or its side (b) gravity will act on its COG and subsequently place it into stable takeoff
position (c). Reprinted from [32]
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• Light contact with walls do not always cause the platform to fall to the ground.
It can in fact fly along the wall, its front tip grazing the surface. This behavior
resembles insects flying against a window pane looking for an exit.

• After collisions with an object that cause a fall to the ground, the prototype
always settles to one of two stable positions on the ground, and in most cases
can take off again without human intervention.

To further test the platform’s resilience to collisions, the platform was system-
atically dropped from a height of 1 m from a variety of different starting positions.
High-speed video was taken of each collision to try to analyze the deformation of
the structure during a collision. As the platform hits the ground, the shock is
partially absorbed by the spring at the nose of the platform (Fig. 7d), and partially
by the deformation of the wing. Figure 8 shows frames from a typical collision and
subsequent righting of the platform after a head-on collision with the ground.

The prototype presented here is a first step towards developing flying robots
capable of surviving and recovering from collisions that are inevitable in cluttered
environments. As with the robust exoskeletons of insects, airframe design and
platform morphology must take into account not only aerodynamic constraints but
also the ability to cope with this contact. The gravity-based self-recovery strategy
presented above is only a first step and imposes severe limitations on the flight
capabilities of the robot and the collisions it can recover from. As the environment
gets more complicated, active recovery systems (mimicking the legs used by insects
to recover when they fall on their backs [31]) will be required to push away from
obstacles before taking flight.

As flying platforms become capable of surviving collisions, they can start using
this contact to their advantage. Equipping the robot with a combination of sensors
such as strain gages or artificial skin can allow it to detect the force of contact and

Fig. 7 The prototype flying platform with details of various subsystems. a Depicts the linked dual
elevator assembly and the connector between the wing and the back of the main bar, both printed
using a 3D printer. b Shows the coaxial motor assembly, linked using miniature ball bearings. c Is
the off-the-shelf motor-control board that features two on-board linear servos. d Details the spring
mechanism for absorbing frontal impacts and separating the wing from the main axis of the
prototype. Reprinted from [32]
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gather information on its environment. This haptic information can be used to
navigate in dark or low-contrast situations such as caves when other sensory
modalities fail. These behaviours can be directly inspired from insects that bump
into windows looking for an exit or even humans following walls with their hands
in the absence of light. Attachment mechanisms can also be integrated into the
platform, allowing it to perch on walls and save energy.

4 Perching

Power management is very important for small flying robots where the typical
autonomy is in the order of 10–20 min and the motors consume most of the
available energy [33]. Cluttered environments with vertical surfaces and ceilings
offer the opportunity of temporarily perching to power off the propellers and
monitor the environment or communicate with other robots from an elevated
position. To date, only a few solutions exist to successfully perch for MAVs and

Fig. 8 Time-sequence of a typical head-on collision with the ground and subsequent
self-recovery, taken with a high-speed camera. The platform rolls onto its side before rolling
into takeoff position. Reprinted from [32]
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most of them either require complex aerial maneuvers or expose the platform to
high impact forces when attaching [33–36]. In this section, we present a perching
(i.e. attachment and detachment) mechanism for MAVs that does not rely on
complex control strategies but flies head-first into the substrate and dampens the
impact forces to avoid potential damage to the robot when colliding (for a detailed
description of the mechanism the reader may refer to [37]).

In our mechanism design we assume that the mechanism will be mounted on the
tip of a flying robot, which is flying at a constant forward velocity towards a surface.
The principle of the mechanism consists of two arms that are charged using a torsion
spring (Fig. 9). Once the MAV impacts the surface, the spring is released by a
mechanical trigger and the two arms snap forward to stick needles into the surface. In
order to detach a motor pulls back two strings that are attached to the arms. Once the
arms are pulled back, a small magnet fixes them in their charged position. In case that
the detachment would not succeed immediately, this mechanism could discharge and
recharge again several times to pull the needles out of the wall.

Fig. 9 Top Attachment sequence in CAD: in flight, the perching mechanism is in a charged state;
a once it touches the surface, the trigger separates the magnets and the arms snap forward and
b stick the needles into the substrate; c finally, the mechanism settles in its stable position on the
surface. Bottom Perching sequence of the microflyer testbed to a a wallpaper wall, and b a maple
tree. Reprinted from [37]
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We dimension the torsion spring and the mass of the arms in a way that the robot
is decelerated while the arms are snapping forward and has zero velocity in the
moment when the needles penetrate into the surface. This is a necessary condition
to avoid that the MAV crashes into the surface or that the snapping would bounce it
off the surface.

The fabricated prototype has a total weight of 4.6 g. We evaluate attachment to
different substrates by launching the mechanism at painted concrete, composite
hardboard wood, poplar wood and poplar bark. In order to obtain a security margin
of how well the perching mechanism can support the flying robot when perched to
the wall, we measure the weight that the mechanism can hold until it detaches and
define the security factor (SF) to be the maximal weight divided by the weight of
the mechanism. In Fig. 10 we can observe that the security factor varies from 12 to
91 and in general is lower for harder than for softer substrates.

In addition, we evaluate the reliability of the perching mechanism on the four
substrates. The results in Fig. 10 show that the attachment is successful on all
substrates. Also the detachment is successful in all cases, but we observe that the
effort to detach is different depending on the substrate.

To demonstrate that the perching mechanism can successfully be integrated on a
MAV, we illustrate a complete perching sequence to a wallpaper wall and a maple
tree in Fig. 10.

A limitation of this design is that, although the mechanism enables attachment to
a wide range of surfaces, it cannot perch to very hard surfaces such as glass or metal
surfaces. To address this, one possible solution would be the combination of dif-
ferent attachment mechanisms for different situations (e.g. magnetic [33] or syn-
thetic gecko-skin [38]).
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5 Jumping and Gliding

As shown in the previous sections, temporarily pausing between movements can be
beneficial for power management and for the ability to sense the environment for
extended periods of time at a specific location. For example, the surface a small
flying robot could be covered with flexible solar cells which would allow the
system to recharge its batteries while on the ground and move again when it has
acquired sufficient energy. Another way to move with high energetic efficiency is to
adopt jumping locomotion to move on the ground. Jumping is especially adapted
for small robots because the environment appears bigger when the robot decreases
in size. In nature, many small animals, such as locusts, springtails, click beetles and
fleas use jumping as their main means of locomotion, as it allows them to overcome
relatively large obstacles despite their small body size. In robotics, a variety of
jumping robots have been presented so far. For an overview on the locomotion
capabilities of these robots, we summarize their jumping performance in Table 1.

Table 1 Performance of existing miniature jumping robots

Name Mass
(g)

Size
(cm)

Jump
height
(cm)

Jump
distance
(cm)

Jump height
per mass
(cm/g)

Jump height
per sizea (–)

Jump height per
mass and sizea

(cm/(102� cm � g))
Class 1: Able to perform standing jumps

Closed elastica
jumper [45]

30* 30.5 20 70 1.18* 1.16 3.86

Voice coil
jumper [46]

42* 3 5 0 0.12* 1.67 3.97

Spherical
crawling/rolling
robot [47]

5* 9 20 5 4.02* 2.23 44.62

Class 2: Able to perform standing jumps with on-board energy

Grillo [43] 8 5 5 20b 1.25 2 25

EPFL jumping
robot v1 [44]

7 5 138 79 20.12 28.17 402.36

Class 3: Able to perform repetitive standing jumps with on-board energy

Microbot [48] 11 46 38 0 3.45 0.83 7.51

Michigan
jumper [49]

42 11 15 11 0.37 1.4 3.36

EPFL jumping
robot v2 [50]

9.8 12 76 81 8.31 6.79 69.21

Class 4: Able to perform repetitive steered standing jumps with on-board energy

Jollbot [51] 465 29.4 18.4 0 0.04 0.63 0.13

Scout [52] 200 11 30 20 0.15 2.8 1.4

Mini-Whegs
[53]

190 10.4 22 22 0.12 2.25 1.18

EPFL jumping
robot v3 [39]

14.3 18 62 46 4.49 3.56 24.92

*Weight without batteries or control unit
aJumping height at 90°
bValue N/A, here calculated assuming a take-off angle of 45°
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In this section, we describe the EPFL jumper v3 [39] which is a miniature
jumping robot with a mass of 14.3 g that uses the same principles for repetitive
jumping and uprighting as locusts or fleas. The main requirement in the develop-
ment of the jumping mechanism is to build a lightweight propulsion unit for
jumping robots, where the jumping height and take-off angle can be adjusted. For
small jumping systems it is most beneficial to first slowly charge an elastic element
and then use the legs as catapult to jump [40–44]. The working principle in our
design is to charge a torsion spring using a low power motor and then release its
energy to quickly extend a four bar leg linkage to perform the jumping movement.

The implemented jumping mechanism (Fig. 11a) uses a 4 mm DC motor to turn
a cam by way of a four stage gear box. The jumping height and take-off angle can
be adjusted by adjusting the geometry of the legs. A jump can be executed every 3 s
with a power consumption of 350 mW. The reader may refer to [39, 44] for a more
detailed explanation and characterization of the jumping principles used.

The ability to jump repetitively and to steer its jump is implemented using a
carbon cage (Fig. 11b) around the jumping mechanism. After landing, the jumping
mechanism charges for the next jump and the cage passively uprights until the only
contact with the ground is the base of the cage. Once upright, the entire jumping
mechanism is inside the cage and can rotate around its vertical axis using a second
DC motor around the main rod (Fig. 11c).

In order to reduce the risk of damaging the legs on landing, the charging of the
jumping mechanism starts already during the aerial phase to better protect the legs
inside the cage. As the center of gravity is in the lower part of the structure, the
robot settles in a stable upright position and is ready to steer and jump again. The
motor to steer and the motor of the jumping mechanism are remotely controlled
using a miniature infra red controller and a 10 mAh Lithium Polymer battery. The
10 mAh provided by this battery theoretically allow for 6.3 min of continuous

Fig. 11 A EPFL jumper v3. (a) Jumping mechanism, (b) cage, (c) main rod. B Trajectory of the
jumping robot successfully climbing two stairs of each 50 cm height and jumping into a window.
Reprinted from [39]
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recharging of the jumping mechanism or approximately 108 jumps. The completely
functional remote controlled prototype has a maximal dimension of 18 cm and a
mass of 14.33 g including batteries and electronics.

As a demonstration of the ability of our prototype to successfully perform
steered jumps in cluttered environments, we build an obstacle course which consists
of two stairs with a height of 45 cm each and a window of 1 m � 1 m (Fig. 11).
We place the robot on the ground at 10 cm distance to the first stair and aim at
locomoting with sequential steered jumps up the stairs and through the window, all
without human intervention on the scene. Depending on the operating skill of the
human operator the window can be entered in approximately four jumps (see [39]
for three successful passages of this obstacle course).

It has been suggested [43, 51, 55] that wings could be used to prolong the flight
phase of a jumping system. For lack of an existing term for this hybrid jumping and
gliding locomotion, we introduce the term ‘jumpgliding’. As the first miniature
jumpgliding robot that is capable of successive jumpgliding locomotion without
human intervention, we present the EPFL jumpglider [54] (Fig. 12a), a 16.5 g
system that can jump and transition to a steered gliding phase. Figure 12b illustrates
the locomotion capabilities of the EPFL jumpglider. It shows the trajectory of a
jump from an elevated position of 2.53 m height, a stable gliding phase, three
sequential jumps to progress on level terrain and finally a jump off the table to glide
down to the floor.

In [56] we evaluate under which conditions the addition of wings to a jumping
robot gives added benefits compared to jumping without wings. The potential
benefits which are considered are (i) the ability to prolong jumps using wings and
(ii) the reduction of potentially destructive impact forces that have to be absorbed
by the robot structure on landing. The results indicate that wings can prolong jumps
originating from elevated starting positions, but not those occurring on level
ground. A jumping robot without wings, such as the EPFL jumper v3 is a better
solution for locomotion on level terrain. However, wings can both reduce the
impact forces and help maintain an upright orientation on landing, allowing the
robot to reliably perform repetitive jumps and safely descend elevated positions and
stairs.

6 Towards Adaptive Morphologies

This chapter has described four features, or design principles, for small robots to
move in the air in cluttered environments, such as a visual system with large field of
view and integrated gyroscopes for perception and stabilization, a flexible cage for
surviving and exploiting collisions, a perching mechanism to save power and
increase information and communication tasks, and a self-deploying mechanism for
repeated jumps or glided flight. Locomotion in cluttered environments may require
adaptive forms of locomotion that can perform multiple types of locomotion, such
as walking and jumping, flying and rolling, climbing and gliding, etc.
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Most existing robots are designed to exploit only a single locomotion strategy,
such as rolling, walking, flying, swimming, or jumping. This greatly limits their
flexibility and adaptability to different environments where specific and different
locomotion capabilities could be more efficient. Multi-modal locomotion capabil-
ities could be implemented by incorporating different actuation mechanisms within
the same robot. For example, the jumping and gliding robot presented here is an
example of a robot with two actuation systems (one of them passive) for two
locomotion modes. Another more efficient strategy would consist in achieving
multiple locomotion modes with less actuation systems and motors. In order to do
that, the robot could be endowed with an adaptive morphology that enables the
transition between multiple states and reuse of the same actuation system for dif-
ferent purposes. For example, we can modify our posture and four appendices for

Fig. 12 A EPFL jumpglider. (a) Jumping mechanism, (b) CNC cut Polyimide frame, (c) wings,
(d) tail with rudder. B Illustration of the locomotion capabilities of the EPFL jumpglider. Reprinted
from [54]
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walking, climbing, swimming, and crawling. Flexible robots, with highly integrated
perceptual systems, and adaptive morphologies represent a promising solution for
highly resilient and efficient robots capable of moving through cluttered, unknown,
and dynamic environments.
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Opportunities and Challenges
with Autonomous Micro Aerial Vehicles

Vijay Kumar and Nathan Michael

Abstract We survey the recent work on micro-UAVs, a fast-growing field in
robotics, outlining the opportunities for research and applications, along with the
scientific and technological challenges. Micro-UAVs can operate in
three-dimensional environments, explore and map multi-story buildings, manipu-
late and transport objects, and even perform such tasks as assembly. While
fixed-base industrial robots were the main focus in the first two decades of robotics,
and mobile robots enabled most of the significant advances during the next two
decades, it is likely that UAVs, and particularly micro-UAVs will provide a major
impetus for the third phase of development.

1 Introduction

The last decade has seen many exciting developments in the area of micro
Unmanned Aerial Vehicles (UAVs) that are between 0.1–0.5 m in length and 0.1–
0.5 kg in mass. Just as the incorporation of 2-D mobility reinvigorated robotics
research in the 1990s, the ability to operate in truly three-dimensional environments
is bringing in new research challenges along with new technologies and applica-
tions. Indeed by some estimates [51], the UAV market is estimated to exceed $60 B
in the next 3 years, and this forecast is conservative since it does not account for the
thousands of micro-UAVs that are likely to be fielded in the near future.

Our focus in this work is on UAVs that have gross weights of the order of 1 kg
and below; although as described in [5, 8, 30, 40] the platform development rep-
resents a challenge in its own right. While commercial products ranging from 5 to
350 g are available, most of these products do not carry the sensors and processors
required for autonomous flight. Many of these small aircrafts do not have the
endurance required for missions of longer than 5 min. Longer endurance requires
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bigger batteries, and with the current energy densities of Li-polymer batteries (of
the order of several hundred Watt-hr/kg), the mass fraction used by batteries is
significant, often between 25–50 % of the gross weight.

There are many types of micro-UAVs that are in various phases of research,
development and practice. Fixed-wing aircrafts are less adept than rotor crafts at
maneuvering in constrained, 3-D environments. While avian-style flapping wing
aircrafts provide more agility, our limited understanding of the aerodynamics and
the fluid-structure coupling in such aircrafts presents a formidable challenge [10].
Insect-style flapping wing vehicles provide the ability to hover in place while also
enabling forward flight [2]. However, it is unclear that they represent a significant
advantage over rotor crafts or ducted fans in terms of efficiency, endurance, or
maneuverability, and they do incur a significant increase in complexity [43].

There are two configurations of rotor crafts that have gained acceptance in the
research community. Co-axial rotor crafts, exemplified by the Skybotix Coax [8],
are equipped with two counter-rotating, co-axial rotors and with a stabilizer bar [6].
Prototypes of less than 300 g (without sensors or processors) with a hover time of
nearly 20 min make them attractive for robotics applications. In addition, the sta-
bilizer bar confers passive mechanical stability making them easy to control.

However, we argue (see next section) that multi-rotor aircrafts exemplified by
quadrotors currently represent the best bet in terms of maneuverability and their
ability to carry small payloads. Hence the rest of this paper will address the
mechanics and control of quadrotors, and approaches to state estimation, mapping,
planning, exploration and manipulation.

2 Rotor Craft Designs and Scaling Laws

In this section, we explore the effect of choosing length scales on the inertia,
payload and ultimately angular and linear acceleration. In particular, we can analyze
maneuverability in terms of the robot’s ability to produce linear and angular
accelerations from a hover state. If the characteristic length is L, the rotor radius
R scales linearly with L. The mass scales as L3 and the moments of inertia as L5. On
the other hand the lift or thrust, F, and drag, D, from the rotors scales with the
cross-sectional area and the square of the blade-tip velocity, v. If the angular speed
of the blades is defined by x ¼ v

L ;F�x2L4 and D�x2L4. The linear acceleration

a scales as a� x2L4
L3 ¼ x2L.

For multi-rotor aircrafts like the quadrotor, thrusts from the rotors produces a
moment with a moment arm L. Thus the angular acceleration a� x2L5

L5 ¼ x2.
However, the rotor speed also scales with length since smaller motors produce less
torque which limits their peak speed because of the drag resistance that also scales
the same way as lift.

There are two commonly accepted approaches to scaling: Froude scaling and
Mach scaling [55]. Mach scaling is used for compressible flows and essential
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assumes that the tip velocities are constant leading to x� 1
R : In other words, the

rotor speed scales inversely with length. Froude scaling is used for incompressible
flows and assumes that for similar aircraft configurations, the Froude number, v2

Lg is

constant. Here g is the acceleration due to gravity. This yields x� 1ffiffiffi
R

p : Neither

Froude or Mach number similitudes take motor characteristics into account. It is
clear that the motor torque (s) scales with length. The surface area, which goes as
R2 � L2, and the volume of the core which scales as R3 � L3, are both important
variables governing motor performance. It turns out Froude scaling ðx� 1

RÞ is
consistent with s � L2 while Mach scaling is consistent with s � L3. While the
reality might be somewhere in between, these two limiting cases are meaningful for
our analysis. Froude scaling suggests that the acceleration is independent of length
while the angular acceleration a � L−1. On the other hand Mach scaling leads to
the conclusion that a � L while a � L−2. In other words, smaller aircrafts are
much more agile. Note that this conclusion is based on the assumption that the
propeller blades are rigid, the efficiency of the blade is independent of the length
scale and the inertia associated with the blades can be neglected. These factors can
be important but considering the inertia of the blade further emphasizes the benefits
of scaling down—longer blades require larger cross-sections to minimize stresses
and the inertia grows faster than L5.

For other types of rotor crafts, including co-axial rotor crafts, the linear accel-
eration scales the same way but the angular acceleration does not. This is because
the moment arm associated with the rotors is exactly L. This moment arm does not
scale the same way with coaxial helicopters. Similarly the scaling law for con-
ventional helicopters and ducted fans appears to be different. Thus if our objective
is to build small, highly maneuverable aircrafts, multi-rotor helicopters like the
quadrotor appear to be the best configuration. While rotorcrafts with six and eight
rotors have been developed and are commercially available [3], the main benefits
appear to be redundancy due to the number of rotors and increased safety because
of the compactness of a six-rotor design over a four-rotor design.

There are three design points that are illustrative of the quadrotor configuration.
We use the Pelican quadrotor from Ascending Technologies [3] equipped with
sensors (approx. 2 kg gross weight, 0.75 m diameter, and 4000 rpm nominal rotor
speed at hover), consuming approximately 400 W of power. The Hummingbird
quadrotor from Ascending Technologies (500 g gross weight, approximately 0.5 m
diameter, and 5000 rpm nominal rotor speed at hover) consumes about 75 W.
Attempts to develop a smaller quadrotor at the University of Maryland [34] suggest
that a quad rotor without sensors of mass 62 g, 0.075 m diameter and 9000 rpm
rotor speed consumes a little over 10 W of power.
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3 Control

3.1 Dynamics

The dynamics of quadrotors can be simplified to rigid body dynamic models with
approximations to the aerodynamic forces [32]. In Fig. 1, the inertial frame, A, is
defined by the triad a1, a2, and a3 with a3 pointing upward. The body frame, B, is
attached to the center of mass of the quadrotor with b1 coinciding with the preferred
forward direction and b3 perpendicular to the plane of the rotors pointing vertically
up during perfect hover (see Fig. 1). Let r denote the position vector of the center of
mass C in A. The vehicle has mass m and the components of the inertia tensor is
given by the 3 � 3 matrix J along the principal axes bi. The rotation matrix
describingB inA is given by R 2 SO (3), while the angular velocity of the vehicle,
X 2 R

3, is defined as

_R ¼ RX̂

where the operator �̂ is defined such that x̂y ¼ x� y for all x; y 2 R
3.

The forces on the system are gravity, in the −a3 direction, the lift forces from
each of the rotors, Fi, and the drag moments from the rotors Mi, all in the b3
direction. Each rotor has an angular speed xi and produces a lift force Fi = kF xi

2

and drag moment Mi = kMxi
2. The constants, kF and kM, are related to the drag and

lift coefficients, the cross sectional area and the rotor speed as discussed in Sect. 2.
However, for a specific rotor, it is quite easy to determine these empirically. The
thrust input is given by:

u1
X4
i¼1

Fi

Fig. 1 The vehicle model.
The position and orientation
of the robot in the global
frame are denoted by r and R,
respectively
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while the moment input vector is

u2 ¼ L
0 1 0 �1
�1 0 1 0
l �l l �l

2
4

3
5

F1

F2

F3

F4

2
664

3
775

where L is the distance of the rotor axis from C, and l ¼ kM
LkF

is a non dimensional
F coefficient that relates the drag (moment) to the lift (force) produced by the
propellor blades.

The dynamic model is given by:

m€r� mge3 ¼ u1Re3 ð1Þ

J _XþXþ J X ¼ u2 ð2Þ

where e3 = [0, 0, 1]T.

3.2 Control

The control problem, to track smooth trajectories (Rdes(t), rdes(t)) 2 SE(3), is
challenging for several reasons. First, the system is underactuated—there are four
inputs (u1, u2) while SE(3) is six dimensional. Second, the aerodynamic model
described above is only approximate. Finally, the inputs are themselves idealized.
In practice, the motor controllers must generate the required speeds to realize these
inputs. The dynamics of the motors and their interactions with the drag forces on
the propellers can be quite difficult to model, although first order linear models are a
useful approximation.

The first challenge, the underactuation, can be overcome by recognizing that the
quadrotor is differentially flat. See [36, 38] for a discussion of differential flatness.
To see this, we consider the outputs r and w as shown in Fig. 1, and show that we
can write all state variables and inputs as functions of the outputs and their
derivatives. Derivatives of r yield the velocity v, and the acceleration,

a =
1
m
u1b3 þ g

By writing the unit vector:

e1 ¼ ½cosw; sinw; 0�T

we can define the body frame from w and a as follows:
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b3 ¼ a� g
a� gk k ; b2 ¼

b3 � e1
b3 � e1k k ; b1 = b2 � b3

provided e1 � b3 6¼ 0. This defines the rotation matrix R as a function of a and w .
To write the angular velocity and the inputs as a function of the outputs and their
derivatives, we write the derivative of acceleration or jerk,

j ¼ 1
m

_u1b3 þ 1
m
u1X� b3

and finally, the snap or the derivative of jerk:

s ¼ 1
m
€u1b3 þ 2

m
_u1X� b3 þ 1

m
u1 _X� b3 þ 1

m
u1X� ðX� b3Þ

where

_X ¼ J�1ðu2 � X� J XÞ

From the equations above it is possible to verify that there is a diffeomorphism
between the 18 � 1 vector:

½rT; vT; aT; jT; sT;wT; _wT; €wT�

and

R� rT; _rT;XT; u1; _u1; €u1; uT2
� �T

Accordingly define the vector of flat outputs to be:

z ¼ ½r; v; a; j;w; _w�T ¼ ½z1; z2; z3; z4; z5; z6�T

We can also define a vector of fictitious inputs

v ¼ vT1 ; v2
� �T

related to the original inputs by a nonlinear transformation of the form:

v1
v2

� �
¼ gðzÞ €u1

u2

� �
þ hðzÞ ð3Þ
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so the state equations are linear:

_z ¼ AzþBv ð4Þ

with

A ¼

03�3 I3�3 03�3 03�3 03�1 03�1

03�3 03�3 I3�3 03�3 03�1 03�1

03�3 03�3 03�3 I3�3 03�1 03�1

03�3 03�3 03�3 03�3 03�1 03�1

01�3 01�3 01�3 01�3 0 1
01�3 01�3 01�3 01�3 0 0

2
6666664

3
7777775
; B ¼

03�3 03�1

03�3 03�1

03�3 03�1

I3�3 03�1

01�3 0
01�3 1

2
6666664

3
7777775

This obviously makes the control problem trivial. See Fig. 2 for a graphical
description of the controller design.

There are several difficulties following this naive approach. First, the linear
controller based on (4) works only if the dynamics can be effectively linearized.
This in turn depends on the cancelation of the dynamics in (3) which is difficult
because the dynamic model only represents an approximation of the aerodynamic
forces and our knowledge of the parameters in the model is not perfect. While
parameter estimation and adaptive control techniques (e.g., [39]) can be used to
learn and adapt to these parameters, it is often not possible to get access to the low
level signals involving higher order derivatives of the state and the inputs.

Indeed, the second challenge is to derive estimators that yield the extended state,
z, which includes not only the position and velocity, but also the acceleration and
jerk. Knowledge of the thrust (u1) and attitude (b3) allows us to estimate acceler-
ation. Similarly, measuring the derivative of the thrust ( _u1), which is related to the
rate of change of motor speeds, and the angular rates (Ω) allows us to estimate the
jerk. However, this information is not usually available from motor drivers.

However, this model of exact linearization is useful since it allows us to design
trajectories in the 18-dimensional space of flat outputs and their derivatives which
are guaranteed to respect the dynamics and constraints we might want to impose on
the state variables.

Fig. 2 Nonlinear feedback allows us to reduce the nonlinear system to a linear system (4)
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In most previous work [8, 14, 42], the control problem is addressed by decou-
pling the position control and attitude control subproblems as illustrated in Fig. 3.
The position controller is obtained by projecting the position error (and its
derivatives) along b3 and applying the input u1 that cancels the gravitational force
and provides the appropriate proportional plus derivative feedback:

u1 ¼ mbT3 €rdes þKd _rdes � _rdes
� �þKp rdes � rdes

� �� g
� �

: ð5Þ

The attitude controller varies based on the representation which is either using Euler
angles, quaternions or rotation matrices. Euler angle representations have singu-
larities and are suitable only for small excursions from the hover position. In most
cases, it is sufficient to use linear controllers that are based on the linearization of
the plant dynamics around the hover position [8, 15, 28, 32, 42]. The use of
quaternions permits the exact cancellation of dynamics and a nonlinear controller
that is exponentially stable almost everywhere in SO(3) [53]. A similar result with
rotation matrices is available in [22]. In both these papers, the error is defined on the
rotation group and does not require the error to be small.

In [22], the two controllers are shown to result in a nonlinear controller that
explicitly track trajectories in SE(3). The key idea is to design exponentially con-
verging controllers in SO(3) using an accurate measure of the error in rotations
instead of taking linear approximations:

êR ¼ 1
2

Rdes� �T
R� RTRdes

	 

ð6Þ

which yields a skew-symmetric matrix representing the axis of rotation required to
go from R to Rdes and with the magnitude that is equal to the sine of the angle of
rotation. Computing the proportional plus derivative of the error on SO(3) and
compensating for the nonlinear inertial terms gives us:

u2 ¼ Jð�kReR � kXeXÞþX� J X; ð7Þ

If we do not consider constraints on the state or the inputs, (6–7) achieve asymptotic
convergence to specified trajectories in SE(3) [22]. From a practical standpoint it is
possible to neglect the nonlinear Ω � JΩ term in the controller and achieve sat-
isfactory performance [26]. Finally, as shown in [28], it is possible to combine this

Fig. 3 The attitude controller achieves the desired orientation, which is in turn computed from the
errors in position
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controller with attitude only controllers to fly through vertical windows or land on
inclined perches with close to zero normal velocity.

Trajectory controllers allows the robot to build up momentum and reorient itself
while coasting with the generated momentum.

3.3 Adaptation and Learning

The dynamic models suffer from two types of limitations. First, such parameters as
the location of the center of mass, the moments of inertia and the motor time
constants are not precisely known. Second, the aerodynamic models are only
approximate.

The first difficulty is overcome using parameter estimation algorithms. Because
the unknown parameters appear linearly in the equations of motion (as in the case
for robot manipulators [9, 37, 54]), we can write the state equations in discrete time
as follows,

ykþ 1 ¼ hTUk

h is the parameter vector, Uk and yk are the regressor and the measurement at the
kth time step. A simple linear least-squares method can be used to estimate the
unknown parameters as shown in [27] either in a batch or in a recursive algorithm
provided the dynamics are persistently excited. These methods can also be used to
determine the offsets in IMU readings and for online calibration [47].

Adapting to varying aerodynamic conditions such as those encountered in nar-
row passages or perturbations due to wind gusts is harder because of the interaction
between the time scales of estimation and control. Model Reference Adaptive
Control techniques can be used in such settings, although it is necessary to get good
measurements of the inputs (motor currents or speeds) and state variables for
effective adaptation.

Iterative learning has been used effectively in [25, 28] for acrobatic maneuvers.
Such techniques allow the robot to learn trajectories and inputs without knowing a
precise aerodynamic model.

Regardless of the specific platform, it is unlikely that a conventional
model-based approach to control can work without a robust adaptation mechanism.
The small length scales and inertias lead to variations in dynamics that are very
difficult to model and impossible to reason about in real time. However it is also
unlikely if purely data-driven approaches can be used for control of micro-UAVs.
While apprenticeship methods and variants of reinforcement learning algorithms
(see, for example, [1]) have achieved remarkable results, they require an expert
human operator to generate data for model and control identification. Further, it is
unclear if these methods can generalize the results to cases not a priori encountered,
where training data is not available. Indeed, in much of the work considered in our
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own group [28, 50], it is very challenging if not impossible for a trained human
operator to fly the robot in the specified manner.

4 Planning

Incremental search [23] and sampling based techniques [21], which are excellent
for planning in configuration spaces, are not particularly well-suited for planning
motions for underactuated systems. RRT methods and their variants can solve
problems with dynamic constraints. For example, in [47], a RRT planner is used to
generate trajectories online through a cluttered environment with models acquired
by a laser and a camera, but for dynamic models obtained by linearization around
the hover operating point. However, the complexity of a 12-dimensional state space
with four inputs makes such techniques impractical for planning fast motions
through constrained environments. Smaller problems, for example planning
motions in the plane, can be solved using reachability algorithms [12], but it is
difficult to explore using the full state space using such approaches.

An alternative approach is to use a combination of planning algorithms for
configuration spaces along with controller synthesis techniques to ensure the UAVs
can execute the planned trajectory. For example, RRT-like techniques have been
used with LQR-like control synthesis techniques to find trajectories and sufficing
(and even optimal) control policies [49]. Similarly, uncertainty in dynamics and
estimation can be addressed using LQG techniques with motion planners [52].
However, techniques like this have yet to be applied to 3-D motion planning of
UAVs.

Model predictive control (MPC) techniques represent a third approach that can
be used to solve planning and control problems for underactuated systems [19, 56].
These techniques are promising since they combine open loop (optimal) motion
planning with feedback control—by generating open loop trajectories based on
environmental models periodically with a time interval that is much smaller than the
horizon of planning, corrective motions can be generated to accommodate changes
in the environment. However, with such approaches, convergence guarantees are
difficult to prove. It is possible to prove stability of the MPC algorithm when the
linearized model is fully controllable about the goal position [56] (which is gen-
erally possible when the goal corresponds to a static hover position), or if a control
Lyapunov function can be synthesized for goal positions [16]. Guarantees aside, the
synthesis of optimal control solutions even with a finite horizon and a terminal cost
function can be difficult with limiting on-board processing resources. Thus it
appears to be difficult to directly apply such techniques to the trajectory generation
of a quadrotor with guarantees.

It appears that a hierarchical approach that combines incremental search or
sampling based techniques in configuration space with optimal control techniques
that refines configuration space trajectories in state space is the best framework to
solve such problems. If a configuration space planner can be used first to establish
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waypoints and constraints, optimal trajectories that respect these constraints and the
dynamics of the UAV can be generated as a second step. In [26], the property of
differential flatness is used to develop an algorithm that enables the generation of
optimal trajectories through a series of keyframes or waypoints in the set of posi-
tions and orientations, while ensuring safe passage through specified corridors and
satisfying constraints on achievable velocities, accelerations and inputs. Since the
cost function and all the constraints can be written as algebraic functions of the flat
output vector, z, the general setting reduces to solving the problem:

min
vðtÞ

ZT

0

LðzÞdt; s:t: gðzÞ� 0 ð8Þ

A simple choice for L(z) is the square of the norm of the input vector, which
turns out to be the equivalent of finding the trajectory that minimizes the snap and
the yaw acceleration along the trajectory. It also has the added benefit of yielding a
convex cost function. Recall that trajectories in this flat space automatically satisfy
the dynamic equations of motion. Thus the only constraints in g(z) � 0 are those
on the position (obstacles), velocity (maximum angular rates because of gyro sat-
uration), accelerations (saturation of the IMU), and inputs (propellers can only exert
positive lift). All except the position constraints are linear. By linearizing the
position constraints the optimization in (8) becomes a convex program. The
unconstrained problem, the minimum snap trajectory optimization, yields an ana-
lytical solution—a seventh degree polynomial function of time for which we can
introduce a polynomial basis for the trajectories. We can similarly use polynomial
functions (if necessary of higher order) to satisfy all the constraints in (8). The
resulting trajectories have interesting time scaling properties [26] and can be refined
efficiently for different values of T to obtain the fastest trajectory to satisfy all the
constraints. Finally the quadratic program can be solved in real time quite effi-
ciently, and even in a distributed MPC-like setting for multiple quadrotors at speeds
approaching 20 Hz [50].

5 State Estimation and Perception

State estimation is a fundamental necessity for any application involving autono-
mous UAVs. However, platform design, mobility and payload constraints place
considerable restrictions on available computational resources and sensing. The
agility and three-dimensional mobility of the vehicle require sensors that provide
low-latency information about the three-dimensional environment surrounding the
vehicle. Although in open outdoor domains, this problem is seemingly solved with
onboard GPS, IMU and camera sensors [44, 46], indoor domains and cluttered
outdoor environments still pose a considerable challenge. In such complex
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environments, the vehicle must be able to localize, detect or perceive obstacles,
generate trajectories to navigate around the obstacles and track the trajectories with
reasonable accuracy. Any failure to successfully achieve any of these requirements
may in fact lead to a complete failure of the vehicle. Further, outdoor environmental
effects (e.g. obscurants [45], wind, direct sunlight, GPS-shadowing) and indoor
structural considerations (e.g. obstacles, tight corridors, vehicle-induced wind [32])
can challenge the consistency and accuracy of estimation algorithms that are not
designed to directly consider these issues.

The fusion of information from multiple onboard sensors such as IMU, laser and
cameras (monocular, stereo and RGB-D) do much to address these issues but come
with a cost on processing demands, payload and power. Thus there is a real need to
find a balance between sensor availability, onboard and offboard processing and
operating conditions (which in turn lead to restrictions on the kind of environments
in which the UAV can operate).

Initial developments in the area focused on systems capable of navigating indoor
environments with algorithms leveraging laser and IMU information to generate a
map and localize within the map [4, 13]. Processing for estimation and mapping is
shared between local and external computational resources. Unlike the previous
work, a monocular camera approach is employed for full pose estimation and
localization of ground terrain in GPS-denied environments in [7] but with offboard
processing. However, a major concern with offboard processing is the need to
maintain uninterrupted, low-latency communication. While this is possible in some
indoor and outdoor environments, it inhibits the ability of the system to operate
autonomously throughout more general and complex environments. Additionally,
the added time cost of external information exchange reduces the performance of
the onboard feedback control due to the communication incurred time-delays.

To address these issues, in [47] we considered a similar problem but required the
development of an implementation that permitted all processing to occur on the
vehicle in real-time. The advancements made in this work were in the form of
system design and algorithm optimization to permit autonomous navigation using
an IMU, camera and laser to generate three-dimensional maps throughout large and
multi-story environments using only limited onboard processing. Further, as all
processing occurred in real-time and on the vehicle, we were able to leverage the
feedback from the state estimation to drive model-based adaption to account for
external disturbances due to gusting wind and ground effects.

Thus far, the discussion focuses on autonomous navigation, where the vehicle
plans and controls to goals provided by an external entity. A remaining question is
the introduction of perception, planning and control to permit autonomous explo-
ration, where perception algorithms must also allow the UAV to reason about the
environment to determine control policies that will yield maximal information for
mapping. However, a major challenge in moving toward this direction is the lack of
three-dimensional sensors that can be mounted on UAVs, which are required for
3-D exploration. Unfortunately, rich sensor sources such as three-dimensional laser
range finders and omni-directional cameras either do not fit the vehicle payload
constraints or are prohibitive given the limited computational resources. As such, it
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is necessary to focus on new algorithmic methods to explore an environment given
limited sensing and computational resources. A current strategy we are pursuing in
ongoing research [48] is the application of stochastic-differential equations to
establish information frontiers between spatial regions that represent the known,
explored environment and regions that represent the unexplored environment. The
approach strives to find a balance between the computationally complexity of
analyzing a full three-dimensional map and the limited field-of-view of onboard
sensing. The area of autonomous exploration and perception is clearly an area with
rich research possibilities that will become increasingly viable as computing and
sensing options improve in time.

6 Other Challenges

6.1 Scaling and SWaP Constraints

One of the key challenges in creating small autonomous UAVs are the so-called
size, weight and power constraints. Packaging constraints are severe. Sensors and
processors have to be smaller due to the limitations on payload. Because of this, it is
difficult to create autonomous quadrotors (with onboard computation and sensing)
at small length scales. The smallest autonomous quadrotors capable of exploring,
mapping and scouting an unknown three-dimensional building-like environment
have a characteristic length of approximately 0.75 m, mass of a little less than
2 kg., and power consumptions over 400 W leading to a mission life of around 10–
20 min [47]. The main reason for the size is the need to carry three-dimensional
sensors like Hokuyo laser range finders or Microsoft Kinect cameras. This in turn
leads to high power consumption. Many impressive advances have been made in
mapping and estimation for autonomous navigation using just an IMU and a camera
[7]. Recent results point to algorithms that yield estimates of 3-D metric information
from just monocular vision combined with a good IMU [20, 35]. This suggests that
the sensor payload challenges associated with scaling can be overcome in the near
future.

However, the net payload constraints are still significant if the UAV needs to be
able to transport or manipulate a payload. Since the linear acceleration scales with
L (Sect. 2), it is impossible to design small UAVs that are able to overcome this
fundamental constraint. Current UAVs with L * 1 m have a maximum payload of
around 1 kg. One way to overcome this constraint is by using multiple UAVs to
cooperatively transport or manipulate payloads. Recent work suggests that the
challenges in coordinating multiple UAVs and adapting individual vehicles to
constraints imposed by other vehicles is possible in different settings ranging from
payloads suspended from UAVs [11, 17, 18, 31] to payloads rigidly grasped by
UAVs [29].
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6.2 Grasping and Manipulation

There are many challenges in aerial grasping for micro-UAVs. The biggest chal-
lenge arises from their limited payload. While multiple UAVs can be coordinated to
carry payloads with grippers [29], the end effector or gripper has to be light weight
and capable of grasping complex shapes. Second, the dynamics of the robot are
significantly altered by the addition of payloads. While this can be beneficial to
tasks when aerial robots need to sense the payload that has been grasped, it is
important to also be able to compensate for and adapt to changes in the dynamics
caused by the grasped payload. It is clear that the design of claws for grasping
represents a challenging mechanism design problem where the compliance and
damping must be finely tuned to grasping. Finally, all the challenges associated
with grasping objects (approaching, contacting, and securing the grasp) make this a
significant challenge.

Preliminary work in this direction has appeared in conferences over the last 2
years. The difficulties associated with the analysis of the flight dynamics and sta-
bility are explained with the help of an approximate model in [41]. The mechanics
and design for aerial grasping are addressed in [27, 29]. Parameter estimation
methods for estimating the grasped payload and the ability to adapt to the payloads
are investigated in [27]. The application to construction of structures is discussed in
[24] in which the sensed disturbance forces are used to verify successful grasping
and assembly. Micro-UAVs afford opportunities for truly three-dimensional
grasping since they can, in principle, approach objects or assemblies from any
direction, and because they can sense disturbance forces without additional sensors.
This is a fertile area of future research.

6.3 Adaptation to Complex Environments with Changing
Dynamics

As discussed earlier, it is very difficult to model micro-UAVs with a high degree of
precision because of the complexity of modeling air drag, the interactions between
the motor, rotor and the fluid through which the propellor blades must move, the
dynamics of the flexible propellor blade and the different nonlinearities and satu-
ration effects in the sensors and actuators. And such difficulties get compounded
when the rigid body dynamics interact with the aero dynamics and the
fluid-structure coupling effects become significant, as is the case in flapping-wing
vehicles or rotor crafts with long blades. As discussed earlier in Sect. 3.3, adaptive
control and iterative learning techniques can be used to handle some of these
challenges. However, parameterizing the set of uncertainties and ensuring the
appropriate level of sensing and actuation to identify these parameters may not
always be possible. Methods such as the ones described in [25, 27, 28] are good
starting points for such studies.
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The effects of changes in the aerodynamics in three-dimensional environments
are much harder to study. A study of wind gusts in [57] illustrates the challenges in
modeling and experimentation. For small aircrafts, small, local variations in wind
conditions can be significant. Transitions between indoor and outdoor environments
can induce large perturbations. Even without wind gusts, changes in elevation can
dramatically alter the lift generated by individual propellers resulting in significant
disturbances to the vehicle. Some of these phenomena are studied for modestly
changing environments in [47] where the inputs required to compensate for the
changes can be parameterized by a small set of trim parameters. In these studies the
sensed information was limited to gross position and velocity information which in
turn limits the level of adaptation that is possible. If aerial vehicles are to become as
reliable and easy-to-use as ground vehicles, it is necessary to develop techniques
that will enable safe and robust low-level navigation behaviors in complex
environments.

7 Conclusion

Micro UAVs are potentially game changers in robotics. They can operate in con-
strained three-dimensional environments, explore and map multi-story buildings,
manipulate and transport objects, and even perform such tasks as assembly. Our
recent experiments with quadrotors in collapsed buildings in Sendai, Japan in July
2011 [33] demonstrated many benefits of using autonomous quadrotors for map-
ping unknown environments, searching in collapsed buildings and exploration in
settings that are too dangerous for human rescue workers. Just as the advent of
mobile robots led to a flurry of activity with new research problem areas,
micro-UAVs will inevitably lead robotics research in new and exciting directions.
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Unsupervised 3D Object Discovery
and Categorization for Mobile Robots

Jiwon Shin, Rudolph Triebel and Roland Siegwart

Abstract We present a method for mobile robots to learn the concept of objects
and categorize them without supervision using 3D point clouds from a laser scanner
as input. In particular, we address the challenges of categorizing objects discovered
in different scans without knowing the number of categories. The underlying object
discovery algorithm finds objects per scan and gives them locally-consistent labels.
To associate these object labels across all scans, we introduce class graph which
encodes the relationship among local object class labels. Our algorithm finds the
mapping from local class labels to global category labels by inferring on this graph
and uses this mapping to assign the final category label to the discovered objects.
We demonstrate on real data our algorithm’s ability to discover and categorize
objects without supervision.

1 Introduction

A mobile robot that is capable of discovering and categorizing objects without
human supervision has two major benefits. First, it can operate without a
hand-labeled training data set, eliminating the laborious labeling process. Second,
if human-understandable object labels are needed, automatic discovery and cate-
gorization leave the user with a far less tedious task of labeling categories rather
than raw data points. Unsupervised discovery and categorization, however, require
the robot to understand what an object constitutes. In this work, we address the
challenges of unsupervised object discovery and categorization using 3D scans
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from a laser as input. Unlike other object discovery algorithms, our approach does
not require presegmentation of background, one-to-one mapping between input
scan and label, nor a particular object symmetry. Instead, we simply assume that an
entity is an object if it is composed of two or more parts and occurs more than once.

We propose a method for robots to discover and categorize objects without
supervision. This work especially focuses on categorization of the discovered
objects. The proposed algorithm is composed of three steps: detection of potential
object parts, object discovery, and object categorization. After segmenting the input
3D point cloud, we extract salient segments to detect regions which are likely to
belong to objects. After detecting these potential object parts, we cluster them in
feature and geometric space to acquire parts labels and object labels. Reasoning on
the relationship between object parts and object labels provides a locally-consistent
object class label for each discovered object. Processing a series of scans results in a
set of discovered objects, all labeled according to their local class labels. To
associate these local class labels, we build a class graph. Class graph encodes the
dependency among local class labels of similar appearance, and smoothing the
graph results in a distribution of the global category labels for each local class label.
Marginalizing out the local class labels gives the most likely final category label for
each discovered object. We demonstrate on real data the feasibility of unsupervised
discovery and categorization of objects.

Contributions of this work are two-folds. First, we improve the object discovery
process by extracting potential foreground objects using saliency. Instead of relying
entirely on perfect foreground extraction, our algorithm takes the foreground seg-
ments only as potential object parts and performs further processing on them before
accepting them as object parts. It can thus handle imperfect foreground extraction
by removing those potential object parts deemed less fit to be actual object parts.
Second, we propose a novel categorization method to associate the
locally-consistent object class labels to the global category labels without knowing
the number of categories. Our algorithm improves the results of categorization over
pure clustering and provides a basis for on-line learning. To our knowledge, no
other work has addressed the problem of unsupervised object categorization from
discovered objects.

The organization of the paper is as follows. After discussing related work in
Sect. 2, we introduce a saliency-based foreground extraction algorithm and explain
the single-scan object discovery algorithm in Sect. 3. In Sect. 4, we propose a
method for associating the discovered objects for object categorization. After the
experimental results in Sect. 5, the paper concludes with Sect. 6.

2 Related Work

Most previous work on unsupervised object discovery assume either a preseg-
mentation of the objects, one object class per image, or a known number of objects
and their classes [1, 4, 13]. In contrast, [16] proposed an unsupervised discovery
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algorithm that does not require such assumptions but instead utilizes regularity of
patterns in which the objects appear. This is very useful for man-made structures
such as facades of buildings. [2] developed a method to detect and segment similar
objects from a single image by growing and merging feature matches.

Our work builds on our previous work [17], which gives nice results for single
scenes but does not address the data association problem across different scenes.
Thus, the above algorithm cannot identify instances of the same object class that
appear in different scenes. In contrast, this approach solves the data association
problem and introduces a reasoning on the object level, instead of only assigning
class labels to object parts.

An important step in our algorithm is the clustering of feature vectors extracted
from image segments. Many different kinds of clustering algorithms have been
proposed and their use strongly depends on the application. Some classic methods
such as the Expectation-Maximization (EM) algorithm and k-means clustering
assume that data can be modeled by a simple distribution, while other methods such
as agglomerative clustering are sensitive to noise and outliers. To overcome these
problems, alternative approaches have been proposed. [11] presented a spectral
clustering algorithm, which uses the eigenvectors of the data matrix to group points
together, with impressive results even for challenging data. Another recent clus-
tering approach is named affinity propagation, proposed by [5]. It clusters data by
finding a set of exemplar points, which serve as cluster centers and explain the data
points assigned to it. This method avoids the pitfalls of a bad initialization and does
not require the number of clusters to be prespecified. In this work, we use affinity
propagation to cluster image segments in feature space.

Our object categorization method is inspired by the bag of words approach [3].
Outside of document analysis, the bag of words method has been applied in
computer vision, e.g., for texture analysis or object categorization [10, 15]. Our
work uses it to bridge the gap between reasoning on object parts and object
instances.

3 Object Discovery

This section describes the algorithm for discovering objects from a single scan.
Figure 1 depicts the overall process of the object discovery. Our single-scan object
discovery algorithm is based on our previous work [17], which treats every segment
as a potential object part and accepts them as objects if after inference, any nearby
segment has the same class label as itself. This algorithm, however, has several
disadvantages. First, because the original algorithm considers all segments as
potential object parts, it makes many false neighborhood connections between
foreground and background segments. This results in object candidates composed
of real object parts and background parts. Second, it has relatively high
false-positive rate because it cannot differentiate clutter objects from real objects.
Third, it wastes computation by extracting feature descriptors on background
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segments. In this paper, we introduce saliency-based foreground extraction algo-
rithm to overcome these problems.

3.1 Extraction of Potential Object Parts

A simple way to seperate foreground from background is to fit planes into the data
and remove all points that correspond to the planes. This removes all wall, ceiling,
and floor parts as in, e.g., [4], but can cause at least two problems. First, it may also
remove planar segments close to a wall or floor that are actually object parts and
thus should not be removed. Second, it is often insufficient to define background as
planar because background may be truly curved or non-planar due to sensor noise.

Inspired by computer vision [7], we suggest a different approach for foreground
extraction using saliency. The idea is to classify certain parts of an image as visually
more interesting or salient than others. This classification determines saliency based
on difference in entropy of a region to its nearby regions. Most work on saliency has
been on 2D images, but [6] uses saliency for object recognition in 3D range scans.
Their technique, however, remaps depth and reflectance images as greyscale images
and applies 2D saliency techniques to find salient points. This work detects salient
segments in true 3D by processing depth values of range data directly.

Our saliency algorithm computes saliency at point level and segment level. Point
saliency provides saliency of a point while segment saliency represents saliency of
a segment. A point saliency sp is composed of a local saliency sl and a global
saliency sg. Local saliency sl is defined as

slðpÞ ¼ 1
smaxl

X
p02N ðpÞ

n � (p� p0), ð1Þ

Fig. 1 Overview of the discovery process (best seen in color). After performing segmentation on
input data and extracting salient segments, the algorithm clusters the salient segments in feature
and geometric space. The clusters are then used to create scene graph and parts graph, which
encode the relationship between object parts and objects. Running inference on the graphs result in
the discovery of four objects as shown on the right
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where n is the normal vector at a point p, and NðpÞ defines the set of all points in
the neighborhood of p. To obtain a value between 0 and 1, the local saliency is
normalized by the maximum local saliency value sl

max. Intuitively, local saliency
measures how much the point p sticks out of a plane that best fits into the local
surrounding NðpÞ. This resembles the plane extraction technique mentioned earlier.

Points that are closer to the sensor are more likely to belong to foreground and
thus globally more salient than points that are far away from the sensor. We capture
this property in global saliency. Global saliency sg is defined as

sgðpÞ ¼ 1
smaxg

jjpmax � pjj; ð2Þ

where pmax denotes the point that is farthest away from the sensor origin. As in local
saliency, global saliency is normalized to range between 0 and 1.

We define segment saliency ss for a segment s as a weighted average of the local
and global saliency for all points which belong to the segment and multiply it by a
size penalty a, i.e.,

ssðsÞ ¼ a
1
jsj
X
p2s

wslðpÞþ ð1� wÞsgðpÞ
 !

; ð3Þ

where a = exp(−(|s| − |smean|)
2) penalizes segments that are too big or too small as

they are likely to originate from a wall or sensor noise; |s| denotes the size (number
of points) of the segment s; and w weighs between local and global saliency. The
weight w depends on the amount of information contained in local and global
saliency, measured by entropy of the corresponding distributions. Interpreting sl
and sg as probability distributions, we can determine entropy hl and hg for local and
global saliency by

hl ¼ �
XN
i¼1

slðpiÞ log slðpiÞ ð4Þ

hg ¼ �
XN
i¼1

sgðpiÞ log sgðpiÞ; ð5Þ

where N = 20 in this work. As a saliency distribution with lower entropy is more

informative, we set the weight w as w ¼ hg
hg þ hl

, which is high when local saliency

has low entropy and low when it has high entropy. The weight ensures that more
informative entropy distribution contributes more to the final saliency.

Segment saliency ss(s) ranges between 0 and 1. We consider a segment salient if
its saliency is higher than 0.5 and accept it as a potential object part. Only these
potential object parts S are further processed for object discovery. Figure 2 shows a
scene after salient segments are extracted.
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3.2 Object Discovery for a Single Scan

Once we extract potential object parts S, next step is to reason on them to discover
objects. The object discovery step on single scan is based on our previous work
[17]. The underlying idea behind our object discovery algorithm is that object parts
which belong to the same object are frequently observed together, and hence by
observing which parts occur together frequently, we can deduce the object class
label for these parts. Using this idea, a brief summary of the algorithm is as follows.
Given the potential object parts S, we extract a feature vector fi for each potential
object part si. The feature vector fi is composed of spin images [8], shape distri-
butions [12], and shape factors [18]. To determine which set of potential object
parts originate from the same parts type F i, we cluster these parts in feature space
using affinity propagation [5]. Affinity propagation implicitly estimates the number
of clusters C, resulting in clusters F 1; . . .;FC . These clusters define the discovered
object parts types.

Clustering in feature space provides parts types, but it does not define which
parts belong to the same object instance. To obtain the object instances, we perform
another clustering on the potential object parts S but this time in geometric space.
As object parts for the same object instance are physically close, clustering in
geometric space enables us to group together potential object parts that belong to
the same object instance. The geometric clustering algorithm connects every pair of
potential objects whose centers are closer than a threshold 0g, and this results in a
collection of connected components. The number of connected components
K defines the maximum number of object classes present in the scene, and each
cluster Gi of the resulting clusters G1; . . .;GK corresponds to an object instance.

Given parts types F 1; . . .;FC and object classes G1; . . .;GK , we can then assign a
class label Gi to each potential object part si. We determine the assignments by
reasoning on the labels at two levels. First, on a more abstract level, the statistical

Fig. 2 An example image after saliency computation. Colored segments are considered salient
and thus treated as potential object parts. Numbers indicate segment IDs
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dependency of class labels G1; . . .;GK across different parts types F 1; . . .;FC is
encoded in a Conditional Random Field (CRF) [9] named parts graph. Parts graph
exploits the fact that object parts that co-occur frequently in the same object
instance are more likely to belong to the same object class. For example, back rest
and seat, both of which belong to a chair, are frequently found together while seat
and shelf, which belong to different objects, are not. The second level of reasoning
propagates parts types to object class relationship onto a finer level by combining
the class labels obtained from the parts graph with the local contextual information
from actual scenes. This is encoded using another CRF called scene graph.
Performing inference on the parts graph provides the most likely object class label
Gi per parts type F i while inference on the scene graph leads to the object class
label Gi per object part si. After for all object instances, all their parts are labeled
with the most likely object class label, we accept those object instances that contain
at least two parts with the same class label as discovered objects O1; . . .;ON .
Figure 3 shows an example of the outcome of the discovery algorithm.

4 Object Categorization

Object discovery algorithm of the previous section is able to find object classes for
which at least two instances occur in a given scene. It uses appearance and
geometry, i.e., similarity of features and structures, to find several instances of
objects that are most likely to define a class in one given scene. In this paper, we go
one step further and try to find object categories, i.e., object classes that are con-
sistent across a sequence of input scenes. This, however, is not straightforward. As
the object discovery process is entirely unsupervised, the resulting local class labels

Fig. 3 Result of object discovery of the scene shown in Fig. 2. Discovered objects are colored
according to their class labels. Letters indicate the parts types and numbers indicate object classes.
Notice that not all potential object parts are accepted as object parts
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are not unique over a given number of input scans. This means that an object class
might be associated with a class label G1 when one scene is observed, but the same
object class might have a different class label G2 if observed in a different scene.
An example of this is shown in Fig. 4. To identify object instances of the same
class from different scenes, we need to solve the data association problem.
Unfortunately, this problem is intractable in general as it involves a correspondence
check between every pair of object classes that are found in different scenes. One
simple way to address this correspondence problem is to join all scenes into one big
scene and run the discovery algorithm on the big scene. Unfortunately, this
approach has two major drawbacks: first, the number of connected components K in
this big scene would be very large. This heavily increases the computation time of
the algorithm and decreases its detection performance because it fails to sufficiently
restrict the number of potential object classes. And second, it limits the possibility
of running the object discovery in an online framework, which is one major goal of
this work. The reason here is that the parts graph would need to be re-built every
time a new scene is observed, which decreases the efficiency of the algorithm.

This work addresses the data association problem by introducing a third level of
reasoning named class graph. The key idea behind the class graph is to find a
mapping from local class labels to global category labels. Unlike the parts graph
and the scene graph, the class graph models the statistical dependencies between
labels of object class instances rather than object parts. Details of the class graph is
explained in Sect. 4.2. Next section describes object feature vector for represen-
tation of object instances, which are the building blocks of class graph.

4.1 Object Representation

Object feature vector enables a compact representation of object instances. Object
feature vector o is composed of a histogram h of visual word occurrences and a
shape vector v. The histogram h captures object appearance while the shape vector

Fig. 4 Objects found in two different scenes. Segments of the same local object label have the
same color locally
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v captures object volume. To compute the histograms, we take the bag of words
approach and represent an object as a collection of visual words. Bag of words
requires visual vocabulary to be defined, and we determine the visual vocabulary
by clustering the object parts feature vector f of all discovered objects. Each cluster
F�

i is a word in the visual vocabulary F�
1; . . .;F�

C� , and the total number of words
in the vocabulary C� is equal to the number of clusters C�. With the visual
vocabulary, representing an object as a histogram is simplified to counting the
number of occurrences of each visual word in the object. In traditional bag of words
approaches, every feature makes a contribution to the bin corresponding to the
visual word that best represents the feature. Such approaches, however, do not take
into account the uncertainty inherent in the assignment process. Hence, in our work,
each object part feature vector f contributes to all bins of the corresponding his-
togram h, where the contribution to a bin is determined by the probability p(wi|f) of
the feature vector f belonging to the visual word wi. We compute this probability by
nearest-neighbor.

In addition to the histogram h, object feature vector o contains a shape vector v,
which represents object’s physical properties. The shape vector v is composed of
three elements—size in horizontal direction, size in vertical direction, and object’s
location in vertical direction. The horizontal and vertical spans provide the
bounding volume in which the object resides. The vertical location gives an esti-
mate on where the object is likely to be found.

4.2 Class Graph

Once the object feature vectors o1; . . .; oN� are computed for all discovered objects
O1; . . .;ON� , we determine the mapping from local class labels G1; . . .;GM to global
category labels G�

1; . . .;G�
K� using class graph C. Class graph C consists of the node

set V�o ¼ f�o1; . . .; �oMg and the edge set E�o ¼ fð�oi; �ojÞjDð�oi; �ojÞ\#�og. The nodes
are the local class labels G1; . . .;GM represented as mean object feature vectors
�o1; . . .; �oM , and the edges connect similar local class labels, where the similarity
between two local labels is the distance between their mean object feature vectors.
The threshold for object similarity #�o is set to 0.5.

To assign global category labels G�
1; . . .;G�

K� to local class labels G1; . . .;GM , we
need to find the number of global categories K�. As mentioned earlier, Affinity
Propagation (AP) implicitly determines the number of clusters, and therefore, we
cluster the mean object feature vectors �o1; . . .; �oM by AP clustering. The number of
clusters K� resulting from AP clustering is the maximum number of global cate-
gories, and the clusters G�

1; . . .;G�
K� are the initial global category labels for the local

class labels G1; . . .;GM . Smoothing this initial mapping determines the final map-
ping from local class labels to global category labels. Figure 5 shows the overall
steps of categorization by class graph.
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4.3 Smoothing

Class graph C captures the dependency among the local class labels G1; . . .;GM but
it does not assign a category label G�

i to each local label Gi. To determine the
category labels, we apply probabilistic reasoning. We treat the nodes of the graph as
random variables and the edges between adjacent nodes as conditionally dependent.
That is, the global category label G�

i of a local class label Gi depends not only on the
local evidence �oi but also on the class labels G�

j of all neighboring labels Gj. For
example, if the local class label Gi is strongly of category G�

i ,, based on its evidence
�oi, then it can propagate its category label G�

i to its neighbors Gj. On the other hand,
if its category label is weak, then its category label G�

i can be flipped to the category
label G�

j of its neighbors. This process penalizes sudden changes of category labels,
producing a smoothed graph. We perform the smoothing again using a Conditional
Random Field (CRF).

Our CRF models the conditional distribution

pðg j �oÞ ¼ 1
Zð�oÞ

Y
i2V�o

uð�oi; giÞ
Y

ði;jÞ2E�o

wð�oi; �oj; gi; gjÞ; ð6Þ

where Zð�oÞ ¼Pg0
Q

i2V�o
uð�oi; g0iÞ

Q
ði;jÞ2E�o

wð�oi; �oj; g0i; g0jÞ is the partition function;

V�o are the local classes; and E�o are the edges between the local classes. Our
formulation of the CRF is slightly different from the conventional approaches in
that our feature similarity function fn of the node potential loguð�oi; giÞ ¼ wn �
fnð�oi; giÞ is the conditional probability pðgi j �oiÞ. Likewise, the feature similarity
function fe of the edge potential logwð�oi; giÞ ¼ we � feð�oi; �oj; gi; gjÞ is also defined as
a conditional probability pðgi; gj j �oi; �ojÞ. The feature functions fn and fe hence range
between 0 and 1, simplifying the weighting between node and edge potentials to
scalars. In supervised learning with CRFs, node weight wn and edge weight we are
learned from training data. In this unsupervised work, however, we cannot learn
these values as there is no training data available. We therefore determine node

Fig. 5 Categorization by class graph. Local class labels, represented as mean histograms, are the
nodes of the graph, and the links between two similar nodes form the edges. Clustering the local
class labels provides the initial mapping from local class labels to global category labels. Running
inference on the class graph provides a distribution of category labels for each local label. These
distributions are then used to determine the category label for each discovered object
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weight wn and edge weight we manually using an appropriate evaluation measure
on a validation set. Figure 8 in Sect. 5 shows the effect of setting different com-
binations of node weight wn and edge weight we.

As mentioned in Sect. 4.2, the object feature vector clustering provides the total
number of global object categories C� and the initial mapping from local class
labels G1; . . .;GM to global category labels G�

1; . . .;G�
K� . Using the clusters, we can

model the feature similarity function fn ¼ pðgi j �oiÞ of node potential uð�oi; giÞ as

pðgi j �oiÞ ¼ pð�oi j giÞpðgiÞP
g0 pð�oi j g0Þpðg0Þ

ð7Þ

where pð�oi j giÞ ¼ pð�hi j g�hi Þpð�vi j g�vi Þ ¼ exp ð�jj�hi � �hgi jjÞ exp ð�jj�vi � �vgi jjÞ and
pðgiÞ ¼ 1� 1

jgij þ 1 � pð�oi j giÞ measures how well �oi fits to the cluster center gi, and

the global category prior p(gi) reflects how likely the category exists. A cluster with
more members are more likely to be a true object category than a cluster with fewer
members, and hence p(gi) is proportional to the size | gi | of the category.

We define the edge feature as

pðgi; gj j �oi; �ojÞ ¼ pðgi j �oi; �oiÞpðgj j �oi; �ojÞ; ð8Þ

where pðgi j �oi; �ojÞ ¼ pðgi j �oijÞ and pðgj j �oi; �ojÞ ¼ pðgj j �oijÞ are estimated by a mean
object feature vector �oij. The probabilities pðgi j �oijÞ and pðgj j �oijÞ are computed by
the nearest-neighbor.

To infer the most likely labels for the nodes of the class graph C, we use max
product loopy belief propagation. This approximate algorithm returns the labels G�

i
which maximizes the conditional probability of Eq. 6. For the message passing, we
take the generalized Potts model approach as commonly done and incorporate the
edges in the inference only when gi and g j are equal. This results in the propagation
of the belief only between equally-labeled nodes. The inference step continues until
convergence and provides the distribution of global category labels G�

1; . . .;G�
K� for

every local class label Gi.
To find the category label G� for each discovered object O, we compute the

category which maximizes the assignment probability

Pðg j oÞ ¼
X
�o0

pðg j �o0Þpð�o0 j oÞ: ð9Þ

The probability of the category for a given local label pðg j �o0Þ can be read
directly from the class graph C, and the probability of the local object class given an
object pð�o0 j oÞ ¼ exp ð�jj�o� ojjÞ is computed as the object’s similarity to the class
mean. Discovered objects are accepted as objects when the probability of its most
likely category label is greater than 0.5. Figure 6 shows the results of categorization
of the two scenes shown in Fig. 4.
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5 Results

This section presents the results of running the algorithm on scans from real world
scenes. The data set was collected using a nodding SICK laser with a width of 100°
and a height of 60°. Each set was captured at the horizontal resolution of 0.25° and
the vertical resolution of 15° a second. All scenes were static. The test set was a set
of 60 scans from four offices. In total, these data sets contained 208 objects,
including chairs, couches, poster boards, trash bins, and room dividers.

We first tested the effect of including saliency in the discovery step. Figure 7
qualitatively shows the difference in object discovery with and without saliency
computation. Including saliency improves the precision1 of discovery from 44 to
84 % while decreasing recall from 83 to 74 %. That is, while including the saliency
step does eliminate some true objects, it is much more effective at eliminating none
objects than the same algorithm without the saliency step.

Quantitatively, we computed V-measure [14] of our algorithm. V-Measure is a
conditional entropy-based external cluster evaluation measure which captures the
cluster quality by homogeneity and completeness of clusters. It is defined as

Vb ¼ ð1þ bÞ � h � c
ðb � hÞþ c

; ð10Þ

where h captures homogeneity, c completeness, and b the weighting between
homogeneity and completeness. A perfectly homogeneous solution has h = 1, and a
perfectly complete solution has c = 1. Figure 8 shows the quality of clustering with
varying node and edge weights and the effect of object distance threshold on the
quality of clustering. Left graph indicates that the results of our algorithm is robust
to the change of node and edge weights, but smoothing improves the overall results

Fig. 6 Objects found in two different scenes. Segments of the same object label have the same
color

1A discovered object is considered true positive if it originates from a real object and false positive
if it is not a real object. False negative count is when a real object is not discovered.
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over pure clustering. Right graph shows that the quality of clusters depends on the
object distance threshold #�o, which indicates that the initial clustering result
influences the final categorization quality.

Fig. 7 The results of object discovery with (left) and without (right) saliency computation. All
connected segments are considered objects for categorization. Objects are colored by their local
class label
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Fig. 10 Results of category discovery. Left images contain objects discovered through the object
discovery process, and right images are the same objects after categorization. Objects in the left
images are colored according to their local class labels while objects in the right images are
colored by their global category labels. Notice that the categorization step can correct incorrect
classifications of the discovery step. a Room 1. b Room 2. c Room 3. d Room 4
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Figure 9 shows precision and recall2 of the algorithm for varying object distance
threshold #�o. Not surprisingly, precision drops and recall increases as the threshold
increases. This is because higher threshold results in fewer categories, which in turn
means more of the discovered objects are accepted as categorized objects.

Figure 10 shows qualitative results. Left images are the results of performing
object discovery per each scan, and right images are the corresponding images after
categorization. Discovered objects are colored according to their local class label,
i.e., with respect to other objects within a single scan, while categorized objects are
colored according to their global category label, i.e., with respect to all other objects
of the data set. The categorization step is able to assign the same global category
labels to objects with different local class labels as shown in Fig. 10b while
assigning different global category labels to objects with the same local label as
shown in Fig. 10d. In addition, the chairs found in different scene are correctly
labeled to be the same type as shown in Fig. 10a, b, d.

6 Conclusion and Outlook

We presented a seamless approach to discover and categorize objects in 3D envi-
ronment without supervision. The key idea is to categorize the objects discovered in
various scenes without requiring a presegmented image or the number of classes.
Our approach considers objects to be composed of parts and reasons on each part’s
membership to an object class. After objects are discovered in each scan, we
associate these local object labels by building a class graph and inferring on it. We
demonstrated our capability of discovering and categorizing objects on real data
and performance improvement class graph smoothing brings over pure clustering.

Our approach has several avenues for future work. First, we can use the results
of categorization for object recognition. Once the robot has discovered enough
instances of an object category, it can use the knowledge to detect and recognize
objects, much the same way many supervised algorithms work. Our algorithm
simplifies creating training data to converting robotic class representation to human
representation. Another direction for future work is on-line learning. While the
proposed approach allows the robot to reason on knowledge gained over time, the
knowledge is updated in batch. This limits the availability of new information until
enough data is collected for the batch processing. A robot that can process
incoming data and update its knowledge on-line can utilize the new information
immediately and adapt to changing environment. Extending our work to handle
categorization on-line will thus make unsupervised discovery and categorization
more useful for robotics.

2In computing precision and recall, we did not take into consideration the correctness of the
category labels. Any real object that got categorized was considered true regardless of its label.
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Probabilistic Collision Detection Between
Noisy Point Clouds Using Robust
Classification

Jia Pan, Sachin Chitta and Dinesh Manocha

Abstract We present a new collision detection algorithm to perform contact
computations between noisy point cloud data. Our approach takes into account the
uncertainty that arises due to discretization error and noise, and formulates collision
checking as a two-class classification problem. We use techniques from machine
learning to compute the collision probability for each point in the input data and
accelerate the computation using stochastic traversal of bounding volume hierar-
chies. We highlight the performance of our algorithm on point clouds captured
using PR2 sensors as well as synthetic data sets, and show that our approach can
provide a fast and robust solution for handling uncertainty in contact computations.

1 Introduction

The problems of collision detection and proximity computation are widely studied
in different areas, including robotics, physically-based modeling, haptics and virtual
environments. In particular, reliable and fast collision detection algorithms are
required for robot motion planning, grasping and dynamics simulation to enforce
the non-penetration constraints with the environment.

Most of the prior work on collision detection assumes an exact geometric
description of the objects in the scene, typically represented as a polygon mesh.
However, these methods may not work well for robots operating in real-world
environments, where only partial observations of the environment are possible
based on robot sensors. For example, inaccurate motor control makes a robot
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deviate from its exact configuration and the sensors tend to add noise to the
environment measurements. Current robot sensors including cameras and LIDAR
and new devices such as Kinect can easily generate detailed point cloud data of
real-world environments. However, it is hard to directly use prior collision detection
algorithms which perform a boolean query and compute a yes/no answer.
Moreover, exact collision checking may not be suitable in terms of handling
uncertainty in perception and control, which also causes uncertainty in collision
results. For many robotics applications, such as grasping or motion planning, we
need to reduce the risk of physical contacts between the robot and the environment
that may result in damages. Hence, we need to develop methods that tend to
minimize the probability of collisions. Our point cloud collision and proximity
algorithm can also be used to improve many methods’ feasibility and robustness in
real world. For example, algorithms in tactile manipulation usually require an exact
or approximated mesh model of manipulated objects (e.g., [21]) and our method
can extend them to directly handle the point clouds provided by sensors (See
Fig. 1).
Main Results: In this paper, we present a probabilistic collision detection algorithm
that can handle environments with uncertainty. Our approach can handle noisy or
inexact point data representations that are gathered using sensors. In order to handle
point cloud data with noise, we reformulate the collision detection problem as a
two-class classification problem, where points of different objects belong to dif-
ferent classes. The collision probability is directly related to the separability of the
corresponding two-class problem, which can be elegantly and efficiently solved
using support vector machines (SVMs). We accelerate the computation using
bounding volume hierarchies and perform a stochastic traversal of the hierarchies
that takes into account noise and uncertainty. These hierarchies are updated for
dynamic scenes or when the robot head or the gripper moves. Our probabilistic
collision algorithm also estimates the contact points and contact normals. We test

Fig. 1 A visual representation of the collision information generated by the sensors on the PR2
robot. (Left) The environment includes the points in a collision map (in light blue), mesh
representations for known objects detected through visual sensing (green cylindrical object on
table), and an exact geometric representation of the table surface (green flat surface). A detailed
mesh model for the robot is also seen in the picture. (Right) A representation of the collision points
(shown by red spheres) between the gripper and the object on the table
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our algorithm on point clouds generated from PR2 sensors and synthetic data sets.
Our method can provide robust results for probabilistic collision detection and
its run-time performance is similar to that of hierarchy-based collision detection
algorithms for triangle meshes (e.g., 500–1000 ms for 10 K points on a single
CPU core).

The rest of the paper is organized as follows. We survey related work in Sect. 2.
We introduce our notation and give an overview of the approach in Sect. 3.
Section 4 shows how probabilistic collision detection computation is reduced to
robust classification. We highlight the performance of our algorithm on different
benchmarks in Sect. 5.

2 Previous Work

The field of probabilistic robotics provides a mathematical framework to handle the
uncertainty that exists in the physical world [30]. It deals with representing
uncertainty explicitly using the calculus of probability distribution and obtains
robust control choices relative to the uncertainty in the robot system. Probabilistic
robotics can handle perception uncertainty (or environment uncertainty) due to
sensor and action errors. However, previous approaches tend to use simple methods
to model environment uncertainty, such as feature-based methods or occupancy
grid based methods [30]. These models can only provide a rough description of the
environment while many robot actions (e.g., grasping) require more detailed
information for robust computation.

2.1 Uncertainty of Point Cloud Data

Raw point cloud data obtained from sensor data can have a high degree of
uncertainty, which results mainly from discretization error and noise. As a result, it
is difficult to obtain robust estimation of high-order features like surface normals.
This causes difficulty for many applications that require precise estimates of normal
vectors at the boundary, such as grasping.

Many approaches consider uncertainty of point clouds implicitly. For example,
[25, 28] encode surface uncertainty as a parameter tolerance for learning algorithms
as they apply geometric operations (e.g., reconstruction) on the point clouds.
However, without an explicit model of uncertainty, we can only consider a single
uncertainty formulation for the overall surface, but may not be able to model
varying uncertainty at different parts of the surface for local control.

There is recent work on explicitly modeling the uncertainty of point cloud data
for different applications. Bae et al. [1] present a closed-form expression for the
positional uncertainty of point clouds. Pauly et al. [20] propose two methods,
confidence map and likelihood map, to analyze shape uncertainty in point clouds
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for resampling and reconstruction applications. Jenke et al. [11] describe a Bayesian
model for point cloud uncertainty for surface reconstruction.

2.2 Collision Detection

Prior collision detection methods mainly focus on performing efficient and accurate
contact computations between objects represented by triangulated primitives [17].

In terms of collision checking with point clouds, there are several simple
methods. For example, we can first reconstruct triangle meshes from point clouds
and then perform exact collision checking between the reconstructed surfaces.
However, this approach suffers from inefficiency (>10 s for 10 K points) and
robustness issues that arise in terms of using reconstruction algorithms (e.g.,
reconstruction quality, sensitiveness to parameter and noise, etc.). We can also
simply expand every point as a sphere with suitable radius and approximate the
object as a union of spheres [10] for collision checking. The main difficulty is in
terms of automatically choosing different sphere radii for different points. Other
direct collision checking methods for point cloud data are based on using bounding
volume hierarchies [13, 27] and reconstructing implicit functions at the leaf nodes,
which are prone to robustness issues. Minkowski sums of point clouds have also
been used for collision queries [16]. Sucan et al. [29] describe a collision map data
structure, which uses axis aligned cubes to model the point cloud and to perform
collisions with a robot. Some applications, including virtual reality and haptics,
need real-time collision checking, and use probabilistic criteria based on minimum
distance computation between the point sets [15]. However, these methods do not
take into account point cloud data’s inherent shape uncertainty that arises from
discretization or sampling [20].

There has been relatively little work in terms of handling uncertainty in collision
detection. A special type of collision uncertainty is discussed in [7], which projects
objects onto different image planes to perform collision culling using GPU-based
computation. Guibas et al. [8] propose a method to compute the collision proba-
bility between 2D objects composed of line segments in a 2D environment with
uncertainty. In order to estimate the collision uncertainty, this method models the
endpoints of a line segment as probability distributions with a rectangular support
region. Missiuro et al. [18] also try to model uncertainty in probabilistic roadmaps
by using the collision probability of a configuration to bias the sampling process for
roadmap computation.

3 Overview

In this section we introduce the notation used in the rest of the paper and give an
overview of our approach.

80 J. Pan et al.



The main pipeline of our system consists of three steps: (1) Obtain raw data from
sensors and filter the point clouds to remove points on the robot and reduce the
shadow effect [29]; (2) Compute the separating surface between two point clouds
by estimating the noise from sensor parameters (Sects. 4.1–4.3); (3) Estimate the
collision probability for each point and the overall collision probability between
two point clouds (Sect. 4.4). Moreover, we use bounding volume hierarchies to
accelerate the computation and recompute the hierarchies for dynamic environ-
ments (Sect. 4.5).

The inputs to our collision detection algorithm are the point clouds. In some
cases, we need to perform the collision query between two different point clouds or
between a point cloud and a polygonal object (e.g., when the mesh representation of
a robot hand or gripper is available). We first present our approach for two different
point clouds, and later show how it can be applied to a point cloud and a polygonal
object.

Let the two point clouds be denoted as C1 and C2. We assume that each point
cloud C is obtained from sensors and is a partial and noisy representation of the
underlying exact surface S. There are two kinds of errors introduced in the gen-
eration of point clouds: discretization errors and position errors or noise uncer-
tainty. Intuitively, the discretization error refers to how these point samples are
distributed on the boundary of the surface and the position error measures the
imprecision in the coordinates of each point. Formally, we assume C is generated
from S according to the following process: first a series of n sample points xi′ is
generated according to some sampling process and we use the symbol p(xi′|S) to
represent the distribution of coordinates for a random point xi′, i.e., it models the
discretization error. Next, xi is generated from xi′ according to some noise distri-
bution p(xi|xi’; Ri), i.e., it models the position error. Generally p(xi′|S) is not given,
but we can estimate it based on the observed point-cloud data with some
assumptions about surface smoothness and sampling density. The symbol Ri is used
to model point cloud’s uncertainty due to noise, and is typically computed based on
the sensor characteristics. For example, Ri may measure the level of noise that is a
combination of sensing noise, motion uncertainty and deformation error. Then the
overall uncertainty of a point xi can be modeled as

xijS� pðxijSÞ ¼
Z

pðx0ijSÞpðxijx0i;RiÞdx0i: ð1Þ

In this formulation, we have an implicit assumption that the sensor is able to capture
the features of the underlying surface. For example, more sample points xi′ are
generated near the sharp features so that we can reconstruct the necessary features
of the original model.

The output of the collision detection algorithm is a probability PC1;C2 that esti-
mates whether two point clouds C1 and C2 are in-collision.
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3.1 Separating Surface

Given a point cloud, we can possibly reconstruct a triangulated surface represen-
tation using Bayesian optimization. That is, the underlying surface should be the
one with the maximum probability:

Ŝ ¼ argmax
S

pðSjfxigni¼1Þ ¼ argmax
S

pðSÞ
Y
i

pðxijSÞ: ð2Þ

Next, we can perform collision checking based on reconstructed models. However,
reconstruction process is only an estimation and the collision computation based
reconstruction can be rather inaccurate. Our formulation is based on the theory of
convex sets: two convex sets are non-intersecting if there exists an oriented sepa-
rating plane P so that one set is completely in the positive (open) halfspace P+ and
the other completely in the negative (open) halfspace P− [19]. For non-convex sets,
we extend the concept of separating plane to the separating surface: two sets are
non-intersecting (or separable) if and only if there exists a separating surface
P between them. Previous work in collision detection [19, 22] is limited to the
special case when P is composed of multiple planes.

We extend the idea of separating surfaces to handle point clouds. Given two
point clouds C1 ¼ fx1i gn1i¼1 and C2 ¼ fx2i gn2i¼1 with n1 and n2 elements, respectively,
a separating surface P is a surface that can separate the two sets completely with C1

in P+ and C2 in P
−. In this case, P+ and P− represent a partition of the space R3 into

two parts. Notice that here P should not be an arbitrary surface, i.e., it should not be
a very complex function in terms of acting as a valid separating surface. Otherwise,
even if P can completely separate the point clouds, it may not be able to separate the
underlying surfaces. Such a problem is called overfitting in machine learning lit-
erature, i.e., the statistical model biases too much on the observed data and may not
be able to predict the underlying model correctly. In order to avoid overfitting, we
need to assume regularity conditions for P, which intuitively impose suitable
smoothness constraints on the separating surface. For example, we represent P as a
parameterized implicit surface {x : f (x; h) = 0} with h as its parameters. In this
case, the regularity condition can limit the value of f′(x; h). Moreover, P+ and P−

can be represented as {x : f (x; h) > 0} and {x : f (x; h) < 0}, respectively. As a
result, collision detection problem is reduced to finding the separating surface, i.e.,
deciding the parameter set h, that can separate C1 and C2.

There is one major difference between point clouds and convex/non-convex sets.
In particular, for point cloud data, the existence of a separating surface is not a

necessary or sufficient condition for non-intersection between the two sets. If two
point clouds are noise-free and separable, their underlying surfaces may still be
collision-free or in-collision, as shown in Fig. 2a, b. This is due to the discretization
error from point-cloud sampling. The issue becomes more complicated when point
clouds have position errors, as shown in Fig. 2c, d. This property of point cloud sets
makes it difficult to perform exact collision checking, but is suitable for statistical
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learning approaches like SVM [3]. As a result, the probabilistic collision detection
problem can be reduced to computing the optimal separating surface that minimizes
the separating error for underlying surfaces: i.e., find h that minimizes

Z
x2 S1

1fx2PðhÞ�gdxþ
Z
x2 S2

1fx2 pðhÞþ gdx; ð3Þ

where S1 and S2 are the underlying surfaces for point clouds C1 and C2,
respectively.

3.2 Probabilistic Model for Point Cloud Collision

We now present the probabilistic model for point cloud collision checking to
compute the optimal separating surface. We rewrite xli with l 2 {1, 2} as (xi, ci),
where xi ¼ xli and ci = (−1)l+1 2 {−1, 1} denotes which object the point xi belongs
to. As a result, we have n1 + n2 elements in {(xi, ci)}. As discussed in Sect. 3.1,
collision checking between two point sets reduces to finding an optimal separating
surface P. In machine learning terminology, this corresponds to finding an optimal
classifier that can minimize the expected risk on the classification problem whose
data is drawn from fx : x2 S1

S
S2g and its training set is {(xi, ci)}. As a result, the

collision detection problem is reduced to a machine learning problem. However,
unlike typical machine learning algorithms which only deal with cases where (xi, ci)
are specified exactly, we also need to take into account the noise in xi. Our solution

(a) (b) (c) (d)

Fig. 2 Separating surface for point cloud sets. Point clouds in (a) and (b) are noise-free and are
separable. However, due to discretization uncertainty, the underlying surfaces can be collision-free
(a) or in-collision (b). Point clouds in (c) and (d) have some noise and may not be separable. And
the underlying surfaces can be collision-free (c) or in-collision (d). Notice that we require suitable
regularity or smoothness on the separating surface to avoid overfitting. For example, the separating
surface provided in (c) has too large curvature and therefore is not valid. It in fact does not provide
a good estimation for how to separate the underlying clouds. Collision result based on
reconstructed meshes may not be reliable in all four cases due to discretization error (a, b) or
position noise (c, d) or unsuitable parameters
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is based on the maximum-likelihood (ML) scheme, i.e., the optimal surface should
maximize the probability on the observed inputs {(xi, ci)}.

Similar to Eq. (1), the joint probability for (xi, ci) can be expressed as

pðxi; ciÞ ¼
Z

pðx0i; ci; hÞpðxijx0i;RiÞdx0i: ð4Þ

Here h is the parameter set used to represent the separating surface P. For example,
P is {x : wT x + b = 0} if P is a plane and h = {w, b}. Or P is {x : wT U
(x) + b = 0} if P is a hyper-plane in some high-dimensional inner product space H
and U is the mapping U : R3 7!H. The unknown surface parameter h can be
estimated from the point cloud data using ML:

h� ¼ argmax
h

X
h

In
Z

pðx0i; ci; hÞpðxijx0i;RiÞdx0i ð5Þ

In practice, the integration over the unknown underlying surface sample xi′ makes it
hard to compute the surface parameter. As a result, we consider an alternative form
that is computationally more efficient. Specifically, we use an approximation
to Eq. (5) based on a widely used heuristic for mixture estimation: we simply
regard xi′ as a parameter of the model instead of a random variable. Then Eq. (5)
reduces to:

h� ¼ argmax
h

X
i

ln sup
x0i

pðx0i; ci; hÞpðxijx0i;RiÞ: ð6Þ

We present an algorithm to solve Eq. (6) in Sect. 4.

4 Probabilistic Collision Checking Between Point Clouds

In this section, we present our probabilistic algorithm for collision checking
between point clouds using two-class classification. This reduces to computing the
optimal separating surface that minimizes the function in Eq. (6).

4.1 Basic Formulation

For convenience, we first assume that the separating surface is a plane, i.e., P = {x :
wT x + b = 0}. We also assume that the uncertainty due to noise can be described
by a Gaussian distribution. We will relax these assumptions later. Based on these
two assumptions, we have
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pðx0i; ci; hÞ� pðx0iÞ expð�
ðwTx0i þ b� ciÞ2

r2 Þ and

pðxijx0i;RiÞ� expð�ðxijx0iÞTR�1
i ðxi � x0iÞÞ;

ð7Þ

where r and Ri are the covariance parameters of a Gaussian distribution.
As we will show in Sect. 5, the discretization uncertainty at x0i can also be

estimated as a Gaussian distribution with the observation xi as mean. That is
pðx0iÞ� expð�ðx0i � xiÞTW�1

i ðx0i � xiÞÞ, where Wi is the covariance parameter for
discretization uncertainty. Here we assume that the observed data xi is fixed and the
true value x0i is subject to random errors. This is equivalent to the so-called
Berkson’s model in statistics literature [2]. Then Eq. (6) becomes

h� ¼ argmax
h

X
i

inf
x0i

ðwTx0i þ b� ciÞ2
r2 þðxi � x0iÞT eR�1

i ðxi � x0iÞ
" #

; ð8Þ

where h = {w, b} and eR�1
i ¼ R�1

i þW�1
i .

Moreover, notice that if ðxi � x0iÞT eR�1
i ðxi � x0iÞ is large, then pðx0i; ci; hÞ term

will have a small value and can be ignored in the integration for p(xi, ci). As a
result, we can constrain xi to lie within the ellipsoid Ei ¼ fx0i : ðxi � x0iÞT eR�1

i ðxi �
x0iÞ� r2i g and this will not influence the final result considerably. Also considering
the regularity of separating surfaces, Eq. (8) can be approximated by an opti-
mization formulation that is similar to support vector machine (SVM):

minimize
w;b;ni

1
2 wk k2 þ k

Pn
i¼1

ni

subject to ciðwTx0i þ bÞ� 1� ni; 8x0i2Ei81� i� n;
ni � 0; 81� i� n:

ð9Þ

The above formulation minimizes the upper bound on the classification error, which
is equivalent to separating error in Eq. (3). Errors occur when ni � 1, as x0i lies on
the wrong side of P. The quantity k is the penalty for any data point x0i that either
lies within the margin on the correct side of P (0 < ni � 1) or on the wrong side of
P (ni > 1). wk k is the regularization term which controls the smoothness of the
separating surface.

It is easy to verify that ciðwTx0i þ bÞ reaches its minimum at point xi �
riðwTfRiwÞ1=2fRiw and the minimum value is ciðwTxi þ bÞ � riðwTfRiwÞ1=2. As a
result, Eq. (9) can be further written as:

minimize
w;b;ni

1
2 wk k2 þ k

Pn
i¼1

ni

subject to ciðwTxi þ bÞ� 1� ni þ ri eR1=2
i w

��� ���; 81� i� n;

ni � 0; 81� i� n:

ð10Þ
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Such optimization problems have been studied in the literature [26] and can be
solved using second order cone programming (SOCP) methods. Once w and b are

computed, we can compute ni ¼ maxð0; 1� ciðwTxi þ bÞþ ri eR1=2
i w

��� ���Þ.

4.2 Non-Gaussian Uncertainty

The uncertainty of real-world sensors may not be accurately modeled using a
Gaussian distribution. Our approach can also handle non-Gaussian uncertainty.

Shivaswamy et al. [26] point out that the ellipsoid radius ri is related to the
confidence of the classification result when the training data contains noise. Briefly,
if we desire the underlying surface point x0i with Gaussian distribution to lie on the
correct side of the separating surface with a probability greater than ji

P
x0i �Nðxi;eR iÞ

ðciðwTx0i þ bÞ� 1� ni
� �� ji; ð11Þ

then ri = cdf−1(ji), where cdfðuÞ¼ 1ffiffiffiffi
2p

p
R u
�1 exp �s2

2

� �
ds. Using multivariate

Chebyshev inequality, this relationship between ji and ri can be further extended to
the case when x0i follows non-Gaussian distribution. That is, if x0i �ðxi; eRiÞ repre-
sents a family of distributions with a common mean and covariance given by xi andeRi, and we want xi to lie on the correct side of the separating surface with a
probability greater than ji

sup
x0i �ðxi;eR iÞ

Px0i ðciðwTx0i þ bÞ� 1� ni
� �� ji; ð12Þ

then ri ¼
ffiffiffiffiffiffiffiffi
ji

1�ji

q
. This formulation implies that we can perform collision detection

using Eq. (10) even when the uncertainty is non-Gaussian.

4.3 Non-linear Separating Surface

Linear separating surface is mainly limited to the case when all the underlying
surfaces are convex. If any one of them is non-convex, a separating plane may not
exist even when the surfaces are collision-free. Therefore, we need to extend our
algorithm to non-linear P. Similar to typical SVM algorithms [31], we can remove
the linear separating surface assumption by applying a kernel trick on the dual form
of Eq. (10). Briefly, kernel trick is a method that transforms the Euclidean space Rn
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into another inner space H using mapping U and then replaces the inner product
y; zh iRn by the new inner product Kðy; zÞ ¼ ðUðyÞ;UðzÞÞH in space H. Here K(�,
�) is called the kernel function. Usually a hyper-plane in H will correspond to a
non-linear surface in Rn, which is a popular way to construct non-linear classifiers
in machine learning [9]. Some of the widely used kernel functions include linear (K
(y, z) = yT z) and Gaussian ðKðy; zÞ ¼ expð�c y� zk k2ÞÞ.

Based on the kernel trick, the non-linear separating surface can be formulated as
P = {x : wT U (x) + b = 0}. To compute P, we first transform Eq. (10) into its dual
form. Next, based on the Taylor-expansion technique [3], we replace yT z∂ z by

kernel function K(y, z) and replace y by the kernel gradient @ Kðy;zÞ@ z and finally obtain
the optimization formulation in non-linear case as

maximize
ai;vi

Xn
i¼1

ai � 1
2
ð
Xn
i¼1

Xn
j¼1

aiajcicjKðxi; xjÞþ
Xn
i¼1

Xn
j¼1

aiciðeR1=2
j

@ Kðxi; xjÞ
@ xj

ÞTvj

þ
Xn
i¼1

Xn
j¼1

ajcjðeR1=2
j

@ Kðxi; xjÞ
@ xj

ÞTvj þ
Xn
i¼1

Xn
j¼1

vTi ðeR1=2
j

@2 Kðxi; xjÞ
@ xi@ xj

eRT=2
j ÞvjÞ

subject to vik k� riai; 0� ai �C;81� i� n; and
Pn
i¼1

aici ¼ 0;

ð13Þ

where C is a regularity term similar to k in Eq. (10). Once ai and vi are computed,
we can compute the formulation for the separating surface P

f ðxÞ ¼ bþ
Xn
j¼1

ajcjKðxj; xÞþ
Xn
j¼1

vTj eR1=2
j

@ Kðxj; xÞ
@ xj

ð14Þ

and ni ¼ maxð0; n0iÞ, where

n0i ¼ 1� cif ðxiÞþ ri eR1=2
i f 0ðxiÞ

��� ���: ð15Þ

Notice that the surface parameter b does not appear in the dual form, but it can be
computed based on Karush–Kuhn–Tucker conditions [5]. We first choose i so that
0\ai\C; vik k\riai and then set n0i ¼ 0 in Eq. (15) to obtain b. Moreover, notice
that all the results for non-linear separating surface are consistent with those for
linear separating surface, which use a linear kernel K(y, z) = yT z.

4.4 Probabilistic Collision Decision

Based on the computed separating surface, we present a simple scheme to perform
probabilistic collision detection between the point clouds. First, we compute the
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collision probability for each point, i.e., the probability that x0i lies on the wrong side
of separating surface:

P
x0i �Nðxi;eR iÞ

ðcif ðx0iÞ� 0Þ ¼ cdfð�cif ðxiÞ= eR1=2
i f 0ðxiÞ

��� ���Þ: ð16Þ

We denote this per-point probability as PðxiÞ. Next, we need to use an appropriate
metric to measure the collision probability between two point clouds. For two exact
models, collision occurs if any subsets of them are in-collision. Therefore, for point
clouds C1 and C2, it seems to be reasonable to define the collision probability
between them as 1�Q

x2fC1

S
C2g½1� PðxÞ�. However, this metric may have some

issues: when the number of points increases, its value will go to zero instead of
converging to the real collision probability. The reason is that this metric does not
consider the dependency between collision states of nearby points. Our approach
for computing collision probability only involves far-away points with large
per-point collision probability. First, we compute the maximum per-point collision
probability maxx PðxÞ. Next, we find all the points whose per-point collision
probabilities are near the maximum value, e.g., more than 0.8 maxx PðxÞ. For points
that are close to each other, we only use one of them in the whole body collision
probability computation. The first rule filters out points whose collision probabil-
ities are not large enough so as to improve the stability of collision results while the
second rule filters out points that are closely correlated. Finally, we compute the
collision probability between point clouds based on the left m 	 n points
f~xig : PC1;C2 ¼ 1�Qm

i¼1 ½1� Pð~xiÞ�. We can also use a simpler version of this
metric which only considers the point with the maximum collision probability:
PC1;C2 ¼ maxx2C1

S
C2
PðxÞ. For collision between exact models, the two metrics

are equivalent, as Pð~xiÞ ¼ maxxPðxÞ ¼ 1, for all i. The simpler metric can not
distinguish the collision states when point clouds have one or more far-away points
with large per-point collision probability, but it is more convenient to distinguish
between collision-free and in-collision cases.

4.5 Acceleration Using Bounding Volume Hierarchies

We have reduced the problem of collision detection between two point clouds to a
two-class classification problem and can solve it with SVM. However, performing
collision detection by directly using Eq. (13) introduces some challenges. First, the
timing complexity of SVM can be Oðn3Þ, where n = n1 + n2 is the number of points
in the two point clouds. As a result, the underlying algorithm can be slow for dense
point clouds. Second, the two point clouds corresponding to different objects may
have different numbers of points, which can result in unbalanced training data in
terms of using machine learning algorithms. Moreover, if the two point clouds
under consideration correspond to objects with different sizes (e.g., a large room

88 J. Pan et al.



and a small robot), it will cause the optimization algorithm to have a lower sepa-
rating error for the large object and higher error for the small object.

We use bounding volume hierarchies (BVH) to overcome these problems. These
hierarchies provide a quick identification of objects or parts of an object that can be
easily culled away and therefore perform exact collision queries on relatively few
primitives.

5 Implementation and Results

In this section, we describe some details of our implementation and highlight the
performance on several benchmarks.

5.1 Implementation

First, we discuss how to estimate the distribution of the underlying surface sample
pðx0iÞ. The mean of pðx0iÞ is xi due to our unbiased assumption. We estimate the
covariance Wi based on the formulation described in [20]:

Wi ¼
Rn
j¼1ðxj � xiÞðxj � xiÞT expð� xi�xj

�� ��2=s2i Þ
Rn
j¼1 expð� xi�xj

�� ��2=s2i Þ
; ð17Þ

where n is the total number of points and si is a parameter used to remove the
influence of points too far away from xi. We set si ¼ s � gi:s as a global scale
parameter and the variable gi ¼ rffiffi

k
p denotes the local sample spacing estimated from

k a k-neighborhood, where r is the radius of the enclosing sphere of the k-nearest
neighbors of xi.

Our algorithm is based on machine learning techniques and includes some
parameters that need to be tuned. Fortunately, we find that our method is not
sensitive to the parameter choice if we preprocess the data by scaling it to [0, 1]3

volume in 3D. Scaling is considered important in terms of robustness of SVM,
especially for the non-linear case. Moreover, scaling also helps us in computing the
parameters that are suitable for the point clouds with different sizes or configura-
tions. In practice, scaling also changes the uncertainty of each point, so we need to
update the noise level from eRi to SeRiST , where S = diag(s1, s2, s3) is the scaling
matrix.

We have used our algorithm on data captured using robot sensors. Note that our
method is designed for noisy environments where the ground-truth for collision
detection is unknown. In this case, exact collision algorithms are not applicable as
we don’t have an exact representation of the environment. Therefore, it is difficult to
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directly compare the quality or accuracy of our algorithm with prior methods.
However, our method can guarantee: (1) For easy collision queries, i.e., when the
distance between two collision-free objects is large or the two objects are in deep
penetration, our method will give collision probability near 0 or 1. In this case, only
very large noise can reverse the outcome of the query. However, our probabilistic
algorithm would give the same result as the exact approach that first performs mesh
reconstruction from the point clouds. (2) For challenging queries, i.e., when two
objects are almost in-contact or have a small penetration, our method computes a
collision probability near 0.5, because these configurations are more susceptible to
noise. Exact collision algorithms will still provide a yes-no result, but the accuracy
of the exact algorithm is governed by the underlying sampling and mesh recon-
struction algorithm. If a yes-no collision answer is required, our algorithm uses two
thresholds A � 0.5 � B: if collision probability >A, we report collision-free; if
collision probability <B, we report in-collision; if collision probability is between
A and B, we report in-contact. For example, when collision-avoidance is critical for
the underlying applications, we can use large conservative value for A and small
conservative value for B to achieve higher guarantees.

5.2 Results

We highlight the performance of our algorithm on real-world point clouds as well
as synthetic data sets. We also compare its accuracy with prior collision detection
techniques. The running time of our probabilistic algorithm is similar to that of
exact collision detection algorithms and varies based on number of primitives and
their relative configuration.

We evaluate the performance of our algorithm on a synthetic data set corre-
sponding to a moving piano in a room with tables. We first generate a point cloud
by sampling the polygons and adding some noise. Next, we use the PQP package to
perform exact collision detection and separation distance query between the exact,
triangulated model and compared the results with probabilistic collision detection
on the resulting point cloud (see Fig. 3). We see a high correlation between our
results and the actual separation distance, and it varies based on the level of noise.
This shows that our approach is quite robust and even works well in degenerate
configurations, e.g., when the two objects are barely touching or very close to each
other.

Such configurations are more susceptible to noise and the exact collision
detection algorithms are very sensitive to these configurations.

We have applied our probabilistic collision detection to the point cloud data
generated for manipulation using the PR2 robot. Point cloud data on the PR2 robot
is generated from a scanning laser range finder (Hokuyo Top-URG(UTM-30LX))
and a stereo camera (WGE-100), which is combined with an active texture projector
to obtain good 3D data from untextured objects. The robot is placed in front of a
table with multiple household objects (e.g., bowls, cans) on the table at a distance of

90 J. Pan et al.



about 1.5 m from the robot’s sensors. The point clouds are a discretized (about
±1.5 cm in range) representation of the real environment and are generated peri-
odically by each sensor. The data is noisy and exhibits speckles especially in the
vicinity of boundaries of objects and boundaries of the field of view of the sensor.
The sensors are calibrated with respect to each other and the arms using a known
calibration pattern. The known position of the arms, measured using encoders, is
used to filter out the points corresponding to the arms from the point clouds
obtained by the sensors. Typical point clouds generated by the stereo sensors on the
PR2 robot have more than 40,000 points and are generated at 20 Hz. Point clouds
generated by the laser range scanners typically have about 10,000 points. The data
from the point clouds is aggregated into a collision map representation. The col-
lision map is a 3-dimensional occupancy grid maintained at a fixed resolution. The
resulting collision maps are at 1 cm resolution and have about 2,000 occupied cells.
A complete triangulated mesh representation of the robot, including the arms and
the gripper, is also available as input for the collision checker.

There are very few algorithms or systems available for collision checking
between noisy point clouds. As a result, we compare our algorithm with the
implementation in ROS (based on ODE) and exact collision detection on recon-
structed meshes.

The collision checking procedures used in ROS are currently based on the
collision checking implementation in the ODE software package. The input to the
collision checker is a combination of mesh models for the robot and objects in the
environment and the collision map. The points in the collision map are represented
as axis-aligned box primitives whose length is equal to the resolution at which the
collision map is maintained. The current representation of the collision space
considers every point in the collision map to be a potential obstacle. Thus, noise in
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Fig. 3 Comparison between the results for 100 random queries between prior collision detection
algorithms for exact triangle meshes and our algorithm on the point clouds (generated by sampling
and adding noise). We show the results of exact collision detection and separation distance as well.
If the noise in the point cloud is small (the left figure), our method returns 0 or 1 collision
probability for most queries. When the queries correspond to a small separation distance or
penetration depth (i.e., difficult cases), our algorithm computes collision-free probability close to
0.5. Furthermore, the collision-free probability is higher when the separation distance is large for
non-overlapping objects. If the noise is large (the right figure), fewer queries return 0 or 1 collision
probability. We see a good correlation between the regression curves computed by our algorithm
and the exact queries on these synthetic datasets

Probabilistic Collision Detection Between Noisy … 91



the sensor data can frequently lead to false positives, i.e., the detection of potential
collisions in parts of the environment where there are no obstacles. There is no
robust criterion to compute the box size, e.g., a function of noise, so we can’t
compare all the features of our method with ODE collision checking. We also use a
reconstruction algorithm to compute a triangle mesh from the point clouds and
perform triangle-based collision as well as separation distance computation using
PQP. In many ways, this formulation only provides an approximation of the ground
truth and is used to evaluate the robustness of our algorithm.

As shown in Fig. 4a, our result matches well with the exact collision detection
algorithm, especially with the separation distance computation. Furthermore, we
notice that the collision probability of our approach changes slowly when the noise
increases. It is more robust as compared to the yes-no result computed by ODE on
the point clouds, which is likely to frequently switch between collision-free and
in-contact configurations, when the noise level changes. We also apply our algo-
rithm on a dataset generated using Kinect RGB-D cameras. This dataset corre-
sponds to an indoor environment at the Intel Lab in Seattle captured using Kinect
sensors. The results of our probabilistic collision detection on this dataset are shown
in Fig. 4b.

Moreover, from Figs. 3 and 4, we observe that configurations with the same
distances to the obstacles can have large spread in the computed collision proba-
bilities. The reason is that distance is only a partial measurement of collision status
while our collision probability is a more complete description about collision status
and provides more detailed information about the relative configurations.

For one query, our method needs about 500–1000 ms for about 10,000 points on
one Intel Core i7 3.2 GHz CPU, based on BVH acceleration. It is about 5–10 times
slower than optimized collision packages on models with 10 K triangles (e.g., PQP
can compute collisions in such situations in about 50–100 ms). However, the
reconstruction algorithms take more than 10 s to compute the triangulated mesh
from the point cloud. Moreover, our current implementation can be optimized in
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Fig. 4 a Comparison on point-cloud data generated by PR2 robot sensor: we use our probabilistic
collision detection on the noisy point cloud versus results computed by ODE package used in ROS
versus exact collision and distance queries on the reconstructed mesh model. Our results on the
point cloud are more robust as compared to the ODE package. b Result of our algorithm on Kinect
data

92 J. Pan et al.



several ways, such as replacing the non-linear kernel by approximated linear kernel
[23] and using more efficient SVM methods designed for large scale data [6]. We
expect an optimized probabilistic collision method to have similar speed to the PQP
algorithm. Furthermore, our approach can provide more detailed information and
can be easily combined with planning/reasoning algorithms. For example, we can
combine it with trajectory optimization algorithms (e.g., CHOMP [24], STOMP
[12]) to find a smooth path that has a minimum probability of colliding with the
obstacles.

6 Conclusions and Future Work

We have presented a novel and robust method for contact computation between
noisy point cloud data using machine learning methods. We reformulate collision
detection as a two-classification problem and compute the collision probability at
each point using support vector machines. The algorithm can be accelerated by
using bounding volume hierarchies and performing a stochastic traversal. We have
tested the results on synthetic and real-world data sets and the preliminary results
are promising.

There are many avenues for future work. We need to test the performance on
different robotic systems and evaluate its performance on tasks such as planning
and grasping. It would be useful to extend this approach to continuous collision
checking, which takes into account the motion of the robot between discrete
intervals along the path. Similar probabilistic methods can also be developed for
other queries, including separation and penetration depth computation. Finally, we
are interested in improving the algorithm to handle dynamic environments where
points may change position or can be added or removed from the environment due
to movement, occlusion or incremental data, based on incremental SVM [4] and
BVH refitting techniques [14].
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Active Classification: Theory
and Application to Underwater Inspection

Geoffrey A. Hollinger, Urbashi Mitra and Gaurav S. Sukhatme

Abstract We discuss the problem in which an autonomous vehicle must classify
an object based on multiple views. We focus on the active classification setting,
where the vehicle controls which views to select to best perform the classification.
The problem is formulated as an extension to Bayesian active learning, and we
show connections to recent theoretical guarantees in this area. We formally analyze
the benefit of acting adaptively as new information becomes available. The analysis
leads to a probabilistic algorithm for determining the best views to observe based on
information theoretic costs. We validate our approach in two ways, both related to
underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship
hull inspection with imaging sonar. These tasks encompass both the planning and
recognition aspects of the active classification problem. The results demonstrate that
actively planning for informative views can reduce the number of necessary views
by up to 80 % when compared to passive methods.

1 Introduction

Consider the following scenario, which occurs when observing an environment
with an underwater vehicle: given a playback of imaging sonar data from the
vehicle, the task is to determine which frames contain objects of interest (e.g., mines
[23], explosives, ship wreckage, enemy submarines, marine life [20], etc.). We will
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refer to these problems as underwater inspection, since an object is being inspected
to determine its nature. We are interested in utilizing sensor data, such as depth map
information, to determine the nature of a potential object of interest. Such problems
are typically formulated as passive classification, where some data are given, and
the goal is to determine the nature of this data.

While passive classification problems are challenging in themselves, what is
often overlooked is that robotic applications allow for active decision making. In
other words, an autonomous vehicle performing a classification task has control
over how it views the environment. The vehicle could change its position, modify
parameters on its sensor, or even manipulate the environment to improve its view.
For instance, it may be difficult to determine the nature of an object when viewed
from the top (due to lack of training data, lack of salient features, occlusions, etc.),
but the same object may be easy to identify when viewed from the side. As an
example, Fig. 1 shows an explosive device placed on a ship’s hull viewed from two
different angles with imaging sonar. The explosive is easier to identify when viewed
from the side (left image) versus from above (right image) due to the reflective
qualities of its material.

In addition to choosing the most informative views of the object, an autonomous
vehicle is able to act adaptively by modifying its plan as new information from
viewing the object becomes available. Consider an object of interest, such as an
explosive, that has an identifiable feature on a particular side. If the vehicle receives
a view that increases the likelihood of that object being in the frame, it would be
advantageous to search for that identifiable feature to either exclude or confirm the
identification of that object. A significant benefit from acting adaptively has been
shown in the stochastic optimization and planning domains [7, 11].

Fig. 1 An explosive device (circled) placed on a ship hull viewed using an imaging sonar. The
explosive is easier to identify when viewed from the side (left image) than when viewed from
above (right image). This difference motivates active planning to identify the object

96 G.A. Hollinger et al.



In this paper, we apply the above insights to active inspection in the underwater
domain. This paper makes three main contributions. We

1. formalize the active classification problem, combining classical work in
sequential hypothesis testing with recent work in active learning,

2. analyze the benefit of adaptivity, leading to an information theoretic heuristic
for planning informative paths for active classification, and

3. apply and test the approach to underwater classification in a simulated domain
and using real-world data.

2 Related Work

The problem of active multi-view recognition has been studied extensively in the
computer vision community, dating back to early work in active vision [1] and
next-best view planning [6]. While early work primarily optimized views using a
geometric approach, later work incorporated probabilistic models into active vision
systems [2, 8, 19].1 Such approaches have also been applied to depth maps in the
context of medical imagery [25]. While different forms of information gain play a
critical role in active vision, a key distinction in our work is the notion of adaptivity.
In active classification problems, selecting the next best observation, or even an
initial ordering of informative observations, may not result in overall performance
optimization. It is in this regard that we provide new analysis of the benefit of
adaptivity and make connections to performance guarantees in submodular opti-
mization and active learning. Our analysis is complementary to prior computer
vision work and could potentially be extended to many of these alternative
frameworks.

In this paper, we connect two classical problems: active classification and
sequential hypothesis testing. Sequential hypothesis testing arises when an observer
must select a sequence of noisy experiments to determine the nature of an unknown
[22]. A key distinction between sequential hypothesis testing and active classifi-
cation is that the type of experiment does not change in sequential testing. One of
the first applications of sequential hypothesis testing to sensor placement applica-
tions was due to Cameron and Durrant-Whyte [5]. They discuss a Bayesian
selection framework for identifying 2D images with multiple sensor placements.
This work provides a foundation for the formulation discussed in the current paper.

The active classification problem can be seen as an instance of informative path
planning [18]. Informative path planning optimizes the path of a robot to gain the
maximal amount of information relative to some performance metric. It has been
shown in several domains, including sensor placement [14] and target search [13],

1There are a number of additional active vision works relevant to the present paper. We direct the
interested reader to Roy et al. [17] for a survey.
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that many relevant metrics of informativeness satisfy the theoretical property of
submodularity. Submodularity is a rigorous characterization of the intuitive notion
of diminishing returns that arises in many active planning application.

Recent advances in active learning have extended the property of submodularity
to cases where the plan can be changed as new information is incorporated. The
property of adaptive submodularity was introduced by Golovin and Krause [11],
which provides performance guarantees in many domains that require adaptive
decision making. Their recent work examines these theoretical properties in the
context of a sequential hypothesis testing problem with noisy observations [12].
The idea of acting adaptively has also been examined in stochastic optimization and
shown to provide increases in performance for stochastic covering, knapsack [7],
and signal detection [16]. To our knowledge these ideas have not been formally
applied to robotics applications.

In the underwater inspection and surveying domains, there has been limited
work in utilizing multiple views to classify underwater mines. In some work, an
assumption is made that all views provide the same amount of information [23], and
in other work the focus is on designing high-level mission planning capabilities to
ensure coverage of the sea floor [24]. The closest prior work to our own discusses
active object recognition with imaging sonar using a Partially Observable Markov
Decision Process [15]. The authors focus on the optimal algorithm, which grows
infeasible as the number of possible viewing locations increases. This prior research
does not provide a scalable approximate algorithm, and the authors do not analyze
the benefit of adaptivity or possible performance guarantees.

3 Problem Formulation

We will now formulate the active classification problem within the sequential
hypothesis testing framework [22]. The goal is to determine the class of an
unknown object given a set of N possibilitiesH ¼ fh1; . . .; hNg: Let H be a random
variable equal to the true class of the object. In the simplest case, a binary classi-
fication task is considered (e.g., H = h0 denotes an object of interest and H = h1
denotes the lack of such an object). We can observe the object from a set of possible
locations L ¼ fL1; . . .; LMg, where the locations themselves are not informative.2

There is a cost of moving from location Li to location Lj, which we denote as dij . In
robotics applications, this cost is determined by the kinematics of the vehicle and
the dynamics of both the vehicle and environment.

A set of features F ¼ fF1; . . .;FKg is also given that distinguishes between
objects. Each feature Fi is a random variable, which may take on some values

2We formulate the problem for the case of discrete locations. If continuous locations are available,
an interpolation function can be used to estimate the informativeness of a location based on the
discrete training data (see Sect. 6).
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(e.g., binary, discrete, or continuous). Given one or more template images for each
class n, we can calculate a function GðLÞ : L ! F mapping viewing location L to
the features for which realizations will be observed from that viewing location. In
general, this mapping may be stochastic and dependent on the class. The mapping
from location to features is a key characteristic of robotics applications that dif-
ferentiates our problem from the more common problem where the features can be
observed directly [12]. Figure 2 shows a graphical model of the resulting problem.

We assume knowledge of a prior distribution for each class P(H), as well as a
conditional probability for each feature given the class P(Fk | H). The conditional
distribution represents the probability of each feature taking on each of its possible
values given the class. These probabilities can be estimated via training data. The
features that have been viewed evolve as the robot moves from location to location.
At a given time t, the robot is at location L(t), and we observe realizations of some
new features Ft � F: Let us define F1:t :=

St
i¼1 Fi as the features observed up

until time t. If we assume that the features are conditionally independent given the
class, we can calculate a distribution bðtÞ ¼ fb1; :. . .bNg using standard recursive
Bayesian inference [21]:

bðtÞ :¼ PðH jF1:tÞ ð1Þ

¼ g bðt � 1Þ
Y

F2Ft

PðF jHÞ; ð2Þ

where g is a normalizing constant.
The goal is to find a policy p that takes a belief distribution b(t), current location

L(t), and observation history F1:t and determines the next location from which to
view the object. Note that the dependence on the observation history and current
distribution allows the policy to be adaptive as new information becomes available.

Fig. 2 Graphical model of an active classification problem. The goal is to determine the value of
the hypothesis H by observing a subset of features F1; . . .;FK : The features cannot be viewed
directly, but must instead be viewed by moving to some locations L1; . . .; LM . The solid lines
denote stochastic dependence, and the dashed lines denote which features can be viewed by
visiting each location. Dependencies between the features could also exist, which would break the
conditional independence assumption
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3.1 Noiseless Case

Ideally, we would like to run the policy until we know the object’s class. If the
observations do not contain any noise, this goal is reachable. For each hypothesis h,
a policy p will have a cost cðp; hÞ associated with the locations the policy visits. We
define the expected cost of this policy relative to a distribution on hypothesis
P(H) as:

cðpÞ :¼ EH ½cðp; hÞ�: ð3Þ

This equation represents the expected cost for the policy p . For the noiseless
case, we assume that each hypothesis h has an associated vector Vh ¼ ½f1; . . .; fK � of
feature values that always occur for that hypothesis. As a result, PðF1; . . .;FK jHÞ
only takes on the values of one or zero. An incomplete feature vector V is said to be
consistent with a hypothesis h if for all f 2 V ; we have f 2 Vh .

Without observation noise, we may fully determine the hypothesis by observing
some features (in some cases all features). Let VðVÞ represent the number of
classes that are consistent with partial feature vector V (also referred to in prior
work as the version space [12]). Let Vðp; hÞ be the feature vector that results from
executing policy p with hypothesis h. The optimal policy is now the one that
optimizes the equation below:

p� ¼ argmin
p

cðpÞ s:t: VðVðp; hÞÞ ¼ 1 for all h 2 H: ð4Þ

Even in the noiseless case, there may be insufficient features to determine the
exact class of the unknown object. In these cases, the goal would be to observe the
fewest number of features that reduce the number of consistent classes as much as if
all features were observed.

3.2 Noisy Observations

When the observations are noisy, it will likely be impossible to determine the class
of an unknown object with certainty. However, as in the decision theory literature,
we minimize the expected loss (also known as the Bayes’ risk [22]) of the final
classification decision. We will now formulate the problem of minimizing Bayes’
risk for the case of noisy observations. With noisy observations, P(F | H) takes on
values other than one or zero. As a result, there is no longer a deterministic vector
Vh associated with each hypothesis, and typically we cannot uniquely determine the
hypothesis even by observing all features.

In the noisy observation case, we can generate a policy that minimizes a loss
function l(d, h) associated with making a decision d for that object (i.e., deciding on
the object’s class). For instance, if the object is an explosive, a false negative could
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incur a very high cost, but a false positive would be a lower cost. If we select the
class with maximum a posteriori probability after running a policy p, we can
calculate the expected loss for running that policy to completion:

lðpÞ :¼ EH ½lðd; hÞ j p�: ð5Þ

Let s be an acceptable threshold on expected loss. A natural goal is to incur the
lowest cost and achieve the same expected loss. The resulting optimization problem
is given below:

p� ¼ argmin
p

cðpÞ s:t: lðpÞ� s: ð6Þ

4 Proposed Solution

The goal is to optimize the expected loss for a policy p. The expected loss is a
function of the final belief b(T), which represents PðH jF1:TÞ: Calculating this loss
on an infinite horizon would require examining an exponential number of paths in
the horizon length. To make the computation feasible, we can use the truncated
expected loss:

p� ¼ argmin
p2Pð1:TÞ

EH ½lðd; hÞ j pð1 : TÞ�: ð7Þ

A related measure of the quality of b(T) is the information gain of the class given
the features observed: IGðH;F1:TÞ ¼ HðHÞ �HðH jF1:TÞ; where H is the
entropy. We will motivate the use of information gain further in Sect. 5. A heuristic
for solving the active classification problem using information gain can be for-
mulated as below:

p� ¼ argmax
p2Pð1:TÞ

EH ½IGðH;F1:TÞ j pð1 : TÞ�; ð8Þ

where Pð1 : TÞ is the set of all possible policies truncated at time T. If this opti-
mization is performed on the receding horizon, it allows for adaptive decision
making with a finite lookahead. The path costs can be implicitly incorporated by
looking ahead to a “cost horizon.” This approach has been shown to perform well in
similar information gathering domains [13].

For some loss functions, the information gain objective is equivalent to mini-
mizing the Bayes’ risk. One such function for the binary hypothesis case is the
standard 0/1 loss, where cost of one is incurred for an incorrect classification, and
no cost is incurred for a correct classification.
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5 Theoretical Analysis

We next relate the active classification problem to recent advances in active
learning theory that allow us to analyze the performance of both non-adaptive and
adaptive policies. Prior work in active vision does not provide tools for analyzing
the performance of approximate solutions. With the goal of generating approxi-
mation guarantees for scalable algorithms, we provide a preliminary analysis of the
theoretical properties of active classification objective functions.

Active classification can be seen as an instance of informative path planning
[18]. Given some potential locations to make observations, the informative path
planning problem is to maximize a function F (A), where A ¼ fL1; L2; . . .; LTg is a
set of locations visited by the vehicle up to an end time T. In most cases, the sets of
possible locations to visit are constrained by obstacles, vehicle kinematics, or other
factors. For the active classification problem, FðAÞ ¼ �EH ½lðd; hÞ jA�; the negative
expected loss after observing along path A.

5.1 Performance Guarantees

A non-adaptive policy is one that generates an ordering of locations to view and
does not change that ordering as features are observed. The non-adaptive policy
will typically be easier to compute and implement, since it can potentially be
computed offline and run without modification. Performance guarantees in the
non-adaptive informative path planning domain are mainly dependent on the
objective function (i.e., the informativeness of the views) being non-decreasing and
submodular on the ground set of possible views. A set function is non-decreasing if
the objective never decreases by observing more locations in the environment. A set
function is submodular if it satisfies the notion of diminishing returns (see Singh
et al. [18] for a formal definition).

Information gain has been shown to be both non-decreasing and submodular if
the observations are conditionally independent given the class [14], as is assumed in
this paper (see Sect. 3). Thus, if the loss function is equivalent to information gain
(e.g., 0/1 loss with binary hypotheses), then the active classification problem opti-
mizes a non-decreasing, submodular function. Let AIG be the set of locations visited
by the information gain heuristic with a one-step lookahead. For non-adaptive
policies without path constraints (e.g., when traversal costs between locations are
negligible compared to observation cost), we have the following performance
guarantee: FðAIGÞ� ð1� 1=eÞFðAoptÞ [14].

When path constraints are considered, the recursive greedy algorithm, a modi-
fication of greedy planning that examines all possible middle locations while
constructing the path, can be utilized to generate a path Arg [18]. Recursive greedy
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provides a performance guarantee of FðArgÞ�FðAoptÞ=logðjAoptjÞ; where jAoptj is
the number of location visited on the optimal path. However, the recursive greedy
algorithm requires pseudo-polynomial computation, which makes it infeasible for
some application domains. To our knowledge, the development of a fully poly-
nomial algorithm with performance guarantees in informative path planning
domains with path constraints is still an open problem. Hence, we utilize a one-step
heuristic in our experiments in Sect. 6.

The performance guarantees described above do not directly apply to adaptive
policies. An adaptive policy is one that determines the next location to select based
on the observations at the previously viewed locations. Rather than a strict ordering
of locations, the resulting policy is a tree of locations that branches on the obser-
vation history from the past locations. As noted earlier, the concept of adaptive
submodularity [11] allows for some performance guarantees to extend to adaptive
policies as well. When the observations are noiseless, the information gain heuristic
satisfies the property of adaptive submodularity. This result leads to a performance
guarantee on the cost of the one-step information gain adaptive policies in
sequential hypothesis testing domains without path constraints: cðpIGÞ� cðpoptÞ
ðlnð1=pminÞþ 1Þ; where pmin :¼ minh2H PðhÞ: When noisy observation are con-
sidered, a reformulation of the problem is required to provide performance guar-
antees (i.e., information gain is not adaptive submodular). However, Golovin et al.
[12] show that the related Equivalence Class Determination Problem (ECDP)
optimizes an adaptive submodular objective function and yields a similar loga-
rithmic performance guarantee. The direct application of ECDP to active classifi-
cation is left for future work.

5.2 Benefit of Adaptivity

We now examine the benefit of adaptive selection of locations in the active clas-
sification problem. As described above, the non-adaptive policy will typically be
easier to compute and implement, but the adaptive policy could potentially perform
better. A natural question is whether we can quantify the amount of benefit to be
gained from an adaptive policy for a given problem. To begin our analysis of
adaptivity, we consider the problem of minimizing the expected cost of observation
subject to a hard constraint on loss.3

Problem 1 Given hypotheses H ¼ fh1; h2; . . .; hNg, features F ¼ fF1;F2; . . .;
FKg, locations L ¼ fL1; . . .; LMg, costs cðLi; LjÞ ¼ dij for observing location

3Note that the related problem of minimizing expected loss subject to a hard constraint on budget
is also relevant. While similar examples show that there is a benefit to acting adaptively in this
case, we defer detailed analysis to future work.
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i when at location j, and a loss function defined as l(d, h) for selecting hypothesis
d when the true hypothesis is h. We wish to select a policy p such that:

p� ¼ argmin
p

cðpÞ s:t: lðpÞ� s; ð9Þ

where lðpÞ :¼ EH ½lðd; hÞ j p�; cðpÞ :¼ EH ½cðp; hÞ�; and s is a scalar threshold.

We now show that the optimal non-adaptive policy can require exponentially
higher cost than an adaptive policy for an instance of this problem:

Theorem 1 Let padapt be the optimal adaptive policy, and pnon�adapt be the optimal
non-adaptive policy. There is an instance of Problem 1 where cðpadaptÞ ¼ logðNÞ
and cðpnon�adaptÞ ¼ N � 1; where is N is the number of hypotheses.

Proof We adopt a proof by construction. Let s ¼ 0; i.e., the required expected loss
is zero. Let the features be observed directly through the corresponding locations
(i.e., GðLiÞ ¼ Fi and M = K). Let there be N hypotheses and M = N − 1 features.
Assign a cost c(F) = 1 for all features. The loss l(d, h) = 1 for all d 6¼ h and l(d,
h) = 0 for d = h.

Let PðhÞ[ 0 for all h 2 H. Let PðF1 j hiÞ ¼ 1 for all i 2 f1; . . .;N=2g and
PðF1 j hiÞ ¼ 0 for all i 2 fN=2þ 1;Ng. That is, feature F1 is capable of deter-
ministically differentiating between the first half and second half of the hypotheses.
PðF2 j hiÞ ¼ 1 for all i 2 f1;N=4g; PðF3 j hiÞ ¼ 0 for all i 2 fN=4þ 1; N=2g, and
PðF2 j hiÞ ¼ 1=2 for all i 2 fN=2þ 1; Ng. That is, feature F2 is capable of deter-
ministically differentiating between the first fourth and second fourth of the
hypothesis space but gives no information about the rest of the hypotheses.
Similarly, define PðF3 j hiÞ ¼ 1 for all i 2 fN=2þ 1; 3N=4g; PðF3 j hiÞ ¼ 0 for all
i 2 f3N=4þ 1; Ng, and PðF2 j hiÞ ¼ 1=2 for all i 2 f1; N=2g. The remaining
features are defined that differentiate progressively smaller sets of hypotheses until
each feature differentiates between two hypotheses.

The adaptive policy will select F1 first. If F1 is realized positive, it will select F2.
If F1 is realized negative, it will select F3. It will continue to do a binary search until
log(N) features are selected. The true hypothesis will now be known, resulting in
zero expected loss. In contrast, the non-adaptive policy must select all N −1 features
to ensure realizing the true hypothesis and reducing the expected loss to zero. □

The adaptivity analysis in Theorem 1 requires multiple hypotheses, and the
potential benefit of adaptivity increases as the number of hypotheses increases. For
the two hypothesis case, however, the benefit of adaptivity may be very small. In
the binary examples we have examined, all cases showed little or no benefit from
adaptivity. Furthermore, if there is a strict ordering on the informativeness of the
viewing locations independent of the current distribution on the hypotheses, we
conjecture that the benefit of acting adaptively will be zero [16].
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6 Implementation and Experiments

In this section, we examine the active classification problem experimentally through
the use of both synthetic images and data from imaging sonar during ship hull
inspection. The results confirm the benefit of active view selection in these appli-
cation domains as well as the benefit of adaptivity when more than two hypotheses
are considered. For all experiments, we assume a simple 0/1 loss model, where a
cost of one is incurred for a false classification, and a cost of zero is incurred for a
correct classification.

6.1 Synthetic Images

The goal of our first experiments is to differentiate between possible polyhedra
using depth maps from different views. The relevance of polyhedra recognition to
underwater inspection is direct, as explosive devices are often cubic or pyramidal in
shape [9]. This is a particularly challenging active recognition problem due to
similarities and symmetries between polyhedra. These experiments are designed to
(1) demonstrate the benefit of selecting the views with the highest potential for
information about the unknown object, and (2) examine the benefit of acting
adaptively when multiple possible objects are examined.

To identify the polyhedra, we utilize salient features extracted from the synthetic
depth map. Training images were created from 24 different viewpoints around the
objects, and the OpenCV [4] SURF feature extractor [3] was used to extract features
for the different object and viewpoints viewpoints. Noisy test images were then
created with Gaussian white noise ðr ¼ 0:23 mÞ: Figure 3 shows SURF features
extracted from synthetic depth maps of the polyhedra. The number of SURF fea-
tures is greater when viewing the polyhedra vertices when compared to viewing the
faces.

Fig. 3 SURF features extracted from depth maps of tetrahedron and cubes viewed from different
angles. Viewing the vertices provides more distinguishing information than viewing the faces
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6.1.1 Two Objects

The intuition is that it will be easier to identify the object in some viewpoints than
in others, due to the presence of additional salient features. We analyze this claim
by comparing informative view selection to random view selection on synthetic
depth map data from a cube and tetrahedron. The information gain of each view
was calculated based on the number of expected salient features corresponding to
the true object minus the expected number of false correspondences. This calcu-
lation requires comparing all views to the corresponding views of each other object
(O(N2) computation in the number of hypotheses). After the cross-correlations were
computed, planning was completed in milliseconds. To apply adaptive view
selection, we calculate the information gain from the current distribution over the
features, which changes as new views are observed.

In these experiments, path constraints are not considered, though the view
ordering could easily be used to generate a feasible path on the finite horizon.
Figure 4 shows results comparing the information gain heuristic with random view
orderings. Number of correct correspondences are reported based on the assumption
that the object with the largest number of correspondences will be selected.
Utilizing the information gain heuristic to determine the most informative views
leads to as much as a 35 % increase in the number of correct feature correspon-
dences with limited views. Adaptive view selection does not provide much benefit
over the non-adaptive technique, as expected from the small adaptivity gap in the
binary hypothesis case (see Sect. 5). Note that, for comparison, only 24 views are
considered, and all methods will provide the same performance after seeing all
these views.
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Fig. 4 Multi-view classification experiments with synthetic images of a cube and tetrahedron
viewed from 24 different angles (best viewed in color). Utilizing the expected information gain of
the next view improves the number of SURF feature correspondences when limited views are
used. Random view results are averaged over 100 orderings; error bars are one standard deviation
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6.1.2 Multiple Objects

The benefit of active classification is now examined for cases where more than two
object classes are considered. In addition to the cube and tetrahedron, we include
training images of the icosahedron, octahedron, and dodecahedron as possible
object classes. The theoretical analysis in Sect. 5 suggests that acting adaptively
should improve performance for the multi-hypothesis problem. Figure 5 shows
results for classifying the cube and tetrahedron when additional hypotheses are
considered for the other three platonic solids. The adaptive policy outperforms both
random view selection and the non-adaptive policy the majority of the time. The
difference is particularly significant for the tetrahedron. Note that the dominance of
the adaptive policy is not true at all data points. These results suggest that adding
additional hypotheses in some cases reduces the performance of active view
selection.

6.2 Imaging Sonar Data

To examine the benefit of active classification on real-world data, we utilize data
from imaging sonar depth maps taken from a ship hull inspection with an under-
water vehicle. The vehicle has already executed a path, and we utilize the proposed
framework to order the viewpoints based on informativeness. Such information
could then be utilized to plan additional inspection paths of the object.

The goal of the inspection is to determine whether an explosive has been placed
on the ship hull. The explosive appears as a small patch of bright pixels on the
imaging sonar depth map. Since the sonar data is not dense enough to provide
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Fig. 5 Classification experiments with synthetic images of the five platonic solids (best viewed in
color). The results for a cube and tetrahedron test object are shown. Adaptively selecting the most
informative views based on past information tends to improve classification accuracy, and acting
adaptively increases this benefit. Random view results are averaged over 100 random orderings;
error bars are one standard deviation
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salient features, we take a simpler approach of using the brightness of the pixels as
the feature base. A brightness threshold was learned by minimizing the number of
misclassified pixels in labeled data. The performance metric is the total number of
pixels correctly classified as part of the explosive device. We utilize this metric
because images with a large number of corresponding pixels may provide addi-
tional information during post-processing or to a human operator.

A separate test set was held out of the labeled set to determine if the most
informative views could be predicted using the learned threshold and expected view
quality. There were 100 frames in the training and 75 frames in the test set. The
training and test frames were from different trajectories, but with the same back-
ground. The frame rate was approximately 2 fps. The information gain in these
experiments was calculated based on the expected number of pixels corresponding
to the explosive in a given view, which was found using an average of the
hand-labeled pixels in the training set images weighted by their distance (using data
from a DVL sensor). A squared exponential weighting was used.

Figure 6 shows the results of running the information gain approach versus ran-
dom views. We also compare to the initial (very poor) view ordering from the data as
well as two simple ordering methods: sorting the views based on minimum distance
to the object and sorting based on the maximum angle of view (see Fig. 1 for the
intuition behind this method). The results show that actively choosing the views with
the highest expected information improves classification performance. For example,
choosing informative views reduces the number of views for 15 correct pixel iden-
tifications by nearly 80 % versus random selection (from 38 views to 8 views).

For visual reference, Fig. 7 shows images of decreasing expected pixel classi-
fications. Intuitively, the images where the explosive stands out from the back-
ground should provide the most information. Despite some incorrect predictions, it
is clearly beneficial to examine those viewpoints predicted to be informative. It
should be noted that the informativeness of the images depends on the quality of the
low-level sonar processing. With perfect low-level data processing, all images may
have high informativeness, which would reduce the benefit of active classification.
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7 Conclusions and Future Work

This paper has shown that actively choosing informed views improves performance
for inspection tasks in the example underwater domain. The experimental results
demonstrate that depth map information can be utilized to recognize objects of
interest, and that (compared to passive methods) up to 80 % fewer views need to be
examined if the views are chosen based on their expected information content. In
addition, acting adaptively by re-evaluating the most informed views as new
information becomes available leads to improvement when more than two classes
are considered. These results are consistent with theoretical analysis of the benefit
of adaptivity.

Future work includes further theoretical analysis of performance guarantees,
particularly in the case of path constraints. The analysis and tools developed in this
paper can also be applied to related underwater inspection problems, such as
reconstructing ocean floors or ship hulls for inspection [10]. Such tasks have typ-
ically been formulated as coverage problems, but the use of alternative objective
functions based on uncertainty reduction could both improve performance and
allow these problems to be analyzed in the context of active classification. Finally,
the analysis in this paper has applications beyond underwater inspection. Tasks
such as ecological monitoring, reconnaissance, and surveillance are just a few
domains that would benefit from active planning for the most informed views.
Through better control of the information we receive, we can improve the under-
standing of the world that we gain from robotic perception.
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Fig. 7 Imaging sonar depth maps of an explosive device (circled) placed on a ship’s hull. The
depth maps are ordered based on the expected number of pixels in the image corresponding to a
possible explosive. Note that the explosive is easy to identify in image (a), more difficult to
identify in image (b), and very difficult to identify in image (c). Image d is expected to be a low
information view, when in fact the explosive is relatively easy to identify. a Exp. gain: 3.7,
b Exp. gain: 2.1, c Exp. gain: 1.5, d Exp. gain: 0.8
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The Importance of Structure

Carl Henrik Ek and Danica Kragic

Abstract Many tasks in robotics and computer vision are concerned with inferring
a continuous or discrete state variable from observations and measurements from
the environment. Due to the high-dimensional nature of the input data the inference
is often cast as a two stage process: first a low-dimensional feature representation is
extracted on which secondly a learning algorithm is applied. Due to the significant
progress that have been achieved within the field of machine learning over the last
decade focus have placed at the second stage of the inference process, improving
the process by exploiting more advanced learning techniques applied to the same
(or more of the same) data. We believe that for many scenarios significant strides in
performance could be achieved by focusing on representation rather than aiming to
alleviate inconclusive and/or redundant information by exploiting more advanced
inference methods. This stems from the notion that; given the “correct” represen-
tation the inference problem becomes easier to solve. In this paper we argue that
one important mode of information for many application scenarios is not the actual
variation in the data but the rather the higher order statistics as the structure of
variations. We will exemplify this through a set of applications and show different
ways of representing the structure of data.

1 Introduction

A central question to solve when designing an artificial system is how to make it
aware and capable of interaction with the environment. The level of usefulness of a
robot is considered through its capability of reacting to and adjusting its behavior to
changes in the environment. Today’s robots, equipped with different sensors such as
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cameras, microphones and depth sensors acquire information from the environment
at very high precision and rate. Through this rapid development it is now possible to
design artificial systems who’s sensory systems are more capable than those of the
human. However, despite getting more and more detailed observations of the
environment, the progress in what we are able to infer through reasoning from this
data have not seen the same rapid development. Our central argument in this paper
is, Given the “right” information about a domain inferring the correct answer
becomes an easier problem. The development of sensory systems have rather than
focusing on providing the “right” information been aimed at simply acquiring more
information. The justification for this has been the development of more and more
advanced machine learning algorithms capable of dealing with larger amounts of
data of more complicated distributions. However, the fact still remains that the
progress in terms inference have not followed that of the sensory systems.

One of the strengths of human inference is its capability of being selective with
the information it uses to reason [1]. During our development we construct strong
(conditional) priors which helps us filter the enormous amount of information that
our sensory systems acquires to only use a small subset of the data which is relevant
for the task, as indicated by the concept of intentional blindness shown in [2].
Rather the opposite approach seems to be dominant when building artificial systems
where we try to extract and model more and more of the variations in the sensory
data and exploit more advanced learning algorithms for inference from a very
complicated input domain. A describing example is object categorisation in com-
puter vision where the dominant approach is to use local image descriptor such as
SIFT [3] to model the sensory data. Clearly the information extracted by such
features contains significant amounts of variance which is not relevant for the task
which means that in order to be able to generalize within categories the inference
algorithm needs to learn to ignore data and focus on the discriminating information.
In many situations the discriminating information represents only a small part of the
variance in the extracted representation which often means a significant challenge in
terms of modeling and inference.

In this paper we argue that rather than focusing on building models capable of
representing a larger amounts of the variance in the sensory, we should aim to
carefully consider what information that is actually relevant. We argue for repre-
sentations that focus on the structure of variations rather than accurate descriptions
of the local variations in the data. Our motivation stems from the notion that the
biggest challenge when it comes to inference is not discrimination per say but rather
its complementary notion that of generalization. I.e. the key problem is not to
extract variance that separates certain classes but rather avoid extracting variance
that corresponds to within class variations. As an example, having observed a
specific instance of a mug we can reasonably reliably detect that mug again, the big
challenge is to create a system which is capable of generalizing over different mugs
separating them from other objects.

We argue that the important questions are concerned with generalization on a
level where the global structure is the dominant discriminating factor and not the
local variations see Fig. 1. To that end we will describe a set of different scenarios
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where structural representations and models are of key importance. Through these
examples we will show different approaches for exploiting global structure.
However, we would like to point out that the purpose of this paper is not to provide
a solution to a specific problem but rather exemplify our notion through a range of
applications where structure is important to stimulate further discussion on the
subject.

2 Structure and Generalization

There are three central concepts in this paper; those of generalization, discrimi-
nation and that of structure. To explain what we mean by these we use the example
of object modeling as this provides a intuitive example of the concepts that we
address in this paper. Object modeling is a necessary prerequisite for equipping a
robot with the ability of detection, identification and manipulation. Dependent on
the task, we wish to acquire a representation that generalize over specific classes
and is able to discriminate between others. Formally this means that we wish to
model the between class variance but not the within. Thus, the two concepts
generalization and discrimination are complementary, but from a traditional rep-
resentation point of view the biggest challenge is not to retain (the discriminative
part) but rather to remove (the generalizing part) information. An example of this is
representing object from visual data for the task of categorization. The main
challenge is not to find a representation that separates for example mugs from
glasses, as they look different the information is contained in the observations, but
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Fig. 1 The above figure tries to highlight the notion of the importance of structure that we try to
convey in this paper. The example above shows a large data-base of objects to the far left. Of these
we want find a representation in order to classify objects at a certain resolution. If the
representation naturally generalizes, i.e. it does not reflect within class variance but only between
this task is easy to solve. In this paper we argue that for a coarse scale task such as separating
“sittable” from “drinkable” objects the discriminating variance is represented by the global
structure. While for a high resolution task such as separating the “red felt comfy chair” or the “blue
plastic mug” the discriminating information is contained in the appearance cues. We believe that in
robotics we are generally interested in the first type of these two task why therefore find
representations of global structures is important
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rather to remove the information that separates different mugs and different glasses
from each other.

Any statistical method relies on the presumption that we can acquire enough
samples of a space that can describe it well. Images are high-dimensional meaning
that it is not possible to acquire such a data-set easily. The traditional approach has
been to extract a low-dimensional feature representation assuming that we can
acquire samples that describe the feature space. The most obvious approach is to
extract this information from a local patch in the image as clearly this will per
definition contain less variations. The central question is then: What level contains
the desirable generalization and discrimination characteristics for a specific task?
Clearly, on the most local level, being the colour of a pixel, we can model the
information robustly and the assumption of sampling the feature space well is going
to be forefilled by observing a single image. However, we also know that statistics
of such local features will not contain discriminating information for other than the
most simple task while it will generalize over a large range of different images. Here
is an important notion: the more local a feature, the less discriminative it becomes.
Thus, there is a trade-off here that needs to be considered, local enough to be robust
and well sampled and global enough to be descriptive, see Fig. 2.

The traditional approach have been to try and use more and more descriptive
local features by acquiring large (and growing!) training data sets and then exploit a
supervised machine learning technique capable of learning a secondary represen-
tation, often through the use of kernel machines or metric learning, that achieves the
desired balance between generalization and discrimination.

We argue that the there is a different paradigm where we could use less infor-
mative local descriptors while still being able to discriminate. That is to aim to
create strong models of the structure between the local features and not stop at first

Fig. 2 The above figure shows two different objects with two different scales of local
representation, dotted (fine) and dashed (coarse). First order statistics from the fine resolution will
not be able to discriminate the two objects while at the coarser scale they will be different.
However, using a coarser scale implies that each cell has a higher dimensionality requiring more
samples in order to represent the space well
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order statistics such as the so popular Bag-or-words techniques. However, how to
encode structure is a non-trivial problem that we believe needs to be addressed with
much more focus. We do not think that there is one single approach for representing
structure but rather a large range of different tools and approaches. In the reminder
of this paper we will show different applications and different intuitions and tools
that are useful and provide insights into how to deal with different tasks by
including a structural element. Our goal with this paper is rather to raise questions
than provide specific solutions.

3 Temporal Structure

Many tasks in robotics deal with dynamical scenes where the relevant information
is contained in the order of events. A goal of robotics is learning by demonstration
[4] where the task is for a robot to extract the relevant notion of a task by observing
a demonstrator. Various subproblems have been studied related to task planning
and sequencing, detection of motion primitives, developing models for structured
collections of actions [5]. The underlying question has been how to acquire a
representation that in a sufficient manner generalizes the objective(s) of the task.
Take for example the task of clearing a table. Here the appearance of both the
objects and the table are irrelevant. Rather the important information that gener-
alizes the task lies in the structure of the events not the actual events themselves. I.e.
the task remains the same if the cutlery are cleared before the plates or vice-versa. In
this section we describe different applications where we, through some model of
temporal structure, manage to simplify an otherwise complicated inference task.

3.1 Interaction

Recently, [6] suggested a method for action classification by representing the
temporal structure of the interactions that takes place in the scene. Using visual
measurements from a camera the approach first segments the objects in the scene
for each frame in a video sequence. The temporal structure is encoded by a graph
representing each frame, every object being a node and connected component
sharing an edge, see Fig. 3. This process removes all information associated with
the appearance and identity of the objects leaving only the interaction. The final
processing step is to remove the duration of the interactions and only retain the
sequence of topologically different graphs. The intuition behind the representation
is that for discriminating between actions the temporal structure of the interactions
of objects independent of their identity contains sufficient information. This is
significantly different to the more traditional approach for modeling actions such as
[7–9] which extracts a representation that retains a significant amount of the
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variance related to appearance. This means that we have to learn the invariance
related to appearance from data. This requires significantly larger amounts of
training data and puts additional challenges on the learning machinery that needs to
explain away this non-relevant variance and extract the important variance from the
feature. In order to represent each frame the authors in [6] defines a specific
semantic extracted from the node connectivity in the graphs and the alterations
under this semantic over time is represented as a matrix. A simple distance measure
is then defined to compare two different matrices which given a training
data-set allows for action classification.

One of the major drawbacks of the approach suggested in [6] is that it is very
sensitive to noise as it assumes that each node in the graph represents a single
object. In order to circumvent this problem, we have developed a general frame-
work for encoding the structure of variation in a semantic chain using a robust
machinery derived from work in text representation [10]. We are motivated by the
approach presented in [11] where a feature space representation of a string is
presented. By deriving a vector space representation of a string independent of its
length strings can be compared by standardized tools from statistical learning. The
parametrisation is sensitive to both the order and the existence of letters in the string
and does therefore encode both the structure and the appearance of the string. Being
infeasible to compute for most typically sized data-sets the feature space is repre-
sented implicitly through the use of a kernel function [12]. More formally the
feature space we use is spanned by all possible permutations of all lengths of the
letters in the semantic alphabet, with an inner product defined as a function of the
matching part of the overlap between two strings, see Fig. 4. Clearly the spaces is
infinite dimensional but as any string of a shorter length compared to the basis are
orthogonal the maximum dimensionality is bounded. Similarly to the original string
kernel [11] an efficient recursive computation of the inner product can be formu-
lated representing the feature space implicitly using by a kernel.

Fig. 3 The left example shows an instance of the Opening Book action while the right shows the
Moving Object. In each of the images the result of the segmentation and its corresponding graph
have been overlaid. Only the spatial relations between the segments are extracted and no
identification of the objects is performed
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The above example completely removes all variance associated with appearance
from the observations and only retains information about structure. For the task of
discriminating between the different actions defined in [6] this contains sufficient
information. However, it is easy to think of scenarios where this information is not
sufficient for performing the task. However, the kernel based framework can easily
be adapted to encode structure where the appearance is also retained as this is
simply about defining a semantic that also encodes the appearance. As an example
of such we will describe an approach for representing object categories that retain
both the appearance and the structure of the object. An idea for the future is the
integration of this approach with the probabilistic models for action encoding
presented in [13] (Fig. 5).

3.2 Object Detection

A robot should be able to interact with it surroundings by applying actions to
objects. Thus, a very important task is to identify and extract objects from sensory
data. The visual domain contains a rich description of the environment and by
segmenting objects from the background detailed models of individual objects can
be built. Image segmentation is concerned with clustering “similar” pixels into
segments and has attracted considerable interest in computer vision. There are many
different approaches and assumptions used to define similarity between pixels.
Because of computational limitations, but also due to the challenge of formulating
general appearance models, the focus has been on local statistics such as colour
distributions and gradients [14, 15]. This has meant that for all but the simplest

OTTN

TOOTNA

ANNT TOOT TN NA OTTN AOOTTOOA

ANNT

Fig. 4 For a the specific semantic alphabet, here defining the four different interaction
relationships between objects: {A, N, T, O}, we above show a subspace of the feature space
representing the sequence. The sequence ANNT (red) and OTTN (green) exists in order in the
string and will therefore project parallel to the corresponding basis while the TOOTNA does not
which will induce a non-zero angle between the string and the basis. This means that the
representation will be sensitive to gaps in the string making it robust to noise
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objects it is quite unlikely that the clusters retained by an image segmentation
approach will corresponds to actual objects in the scene.

The work in image segmentation shows the non-trivial nature of formulating
consistent appearance cues based on local statistics that corresponds to objects in
the image. This has meant that most successful approaches are interactive, requiring
a human to refine and rectify the result produced in an iterative manner [15]. In an
autonomous system we cannot rely on interaction to leverage and include human
object priors for segmentation but rather need to create a self-contained system.

In [16] we presented an active system for object segmentation which exploits
both traditional appearance based assumptions in collaboration with temporal cues
in an active iterative manner. Image segmentation techniques are good at grouping
pixels into consistent regions. This often mean that for all but the simplest objects
this will result in an over segmentation where each object is divided into several
different segments. Acknowledging the fact that it is a non-trivial task to create
appearance models that encapsulates the long range pixel interactions that gener-
alizes over objects we turn our attention to a different domain. In many applications
we can assume that the objects of interest in the scene are rigid. Further, each local
element or point on such an object moves according to simple rules of rigid motion.
This means these rules generalizes over all points belonging to the same object. To
that end we use the initial segmentation from the appearance cues as an hypothesis
of the objects in the scene. In correspondence with this the robot introduces motion
by interacting with the scene. Modeling the motion we can easily verify if the
appearance segmentation is consistent with the rigid motion assumption. In [16] we
describe which combines local appearance cues with a method for modeling rigid
motion to use them in a complementary fashion. We show results for a common
table-top scenario where and appearance based method used on its own would fail,
Fig. 6.
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Fig. 5 Left The bar plot above shows the classification rate associated with increasing noise to the
right. The green bars identifies our kernel approach while the red indicates the performance of the
original method. Right Confusion matrices for increasing noise. The classes are ordered asMoving
Object,Making Sandwich, Opening Book and Filling Liquid. The red matrices show the results
for the original approach while the results of our method is shown in green. With increasing
amount of noise the original measure is unable to disambiguate between the different actions
classifying every action as belonging to opening book. For the same data the kernel approach is
able to differentiate between the classes and the performance is reduced much more gracefully
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This approach shows how by exploiting a simple assumption we can actively
introduce a variance corresponding to the level of generalization we are interested
in such a manner that it can easily be extracted from the environment.

4 Spatial Structure

In previous section, we described applications and tasks exemplifying the impor-
tance of temporal structure. In this section we discuss structure on a different level
namely the structure on a spatial level.

Similarly to the temporal case we argue that the interesting generalization for
many tasks are represented by structural information. On example is our use of
language, where we would use an structural adjective such as striped to discrimi-
nate on a coarse level while for identifying specific objects we would add local
appearance descriptions such as red and white. The currently dominating approach
is to use a local representation of each instance and hope that the inference pro-
cedure is capable of extracting the information that generalizes between the classes
by observing enough examples. As we have previously stated this is a very chal-
lenging task from a learning perspective, as quite likely only a small portion, if any,
of the variance in the local descriptor will contain generalizing information.

In this section we describe two different task where the generalizing information
is contained in the spatial structure of the local appearance and not the local
appearance itself.

4.1 Object Representation

Being able to discriminate between objects both on category and instance level is of
key importance for a wide range of task in robotics. This requires an object

Fig. 6 The left most column shows two scenarios where two objects have been placed on a table
top. Using a traditional appearance based image segmentation approach it is not possible to
separate the objects. By introducing motion into the scene by letting the robot interact with the
environment the motion can be modeled and the objects separated in the right most image

The Importance of Structure 119



representation that is capable of generalizing over the desired task dependent
domain. In computer vision object categorisation has attracted a significant interest.
Especially in recent years with the collection of public datasets and high profile
competitions such as the Pascal VOC challenge [17]. A large range of different
techniques have been applied to the problem where the dominating approach is to
aim to extract discriminating information from local image descriptors by relying
on the capabilities of different machine learning approaches.

Compared to computer vision researchers roboticists enjoy the luxury of being
able to apply several different types of sensory streams in addition to cameras for
extracting information of the environment. Recently with the introduction of
affordable depth sensors has allowed us to consider dense depth information not as
a specialized domain but rather something that can be assumed as readily available.
In [18, 19] a robust 3D feature is presented which represents each local patch of an
object as belonging to a specific geometric class. In Fig. 7 the feature is shown
extracted from a set of typical household items. Clearly, only describing the geo-
metrical local structure on the object is not likely to provide discriminative infor-
mation between a large range of different object why the global structure needs to
be encoded. To that end in [20] the author presents an approach to encode the
global structure by encoding the distribution of local patches along rays between
each patch.

The results presented are impressive but modeling the distribution of geometrical
classes between local patches is not going to retain the full structure of the object
and in order to be able to scale in terms of the level of generalization we believe that
a stronger representation is needed. In specific we do not think that rays are a good
way of encoding the structure of a surface. The objective is to find a representative
global statistics that encodes the structure of the object. What we mean in formal
terms is that: an object is a two dimensional surface embedded in a three

Fig. 7 Object features representing the local geometrical class encoded by colour shown for three
different objects, from the left box, citrus fruit and mug
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dimensional space which encapsulate a non-empty volume. This implies that given
a point on the object one can travel to any other point belonging to the object by
traversing this enclosing surface. It is the shape of this surface is what we wish to
represent. In this notion of a surface lies our objection towards the use of rays. The
surface is a two dimensional object meaning that relating two points to each other
requires two degrees of freedom. The position along a ray does not respect the
shape of the surface but is rather a construction to create a simple measure of
sampling the three dimensional volume along a single parameter. By defining a path
respecting the surface of the object, such as the use of an approximate geodesic
[21], this defines a distance between each point that reflects the shape of the surface
of the object. This distance induces an ordering of each local patch and by repre-
senting this ordering rather than the non-surface respecting ordering induces by a
ray we believe a more descriptive representation can be found.

Given that we can sample statistics of the object along paths that reflect the true
global structure of the object the question remains what type of statistics should be
encoded. The obvious approach would be to encode only first order statistics such
as in [20] as it can be done in a robust manner and is less sensitive to difference is
sampling resolution. However, we believe that the important information is in the
ordering of the local patches not simply the distribution. To that end we wish to take
a similar approach as in [10] and exploit robust and principled kernel approaches
representation and inference. In specific, where the semantic in [6] does not reflects
the local appearance we wish to exchange the semantical alphabet to use the local
representation presented in [18]. Rather than modeling the interaction between
segments in time we aim to model the interaction spatial, where the time domain is
replaces with a distance measure along the object. We believe that this approach has
the potential of improving object categorisation and classification in a similar
manner as it improved action classification as shown in [10]. Our intuition why this
will lead to improvement is two fold; only modeling the local structure we are likely
to need a very detailed descriptor which is likely to be susceptible to noise. By
using a less descriptive local feature as [18] we believe this can be avoided.
Secondly, the generalization and discrimination will be encoded by using the robust
string kernel approach developed in [10] allowing us to exploit principled and
robust inference algorithms for classification.

5 Data Conditional Dependence and Factorization

The previous examples we have discussed have addressed representation of data for
a specific problem where we argue that the global structure of the variations in the
observations is the key component to model and represent not the actual variations
themselves. In this section we will describe a more general case where we do not
have a specific task in mind but rather want to acquire a complete model of the data
and model its underlying distribution.
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In many scenarios of robotics we are given observations of the environment in a
factorised form. This can either be that the observations naturally factorises
describing separate modalities or through the use of different sensors and or feature
representations. Assuming that the observations of the environment Y factorises
into k separate terms [Y1,…,Yk] this means that from a probabilistic view point the
complete model of the environment is represented by the joint distribution, P
(Y) = P(Y1,…,Yk). However, for many scenarios in robotics the dimensionality of
this distribution makes it intractable to learn. In order to proceed one can exploit
conditional independence in the observations imposing a structure on the joint
distribution such as,

PðYÞ ¼
Yk

i¼1

PðYkjpkÞ; ð1Þ

where pk corresponds to the subspace of Y that induces a dependency on Yk thereby
imposing a structure on the observation.

Extracting dependency structures in data is a very hard problem with the number
of possible structures growing super-exponentially with the number of variables or
nodes. Recently significant strides have been made towards being able to treat
structure learning in a principled manner through the development of structural
priors such as the Chinese Restaurant Process [22–24] and Indian Buffet Process
[25, 26]. However, the use of such priors introduces significant limitations on the
individual factors in the model meaning that they are not applicable in the general
scenario. This means that for many problems researchers have to resort to using
heuristic or greedy approaches. Of specific success have been the application of
such methods when the data is discrete. However, for most robotic applications we
deal with continuous data which means that such approaches have in general been
beyond us. As a result, for the general case we often have to assume the structure
and or the factorization of the data to be known a priori [27].

In recent [28–30] work we have created a model which encodes the tradeoff
between loss of precision as introduced by discretisation process and the benefit of
learning the structure by exploiting the heuristic approaches developed for such
data. The proposed method learns a continuous latent variable model of each
observation space represented by a set of discrete key states. It does so by
exploiting recent advances in probabilistic dimensionality reduction [31] and by
introducing a specific prior who balances the trade-off between discretisation and
representation in a principled manner. In Fig. 8 a schematic figure of the graphical
model proposed in [28] and the learned intermediate representation used for clus-
tering is shown. Application of proposed method has allowed us to learn the
conditional structure from large collections of both discrete and continuous vari-
ables within the same model. In Fig. 9 the resulting learned structure for modeling a
range of different sensor data for a grasping task is shown. This is an example of by
enforcing a specific structure on a lower level allows us to learn the more global
structure of the data which is often much less trivial to have a notion of. Even
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though it might not be directly obvious this approach is not particularly different
from the previous described methods as: on a lower level we enforce a structure,
either in the case here as a discretisation or in the object category example by on the

Fig. 8 The left image shows a schematical graphical model of the structure learning approach. For
each continuous observation space Yi we learn a low dimensional representation Xi with a
functional relationship to the observed data parametrised by hi. Further, the low-dimensional space
is represented using a set of discrete locations Ui. Given that we have a completely discrete
representation in terms of the Ui we can apply traditional heuristic methods for learning the
structure p. The right image shows and example of the low-dimensional continuous representation
and the discretisation colour coded. The separation between the clusters is controlled by a prior
modeling the trade-off between discretisation and representation

Fig. 9 Example of a learned factorised representation of 17 different observation spaces for a
grasping scenario. To the left the different features are shown and to the right the resulting
graphical model with the learned structure. The structure is very complicated and it is highly
unlikely that we would be able to specify it a priori
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local feature level extracting specific structures such as edges or face normals, then
on a global level we model the structure either as previously in terms of a task or as
here in terms of a density model of the data.

6 Topology

Topology is the study of the structure of geometrical spaces and objects. As a branch
of mathematics it provides a toolbox for extracting qualitative measurements of
geometrical objects. We believe that tools from topology can provide a machinery to
encode the global type of structure that we have argued throughout this paper being
essential for acquiring a generalizable representation of the environment. However,
topology as branch of pure mathematics was not aimed at analyzing uncertain
scenarios where we measure the environment through sparse and potentially noisy
samples as is often the case in robotics. In [32] the authors argue that by careful
consideration of the problem setting, topological tools are applicable to the type of
problems where statistical learning have usually been the dominating paradigm. The
authors also argue that topological reasoning has the potential to eliviate some of the
shortcomings fundamental to statistical learning. In specific, we like to highlight the
following observations of statistical learning made in the paper; Coordinates are
rarely natural, Metrics are necessarily not justified and The need for large scale
qualitative information. The two first observations relate to the fact that as the
dominant portion of statistical learning approaches work on vector spaces where the
inner product is assumed to be naturally interpretable. However, observations are
often “shoehorned” into vector spaces which are not natural in the sense that the
inner product does not relate to the intrinsic structure of the data. In order to reason
about the space we require some form of similarity measure between points pro-
viding a distance or an ordering of the space. If the data is represented in vectorial
space the natural similarity measure is the use of a norm. However, if the vectorial
representation per say is not a natural representation of the data neither will the
distance be. Especially relationships at large scale are likely to be less informative
compared to local. This is indicated by the success of approaches which relaxes the
assumption about the parametrisation to only assume it to be locally metric such as
simple nearest neighbor methods [33–35] and the success of kernel induced feature
spaces based on radial basis functions which emphasizes the local structure in the
data. This is also the foundation for the last intuition that we wish to highlight from
[32] that of the need for a qualitative measure of the data.

We have throughout this paper argued the importance of understanding the
global structure of data. Given that it is only at best on a local scale we can associate
significance to the similarity measure, we need tools that can in a principled manner
provide qualitative measure on the global structure of a set of data induced by a
local measure. A set of data and its structure can be studied by creating a graph
where a node represents each samples with paths connecting nodes according to
some similarity measure. Assuming that, we can at least on a local scale derive a
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somewhat natural notion of similarity, this graph represents the structure of the
whole dataset that is induced by this local measure. The field of algebraic topology
defines a formalism for providing qualitative measures on such graphs. However,
one central question remains: on what scale the local similarity measure is relevant?
In order to reduce the effects of noise in the samples we wish to use as large range
of interaction as possible, however if too large we run the risk of connecting
non-related components. This problem is well known in machine learning for
constructing local affinity matrices [21, 36, 37]. In order to circumvent this problem
the idea of Persistent Homology has been introduced which studies how the
qualitative measure changes by varying the range of the local interactions.
Persistent homology provides tools which can potentially make algebraic topology
applicable as a formalism for studying uncertain data.

We believe that a symbiosis between statistical learnings tools with its principles
for modeling in scenarios with uncertainty and missing data together with the tools
for qualitative measurements of structure provided by topology has the potential of
achieving a synergic effect for merging local observations and global structure in a
unified framework.

7 What Next?

Robots acting and interacting in realistic environments rely on perception, planning
and control for motion generation. Although state of the art algorithms are capable
of finding solutions that results in successful goal generation in some applications,
they are still not able to flexibly make use of the gathered experience and use it for
solving a similar/related problem on a future occasion. Extracting the semantics of
the task is one of the major bottlenecks that still remain to be solved and we argued
in this paper that this is in general dependent on using the right representation for
the problem at hand. A good representation of data is one that except for being
robust is capable of generalizing at the desired level.

In regard to motion generation, the classical approach operates in a complete
configuration or state space represented at the level of generalized coordinates
considering all joint angles and their 3D pose. This requires a computationally
expensive state space optimization and randomized exploration in very large search
spaces. In a EU funded project TOMSY (www.tomsy.eu) we study representations
of actions and morphologies using topology-based abstractions in a layered manner
and to implement dexterous manipulation on articulated and flexible objects using
mappings between the topology-based abstract space, task space and joint space of
metamorphic manipulators.

In this paper, have argued that one important mode of information for many
application scenarios is not the actual variation in the data but the rather the higher
order statistics as the structure of variations. We have exemplified this through a set
of applications and show different ways of representing the structure of data,
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considering applications such as scene understanding, object recognition and data
representation for grasping.
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Modular Design of Image Based Visual
Servo Control for Dynamic Mechanical
Systems

Robert Mahony

Abstract This paper presents a modular framework for design of image based
visual servo control for fully actuated dynamic mechanical systems. The approach
taken uses the formalism of port Hamiltonian systems to track energy exchanged
between the mechanical system and virtual potentials or Hamiltonians associated
with each image feature. Asymptotic stability of the system is guaranteed by
injecting damping to the otherwise conservative system. A simple approach based
on full state measurement is presented and then extended to deal with unmeasured
relative depth of image features.

1 Introduction

Visual serving algorithms have been extensively developed in the robotics field
over the last twenty years. Image-Based Visual Servo (IBVS) control regulates the
dynamics of features in the image plane directly [1], resolving the cartesian motion
planning task implicitly [2, 3]. IBVS control methods offer advantages in robust-
ness to camera and target calibration errors, reduced algorithmic complexity and are
easily extended multiple camera scenarios [4]. Visual servo control was first
developed for rigid industrial serial-link robotic manipulators [4] where the
dynamics of the system are easily compensated using computed torque (or high
gain) control design. As a consequence, classical IBVS control is framed in the
kinematic setting [1]. The last decade has seen a number of developments of visual
servo control algorithms that consider the full dynamics of a mechanical system
motivated by non-stiff robotic manipulators, such as those used in human safe
environments, and other applications such as visual servo control of aerial vehicles.
Kelly et al. considered the full dynamics of a robot and used a simple image based
error feedback along with damping to prove asymptotic stability of the full system,
firstly for planar robots [5], then later for full 6-DOF manipulators with known
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image depth [6]. Zergeroglu et al. [7] used robust backstepping methods and
adaptive estimation to deal with unknown calibration and system dynamics. Bishop
et al. [8] considered a similar problem using non-linear PD control techniques.
Hamel et al. [9] used an image centroid feature to ensure passivity properties of
system and then applied robust backstepping to control a dynamic under-actuated
model of an aerial robotic vehicle. Maruyama et al. [10] took an approach similar to
that of Kelly [5, 6] and worked with a general Euler-Lagrange model of a robotic
manipulator. A key issue in all visual servo control schemes is overcoming the loss
of relative depth information associated with using an imaging system to observe a
target point. Maruyama and Fujita further developed their work to include an
observer that estimates the camera pose [11, 12], effectively estimating the unkown
depths of the image points. An advantage of this approach is that a positive-definite
control Lypunov function for the closed-loop system is available and provides an
estimate of L2 gain of the visual servo control loop [12]. Since this work incor-
porates an explicit estimate of the system pose it is natural to use a pose based error
for the control criteria, leading to position based visual servo control [4]. Kawai
et al. [13], however, showed that an image based regulation error can be used if
desired; although the control algorithm still contains the complexity of a full pose
estimator. Several authors have also considered using navigating functions [14–16]
for visual servo control of dynamic systems.

In this paper, I present a novel modular framework for design of image based
visual servo control for dynamic systems. The proposed approach uses the structure
of port Hamiltonian systems represented graphically using the bondgraph formal-
ism. Each image feature is associated with a separate branch of the bondgraph,
ensuring a modularity and structural simplicity to the design framework. The nat-
ural pairing of generalized forces (efforts) and generalized velocities (flows) asso-
ciated with the mechanical system are transformed into image flow and image effort
in a power preserving modulated transformer. Image Hamiltonians are introduced
in the image space that represent stored energy associated with the image variables.
The control objective is assigned by shaping of the total potential energy of the
complete bond-graph using the flexibility available in choosing the image
Hamiltonian potentials. Asymptotic stability of the system is obtained by injecting
damping into the otherwise conservative system. Since each image branch of the
graph is independent of the others the approach is inherently modular and image
points can be added or removed arbitrarily as long as care is taken that the total
system energy is preserved and that the system potential is always shaped with a
minimum at the desired pose. A further advantage of the approach is that it is
straightforward to interface the proposed design framework with other control
algorithms that have a port-Hamiltonian representation. For example, bilateral
force-feedback teleoperation of the system can be achieved by simply connecting a
external source port representing the master system to the bondgraph.

The initial results of the paper are presented under the assumption that all system
variables are measured. In practice, the relative depth of each image feature is never
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directly measured due to the physical nature of imaging systems. The second part of
the paper presents a modification of the design framework that incorporates an
on-line estimate of the relative depth.

2 Classical Image Based Visual Servo Control

Classical Image Based Visual Servo (IBVS) control was developed in the kinematic
setting for serial manipulator devices [4]. Let {A} denote an inertial (base) frame of
reference. Let {B} denote the body-fixed (end-effector) frame of reference, and let
AnB (resp. ARB) denote the position (resp. orientation) of {B} with respect to {A}.
Note that AnB 2 R

3 while ARB is a rotation matrix. I will consider a mechanical
system with N degrees of freedom, such as, but not limited to, an N-link serial
robotic manipulator. The generalized coordinates (joint variables) of the system are
denoted q 2 R

N . Let BV ¼ B
AVB and BX ¼ B

AXB denote the linear and angular
velocity of {B} with respect {A} expressed in {B}. Let BU ¼ ðBV ; BXÞ denote the
combined spatial velocity of {B} with respect to {A} expressed in {B}. Then the
Jacobian JðqÞ 2 R

6�N (velocity Jacobian of a robotic manipulator) gives the rela-
tionship between spatial and generalized velocities

BU ¼ JðqÞ _q: ð1Þ

Any physical point p can be given coordinates either in the world frame Ap 2
fAg or in the end-effector frame Bp 2 fBg. The mapping between these coordinate
representations of p is given by the transformation mapping AHB : Bp 7! Ap,

Ap ¼ AHBðBpÞ ¼ ARB
Bpþ AnB:

with inverse Bp ¼ AH�1
B ðApÞ ¼ AR>

B ðAp� AnBÞ. The time variation of Bp is
given by

B _p ¼ Bp� BX� BV þ AR>
B
A _p: ð2Þ

In the sequel, I will only consider the case where the point p is stationary in
the world frame, that is A _p ¼ 0. In this case, it is convenient to write a matrix form
for (2)

B _p ¼ AðBpÞBU :¼ ð�I3
Bp�Þ

BV
BX

� �

where Bp� is the 3 � 3 matrix such that Bp�v ¼ Bp� v for any vector v 2 R
3. The

matrix AðBpÞ 2 R
3�6 is a Jacobian that maps Euclidean velocity of the body-fixed

frame into velocity of the point Bp associated with ego-motion of {B}.
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Classical eye-in-hand IBVS control uses a set of features si observed by a camera
attached to the end-effector frame of reference. Many different visual features have
been considered in the past, however, for this paper I only consider point features,
that is the image coordinates si = (ui, vi) of the image of an observed point pi for
i = 1,…,n. The principles presented in this paper, however, should generalize to any
image based feature.

Let (xi, yi, zi)
⊤ = Bp 2 R

3 index the body-fixed frame coordinates of a set of
point features in R

3. The image coordinates of these features observed using a
calibrated pinhole camera are

si :¼ ui
vi

� �
¼ r

xi
zi
yi
zi

� �
ð3Þ

where r > 0 is a scalar that represents the focal length of the camera. That is si is a

non-linear function f (xi, yi, zi) = r xi
zi
; yizi

� �
.

The image interaction matrix or image Jacobian, Li, is the linear relationship
between the instantaneous variation of the image feature and the generalized
coordinates, (Remark 1 justifies why I write Li: = Li (si, zi, q))

Liðsi; zi; qÞ ¼ Df ðBpiÞAðBpiÞJðqÞ

¼ 1
zi

r 0 �ui
0 r �vi

� �
ð�I3ðBpiÞ�ÞJðqÞ 2 R

2�N ð4Þ

recalling that si = (ui, vi). The image interaction matrix is the linear mapping
between generalized velocities of the manipulator and the velocity of the observed
image point

_si ¼ Liðsi; zi; qÞ _q: ð5Þ

Let s ¼ ðs>1 ; . . .; s>n Þ 2 R
2n be the concatenated vector of stacked image features

and define

Lðs; z1; . . .; zn; qÞ :¼
L1ðs1; z1; qÞ

..

.

Lnðsn; zn; qÞ

0
B@

1
CA 2 R

2n�N ð6Þ

Then the combined image kinematics can be written

_s ¼ Lðs; z1; . . .; zn; qÞ _q ð7Þ

Remark 1 Recalling Eq. 4 it appears to be the case that Li := Li(si, zi,
Bpi, q)

depends on the full target position Bpi as well as si, zi and q. In fact the term (Bpi)�
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in the rightmost block of A(Bpi) can be combined with the depth dependence of
D f (Bpi) to yield

1
zi
ðBpiÞ� ¼ si

1

� �
�
:

Although this trick means that the rightmost 3 � 3 block of D f (Bpi)A(
Bpi) depends

only on the measured image feature si, the zi dependence of the leftmost block
remains. Thus, to compute Li one requires the variables si, zi and q.

Let s�i 2 R
2 be a set of desired image coordinates. The task considered in IBVS

control is to servo control the robot until the camera is in a position such that si = si
�

for i = 1,…,n. The desired image points {si
�} should be chosen to be feasible, that is

that there should exist a physical pose of the camera in which the observed points
match the desired {si

�}. Typically image based visual servo control is used to return
to a pose that has been visited before and the desired image coordinates are
computed directly from a reference image obtained at the desired pose, ensuring
that the goal features are feasible. The image error is defined to be

~s ¼ s� s� ¼ ðs1 � s�1Þ>; . . .; ðsn � s�nÞ>
� �

2 R
2n: ð8Þ

The control is chosen to stabilize the image error

_q ¼ �kLyðs; z1; . . .; zn; qÞ~s

where k > 0 is a position scalar gain and L† = (L⊤L)−1L⊤ is the matrix
pseudo-inverse. The image features s and manipulator joint coordinates q are
measured and are available and can be used in computing L. The zi coordinates of
Bpi, however, are usually not available due to the nature of imaging devices. The
simplest work around to this issue used in practice is to use approximations
ðẑ1; . . .; ẑnÞ to the depth and compute an estimate L̂ :¼ Lðs; ẑ1; . . .; ẑn; qÞ of the true
interaction matrix. There are plethora of schemes proposed in the literature to
compute estimates of {ẑi} or directly compute estimates of L̂ or even its
pseudo-inverse [4, 17–19].

3 Modular Image Based Visual Servo Control
for a Dynamic Systems

This section introduces a modular port Hamiltonian frame work for design image
based visual servo control algorithms. A key advantage of this framework is that
each image feature is treated as a separate energy port attached to the system
dynamics. Thus, the separate image features can be treated as detachable modules
in the control design leading to a number of advantages that will be discussed in
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future sections. The theory is developed starting from a general Euler-Lagrange
model of a mechanical system expressed with respect to generalized coordinates.
Although this model is directly applicable to the standard dynamic models of
robotic manipulators, it is not necessarily this class of systems that is of most
interest as potential applications for the results. For example, the port Hamiltonian
approach has recently been applied aerial robotic vehicles [20] and there are a large
number of additional systems that can easily and naturally be modeled using this
framework.

Let q 2 R
N denote generalised coordinates for a fully actuated mechanical

system with generalised inertia matrix M(q) and potential function U(q). Lagrange’s
equations yield dynamics

MðqÞ€q ¼ �Cðq; _qÞ _q� @U
@q

ðqÞþ s ð9Þ

where s 2 R
N are the generalised forces. The Hamiltonian associated with the

mechanical system is

H0ðq; pÞ :¼ 1
2
p>M�1ðqÞpþUðqÞ; p ¼ MðqÞ _q ð10Þ

and the Euler-Lagrange dynamics (9) is equivalent to the standard port Hamiltonian
equations with flow and effort variables

_q ¼ @H
@p

ðq; pÞ;

_p ¼ � @H
@q

ðq; pÞþ s;
ð11Þ

where (s, _q) is the effort-flow pairing of the energy multi-port of the Hamiltonian.
That is

d
dt
H0ðq; pÞ ¼ hsj _qi ¼ s> _q ð12Þ

where the h�j�i is the power in the port. In the graphical representation of
bond-graphs1 the port Hamiltonian system is represented as a single storage bond
attached to a 1-junction as shown in Fig. 1. The causality stroke of the bond
(horizontal line at the tip of the arrow) indicates that the effort s is the input to the
Hamiltonian system while the flow _q is the output, as is natural in the differential
Eq. (9).

1In Fig. 1 the arrow on the bond should be a half arrow with the hook on the side of the flow
variable. However, I was unable to typeset this effectively, and I have chosen to make all bonds
full arrows in this paper to make the notation consistent.
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The approach taken is to treat each image feature as a separate bond intercon-
nection in a bondgraph with the Hamiltonian dynamics of the system present as
initial element. Thus, each image feature si will result in a bond attached to the
1-junction in Fig. 1 with an associated effort denoted si as shown in Fig. 2.
Following the rules of 1-junctions in bondgraphs the flow _q in each of the bonds is
equal while the forces add sþ Pn

i¼1 si ¼ 0.
In order to interface the ith image bond to the image feature a non-linear

modulated transformer is used to transform the flow _q to the image flow _si. The
transformer relationship is defined by the relationship between image flow and the
generalized velocity given by (5). That is the image interaction matrix Liðsi; zi; qÞ is
the defining matrix for the transformer relationship

_si ¼ Liðsi; zi; qÞ _q; si ¼ Liðsi; zi; qÞ>ei ð13Þ

where ei is the effort variable that will be associated with the flow _si. The rela-
tionship between image effort ei and si is implied by the principle of power con-
servation in the transformer. A key contribution of this paper is the identification of
the image effort ei as an independent concept from the efforts si that are expressed
as forces the generalized coordinates and the energy pairing of the dual variables
ei and _si in image space. The image effort is a similar construct to the generalized
operational force vectors introduced in Khatib’s work [21], however, here since the

Fig. 1 Single bond storage element indicating the Hamiltionian dynamics associated with a
mechanical system with Hamiltonian H0(q, p) and Dirac structure as specified in (11)

Fig. 2 Attachment of a multiple image feature bonds. Each image feature contributes an effort si
to the 1-junction that couples with the flow _q of the mechanical system. These efforts sum to
produce the IBVS control action. The question marks indicate that this part of the bondgraph
remains to be defined
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efforts live in the image space, they can only ever be associated with virtual forces.
The resulting bondgraph has the form shown in Fig. 3 where only the ith image
bond is shown and where the line without an arrowhead indicates exchange of
information without flow of power. The transformer is modulated by the signals
(si, zi, q) via the dependence of Li(si, zi, q) on these variables.

In Fig. 3 the causality of the bonds indicates that the effort variable si depends on
ei (13), and that the effort variable ei depends on the element placed at the question
mark. The specification of the flow variable _si indicates that the image coordinates
si should act as the energy variables associated with any storage associated with the
image effort ei. The approach taken in this paper is to use an image Hamiltonian,
that is a spring like storage element defined in the image space, to define the
relationship between the image flow _si and the image effort ei. A natural first choice
for an image Hamiltonian is the squared norm of image error. Assume that the
target image coordinates si

� are known and that they are constant. Define an image
storage element (or Hamiltonian) by

HiðsiÞ :¼ 1
2
ki si � s�i
�� ��2 ð14Þ

where ki is a positive scalar. Treating this element in the classical manner then the
natural interconnection (Dirac structure) for the bondgraph is to assign

ei :¼ @Hi

@si
¼ kiðsi � s�i Þ ð15Þ

It follows that

d
dt
Hi ¼ @Hi

@si

� �>
_si ¼ heij_sii ¼ kiðsi � s�i Þ> _si

as expected for a storage element. The resulting bond graph is shown in Fig. 4.
The proposed image Hamiltonian Hi(si) (14) is chosen such that the minimum

energy in of the image Hamiltonians occurs when si = s�, normally corresponding

Fig. 3 Modulated
transformer to relate image
flow _si with the flow _q at the
1-junction

Fig. 4 Complete structure of
the modular image branch of
the proposed bondgraph
design framework

136 R. Mahony



to correct positioning of the camera. In more generality, the image Hamiltonians
should be chosen to shape the energy of total system, including the potential energy
in the mechanical system and any other storage elements that may be integrated into
the system, in order that its minimum corresponds to the desired regulation point of
the system. Shaping the energy of the total system may require additional insight
into the system configuration or control task, and indeed may utilize more than just
the image variables. In particular, in the present case where the mechanical system
itself has potential energy then this must be balanced either by shaping the image
Hamiltonians or by adding additional storage that cancels the potential U(q) of the
mechanical system. In the present development I will compensate the potential U
(q) directly by adding a separate Hamiltonian storage element −U(q) attached the
1-junction that depends on the known generalized coordinates q, the upper bond to
the 1-junction added in Fig. 5.

The final bondgraph for the closed-loop system (Fig. 5) is obtained by adding an
additional dissipation term R, such that d = R _q with R > 0 is a positive definite
matrix. Without adding this term then the underlying system will be conservative
and the closed-loop response of the system would be that of an oscillator. By
choosing the damping suitably, the response of the system can be tuned to converge
asymptotically to the minimum of the potential energy.

For the bondgraph given in Fig. 5 the generalized forces s to the mechanical
system are specified by the relationship implied by the 1-junction

s ¼ �
Xn
i¼1

si � dþ @U
@q

ðqÞ

¼ �
Xn
i¼1

kiLiðsi; zi; qÞ>ðsi � s�i Þ � R _qþ @U
@q

ðqÞ
ð16Þ

The total energy of the closed-loop system is given by sum of all the storage
elements

Hðq; p; siÞ ¼ H0ðq; pÞþ
Xn
i¼1

HiðsiÞ � UðqÞ ¼ 1
2
p>M�1ðqÞpþ 1

2

Xn
i¼1

ki si � s�i
�� ��2

ð17Þ

Fig. 5 Proposed modular
framework for dynamic image
based visual servo control
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The theory of port-Hamiltonian system now guarantees that

d
dt
Hðq; p; siÞ ¼ �hdj _qi ¼ � _q>R _q: ð18Þ

Lemma 1 Consider the generalized mechanical system (9) with input s given by
(16). Assume that the total energy H(q, p, si) (17) has a unique minimum at (q�, p�,
si
�) and is radially unbounded in (q, _q). Assume furthermore that L(s, z1,…, zn, q) (6)
is full rank for all q. Then, for any initial condition (q(0), _q (0)) the closed-loop
trajectory (q(t), _q(t)) ! (q�, 0).

Proof Since H(q, p, si) is radially unbounded in (q, _q) then (12) implies that
trajectories of (q, _q) are bounded and exist for all time. From (18) along with
Lyapunov’s theorem and LaSalle’s principle then (q, _q) converges to the largest
forward invariant set containedin q ̇⊤R _q = 0 proving that _q(t) ! 0.

From (9) it follows that on LaSalle’s invariant set s = ∂U/∂q. Substituting from
(16) one has

Xn
i¼1

kiLiðsi; zi; qÞ>ðsi � s�i Þ ¼ Lðs; z1; . . .; zn; qÞ>diag ðk1I2; . . .;K2I2Þðs� s�Þ ¼ 0

where diag(k1I2,…, knI2) is the diagonal 2n � 2n matrix with block diagonal entries
kiI2 and (s − s�) is given by Eq. 8. Since L(s, z1,…, zn, q) is full rank it follows that
~s ¼ 0 and the uniqueness of the minimum of the Hamiltonian energy implies that q
(t) ! q�. QED.

The proposed control scheme provides a simple and intuitive design method-
ology for image based visual servo control of a mechanical system. A key
advantage of the proposed control is that, unlike the classical IBVS approach, it is
not a linearizing control design. In classical IBVS the pseudo inverse of the image
Jacobian L(s, z1,…,zn, q) implicit in the control input may lead to significant sta-
bility issues in the closed-loop system if the estimate of L is poor. In contrast, the
proposed scheme benefits from the natural robustness and passivity of the port
Hamiltonian framework. Good asymptotic performance of the closed-loop
response, however, will depend critically on tuning the damping and spring coef-
ficients of the system.

The proposed approach is highly modular with each image feature dealt with as a
separate branch of the bondgraph. This structure has considerable advantages in the
practical implementation of image based visual servo control. In particular, the
proposed framework allows one to develop heuristic schemes that can switch
between features, drop old features, or add new features as long as the total energy
of the system is conserved. For example, if at time t1 it is wished to switch from
image feature si to a new image feature �si then by choosing �ki such that
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�ki ¼ ki
si � s�i

�� ��2
�si � �s�ik k2

the value of the total Hamiltonian H(t) is continuous at time t1. As a consequence
the basic Lyapunov stability of the system is preserved and _q ! 0.

A modification of this idea can be used if an image feature is leaving the field of
view. As an image feature i exits the field of view at time t1, the energy in the ith
image Hamiltonian

Hiðsiðt1ÞÞ ¼ ki
2

siðt1Þ � s�i
�� ��2

can be partitioned into (n − 1) portions H j
i for j = 1,…,n with j 6¼ i. Each

kafterj :¼ kbeforej þDj can then be augmented by

Dj ¼ 2
H j

i

si � s�ik k2 ; j ¼ 1; . . .; n; j 6¼ i

that increases the energy in the image Hamiltonians Hj(sj) to compensate for the
energy lost when Hi(si) is removed from the bondgraph. A new image feature sn+1
can be added in a similar manner by taking energy from the existing image
Hamiltonians, with the caveat that it may be necessary to choose the scaling kn+1 of
the new feature sufficiently small to ensure there is sufficient energy available to
cover its initial potential and that the energy taken from each image Hamiltonian
must be less than its total available.

Another classical problem in image based visual servo control, that of ensuring
that no image feature leaves the field of view during the evolution of the
closed-loop system is also easily addressed. In this case the image Hamiltonian can
be augmented by a barrier function

HiðsiÞ ¼ ki
2

si � s�i
�� ��2 þUðsiÞ

where U is a positive definite function that is radially unbounded on the boundary
of the image. It is still necessary to ensure that the total Hamiltonian of the system is
shaped such that the minimum energy corresponds to the desired pose of the
system.

A final advantage of the proposed approach is that it can be easily interfaced
with other port-Hamiltonian control modalities. For example, exogenous user input
such as a haptic interface can be added by including an additional bond to an
exogenous source associated with the mode of input of the user. In this way it is
straightforward to integrate bilateral force-feedback teleoperation into the image
based visual servo control framework.
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The proposed approach will still suffer from certain of the failings of classical
IBVS control. In particular, the assumption that the total Hamiltonian H(q, p, si) is
radially unbounded in (q, _q) made in Lemma 1 is not satisfied in many classical
configurations of IBVS, and without this assumption it is possible that the trajectory
in q may become unbounded. For example, the now classical ‘Chaumette conun-
drum’ [22] has four image points located in a square configuration with the camera
initial condition such that the observed points are exactly 180° rotated around the
centre axis. In this case the proposed control will act to reduce the distance of all
four points to the target vector causing them to contract into the centre of the image,
corresponding to the camera moving infinitely far away along image axis, an
unbounded motion in q. In this case the Hamiltonian is indeed decreasing along the
closed-loop trajectories of the system, however, the potential is not radially
unbounded in q.

4 On-Line Estimation of Image Depth

This section presents a extension of the development in Sect. 3 that incorporates an esti-
mator for the unknown relative depth signals required in the implementation of (16).

The generalized forces si (Fig. 5) associated with each individual image feature
are given by the relationship

si ¼ �kiLiðsi; zi; qÞ>ðsi � s�i Þ:

In order to implement the proposed control exactly it is necessary to have mea-
surements of the variables si, s�i , zi and q. Of these signals it is only the relative
depth zi that is classically considered unknown. The image coordinates si and s�i are
the primary measurements of the IBVS servo control problem, while the classical
IBVS control problem is formulated in the context of serial robotic manipulator for
which the generalized coordinates q are available to the control algorithm. In some
of the more modern applications of IBVS control, such as those involving aerial
robotic vehicles, the generalized coordinates q may be more difficult to measure,
however, in the present paper I will focus on the classical problem formulation
where the only unmeasured variable is the relative range zi of an image feature.

The most common approach to dealing with unknown depth zi in IBVS control
is to use an estimate ẑi in the algorithm implementation. The simplest approach is to
choose the estimate ẑi to be constant based on a best guess available given the
expected environmental configuration [4]. Using the expected depth at the regu-
lation point is known to provide good asymptotic behaviour of the closed-loop
response. An alternative approach is to build an estimator that uses information
obtained during the trajectory motion to estimate the relative depth zi online [17].
Other approaches include partial pose estimation [18] and optimization based
methods [19]. The approach taken in this paper is most closely coupled to an
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observer, or adaptive control [17] based approach. The novelty in the proposed
approach is the integration of this idea into the port-Hamiltonian framework.

Consider the bondgraph shown in Fig. 6. The leftmost 1-junction, the Hamiltonian
H0 for the mechanical system, the −U(q) potential, and the damping R are identical to
the bondgraph in Fig. 5 and motivated in the same way. The difference in this section
lies on the righthand side of the graph where the contributions from the translational
and rotational motion of camera frame to the generalized mechanical system are sep-
arated into two modulated transformers. Recalling (1) it is clear that the relationship
between rigid-body and generalized coordinate velocity can be decomposed as

BV
BX

� �
¼ JVðqÞ

JXðqÞ

� �
_q;

and the matrices JVðqÞR3�N and JXðqÞ 2 R
3�N define the two modulated trans-

formers in Fig. 6. The principle of conservation of power implies that

sV ¼ J>V ðqÞF; sX ¼ J>X ðqÞC:

providing a decomposition of the generalized force s into a component due to
translational motion and one due to rotational motion of the camera frame. This
decomposition is undertaken before the separate image branches of the bondgraph
are created. The additional 1-junctions in the translational and rotational branch of
the bondgraphs are added to provide a junction for the n image feature branches of
the bondgraph, however, now each image feature generates a pair of image bonds,
one associated with translational motion and one associated with rotational motion.
Only the ith image bonds are shown in Fig. 6 and the dotted line is used to indicate
that there are n modular pairs of image bonds attaching to the two 1-junctions. The

Fig. 6 The proposed architecture for modular image based visual servo control with depth
estimation
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transformation into image velocity is achieved using a pair of modulated trans-
formers based on a decomposition of Eq. 4. Firstly, write (4) as

Liðsi; zi; qÞ ¼ KV
i ðsi; zi; qÞKX

i ðsi; qÞ
� �

JðqÞ

where

KV
i ðsi; zi; qÞ ¼ � 1

zi

r 0 �ui
0 r �vi

� �
; ð19Þ

KX
i ðsi; qÞ ¼

r 0 �ui
0 r �vi

� � ui
vi
1

0
@

1
A

�

: ð20Þ

Here (20) is obtained by factoring the 1/zi dependence into the Bp� to obtain the
term (ui, vi, 1)� as was discussed in Remark 1. Define two new image flow vari-
ables, _sVi and _sXi for translational and rotational image flow respectively, by

_sVi ¼ KV
i ðsi; zi; qÞBV ; _sXi ¼ KX

i ðsi; qÞBX: ð21Þ

The two relationships (21) define the second set of modulated transformers (to the
right of the dotted line) in the bondgraph Fig. 6. The reason for taking this approach
is to separate the part of Li that depends explicitly on the relative depth zi into a
single modulated transformer (the translational motion) branch that has a scalar
dependence on the unknown variable. The modulated transformer in the rotational
motion branch of the bondgraph depends only on known variables and can be
implemented explicitly.

The translational and rotational image flows add to generate the full image flow

_si ¼ _sVi þ _sXi : ð22Þ

This summation is implemented in the 0-junction in the bottom right of the
bond-graph Fig. 6. Here the image effort ∂Hi/∂si is equal in each of the branches of
the 0-junction while the image flows add in accordance to the directions of the bond
arrows. This completes the separation of a modular image feature branch of the
bondgraph into two branches that rejoin to implement the image Hamiltonian Hi in
the bottom right of the bondgraph. The justification for this decomposition of the
bondgraph is to enable the inclusion of an estimator for the unknown depth into
each translational motion image feature sub-branch of the bondgraph. In modifying
the bondgraph, the image flow _sVi must be preserved in-order to implement the
image Hamiltonian. The image effort associated with the translational motion,
however, can be modified. Access to the relevant signal is achieved by introducing
a 1-junction into the upper branch of the bondgraph just before the translational and
rotational image velocities are recombined in the 0-junction. The 1-junction
introduced preserves flow in each branch ensuring that _sVi is preserved. The action
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of the 1-junction is to introduce a relationship between the three efforts associated
with bonds on the 1-junction

ai ¼ bi þ
@Hi

@si
: ð23Þ

Let ẑi denote a new variable that is an estimate of the relative depth zi. Define

ai :¼ zi
ẑi

@Hi

@si
:

This assignment fixes the effort bi according to (23)

bi ¼
ðzi � ẑiÞ

ẑi

@Hi

@si
ð24Þ

and fully defines the three bonds attached to the 1-junction in the top right of Fig. 6.
The reason for the choice of ai can be seen by computing the relationship between
Fi and ai given by the modulated transformer

Fi ¼ 1
zi

r 0
0 r

�ui �vi

0
@

1
A ai ¼ 1

ẑi

r 0
0 r

�ui �vi

0
@

1
A ẑi

zi
ai

� �
¼ 1

ẑi

r 0
0 r

�ui �vi

0
@

1
A @Hi

@si

Thus, the effort Fi can now be computed based on a ‘virtual’ modulated transformer
(obtained by replacing the unknown depth zi by its estimate ẑi) acting on the image
effort ∂Hi/∂si. All variables here are available and the control can be implemented.

It remains to terminate the bond (_sVi ; bi) in the top right of the bondgraph. To save
notational complexity I will assume the image Hamiltonian is given by Hi(si) = k/2
||si − s�i ||

2 as was discussed in Sect. 3. This implies that ∂Hi/∂si = k(si − s�i ).
Define a general form of dynamics for the observer ẑi

_̂zi ¼ wi ð25Þ

where wi is an arbitrary driving term. The state ẑi becomes an internal dynamic state
in the implementation of the control algorithm. Let

~zi ¼ ẑi � zi: ð26Þ

denote the observer error.
Define a Hamiltonian for the relative depth error to be
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Hzið~ziÞ :¼ c
2

~zik k2:

The natural flow variable associated with Hzi is ~_zi while the corresponding effort is

@Hzi

@~z
ð~zÞ ¼ c~zi: ð27Þ

The idea is to hypothesize a modulated transformer to relate the effort bi with the
effort @Hzi=@~z and then implement this transformer by choosing the observer
dynamics wi to ensure that the flows _sVi and _~zi conform to the transformer
relationship. Let P(�) denote the transformer relationship then

bi ¼ Pð�Þ @Hzi

@~z

and hence substituting from (24) and (27) and using @Hi=@si ¼ kiðsi � s�i Þ (14) one
obtains

Pð̂zi; si; s�i Þ :¼
k
cẑi

ðsi � s�i Þ 2 R
2 ð28Þ

Applying the principle of conservation of power then

_~zi ¼ k
cẑi

ðsi � s�i Þ> _sVi

Recalling (25) and differentiating (26) one has

_̂z ¼ wi ¼ _zi þ _~zi ¼ BVz þ k
cẑi

ðsi � s�i Þ> _sVi ð29Þ

since the velocity _zi ¼ BVz is just the z-axis velocity of the body fixed frame
velocity, recalling that the target points are stationary. This process assigns observer
dynamics to ẑi.

Space limitations prevent a formal statement of stability of the closed-loop
system in this configuration. It is clear, however, that an analogous argument to that
in Lemma 1 will guarantee firstly that _q ! 0 and secondly (using LaSalle’s prin-
ciple) that q ! q�. There is no guarantee that the observer error ~zi actually con-
verges to zero as the modulated transformer P(̂zi; si; s�i ) (28) decreases to zero as
s ! s�i . Thus, the observer Hamiltonian Hzi becomes decoupled from the full
Hamiltonian system in the limit as q ! q�i even if ẑi 6¼ zi. Hence, even though the
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energy minimum of the total Hamiltonian occurs for ~zi ¼ 0, the modulated trans-
former can act to partition off energy in the observer Hamiltonian Hzi that remains
locked in storage as the system comes to equilibrium.

5 Conclusions

This paper used the port-Hamiltonian formalism to provide a design methodology
for dynamic image based visual servo control. The approach is conceptually simple
once the underlying bondgraph formalism is accepted. The graphical representation
provides a powerful visualization of design framework and I believe it will provide
considerable insight leading to the development of practical control algorithms for a
range of relevant problems.
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Force Sensing by Microrobot on a Chip

Tomohiro Kawahara and Fumihito Arai

Abstract In this paper, we discuss a force sensing by microrobot called magnet-
ically driven microtool (MMT) in a microfluidic chip. On-chip force sensor is
fabricated by assembling layers to neglect the friction issue and it is actuated by
permanent magnets, which supply mN order force to stimulate microorganisms.
The displacement is magnified by designing beams on the force sensor and the
sensor achieved 100 lN resolutions. We succeeded in on-chip stimulation and
evaluation of Pleurosira laevis by developed MMT with force sensing structure.

1 Introduction

In bioscience field, the measurement of applied stimulation to a single cell is highly
required to figure out functions and properties of cells. In particular, this approach is
very useful for understanding a mechanism of microorganisms in terms of neu-
rology [1] and bio-fuel technology [2, 3]. Recently, specific characteristics of algae
living in fresh water have been investigated to increase a growth rate toward the
realization of efficient bio-fuel. However, these growth mechanisms are still not
fully understood especially cell response by mechanical stimulation, even though
mechanical approach for single cell is well known as an effective way of increasing
growth. In addition, after algae stimulation, precise observation of the cells with
chemical reactions is highly required. Therefore, in order to evaluate the relation-
ship between stimulation and a response of single cell, on-chip cell stimulation and
evaluation device is required to be maintained in a stable experimental condition.
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On the other hand, there have been many works that have used micro force
sensors based on MEMS/NEMS technologies to measure the characteristics of
microscale objects [4–13]. Sun et al. [5] proposed an SOI-based 2DOF force sensor
that consists of spring structures to detect changes in capacitance. This sensor can
sense a pushing force with a resolution of 0.01 lN. It was applied to the exami-
nation of the mechanical property of zona pellucida of oocyte [6]. Wacogne et al.
[9] developed the SU-8 nega-photoresist-based force sensor having a cantilever
structure. By applying a lN force to the human oocyte, they found that there are
difference in the stiffness of the oocyte and zona pellucida. Nakajima et al. [10]
developed nanoprobes fabricated by focused ion beam (FIB) etching to measure the
stiffness of C. elegans by the atomic force microscope (AFM) cantilever-based
force sensing. By using a nanomanipulator, the nanoprobe was used to squeeze
C. elegans. Recently, Cappelleri et al. [11] proposed a lN force sensor for
microrobotics. This sensor has a unique spring structure fabricated using poly-
dimethylsiloxane (PDMS), which is a silicon-based organic elastic polymer with a
Young’s modulus of 360 kPa to 3 MPa. This sensor can measure the force of two
directions by using the vision sensor. However, these sensors must be operated
using micro-nano-manipulators to measure objects in a narrow space. This implies
that it would be difficult to completely seal the measurement system to prevent
contamination of solution and objects.

On the basis of this background, we discuss the on-chip force sensing by using a
magnetically driven microtool (MMT) to evaluate the stimulant property of
microorganisms, as illustrated in Fig. 1. By using a non-contact actuated microtool
having a force sensing structure (i.e., a beam structure), we can apply mN-order
force to a single cell, and then estimate the applied force from the deformation of
the beam. Since a perfectly closed biochip is used, we avoid contamination and are
able to maintain a stable experimental condition during measurements. This is

Magnetic 
material

Elastic
material

Force sensing
structure

Magnet

MMT

Microchip

Microscope

Microorganism

Fig. 1 Basic concept of force
sensing by MMT; the
microtool with a force sensing
structure is composed of a
magnetic material and an
elastic material
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important because it is necessary to continuously observe the response of the
microorganisms to chemical reactions after stimulation. The remainder of this paper
is organized as follows. In Sect. 2, we describe the basic concept and the prototype
design of the on-chip force sensing. In Sect. 3, we describe the basic experiments
performed using the developed microchip with microtools and evaluate the effec-
tiveness of the proposed approach. Further, we show how the proposed approach is
applied to the stimulation of Pleurosira laevis which is one of centric diatom.
Finally, we present the concluding remarks and our future plans in Sect. 4.

2 Magnetically Driven Microtool with Force Sensing
Structure

2.1 Concept

In previous works by our group, magnetically driven microtools (MMTs) have been
proposed for automation of cell manipulation [14–16]. The MMT placed in a biochip
is fabricated from a magnetic material, and it can be actuated by a permanent magnet
from outside the microfluidic chip. Thus, four advantages of theMMT are as follows.

(1) Powerful: Optical tweezers and AFM are difficult to apply enough force to the
microorganisms which has a stiff structure. The MMT controlled by perma-
nent magnet can apply mN order stimulation to single cell in a microfluidic
chip.

(2) High dexterity: Since the MMT has 2 degree of freedom, the microorganisms
can be manipulated by MMT where we want it to move.

(3) On-chip: Since the perfectly closed microchip is used, we can avoid any
contamination and keep stable condition during measurements. It contributes
to the continuous observation of the response by the chemical of microor-
ganisms after stimulation.

(4) Cost: The combination of the polymer based MMT structure and the camera
based measurement achieves very low cost microsystem.

To elucidate the relation between response of cell and mechanical stimulation,
quantitative evaluation of the applied force is highly required. Therefore, we add a
force sensing structure to the tip of MMT, as shown in Fig. 1. Then, the defor-
mation of the beam is measured by a microscope to achieve on-chip force sensing.

2.2 Basic Sensing Principle

In the first step of on-chip force sensing, we design a frame-shaped beam for the
MMT. This structure is not a cantilever structure, and it is important to keep the
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posture of the MMT straight when single cell is pushed. In addition, to increase the
sensitivity of the force sensing by camera, a magnification mechanism of the beam
deformation is placed in the frame, as shown in Fig. 2a.

To design the parameters of the force sensing structure, we set the following
mechanical model for the frame, shown in Fig. 2a. Here, F; d; l; h; d; r; I1 ¼
b1h31=12; I2 ¼ b2h32=12; and E are the force to be measured, displacement of the
beam, width of the frame, height of the frame, width of the magnification mech-
anism, height of the magnification mechanism, second moment of area of the beam
BC, second moment of area of the beam CD, and Young’s modulus, respectively.
The displacement of the magnification mechanism is

X ¼ ad, ð1Þ

where a is the magnification ratio.
Now, we suppose that half part of the frame structure and the point G is fixed on

a wall, as shown in Fig. 2b, where P,MA, andMG are the horizontal stress for point
A, moment around point A, and moment around point G, respectively. When the
point A is pushed from the horizontal direction, its displacement is as follows:
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Fig. 2 Model of force sensing by MMT. a Design parameters of the force sensing structure.
b Details of half part of the force sensing structure
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Then, the angle of point A is as follows:
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From (2) and (3), we obtain

MA ¼ I2Fl2

8ðI1hþ 2I2lÞ , P ¼ 3I2Fl2

8hðI1hþ 2I2lÞ .

Therefore, the displacement of the center of the beam BC is
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On the other hand, from the balance ofmoment ðMA� Ph�MGþð1=4ÞFl ¼ 0Þ,

MG ¼ Fl
4

I1hþ I2l
I1hþ 2I2l

� �
.

Here, we consider the moment around point G from the frame model, as shown in
Fig. 2b,

EI1h ¼ MGx� F
4
x2.

Then, the beam angle of the magnification mechanism at x = d/2 is

h ¼ 1
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MG
d
2
� F

4
d
2

� �2
" #

.

Finally, we can obtain the displacement of the magnification mechanism as follows:

X ¼ 2rh

¼ Frd2

8EI1

2l I1hþ I2lð Þ
d I1hþ 2I2lð Þ � 1

� �
.

ð5Þ
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Therefore, from (5), we can estimate the applied force

F ¼ kX, ð6Þ

where,

k ¼ 8EI1
rd2

2l I1hþ I2lð Þ
d I1hþ 2I2lð Þ � 1

� ��1

. ð7Þ

2.3 Fabrication

To achieve on chip force sensing, there are two problems that needs to be solved by
fabrication.

(1) Friction: There is large friction between the MMT and the substrate of the
microchip. It is critical issue for sensing because the effect of the friction is
included in the measured force data.

(2) Assembling: Since the force sensing structure becomes very thin, it is difficult
to assemble the MMT to the microchip without any damage.

To solve these problems, we introduce a layered fabrication technique which
employs assembly of several layers, as shown in Fig. 3. The space between the
MMT and the substrate is maintained by a microspacer; this prevents friction

Glass layer

Spacer layer

MMT layer 

PDMS layer

Side view (κ−κ )

3D view

P. laevis Fe hemisphere 

Permanent magnet XY-stage 

Support spring κ

κ

(Thickness: 5 mm)

(50 μm)

(15 μm)

(100 μm)

Fe hemisphere (φ1 mm) 

(Width: 50 μm)

Fig. 3 Layered fabrication for on-chip force sensing
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between the force sensing structure of the MMT and the substrate. By using a
layered structure, the micropattern of the MMT is protected, and it is easy to
assemble the microparts.

In terms of biocompatibility, we select an SU-8 negative photoresists for a
material of the MMT to prevent the damage to microorganisms. As is well known,
SU-8 is flexible (approx. 2–10 GPa), it can be easily used to fabricate a
micropattern using photolithography technique The Young’s modulus of SU-8
depends on its thickness and the amount of exposure [17, 18]. The designed
parameters of force sensing structure are summarized, as shown in Table 1.

Figure 4 shows the results of the FEM analysis based on the designed param-
eters. To ensure enough displacement and rigidity of the MMT, we changed the
width of the support spring in various parameters. Finally, we decided the spring
with the width of 50 lm. From the results of the simulation, we confirmed that the
support spring can be manipulated by the magnet actuation successfully, and
consequently the force sensing structure works well.

Table 1 Parameters for designed force sensing structure

Parameter Description Value

h1 Width of frame BC 0.02 mm

h2 Width of frame AB and CD 0.04 mm

b1 Height of frame BC 0.05 mm

b2 Height of frame AB and CD 0.05 mm

h Length of frame AB and CD 0.60 mm

l Length of frame BC 0.92 mm

r Length of magnification mechanism 0.50 mm

d Distance between magnification mechanism 0.50 mm

E Young’s modulus of frame 3.2 GPa

Fig. 4 Results of FEM simulation. a Support spring. b Force sensing mechanism
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Figure 5 shows the fabrication process for the proposed layer type MMT with
the frame structure. The microchip is composed of the glass substrate with the
thickness of 100 lm, the microspacer with the thickness of 15 lm, the SU-8 layer
with the thickness of 50 lm includes the MMTs and the microchannel, the iron

Glass & Spacer MMT PDMS Microchip
SU-8

Glass
1. Patterning

LOR 5B

Glass
1. Sputtering

SU-8
Glass

2. Patterning

NMD-3

SU-8

Si
1. Patterning

PDMS

Si

2. Molding

Glass

3. Lift off

Fe hemisphere

4. Assembling

3. Removing

1. Bonding

Fig. 5 Process flow of the
microchip with MMTs

10 mm 1 mm

45 mm

(a) (b)

(c)

Fig. 6 Fabricated MMT within one layer and microchip. a MMT layer. b Overview of the MMT.
c Assembled microchip with 4 measurement sites
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hemispheres with the diameter of 1 mm to actuate the MMTs, and the PDMS cover
with the thickness of 5 mm. Figure 6a shows the fabricated SU-8 layer, (b) shows
the enlarged view of the fabricated MMT, and (c) shows the completely assembled
microchip with 4 measurement chambers. To push a local point of small cell, the
triangleshaped probe was added to the tip of MMT.

3 Experiments

3.1 Evaluation of the Fabricated MMT

Next, we evaluate the force measurement by the developed MMT. To measure the
accurate force data, the MMT is pushed to the commercial force sensor with the
accuracy of 10 lN by using the linear stage with the accuracy of 2 lm, as shown in
Fig. 7. Then, we measure the deformation by the microscope with the CCD camera
(resolution: 1 lm/pixel). From Fig. 8a, we confirmed that there is a high linearity
between the displacement of frame d and the displacement of magnification
mechanism X, and the magnification ratio is 2.72. Therefore, we can use X to
estimate the applied force. Figure 8b shows the measured force data by the com-
mercial sensor and the estimated force data calculated from (6) and (7). From this
result, it is confirmed that we can measure the accurate force data by using
developed force sensing structure. Figure 8c shows the individual difference of
MMTs. From this result, the variation among the MMTs is less than 10 %. This
means that by calibrating the one of the MMT from the fabricated layer, we can use
other MMTs without calibration.

Through these experiments, we obtain the minimum resolution of the force
sensing as approximately 100 lN. The resolution of this type of force sensor is
decided by camera resolution and sensitivity of frame deformation. As a first step, we
think that this performance is reasonable to determine the force range to push cells.

d+X

100 μm

Force sensor δ

Fig. 7 Overview of experiment
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3.2 Application to Pleurosira Laevis Stimulation

Figure 9 shows single of Pleurosira laevis (P. laevis) which is one of centric
diatom. This cell has a cylindrically-shaped structure with a glass like outer wall.
This cell has a unique behavior, when a single cell gets the stimulation, the
chloroplasts gather to around the nucleus, as shown in Fig. 9c. Furthermore, this
agglomeration is transmitted to other connected cells and also unconnected cells
[19]. This mechanisms still not fully understood, because conventional approaches
could not measure the applied force in a perfectly closed microchip [20]. Therefore,
we applied the developed MMT with force sensing structure to stimulate and
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evaluate P. laevis. As a result, we succeeded in the pushing of the P. laevis by the
MMT, as shown in Fig. 9a, b. Then, the applied force is estimated as shown in
Fig. 10c. The agglomeration propagation phenomenon of P. laevis is also observed
by MMT stimulation, as shown in Fig. 11a–d.
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Nucleus

Epitheca Hypotheca 
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(a) (b) (c)

Fig. 9 Overview of Single cell of Pleurosira laevis. a Basic structure. b Normal condition.
c After stimulation
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Fig. 10 Stimulation experiment for the Pleurosira laevis. a Before stimulation. b During
stimulation. c Estimated force

Force Sensing by Microrobot on a Chip 157



4 Conclusions

In this paper, we discussed an on-chip force sensing using a magnetically driven
microtool (MMT) that can be used for the measurement of the stimulant property of
microorganisms:

1. The frame-based force sensing structure with a displacement magnification
mechanism is designed and fabricated on the basis of analytical approach.

2. The microchip consists of a microspacer, an MMT layer, an Fe hemisphere, and
a PDMS cover. These parts are assembled by using a layer fabrication
technique.

3. Through basic experiments, we have confirmed the performance of the force
sensing with an accuracy of 100 lN.

Fig. 11 Agglomeration propagation phenomenon generated by MMT stimulation, a 0 min later,
b 10 min later, c 15 min later, d 25 min later

200 µm

Object

Fig. 12 Dual-arm MMT
for microorganism
manipulation
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4. Through experiments for P. laevis stimulation, we confirmed that the proposed
force sensing mechanism works well, and that the MMT has sufficient power to
push and stimulate P. laevis.

We believe that the developed approach is useful for sensing of living cells in a
biochip. The combination of a simple and disposable SU-8 based structure and
vision-based measurement affords a very low cost force sensing system. In future
work, the relationship between the applied force and the agglomeration phe-
nomenon of P. laevis is investigated by the dual-arm MMT, as shown in Fig. 12.
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Force Control and Reaching Movements
on the iCub Humanoid Robot

Giorgio Metta, Lorenzo Natale, Francesco Nori and Giulio Sandini

Abstract This paper is about a layered controller for a complex humanoid robot:
namely, the iCub. We exploited a combination of precomputed models and
machine learning owing to the principle of balancing the design effort with the
complexity of data collection for learning. A first layer uses the iCub sensors to
implement impedance control, on top of which we plan trajectories to reach for
visually identified targets while avoiding the most obvious joint limits or self
collision of the robot arm and body. Modeling errors or misestimation of parameters
are compensated by machine learning in order to obtain accurate pointing and
reaching movements. Motion segmentation is the main visual cue employed by the
robot.

1 Introduction

In this paper we consider a solution to the problem of reaching for a visually
identified target in the context of the control of a humanoid robot platform, con-
sidering both potential forceful interactions with objects or people and gross mis-
takes due to miscalibration of the controller parameters. Our reference platform is
the iCub [1], a humanoid robot shaped as a three and half years old child. The iCub,
by design, only uses “passive” sensors as for example cameras, gyroscopes, pres-
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sure, force and contact sensors, microphones and so forth. We excluded the use of
lasers, sonars and other esoteric sensing modalities.

In this conditions and in an unstructured environment where human can freely
move and work (our laboratory space in the daily use of the iCub), it is unlikely that
the robot obtains an accurate model of the environment for precise impact-free
planning of movements. One common solution [2] is to control the robot
mechanical impedance and, simultaneously, minimize impacts by using for
example vision and trajectory planning. The possibility of impedance control
lowers the requirements of vision and guarantees a certain degree of safety in case
of contacts with the environment—though, strictly speaking, the robot can still be
potentially dangerous and cause damage if it moves fast.

The control architecture described in this paper is not very different in principle
from a standard computed torque approach [3]. A first layer compensates for the
dynamics and linearizes the system. Because of the communication bus of the iCub
controllers, of bandwidth requirements, and implementation constraints, it operates
in joint space. A second layer subsequently plans trajectories starting from a
description of the target position in extrinsic space and merging joint limits, a
secondary task specification, inverse kinematics and singularity avoidance. We
show in the remainder of the paper how this is implemented by mixing hand-coded
models of the robot dynamics and kinematics together with machine learning.

Reaching and pointing is fundamental in learning about the environment
enabling interaction with objects and their manipulation to achieve complex tasks.
In this sense these are the basic building blocks of a complex cognitive architecture
for the iCub.

2 Experimental Platform: The iCub

The iCub is one of the results of the RobotCub project, an EU-funded endeavor to
create a common platform for researchers interested in embodied artificial cognitive
systems [4].

The initial specifications of the robot aimed at replicating the size of a three and a
half years old child. In particular, it was required that the robot be capable of
crawling on all fours and possess fine manipulation abilities. For a motivation of
why these features are important, the interested reader is referred to Metta et al. [5].

Dimensions, kinematic layout and ranges of movement were drafted by con-
sidering biomechanical models and anthropometric tables [6]. Rigid body simula-
tions were used to determine the crucial kinematic features in order to perform the
set of desired tasks and motions, i.e. reaching, crawling, etc. [7]. These simulations
also provided joint torques requirements. Data were then used as a baseline per-
formance indicator for the selection of the actuators. The final kinematic structure of
the robot is shown in Fig. 1c. The iCub has 53 degrees of freedom (DoF). Its
kinematics has several special features which are rarely found in other humanoid
robots: e.g. the waist has three DoF which considerably increase the robot’s
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mobility; the three DoF shoulder joint is constructed to have its axes of rotation
always intersecting at one point.

To match the torque requirements we employed rotary electric motors coupled
with speed reducers. We found this to be the most suitable choice in terms of
robustness and reliability. Motor groups with various characteristics were devel-
oped (e.g. 40, 20 and 11 Nm) for different placements into the iCub. We used the
Kollmorgen-DanaherMotion RBE type brushless frameless motor (BLM) and a
CSD frameless Harmonic Drive as speed reducer. The use of frameless components
allowed further optimization of space and reduced weight. Smaller motors for
moving the fingers, eyes and neck are from Fulhaber in various sizes and reduction
gear ratios.

Cable drives were used almost everywhere on the iCub. Most joints have
relocated motors as for example in the hand, shoulder (besides one joint), elbow,
waist and legs (apart from two joints). Cable drives are efficient and almost
mandatory in order to optimize the motor locations and the overall “shape” of the
robot. All joints in the hand are cable driven. The hand of the iCub has 20 joints
which are moved by only 9 motors: this implies that some of the joints are
under-actuated and their movement is obtained by means of the cable couplings.
Similarly to the human body most of the hand actuation is in the forearm sub-
section. The head is another particular component of the iCub enabling independent
vergence movements supported by a three DoF neck for a total of six DoF.

Fig. 1 The iCub platform: panel a a picture of the latest realization of the iCub; panel b
approximate dimensions height � width; and panel c the kinematic structure of the major joints

Force Control and Reaching Movements on the iCub Humanoid Robot 163



By design we decided to only use “passive sensors” and in particular cameras,
microphones, gyroscopes and accelerometers, force/torque (FTS) and tactile sen-
sors as well as the traditional motor encoders. Of special relevance is the sensorized
skin which is not easily found in other platforms as well as the force/torque sensors
that are used for force/impedance control (see later). No active sensing is provided
as for example lasers, structured light projectors, and so forth.

The iCub mounts custom-designed electronics which consists of programmable
controller cards, amplifiers, DACs and digital I/O cards. This ecosystem of
microcontroller cards relies on multiple CAN bus lines (up to 10) for communi-
cation and synchronization and then connects with a cluster of external machines
via a Gbit/s Ethernet network. Data are acquired and synchronized (and times-
tamped) before being made available on the network. We designed the software
middleware that supports data acquisition and control of the robot as well as all the
firmware that operates on the microcontrollers which eventually drive each single
transistor that moves the motors.

The software middleware is called YARP [8]. YARP is a thin library that
enables multi-platform and multi-IDE development and collaboration by providing
a layer that shields the user from the quirks of the underlying operating system and
robot hardware controllers. The complete design of the iCub (drawings, schematics,
specifications) and its software (both middleware and controllers) is distributed
according to the GPL or the LGPL licenses.

3 Dynamics

The first layer of the proposed architecture is based on computation of the body
dynamics and implements joint position and velocity control on top of joint-level
impedance. In the simplest possible version, the controller cards implement a 1 ms
feedback loop relying on the error e defined as (Fig. 3):

e ¼ s� sd; ð1Þ

where s is the vector of joint torques and sd its desired value. We do not know s
directly on the iCub but we have access to estimates through the force/torque
sensors (FTSs). They are mounted as indicated in Fig. 2 in the upper part of the
limbs and can therefore be used to detect wrenches at any location in the iCub limbs
and not only at the end-effector as it is more typical for industrial manipulators.

We show that s can be estimated from the FTS measurements of each limb
(equations repeat identical for each limb). Let’s indicate with ws the wrench mea-
sured by the FTS and assume that it is due to an actual external wrench at a known
location (e.g. at the end-effector) which we call we. We can estimate we by prop-
agating the measurement on the kinematic chain of the limb (changing coordinates):
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ŵe ¼ I 0
�½�rse�� I

� �
� ðws � wiÞ; ð2Þ

with ½�rse�� the skew-symmetric matrix representing the cross product with the
vector �rse; ŵe the estimate of we, and wi the internal wrench (due to internal forces
and moments). Note that ½�rse�� is a function of q, the vector of joint angles. wi can
be estimated from the dynamics of the limb (either with the Lagrange or
Newton-Euler formulation). To estimate se we only need to project ŵe to the joint
torques using the transposed Jacobian, i.e.:

ŝe ¼ JTðqÞ � ŵe: ð3Þ
We can then use this estimate in a control loop by defining the torque error e as:

e ¼ ŝe � sd; ð4Þ

where ŝe is an estimate of s regulated by a PID controller of the form:

u ¼ kp � eþ kd � _eþ ki �
Z

e; ð5Þ

where kp, kd and ki are the usual PID gains and u the amplifier output (the PWM
duty cycle which determines the equivalent applied voltage at the motor). Similarly
we can build an impedance controller in joint space by making sd of the form:

Fig. 2 In a a typical interaction of the iCub arm with the environment exemplified here with a
number of wrenches at different locations and in b the location of the four FTSs of the iCub in the
upper part of the limbs (proximal with respect to the reference frame of the robot kinematic
chains) and of the inertial sensors mounted in the head
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sd ¼ K � ðq� qdÞþD � ð _q� _qdÞ; ð6Þ

which can be implemented at the controller card level if K and D are diagonal
matrices. Furthermore, we can command velocity by making:

qdðtÞ ¼ qdðt � dtÞþ _qdðtÞdt; ð7Þ

with dt the control cycle interval (1 ms in our case). This latter modality is useful
when generating whole trajectories incrementally. The actual computation of the
dynamics and kinematics is based on a graph representation which we detail in the
following.

We start by considering an open (single or multiple branches) kinematic chain
with n DoF composed of n + 1 links. Adopting the Denavit-Hartenberg notation
[3], we define a set of reference frames (0), (1),…, (n), attached at each link. The ith
link of the chain is described by a vertex vi (sometimes called node), usually
represented by the symbol �i: A hinge joint between the link i and the link j (i.e. a
rotational joint) is represented by an oriented edge ei,j connecting vi with vj : �i ! �j
. In a n DoF open chain, each vertex (except for the initial and terminal, v0 and vn
respectively) has two edges. Therefore, the graph representation of the n-link chain
is an oriented sequence of nodes vi, connected by edges ei−1,i. The orientation of the
edges can be either chosen arbitrarily (it will be clear later on that the orientation
simply induces a convention) or it can follow from the exploration of the kinematic
tree according to the regular numbering scheme [9], which induces a parent-child
relationship such that each node has a unique input edge and multiple output edges.
We further follow the classical Denavit-Hartenberg notation, we assume that each
joint has an associated reference frame with the z-axis aligned with the rotation
axis; this frame will be denoted ei;j

� �
. In kinematics, an edge ei,j from vi to vj

represents the fact that ei;j
� �

is fixed in the ith link. In dynamics, ei,j represents the
fact that the dynamic equations will compute (and make use of) wi,j, i.e. the wrench

Fig. 3 The torque controller of the iCub. See text for details
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that the ith link exerts on the jth link, and not the equal and opposite reaction −wi,j,

i.e. the wrench that the jth link exerts on the ith link. In order to simplify the
computations of the inverse dynamics on the graph, kinematic and dynamic mea-
surements have been explicitly represented. Specifically, the graph representation
has been enhanced with a new set of graphical symbols: a triangle to represent
kinematic quantities (i.e. velocities and acceleration of links— x; _x; _p; €p), and a
rhombus for wrenches (i.e. force sensors measurements on a link—f, µ). Moreover
these symbols have been further divided into known quantities to represent sensors
measurements, and unknown to indicate the quantities to be computed, as in the
following:

• ∇: unknown kinematic information
• ▼: known (e.g., measured) kinematic information
• ◊: unknown dynamic information
• ◆: known (e.g., measured) dynamic information

In general, kinematic variables can be measured by means of gyroscopes,
accelerometers, or simply inertial sensors. When attached on link ith, these sensors
provide angular and linear velocities and accelerations ðx; _x; _p and €pÞ at the
specific location where the sensor is located. We can represent these measurement
in the graph with a black triangle (▼) and an additional edge from the proper link
where the sensor is attached to the triangle. As usual, the edge has an associated
reference frame, in this case corresponding to the reference frame of the sensor. An
unknown kinematic variable is represented by a white triangle (∇) with an asso-
ciated edge going from the link (where the unknown kinematic variable is attached)
to the triangle. Similarly, we introduce two new types of nodes with a rhomboidal
shape: black rhombus (◆) to represent known (i.e. measured) wrenches, white
rhombus (◊) to represent unknown wrenches which need to be computed. The
reference frame associated to the edge will be the location of the applied or
unknown wrench. The complete graph for the iCub is shown in Fig. 4.

From the graph structure, we can define the update rule that brings information
across edges and by traversing the graph we therefore compute either dynamical or
kinematic unknowns (◊ and ∇ respectively). For kinematic quantities this is:

xiþ 1 ¼ xi þ _hiþ 1zi;

_xiþ 1 ¼ _xi þ €hiþ 1zi þ _hiþ 1xi � zi;

€piþ 1 ¼ €pi þ _xi � ri;iþ 1 þxiþ 1 � ðxiþ 1 � ri;iþ 1Þ;
ð8Þ

where zi is the z-axis of hii, i.e. we propagate information from the base to the
end-effector visiting all nodes and moving from one node to the next following the
edges. The internal dynamics of the manipulator can be studied as well: if the
dynamical parameters of the system are known (mass mi, inertia Ii, center of mass
Ci), then we can propagate knowledge of wrenches applied to e.g. the end-effector
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(fn+1 and µn+1) to the base frame of the manipulator so as to retrieve forces and
moments fi, µi:

fi ¼ fiþ 1 þmi€pCi;

li ¼ liþ 1 � fi � ri�1;Ci þ fiþ 1 � rri;Ci þ Ii _xi þxi � ðIixiÞ;
ð9Þ

where

€pCi ¼ €pi þ _xi � ri;Ci þxi � ðxi � ri;CiÞ; ð10Þ

noting that these are the classical recursive Newton-Euler equations. Knowledge of
wrenches enables the computation of wi as needed in Eq. 2 or the corresponding
joint torques from si ¼ lTi zi�1:

Fig. 4 Representation of iCub’s kinematic and dynamic graph. In a iCub’s kinematics. The
inertial sensor measure (▼) is the unique source of kinematic information for the whole branched
system. b iCub’s dynamics when the robot is standing on the mainstay and moving freely in space.
Given the four FTSs, the main graph is cut by the four links hosting the sensors, and a total of five
sub-graphs are finally generated. The unknowns are the external wrenches at the end-effectors: if
the robot does not collide with the environment, they are zero, whereas if a collision happens, then
an external wrench arises. The displacement between the expected and the estimated wrenches
allows detecting contacts with the environment under the hypothesis that interactions can only
occur at the end-effectors. The external wrench on top of the head is assumed to be null. Notice
that the mainstay is represented by a unknown wrench ◊. c iCub’s dynamics when the robot is
crawling (four points of contact with the ground). As in the previous case, five subgraphs are
generated after the insertion of the four FTSs measurements, but unlike the free-standing case, here
the mainstay wrench is removed, being the iCub on the floor. Specific locations for the contacts
with the environment are given as part of the task: the unknown external wrenches (◊) are placed
at wrists and knees, while wrenches at the feet and palms are assumed known and null (▼).
Interestingly, while moving on the floor the contact with the upper part could be varying (e.g.
wrists, palms, elbows), so the unknown wrenches could be placed in different locations than the
ones shown in the graph
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3.1 Validation and Further Improvements

In order to validate computation of the dynamics, we compared measurements from
the FTSs with their model-based prediction. The wrenches ws from the four
six-axes FTSs embedded in the limbs are compared with the analogous quantities
ŵs predicted by the dynamical model, during unconstrained movements (i.e. null
external wrenches). Kinematic and dynamic parameters are retrieved from the CAD
model of the robot. Sensor measurements ws can be predicted assuming known
wrenches at the limbs extremities (hands or feet) and then propagating forces up to
the sensors. In this case, null wrenches are assumed, because of the absence of
contact with the environment. Table 1 summarizes the statistics of the errors ðws �
ŵsÞ for each limb during a given, periodic sequence of movements, with the robot
supported by a rigid metallic mainstay, and with the limbs moving freely without
self collision or contact with the environment. Table 1 shows the mean and the
standard deviation of the errors between measured and predicted sensor wrench
during movement. Figure 5 shows a comparison between ws and ŵs for the left arm
(without loss of generality, all limbs show similar results).

Subsequently we investigated methods to improve the estimates of the robot
dynamics. In another set of experiments we thus compared various non-parametric
learning methods with the rigid body model just presented. We refer the interested
reader to Gijsberts et al. [10]. We report here only the main findings. The task of
learning here is the estimation of the wrenches due to the internal dynamics (wi)
given the FTS readings (ws) and the robot configuration ðq; _q; €qÞ; we do not take
into account inertial information.

We compared various methods from the literature as for example the widely
used Local Weighted Projection Regression (LWPR), the Local Gaussian Process
(LGP) and Gaussian Process Regression (GPR) as presented by Nguyen-Tuong
et al. [11] with an incremental version of Kernel Ridge Regression (also known as

Table 1 Error in predicting FT sensor measurement (see text for details)

ef0 ef1 ef2 eµ0 eµ1 eµ2
e¯ −0.3157 –0.5209 0.7723 –0.0252 0.0582 0.0197

re 0.5845 0.7156 0.7550 0.0882 0.0688 0.0364

Right arm: e � ŵs,RA − ws,RA

e¯ –0.0908 –0.4811 0.8699 0.0436 0.0382 0.0030

re 0.5742 0.6677 0.7920 0.1048 0.0702 0.0332

Left arm: e � ŵs,LA − ws,LA

e¯ –1.6678 3.4476 –1.5505 0.4050 –0.7340 0.0171

re 3.3146 2.7039 1.7996 0.3423 0.7141 0.0771

Right leg: e � ŵs,RL − ws,RL

e¯ 0.2941 –5.1476 –1.9459 –0.3084 –0.8399 0.0270

re 1.8031 1.8327 2.3490 0.3365 0.8348 0.0498

Left leg: e � ŵs,LL − ws,LL

SI units: f: [N], µ: [Nm]
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Sparse Spectrum Gaussian Process) with the aim of maintaining eventually an
incremental open-ended learner updating the estimation of the robot dynamics
on-line. Our incremental method relies on an approximation of the kernel (see [12])
based on a random sampling of its Fourier spectrum. The more random features, the
better the approximation. We considered approximations with 500, 1000, and 2000
features. In the following we call KRR the plain kernel ridge regression method and
RFRRD the random feature version for D features. Various datasets (e.g. Barret,
Sarcos) were used from the literature (for comparison [11]) before applying the
method to the iCub.

The results in Fig. 6 show that KRR often outperforms GPR by a significant
margin, even though both methods have identical formulations for the predictive
mean and KRR hyperparameters were optimized using GPR. These deviations
indicate that different hyperparameter configurations were used in both experi-
ments. This is a common problem with GPR in comparative studies: the marginal

Fig. 5 Comparison between the wrench measured by the FT sensor and that predicted by the
model, during a generic contact-free movement of the left arm. The three plots on the left are forces
expressed in [N]; the three rightmost plots are the moments in [Nm]
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likelihood is non-convex and its optimization often results in a local optimum that
depends on the initial configuration. Hence, we have to be cautious when inter-
preting the comparative results on these datasets with respect to generalization
performance. The comparison between KRR and RFRR, trained using identical

Fig. 6 Prediction error per degree of freedom for the a Simulated Sarcos, b Sarcos, and c Barrett
datasets. The results for LWPR, GPR, and LGP are taken from Nguyen-Tuong et al. [11]. The
mean error over 25 runs is reported for RFRR with D 2 500, 1000, 2000, whereas error bars mark
a distance of one standard deviation. Note that in some cases the prediction errors for KRR are
very close to zero and therefore barely noticeable
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hyperparameters, remains valid and gives an indication of the approximation
quality of RFRR. As expected, the performance of RFRR steadily improves as the
number of random features increases. Furthermore, RFRR1000 is often sufficient to
obtain satisfactory predictions on all datasets. RFRR500, on the other hand, per-
forms poorly on the Barrett dataset, despite using distinct hyperparameter config-
urations for each degree of freedom. In this case, RFRR1000 with a shared
hyperparameter configuration is more accurate and requires overall less time for
prediction.

Figure 7 shows how the average nMSE develops as test samples are predicted in
sequential order using either KRR or RFRR. RFRR requires between 5000 and
10000 samples to achieve performance comparable to KRR. The performance of
KRR, on the other hand, decreases over time. In particular on the iCub dataset it
suffers a number of large errors, causing the average nMSE to show sudden jumps.
This is a direct consequence of the unavoidable fact that training and test samples are
not guaranteed to be drawn from the same distribution. Incremental RFRR, on the
other hand, is largely unaffected by these changes and demonstrates stable predictive
performance. This is not surprising, as RFRR is incremental and thus (1) it is able to
adapt to changing conditions, and (2) it eventually has trained on significantly more
samples than KRR. Furthermore, Fig. 7 shows that 200 random features are suffi-
cient to achieve satisfactory performance on either dataset. In this case, model
updates of RFRR require only 400 µs, as compared to 2 and 7 ms when using 500 or
1000 random features, respectively. These timing figures make incremental RFRR
suitable for high frequency loops as needed in robot control tasks.

Fig. 7 Average prediction error with respect to the number of test samples of KRR and
incremental RFRR with D 2 200, 500, 1000 on the iCub dataset. The error is measured as the
nMSE averaged over the force and torque output components. The standard deviation over 25 runs
of RFRR is negligible in all cases, for clarity we report only the mean without error bars
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In conclusion, this shows that for a relatively complex robot like the iCub, good
estimation of the internal dynamics is possible and that a combination of
non-parametric and parametric methods can provide simultaneously good gener-
alization performance, fast and incremental learning. Not surprisingly, lower errors
are obtained with learning. In the next section we see how to build on this controller
to reach for visually identified targets.

4 Kinematics

We consider the general problem of computing the value of joint angles qd in order
to reach a given position in space xd 2 R

3 and orientation ad 2 R
4 of the

end-effector (where ad is a representation of rotation in axis/angle notation). Note
that qd can be directly connected to the input of the impedance controller described
in Sect. 3. It is desired that the computed solution satisfies a set of additional
constraints expressed as generic inequalities—we see later the reason for con-
straining the solution of the optimization problem. This can be stated as follows:

qd ¼ argminq2R
nð ad � KaðqÞk k2 þ bðqrest � qÞTWðqrest � qÞÞ;

s:t:
xd � KxðqÞk k2\e

qL\q\qU
;

( ð11Þ

where Kx and Ka are the forward kinematic functions for the position and orien-
tation of the end-effector for a given configuration q; qrest is a preferred joint
configuration, W is a diagonal weighting matrix, b a positive scalar weighting the
influence of the terms in the optimization and e a parameter for tuning the precision
of the movement. Typically b < 1 and e 2 [10−5, 10−4]. The solution to Eq. 11 has
to satisfy the set of additional constraints of joint limits qL < q < qU with qL, qU the
lower and upper bounds respectively. In the case of the iCub, we solved this
problem for ten DoF—seven of the arm and three of the waist and we determined
the value of qrest so that the waist is as upright as possible. The left and right arm
can be both controlled by switching from one or the other kinematic chain (e.g. as a
function of the distance to the target).

We used an interior point optimization technique to solve the problem in 11. In
particular we used IpOpt [13], a public domain software package designed for
large-scale nonlinear optimization. This approach has the following advantages:

1. Quick convergence. IpOpt is reliable and fast enough to be employed in control
loops at reasonable rates (tens of milliseconds), as e.g. compared to more tra-
ditional iterative methods such as the Cyclic Coordinate Descent (CCD) adopted
in [14];
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2. Scalability. The intrinsic capability of the optimizer to treat nonlinear problems
in any arbitrary number of variables is exploited to make the controller structure
easily scalable with the size of the joint space. For example, it is possible to
change at run time from the control of the 7-DoF iCub arm to the complete
10-DoF structure inclusive of the waist or to any combination of the joints
depending on the task;

3. Automatic handling of singularities and joint limits. This technique automati-
cally deals with singularities in the arm Jacobian and joint limits, and can find
solutions in virtually any working conditions;

4. Tasks hierarchy. The task is split in two subtasks: the control of the orientation
and the control of the position of the end-effector. Different priorities can be
assigned to the subtasks. In our case the control of position has higher priority
with respect to orientation (the former is handled as a nonlinear constraint and
thus is evaluated before the cost);

5. Description of complex constraints. It is easy to add new constraints as linear
and/or nonlinear inequalities either in task or joint space. In the case of the iCub,
for instance, we added a set of constraints that avoid reaching the limits of the
tendons that actuate the three joints of the shoulder.

Once qd is determined as described above, there is still the problem of generating
a trajectory from the current robot configuration q to qd. Simultaneously, we would
like to impose suitable smoothness constraints to the trajectory. This has been
obtained by using the Multi-Referential Dynamical Systems approach [14],
whereby two dynamical controllers, one in joint space and another in task space,
evolve concurrently (Fig. 8). The coherence constraint, that is _x = J _q, with J the

Fig. 8 The multi-referential scheme for trajectory generation. K is the forward kinematics map;
qfb is the vector of encoder signals
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Jacobian of the kinematics map, guarantees that at each instant of time the trajectory
is meaningful. This is enforced by using the Lagrangian multipliers method and can
be tuned to modulate the relative influence of each controller (i.e. to avoid joint
angles limits). The advantage of such a redundant representation includes the
management of the singularities while maintaining a quasi-straight trajectory profile
of the end-effector in the task space—reproducing a human-like behavior [15].

Differently from the work of Hersch and Billard, we designed a feedback tra-
jectory generator instead of the VITE (Vector-Integration-To-Endpoint) method
used in open loop. A complete discussion of the rationale of the modifications to the
trajectory generation is outside the scope of this paper; the interested reader is
referred to Pattacini et al. [16]. Reasons to prefer a feedback formulation include the
possibility of smoothly connecting multiple pieces of trajectories and correcting on
line for accumulation of errors due to the enforcement of the constraints of the
multi-referential method.

4.1 Validation and Further Improvements

As earlier for the dynamics, we compared our method with other methods from the
literature. The comparison with the method of Hersch et al. [14] was almost
immediate since the work was developed on the iCub. This provides the
multi-referential approach together with the VITE trajectory generation at no cost.
Additionally, we included in the assessment another controller representing a more
conventional strategy that uses the Damped Least-Squares (DLS) rule [17] coupled
with a secondary task that comprises the joints angles limits by means of the
gradient projection method [18]. This solution employs the third-party package
Orocos [19], a tool for robot control that implements the DLS approach and whose
public availability and compliance with real-time constraints justified its adoption
as one of the reference controllers.

In the first experiment we put to test the three selected schemes in a
point-to-point motion task wherein the iCub arm was actuated in the “7-DoF mode”
and where the end-effector was controlled both in position and orientation. Results
show that paths produced by our controller and by the DLS-based system are well
restricted in narrow tubes of confidence intervals and are quite repeatable; con-
versely the VITE is affected by a much higher variability. Figure 9 highlights
results for a set of 10 trials of a typical reaching task where the right hand is moved
from a rest position to a location in front of the iCub with the palm directed
downward.

Table 2 summarizes the measured in-target errors for the three cases: all the
controllers behave satisfactory, but the DLS achieves lower errors because operates
continuously on the current distance from the target xd, being virtually capable of
canceling it at infinite time. On the contrary, strategies based on the interaction with
an external solver bind the controller module to close the loop on an approximation
~xd of the real target that is determined by the optimization tolerances as in 11.
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Additional experiments tend to favor our method. For example, measuring the
jerk of the resulting trajectory shows a gain of our method by 43 % from the VITE
and of about 69 % from DLS. This turns out to be crucial for more complicated
trajectories when speed factors make the minimum jerk controller even more
advantageous.

Further improvements can be made on the quality of the inverse kinematic
results by means of machine learning. As for the dynamics, we initially estimated
the function K from the CAD models of the iCub. This is a good initial guess in
need of refinement. The goal here is therefore to design a procedure that allows
enforcing eye-hand coordination such that, whenever the robot reliably localizes a
target in both cameras, it can also reach it. Here we further simplified the problem
(from the visual point of view) and decided to learn only the position of the
end-effector (x, y, z) since the orientation of the hand in the image is difficult to
detect reliably. For this problem, the input space is defined by the position of the

Fig. 9 Point-to-point Cartesian trajectories executed by the three controllers: the VITE-based
method produces on average the blue line, the minimum-jerk controller result is in green, the DLS
system using Orocos in red. Bands containing all the measured paths within a confidential interval
of 95 % are drawn in corresponding colors. Controllers settings are: T = 2.0 s for the
minimum-jerk system, a = 0.008, b = 0.002, KP = 3 for the VITE (see [14] for the meaning of
the parameters), and µ = 10−5 for the damping factor of the DLS algorithm

Table 2 Mean errors along with the confidence levels at 95 % computed when the target is
attained

Controller Position error (mm) Orientation error (rad) Mean radius of the trajectory
band (mm)

VITE 1.3 ± 1.4 � 10−3 0.041 ± 0.05 10 ± 10.8

Min-jerk 3.0 ± 1.3 � 10−3 0.048 ± 0.008 2.5 ± 1.5

DLS 1.3 ± 1.4 � 10−3 0.016 ± 0.028 2.0 ± 1.36

An average measure of the variability of executed path is also given for the three controllers
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hand (or the target) in the two cameras (ul, vl) and (ur, vr) with respect to the current
head configuration.

To sum up, having defined the input and the output space, the map M that is to
be learned is:

ðx; y; zÞH ¼ Mðul; vl; ur; vr; T ;Vs;VgÞ; ð12Þ

where ðul; vl; ur; vrÞ 2 R
4 represent the visual input of the position of the hand in

the iCub cameras, whereas ðT ;Vs;VgÞ 2 R
3 accounts for the proprioceptive part of

the input designating the tilt, the pan and the vergence of the eyes; finally,
ðx; y; zÞH 2 R

3 is the Cartesian position of the hand expressed in the head-centered
frame.

This map can be learned by a regression method if enough training samples are
available and these can be in turn collected if we can measure (ul, vl, ur, vr) by
means of vision (see Sect. 5). Some preliminary results by using a sigmoidal neural
network from Matlab (Neural Network Toolbox) trained with backpropagation can
be seen in Fig. 10. The training phase is carried out off-line. The neural network
consists of 7 nodes in the linear input layer, 50 nodes for the hidden layer imple-
mented with the ordinary hyperbolic tangent function and 3 nodes in the linear
output layer: an overall number of 15000 samples has been employed for training
and validation, whereas 5000 samples have been used for testing. The neural

Fig. 10 The desired target (dashed red) and the corresponding outputs of the neural network
(green) for the three Cartesian coordinates in the head centered frame
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network provides a very good estimation ofM as demonstrated by the testing phase.
Notably, as expected, the z component estimation is the most affected by noise since
it accounts principally for the distance of the hand from the head, a value that is not
directly measured by the cameras but only indirectly from binocular disparity. The
inspection of the mean and standard deviation supports this claim, i.e. mean error
0.00031 m and standard deviation of 0.0055 m for the x and y components and
about twice as big for z.

In summary, it is relevant to outline here that an upcoming activity has been
planned with the purpose to replace the off-line training phase with a fully online
version that resorts to random features as in Gijsberts et al. [10] and will eventually
make the robot learn the eye-hand coordination completely autonomously.

5 Vision

The remaining piece of information in this journey through the structure of the iCub
controller is certainly vision. We strive to provide reliable estimates of object in
space since this enables the control of action as presented earlier. One appealing
visual cue is motion and we have been recently able to devise a method which
provides motion segmentation independent from the movement of the cameras.

Our method is based on the analysis of failures of the standard Lucas-Kanade
algorithm [20]. As a general rule, in order to verify that the instant velocity v of a
point p has been correctly estimated, the patch W around that point in the image It is
compared to the patch of the same size at p + v in the new image It+1 (where the
original point is supposed to have moved). Given a suitable threshold HM, the
discrepancy measure

MðpÞ ¼
X
q2W

ðItðpþ qÞ � Itþ 1ðpþ vþ qÞÞ2; ð13Þ

is then used to evaluate whether tracking was correctly performed (M(p) < HM) or
not (M(p) � HM) It is thus interesting to analyze empirically when the
Lucas-Kanade algorithm tends to fail and why. Conclusions from this investigation
will lead directly to a method to perform independent motion detection. The main
empirical circumstances in which errors in the evaluation process of the optical flow
arise are three:

• Speed. The instantaneous velocity of the point is too large with respect to the
window where motion is being considered. Hence, the computation of temporal
derivatives is difficult;

• Rotations. The motion around the point has a strong rotational component and
thus, even locally, the assumption regarding the similarity of velocities fails;

• Occlusions. The point is occluded by another entity and obviously it is
impossible to track it in the subsequent frame.
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Tracking failures caused by high punctual speed depend exclusively on the scale
of the neighborhood where optical flow is computed. This issue is usually solved by
the so called pyramidal approach which applies the Lucas-Kanade method at
multiple image scales. This allows evaluating iteratively larger velocities first and
then smaller ones. Instead we determined empirically that when rotations cause
failures in the tracking process, this is often a consequence of a movement inde-
pendent from that of the observer. The third situation in which Lucas-Kanade fails,
is caused by occlusions. In this context the main role in determining whether optical
flow has been successfully computed is played by the speed at which such
occlusion takes place.

We therefore look for points where tracking is likely to fail as soon as one of the
conditions discussed is met, i.e. flow inconsistencies due to rotations or occlusions.
In detail, we run Lucas-Kanade over a uniform grid on the image, perform the
comparison indicated in Eq. 13 and then filter for false positives (isolated failures).
The results is a set of independent moving blobs.

We tested the method both in controlled situations (a small robotic device
moving linearly in front of the iCub) and, more generally, in tracking people and
other moving objects in the laboratory. Figure 11 shows results of tracking with
both stationary and moving cameras (therefore without and with ego-motion
respectively). In the configuration considered, a linear speed of 10 cm/s corre-
sponds to one pixel per frame in a 30 frames-per-second (fps) acquisition.

Fig. 11 Trajectories of the x, y coordinates of the center of mass of the areas detected as moving
independently. The cart is moving parallel (up) or orthogonal (down) with respect to the image
plane. The plots are reported for the following cart speeds: from left to right 20, 40, 100 cm/s.
Colors legend: (1) green for x and red for y in the case of a static head; (2) blue for x and black for
y in the case of a head rotating at 20 °/s
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Experiments were conducted up to 100 cm/s and with the iCub head adding
movement up to 40 deg/s.

The sequence of images in Fig. 12 is an example of a more naturalistic tracking.
In spite of the complexity of the background, it is evident from the images that our
method produces robust detection of the moving target with a behavior that varies
smoothly in time and is consistent with respect to the two different views acquired
from the left and right cameras of the robot. In particular, the movement of the
target is effectively tracked both when the person is far from the robot (frames 1 and
6) as well as when he gets closer to it (frames 2–5). Furthermore a substantial
modification to light conditions exists with a maximum of brightness reached
approximately at frame 4. The algorithm is robust to occlusions: this is visible at the
frames in which pillars and posters cover the person. Notably, at frame 3 another
person sitting at the table produces a secondary blob with his hand. This distractor
is of limited size and it does not interfere with the task since the tracker is instructed
to follow the largest blob in the sequence.

These are the data that at the moment the iCub uses for attention, for tracking
and which are eventually passed to the reaching controller described earlier. We
favored robustness to accuracy here in order to be able to run learning methods and
exploration of the environment for considerable periods of time (e.g. as for col-
lecting the 20000 samples mentioned in Sect. 4.1). Our experiments show that this
goal has been fully achieved.

6 Conclusions

This paper deals with the problem of building a reliable architecture to control
reaching in a humanoid robot where many degrees of freedom need to be coordi-
nated. We have shown original solutions to vision (using motion), to kinematics
(using robust optimization and a multi-referential trajectory formulation) and
dynamics (by enabling impedance control from a set of FTSs). Although certain
aspects of these methods are somewhat traditional, their specific application and

Fig. 12 A sequence of images recorded during the real time stereo tracking of a person walking in
front of the iCub: six images are shown in temporal order from L1 to L6 (left camera) and R1 to R6
(right camera). The walking person is highlighted with a green blob using the result of proposed
algorithm
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combination is novel. We took particular care in testing all methods rigorously and
comparing them with other methods in the literature.

Furthermore, the entire implementation of this software is available, following
the iCub policies, as open source (GPL) from the iCub repository. These libraries
and modules, besides running on the iCub, are available to the research community
at large. The algorithms are almost always embedded in static libraries ready to be
picked up by others.

The iCub repository can be found at http://www.icub.org and browsed on
Source-Forge (http://www.sourceforge.net). Several videos of the iCub showing the
methods described in this paper are available on the Internet and in particular at this
site: http://www.youtube.com/watch?feature=playerprofilepage&v=
LMGSok5tN4A.
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Analytical Least-Squares Solution for 3D
Lidar-Camera Calibration

Faraz M. Mirzaei, Dimitrios G. Kottas and Stergios I. Roumeliotis

Abstract This paper addresses the problem of estimating the intrinsic parameters
of the 3D Velodyne lidar while at the same time computing its extrinsic calibration
with respect to a rigidly connected camera. Existing approaches to solve this
nonlinear estimation problem are based on iterative minimization of nonlinear cost
functions. In such cases, the accuracy of the resulting solution hinges on the
availability of a precise initial estimate, which is often not available. In order to
address this issue, we divide the problem into two least-squares sub-problems, and
analytically solve each one to determine a precise initial estimate for the unknown
parameters. We further increase the accuracy of these initial estimates by iteratively
minimizing a batch nonlinear least-squares cost function. In addition, we provide
the minimal observability conditions, under which, it is possible to accurately
estimate the unknown parameters. Experimental results consisting of photorealistic
3D reconstruction of indoor and outdoor scenes are used to assess the validity of
our approach.

1 Introduction and Related Work

As demonstrated in the DARPA Urban Challenge, commercially available
high-speed 3D lidars, such as the Velodyne, have made autonomous navigation and
mapping within dynamic environment possible. In most applications, however,
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another sensor is employed in conjunction with the 3D lidar to assist in localization
and place recognition. In particular, spherical cameras are often used to provide
visual cues and to construct photorealistic maps of the environment. In these sce-
narios, accurate extrinsic calibration of the six degrees of freedom (d.o.f.) trans-
formation between the two sensors is a prerequisite for optimally combining their
measurements.

Several methods exist for calibrating a 2D laser scanner with respect to a camera.
The work of Zhang and Pless [17] relies on the observation of a planar checker-
board by both sensors. In particular, corners are detected in images and planar
surfaces are extracted from the laser measurements. The image features are used to
determine the normal vector and distance of the planes where the laser-scan end-
points lie. Using this geometric constraint, the estimation of the transformation
between the two sensors is formulated as a non-linear least-squares problem and
solved iteratively. A simplified linear least-squares solution is also provided to
initialize the iterative nonlinear algorithm. More recently, Naroditsky et al. have
presented a minimal approach for calibrating a 2D laser scanner with respect to a
camera, using only six measurements of a planar calibration board [6]. The com-
puted transformation is then used in conjunction with RANSAC to initialize an
iterative least-squares refinement.

The existing 2D laser scanner-camera calibration methods are extended to 3D
lidars in [7, 16]. In both works, a geometric constraint similar to that of [17] is
employed to form a nonlinear least-squares cost function which is iteratively
minimized to estimate the lidar-camera transformation. An initial estimate for the
iterative minimization is determined based on a simplified linear least-squares
method [16]. Specifically, the estimation of relative rotation and translation are
decoupled, and then each of them is computed from a geometric constraint between
the planar segments detected in the measurements of both the 3D lidar and the
camera. An alternative 3D lidar-camera calibration approach is described in [11],
where several point correspondences are manually selected in images and their
associated lidar scans. Then, the PnP algorithm of [9] is employed to find the
transformation between the camera and the 3D lidar based on these point corre-
spondences. In a different approach, presented in [13], the structural edges extracted
from 3D lidar scans are matched with the vanishing points of the corresponding 2D
images to compute a coarse 3D lidar-camera transformation, followed by an iter-
ative least-squares refinement.

The main limitation of the above methods is that they assume the 3D lidar to be
intrinsically calibrated. If the lidar’s intrinsic calibration is not available or suffi-
ciently accurate, then the calibration accuracy as well as the performance of sub-
sequent lidar-camera data fusion significantly degrades. In [7], this issue is partially
addressed for the Velodyne 3D lidar by first calibrating only some of its intrinsic
parameters. However, this intrinsic calibration procedure is also iterative, and no
method is provided for initializing it. While several of the intrinsic parameters of a
lidar may be initialized using the technical drawings of the device (if available),
other parameters, such as the offset in the range measurements induced by the delay
in the electronic circuits, cannot be determined in this way.
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To address these limitations, in this work we propose a novel algorithm for joint
estimation of both the intrinsic parameters of the Velodyne 3D lidar and the
lidar-camera transformation. Specifically, we use measurements of a calibration
plane at various configurations to establish geometric constraints between the
lidar’s intrinsic parameters and the lidar-camera 6 d.o.f. relative transformation. We
process these measurement constraints to estimate the calibration parameters as
follows: First, we analytically compute an initial estimate for the intrinsic and
extrinsic calibration parameters in two steps. Subsequently, we employ a batch
iterative (nonlinear) least-squares method to refine the accuracy of the estimated
parameters.

In particular, to analytically compute an initial estimate, we relax the estimation
problem by seeking to determine the transformation between the camera and each
one of the conic laser scanners within the Velodyne, along with its intrinsic
parameters. As a first step, we formulate a nonlinear least-squares problem to
estimate the 3 d.o.f. rotation between each conic laser scanner and the camera, as
well as a subset of the laser scanner’s intrinsic parameters. The optimality condi-
tions of this nonlinear least-squares form a system of polynomial equations, which
we solve analytically using an algebraic-geometry approach to find all its critical
points. Amongst these, the one that minimizes the least-squares cost function
corresponds to the global minimum and provides us with the initial estimates for the
relative rotation and the first set of intrinsic lidar parameters. In the next step, we
use a linear least-squares algorithm to compute the initial estimate for the relative
translation between the camera and the conic laser scanners, and the remaining
intrinsic parameters.

Once all initial estimates are available, we finally perform a batch iterative
joint-optimization of the lidar-camera transformation and the lidar’s intrinsic
parameters. As part of our contributions, we also study the observability properties
of the problem and present the minimal necessary conditions for concurrently
estimating the lidar’s intrinsic parameters and the lidar-camera transformation.
These observability conditions provide a guideline for designing high-accuracy
calibration procedures. Our experimental results demonstrate that our proposed
method significantly improves the accuracy of the intrinsic calibration parameters
of the Velodyne lidar, as well as, the lidar-camera transformation.

2 Problem Formulation

The Velodyne HDL-64E lidar consists of 64 conic laser scanners mounted on a
rotating head so that they span a 360° panoramic (azimuth) view (see Fig. 1). Each
laser scanner has a horizontal offset from the axis of rotation, and a vertical offset
from adjacent laser scanners. Additionally, each laser scanner points to a different
elevation angle, such that, collectively, all the laser scanners cover a 27° vertical
field of view. Therefore, once the lidar’s head completes a full rotation, each laser
scanner has swept a cone in space specified by its elevation angle. Let {L} be the

Analytical Least-Squares Solution for 3D Lidar-Camera Calibration 185



lidar’s fixed frame of reference whose z-axis is the axis of rotation of the sensor’s
head (see Fig. 1). Also, let {Li}, i = 1,…,64, be the coordinate frame corresponding
to the i-th laser scanner, such that its origin is at the center of the associated cone on
the z-axis of {L} with vertical offset hi from the origin of {L}, its z-axis aligned
with that of {L}, and its x-axis defining an angle hoi with the x-axis of {L}. We
determine the direction of the k-th shot of the i-th laser beam from its corresponding
elevation angle, /i, and azimuth measurement, hik, and denote it with1:

Li�pk ,
cos/i cos hik
cos/i sin hik

sin/i

2
4

3
5: ð1Þ

The distance measured by the k-th shot of the i-th laser scanner is represented by
qik. The real distance to the object that reflects the k-th shot of the i-th laser beam is
ai(qik + qoi), where ai is the scale factor, and qoi is the range offset due to the delay
in the electronic circuits of the lidar and the horizontal offset of each laser scanner
from its cone’s center. In this way, the position of the k-th point measured by the i-
th laser scanner is described by

Li�pk ¼ ai qik þ qoið ÞLi�pk: ð2Þ

The transformation between {Li} and {L} (i.e., hi and hoi), the scale ai, offset qoi,
and elevation angle /i, for i ¼ 1; . . .; 64, comprise the intrinsic parameters of the

Fig. 1 Internal structure of the Velodyne 3D lidar. The total number of laser beams is 64 and they
span a vertical field of view of 27 The intrinsic parameters of the Velodyne describe the
measurements of each laser scanner in its coordinate frame, {Li}, and the transformation between
the Velodyne’s fixed coordinate frame, {L}, and {Li}. Note that besides the physical offset of the
laser scanners from the axis of rotation, the value of qoi depends on the delay in the electronic
circuits of the lidar

1Throughout this paper, Ap denotes the expression of a vector p with respect to frame {A} and �p is
the corresponding unit vector. ABC is the rotation matrix rotating vectors from frame {B} to frame
{A}, and AtB is the position of the origin of {B} in {A}. In is the n � n identity matrix, and 0m�n
is m � n matrix of zeros.

186 F.M. Mirzaei et al.



lidar that must be precisely known for any application, including photorealistic
reconstruction of the surroundings. Since the intrinsic parameters supplied by the
manufacturer may not be accurate,2 in this work we estimate them along with the
transformation with respect to a camera.

The Ladybug2 spherical vision system consists of six rigidly-connected cali-
brated cameras equipped with wide-angle lenses (see Fig. 2). The extrinsic trans-
formations between the different cameras are provided by the manufacturer with
high accuracy. Therefore, the measurements from any of the cameras can be easily
transformed to the Ladybug’s fixed frame of reference, denoted as {C}.

The Ladybug is rigidly connected to the lidar, and our objective is to determine
the 6 d.o.f. relative transformation between the two, as well as the intrinsic
parameters of the lidar. For this purpose, we employ a planar calibration board with
fiducial markers, at M different configurations to establish geometric constraints
between the measurements of the lidar and the Ladybug, their relative transfor-
mation, and the lidar’s intrinsic parameters.

Specifically, at the j-th plane configuration, j = 1,…,M, the fiducial markers
whose positions are known with respect to the calibration board’s frame of refer-
ence {Bj}, are first detected in the Ladybug’s image. The 6 d.o.f. transformation
between {C} and {Bj} is then computed using a PnP algorithm [9], from which the
normal vector and the distance of the target plane in the Ladybug’s frame are
extracted as:

C�nj , C
BjC 0 0 �1½ �T ð3Þ

Fig. 2 Geometric constraint
between the j-th plane, the
Ladybug {C}, and the i-th
laser scanner, {Li}. Each laser
beam is described by a vector
Li pijk. The plane is described
by its normal vector c�nj and
its distance dj both expressed
with respect to the Ladybug

2Note that when the technical drawings of the lidar are available, an initial estimate for hi, oi, and
/i can be readily obtained. Computing an initial estimate for qoi and ai, however, is significantly
more challenging even for the manufacturer, since their values do not solely depend on the
physical dimensions of the device.
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dj , C�nTCjt tBj ð4Þ

where A
Bj
C and ctBj represent the relative rotation and translation between the

Ladybug and the calibration board at the j-th configuration. Consequently, in the
absence of noise, any point Cp that lies on the j-th plane satisfies:

C�nTCjt p � dj ¼ 0: ð5Þ

We now turn our attention to the lidar point measurements reflected from the j-th
calibration plane and identified based on the depth discontinuity. Let us denote such
points as Lipijk, k ¼ 1; . . .; Nij, measured by the lidar’s i-th laser scanner [see (2)].
Transforming these points to the Ladybug’s frame, and substituting them in (5)
yields:

C�nTj
C
LiC

LiPi jk þ CtLi
� �� dj ¼ 0 ð6Þ

ð2Þ
)

ai qijk þ qoi
� �

C�nT C
j Li C

Li�pijk þ C�nTj
CtLi � dj ¼ 0 ð7Þ

where C
LiC and CtLi are the relative rotation and translation between the Ladybug and

the i-th laser scanner.
In addition to the camera and laser scanner measurements, the following con-

straints can also be used to increase the accuracy of the calibration process.
Specifically, since the z-axis of {Li} is aligned with the z-axis of {L}, while their x-
axes form an angle hoi, the following constraint holds for all C

LiC:

C
LiC ¼C

L CCz hoið Þ ð8Þ

where Cz(hoi) represents a rotation around the z-axis by an angle hoi. Additionally,
the origin of each laser-scanner frame lies on the z-axis of {L} with vertical offset of
hi from the origin of {L}, resulting in the following constraint:

C
LC

T CtLi �C tL
� � ¼ 0 0 hi½ �T ð9Þ

In the presence of noise, the geometric constraint in (7) is not exactly satisfied.
Therefore, to estimate the unknown parameters, we form a constrained nonlinear
least-squares cost function from the residuals of this geometric constraint over all
point and plane observations [see (22)]. In order to minimize this least-squares cost,
one has to employ iterative minimizers such as the Levenberg-Marquardt [8], that
require a precise initial estimate to ensure convergence. To provide accurate ini-
tialization, in the next three sections we present a novel analytical method to
estimate the lidar-Ladybug transformation and all intrinsic parameters of the lidar
(except the elevation angle ui which is precisely known from the manufacturer). In
order to reduce the complexity of the initialization process, we temporarily drop the
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constraints in (8) and (9) and seek to determine the transformation between the
camera and each of the laser scanners (along with each scanner’s intrinsic
parameters) independently. Once an accurate initial estimate is computed, we lastly
perform an iterative non-linear least-squares refinement that explicitly considers (8)
and (9), and increases the calibration accuracy (see Sect. 2.4).

2.1 Analytical Estimation of Offset and Relative Rotations

Note that the term C�nTj
CtLi � dj in (7) is constant for all points k of the i-th laser

scanner that hit the calibration plane at its j-th configuration. Therefore, subtracting
two constraints of the form (7) for the points Lipijk and

Lipijl, and dividing the result
by the nonzero scale, ai, yields:

C�nT C
j Li C uijkl þ qoiv

i
jkl

� �
¼ 0 ð10Þ

where uijkl , qLii jk�pi jk � qLii jl�pi jl and v
i
jkl , Li�pijk � Li �pijl. Note that the only unknowns

in this constraint are the relative rotation of the i-th laser scanner with respect to the
Ladybug, C

LiC, and its offset, qoi. Let us express the former, C
LiC, using the

Cayley-Gibbs-Rodriguez (CGR) parameterization [12], i.e.,

C
LiC(s) =

�C(si)
1þ sTi si

; �C(si), 1� sTi si
� �

I3 þ 2 si�b cþ 2sisTi
� � ð11Þ

where sTi ¼ si1 si2 si3½ � is the vector of CGR parameters that represent the relative
orientation of the i-th laser scanner with respect to the Ladybug, and s�b c is the
corresponding skew-symmetric matrix [12]. Substituting (11) in (10), and multi-
plying both sides with the nonzero term 1þ sTi si yields:

C�nTj �C(si) uijkl þ qoiv
i
jkl

� �
¼ 0 ð12Þ

This algebraic constraint holds exactly in the absence of noise. In that case, the
method presented in Sect. 2.5 can be employed to recover the unknowns given the
minimum number of measurements. In the presence of noise, however, (12)
becomes:

C�nTj �C(si) uijkl þ qoiv
i
jkl

� �
¼ gijkl ð13Þ

where gijkl is a nonzero residual. In this case, we estimate si and qoi by solving the
following nonlinear least-squares problem:
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ŝi; q̂oi ¼ min
si;qoi

Ji; Ji ,
1
2

XM
j¼1

XNij2
k¼1

XNij

l¼Nij
2 þ 1

C�nTj �C(si) uijkl þ qoiv
i
jkl

� �� �2
ð14Þ

where, without loss of generality, we have assumed Nij is even. Note that the Nij

points from the i-th laser scanner, and the j-th configuration of the calibration plane
are divided into two mutually exclusive groups so as to ensure that each point
appears in the least-squares cost only once and hence avoid noise correlations.

When a sufficient number of plane configurations are observed, we employ a
recently proposed algebraic method to directly solve this nonlinear least-squares
problem without requiring initialization [14]. Specifically, we first form the fol-
lowing polynomial system describing the optimality conditions of (14):

fi‘ ¼ @Ji
@si‘

¼ 0; ‘ ¼ 0; . . .; 3 and si0 , qoi: ð15Þ

Note that the cost function in (14) is a polynomial of degree six in the elements of si
and qoi. Therefore, (15) consists of four polynomials of degree five in four vari-
ables. This polynomial system has 243 solutions that comprise the critical points of
the least-squares cost function Ji, and can be computed using the eigenvalue
decomposition of the so-called multiplication matrix (see Sect. 2.2). The globally
optimal solution of the least-squares problem is the critical point that minimizes
(14), and it is selected through direct evaluation of the cost function Ji. We point out
that the computational complexity of solving (15) and finding the global minimum
does not increase with the addition of measurements, since the degree and number
of polynomials expressing the optimality conditions are fixed regardless of the
number of calibration-plane configurations and laser-scanner points reflected from
them. Moreover, computing the contribution of all points to the coefficients of the
polynomials fi‘; ‘ ¼ 0; . . .; 3, increases only linearly with the number of
measurements.

2.2 Polynomial System Solver

In order to solve the polynomials describing the optimality conditions of (15), we
compute the multiplication matrix, a generalization of the companion matrix to
systems of multivariate polynomial equations, whose eigenvalues are the roots of
the associated polynomial system [1]. In the following, we briefly describe an
efficient method for computing the multiplication matrix. For a detailed discussion
on solving systems of polynomial equations, we refer the interested reader to [4].

Let us denote a monomial in x = x1 � � � xn½ �T by xc , x
c
1
1x

c
2
2 � � � x

c
n
n; ci 2Z� 0; with

degree
Pn

i¼1 ci. A polynomial of degree d in x is denoted by f = cTxd where xd is
the nþ d

n

� �
-dimensional vector of monomials of degree up to and including d, and
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c is the vector of coefficients of equal size. We assume that the given system of
equations has n polynomials, denoted by fi ¼ cTi xdi ¼ 0; i ¼ 1; . . .; n, each of them
with degree di. The total degree of the polynomial system is d, maxi di. By
padding the coefficient vectors of fi’s with zeros, and stacking them together in C,
we can present the polynomial system in the matrix form of Cxd = 0.

A system of polynomial equations defines an ideal I as the set of all the poly-
nomials that can be generated as

P
i fihi where hi is any polynomial in x. Clearly the

elements of the ideal become zero at the solutions of the original (generator)
polynomial system. The Gröbner basis G, g1; . . .gth i of an ideal is a finite subset
of the ideal such that (i) the remainder of the division of any polynomial to it is
unique, (ii) any polynomial whose division by the Gröbner basis results in zero
remainder, is a member of the associated ideal. The first property can be expressed
as: uðx) = rðx) +

Pt
i¼1 giðx)hiðx) where u is any polynomial in x, hi’s are the

quotient polynomials, and r is the unique remainder. We hereafter use the name
“remainder” as the remainder of the division of a polynomial by the Gröbner basis.
The Gröbner basis for an ideal generated from polynomials with integer or rational
numbers can be computed using implementations of the so-called Buchberger’s
algorithm [4] on symbolic software packages such as Macaulay2 or Maple.
Computation of the Gröbner basis for polynomials with floating-point coefficients is
much more difficult due to quick accumulation of round-off errors in the
Buchberger’s algorithm.

The remainders of the polynomials that are not in an ideal are instrumental in
finding the solutions (i.e., variety) of that ideal. It can be shown that all such
remainders can be expressed as a linear combination of a specific (unique) group of
monomials that comprise the so-called normal set [4]. The normal set can be easily
obtained from the Gröbner basis of an ideal, and under mild conditions,3 its car-
dinality equals the number of solutions (real and complex) of the ideal, and it will
contain the monomial 1 [4, p. 43]. The important point here is that the normal set is
generically fixed across different instantiations of the polynomials. Therefore, we
can compute the normal set of an instance of the problem (e.g., integer or rational
coefficients) and use it when the coefficients are floating point.

Let us assume that the cardinality of the normal set is s, and represent its
monomials in a vector form xB. Then multiplication of xB with a generic polynomial
uðx) yields:

uðx) � xB ¼ MuxB þ
h11 � � � h1t
..
. ..

.

hs1 � � � hst

2
64

3
75

g1
..
.

gt

2
64

3
75 ð16Þ

3These conditions are: (i) the ideal must be radical, (ii) its variety must be non-empty and zero
dimensional [3]. These conditions are generally satisfied for the current problem.
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where hij’s are polynomials in x, and gi’s are the elements of the Gröbner basis. In
this expression, Mu is called the multiplication matrix associated with u. This
relationship holds since the remainder of any polynomial (including xcuðxÞ; xc2xB)
can be written as a linear combination of xB. Now, if we evaluate (16) at x = p, a
solution of the ideal, all gi’s become zero, and we get u(p) � xB ¼ MuxB, where pB
is xB evaluated at p. Clearly, pB is an eigenvector of Mu, and uðp) is the associated
eigenvalue. Therefore, if we select uðxÞ equal to one of the variables (e.g., xi), we
can read off the xi-coordinate of the solutions as the eigenvalues of Mu.
Further-more, depending on the ordering of the monomials when computing the
Gröbner basis, xB may include all first-order monomials x1, …, xn. In that case, one
can simultaneously read off all the coordinates of the solutions, for an arbitrary
choice of u, as long as it is nonzero and distinct at each solution of the ideal.

When the Gröbner basis is available (such as in polynomial systems with integer
coefficients), one can use it directly to compute remainders of uðxÞ � xB, and con-
struct Mu.. This is not possible, however, when working with polynomials with
floating-point coefficients. Therefore we employ the method proposed in [2] to
compute Mu. We first note that some of the monomials of /(x) xB remain in xB,
while some others do not. We form the vector xR from the latter monomials, and
write:

uðxÞ � xB ¼ M0
u

xR
xB

� �
ð17Þ

where M0
u is called the unreduced multiplication matrix. Our objective is to express

the remainders of xR as a linear combination of xB without using the Gröbner basis.
For this purpose, we expand each original polynomial fi by multiplying it with all
the monomials up to degree ‘� di (‘ to be determined later). Clearly all these new
expanded polynomials belong to the ideal generated by the original polynomials,
and they have monomials up to degree ‘. Thus, we can write them collectively in
matrix form as Cex‘ ¼ 0. We reorder x‘ and Ce as:

Cex‘ ¼ CE CR CB½ �
xE
xR
xB

2
4

3
5 ¼ 0 ð18Þ

where xE are the monomials that belong neither to xR nor to xB. Multiplying (18)
with NT, the left null space of CE, and decomposing NTCR ¼ QR ¼ ½Q1Q2�½RT

10�T
using QR factorization, yields:

NTCRNTCB
� 	 xR

xB

� �
¼ Q R1 QT

1N
TCB

0 QT
2N

TCB

� �
xR
xB

� �
¼ 0: ð19Þ
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If ‘ is selected sufficiently large, R1 will be full rank [10], which allows us to
solve (19) and find xR as a function of xB, i.e., xR ¼ �R�1

1 QT
1N

TCBxB. Substituting
this relationship in (17) yields the multiplication matrix:

Mu ¼ M0
u

Is
�R�1

1 QT
1N

TCB

� �
: ð20Þ

For solving Eq. (15), we had to expand the polynomials up to degree ‘ ¼ 15 and
arrived at a multiplication matrix Mu of dimensions 243 � 243. Finally, we
mention that it is possible to compute the multiplication matrix without explicit
computation of the normal set. Further details on this subject and also on possible
numerical instabilities and their remedies are given in [2, 10, 15].

2.3 Analytical Estimation of Scale and Relative Translation

Once the relative rotation, c
LiC, and the offset, qoi, of each laser scanner,

i = 1; . . .; 64 are computed, we use linear least-squares to determine the relative
translation and scale from (7). Specifically, we stack together all the measurement
constraints on the i-th laser scanner’s scale and relative translation (from different
points and calibration-plane configurations), and write them in a matrix form as:

C�nT1 qi11 þ qoið ÞC�nT C
j Li C

Li�pi11
C�nT1 qi12 þ qoið ÞC�nT C

j Li C
Li�pi12

..

. ..
.

C�nTM qiMNiM
þ qoi

� �C
�nT C
j Li C

Li�piMNiM

2
66664

3
77775

CtLi
ai

� �
¼

d1
d2
..
.

dM

2
6664

3
7775 ð21Þ

Under the condition that the coefficient matrix on the left-hand side of this equality
is full rank (see Sect. 2.5), we can easily obtain the i-th laser scanner’s scale factor,
ai, and relative translation, CtLi , by solving (21).

2.4 Iterative Refinement

Once the initial estimates for the transformation between the Ladybug and the laser
scanners, and the intrinsic parameters of the lidar are known (Sects. 2.1–2.3), we
employ an iterative refinement method to enforce the constraints in (8) and (9).
Specifically, we choose the coordinate frame of one of the laser scanners (e.g., the
1-st laser scanner) as the lidar’s fixed coordinate frame, i.e., {L} = {L1}. Then for
{Li}, i = 2; . . .; 64, we employ the estimated relative transformation with respect to
the Ladybug (i.e., CLiC and CtLi ) to obtain the relative transformations between {Li}
and {L}. From these relative transformations, we only use the z component of the
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translation to initialize each laser scanner’s vertical offset, hi [see (9)], and the yaw
component of the rotation to initialize each laser scanner’s hoi [see (8)].

We then formulate the following constrained minimization problem to enforce
(8) and (9):

min
X
i;j;k

ai qijk þ qoi
� �

C�nT1
C
LiC

Li�pijk þ C�nTj
CtLi � dj

h i2

s: t: CLiC ¼ C
LCCz hoið Þ; C

LC
T CtLi � CtLL
� � ¼ 0 0 hi½ �T

ð22Þ

where the optimization variables are ai, qoi, hoi, hi, i = 2,…, 64, a1, qo1,
CtL, and

C
LC.

4 Note that the constraints in (22) should be taken into account using the
method of Lagrange multipliers. For the implementation details of the Levenberg-
Marquardt algorithm we refer the interested reader to [8].

2.5 Observability Conditions

In this section, we examine the conditions under which the unknown lidar-Ladybug
transformation and the intrinsic parameters of the lidar are observable, and thus can
be estimated using the algorithms in Sects. 2.1–2.4.

2.5.1 Observation of One Plane

Suppose we are provided with lidar measurements that lie only on one plane whose
normal vector is denoted as C�n1. In this case, it is easy to show that the mea-
surement constraint in (6) does not change if C

LiC is perturbed by a rotation around
C�n1, represented by the rotation matrix C′:

C�nT1C
0CC

Lipi1k þ C�nT1
CtLi � d1 ¼ 0 ) C�nT1

C
LiC

Lipi1k þ C�nT1
CtLi � d1 ¼ 0 ð23Þ

The second equation is obtained from the first, since C�n1 is an eigenvector of C′,
thus C�nT1C

0 ¼C �nT1 . Therefore, when observing only one plane, any rotation around
the plane’s normal vector is unobservable. Similarly, if we perturb CtLi by a
translation parallel to the plane, represented by t0, the measurement constraint does
not change:

4In general, the optimization should be performed over ui as well. However, in our experiments,
we observed that the provided value of ui by the manufacturer is sufficiently accurate, and thus
excluded it from the calibration.
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C�nT1
C
LiC

Lipi1k þ C�nT1
CtLi þ t0
� �� d1 ¼ 0 ) C�nT1

C
LiC

Lipi1k þ C�nT1
CtLi � d1 ¼ 0:

ð24Þ

This relationship holds since C�nT1 t
0 ¼ 0. Therefore, when observing only one plane,

any translation parallel to the plane’s normal is unobservable.

2.5.2 Observation of Two Planes

Consider now that we are provided with measurements from two planes, described
by C�n1, d1, C�n2, d2. If we perturb the laser scanner’s relative translation with
t00 / C �n1 � C �n2 [see (24)], none of the measurement constraints will change, since
C�nT1 t

00 ¼ C �nT2 t
00 ¼ 0. Therefore, we conclude that the relative translation cannot be

determined if only two planes are observed.

2.5.3 Observation of Three Planes

In this section, we prove that when three planes with linearly independent normal
vectors are observed, we can determine all the unknowns. For this purpose, we first
determine the relative orientation C

LiC and the offset qoi and then find the scale ai and
relative translation CtLi . Let us assume that the i-th laser scanner has measured four
points on each plane, denoted as qijk;

Li �pijk
� �

, j = 1, 2, 3, k = 1; . . .; 4. Each of these
points provides one constraint of the form (7). We first eliminate the unknown
relative translation and scale, by subtracting the constraints for point k = 1 from
k = 2, point k = 2 from k = 3, and point k = 3 from k = 4, and obtain:

C�nT C
j Li C uij12 þ qoiv

i
j12

� �
¼ 0 ð25Þ

C�nT C
j Li C uij23 þ qoiv

i
j23

� �
¼ 0 ð26Þ

C�nT C
j Li C uij34 þ qoiv

i
j34

� �
¼ 0 ð27Þ

where uijkl , qLiijk�pijk � qLiijl�pijl, v
i
jkl , Li�pijk �Li �pijl, and j = 1, 2, 3. Note that Li�pijk and

Li�pijl lie on the intersection of the unit sphere and the cone specified by the beams of
the i-th laser scanner. Since the intersection of a co-centric unit sphere and a cone is
always a circle, we conclude that all vijkl for a given i given belong to a plane and

have only two degrees of freedom. Thus, we can write vij34 as a linear combination
of vij12 and vij23, i.e.,
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vij34 ¼ avij12 þ bvij23 ð28Þ

for some known scalars a and b. Substituting this relationship in (27), and using
(25)–(26) to eliminate the terms containing qoi yields:

C�nT C
j Li C uij34 � aui12 � buij23

� �
¼ 0 ð29Þ

for j = 1, 2, 3. The only unknown in this equation is the relative orientation C
LiC of

the i-th laser scanner. These equations are identical to those for orientation esti-
mation using line-to-plane correspondences, which is known to have at most eight
solutions that can be analytically computed when C�nj, j = 1, 2, 3, are linearly
independent [3]. Once C

LiC is known, we can use any of (25)–(27) to compute the
offset qoi. Finally, the scale and the relative translation can be obtained from (21).

3 Experiments

In order to validate the proposed calibration method, we conducted a series of
experiments. Specifically, we rigidly connected a Velodyne 3D lidar and a
Ladybug2 spherical vision system, and recorded measurements of a 36” � 40”
calibration plane with 16 fiducial markers at 40 different configurations. By pro-
cessing the Ladybug’s images using a PnP algorithm followed by a least-square
refinement [9], we computed the normal vector and the distance of the calibration
plane at each configuration. We then identified the approximate location of the
calibration plane in the lidar scans based on a coarse prior estimate for the relative
rotation of the Velodyne and the Ladybug. Within these approximate locations, we
detected the lidar data points reflected from the calibration plane, based on their
depth discontinuity.

Once the Velodyne’s measurements for each configuration of the calibration
plane were available, we used the methods described in Sects. 2.1–2.4 to accurately
estimate the lidar’s intrinsic parameters and the lidar-camera transformation. Note,
however, that in order to increase the robustness of our algorithm to outliers, we did
not directly use the raw laser points measured by the lidar. Instead, for each laser
scanner, we fit small line segments to the intersection of the laser scanner’s beam
and the calibration plane, and used the endpoints of these line segments as the
lidar’s measurements.5

5Note that in general the intersection of the cone induced by the laser scanner’s beam with a plane
results in a conic section, and not a straight line. However, in practical situation this conic section
can be approximated with a sequence of straight line segments.
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We compare the accuracy of the estimated intrinsic lidar parameters with those
provided by the manufacturer. For this purpose, we transform the raw lidar mea-
surements to the lidar’s Euclidean frame [see (2)] using both the estimated and the
manufacturer-provided intrinsic parameters. We then fit planes to the lidar points
belonging to the calibration planes and use the residual fitting error to evaluate the
accuracy of the estimated intrinsic parameters. In Fig. 3, the histogram of these
residual errors for the manufacturer-provided and the estimated intrinsic parameters
are shown, clearly demonstrating the superior accuracy of our method.

To further evaluate the performance of our calibration algorithm, we created
photorealistic reconstructions of several indoor and outdoor scenes from the
University of Minnesota campus (see Fig. 4). For each scene, the raw measure-
ments of the lidar are first transformed to Euclidean coordinates using the estimated
intrinsic parameters of the lidar and then they are expressed in the Ladybug’s frame
of reference. In the next step, the lidar points are overlaid on the spherical image
provided by the camera to associate them with an image pixel. Note, however, that
after this step many of the image pixels will not be associated with any lidar points
due to the low resolution of the lidar scans compared to the Ladybug’s images. We
assigned such “orphan” pixels a 3D point obtained through linear interpolation of
the surrounding lidar points. The final result is a set of image pixels with 3D
coordinates (i.e., 3D pixels). Finally, we converted the 3D pixels to 3D surfaces
using Delaunay triangulation [5]. In Fig. 4, a selection of the reconstructed surfaces
are shown for indoor and outdoor scenes. Note that white gaps in the reconstructed
surfaces result from missing lidar measurements due to occlusion or specular
reflection of the laser beams from glass and shiny surfaces.

4 Conclusions and Future Work

In this paper, we presented a novel method for intrinsic calibration of a Velodyne
3D lidar and extrinsic calibration with respect to a camera. Specifically, we
developed an analytical method for computing a precise initial estimate for both the
lidar’s intrinsic parameters and the lidar-camera transformation. Subsequently, we
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Fig. 3 Histograms of the residual error for the lidar points belonging to 40 planar surfaces using
the intrinsic lidar parameters from: a the manufacturer; b the proposed method
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Fig. 4 A selection of the results from photorealistic reconstruction of indoor and outdoor scenes
(best viewed in color). The white gaps are the regions where at least one of the sensors did not
return meaningful measurements (e.g., due to occlusion, specular reflections, or limited resolution
and field of view). Note that the depth of the scene can be inferred from the dotted grids. a,
b Center of a building with several corridors, viewed from different directions; c, d A indoor scene
containing two stair cases, viewed from two different directions; e An outdoor scene with snow on
the ground
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used these estimates to initialize an iterative nonlinear least-squares refinement of
all the calibration parameters. Additionally, we presented an observability analysis
to determine the minimal conditions under which it is possible to estimate the
calibration parameters. Experimental results from both indoor and outdoor scenes
are used to demonstrate the achieved accuracy of the calibration process by pho-
torealistic reconstruction of the observed areas. Optimally combining multiple
images and lidar scans over consecutive time steps for mapping large areas while at
the same time increasing the 3D points’ resolution and revealing occluded areas, is
part of our ongoing research work.
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Tactile Object Recognition
and Localization Using Spatially-Varying
Appearance

Zachary Pezzementi and Gregory D. Hager

Abstract In this work, we present a new method for doing object recognition using
tactile force sensors that makes use of recent work on “tactile appearance” to
describe objects by the spatially-varying appearance characteristics of their surface
texture. The method poses recognition as a localization problem with a discrete
component of the state representing object identity, allowing the application of
sequential state estimation techniques from the mobile robotics literature. Ideas
from geometric hashing approaches are incorporated to enable efficient updating of
probabilities over object identity and pose. The method’s strong performance is
demonstrated experimentally both in simulation and using physical sensors.

1 Introduction

Haptic object recognition has long been a goal of robotics research, and the
important role of tactile information has been recognized for decades [3].
Nonetheless, most existing haptic recognition techniques use tactile information
only for localizing contact points and estimating local surface normals or curvature
to constrain the object geometry [1, 4–6, 9, 11]. Several researchers have used
sequential state estimation techniques to localize the pose of a known object using
touch sensing [7, 10, 13]. In recent work [16], we added object identity to the state
being estimated in such an approach; this led to a geometry-based object recog-
nition method that used occupancy grid maps as the underlying object represen-
tation. This method works very well in 2D, but there are computational challenges
in scaling it to 3D, so we wished to incorporate other sources of information.

Only recently (e.g., in [15, 17]) has the potential to use tactile force sensors to
characterize surface textural properties been realized, giving a notion of “tactile
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appearance” inspired by appearance-based recognition techniques from the com-
puter vision literature. The work in this paper builds upon the idea of recognition as
localization and incorporates appearance information into a new method that
characterizes the spatially-varying appearance (SVA) characteristics of object
surfaces for recognition.

Our approach was inspired in part by geometric hashing techniques, a review of
which is provided in [20]. In standard geometric hashing, a basis for 3D space is
formed from a set of three 3D points. Our measurements are much more infor-
mative than just contact point locations though, so we can take advantage of this
extra information to greatly improve efficiency. Though two contact points are not
sufficient to define a basis in a 3D space, they can be used to constrain a trans-
formation up to one degree of freedom of uncertainty; our contact points also have
associated surface normal estimates, which can in many cases be used to constrain
this last degree of freedom. Additionally, we have a tactile image associated with
each point, giving it an appearance signature that can be used to distinguish indi-
vidual points. We therefore extend the geometric hashing algorithm by incorpo-
rating this additional information as probabilistic constraints, maintaining the
advantage of fast lookup times while reducing space requirements from

O
N
3

� �� �
to O

N
2

� �
A2

� �
, where A is a factor of the ambiguity of appearance of

a surface patch, explained in Sect. 3.2.

1.1 Sensing Tactile Appearance

This work used a capacitive sensor system made by Pressure Profile Systems,
consisting of a 6 � 6 array of individual pressure sensors, each of which is square
with 2 mm sides, shown in Fig. 1. The physical sensors and a simulation thereof
were used in the experiments presented here. Further details on the sensors and the
simulator are available in [14].

In [15], the simulation environment from [14] was extended to full robotic
exploration using touch sensing, which required the use of a set of surface contact
controllers to collect consistent sensor readings. The goal of these controllers is to
produce as consistent a tactile image as possible each time the same region of an
object surface is sensed, regardless of the angle of approach. The controllers
developed for this task control the location and orientation of the sensor up to
rotation about the sensor normal (since this rotation can not be controlled for
without knowing the object pose), leaving invariance to this final degree of freedom
to the appearance representation. In brief, these controllers alternate between
pressing the sensor against the object surface under PD control to achieve a target
average pressure and reorienting the sensor normal to align with a local estimate of
the object surface normal; these steps are iterated until convergence.
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Descriptors are extracted from the sensor readings to describe the object surface’s
local appearance properties. This work uses two descriptors from [15] that account
for the aforementioned required invariance to rotation. The first, called moment-
normalized (MN), uses spatial moments to determine a major axis for the image;
then the image is rotated to bring this major axis to a canonical orientation, and the
resulting image is used as a descriptor. The second descriptor, moment-normalized
translation-invariant (MNTI), begins with the same steps as MN. Then the result is
padded, the 2D Fourier transform is taken, and the magnitudes of the low-frequency
coefficients are used as the descriptor. Due to the invariances introduced by dis-
carding phase information, MNTI is more robust to small translations of the sensor
with respect to the object surface. More details on the exploration process and the
descriptors’ formulation and rationale can be found in [15].

2 Spatially Varying Appearance (SVA) and Bayes Filters

A Bayes filtering approach is used to maintain estimates of the unknown object’s
state, xt, which consists of the identity and pose of the unknown object, at each time
step. During each time step, a command, ut, is sent to the robot, and a sensor
measurement, zt, is received as a result. Following the notation of [19], the “belief”
of the state, bel(x), is updated as

belðxtÞ ¼
Z

Prðxtjut; xt�1;MÞbelðxt�1Þdxt�1 ð1Þ

belðxtÞ ¼ g
Prðxtjzt;MÞ
Prðxt;MÞ belðxtÞ ð2Þ

(a)
Sensor 1 Sensor 2

Sensing
elements

(b)

Fig. 1 a shows set of raised letters used in the geometry experiments alongside our tactile sensor
system, with the sensing area highlighted in blue. b shows the layout of sensor elements within
that highlighted area. Only the central 6 � 6 element region was used for recognition. a Letters
and sensors. b Sensor layout
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¼ g Prðxtjzt;MÞbelðxtÞ ð3Þ

where η is a (different) normalization constant in Eqs. 2 and 3. Equation 2 is
obtained by applying Bayes rule to the standard belief update [19]. In this particular
application, the prior on object identity and pose is uniform, so the Pr(xt, M) term
can be folded into the normalization constant to get Eq. 3. We consider the
explored object to be fixed in space, so the state does not vary over time. Each ut
therefore contributes only kinematic information; since we consider the resolved
end effector position to be available in zt, the commands do not contribute to
recognition.

Single sensor readings provide only weak constraints on the possible pose of the
object. The pose can be fully constrained by triplets of sensor readings, but this
would add extreme space requirements. Prðxtjzt;MÞ is therefore estimated from the
constraints imposed by pairs of sensor readings received so far. The mapping from
measurements to states is evaluated as

Prðxtjzt;MÞ ¼ Prðxtjfpairðzi; ztÞ; pairðzt; ziÞ; i ¼ 1; . . .t � 1g;MÞ ð4Þ

¼
Y

i¼1;...;t�1

Prðxtjpairðzt; ziÞ;MÞ
Y

i¼1;...;t�1

Prðxtjpairðzi; ztÞ;MÞ ð5Þ

where Eq. 5 follows from Eq. 4 by applying Bayes’ rule and assuming the con-
straints of all pairs are conditionally independent given the state. Estimation of the
individual probabilities in Eq. 5 is driven by our maps, M, which contain infor-
mation about surface patch pairs acquired during training. The training phase
consists of collecting a large number of sensor readings that cover the surface of
each object to be recognized. The map contains characterizations of pairs of surface
patches from each object along with the identity of that object and their location on
its surface. During testing, the identity and pose of the unknown object are then
constrained by matching observed pairs of surface regions to map pairs, denoted
m[�]:

Prðxtjpairðza1; zb1Þ;MÞ
¼

X
ma2;mb22M

Prðxtjmatchðpair(za1; zb1Þ; pairðma2;mb2ÞÞÞ:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
match constraint

Prðmatchðpair(za1; zb1Þ; pairðma2;mb2ÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
match likelihood

ð6Þ

First the match likelihood term will be discussed in Sect. 3, then the distributions
imposed on the state space by the match constraint term are covered in Sect. 4.

204 Z. Pezzementi and G.D. Hager



3 Mapping Spatially-Varying Appearance

The purpose of the SVA map is to evaluate Pr(match(pair(za1, zb1), pair(za2, zb2))),
the probability that two pairs of sensor readings correspond to the same pair of
regions on an object surface. This matching, since it makes use of appearance
information, depends on the characterization of local appearance to be consistent
over a local region; locations nearby a given point on the object surface are assumed
to have a similar appearance characterization. This effectively means that the object
surface must be sampled densely enough during training for the appearance char-
acterization used to be consistent across regions whose size corresponds to the
sampling resolution in the neighborhood.

3.1 Using Surface Patch Pair Statistics

Each sensor reading consists of a tactile image and a 3D translation and orientation
of the sensor in the robot frame. Readings are collected using the controllers
described in Sect. 1.1, so rotation about the sensor normal is not controlled for. The
geometry of a pair of surface patches a and b is therefore described by the positions
of the two patches, pa and pb, and their estimated surface normals, na and nb, shown
in Fig. 2.

Tactile appearance is described through association with appearance classes in
the form of clusters ci in the space of appearance descriptors (described in
Sect. 1.1). Each cluster corresponds to an appearance class of physical surfaces that
gives rise to measurements with certain characteristics picked out by the descriptor
being used. We can evaluate the likelihood of a measurement belonging to
appearance class i as PrðztjctÞ. c(vj) will be taken to represent the set of those
likelihoods for the appearance feature vj extracted from measurement zj.

Unknown objects may be encountered in any pose, so the map of surface patch
pairs is indexed by quantities independent of pose. Let va and vb be the features
describing each patch’s appearance. Regardless of the pose of the object, these
values and the distance between the points, dab, should not change. Pairs are then
indexed by c(va), c(vb), and dab, ordered to distinguish pair(za, zb) from pair(zb, za).

Fig. 2 Illustration of the relevant geometry for dealing with a pair of surface patches, labeled
a and b: Each has a centroid p[�], appearance feature v[�] (visualized by color), and surface normal
estimate n[�]. dab denotes the distance between the patch centroids. The angle between each patch’s
surface normal and the vector between the patches (dotted line) is marked as a[�]
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3.2 Appearance Class Likelihoods

Now we wish to model PrðztjctÞ, the surface patch measurement likelihoods
associated with each appearance class, where appearance classes are defined by
clusters in the space of appearance features. A hard clustering method, such as k-
means, is excessively restrictive, as the appearance class of many inputs may be
legitimately ambiguous, so we opt for a soft clustering approach that only associates
a feature with the most likely clusters.

Let the affinity between features va and vb, aff (va, vb) be given by their inner
product, 〈va, vb〉. We use Partitioning Around Medoids [12] to form nC clusters
from the set of all features acquired in training using aff ð�; �Þ, each represented by a
medoid medi, such that each feature vj is associated with the nearest medoid by its
membership mj. Affinities of members of a cluster to the medoid were assumed to
be distributed roughly as a Gaussian with mean 1 and standard deviation, wi,
computed for each cluster ci as

wi ¼
P

jð1� aff ðvj;mediÞÞ2Indðmj; iÞP
jIndðmj; iÞ ð7Þ

where Ind(i, j) is an indicator function equal to 1 if i = j and 0 otherwise. Then the
appearance class likelihoods of each feature are given initially by

PrðvjjciÞ ¼ 1ffiffiffiffiffiffiffi
pwi

p exp �ð1� aff ðv;mediÞÞ2
2wi

 !
ð8Þ

PrðcijvÞ ¼ g
PrðvjjciÞP
j PrðvjjcjÞ

ð9Þ

where η is a normalization constant. Unlikely matches are then pruned away by
setting

besti;j ¼ max
i

PrðvjjciÞ ð10Þ

PruneðvjjciÞ ¼ PrðcijvjÞ PrðcijvjÞ[ Tabesti;j
0 otherwise

�
ð11Þ

PrðzjjciÞ ¼ g PruneðvjjciÞ ð12Þ

In our experiments, Ta was set to 0.75. In the worst case, e.g. if all appearance
classes have the same likelihood, this procedure can produce a match to every class,
making the appearance ambiguity mentioned in Sect. 1, A, equal nC in the worst
case. In practice, however, many fewer matches are common.
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3.3 Matching Distances

Distances were matched using kernelized histograms. The range of possible values
was discretized into a set of nDB uniform regions with distance bin centers

binDi ¼ minDistþðmaxDist�minDistÞ iþ 0:5
nDB

ð13Þ

and dab was associated with the nearest bins through linear interpolation to give
degrees of association with each bin, Pr(binDi|dab).

3.4 Putting it all Together

Let CA and CB be random variables corresponding to the appearance classes of
surface patches a and b respectively for both the prospectively matching pairs and
D be another random variable corresponding to the distance between points in the
pairs. Marginalizing over appearance and distance classes gives

Prðmatchðpairðza1; zb1Þ; pairðza2; zb2ÞÞÞ
¼
X
i;j;k

Prðpairðza1; zb1Þ; pairðma2;mb2Þ;CA ¼ ci;CB ¼ cj;D ¼ binDk
ð14Þ

Since the observed measurements are independent of the map measurements given
the appearance and distance classes, each of which is independent of the others, this
can be manipulated into the form

Prðmatchðpairðza1; zb1Þ; pairðma2;mb2ÞÞÞ

¼
XnC
i¼1

ðPrðza1jCA ¼ ciÞ Prðma2jCA ¼ ciÞ PrðCA ¼ ciÞ:

XnC
j¼1

ðPrðzb1jCB ¼ cjÞ Prðmb2jCB ¼ cjÞ PrðCB ¼ cjÞ:

XnDB
k¼1

ðPrðda1b1jD ¼ binDkÞ Prðda2b2jD ¼ binDkÞ PrðD ¼ binDkÞÞÞ

ð15Þ

This provides a way to evaluate the probability of each pair of observed points
corresponding to pairs of regions in the object maps. The appearance likelihoods
can be computed by evaluating Eq. 12, and the distance likelihoods can be obtained
from the joint distribution of Sect. 3.3 as Prðdab; binDkÞ ¼ PrðdabjbinDkÞ
PrðbinDkÞ. In our experiments, the class priors, Pr(ci) for CA and CB (these dis-
tributions are taken to be equal), were assumed to be uniform. The mapping can be

Tactile Object Recognition and Localization … 207



efficiently implemented using a hash multimap, indexed by bin numberings, to
support fast lookups without using excessive storage when the space is sparsely
covered (particularly, e.g., when there are many appearance classes).

4 Recognition and Localization from SVA Maps

Given a matched pair of surface patches, pair(za1, zb1) and pair(za2, zb2) we now
wish to estimate the set of rigid transformations that would align them.

4.1 Initial Alignment of Surface Patch Pairs

We begin with a version of the method of [2] to align 3D point clouds, simplified to
the case of two points. Continuing with the notation of Sect. 3, this procedure gives
a rotation, R1, that is effective for aligning the points of contact, pa1 with pa2 and pb1
with pb2, but it leaves rotations about the axis between the points in the pair,
axisa;b ¼ ðpb � paÞ= pb � pak k2, unconstrained. The surface normals associated
with each patch are next used to further constrain the aligning transformations.

The normals are limited in their ability to be used in this respect, though, in two
ways: Each normal only constrains rotation about axisa,b if it is not colinear with
axisa,b, and the observed sensor surface normals themselves may be unconstrained
if the object surface normal in the area is not well-defined, e.g. in the case of an
edge or corner. Because of these factors, we have considerably more confidence in
the point locations than in the surface normals, so we are comfortable parameter-
izing the aligning transformation as a rigid transformation based on point locations
followed by a rotation about axisa1;b1 by an angle b with uncertainty.

We will first discuss our handling of constraints on the surface normals in
Sect. 4.2, then this will be incorporated with the colinearity issue into our full
estimate of the axis-angle rotation portion of the transformation with its associated
uncertainty in Sect. 4.3.

4.2 Estimating Constraints on Sensor Normals

The surface normal at a surface patch can only be used to constrain rotation if it is
itself constrained, so our goal here is to estimate the level of constraint the object
surface imposed upon the sensor normal when a reading zi was taken by looking at
the associated tactile image, Ii. Our approach is to infer a rough set of contact points
of the sensor with the object surface from sensor elements with non-zero responses.
In order for the sensor normal to be well-constrained, the surface should make
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contact with the sensor in at least three well-separated, non-colinear locations.
Algorithm 1 quantifies a way of measuring the degree of fulfillment of this
requirement, returning normConf(ni).

A set of 3D contact points are estimated from Ii. Their centroid is subtracted,
giving a set of relative positions, which are assembled into a matrix, A, whose
singular value decomposition is computed. For edge or point contacts, there should
be less than two significant singular values, and in this case the function returns a
confidence of zero. Otherwise it returns a value that approaches one as the two
largest singular values approach each other, i.e. as the contact type approaches fully
planar.

4.3 Formulating Axis-Angle Uncertainty

Finally, we incorporate the constraint imposed by the normals on about-axis rota-
tion with the uncertainty in the normals themselves to estimate a distribution over
possible axis-angle rotations to complete the alignment of the two patch pairs.

First the surface normals associated with the first patch pair, na1 and nb1, and the
axis between them, axisa1,b1 are rotated according to the transformation obtained in
Sect. 4.1 to be in the same coordinate system as na2 and nb2. Then a projection is
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computed to project each pair’s normals onto the plane normal to R1axisa1,b1,
giving projected normals {pn[�]}. Next, a rotation is computed to align these pro-
jected normals once again based on the method of [2]:

H ¼ pna1pn
T
a2 þ pnb1pn

T
b2 ð16Þ

USVT ¼ svdðHÞ ð17Þ

Rb ¼ VUT ð18Þ

The projection has the effect of scaling each vector by the degree to which it is
perpendicular to axisa1,b1 in the rotated space, thereby also scaling its contribution
to the least squares error being minimized in the fit. If the determinant of Rb is
negative, this generally means S is rank defficient and the sign of one column of
U is unconstrained, so Rb is reset to V diag(1, −1)UT, giving a valid rotation.

Finally, the angle of rotation is extracted from Rb to get b̂ our estimate of b. The
overall confidence in this value is estimated as

qa ¼ pna1k knormConf ðna1Þ pna2k knormConf ðna2Þ ð19Þ

qb ¼ pnb1k knormConf ðnb1Þ pnb2k knormConf ðnb2Þ ð20Þ

alignConf ¼ qa þ qb
2

ð21Þ

The distribution of possible true values of b is then estimated as a Gaussian with
mean b̂ and standard deviation given by rinit/alignConf. In our experiments, rinit
was conservatively set to 0.1 radians.

In practice, the distribution over xt is maintained as a sparse histogram. Except at
initialization, when the distribution can be implicitly assumed equal to the prior
(e.g., uniform), the likelihood in most bins will be zero. The data structure can be
efficiently implemented using a hash map indexed by the histogram bin numbers.

5 Experiments

The approach was tested on 3D models in our simulation environment and on a set
of raised letter shapes using our physical sensor system. The simulation experi-
ments are described in Sect. 5.1, then those on physical sensors follow in Sect. 5.2.
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5.1 3D Simulation Experiments

To test the algorithm, a set of 10 objects from the Princeton Shape benchmark [18]
was used, shown in Fig. 3. The sample objects were selected to span a variety of
shapes and local surface characteristics, and all were scaled to the same size.

A set of 1000 sensor readings of each object was collected for training, and a
separate 100 readings of each object were collected for testing. All sensor readings
were collected by the following process: A location p on the object surface was
chosen uniformly at random. The position of the tactile sensor was set to
q = p + dn, a small distance d away in the direction of the local surface normal,
n. The sensor was oriented so that its surface normal was in the direction −n plus a
small random perturbation. Then the sensor moved in the direction of the object
until the controllers described in Sect. 1.1 converged.

As described in Sect. 3, appearance descriptors were extracted from each sensor
reading and these were grouped into 25 clusters using k-medoids, then an SVA map
was built of all the objects. The map used 40 bins to discretize the space of
interpatch distances that covered a range from 30 to 160 mm. The objects them-
selves were scaled 80 mm in their largest dimension.

Recognition performance was measured as a function of the number of sensor
readings seen so far by averaging results over a number of trials. In each trial,
readings were selected uniformly at random from the set of test readings for the
selected unknown object. An object pose was generated and the pose of each sensor
reading was transformed according to this unknown pose before it was presented to
the recognition algorithm. This pose consisted of an arbitrary 3D rotation and a
translation in the range [−200, 200] mm in each direction. One test repetition
consisted of one trial of recognition on each object from the set. Performance was
averaged over three test repetitions to get the final results shown in Fig. 4. Accuracy
of the SVA approach is shown alongside that of the appearance-only approach of
[15] for comparison.

Fig. 3 The set of models from the Princeton Shape Benchmark [18] used for testing. a Skull.
b Glass. c Tire. d Chair. e Pliers. f Screwdriver. g Knight. h Dragon. i Helmet. j Phone
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The virtual histogram used to maintain pose estimates used 50 bins for each
translation dimension and represented rotation by a 3-dimensional vector in
Rodrigues form (with magnitude encoding rotation angle) divided into 9 bins per
dimension. At each time step, the hypothesized object identity was taken as the
object with the most probability weight, summed over all possible poses. The
hypothesized object pose was taken as the centroid of the histogram bin with the
highest weight.

Performance was measured in terms of classification accuracy and of distance
from the estimated pose, ½R̂ T̂�, to the true pose, [R T], where a pose of [I 0] (with
0 = [0, 0, 0]T) corresponds to the object located at the origin in the pose observed
during training. Classification accuracy was taken as the percent of the time the
hypothesized object identity was the true identity over all trials. Error in the pose was
recorded only when the estimated identity was correct, and it was measured in three
ways: Translational error was measured as the distance between the Translational
components, T̂ � T

�� ��. Angular error was taken as the angle of rotation, /e; required
to align the estimate with the true pose, taking into account symmetries in some
objects. The Glass, Tire, and Screwdriver objects were all considered to have an axis
of rotational symmetry. Let this axis be denoted f; then we have
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Fig. 4 SVA recognition and localization results on Princeton set. a Classification accuracy.
b Inertial error. c Translational error. d Angular error
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/e ¼
minc unskewðlogmðRRfðcÞRR̂TÞÞ�� �� if symmetric about f
unskewðlogmðRR̂TÞÞ�� �� otherwise

(
ð22Þ

where logm denotes the matrix logarithm, unskew extracts the vector v from sk(v),
its corresponding skew-symmetric matrix, and Rf(c) is a rotation about f by c.
Inertial distance was measured according to the metric of [8, Eq. 4], where each
object’s mass and moment of inertia was approximated by a solid sphere of radius
40 mm. This metric combines translational and angular error into a measurement of
the energy required to align the two transformations. Localization accuracy was not
measured for the appearance-only approach, since it does not estimate object pose.
The MNTI descriptor was used to characterize appearance due to its invariance
properties’ robustness to small translations. Figure 4 graphs all of the error metrics
above: Fig. 4a shows recognition accuracy. Figure 4b–d show inertial, transla-
tional, and angular error respectively. Classification accuracy climbs to 100 % with
thirteen sensor readings. Translational error drops to slightly above 4 mm, the
lowest expected attainable error using histogram bins of width 8 mm. Angular error
remains high, however, most likely due to near-symmetries in the objects; e.g., the
knight’s base is axially symmetric and the phone nearly has two-fold rotational
symmetry. As a result of the angular error, inertial error decreases more slowly.

5.2 2D Physical Sensor Experiments

The SVA mapping approach was also tested using physical sensors on capital
vowels from a child’s set of raised letters (from a Leap Frog “Fridge phonics”
magnetic alphabet set), shown in Fig. 1 along with our sensors.

The letters were approximately 2.5 cm per side, so less than a quarter of the
letter was visible in any single reading. In order to cover the entire object, readings
were collected at 16 planar positions arranged in a 4 � 4 grid with a spacing of
6.8 mm, oriented at 12 evenly-spaced angles at each location for a total of 192
readings. A mechanical system was constructed to position the letters coplanar with
the sensors and press them down with a consistent force.

Two readings were taken at each of the 192 poses. The first set of readings at
each pose was used for training, while the second set was used for testing.

As before, readings from the unknown object were transformed according to a
randomly selected object pose for each trial. This pose consisted of a translation in
x and y in the range [−10, 10] mm in each direction and an arbitrary rotation in the
plane. This pose space was discretized using 21 bins for each dimension of
translation and 9 bins for each dimension of the Rodrigues vector representing
rotation. The map used 100 bins for distance, covering a range of 3–20 mm. Since
there was a discrete set of contact locations, invariance to translation was less of a
concern, so the Moment-Normalized descriptor was used.
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Classification accuracy and inertial distance are shown in Fig. 5. Again, per-
formance of the SVA and appearance-only approach [15] are shown as well as that
of the geometry-only approach of [16]. Classification accuracy quickly climbs
above 90 % within about 30 sensor readings. Inertial distance was measured taking
into account symmetries in the letters, so that angular error was measured with
respect to the closest of the true pose and its 180° rotation for “I”; “O” was
considered fully symmetric, so that angular error was always zero. This metric
drops below 1 mm within about 20 sensor readings. This is once again close to the
expected optimum given the virtual histogram resolution. While SVA does not
achieve the recognition rates of the geometric method in this 2D case, it gives better
localization.

6 Discussion

We have presented a method that makes use of both the appearance content of
tactile force sensor readings and the geometric information associated with each.
The method was demonstrated on both simulated and real tactile data sets,
exhibiting strong performance both in recognition accuracy and pose estimation.
Performance was not perfect, however, so we provide some analysis of why that
may be, ideas for improvement, and guidance on how to apply the method in
different situations.

6.1 Analysis of Failure Modes

It is interesting to compare the experimental results of Sect. 5.2 to those of the
purely geometric approach of [16] on the same data. The purely geometric approach
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Fig. 5 SVA recognition and localization results on raised letters. a Classification accuracy.
b Inertial error
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eventually achieved 100 % classification accuracy when using a histogram with
10,000 bins for the pose space, but with a localization accuracy of just over 2 mm;
the SVA approach did not quite reach 100 % accuracy on the letter set, but its
localization accuracy was below 1 mm. Higher pose accuracy is achievable because
a higher-resolution histogram can be maintained using a forward mapping from
sensor readings to pose and a sparse representation of the probability space. This
same difference also makes the SVA approach much more amenable to extension to
full 3D. A natural question would be why the SVA method does not achieve perfect
classification accuracy. It is instructive to address this question in some detail, as it
gives guidance on considerations for applying the method in other situations.

A classification failure must result from the true pose not being among those
considered able to explain a patch pair. If the bin of the true pose is assigned zero
probability, then the optimal solution will not be found unless all probabilities go to
zero and the distribution is reseeded. There are a few ways this might occur:

1. A sensor reading may be of part of the object surface not observed in training.
There would then be no valid match in the map for pairs containing that point.

2. A patch pair may not be matched to the nearest corresponding regions in the
map because the estimated appearance and distance do not match well enough.

3. The distribution of aligning transformations computed for a correct (or close)
patch pair match may not place significant probability on the true object pose.
This might be due to a misestimation of the surface patch’s locations or (more
likely) their surface normals.

4. A combination of the factors above, each acting in part, could push the prob-
ability of the true pose below machine precision.

The first situation would not occur with the raised letter data, since sensor
readings were taken at set locations, and those locations were the same in training
as in testing. The third failure mode is also not likely on the letter data for the same
reason, and since the surface normals were all known and equal. The fourth failure
mode also did not seem to come into play in our experiments with our chosen
parameters. The most likely source of classification failures therefore seems to be
the second item, in the appearance classification of surface patch pairs.

6.2 Extensions

Like the geometric method, for which each particle or histogram bin calculation is
independent, this approach has great potential for parallelization. With this method,
the computations for each surface patch pair can be carried out in parallel.
Additionally, the computations for each prospective match for a surface patch pair
are also independent, leading to another level of parallelization.

Although this method was developed with tactile force sensors as the intended
source of information, it should be noted that it is equally applicable to other
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sensing modalities. For instance, a stereo vision system could also be used to
acquire surface patch information comprising location, surface normal estimates,
and appearance. A particularly interesting extension would be to examine what
appearance properties can be characterized by both vision and touch; then
cross-modality models could be built from one modality and then used in another or
with both modalities.
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The Antiparticle Filter—An Adaptive
Nonlinear Estimator

John Folkesson

Abstract We introduce the antiparticle filter, AF, a new type of recursive Bayesian
estimator that is unlike either the extended Kalman Filter, EKF, unscented Kalman
Filter, UKF or the particle filter PF. We show that for a classic problem of robot
localization the AF can substantially outperform these other filters in some situa-
tions. The AF estimates the posterior distribution as an auxiliary variable Gaussian
which gives an analytic formula using no random samples. It adaptively changes
the complexity of the posterior distribution as the uncertainty changes. It is
equivalent to the EKF when the uncertainty is low while being able to represent
non-Gaussian distributions as the uncertainty increases. The computation time can
be much faster than a particle filter for the same accuracy. We have simulated
comparisons of two types of AF to the EKF, the iterative EKF, the UKF, an
iterative UKF, and the PF demonstrating that AF can reduce the error to a consistent
accurate value.

1 Introduction

Non-linear estimation is crucial to robotics as well as many other fields.
Fundamentally one needs to describe uncertainty in some ‘state’ based on indirect
and noisy observations of it. This state is known to evolve in time and that evo-
lution can introduce uncertainty. When both the observation and the evolution are
described by linear system equations wrt the state estimate and the noise is white
Gaussian then the Kalman filter is the optimal estimator, [1]. The problem becomes
harder when the system is nonlinear. One approach is to linearize the system
equations wrt the state around the current estimated state as in the extended Kalman
Filter EKF [2, 3].
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The EKF has led to the development of many variations. These mostly address
the issue of inconsistency. For the EKF inconsistency arises as a consequence of the
linearization. The EKF is a Gaussian estimator which implies that the posterior
distribution is parametrized by a state mean and covariance. When the covariance is
too small we say that the estimate is overconfident [4]. This can lead to divergence
of the estimate or to bad inferences based on it. In order improve filter stability
methods of better estimating or simple adjusting the covariance have been tried,
such as, the robust extended Kalman filter [5, 6], or the method used for robot
localization in [7].

A better estimate of the covariance is obtained by computing the estimate based
on mapping a selected set of points through the non-linearity, allowing the estimate
to reflect more than a single point. This approach led to the unscented Kalman filter,
UKF [8–10], linear regression Kalman filters LRKF [11–13], the shifted Rayleigh
filter [14], and the filter in [15].

Divergence or unstable behavior often occurs while incorporating observations
that require large changes to the estimated mean. The iterative Kalman filter, IEKF
[16, 17] can help this problem by applying the EKF formula and linearizations
repeatedly until convergence to a stable solution.

All of the above estimators use a Gaussian posterior. As the uncertainty in the
estimates becomes more significant wrt the non-linearity, the Gaussian distribution
can no longer adequately represent the posterior. This situations can be addressed
by the particle filter PF, [18–21]. The PF can estimate any distribution and makes
no requirements on the form of the noise. It does so by sampling the distribution. It
essentially carries out many simulations, particles, of possible evolutions of the
system, re-weighting the particle set based on the observations. The PF is very
popular and powerful. It has one drawback: the estimate depends on having many
particles near the true state. It is important to keep the particles spread evenly and
densely. Unfortunately so called particle deprivation (or depletion) is inevitable
(eventually) using the PF. Particle deprivation is the condition of having too few
different particles. This can be made less significant by increasing the number of
particles but this leads to higher computational costs.

Particle deprivation is even more of a problem in higher dimensions. This can
sometimes be solved by Rao-Blackwellized particles filters, such as, FastSLAM
[22, 23]. Alternatively, a novel Gaussian particle filter is proposed in [24] which
does not require re-sampling but does assume a Gaussian posterior.

Other solutions to representing non-Gaussian distributions are the sum of
Gaussians as used in [25] on the simultaneous localization and mapping, problem.
Or the Gaussian sum quadrature filter as presented in [13]. Exact batch methods and
some of the graphical algorithms [26–30] can solve the exact system by successive
approximation. In [31] a method that combines graphical belief propagation, par-
ticle filters and uses auxiliary variables is presented.
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2 Overview of This Article

We will developed a new class of estimators which we call antiparticle filters AF
[32]. We shall describe two members of that class which we call the quadratic and
the trigonometric AF, QAF, and TAF. We compare these filters to the EKF, IEKF,
UKF, IUKF1 and PF.

We start by discussing the AF posterior distribution. We show how it can change
complexity adaptively as the uncertainty changes by introducing and removing
auxiliary variables. We then discuss how to estimate this distribution with pre-
diction and update steps.

This is then followed by our simulations which show how for a robot local-
ization problem with large uncertainty the AF is more accurate, stable and con-
sistent than the other types of filters. The PF can be made more accurate and
consistent by increasing the number of particles. We show the PF for a number of
particles that gives similar computation times as our filter and one that is signifi-
cantly slower but still not as consistent or accurate.

3 The Auxiliary Variable Gaussian Distribution

As state estimates evolve in time the uncertainty increases during the prediction step
which moves the estimate forward in time using the dynamic equations. When
observations are made the uncertainty is reduced in an update step. If no obser-
vations are made for a long time the uncertainty can become too large, making the
nonlinearities significant. This uncertainty is often highly correlated. So that even if
all the covariance matrix elements are growing this growth is really only in one (or
few) problem directions. We propose to factor out part of this problem direction and
model its uncertainty in a nk dimensional auxiliary variable vector called k. So that
the posterior distribution takes the form:

pðxÞ ¼
Z1

�1
Gðx�mk;PÞGðk;CÞðdkÞnk ð1Þ

where G(k, C) is the zero mean Gaussian distribution with covariance C. We see that
the mean of the state estimate mk is conditionally parametrized by k. This mk is a
differentiable function of k. By assuming different forms for this we can generate
different shapes for the distribution and different filter types.Wewill later use this fact:

E½kkT � � E½k�E½kT � ¼ C: ð2Þ

1The iterative UKF is an iterative version of the UKF similar to the IEKF.
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We can derive some results by using the Taylor series expansion of mk:

mk ¼ lþ Jmkþ 1
2
kTHmkþOðk3Þ ð3Þ

where µ = m0, Hm is an x space vector of symmetric k space Hessian matrices and
the Jacobian matrix Jm is a matrix from k to x space.

E½x� ¼
Z1

�1
mkGðk;CÞðdkÞnk � lþ 1

2

X
i;j

Hm
ij Cij

E½xxT � � E½x�E½xT � � Pþ JmCðJmÞT þ 1
2

X
i;j;k;l

Hm
ij CikCjlðHm

klÞT

These two equations are used when creating and destroying auxiliary variables with
minimal changes to the mean and covariance in x. This is done adaptively in
response to the changes in uncertainty. When the uncertainty is low the distribution
can be simplified by reducing the number of auxiliary dimensions and vice versa as
shown schematically in Fig. 1.

Destroying Auxiliary Dimensions

If we chose a basis in the k space so that C = I then we can eliminate dimension
q from k by making these adjustments to the remaining parameters:

l lþ 1
2
Hm

qq; Pij  PijþDPij ¼ Pijþ JmiqJ
m
jq þ

X
k

Hm
iqkH

m
jqk �

1
2
Hm

iqqH
m
jqq

In general, when the trace of DP above is below a threshold for some q we will
eliminate that dimension by making the adjustments above and setting kq = 0.2

This DP decreases during updates and increases during prediction so we normally
do this check after updating with new observations.

Fig. 1 The left illustrates that the x covariance can be exactly moved between P and (P′, Jm, C).
The right shows the subsequent predict phase

2We use the threshold 0.01 in our simulations.
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Creating Auxiliary Dimensions

We can create new auxiliary dimensions by moving some of the uncertainty in unit
direction u, from P into a new k dimension, q. For this we must chose the new
parameters to meet these constraints with Cqq = 1 and Hqk = 0:

Jmq ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� du
p

; P ¼ P� uð1� dÞr2uT ;
P�1 ¼ P�1þ P�1uð1� dÞr2ðP�1uÞT

d

where r−2 = uT P−1u and d is a small number to keep P positive definite. In
practice we use the largest eigenvalue of P for r2 and the eigen vector for u. If the
eigenvalue is above some threshold3 then we create a new dimension q.

Parameterizing the Distribution—The Antiparticles

We will assume that the vector functions mk can be parametrized in two ways. One
is by some canonical parametrization, p which can be used to directly compute mk

for any lambda. The second is the values of mk at a set of k = ui from which the
canonical parameters can be derived. This set of values with be notated by xi = mui.
The ui are chosen distributed around the mean k = 0 value using the C in a manner
reminiscent of how the regression (sigma) points are chosen in the LRKF (UKF).

We will call the set {xi} the antiparticles as they will function similarly to
particles in the PF but are not random samples. We assume that we can go from the
canonical parametrization to the antiparticles and back as required.

fxig $ fpg ð4Þ

The antiparticles will be sufficient for doing prediction and are the result of the
update. We will find it necessary to use the canonical parameters for updates. They
are also used when creating and destroying auxiliary dimensions.

4 Estimation of the Non-linear Process

The starting point of all estimators is the process model:

xk ¼ fðxk�1; ukÞþxk; xk �Gð0;QkÞ ð5Þ

zk ¼ hðxkÞþ vk; vk �Gð0;RkÞ ð6Þ

Here xk is the state, zk are the measurements, uk are the control signals, and Q/R are
the white noise covariances. We will use subscripts k − 1|k − 1 and k|k − 1 for the
parameters before and after the kth prediction respectively.

3We use 1.0 for this threshold.
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Prediction

Prediction is done by marginalizing over xk−1:

Z
pðxkjxk�1; ukÞpk�1jk�1ðxk�1Þdxk�1 ¼ pkjk�1ðxkÞ ð7Þ

For the above process and our assumed form for the distribution this becomes
Z

Gðxk �mk
kjk�1; pkjk�1ÞGðk;Ckjk�1ÞðdkÞnk �/ZZ

Gðxk � f ðxk�1; ukÞ;QkÞGðxk�1 �mk
k�1jk�1;Pk�1jk�1ÞGðk;Ck�1jk�1Þdxk�1ðdkÞnk

We linearize around an estimated state xk ¼ mk
k�1jk�1 just as in the EKF.

fðxk�1; ukÞ � �xkþ J f
kðxk�1 �mk

k�1jk�1Þ; J f
k � @f(xk�1;ukÞ

@xk�1
jxk�1¼mk

k�1jk�1

�xk � fðmk
k�1jk�1; ukÞ; Pk � Qk þ J f

kPk�1jk�1ðJ f
kÞT :

Using these substitutions we can do the marginalization above and find:
Z

Gðxk �mk
k�1jk�1;Pkjk�1ÞGðk;Ckjk�1ÞðdkÞnk �/

Z ffiffiffiffiffiffiffiffi
jPkj

q
Gðxk

� �xk;PkÞGðk;Ck�1jk�1ÞðdkÞnk

In light of this equation we make the following prediction rules:

Pkjk�1 ¼ Pkjk¼0; Ckjk�1 ¼ Ck�1jk�1; ð8Þ

mk
kjk�1 ¼ �xk ) fxikjk�1g ¼ ffðxik�1jk�1Þg ð9Þ

The approximations are that Pk does not vary with k and that by mapping the
antiparticles through the nonlinear f, the mk

kjk�1 will follow �xk for all k.

We end up with a simple predict formula that uses the EKF prediction for P,
leaves C unchanged and maps the antiparticles through the dynamics in the same
way that the mean is treated by the EKF, illustrated in Fig. 1. If no update is to be
done we can feed the antiparticles directly into the next predict step without con-
verting to the canonical form.

Update

During update the observation measurements are used to form the posterior dis-
tribution. The most important part of the update is locating the maximum likelihood
estimate, MLE, for both xk and k. The canonical parametrization is used for this.
Once this MLE is found a new set of antiparticles is found around this MLE. These
then are ready for the next prediction step.
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Setting Dz(xk) = zk − h(xk) and Bayes rule gives us the posterior:

Gðxk � mk
kjk;PkjkÞGðk;CkjkÞ / Gðxk � mk

kjk�1;Pkjk�1ÞGðDzðxkÞ;RÞGðk;Ckjk�1Þ

Taking the exponents on the right hand side above we see

ðxMLE; kMLEÞ ¼ arg mingðxk; kÞ
xk ;k

ð10Þ

where g is given by:

gðxk; kÞ ¼ ½ðxk �mk
kjk�1ÞTP�1kjk�1ðxk

�mk
kjk�1ÞþDzðxkÞTR�1DzðxkÞþ kTC�1kjk�1k�=2:

We will repeatedly make use of linearization of the function h:

DzðxkÞ ¼ zk � hðxkÞ � zk � hðxÞþ Jhðxk � xÞ ð11Þ

We do a three phase update which is shown schematically in Fig. 2. Phase 1 varies
only k while holding xk �mk

kjk�1. This moves along the mk curves to minimize

Eq. (10). Phase 2 varies both xk and k. Phase 3 holds k = ui while varying xk to
find the updated antiparticle set.

Update Phase 1—Getting near the MLE

We begin by converting the antiparticle set to the canonical parametrization. We
seek a point k on the mk

kjk�1 curves to best explain the measurements.

k0 ¼ arg min
k

gðmk
kjk�1; kÞ ð12Þ

We use the Gauss-Newton method starting from k0 = 0,

rg ¼ ðC�1kjk�1k0 � ðJhJmkjk�1ÞTR�1k DzÞj
x¼mk0

kjk�1
ð13Þ

X � C�1kjk�1þðJhJmkjk�1ÞTR�1k JhJmkjk�1jx¼mk0
kjk�1

ð14Þ

Dk0 ¼ �X�1rg ð15Þ

Fig. 2 Here we show the three update phases
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where Jmkjk�1 denotes the Jacobian of mk
kjk�1 wrt. k We will use this Dk0 to move

iteratively towards a solution to Eq. (12).

Update Phase 2—Finding the MLE

In the second phase we move to the solution to Eq. (10) by varying both xk and k.
We use the Gauss-Newton method starting at xk = mk0 and k = k0.

xk � ðJmkjk�1ÞTP�1kjk�1ðxk �mk
kjk�1Þ � C�1kjk�1k ð16Þ

wx � ðJhÞTR�1k DzðxkÞ � P�1kjk�1ðxk �mk
kjk�1Þ ð17Þ

Wkk � ðJmkjk�1ÞTP�1kjk�1J
m
kjk�1þC�1kjk�1 ð18Þ

Wxk � P�1kjk�1J
m
kjk�1 ð19Þ

Wxx � ðJhÞTR�1k JhþP�1kjk�1 ð20Þ

Dk
Dxk

� �
¼ W�1w ¼ Wkk WT

xk
Wxk Wxx

� ��1
xk
wx

� �
ð21Þ

Update C and P

We set Pk|k = (Wxx)
−1|MLE just as the IEKF. This gives the right shape for the

distribution near the MLE. For the C update we note that Ck|k is the covariance of k
for the posterior distribution, Eq. (2). By estimating this using the expansion around
the MLE we find:

Ckjk �
Z 1

�1
ðk� kMLEÞ2Gððk� kMLE; x� xMLEÞ;W�1ÞðdxÞnðdkÞnk ð22Þ

C�1kjk ¼ ½Wkk �WT
xkðWxxÞ�1Wxk�jxk ; k ¼ MLE ð23Þ

¼ C�1kjk�1þðJhJmÞTðJhPkjk�1ðJhÞT þRÞ�1JhJm ð24Þ

Update Phase 3—Creating a New Antiparticle Set

For phase 3 we need to create a new antiparticle set that reflects the measurements.
The kMLE and C are used to produce new values for ui. These then produce a new
antiparticle set by minimizing g subject to k = ui.

xikjk ¼ arg min
xk

gðxk;uiÞ ð25Þ

Dxikjk ¼ ðWxxÞ�1wxjxk¼xikjk ;k¼ui
ð26Þ

We again use the Gauss-Newton method this time starting from xi ¼ mui
kjk�1:
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Gauss-Newton Iterations

In each of the three update phases we compute a D increment. This will in general
have the wrong direction and the wrong magnitude although it will be approxi-
mately correct. We allow for the direction being wrong by applying the method
iteratively stopping when the change in g is not significant. We allow for the
magnitude being wrong by doing a line search in the direction of D and finding the
minimum g value along the line. This is done by computing g at N points along the
line between 0 and 2D. We then interpolate to the minimum using a quadratic fit to
the minimum and the points to either side.4

5 QAF and TAF

The quadratic antiparticle filter, QAF, uses this parametrization:

mk ¼ lþKkþ 1
2
kTCk ð27Þ

where fpg ¼ flþK;Cg.5 We chose C to be diagonal then:

u0 ¼ 0; ui ¼ ð0; . . .;
ffiffiffiffiffiffi
Cii
p

; . . .; 0ÞT ; u�i ¼ �ui;

ui;j ¼ ðuiþujÞ=
ffiffiffi
2
p

; i; j 2 f1; 2; . . .nkg; j\i:

This leads to a generalization of the linear correlations in the Gaussian distribution
to parabolic ones. Parabolas can not model very larger circular nonlinearities. This
lead us to try circular parametrizations. The trigonometric antiparticle filter, TAF,
uses this parametrization:

mk
h ¼ lhþ

X
j

ahjkj ð28Þ

mk
i ¼ liþ qisin

X
j

aijkjþ jiðcos
X
j

bijkj � 1Þ; i 6¼ h ð29Þ

fpg ¼ fl; q; a; j; bg.6 For the TAF we use an additional 2nk values u�2i ¼ u�i=2;
for i ¼ 1; 2; . . .; nk.

4We used N = 21.
5K is a matrix from the k ! x spaces and x vector C is a symmetric matrix wrt k.
6a and b are matrices from the k ! x spaces.
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6 Experiments

We did simulations of a robot moving in 2D.

fðx; uÞ ¼
x
y
h

0
@

1
Aþ cos h 0

sin h 0
0 1

0
@

1
A Ds

Dh

� �
ð30Þ

With Qk = JuQJ
T + 10−10I where Ju is the Jacobian of f wrt u and Q is a 2 � 2

diagonal matrix. The observations were range and bearing to point features with
known data associations. Our UKF and PF7 implementations were as in [33] and
the IUKF was an iterative version.

For the first experiment we did 800 simulations for each of 3 values of Q, small,
medium and large.8 The robot started at the center of a circle of features and moved
with odometery reading steady increments (0.2, 0, 0)T and the true path having
noise added to that according to Q. The experiment was designed to have the robot
first see one feature giving partial pose information and then later a second feature
giving the exact pose. The consistency and accuracy was analyzed at the point
before the first update, at the update, before the second feature update, at the second
feature update, and then at selected times after the second feature was observed.

An example of one run is shown in Fig. 3. One can see how the AF is able to
approximately model the crescent shaped distribution. Figure 4 shows the root
mean square xy error as it evolved after the first update. We see that the QAF and
the TAF converged more rapidly than the other methods. Notice that the PF tends to
gets stuck at a fixed error depending on the density of particles while the other
methods improve the pose more rapidily. Figure 4 also shows the number of runs
with errors outside a region of ±1, ±1, ±0.1 in (x, y, h) error.9 This indicates the
divergent estimates as the measurement of two features should bring the pose into
that region. In order to evaluate consistency we computed a test statistic based on
the mahalanobis distance

d2 ¼ ðx� xtrueÞTðCovxÞ�1ðx� xtrueÞ ð31Þ

The cumulative v23 distribution of d2 was recorded at each time. This would be
uniformly distributed if the error were Gaussian and the estimates were consistent.
The errors should become approximately Gaussian after sufficient updates are
performed. By sorting these values and plotting them we can compare the empirical
distribution to the ideal straight line in the top left of Fig. 5. It is not possible to
show all these plots but we can summarize the consistency by plotting the

7As in Thrun pp. 220–228 (UKF), 250–252 (PF) and 110 (low variance sampling).
8Q was 10−5, 10−4, or 10−3 along the diagonal.
9The simulated distance units are arbitrary but can be thought of as meters while the angles are in
radians.
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Fig. 3 Here we show the posterior distribution for the PF top (here we show 5,000 particles,
while we later decided to use 2,000 and 20,000 for the experiments) QAF center and the TAF
bottom. The left is just before observing the first feature and the right is 5 steps after observing the
second features. The QAF and TAF posterior are displayed by sampling from it. The estimate is
the thick (red) line while the thin (black) track is the true path. We see that for this outlier
simulation on the left the PF is more consistent in its shape and the QAF is the least consistent. The
better ends of the crescent for the TAF help it to update more accurately than the QAF as seen by
the slight error in the first updates of the second feature shown as dots in the right column figures.
In the bottom right figure these dots all lie on top of the true feature location (displayed as the ring
of small circles) indicating that all the estimates explained the measurements. The QAF had the
first of update with the second feature not quite line up the measurement of the feature with its true
location. Both TAF and QAF could correct the pose accurately after seeing the second feature two
times. The PF is hopelessly off as it had no particle near the correct pose. The same run for the 4
Gaussian estimators EKF, IEKF, UKF, and IUKF had the robot pose outside of the circle of
features heading in. Clearly a Gaussian ellipse can not represent this situation
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Kolmogorov-Smirnov test statistic for all plots over time relative to the updates
(Fig. 5). This statistic is the maximum vertical distance between the empirical and
ideal curves. The effect of particle depletion is seen by the very poor PF consistency
shown here. The TAF has lower values in general and reaches a ‘consistent’
Gaussian posterior sooner than the others.

Table 1 summarizes the average computation times for experiment 1. This is not
very informative as it depends on the matlab implementation details and the diffi-
culty of the simulation but one can get some idea of the time trade-offs. We can see

Fig. 4 Left is the root mean square error in x-y distance for small, medium and big Q. On the right
are the number of simulations with pose error outside a box ±1, ±1, ±0.1 for times: the first
update, before second feature, the second feature update, then 1, 5, 10 and 20 after the second
feature update. The AF are both seen to be more accurate than any of the other estimators
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that the TAF seemed to be 2 times faster than the QAF when the nonlinearities were
large (up to 13 auxiliary dimensions for the largest Q). This is most likely due to
more easily moving to the MLE for the TAF parametrization. We can see a time
factor of about 2–5 for the AF with moderate nonlinearities over the Gaussian
estimators.

We then looked at how the errors behave after a series of updates each with
insufficient information to fully localize the robot. We did simulations with a square
4 feature map and a true path that observed each feature in turn. We can see in
Fig. 6 that the AF were less sensitive to the build up of errors around the square.

Fig. 5 The top left shows and example of the computation of the Kolmogrov-Smirnov, KS,
statistic for the case of the big Q 20 updates after observing the second feature. The curves should
lie on the straight line from 0 to 1 if the estimator was consistent. The KS-statistic is the maximum
vertical distance between this line and the curve. In this case the AF estimators are much closer to
consistent than the others. The evolution of the KS-statistic is shown in the other three plots for the
three Q values. The TAF seems to generally be the least inconsistent estimator. The PF with 2,000
and 20,000 particles both become inconsistent

Table 1 The mean computation times for the various filters for experiment 1 in s

Q(2,2) EKF IEKF UKF IUKF PF2K PF20K QAF TAF

1E-5 0.65 0.78 0.40 1.22 1.04 8.09 1.92 1.69

1E-4 0.65 0.80 0.40 1.22 1.03 7.91 2.17 2.11

1E-3 0.57 0.81 0.35 1.05 0.94 7.24 4.55 2.38
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7 Conclusion

We have investigated a completely new type of nonlinear filter the AF. The AF
methods can be significantly more accurate than the other popular recursive non-
linear estimators. The TAF was in some ways slightly better than the QAF on this
problem for which it was tailored. The QAF is a more general filter. We also
showed the new estimators were significantly more consistent than the EKF, IEKF,
UKF, IUKF, and PF on a robot localization problem in 2D. In general the PF will
be able to represent more shapes than the AF and so it is a more general solution. In
particular it can estimate multimodal distributions. For problems that can be
modeled approximately by an AF, the AF has strengths making it a viable choice of
estimator.
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Visual Odometry and Mapping
for Autonomous Flight Using
an RGB-D Camera

Albert S. Huang, Abraham Bachrach, Peter Henry, Michael Krainin,
Daniel Maturana, Dieter Fox and Nicholas Roy

Abstract RGB-D cameras provide both a color image and per-pixel depth esti-
mates. The richness of their data and the recent development of low-cost sensors
have combined to present an attractive opportunity for mobile robotics research. In
this paper, we describe a system for visual odometry and mapping using an RGB-D
camera, and its application to autonomous flight. By leveraging results from recent
state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered
environments using only onboard sensor data. All computation and sensing
required for local position control are performed onboard the vehicle, reducing the
dependence on unreliable wireless links. We evaluate the effectiveness of our
system for stabilizing and controlling a quadrotor micro air vehicle, demonstrate its
use for constructing detailed 3D maps of an indoor environment, and discuss its
limitations.

A.S. Huang (&) � A. Bachrach � N. Roy
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA 02139, USA
e-mail: albert@csail.mit.edu

A. Bachrach
e-mail: abachrac@csail.mit.edu

N. Roy
e-mail: nickroy@csail.mit.edu

P. Henry � M. Krainin � D. Fox
Department of Computer Science and Engineering, University of Washington,
Seattle, WA, USA
e-mail: peter@cs.washington.edu

M. Krainin
e-mail: mkrainin@cs.washington.edu

D. Fox
e-mail: fox@cs.washington.edu

D. Maturana
Department of Computer Science, Pontificia Universidad Católica de Chile,
Santiago, Chile
e-mail: dimatura@puc.cl

© Springer International Publishing Switzerland 2017
H.I. Christensen and O. Khatib (eds.), Robotics Research,
Springer Tracts in Advanced Robotics 100, DOI 10.1007/978-3-319-29363-9_14

235



1 Introduction

Stable and precise control of an autonomous micro air vehicle (MAV) demands fast
and accurate estimates of the vehicle’s pose and velocity. In cluttered environments
such as urban canyons, under a forest canopy, and indoor areas, knowledge of the
3D environment surrounding the vehicle is additionally required to plan
collision-free trajectories. Navigation systems based on wirelessly transmitted
information, such as Global Positioning System (GPS) technologies, are not typi-
cally useful in these scenarios due to limited range, precision, and reception. Thus,
the MAV must estimate its state and plan collision-free trajectories using only its
onboard sensors.

RGB-D cameras capture RGB color images augmented with depth data at each
pixel. A variety of techniques can be used for producing the depth estimates, such
as time-of-flight imaging, structured light stereo, dense passive stereo, laser range
scanning, etc. While many of these technologies have been available to researchers
for years, the recent application of structured light RGB-D cameras to home
entertainment and gaming [32] has resulted in the wide availability of low-cost
RGB-D sensors well-suited for robotics applications. In particular, the Microsoft
Kinect sensor, developed by PrimeSense, provides a 640 � 480 RGB-D image at
30 Hz. When stripped down to its essential components, the Kinect weighs 115 g—
light enough to be carried by a small MAV.

Previously, we have developed algorithms for MAV flight in cluttered envi-
ronments using LIDAR [3] and stereo cameras [1]. LIDAR sensors currently
available in form factors appropriate for use on a MAV are very high precision, but
only provide range measurements along a plane around the sensor. Since they can
only detect objects that intersect the sensing plane, they are most useful in envi-
ronments characterized by vertical structures, and less so in more complex scenes.

Structured light RGB-D cameras are based upon stereo techniques, and thus
share many properties with stereo cameras. The primary differences lie in the range
and spatial density of depth data. Since RGB-D cameras illuminate a scene with an
structured light pattern, they can estimate depth in areas with poor visual texture,
but are range-limited by their projectors.

This paper presents our approach to providing an autonomous micro air vehicle
with fast and reliable state estimates and a 3D map of its environment by using an
on-board RGB-D camera and inertial measurement unit (IMU). Together, these
allow the MAV to safely operate in cluttered, GPS-denied indoor environments.
The control of a micro air vehicle requires accurate estimation of not only the
position of the vehicle but also the velocity—estimates that our algorithms are able
to provide. Estimating a vehicle’s 3D motion from sensor data typically consists of
estimating its relative motion at each time step by aligning successive sensor
measurements such as laser scans or RGB-D frames, a process most often known as
“visual odometry” when comparing camera or RGB-D images. The primary con-
tribution of this paper is to provide a systematic experimental analysis of how the
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best practices in visual odometry using an RGB-D camera enable the control of a
micro air vehicle.

Given knowledge of the relative motion of the vehicle from sensor frame to
sensor frame, the 3D trajectory of the vehicle in the environment can be estimated
by integrating the relative motion estimates over time. Given knowledge of the
vehicle position in the environment, the locations of obstacles in each sensor frame
can also be used to construct a global map. However, while often useful for local
position control and stability, visual odometry methods suffer from long-term drift
and are not suitable for building large-scale maps. To solve this problem, we also
demonstrate how our previous work on RGB-D Mapping [14] can be incorporated
to detect loop closures, correct for accumulated drift and maintain a representation
of consistent pose estimates over the history of previous frames. We describe our
overall system, justify the design decisions made, provide a ground-truth evalua-
tion, and discuss its capabilities and limitations.

2 Related Work

Visual odometry refers to the process of estimating a vehicle’s 3D motion from
visual imagery alone, and dates back to Moravec’s work on the Stanford cart [25].
The basic algorithm used by Moravec and others since then is to identify features of
interest in each camera frame, estimate depth to each feature (typically using ste-
reo), match features across time frames, and then estimate the rigid body trans-
formation that best aligns the features over time. Since then, a great deal of progress
has been made in all aspects of visual odometry. Common feature detectors in
modern real-time algorithms include Harris corners [12] and FAST features [33],
which are relatively quick to compute and resilient against small viewpoint chan-
ges. Methods for robustly matching features across frames include RANSAC-based
methods [18, 22, 28] and graph-based consistency algorithms [17]. In the motion
estimation process, techniques have ranged from directly minimizing Euclidean
distance between matched features [16], to minimizing pixel reprojection error
instead of 3D distance [28]. When computation constraints permit, bundle adjust-
ment has been shown to help reduce integrated drift [22].

Visual odometry estimates local motion and generally has unbounded global
drift. To bound estimation error, it can be integrated with simultaneous localization
and mapping (SLAM) algorithms, which employ loop closing techniques to detect
when a vehicle revisits a previous location. Most recent visual SLAM methods rely
on fast image matching techniques [26, 35] for loop closure. As loops are detected,
a common approach is to construct a pose graph representing the spatial relation-
ships between positions of the robot during its trajectory and environmental fea-
tures, creating constraints that link previous poses. Optimization of this pose graph
results in a globally aligned set of frames [10, 19, 30]. For increased visual con-
sistency, Sparse Bundle Adjustment (SBA) [37] can be used to simultaneously
optimize the poses and the locations of observed features.
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In the vision and graphics communities, a large body of work exists on align-
ment and registration of images for 3D modeling and dense scene reconstruction
(e.g., Polleyfeys et al. [31]). However, our focus is on primarily on scene modeling
for robot perception and planning, and secondarily for human situational awareness
(e.g., for a human supervisor commanding the MAV).

The primary focus in the visual odometry communities has been on ground
vehicles, however, there has been significant amount of research on using visual
state estimation for the control of MAVs. For larger outdoor helicopters, several
researchers have demonstrated various levels of autonomy using vision based state
estimates [6, 20]. While many of the challenges for such vehicles are similar to
smaller indoor MAVs, the payload and flight environments are quite different. For
smaller MAVs operating in indoor environments, a number of researchers have
used monocular camera sensors to control MAVs [2, 5, 8, 36]. However, these
algorithms require specific assumptions about the environment (such as known
patterns) to obtain the unknown scale factor inherent in using a monocular camera.
Previous work in our group used a stereo camera to stabilize a MAV in unknown
indoor environments [1], but the computation had to be performed offboard, and no
higher level mapping or SLAM was performed. Finally, there has been considerable
work in using laser range finders for MAV navigation and control [3, 11, 13, 34]
with the limitations discussed earlier in this paper.

3 Approach

The problem we address is that of a quadrotor helicopter navigating in an unknown
environment. The quadrotor must use the onboard RGB-D sensor to estimate its
own position (local estimation), build a dense 3D model of the environment (global
simultaneous localization and mapping) and use this model to plan trajectories
through the environment.

Our algorithms are implemented on the vehicle shown in Fig. 1. The vehicle is a
Pelican quadrotor manufactured by Ascending Technologies GmbH. The vehicle
has a maximal dimension of 70 cm, and a payload of up to 1000 g. We have
mounted a stripped down Microsoft Kinect sensor and connected it to the onboard
flight computer. The flight computer, developed by the Pixhawk project at ETH
Zurich [24], is a 1.86 GHz Core2Duo processor with 4 GB of RAM. The computer
is powerful enough to allow all of the real-time estimation and control algorithms to
run onboard the vehicle.

Following our previous work, we developed a system that decouples the
real-time local state estimation from the global simultaneous localization and
mapping (SLAM). The local state estimates are computed from visual odometry
(Sect. 3.1), and to correct for drift in these local estimates the estimator periodically
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incorporates position corrections provided by the SLAM algorithm (Sect. 3.2). This
architecture allows the SLAM algorithm to use much more processing time than
would be possible if the state estimates from the SLAM algorithm were directly
used to control the vehicle.

3.1 Visual Odometry

The visual odometry algorithm that we have developed is based around a standard
stereo visual odometry pipeline, with components adapted from existing algo-
rithms. While most visual odometry algorithms follow a common architecture, a
large number of variations and specific approaches exist, each with its own attri-
butes. The contribution of this paper is to specify the steps of our visual odometry
algorithm and compare the alternatives for each step. In this section we specify
these steps, and in Sect. 4 we provide the experimental comparison of each step in
the visual odometry pipeline. Our overall algorithm is most closely related to the
approaches taken by Mei et al. [23] and Howard [17].

1. Image Preprocessing: An RGB-D image is first acquired from the RGB-D
camera (Fig. 2). The RGB component of the image is converted to grayscale
and smoothed with a Gaussian kernel of r = 0.85, and a Gaussian pyramid is
constructed to enable more robust feature detection at different scales. Each
level of the pyramid corresponds to one octave in scale space. Features at the
higher scales generally correspond to larger image structures in the scene, which
generally makes them more repeatable and robust to motion blur.

2. Feature Extraction: Features are extracted at each level of the Gaussian
pyramid using the FAST feature detector [33]. The threshold for the FAST
detector is adaptively chosen using a simple proportional controller to ensure a

Fig. 1 Our quadrotor micro air vehicle (MAV). The RGB-D camera is mounted at the base of the
vehicle, tilted slightly down
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sufficient number of features are detected in each frame. The depth corre-
sponding to each feature is also extracted from the depth image. Features that do
not have an associated depth are discarded. To maintain a more uniform dis-
tribution of features, each pyramid level is discretized into 80 � 80 pixel
buckets, and the 25 features in each bucket with the strongest FAST corner score
are retained.

3. Initial Rotation Estimation: For small motions such as those encountered in
successive image frames, the majority of a feature’s apparent motion in the
image plane is caused by 3D rotation. Estimating this rotation allows us to
constrain the search window when matching features between frames. We use
the technique proposed by Mei et al. [23] to compute an initial rotation by
directly minimizing the sum of squared pixel errors between downsampled
versions of the current and previous frames.
One could also use an IMU or a dynamics model of the vehicle to compute this
initial motion estimate, however the increased generality of the image based
estimate is preferable, while providing sufficient performance. An alternative
approach would be to use a coarse-to-fine motion estimation that iteratively
estimates motion from each level of the Gaussian pyramid, as proposed by
Johnson et al. [18].

4. Feature Matching: Each feature is assigned an 80-byte descriptor consisting of
the brightness values of the 9 � 9 pixel patch around the feature, normalized to
zero mean and omitting the bottom right pixel. The omission of one pixel results
in a descriptor length more suitable for vectorized instructions. Features are then
matched across frames by comparing their feature descriptor values using a

Fig. 2 The input RGB-D data to the visual odometry algorithm alongside the detected feature
matches. The top row images are from time t, the bottom row images are from time t + 1. The left
column is the depth image, and the middle column is the corresponding RGB image. The right
hand column shows the pixels that are matched between frames, where inlier feature matches are
drawn in blue and outliers are drawn in red
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mutual-consistency check [28]. The match score between two features is the
sum-of-absolute differences (SAD) of their feature descriptors [17], which can
be quickly computed using SIMD instructions such as Intel SSE2. A feature
match is declared when two features have the lowest scoring SAD with each
other, and they lie within the search window defined by the initial rotation
estimation. Once an initial match is found, the feature location in the newest
frame is refined to obtain a sub-pixel match. Refinement is computed by min-
imizing the sum-of-square errors of the descriptors, using ESM to solve the
iterative nonlinear least squares problem [4]. We also use SIMD instructions to
speed up this process.

5. Inlier Detection: Although the constraints imposed by the initial rotation esti-
mation substantially reduce the rate of incorrect feature matches between
frames, an additional step is necessary to further prune away bad matches. We
follow Howard’s approach of computing a graph of consistent feature matches,
and then using a greedy algorithm to approximate the maximal clique in the
graph [15, 17]. The graph is constructed according to the fact that rigid body
motions are distance-preserving operations—the Euclidean distance between
two features at one time should match their distance at another time. Thus, each
pair of matched features across frames is a vertex in the graph, and an edge is
formed between two such pairs of matched feature if the 3D distance between
the features does not change substantially from the prior frame to the subsequent
frame. For a static scene, the set of inliers make up the maximal clique of
consistent matches. The max-clique search is approximated by starting with an
empty set of matched feature pairs and iteratively adding matched feature pairs
with greatest degree that is consistent with all matched feature pairs in the clique
(Fig. 2). Overall, this algorithm has a runtime quadratic in the number of
matched feature pairs, but runs very quickly due to the speed of the consistency
checking. In Sect. 4, we compare this approach to RANSAC-based methods
[22, 28].

6. Motion Estimation: The final motion estimate is computed from the matched
features in three steps. First, Horn’s absolute orientation method provides an
initial estimate by minimizing the Euclidean distances between the inlier feature
matches [16]. Second, the motion estimate is refined by minimizing feature
reprojection error using a nonlinear least-squares solver [4]. This refinement step
implicitly accounts for the increase in depth uncertainty with range due to the
fact that the depth estimates are computed by stereo matching in image space.
Finally, feature matches exceeding a fixed reprojection error threshold are dis-
carded from the inlier set and the motion estimate is refined once again.
To reduce short-scale drift, we additionally use a keyframe technique. Motion is
estimated by comparing the newest frame against a reference frame. If the
camera motion relative to the reference frame is successfully computed with a
sufficient number of inlier features, then the reference frame is not changed.
Otherwise, the newest frame replaces the reference frame after the estimation is
finished. If motion estimation against the reference frame fails, then the motion
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estimation is tried again with the second most recent frame. This simple
heuristic serves to eliminate drift in situations where the camera viewpoint does
not vary significantly, a technique especially useful when hovering.

3.2 Mapping

Visual odometry provides locally accurate pose estimates; however global consis-
tency is needed for metric map generation and navigation over long time-scales. We
therefore integrate our visual odometry system with our previous work in
RGBD-Mapping [14]. This section focuses on the key decisions required for
real-time operation; we refer readers to our previous publication for details on the
original algorithm that emphasizes mapping accuracy [14].

Unlike the local pose estimates needed for maintaining stable flight, map updates
and global pose updates are not required at a high frequency and can therefore be
processed on an offboard computer. The MAV transmits RGB-D data to an off-
board laptop, which detects loop closures, computes global pose corrections, and
constructs a 3D log-likelihood occupancy grid map. For coarse navigation, we
found that a grid map with 10 cm resolution provided a useful balance between
map size and precision. Depth data is downsampled to 128 � 96 prior to a voxel
map update to increase the update speed, resulting in spacing between depth pixels
of approximately 5 cm at a range of 6 m. Incorporating a single frame into the
voxel map currently takes approximately 1.5 ms.

As before, we adopt a keyframe approach to loop closure—new RGB-D frames
are matched against a small set of keyframes to detect loop closures, using a fast
image matching procedure [14]. New keyframes are added when the accumulated
motion since the previous keyframe exceeds either 10° in rotation or 25 cm in
translation. When a new keyframe is constructed, a RANSAC procedure over
FAST keypoints [33] compares the new keyframe to keyframes occurring more
than 4 s prior. As loop closure requires matching non-sequential frames, we obtain
putative keypoint matches using Calonder randomized tree descriptors [7]. A new
keypoint is considered as a possible match to an earlier frame if the L2 distance to
the most similar descriptor in the earlier frame has a ratio less than 0.6 with the next
most similar descriptor. RANSAC inlier matches establish a relative pose between
the frames, which is accepted if there are at least 10 inliers. Matches with a
reprojection error below a fixed threshold are considered inliers. The final refined
relative pose between keyframes is obtained by solving a two-frame sparse bundle
adjustment (SBA) system, which minimizes overall reprojection error.

To keep the loop closure detection near constant time as the map grows, we limit
the keyframes against which the new keyframe is checked. First, we only use
keyframes whose pose differs from the new frame (according to the existing esti-
mates) by at most 90° in rotation and 5 m in translation. We also use Nistér’s
vocabulary tree approach [29], which uses a quantized “bag of visual words” model
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to rapidly determine the 15 most likely loop closure candidates. Keyframes that
pass these tests are matched against new frames, and matching is terminated after
the first successful loop closure. On each successful loop closure, a new constraint
is added to a pose graph, which is then optimized using TORO [9]. Pose graph
optimization is typically fast, converging in roughly 30 ms. Corrected pose esti-
mates are then transmitted back to the vehicle, along with any updated voxel maps.

Greater global map consistency can be achieved using a sparse bundle adjust-
ment technique that optimizes over all matched features across all frames [21].
However, this is a much slower approach and not yet suitable for real-time
operation.

3.3 State Estimation and Control

To control the quadrotor, we integrated the new visual odometry and RGB-D
Mapping algorithms into our system previously developed around 2D laser scan-
matching and SLAM [3]. The motion estimates computed by the visual odometry
are fused with measurements from the onboard IMU in an Extended Kalman Filter.
The filter computes estimates of both the position and velocity, which are used by
the PID position controller to stabilize the position of the vehicle.

We keep the SLAM process separate from the real-time control loop, instead
having it provide corrections for the real-time position estimates. Since these
position corrections are delayed significantly from when the measurement upon
which they were based was taken, we must account for this delay when we
incorporate the correction by retroactively modifying the appropriate position
estimate in the state history. All future state estimates are then recomputed from this
corrected position, resulting in globally consistent real-time state estimates.

By incorporating the SLAM corrections after the fact, we allow the real-time
state estimates to be processed with low enough delay to control the MAV, while
still incorporating the information from SLAM to ensure drift free position
estimation.

4 Experiments

This section presents results that compare our design decisions with other
approaches, especially with respect to the ways these decisions affect autonomous
flight. First, we compare our approach to visual odometry and mapping with
alternatives. In some cases, computational speed is preferred over accuracy.
Second, we present results using the RGB-D camera to stabilize and control a
MAV. We characterize the performance of the system as a whole, including its
limitations.
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4.1 Visual Odometry

There are a variety of visual odometry methods, and the existing literature is often
unclear about the advantages and limitations of each. We present results comparing
a number of these approaches and analyze their performance. As is true in many
domains, the tradeoffs can often be characterized as increased accuracy at the
expense of additional computational requirements. In some cases, the additional
cost is greatly offset by the improved accuracy.

We conducted a number of experiments using a motion capture system that
provides 120 Hz ground truth measurements of the MAV’s position and attitude.
The motion capture environment can be characterized as a single room approxi-
mately 11 m � 7 m � 4 m in size, lit by overhead fluorescent lights and with a
wide variation of visual clutter—one wall is blank and featureless, and the others
have a varying number of objects and visual features (see Fig. 3). While this is not a
large volume, it is representative of many confined, indoor spaces, and provides the
opportunity to directly compare against ground truth.

We recorded a dataset of the MAV flying various patterns through the motion
capture environment. Substantial movement in X, Y, Z, and yaw were all recorded,
with small deviations in roll and pitch. We numerically differentiated the motion
capture measurements to obtain the vehicle’s ground truth 3D velocities, and
compared them to velocities and trajectories as estimated by the visual odometry
and mapping algorithms.

Table 1 shows the performance of our integrated approach, and its behavior
when adjusting different aspects of the algorithm. Each experiment varied a single
aspect from our approach. We present the mean velocity error magnitude, the
overall computation time per RGB-D frame, and the gross failure rate. We define a
gross failure to be any instance where the visual odometry algorithm was either
unable to produce a motion estimate (e.g., due to insufficient feature matches) or
where the error in the estimated 3D velocities exceeded a fixed threshold of 1 m/s.
Timing results were computed on a 2.67 GHz laptop computer.

The dataset was designed to challenge vision-based approaches to the point of
failure, and includes motion blur and feature-poor images, as would commonly be
encountered indoors and under moderate lighting conditions. Our algorithm had a
mean velocity error of 0.387 m/s and a 3.39 % gross failure rate, and is unlikely to

Fig. 3 Panorama photograph of the motion capture room used to conduct our ground-truth
experiments. Visual feature density varies substantially throughout this room
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have been capable of autonomously flying the MAV through the entire recorded
trajectory. In contrast, in environments with richer visual features, we have
observed mean velocity errors of 0.08 m/s, with no gross failures, significantly
lower than the values reported in Table 1.

Inlier detection RANSAC based methods [28] are more commonly used than
the greedy max-clique approach. We tested against two RANSAC schemes, tra-
ditional RANSAC and Preemptive RANSAC [27]. The latter attempts to speed up

Table 1 Comparison of various approaches on a challenging dataset

Velocity error
(m/s)

% gross
failures

Total time
(ms)

Our approach 0.387 ± 0.004 3.39 14.7

Inlier detection
RANSAC 0.412 ± 0.005 6.05 15.3

Preemptive RANSAC 0.414 ± 0.005 5.91 14.9

Greedy max-clique—our
approach

0.387 ± 0.004 3.39 14.7

Initial rotation estimate
None 0.388 ± 0.004 4.22 13.6

Gaussian pyramid levels
1 0.387 ± 0.004 5.17 17.0

2 0.385 ± 0.004 3.52 15.1

3—our approach 0.387 ± 0.004 3.39 14.7

4 0.387 ± 0.004 3.50 14.5

Reprojection error minimization
Bidir. Gauss-Newton 0.387 ± 0.004 3.24 14.7

Bidir. ESM—our approach 0.387 ± 0.004 3.39 14.7

Unidir. Gauss-Newton 0.391 ± 0.004 3.45 14.6

Unidir. ESM 0.391 ± 0.004 3.47 14.6

Absolute orientation only 0.467 ± 0.005 10.97 14.4

Feature window size
3 0.391 ± 0.004 5.96 12.8

5 0.388 ± 0.004 4.24 13.7

7 0.388 ± 0.004 3.72 14.2

9—our approach 0.387 ± 0.004 3.39 14.7

11 0.388 ± 0.004 3.42 15.7

Subpixel feature refinement
No refinement 0.404 ± 0.004 5.13 13.1

Adaptive FAST threshold
Fixed threshold (10) 0.385 ± 0.004 3.12 15.3

Feature grid/bucketing
No grid 0.398 ± 0.004 4.02 24.6

Error is computed using a high resolution motion capture system for ground truth
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RANSAC by avoiding excessive scoring of wrong motion hypotheses. In our
experiments, when allocated a comparable amount of computation time (by using
500 hypotheses), greedy max-clique outperformed both.

Initial rotation estimation A good initial rotation estimate can help constrain
the feature matching process and reduce the number of incorrect feature matches.
Disabling the rotation estimate results in slightly faster runtime, but more frequent
estimation failures.

Gaussian pyramid levels Detecting and matching features on different levels of
a Gaussian pyramid provides provides resilience against motion blur and helps
track larger features.

Reprojection error We compared undirectional motion refinement, which
minimizes the reprojection error of newly detected features onto the reference
frame, with bidirectional refinement, which additionally minimizes the reprojection
error of reference features projected onto the new frame. We additionally compared
a standard Gauss-Newton optimization technique with ESM. Bidirectional refine-
ment does provide slightly more accuracy without substantially greater cost, and we
found no significant difference between Gauss-Newton and ESM.

Feature window size As expected, larger feature windows result in more suc-
cessful motion estimation at the cost of additional computation time. Interestingly, a
very small window size of 3 � 3 yielded reasonable performance, a behavior we
attribute to the constraints provided by the initial rotation estimate.

Subpixel refinement, adaptive thresholding, and feature bucketing We
found the accuracy improvements afforded by subpixel feature refinement out-
weighed its additional computational cost. While the lighting in the motion capture
experiments did not substantially change, adaptive thresholding still yielded a lower
failure rate. We would expect the accuracy difference to be greater when flying
through more varied lighting conditions. Finally, without feature bucketing, the
feature detector often detected clusters of closely spaced features, which in turn
confused the matching process and resulted in both slower speeds and decreased
accuracy.

Timing On the 2.6 GHz laptop computer used for comparisons, our algorithm
requires roughly 15 ms per frame. The timing per stage is as follows.
Preprocessing: 2.1 ms, feature extraction: 3.1 ms, initial rotation estimation:
1.0 ms, feature matching: 6.0 ms, inlier detection: 2.2 ms, and motion estimation
required less than 0.1 ms. Runtimes for the computer onboard the MAV are
roughly 25 ms per frame due to the slower clock speed (1.86 GHz), but are still
well within real-time.

4.2 Mapping and Autonomous Flight

In addition to evaluating the visual odometry algorithms against motion capture
results, we also conducted a number of autonomous flight experiments in the
motion capture system and in larger environments. In these experiments, the vehicle
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flew autonomously with state estimates provided by the algorithms presented in this
paper. The vehicle was commanded through the environment by a human operator
selecting destination waypoints using a graphical interface.

Figure 4 shows an example trajectory where the MAV was commanded to hover
at a target point, along with statistics about how well it achieved this goal. The
ground truth trajectory and performance measures were recorded with the motion
capture system.

In addition to the flights performed in the small motion capture environment, we
have flown in a number of locations around the MIT campus, and at the Intel
Research office in Seattle. Two such experiments are shown in Fig. 5.

As the MAV covers greater distances, the RGB-D mapping algorithm limits the
global drift on its position estimates by detecting loop closures and correcting the
trajectory estimates. The trajectory history can then be combined with the RGB- D
sensor data to automatically generate maps that are useful both for a human
operator’s situational awareness, and for autonomous path planning and decision
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Fig. 4 A plot showing the ground truth trajectory of the vehicle during position hold. The red dot
near the center is the origin around which the vehicle was hovering. The vehicle was controlled
using visual odometry, and its position measured with a motion capture system

Fig. 5 Trajectories flown by the MAV in two navigation experiments
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making. While the ground truth position estimates are not available, the quality of
the state estimates computed by our system is evident in the rendered point cloud.
A video demonstrating autonomous flight and incremental mapping is available at
http://groups.csail.mit.edu/rrg/isrr2011-mav.

4.3 Navigation

Figure 6a shows an occupancy voxel map populated using the dense depth data
provided by the RGB-D sensor. These occupancy maps can be used for autono-
mous path planning and navigation in highly cluttered environments, enabling flight
through tight passageways and in close proximity to obstacles. Figure 6b shows a
rendering of the MAV’s internal state estimate as it flew through the environment
depicted in Fig. 5b, and a path planned using the occupancy map and a simple
dynamic programming search strategy. While these renderings are not necessary for
obstacle avoidance, they would serve to provide a human operator with greater
situational awareness of the MAV’s surrounding environment.

5 Discussion and Future Work

The system described in this paper enables autonomous MAV flight in many
unknown indoor environments. However, there remain a great number more
challenging situations that would severely tax our system’s abilities. Motion esti-
mation algorithms based on matching visual features, such as ours and virtually all

Fig. 6 Voxel maps for the environments in Fig. 5. a Dense maximum-likelihood occupancy
voxel map of the environment depicted in Fig. 5a, false-colored by height. Unknown/unobserved
cells are also tracked, but not depicted here. b A voxel map of the environment in Fig. 5b allows
the vehicle to plan a collision-free 3D trajectory (green)
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other visual odometry techniques, do not perform as well in regions with few visual
features. In large open areas, the visible structure is often far beyond the maximum
range of the Kinect. As a result, the system actually performs better in cluttered
environments and in close quarters than it does in wide open areas. Handling these
challenges will likely require the integration of other sensors such as conventional
stereo cameras or laser range-finders. As these sensors have different failure modes,
they serve to complement each other’s capabilities. Additional sensing modalities
can reduce, but not eliminate, state estimation failures. Further robustness can be
gained by designing planning and control systems able to respond appropriately
when the state estimates are extremely uncertain, or to plan in ways that minimize
future uncertainty [13].

Our state estimation algorithms assume a static environment, and assume that the
vehicle moves relatively slowly. As the vehicle flies faster, the algorithms will need
to handle larger amounts of motion blur, and other artifacts resulting from the
rolling shutter in the Kinect cameras. Larger inter-frame motions resulting from
greater speeds may in turn require more efficient search strategies to retain the
real-time estimation capabilities required to control the vehicle. Relaxing the static
environment assumptions will likely require better ways of detecting the set of
features useful for motion estimation. When moving objects comprise a substantial
portion of the visible image, the maximal clique of consistent feature matches may
not correspond to the static environment.

Further work is also required to improve the accuracy and efficiency of the
presented algorithms. Currently, the visual odometry, sensor fusion, and control
algorithms are able to run onboard the vehicle; however, even with the modifica-
tions discussed in Sect. 3.2, the loop closing and SLAM algorithms are not quite
fast enough to be run using the onboard processor. In other cases, we have actively
traded estimation accuracy for computational speed. Figure 7 shows the mapping
accuracy possible with further processing time, using more computationally
intensive techniques presented in our previous work [14].

Fig. 7 Textured surfaces generated offline using sparse bundle adjustment, with data collected
from autonomous flights
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While the maps presented in this paper are fairly small, the methods presented
scale to much larger environments. We have previously demonstrated
building-scale mapping with a hand-collected data set [14], although autonomous
map construction of very large spaces will require exploration algorithms that keep
the vehicle well localized (e.g., in visually rich areas).

6 Conclusion

This paper presents an experimental analysis of our approach to enabling autono-
mous flight using an RGB-D sensor. Our system combines visual odometry tech-
niques from the existing literature with our previous work on autonomous flight and
mapping, and is able to conduct all sensing and computation required for local
position control onboard the vehicle. Using the RGB-D sensor, our system is able to
plan complex 3D paths in cluttered environments while retaining a high degree of
situational awareness. We have compared a variety of different approaches to visual
odometry and integrated the techniques that provide a useful balance of speed and
accuracy.
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Efficient Planning in Non-Gaussian Belief
Spaces and Its Application to Robot
Grasping

Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez
and Russ Tedrake

Abstract The limited nature of robot sensors make many important robotics
problems partially observable. These problems may require the system to perform
complex information-gathering operations. One approach to solving these problems
is to create plans in belief-space, the space of probability distributions over the
under-lying state of the system. The belief-space plan encodes a strategy for per-
forming a task while gaining information as necessary. Most approaches to
belief-space planning rely upon representing belief state in a particular way (typi-
cally as a Gaussian). Unfortunately, this can lead to large errors between the
assumed density representation of belief state and the true belief state. This paper
proposes a new sample-based approach to belief-space planning that has fixed
computational complexity while allowing arbitrary implementations of Bayes fil-
tering to be used to track belief state. The approach is illustrated in the context of a
simple example and compared to a prior approach. Then, we propose an application
of the technique to an instance of the grasp synthesis problem where a robot must
simultaneously localize and grasp an object given initially uncertain object
parameters by planning information-gathering behavior. Experimental results are
presented that demonstrate the approach to be capable of actively localizing and
grasping boxes that are presented to the robot in uncertain and hard-to-localize
configurations.
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1 Introduction

A fundamental objective of robotics is to develop systems that can perform tasks
robustly even in unstructured environments. One way to achieve this is to create a
planner capable of simultaneously localizing the state of the system and of reaching
a particular goal state. It is common to model control problems such as these as
partially observable Markov decision processes (POMDPs). However, in general,
finding optimal solutions to POMDPs has been shown to be PSPACE complete [1].
Even many approximate approaches are computationally complex: the time com-
plexity of standard point-based algorithms, such as HSVI and SARSOP, is expo-
nential in the planning horizon [2–4]. These algorithms calculate policies in belief-
space, the space of probability distributions over the underlying state space. Very
few of these algorithms can handle continuous state and action spaces [5, 6].

In an effort to avoid the computational complexity of creating policies, a new set
of approaches have recently been proposed which create plans based on expected
information content. In one class of approaches, large numbers of candidate tra-
jectories in the underlying state space are evaluated in terms of the information that
is likely to be gained during execution [7–9]. Trajectories are selected that optimize
information content or minimize the likelihood of collisions. These approaches
work well in scenarios where the likelihood of generating information-gathering
trajectories by sampling the underlying space is high. A different class of approa-
ches create plans in a parametrization of belief-space [10–12]. These approaches are
potentially better positioned to generate complex information-gathering plans, but
since they plan directly in the belief-space, the dimensionality of the planning
problem is potentially very large. With the exception of [12], the planning
approaches listed above assume that Bayes filtering will be performed using a
Gaussian density function [7–11]. However, the popularity of the particle filter
relative to the extended Kalman filter or unscented Kalman filter suggests that in
many robot problems, belief state is not well-represented as a Gaussian.
Furthermore, simply extending an approach such as in [10, 11] to non-Gaussian
distributions quickly results in an intractable planning problem because of the high
dimensionality of typical non-Gaussian parametrizations.

This paper proposes an approach to planning in high-dimensional belief-spaces
that tracks belief state using an accurate, high-dimensional filter, but creates plans
using a fixed-dimensional sampled representation of belief. We leave the imple-
mentation of the high-dimensional filter as a design choice, but expect that it will be
a histogram filter or a particle filter. In order to create a new plan, the
high-dimensional belief state is projected onto a hypothesis in the underlying state
space and a set of sampled competing states. Plans are created that generate
observations that differentiate the hypothesis from the other samples while also
reaching a goal state. During execution, we monitor KL divergence between the
actual (high- dimensional) belief-space trajectory and a belief-space trajectory
associated with the plan. If divergence exceeds a threshold, we halt execution and
create a new plan starting from the current belief (this re-planning approach is
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similar to that taken in [10, 11]). In a technical report that expands upon this paper,
we have shown that if each new plan found has a below-threshold cost, then the
algorithm eventually localizes the true state of the system and reaches a goal region
with probability one [13]. We illustrate the approach in the context of a
one-dimensional manipulation problem and compare it to the approach proposed in
[10]. Then, we show that the approach can be used to solve a version of the grasp
synthesis problem where the robot must simultaneously localize and grasp an
object. The algorithm generates robot arm trajectories that gain information by
“scanning” the boxes using a laser scanner and pushing one of the boxes as nec-
essary in order to gain information. The algorithm terminates in a pre-grasp con-
figuration that is likely to lead to a successful grasp. The approach is tested over a
range of randomly selected box configurations.

2 Problem Statement

This paper is concerned with the problem of reaching a desired goal state when the
initial state is uncertain and may only be estimated based on partial or noisy
observations. Consider a discrete-time system with continuous non-linear deter-
ministic1 process dynamics,

xtþ 1 ¼ f xt; utð Þ; ð1Þ

where state, x 2 R
n, and action, u 2 R

l, are column vectors. At each time step, the
systemmakes an observation, z 2 R

m, that is a non-linear stochastic function of state:

zt ¼ h xtð Þþ vt; ð2Þ

where vt �N 0;Qð Þ is zero-mean Gaussian noise with variance Q.
Bayesian filtering can be used to estimate state based on actions taken and ob-

servation perceived. The state estimate is represented by a probability distribution
function, p x; bð Þ, that is a function of the parameter vector, b 2 B. We will refer to
b, (and sometimes the probability distribution, p x; bð Þ) as the belief state. Suppose
that at time t, the system starts in belief state, bt, takes action, ut, and perceives
observation, ztþ 1. Then, belief state can be updated to incorporate the new infor-
mation using the Bayesian filter update equation. For deterministic process
dynamics, it is:

p f x; utð Þ; btþ 1ð Þ = p x; btð ÞP ztþ 1jx; utð Þ
P ztþ 1ð Þ ; ð3Þ

1Although we have formally limited ourselves to the case of zero process noise, we find in Sect. 4
that empirically, our algorithm performs well in environments with bounded process noise.
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where we implicitly assume that P ztþ 1ð Þ 6¼ 0. Although, in general, it is impossible
to implement Eq. 3 exactly using a finite-dimensional parametrization of
belief-space, a variety of approximations exist in practice [14].

The objective of belief-space planning is to achieve task objectives with a given
minimum probability. Specifically, we want to reach a belief state, b, such that

H b; r; xg
� � ¼

Z
x2Bn rð Þ

p xþ xg; b
� �

[x; ð4Þ

where Bn rð Þ ¼ x 2 R
n; xTx� r2

� �
denotes the r-ball in R

n, for some r > 0, xg 2
R

n denotes the goal state, and x denotes the minimum probability of success. It is
important to notice the similarities between this problem and the more general
partially observable Markov decision process (POMDP) framework. Both problems
are concerned with controlling partially observable systems. However, whereas in
the POMDP formulation, the objective is to minimize the expected cost, in our
problem, the objective is to reach a desired region of state space with a guaranteed
minimum probability of success.

3 Algorithm

This paper extends the approach proposed in [10] to non-Gaussian belief spaces.
Our algorithm iteratively creates and executes a series of belief-space plans.
A replanning step is triggered when, during plan execution, the true belief state
diverges too far from the nominal trajectory.

3.1 Creating Plans

The key to our approach is a mechanism for creating horizon-T belief-space plans
that guarantees that new information is incorporated into the belief distribution on
each planning cycle. The basic idea is as follows. Given a prior belief state, b1,
define a “hypothesis” state to be at the maximum of the distribution,

x1 ¼ argmax
x2Rn

p x; b1ð Þ:

Then, sample k − 1 states from the prior distribution,

xi � p x; b1ð Þ; i 2 2; k½ �; ð5Þ

such that the pdf at each sample is greater than a specified threshold,
p xi; b1ð Þ�u[ 0, and there are at least two unique states (including x1). We search
for a sequence of actions, u1:T�1 ¼ u1; . . .; uT�1ð Þ, that result in as wide a margin as
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possible between the observations that would be expected if the system were in the
hypothesis state and the observations that would be expected in any other sampled
state. As a result, a good plan enables the system to “confirm” that the hypothesis
state is in fact the true state or to “disprove” the hypothesis state. If the hypothesis
state is disproved, then the algorithm selects a new hypothesis on the next
re-planning cycle, ultimately causing the system to converge to the true state.

To be more specific, consider that if the system starts in state x, and takes a
sequence of actions u1:t�1, then the most likely sequence of observations is:

ht x; u1:t�1ð Þ ¼ h xð ÞT ; h f x; u1ð Þð ÞT ; h F3 x; u1:2ð Þð ÞT ; . . .; h Ft x; u1:t�1ð Þð ÞT� �T
;

where Ft x; u1:t�1ð Þ denotes the state at time t when the system begins in state x and
takes actions, u1:t�1. We are interested in finding a sequence of actions over a
planning horizon T, u1:T�1, that maximizes the squared observation distance

hT xi; u1:T�1
� �� hT x1; u1:T�1

� ��� ��2
Q
;

summed over all i 2 2; k½ �; where ak kA¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTA�1a

p
denotes the Mahalanobis dis-

tance and Q ¼ diag Q; . . .;Qð Þ denotes a block diagonal matrix of the appropriate
size composed of observation covariance matrices. The wider the observation
distance, the more accurately Bayes filtering will be able to determine whether or
not the true state is near the hypothesis in comparison to the other sampled states.

Notice that the expression for observation distance is only defined with respect
to the sampled points. Ideally, we would like a large observation distance between a
region of states about the hypothesis state and regions about the other samples.
Such a plan would “confirm” or “disprove” regions about the sampled points - not
just the zero-measure points themselves. We incorporate this objective to the first
order by minimizing the Frobenius norm of the gradient of the measurements,

Ht x; u1:t�1ð Þ ¼ @ht x;u1:t�1ð Þ
@x

:

These dual objectives, maximizing measurement distance and minimizing the
Frobenius norm of the measurement gradient, can simultaneously be optimized by
minimizing the following cost function:

�J x1; . . .; xk; u1:T�1
� � ¼ 1

k

Xk
i¼2

e�U xi;u1:T�1ð Þ; ð6Þ

where

U xi; u1:T�1
� � ¼ hT xi; u1:T�1

� �� hT x1; u1:T�1
� ��� ��2

C xi;u1:T�1ð Þ:
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The weighting matrix (i.e. the covariance matrix) in the metric above is defined

C x; u1:T�1ð Þ ¼ 2Qþ HT x; u1:T�1ð ÞVHT x; u1:T�1ð ÞT

þ HT x1; u1:T�1
� �

VHT x1; u1:T�1
� �T

;
ð7Þ

where V 2 R
n�n is a diagonal weighting matrix.

In order to find plans that minimize Eq. 6, it is convenient to restate the problem
in terms of finding paths through a parameter space. Notice that for any positive
semi-definite matrix, A, and vector, x, we have xT Ax� xT �Ax; where �A is equal to
A with all the off-diagonal terms set to zero. Therefore, we have the following
lower-bound,

U xi; u1:t�1
� �� XT

t¼1

/ Ft x
i; u1:t�1

� �
;Ft x

1; u1:t�1
� �� �

;

where

/ x; yð Þ ¼ 1
2

h xð Þ � h yð Þk k2c x;yð Þ;

c x; yð Þ ¼ 2QþH xð ÞH xð ÞT þH yð ÞH yð ÞT ;

and H xð Þ ¼ @h xð Þ=@x. As a result, we can upper-bound the cost, �J (Eq. 6), by

�J x1; . . .xk; u1:T�1
� �� 1

k

Xk
i¼1

e�
PT

t¼1
/ Ft xi;u1:t�1ð Þ;Ft x1;u1:t�1ð Þð Þ

� 1
k

Xk
i¼1

YT
t¼1

e�/ Ft xi;u1:t�1ð Þ;Ft x1;u1:t�1ð Þð Þ
: ð8Þ

As a result, the planning problem can be written in terms of finding a path
through a parameter space, x1:kt ;w1:k

t

� � 2 R
2k, where xit denotes the state associated

with the ith sample at time t and the weight wi
t, denotes the “partial cost” associated

with sample i. This form of the optimization problem is stated as follows.

Problem 1

Minimize
1
k

Xk
i¼1

wi
T

� �2 þ a
XT�1

t¼1

u2t ð9Þ

subject to xitþ 1 ¼ f xit; ut
� �

; i 2 1; k½ � ð10Þ
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wi
tþ 1 ¼ wi

te
�/ xit ;x

1
tð Þ; i 2 1; k½ � ð11Þ

xi1 ¼ xi;wi
1 ¼ 1; i 2 1; k½ � ð12Þ

x1T ¼ xg ð13Þ

Problem 1 should be viewed as a planning problem in x1:k;w1:k
� � 2 R

2k where
Eqs.12 and 13 set the initial and final value constraints, Eqs. 10 and 11 define the
“belief space dynamics”, and Eq. 9 defines the cost. Notice that we have incor-
porated a quadratic cost into the objective in order to cause the system to favor short
paths. Problem 1 can be solved using a number of planning techniques such as
rapidly exploring random trees [15], differential dynamic programming [16], or
sequential quadratic programming [17]. We use sequential quadratic programming
to solve the direct transcription of Problem 1. The direct transcription solution will
be denoted

u1:T�1 ¼ DirTran x1:k; xg;T
� �

; ð14Þ

for the sample set, x1:k, goal state constraint, xg, and time horizon, T. Sometimes, we
will call DIRTRAN without the final value goal constraint (Eq. 13). This will be
written, u1:T�1 ¼ DirTran x1:k;Tð Þ. It is important to recognize that the computa-
tional complexity of planning depends only on the number of samples used (the size
of k in step 3 of Algorithm 1) and not strictly on the dimensionality of the
underlying space. This suggests that the algorithm can be efficient in
high-dimensional belief spaces. In fact, we report results in [13] from simulations
that indicate that the algorithm can work well when very few samples (as few as
three or four) are used.

3.2 Re-planning

After creating a plan, our algorithm executes it while tracking belief state using an
accurate, high-dimensional filter chosen by the system designer. We denote this
Bayesian filter update as

btþ 1 ¼ G bt; ut; ztþ 1ð Þ:

If the true belief state diverges too far from a nominal trajectory derived from the
plan, then execution stops and a new plan is created. The overall algorithm is
outlined in Algorithm 1. Steps 2 and 3 sample k states from the distribution with the
hypothesis state, x1 ¼ argmaxx2Rn p x; bð Þ, located at the maximum of the prior
distribution. The prior likelihood of each sample is required to be greater than a
minimum threshold, 1 > u � 0. In step 4, CREATEPLAN creates a horizon-T plan,
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u1:T�1, that solves Problem 1 and generates a nominal belief-space trajectory, �b1:T .
Steps 6 through 12 execute the plan. Step 8 updates the belief state given the new
action and observation using the Bayes filter implementation chosen by the
designer. Step 9 breaks plan execution when the actual belief state departs too far
from the nominal trajectory, as measured by the KL divergence,
D1 p x; btþ 1ð Þ; p x; �btþ 1ð Þ½ �[ h. The second condition, �J x; . . .; xk; u1:t�1

� �
\1� q,

guarantees that the while loop does not terminate before a (partial) trajectory with
cost �J\1 executes. The outer while loop terminates when there is a greater than x
probability that the true state is located within r of the goal state, H b; r; xg

� �
[x

(Eq. 4). In the technical report that expands upon this paper [13], we show that if,
for each iteration of the while loop, the two conditions in step 9 are met on some
time step, t < T, then it is possible to guarantee that Algorithm 1 will eventually
localize the true state of the system and the while loop will terminate.

Algorithm 2 shows the CREATEPLAN procedure called in step 4 of Algorithm 1.
Step 1 calls DIRTRAN parametrized by the final value constraint, xg. If DIRTRAN fails
to satisfy the goal state constraint, then the entire algorithm terminates in failure.
Step 2 creates a nominal belief-space trajectory by integrating the user-specified
Bayes filter update over the planned actions, assuming that observations are gen-
erated by the hypothesis state. If this nominal trajectory does not terminate in a
belief state that is sufficiently confident that the true state is located within r of the
hypothesis, then a new plan is created in steps 4 and 5 that is identical to the first
except that it does not enforce the goal state constraints. This allows the algorithm
to gain information incrementally in situations where a single plan does not lead to
a sufficiently “peaked” belief state. When the system gains sufficient information,
this branch is no longer executed and instead plans are created that meet the goal
state constraint.
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3.3 Illustration

Figures 1 and 2 illustrate the process of creating and executing a plan in a robot
manipulation scenario. Figure 1 shows a horizontal-pointing laser mounted to the
end-effector of a two-link robot arm. The end-effector is constrained to move only
vertically along the dotted line. The laser points horizontally and measures the
range from the end-effector to whatever object it “sees”. There are two boxes and a
gap between them. Box size, shape, and relative position are assumed to be per-
fectly known along with the distance of the end-effector to the boxes. The only
uncertain variable in this problem is the vertical position of the end-effector mea-
sured with respect to the gap position. This defines the one-dimensional state of the
system and is illustrated by the vertical number line in Fig. 1. The objective is to
localize the vertical end-effector with respect to the center of the gap (state) and
move the end-effector to the center of the gap. The control input to the system is the
vertical velocity of the end-effector.

Figure 2a illustrates an information-gathering trajectory found by DIRTRAN that
is expected to enable the Bayes filter to determine whether the hypothesis state is

laser

arm
gap
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5
4
3
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1
0
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-2

-3

-5

Fig. 1 Localization scenario.
The robot must
simultaneously localize the
gap and move the end-effector
in front of the gap
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indeed the true state while simultaneously moving the hypothesis to the goal state
(end-effector at the center of the gap). The sample set used to calculate the trajectory
was x1; . . .; xk ¼ 5; 2; 3; 4; 6; 7; 8, with the hypothesis sample located at x1 ¼ 5. The
action cost used while solving Problem 1 was a ¼ 0:0085. DIRTRAN was initialized
with a random trajectory. The additional small action cost smooths the trajectory by
pulling it toward shortest paths without changing information gathering or goal
directed behavior much. The trajectory can be understood intuitively. Given the
problem setup, there are two possible observations: range measurements that “see”
one of the two boxes and range measurements that “see” through the gap. The plan
illustrated in Fig. 2a moves the end effector such that different sequences of mea-
surements would be observed depending upon whether the system were actually in
the hypothesis state or in another sampled state.

Figure 2b, c show the nominal belief-space trajectory and the actual trajectory,
respectively, in terms of a sequence of probability distributions superimposed on
each other over time. Each distribution describes the likelihood that the system
started out in a particular state given the actions taken and the observations per-
ceived. The nominal belief-space trajectory in Fig. 2b is found by simulating the
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Fig. 2 Illustration of CREATEPLAN. a An information-gathering trajectory (state as a function of
time) found using direct transcription. Blue denotes the trajectory that would be obtained if the
system started in the hypothesis state. Red denotes the trajectory obtained starting in the true state.
b The planned belief-space trajectory illustrated by probability distributions superimposed over
time. Distributions early in the trajectory are light gray while distributions late in the trajectory are
dark. The seven “X” symbols on the horizontal axis denote the positions of the samples (red
denotes the true state while cyan denotes the hypothesis). c The actual belief-space trajectory
found during execution. d–f Comparison with the EKF-based method proposed in [10]. d The
planned trajectory. e The corresponding nominal belief-space trajectory. f Actual belief-space
trajectory

262 R. Platt et al.



belief-space dynamics forward assuming that future observations will be generated
by the hypothesis state. Ultimately, the planned trajectory reaches a belief state
distribution that is peaked about the hypothesis state, x1 (the red “X”). In contrast,
Fig. 2c illustrates the actual belief-space trajectory found during execution. This
trajectory reaches a belief state distribution peaked about the true state (the cyan
“X”). Whereas the hypothesis state becomes the maximum of the nominal distri-
bution in Fig. 2b, notice that it becomes a minimum of the actual distribution in
Fig. 2c. This illustrates the main idea of the algorithm. Figure 2b can be viewed as
a trajectory that “trusts” that the hypothesis is correct and takes actions that confirm
this hypothesis. Figure 2c illustrates that even when the hypothesis is wrong, the
distribution necessarily gains information because it “disproves” the hypothesis
state (notice the likelihood of the region about the hypothesis is very low).

Figure 2d–f compares the performance of our approach with the extended
Kalman filter-based (EKF-based) approach proposed in [10]. The problem setup is
the same in every way except that cost function optimized in this scenario is:

J u1:T�1ð Þ ¼ 1
10

r2T
� �T

r2T þ 0:0085uT1:T�1u1:T�1;

where r2T denotes covariance. There are several differences in performance Notice
that the two approaches generate different trajectories (compare Fig. 2a, d).
Essentially, the EKF-based approach maximizes the EKF reduction in variance by
moving the maximum likelihood state toward the edge of the gap where the gra-
dient of the measurement function is large. In contrast, our approach moves around
the state space in order to differentiate the hypothesis from the other samples in
regions with a small gradient. Moreover, notice that since the EKF-based approach
is constrained to track actual belief state using an EKF Bayes filter, the tracking
performance shown in Fig. 2f is very bad. The EKF innovation term actually makes
corrections in the wrong direction. However, in spite of the large error, the EKF
covariance grows small indicating high confidence in the estimate.

4 Simultaneous Localization and Grasping

In real-world grasping problems, it is just as important to localize an object to be
grasped as it is to plan the reach and grasp motions. We propose an instance of the
grasp synthesis problem that we call simultaneous localization and grasping
(SLAG) where the localization and grasp planning objectives are combined in a
single planning problem. In most robot implementations, the robot is able to affect
the type or quality of information that it perceives. For example, many robots have
the ability to move objects of interest in the environment or move a camera or
LIDAR through the environment. As a result, SLAG becomes an instance of the
planning under uncertainty problem. The general SLAG problem is important
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because good solutions imply an ability to grasp objects robustly even when their
position or shape is uncertain.

4.1 Problem Setup

Our robot, Paddles, has two arms with one paddle at the end of each arm (see
Fig. 3a). Paddles may grasp a box by squeezing the box between the two paddles
and lifting. We assume that the robot is equipped with a pre-programmed “lift”
function that can be activated once the robot has placed its two paddles in oppo-
sition around the target box. Paddles may localize objects in the world using a laser
scanner mounted to the wrist of its left arm. The laser scanner produces range data
in a plane parallel to the tabletop over a 60° field of view.

We use Algorithm 1 to localize the planar pose of the two boxes parametrized by
a six-dimensional underlying metric space. The boxes are assumed to have been
placed at a known height. We reduce the dimensionality of the planning problem by
introducing an initial perception step that localizes the depth and orientation of the
right box using RANSAC [18]. From a practical perspective, this is a reasonable
simplification because RANSAC is well-suited to finding the depth and orientation
of a box that is assumed to be found in a known region of the laser scan. The
remaining (four) dimensions that are not localized using RANSAC describe the
horizontal dimension of the right box location and the three-dimensional pose of the
left box. These dimensions are localized using a Bayes filter that updates a his-
togram distribution over the four-dimensional state space based on laser measure-
ments and arm motions measured relative to the robot. The histogram filter is
comprised of 20000 bins: 20 bins (1.2 cm each) describing right box horizontal
position times 10 bins (2.4 cm each) describing left box horizontal position times
10 bins (2.4 cm each) describing left box vertical position times 10 bins (0.036
radians each) describing left box orientation. While it is relatively easy for the
histogram filter to localize the remaining four dimensions when the two boxes are
separated by a gap (Fig. 3b), notice that this is more difficult when the boxes are

Fig. 3 Illustration of the grasping problem (a). The robot must localize the pose and dimensions
of the boxes using the laser scanner mounted on the left wrist. This is relatively easy when the
boxes are separated as in (b) but hard when the boxes are pressed together as in (c)
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pressed together (Fig. 3c). In this configuration, the laser scans lie on the surfaces of
the two boxes such that it is difficult to determine where one box ends and the next
begins. Note that it is difficult to locate the edge between abutting boxes reliably
using vision or other sensor modalities in general this is a hard problem.

Our implementation of Algorithm 1 used a set of 15-samples including the
hypothesis sample. The algorithm controlled the left paddle by specifying Cartesian
end-effector velocities in the horizontal plane. These Cartesian velocity commands
were projected into the joint space using standard Jacobian Pseudoinverse tech-
niques [19]. The algorithm was parametrized by process dynamics that modeled
arms motions resulting from velocity commands and box motions produced by
pushes from the arm. Box motions were modeled by assuming zero slip while
pushing the box and assuming the center of friction was located at the center of the
area of the box “footprint”. The observation dynamics described the set of range
measurements expected in a given paddle-box configuration. For planning pur-
poses, the observation dynamics were simplified by modeling only a single
forward-pointing scan rather than the full 60° scan range. However, notice that
since this is a conservative estimate of future perception, low cost plans under the
simplified observation dynamics are also low cost under the true dynamics.
Nevertheless, the observation model used for tracking (step 8 of Algorithm 1)
accurately described measurements from all (100) scans over the 60° range. The
termination threshold in Algorithm 1 was set to 50 % rather than a higher threshold
because we found our observation noise model to overstate the true observation
noise.

Our hardware implementation of the algorithm included some small variations
relative to Algorithm 1. Rather than monitoring divergence explicitly in step 9, we
instead monitored the ratio between the likelihood of the hypothesis state and the
next most probable bin in the histogram filter. When this ratio fell below 0.8, plan
execution was terminated and the while loop continued. Since the hypothesis state
must always have a maximal likelihood over the planned trajectory, a ratio of less
than one implies a positive divergence. Second, rather than finding a non-goal
directed plan in steps 3–5 of Algorithm 2, we always found goal-directed plans.

Figure 4 illustrates an example of an information-gathering trajectory. The
algorithm begins with a hypothesis state that indicates that the two boxes are 10 cm
apart (the solid blue boxes in Fig. 4a). As a result, the algorithm creates a plan that
scans the laser in front of the two boxes under the assumption that this will enable
the robot to perceive the (supposed) large gap. In fact, the two boxes about each
other as indicated by the black dotted lines in Fig. 4a. After beginning the scan, the
histogram filter in Algorithm 1 recognizes this and terminates execution of the
initial plan. At this point, the algorithm creates the pushing trajectory illustrated in
Fig. 4b. During execution of the push, the left box moves in an unpredicted way
due to uncertainty in box friction parameters (this is effectively process noise). This
eventually triggers termination of the second trajectory. The third plan is created
based on a new estimate of box locations and executes a scanning motion in front of
the boxes is expected to enable the algorithm to localize the boxes with high
confidence.
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4.2 Localization Performance

At a high level, the objective of SLAG is to robustly localize and grasp objects even
when the pose or shape of those objects is uncertain. We performed a series of
experiments to evaluate how well this approach performs when used to localize
boxes that are placed in initially uncertain locations. On each grasp trial, the boxes
were placed in a uniformly random configuration (visualized in Fig. 5a, c). There
were two experimental contingencies: “easy” and “hard”. In the easy contingency,
both boxes were placed randomly such that they were potentially separated by a
gap. The right box was randomly placed in a 13 � 16 cm region over a range of
15°. The left box was placed uniformly randomly in a 20 � 20 cm region over 20°
measured with respect to the right box (Fig. 5a). In the hard contingency, the two
boxes were pressed against each other and the pair was placed randomly in a
13 � 16 cm region over a range of 15° (Fig. 5b).

Figure 5c, d show right box localization error as a function of the number of
updates to the histogram filter since the trial start. 12 trials were performed in each
contingency. Each blue line denotes the progress of a single trial. The termination
of each trial is indicated by the red “X” marks. Each error trajectory is referenced to
the ground truth error by measuring the distance between the final position of the
paddle tip and its goal position in the left corner of the right box using a ruler. There
are two results of which to take note. First, all trials terminate with less than 2 cm of
error. Some of this error is a result of the coarse discretization of possible right box
positions in the histogram filter (note also the discreteness of the error plots). Since
the right box position bin size in the histogram filter is 1.2 cm, we would expect a
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Fig. 4 Example of a box localization task. In a, d, the robot believes the gap between the boxes is
large and plans to localize the boxes by scanning this gap. In b, e, the robot has recognized that the
boxes abut each other and creates a plan to increase gap width by pushing the right box. In c, f, the
robot localizes the boxes by scanning the newly created gap
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maximum error of at least 1.2 cm. The remaining error is assumed to be caused by
errors in the range sensor or the observation model. Second, notice that localization
occurs much more quickly (generally in less than 100 filter updates) and accurately
in the easy contingency, when the boxes are initially separated by a gap that the
filter may used to localize. In contrast, accurate localization takes longer (generally
between 100 and 200 filter updates) during the hard contingency experiments. Also
error prior to accurate localization is much larger reflecting the significant possi-
bility of error when the boxes are initially placed in the abutting configuration. The
key result to notice is that even though localization may be difficult and errors large
during a “hard” contingency, all trials ended with a small localization error. This
suggests that our algorithm termination condition in step 1 of Algorithm 1 was
sufficiently conservative. Also notice that the algorithm was capable of robustly
generating information gathering trajectories in all of the randomly generated
configurations during the “hard” contingencies. Without the box pushing trajecto-
ries found by the algorithm, it is likely that some of the hard contingency trials
would have ended with larger localization errors.
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Fig. 5 “Easy” and “hard” experimental contingencies. a Shows images of the 12 randomly
selected “easy” configurations (both box configurations chosen randomly) superimposed on each
other. b Shows images of the 12 randomly selected “hard” configurations (boxes abutting each
other). c, d Are plots of error between the maximum a posteriori localization estimate and the true
box pose. Each line denotes a single trial. The red “X” marks denote localization error at algorithm
termination
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5 Conclusions

Creating robots that can function robustly in unstructured environments is a central
objective of robotics. We argue that it is not enough to limit attention to developing
better perception algorithms. Robust localization of relevant state in real-world
scenarios is not always possible unless the robot is capable of creating and exe-
cuting information-gathering behaviors. One avenue toward achieving this is the
development of algorithms for planning under uncertainty. Our paper proposes a
new approach to the planning under uncertainty problem that is capable of rea-
soning about trajectories through a non-Gaussian belief-space. This is essential
because in many robot problems it is not possible to track belief state accurately by
projecting onto an assumed density function (Gaussian or otherwise).

The approach is illustrated in the context of a grasping task. We propose a new
setting of the grasp synthesis problem that we call simultaneous localization and
grasping (SLAG). We test our algorithm using a particular instance of a SLAG
problem where a robot must localize two boxes that are placed in front of it in un-
known configurations. The algorithm generates information gathering trajectories
that move the arm in such a way that a laser scanner mounted on the end-effector is
able to localize the two boxes. The algorithm potentially pushes the boxes as
necessary in order to gain information. Several interesting questions remain. First,
our algorithm focuses primarily on creating information gathering plans. However,
this ignores the need for “caution” while gathering the information. One way to
incorporate this into the process is to include chance constraints into Problem 1
[20]. One approximation that suggests itself is to place constraints on the sample set
used for planning. However, since we use a relatively small sample set, this may not
be sufficiently conservative. Alternatives should be a subject for future work.
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Pose Graph Compression for Laser-Based
SLAM

Cyrill Stachniss and Henrik Kretzschmar

Abstract The pose graph is a central data structure in graph-based SLAM
approaches. It encodes the poses of the robot during data acquisition as well as
spatial constraints between them. The size of the pose graph has a direct influence
on the runtime and the memory requirements of a SLAM system since it is typically
used to make data associations and within the optimization procedure. In this paper,
we address the problem of efficient, information-theoretic compression of such pose
graphs. The central question is which sensor measurements can be removed from
the graph without loosing too much information. Our approach estimates the
expected information gain of laser measurements with respect to the resulting
occupancy grid map. It allows us to restrict the size of the pose graph depending on
the information that the robot acquires about the environment. Alternatively, we can
enforce a maximum number of laser scans the robot is allowed to store, which
results in an any-space SLAM system. Real world experiments suggest that our
approach efficiently reduces the growth of the pose graph while minimizing the loss
of information in the resulting grid map.

1 Introduction

Maps of the environment are needed for a wide range of robotic applications
including transportation and delivery tasks, search and rescue, or efficient auto-
mated vacuum cleaning robots. The capability of building an appropriate model of
the environment allows for designing robots that can efficiently operate in complex
environments only based on their on-board sensors and without relying on external

C. Stachniss (&) � H. Kretzschmar
Institute for Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
e-mail: cyrill.stachniss@igg.uni-bonn.de

H. Kretzschmar
e-mail: kretzsch@informatik.uni-freiburg.de

C. Stachniss
Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany

© Springer International Publishing Switzerland 2017
H.I. Christensen and O. Khatib (eds.), Robotics Research,
Springer Tracts in Advanced Robotics 100, DOI 10.1007/978-3-319-29363-9_16

271



reference systems. In the past, several effective approaches to robot mapping have
been developed. A popular approach to address the simultaneous localization and
mapping (SLAM) problem models the poses of the robot as nodes in a graph.
Spatial constraints between poses resulting from observations and odometry are
encoded as edges. Often, graph-based approaches marginalize out features or local
grid maps and reduce the problem to trajectory estimation without prior map
knowledge, followed by mapping with known poses.

Most of the SLAM approaches assume that map learning is carried out as a
preprocessing step and that the robot then uses the acquired model for tasks such as
localization and path planning. A robot that has to extend the map of its environ-
ment during long-term operation cannot apply most of the existing graph-based
mapping approaches since their complexity grows with the length of the robot’s
trajectory. The reason for this is that standard graph-based approaches constantly
add new nodes to the graph. As a result, memory and computational requirements
grow over time, preventing long-term mapping applications. A constantly growing
graph slows down graph optimization and makes it more and more costly to find
constraints between the current pose and former poses, i.e., to identify loop clo-
sures. There exist also incremental methods for online corrections that perform
partial optimizations. These methods are mostly orthogonal to our contribution.

The contribution of this paper is an information-theoretic approach to lossy pose
graph compression to allow graph-based SLAM systems to operate over extended
periods of time. Figure 1 depicts a motivating example. The top image shows the
pose graph and the resulting map obtained by a standard graph-based approach to
SLAM. The bottom image displays the corresponding pose graph along with the
map resulting from our information-theoretic compression approach. As can be
seen, significantly less nodes are required to provide a comparable mapping result.
We present an approach to select laser scans for removal such that the expected loss
of information with respect to the map is minimized. Our unbiased selection applies
the information-theoretic concept of mutual information to determine the laser scans
that should be removed. In order to keep the pose graph compact, the corresponding
pose node needs to be eliminated from the pose graph. This is achieved by applying
an approximate marginalization scheme that maintains the natural sparsity pattern
that is observed in the context of SLAM. Our approach is highly relevant to
long-term mapping, particularly when the robot frequently re-traverses already
visited areas. It allows us to build an any-space SLAM system that aims at mini-
mizing the expected loss of information.

Fig. 1 The goal of our work is to compress the SLAM pose graph (left) to a sparse pose graph
(right), while minimizing the loss of information in the graph and the resulting map

272 C. Stachniss and H. Kretzschmar



2 Related Work

A large variety of graph-based SLAM approaches have been proposed [5, 7, 8, 11,
15, 17, 19]. Most of these approaches to SLAM do not provide means to effectively
prune the graph. Instead, they add more and more nodes to the graph over time.
Some approaches group nodes into rigid local sub-maps [7] or subdivide the map
into connected frames that contain maps that capture the local environment [1].
Typically, these methods do not discard nodes that store information about the
environment and therefore do not prevent the graph from growing.

One way to reduce the number of nodes in the graph is to sample the trajectory
of the robot at an appropriate spatial decimation [6]. A similar method is to only add
a new node to the graph if it is not spatially close to any existing node [11].
Konolige and Bowman [12] presented an approach to lifelong mapping that uses a
single stereo camera and that is able to update the map when the environment
changes. Their method discards views based on a least recently used algorithm. The
above mentioned techniques do not rely on information-theoretic concepts to
determine which measurements to discard. Similar to that, hierarchical techniques
[5, 8, 17] have been employed to bound the computational requirements by opti-
mizing only higher levels of the hierarchy.

In contrast to that, Davison [3] analyzes mutual information, particularly in the
case of Gaussian probability distributions, to guide image processing. In the vision
community, Snavely et al. [20] aim to find a skeletal subgraph with the minimum
number of interior nodes that spans the full graph while achieving a bound on the
full covariance. Their technique is used for reconstructing scenes based on large,
redundant photo collections.

Kaess and Dellaert [10] consider the information gain of measurements in the
state estimate within the iSAM framework. In contrast to that, our approach esti-
mates the mutual information of laser scans and the occupancy grid map, thus
considering the effect on the resulting grid map explicitly. Ila et al. [9] propose to
only incorporate non-redundant poses and informative constraints based on the
relative distance between poses in information space and the expected information
gain of candidate loop closures. As opposed to our maximum-likelihood approach
to SLAM based on pose graphs, their method applies an information filter and does
not marginalize out poses that were already added. Recently, Eade et al. [4] pre-
sented a view-based monocular SLAM system that reduces the complexity of the
graph by marginalization and subsequent suppression of edges incident to nodes of
high degrees. Their heuristic discards the constraints that most agree with the
current state estimate. This, however, introduces a bias into the system.

When discarding laser range scans, our approach will marginalize out the cor-
responding pose node from the pose graph. Exact marginalization, however, would
result in a dense pose graph and thus we apply an approximate marginalization
scheme [14] that is based on local Chow-Liu trees. Other robotics researchers also
use Chow-Liu trees for approximating probability distributions, e.g., [2].
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3 Brief Introduction to Graph-Based SLAM

Graph-Based approaches to SLAM model the poses of the robot as nodes in a
graph. The edges of the graph model spatial constraints between the nodes. These
constraints arise from odometry measurements and from feature observations or
scan matching. The so-called SLAM front-end interprets the sensor data to extract
the constraints. The so-called SLAM back-end typically applies optimization
techniques to estimate the configuration of the nodes that best matches the spatial
constraints.

Our laser-based front-end uses correlative scan matching to estimate a constraint
between the current node and the previous node. Our method also generates loop
closure hypotheses by matching the current laser scan against a set of scans that is
determined by the relative positional uncertainties and then rejects false hypotheses
using the spectral clustering approach described by Olson [18]. Our method
incrementally optimizes the pose graph while adding the poses and the constraints
to it. Once the poses are estimated, the laser scans are used to render an occupancy
grid map of the environment. The robot therefore stores the laser scans that cor-
respond to the pose nodes in the pose graph.

The back-end aims at finding the spatial configuration x* of the nodes that
maximizes the log likelihood of the observations. Let x ¼ ðxT1 ; . . .; xTn ÞT be a vector
where xi describes the pose of node i, and let zij and Ωij be the mean and the
information matrix of an observation of node j seen from node i assuming Gaussian
noise. Furthermore, let eij(x) be an error vector which expresses the difference
between an observation and the current configuration of the nodes and let C be the
set of pairs of nodes for which a constraint exists. Assuming the constraints to be
independent, we have

x� ¼ argmin
x

X
i;jh i2C

eijðxÞTXijeijðxÞ: ð1Þ

Our approach applies the technique proposed in [8], which uses sparse Cholesky
factorization to efficiently solve the system of linearized equations that is obtained
from Eq. (1).

4 Discarding Laser Scans by Information-Theoretic
Means

The main contribution of this paper is an approach to select the laser scans that are
most informative with respect to the map estimate. Our technique aims at mini-
mizing the expected loss of information in the resulting map without introducing a
bias during the selection of the laser scans. Such a technique is important to allow
for long-term robot mapping since a robot that keeps all scans will run out of
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resources at some point. In addition to that, our method can be used to directly
implement an any-space SLAM system. Whenever the memory limit is reached, our
algorithm discards the laser scans that are expected to be least informative about the
map and marginalizes out the corresponding pose nodes.

4.1 Finding the Most Informative Subset of Laser Scans

We define the map M as a random variable describing the state of the world. It is
highly correlated to the random variables Z1:t describing the laser scans z1:t recorded
at the poses x1:t. We use Zj to refer to an individual beam of laser scan Zi. To
estimate the state of the world m, we consider the posterior probability distribution
of the map M given the laser measurements z1:t. In this section, we are interested in
finding the subset Z� � Z1:t of at most n laser measurements that is expected to
result in the smallest uncertainty about the map M.

Following the notation of MacKay [16], the average reduction in the uncertainty
of the map M due to a set Z of laser measurements is given by the mutual
information

IðM; ZÞ ¼ HðMÞ � HðMjZÞ; ð2Þ

where H is the entropy. Hence, we want to find the subset Z� � Z1:t of at most
n laser measurements such that the mutual information of the map M and the subset
Z� is maximized, i.e.,

Z� ¼ argmax
Z�Z1:t ; Zj j � n

HðMÞ � HðMjZÞ: ð3Þ

The conditional entropy H(M|Z) of the map M given the set Z of measurements
is the expected value, over the space of all possible measurements, of the condi-
tional entropy of the map given the individual measurements z:

HðMjZÞ ¼
Z
z

pðzÞHðMjZ ¼ zÞdz ð4Þ

4.2 Efficiently Estimating Mutual Information

Unfortunately, computing the conditional entropy given in Eq. (4) is infeasible
without approximations since integrating over the space of all possible combina-
tions of up to n laser measurements is practically impossible. In addition to that,
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computing the entropy H(M|Z = z) of a map given a set of measurements z typically
requires model assumptions about the world.

To efficiently compute H(M|Z), we make the following assumptions. We assume
the laser measurements and the individual laser beams to be independent.
Furthermore, we model the map M as a standard occupancy grid map, i.e., a grid of
independent discrete binary random variables C that take the values Val
(C) = {“free”, “occupied”}. The entropy of an occupancy grid mapM given a set of
measurements z is then given by

HðMjZ ¼ zÞ ¼
X
C2M

HðCjZ ¼ zÞ ð5Þ

¼ �
X
C2M

X
c2ValðCÞ

PðC ¼ cjzÞ logPðC ¼ cjzÞ: ð6Þ

To efficiently compute Z*, we additionally ignore the distribution over x1:t and
operate on the most likely estimate x�1:t, which is given in Eq. (1). Furthermore,
similar to most works on robot localization, we assume the likelihood of sensing a
specific object to decrease with range. The a priori probability of the jth beam of a
range measurement zi, denoted as Z j

i , without any knowledge of the map M can be
described by the exponential distribution

p z ji
� � ¼ gke�kz ji z ji � zmax;

0 z ji � zmax;

(
ð7Þ

where zmax denotes the maximum range of the scanner, k is a parameter of the
measurement model, and η is a normalizing constant.

There are three possible outcomes of a measurement of a laser beam with respect
to a particular grid cell that is located along the ray of the beam and given no prior
map information. The laser beam either traverses the cell and thus observes the cell
as free, the laser beam ends in the cell and thus observes the cell as occupied, or the
laser beam does not observe the cell. The probability distribution of the outcome
can be computed by integrating over the density p(zj). For the three cases, namely,
the probabilities that (i) the beam Z j does not reach a particular grid cell C that is
located along the ray of the beam, (ii) the beam ends in that cell (measured as
occupied), and (iii) the beam passes through that cell (measured as free) are given
by

P z ji does not observeC
� � ¼ Zd1ðx�i ;CÞ

0

p z ji
� �

dz ji ð8Þ
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P z ji observesC as occupied
� � ¼ Zd2ðx�i ;CÞ

d1ðx�i ;CÞ

p z ji
� �

dz ji ð9Þ

P Z j
i observesC as free

� � ¼ Zzmax

d2ðx�i ;CÞ

p z ji
� �

dz ji ; ð10Þ

where d1 x�i ;C
� �

is the distance between the pose x�i (see Eq. (1)) from which the
laser scan Zi is taken and the closest border of the grid cell C in the direction of the
jth beam (the border where the beam enters the cell). Similarly, d2 x�i ;C

� �
is the

distance to the border of the grid cell C in the direction of the jth beam that is
furthest away from xi

� (the border where the beam leaves the cell).
By exploiting Eqs. (8)–(10), we can avoid integrating over all potential mea-

surements as in Eq. (4). Instead, we can sum over all potential measurement out-
comes. This results in the mutual information

IðC; ZÞ ¼ HðCÞ �
X
z02AZ

Pðz0ÞHðCjz0Þ ð11Þ

of the grid cell C and the set Z of laser measurements. Here, we consider the set AZ

of all possible measurement outcomes z0 with respect to the grid cell C of all k laser
scans that are recorded close enough to potentially measure the cell.

In general, the number of possible combinations of grid cell measurement out-
comes is exponential in k as it is illustrated in the left image of Fig. 2. It is therefore
practically infeasible to enumerate all the combinations in a tree. In our approach,
we use a standard inverse measurement model, pðcjz ji Þ, for laser range scanners that
updates each cell using one of the three values lfree, locc, and l0. Since the effect of a
set of observations on a particular cell does not depend on the order in which the
measurements were obtained, this model allows us to efficiently combine nodes in
the tree of all possible combinations. In fact, the result only depends on the number
of free and occupied observations, i.e., the histogram of measurement outcomes, see
Fig. 2 (right) for an illustration.

By ignoring the order, the number of histograms that we have to compute is
quadratic in k:

#outcomesðkÞ ¼
Xk
i¼0

Xk�i

j¼0

1

 !
¼
Xk
i¼0

ðk � iþ 1Þ ð12Þ

¼ ðkþ 1Þ2 �
Xk
i¼0

i ¼ ðkþ 1Þ2 � ðkþ 1Þk
2

ð13Þ
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¼ k2

2
þ 3

2
kþ 1 2 O k2

� � ð14Þ

If the individual probabilities of obtaining free/occupied/unknown measure-
ments were equal for all laser scans, the probabilities of these outcomes could be
computed by a multinomial distribution.

However, this is not the case here due to our model given in Eq. (7), which
specifies that the likelihood of observing a cell depends on the distance from the
view point to the cell under consideration. In our case, computing the probabilities
of all outcomes requires cubic time in k. This can be achieved by using a hash table
that is indexed by the number of free, occupied, and unknown measurements and
that stores the accumulated probability mass for the corresponding outcome. By
traversing the graph of possible outcomes (see right image of Fig. 2), from top to
bottom, the computations can be performed as shown in Algorithm 1 (where P
(〈 �,�,� 〉) is implemented via a hash table) and the number of probabilities that need
to be considered is

3
Xk
i¼1

#outcomesðkÞ ¼ 3
2
k3 þ 9

2
k2 þ 3k 2 O k3

� �
: ð15Þ

Thus, to compute the probability for each possible outcome is cubic in k, i.e. the
number of measurements that can observe the grid cell C.

Fortunately, the number k of scans that the algorithm has to consider is typically
bounded: First, the maximum measurement range of laser scanners restricts the set
of scans that have to be considered. Second, our technique discards laser scans
online while building the graph and thus k typically stays small during mapping.
We can efficiently further reduce the computational burden by only considering at
most l laser scans when computing the histograms. One good way of choosing the
l laser scans is selecting the ones with the highest likelihood of measuring C. This
likelihood is given by 1� P Z j

i does not observeC
� �

, see Eq. (8). Thus, this

f o u

f o u f o u f o u

2f 1f,1o 2o 1f,1u  1u,1o 2u

f o u

f o   u f o u f  o u

Fig. 2 Left all combination of measurement combinations that can occur for n beams, here with
n = 2. In the figure, f = free, o = occupied, and u = unknown. The number of combinations is 3n.
Right Since the order of the measurements is irrelevant, the number of possible outcomes is
quadratic in n
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approximation yields a linear complexity in k (for selecting the l scans out of k laser
scans).

Finally, the mutual information I(M; Z) of the map M and the set Z of laser scans
is given by

IðM; ZÞ ¼
X
C2M

IðC; ZÞ: ð16Þ

All terms needed to compute Z* in Eq. (3) are specified and can be computed or
approximated efficiently.

4.3 Discarding Laser Scans Online

Our approach can be used in two ways. First, by introducing a bound on the total
number of laser scans, our method results in an any-space SLAM system. Second,
setting a threshold for the expected information gain of laser scans, our algorithm
only keeps scans that are expected to provide at least a certain amount of infor-
mation about the map.

Computing the subset Z* of n laser measurements that most reduces the
uncertainty about the map has been shown to be at least NP-hard [13]. Fortunately,
the problem is submodular. Hence, greedily selecting measurements results in
obtaining a set of measurements that is at most a constant factor (�0.63) worse than
the optimal set. Motivated by this insight, our approach estimates the subset Z* by
successively discarding laser scans. In each step, it discards the laser scan that is
expected to be least informative.

Pose Graph Compression for Laser-Based SLAM 279



5 Maintaining a Sparse Pose Graph

A pose graph can be seen as a Gaussian Markov random field (GMRF) that models
the belief of the robot. In this view, each pose is a random variable that is repre-
sented as one node in the GMRF and each constraint between two poses in the pose
graph is a binary potential between the nodes in the GMRF. Marginalizing out a
pose node from the graph implies summarizing the information stored in the edges
that connect that node in the edges between nodes that are kept. The main problem
of exact marginalization is that it introduces new edges between all pairs of vari-
ables that are directly related to the eliminated variables, adding a so-called elim-
ination clique to the graph, see for example [6]. This, unfortunately, destroys the
natural sparsity pattern that is typical to SLAM problems.

Therefore, we apply an approximate marginalization scheme to maintain spar-
sity, which is important for long-term mapping tasks. The key idea is to replace the
elimination clique, which is created when marginalizing a node, by a tree-shaped
approximation of the clique. The optimal tree-shaped approximation with respect to
the Kullback-Leibler divergence is given by the Chow-Liu tree. Here, the
Chow-Liu tree is the maximum-weight spanning tree of the mutual information
graph of the clique. This tree can be computed by assigning the mutual information
of each two variables to the corresponding edges belonging to the elimination
clique and then applying Kruskal’s algorithm. The mutual information is computed
according to Davison [3], which describes an efficient solution for the Gaussian
case. We refer the reader to [14] for more details on the approximate marginal-
ization scheme.

It should be noted that only the elimination clique is transformed to a tree
structure, not the whole pose graph. Otherwise, all loop closing information would
be lost.

6 Experimental Evaluation

To evaluate the presented approach, we carried out several experiments using a real
ActivMedia Pioneer-2 robot equipped with a SICK laser range finder. In addition to
that, we applied our method to a series of popular benchmark datasets. We compare
our approach with the performance when no scans are discarded (referred to as
“standard approach”). The experiments are designed to show that our approach to
informed pose graph compression is well suited for long-term mobile robot map-
ping as well as for standard SLAM problems.
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6.1 Mapping Results

Four different datasets have been considered for the evaluation. We used one self
recorded dataset in which the robot traveled in our lab environment for an extended
period of time (Fig. 3), a previously recorded dataset from a Freiburg computer
science building (Fig. 4), as well as the Intel Research Lab (Fig. 5), and the FHW
dataset (Fig. 1), both provided by Dirk Hähnel.

Figure 3 shows four maps built during our experiments with a fixed limit to 200
nodes. The first one depicts the pose graph obtained with the standard approach.
The second one shows the state of our approach before the robot entered the left
side of the corridor. Therefore, the limit of 200 nodes is used to model the right part
only. The third image shows the pose graph modeling the entire environment. Note
how our approach redistributed the nodes in the environment, still complying with
the 200 node limit. Finally, the fourth image shows the map when setting a
threshold on the mutual information.

Further mapping results showing the results of our approach in contrast to the
standard approach are depicted in Figs. 4 and 5 as well as in the motivating
example in Fig. 1. By visual inspection, the obtained grid maps look similar,
although only a fraction of the original laser scans have been used to build the grid
maps.

To compare the output of the SLAM algorithm more quantitatively, we also
analyzed the estimate of the pose graph for the resulting nodes. We especially
analyzed the mean and uncertainty estimates for the individual poses of the robot
and compared them to the corresponding ones built without compressing the pose
graph. Figure 6 depicts the 3r covariance ellipses of the poses in the graphs. Our
approach keeps less than 9 % of the edges of the original graph (349 of 3916) but
only 2.8 % of the probability mass of the original pose graph is not covered by our
approximation. The covariance estimates of our approach are typically more con-
servative (in this experiment by 41 %) since less information is used during
mapping.

6.2 Memory and Runtime Requirements

In this section, we analyze the memory requirements of our approach in terms of the
size of the resulting pose graph. In the first experiment, the robot moved around in
our lab environment for an extended period of time (Fig. 3). The plots in Figs. 7
and 8 clearly suggest that the experiment leads to an explosion in terms of memory
requirements when using the standard approach. This has a direct influence on the
computational complexity: First, the optimization technique scales with the number
of edges, which grows roughly quadratically since the robot moves in the same
environment and is not exploring new terrain. Second, the loop closing component
of the SLAM front-end, which uses a scan matcher to find constraints between the
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Fig. 3 The robot moved around in an office environment for an extended period of time, visiting
the rooms and the corridor many times. First Standard approach. 2597 laser scans, 15695 edges
Second Our approach at an intermediate time step, 200 laser scans, 264 edges. Third Our approach,
200 laser scans, 315 edges. Fourth Our approach when setting a threshold for the mutual
information, 148 laser scans, 250 edges
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current scan and all former scans that were recorded in the vicinity of the robot, has
to consider an increasing number of nodes in each step. In contrast to the standard
approach, our approach compresses the pose graph such that the number of nodes in
the graph remains constant (in Fig. 7 the threshold was set to 200 nodes). If we set a

Fig. 4 Obtained map and pose graph for the FR101 dataset (top standard approach, bottom our
approach). Since the robot does not frequently re-traverse known terrain, few scans were discarded
(200 vs. 408 nodes and 246 vs. 723 edges)

Fig. 5 Intel Research Lab. Left Standard approach, 1802 laser scans, 3916 edges. Right Our
approach preserves the sparsity of the pose graph, 250 laser scans, 349 edges. Arrows indicate
locally blurred areas or small alignment errors in the map obtained by the standard approach. In
contrast to that, exact marginalization would result in 250 laser scans as well, but in 13052 edges
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threshold for the mutual information instead of an upper bound for the number of
nodes, the complexity does not grow as long as the robot does not explore new
territory (see Fig. 8).
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Our approach saves computational time as mentioned above but also introduces
an overhead through the information-theoretic node selection. This overhead,
however, is typically bounded since the number of nodes that have to be considered
is bounded since our algorithm runs online and constantly discards nodes. Our
current implementation of the information-theoretic laser scan selection is not
optimized for speed—significant improvements could be obtained by caching
results. Depending on the chosen parameters (particularly l, see Sect. 4.2) and on
the environment that is mapped, the speed of our compression approach approxi-
mately ranges from running twice as fast as the standard approach to running four
times slower than the standard approach. Our approach is beneficial when the robot
frequently re-traverses already mapped areas. There is no gain if the robot mainly
explores new territory.

6.3 Effects on the Most Likely Occupancy Grid Map

We furthermore analyzed the effects of our pruning technique on the resulting
occupancy grid maps. We therefore compared the maps at a resolution of 10 cm
and counted the number of cells that changed their most likely state (free, occupied,
unknown) due to our pruning technique.

When mapping the Intel Research Lab, our pruning approach retained 349 of
1802 laser scans. As a consequence of this, 0.9 % of the cells changed. In the
long-term experiment, our method kept 148 of 2597 laser scans and 1.6 % of the
cells changed.

When mapping the FHW, our approach maintained 250 of 2049 scans and 1.2 %
of the cells changed. Hence, the changes in the most likely maps are small.

6.4 Scan Alignment and Map Quality

We furthermore evaluated the effects of our pose graph compression technique that
is applied during mapping on the quality of the resulting grid maps. In theory, the
more observations are available, the better is the estimate. Ignoring measurements
will lead to a belief with higher uncertainty. However, todays occupancy grid-based
mapping systems typically involve some form of scan alignment or scan matching
(e.g. to extract constraints). Such systems have the following disadvantage when it
comes to long-term map learning. Whenever the robot obtains a measurement, the
scan matcher aims at aligning the new scan with existing scans in order to solve the
data association problem. The probability that the scan matcher thereby makes a
small alignment error is nonzero. A scan which is incorporated at a slightly wrong
position blurs the map. As a result, the probability that the scan matcher misaligns
subsequent scans increases since scan matching is performed with misaligned
scans. Hence, the probability of making alignment errors increases with the number
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of incorporated scans. In the long run, the map tends to become increasingly blurred
and the mapping approach is likely to diverge.

Figures 5 and 3 depict the maps and graphs obtained from the Intel Research
Lab dataset and the long-term experiments conducted in our office environment.
The grid maps generated by the standard approach exhibit visibly more blur in
several parts of the maps (see the arrows and the zoomed map view in the corre-
sponding images). In general, the more often the robot re-traverses already visited
terrain, the more blur is added to the maps. In contrast to the standard approach, our
method discards scans and thus produces maps with sharp obstacle boundaries even
in cases in which the robot frequently re-traverses already visited places. Although
we do not claim that such a sharp map is a better estimate of the world, it better
supports the scan matcher and reduces the risk of divergence in the mapping
process.

7 Conclusion

In this paper, we presented a method for information-theoretic compression of pose
graphs in graph-based SLAM, which is an important step towards long-term
mapping. Our approach seeks to select the most informative set of laser scans and
allows for restricting the size of the pose graph either based on a memory limit,
resulting in an any-space mapping system, or based on a threshold on the minimum
amount of information that a laser scan is expected to provide. Our approach
estimates the expected information gain of laser measurements with respect to the
resulting occupancy grid map. Real world experiments illustrate the effectiveness of
our method for computing compressed pose graphs in the context of graph-based
SLAM.
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Demonstration-Guided Motion Planning

Gu Ye and Ron Alterovitz

Abstract We present demonstration-guided motion planning (DGMP), a new
frame-work for planning motions for personal robots to perform household tasks.
DGMP combines the strengths of sampling-based motion planning and robot
learning from demonstrations to generate plans that (1) avoid novel obstacles in
cluttered environments, and (2) learn and maintain critical aspects of the motion
required to successfully accomplish a task. Sampling-based motion planning
methods are highly effective at computing paths from start to goal configurations
that avoid obstacles, but task constraints (e.g. a glass of water must be held upright
to avoid a spill) must be explicitly enumerated and programmed. Instead, we use a
set of expert demonstrations and automatically extract time-dependent task con-
straints by learning low variance aspects of the demonstrations, which are corre-
lated with the task constraints. We then introduce multi-component rapidly-
exploring roadmaps (MC-RRM), a sampling-based method that incrementally
computes a motion plan that avoids obstacles and optimizes a learned cost metric.
We demonstrate the effectiveness of DGMP using the Aldebaran Nao robot per-
forming household tasks in a cluttered environment, including moving a spoon full
of sugar from a bowl to a cup and cleaning the surface of a table.

1 Introduction

Over 10 million people need assistance with activities of daily living (ADLs) such
as cooking, cleaning, and dressing in the United States. And this number is
expected to grow dramatically worldwide as the number of elderly individuals
continues to increase rapidly. Providing assistance to these individuals for ADLs is
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currently very labor intensive and often requires moving an individual from their
home to an impersonal institution, which comes at a significant cost to society.
Recently developed personal robots have the potential to assist individuals with a
variety of ADLs. However, the algorithms to control these robots for autonomous,
safe assistance with household tasks is still a work in progress in the robotics
research community.

A key challenge is the development of algorithms that enable personal robots to
plan motions in unstructured environments to accomplish tasks currently performed
by humans. These tasks often involve significant constraints on motion that humans
are aware of from context and intuition. For example, when carrying a plate of food
from the kitchen to the dining room, a person knows that tilting the plate sideways,
while feasible, is undesirable. The robot must be aware of such task constraints and
at the same time avoid unforeseen obstacles in unstructured environments.

We present a new approach that unifies ideas from two fields: robot motion
planning and robot learning from demonstrations. The motion planning community
has developed highly successful sampling-based methods that efficiently compute
feasible plans that avoid obstacles. However, motion planning methods typically do
not consider any task constraints unless explicitly programmed. As shown in Fig. 1,
direct application of standard motion planning algorithms to a robot transferring a
spoonful of sugar from a bowl to a cup will result in the robot spilling the sugar
unless the robot is explicitly programmed to keep the spoon level. While such task
constraints can be innocuous to program individually, requiring expert program-
mers to anticipate and program all such constraints for robots operating in human
environments would be prohibitive. In contrast, the learning from demonstration

Fig. 1 We consider the household task of using a spoon to transfer sugar from a bowl to a cup on a
table. Using standard motion planning algorithms without explicitly programming task constraints
will fail since the spoon will not be kept level, causing the sugar to be spilled on the table (left).
Methods based on learning from demonstrations are often unable to compute collision-free
trajectories when novel obstacles are introduced in new locations not considered in the
demonstrations (middle). Our method effectively combines motion planning with learning from
demonstrations to avoid obstacles and keep the spoon level to successfully transfer the sugar (right)
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community has developed highly effective approaches for extracting from multiple
demonstrations the key motions required to accomplish a task. Such methods can
explicitly or implicitly learn task constraints, such as the fact that spoons full of
sugar should be kept level to avoid spillage. However, methods based on learning
from demonstrations often falter when the robot must accomplish the task in a new,
cluttered environment where unforeseen obstacles compel the robot to move out-
side the range of motions included in the input demonstrations. Our new approach,
Demonstration-Guided Motion Planning (DGMP), combines the strengths of
methods in motion planning and in learning from demonstration to both (1) avoid
novel obstacles in cluttered environments, and (2) learn and maintain critical
aspects of the motion required to successfully accomplish a task.

To teach the robot the motions necessary to assist in a household task, we use
kinesthetic demonstrations; the robot’s joints are placed in a passive mode and the
demonstrator moves the robot’s arms and torso through each step of the task.
Kinesthetic demonstrations are ideally suited for teaching household assistance
tasks. They do not require the human expert (e.g. an occupational therapist) to learn
complicated computer/robot programming. Instead, they rely only on physical,
realworld demonstrations that are an intuitive and user-friendly way for human
experts to teach robots to perform new tasks.

The emphasis of DGMP is not on learning high-level task decompositions or
low-level controls from the demonstrations, but rather to learn the constraints on the
robot’s motion that are required to accomplish a repeated task. From a set of
demonstrations, we apply statistical analysis to learn low and high variance com-
ponents of the motion. Low variance regions correspond to implicit constraints that
should be satisfied when the motion plan is executed. We use these variances to
define a cost metric over the configuration space of the robot.

After the learning phase, DGMP uses a new motion planning algorithm, a multi-
component rapidly-exploring roadmap (MC-RRM). The planner guarantees obstacle
avoidance and incrementally improves the plan, guaranteeing convergence to the
optimal feasible solution for the cost metric as computation time is allowed to increase.

We demonstrate the effectiveness of DGMP using the Aldebaran Nao robot
performing household tasks in a cluttered environment, including transferring sugar
from a bowl to a cup using a spoon and wiping a table. Our results demonstrate that
unlike using motion planning or learning from demonstration methods in isolation,
our unified approach converges to an optimal solution and offers a significantly
higher success rate in accomplishing tasks that involve both learning of task con-
straints as well as obstacle avoidance.

2 Related Work

Our framework bridges robot motion planning with robot learning from demon-
strations. Learning from demonstration methods have been highly successful in
enabling robots to learn task constraints and imitate task motions [4, 6]. Motion

Demonstration-Guided Motion Planning 293



planning methods have been effective at computing feasible motions from a start
configuration to a goal configuration while avoiding obstacles [10, 16].

Demonstrations can provide examples of the motion required to accomplish a
task, and these demonstrations can be used to computationally learn a control policy
that will enable a robot to autonomously execute the task motion subject to
real-world noise and disturbances. Inverse reinforcement learning has been used to
estimate the unknown objective function of a control policy from demonstrations in
environments with complex dynamics. This approach, sometimes called appren-
ticeship learning, has been applied to learn control policies for car driving [2],
helicopter acrobatics [12], and robotic knot tying [24]. Another approach models
the variations across demonstrated motion trajectories using a Gaussian Mixture
Model (GMM) and then uses Gaussian Mixture Regression (GMR) to estimate the
ideal trajectory and a corresponding controller [7]. Our approach builds on the
GMM/GMR work-flow from Calinon et al. for extracting local trajectories
expressed in coordinate systems relative to objects in the environment [7]. The
GMM/GMR approach has been applied to manipulation tasks such as moving chess
pieces or feeding a doll and is robust to movement of obstacles included in the
demonstrations [8]. However, these methods lack the ability to avoid novel
obstacles that were not explicitly considered during the demonstrations, which is
critical for motion planning in household environments.

Recent methods have used learning from demonstration methods to consider
previously unseen obstacles, but existing methods are limited either to low
dimension spaces, place limitations on the locations of obstacles, or do not allow for
time-dependent task-space constraints. Prior work has investigated using global
search methods such as A* or D* where path costs are learned from demonstra-
tions. This approach has been successfully applied to navigating cars in a parking
lot [1], maneuvering off-road vehicles in complex terrain [23], and generating
natural motions for animated characters [17]. However, these methods do not
consider time-dependent constraints and they discretize the state space, which does
not scale well to higher degree of freedom systems like some personal robots.
Another approach models demonstration trajectories as fluid currents in the task
space and performs fluid dynamic simulation to derive a control policy [19]. Fluid
simulation considers obstacles, but performance is unclear if obstacles pass through
the demonstration trajectories.

In contrast to robot learning methods that have focused on extracting meaningful
data from demonstrations, motion planning focuses on computing feasible plans
that avoid obstacles. In particular, sampling based methods have been very suc-
cessful for a wide variety of problems involving high-DOF robots [10, 16]. Prior
work has investigated the use of RRTs combined with learned metrics to generate
paths, but these methods are guaranteed to converge to a suboptimal solution [15].
One approach extends RRTs to sample only inside a provided number of standard
deviations of a mean demonstrated trajectory, but may not find a feasible solution
even if one exists [11]. RRTs have also been used in conjunction with task-based
symbolic constraints [14]. Transition-based RRT (T-RRT) [13] is a sampling-based
motion planner over cost maps that biases expansion of the tree to low cost regions
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of the configuration space. T-RRT can be used to generate natural motions by using
a predefined human robot interaction cost metric [18]. GradienT-RRT extends
T-RRT to use the gradients of the cost function to locally optimize the trajectory
and facilitate finding solutions through narrow chasms [5]. GradienT-RRT can be
used in conjunction with GMM to generate more natural motions and can also be
used to constrain robot motion using explicit task space constraints. However, this
prior work has not considered automatic learning of time-dependent task constraints
from demonstrations and using that learned information to guide planning.
Learning-based methods can also incorporate consideration of obstacles using
potential fields [20], but this approach is sensitive to local minima.

In contrast to prior work, DGMP combines learning from demonstration with a
sampling-based motion planner that incrementally refines the solution. Our DGMP
framework learns task-space constraints and expresses them in a cost map, con-
siders time-dependent criteria by aligning the robot’s trajectory to demonstrations,
avoids novel obstacles not included in demonstrations, works for high DOF robots,
and generates an optimal solution as computation time is allowed to increase.

3 The Demonstration-Guided Motion Planning
Framework

Our Demonstration-Guided Motion Planning (DGMP) framework consists of two
major phases: learning and execution. The learning phase only needs to be performed
once for a particular task and can then be applied to multiple task executions in
different environments. In the DGMP learning phase, human experts perform several
demonstrations of the task, which are encoded into a learned cost metric. In the
DGMP execution phase, the robot performs the task in a new environment using the
derived cost metric for guidance. An overview of the approach is shown in Fig. 2.
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Fig. 2 The DGMP framework consists of a learning phase that is performed once per task and an
execution phase that is performed each time the task is executed in a new environment
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The DGMP learning phase requires that human experts control the robot to
perform N demonstrations of the task. Although the framework allows demon-
strations to be provided in any manner, our implementation assumes that we use
kinesthetic demonstrations and that the robot includes position-controlled joints.
For each demonstration, the robot’s joints are placed in a passive mode and a
human expert manually moves the robot’s limbs to perform the task. We assume the
robot has encoders at every joint, allowing the robot to “sense” its own motion and
record joint angles as a function of time for each demonstration. The data obtained
from demonstration i will be a sequence of joint angles Xh

i as well as other sensor
input Pi of the environment, such as images (from camera sensors) and point cloud
data (from laser range finders or stereo image reconstructions).

The DGMP learning phase begins by aligning the demonstrations and trans-
forming the demonstration data into a set of motion features expressed as a function
of time. We consider motion features defined by the angles of the robot’s joints as
well as the position of points on the robot (e.g. the end effector and a grasped
object) relative to landmarks in the environment (e.g. the sugar bowl or cup in

Fig. 1). For a given time, the mean x̂ðkÞ
� �

and covariance matrix
P̂ðkÞ

n o
of each

motion feature k across multiple demonstrations reflect the task constraints intended
by the human demonstrator. The lower the variance of a motion feature across
demonstrations at a given time, the higher the consistency of the demonstrations
with respect to that motion feature. Higher consistency implies the mean value of a
motion feature should be followed more closely when performing the task. In
contrast, high variance motion features likely do not need to be closely reproduced
during execution for the robot to succeed in accomplishing the task.

In the DGMP execution phase, the robot senses its environment to (1) determine
the landmarks’ correspondences in the current environment, and (2) collect suffi-
cient data to perform collision detection for motion planning. Combining the

landmark correspondences with the means x̂ðkÞ
� �

and covariance matrices
P̂ðkÞ

n o
of all the motion features, we define our cost metric H, which estimates the degree
to which a a candidate plan matches the intent of the expert demonstrator. We then
execute our new motion planning algorithm, MC-RRM, to search for a
collision-free robot motion that minimizes the cost metric.

3.1 DGMP Learning Phase

The DGMP learning phase takes as input N demonstrations of the task. During each

demonstration i, we record a time sequence of the robot’s configuration Xh
i ¼

xhi;t
n oTi

t¼1
where Ti is the length of the demonstration and xhi;t is the vector joint

angles at time t. We also record sensor input Pi; i ¼ 1; . . .; Nf g of the
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environment, such as images and point cloud data. From the sensed data, we require
that M landmarks be identified, either manually or automatically using computer
vision algorithms, that are present across all demonstrations and will likely be
present in the execution environment. The landmarks serve as correspondence
points in the environment across the demonstrations, and they may or may not be
directly related to the task. In our implementation, we also explicitly define the
robot’s torso to be a landmark. For each demonstration, we denote the poses
(orientations and positions) of the landmarks by {(Rji, oji), j = 1, …, M, i = 1, …,
N}. For example, in the task shown in Fig. 1a landmark was sensed on the sugar
bowl.

3.1.1 Extracting Motion Features from Demonstrations

We expect that the key task constraints for a problem are satisfied across all the
demonstrations. To automatically extract these task constraints, we consider a set of
motion features that are designed to help identify aspects of the robot motions that
are consistent across demonstrations but that may be hidden in the raw demon-
stration data. We consider configuration motion features and landmark-based
motion features. In a configuration motion feature, we consider the robot’s joint
angles at a particular time. For a personal robot with many redundant degrees of
freedom, this data helps in learning “natural” motions that are lost when only
considering end effector motions. We denote the configuration motion feature

trajectory as Xð0Þ
i ¼ Xh

i . In a landmark-based motion feature, we consider the
location of one or more points attached to moving parts of the robot (e.g. end
effector, manipulator arm, and grasped objects) relative to sensed landmarks in the
environment (e.g. a cup or bowl). For the vector of relevant points attached to
moving parts of the robot, we define a “local” trajectory of that vector as the
coordinates of the relevant points with respect to each landmark. The landmarks
essentially serve as local coordinate systems for defining the trajectory of points on
the robot. Landmark-based motion features can be used to find important consis-
tencies across demonstrations, such as the position of the end effector relative to a
relevant object for the task. We compute the end effector trajectory in the local

coordinate system of each landmark xðjÞi;t ¼ Rji xð1Þi;t � oji
� �

; i ¼ 1; . . .; N; j ¼ 1;

. . .; M, where xð1Þi;t is the end effector position relative to the robot’s torso (i.e.

landmark #1). We represent a local trajectory as XðjÞ
i ¼ xðjÞi;t

n oTi

t¼1
. Combining the

configuration and landmark-based motion features, we have L = M + 1 motion

feature trajectories represented as XE
i ¼ xðjÞi

n oL

j¼0
.
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3.1.2 Computing the Cost Metric Using Statistical Modeling

Our objective is to identify low variance and high variance aspects of the motion
feature trajectories across demonstrations in order to create a cost metric that will
guide a motion planner to ensure that task constraints are satisfied as best as
possible given the locations of obstacles in the execution environments.

The motion feature trajectories are time dependent signals and are obtained from
different demonstrations with different time scales (e.g. due to varying demon-
stration speed). To correctly encode the task constraints across different demon-
strations, the trajectories XE

i must be temporally aligned. That is, for each time step

t, the set of motion features for the ith demonstration XE
i;t ¼ xðjÞi;t

n oMþ 1

j¼0
is assigned

with an aligned time step gi(t). Therefore, the aligned trajectory of XE
i is represented

as XA
i;t ¼ XE

i;t0jgi t0ð Þ ¼ t; t0 ¼ 1; . . .; Ti; i ¼ 1; . . .; M
n o

, t ¼ 1; . . .; T . We use

linear interpolation resampling to ensure one observation per time slot. To compute
gi, we use dynamic time warping (DTW), which has been used in speech recog-
nition [22] and robot learning [9, 12]. DTW uses dynamic programming to compute
the optimal time alignment based on a distance function between points. We ini-
tially use a Euclidean distance function and then iteratively refine our solution using
the output of the statistical modeling as discussed below.

Given the time aligned motion feature trajectories, our next objective is statis-
tical modeling: to estimate the expected mean and covariance of the motion features
across demonstrations. For a given time t, each motion feature has N observations,

one from each demonstration. For notation simplification, let xðkÞi;t denote the motion
feature k from demonstration i at time t after temporal alignment. We calculate the
time dependent mean x̂ and covariance matrix R̂ for each time slice:

x̂ðkÞt ¼ 1
N

XN
i¼1

xðkÞi;t ;R̂
ðkÞ
t ¼ 1

N � 1

XN
i¼1

xðkÞi;t � x̂ðkÞt

� �
xðkÞi;t � x̂ðkÞt

� �T
:

Figure 3 shows the statistical modeling result for two motion feature trajectories
extracted for the table cleaning task described in Sect. 4.

We use the results of the statistical modeling to iteratively improve the temporal
alignment. Rather than treating each DOF of the motion feature trajectories as
having equal weight, we instead consider the similarities identified by the covari-
ance computation. We generate weights for each DOF using the inverse of the
covariance matrix, which results in similar motion features having a shorter distance
in DTW. We re-execute DTW with the revised distance metric, re-evaluate the
means and covariances, and loop until the result converges.

In the execution phase described below, we will search for an optimal trajectory
in the robot’s joint space that follows the modeled constraints, which we represent
using a cost metric. The cost metric function depends on the landmark poses in the
execution environment, where Ri and oi define the transformation of the local
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coordinate system of the ith landmark. With the input landmark poses provided
during task execution, the cost of a given joint configuration h at time t can be
computed by the cost metric H as:

Hðh; tÞ ¼ ðh� ĥtÞTWh
t ðh� ĥtÞþ

XM
i¼1

KðhÞ � x̂0ðiÞt

� �T
WxðiÞ

t KðhÞ � x̂0ðiÞt

� �� �
;

where

ĥ ¼ x̂ðMþ 1Þ; R̂h ¼ R̂ðMþ 1Þ;Wh
t ¼ R̂h

t

� 	�1
; x̂0ðiÞt ¼ Rix̂

ðiÞ
t þ oi;W

xðiÞ
t ¼ RR̂xðiÞ

t RT
� ��1

and K is the forward kinematics function mapping the joint configuration to end
effector position. The time-dependent cost metric function H is the output of the
learning phase.

3.2 DGMP Execution Phase

We use the results of the learning phase to enable the robot to execute the task in
new, cluttered environments. The robot must sense its environment to determine the
locations of obstacles (e.g. the volume of the workspace that is not free) as well as
sense landmarks and establish correspondences to the landmarks used in learning.
To compute a motion plan that avoids obstacles while satisfying task constraints,
DGMP takes advantage of two useful pieces of information. First, with knowledge
of the landmark locations, the robot can compute the learned cost metric defined in
the subsection above for any path. Second, it can compute a guiding path defined by
the mean of the motion feature trajectories, which is equivalent to following the
valley of the cost metric. This guiding path is not guaranteed to be collision free.

Fig. 3 The mean and covariance of the two motion feature trajectories, the 6D joint angle
trajectories (left) and 3D end effector trajectory (right), extracted for the table cleaning task
described in Sect. 4. The red line in the right plot, which corresponds to the vertical coordinate of
the end effector trajectory, has low variance in the middle section; this indicates the end effector
with the paper towel should be kept on the table surface
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To harness these pieces of information and efficiently solve the motion planning
problem, we introduce the multi-component rapidly-exploring roadmap
(MC-RRM), a sampling based motion planning method that computes a motion
plan that minimizes costs over a time-dependent cost map and uses a guiding path
to decrease computation time. The guiding path is assumed to follow a valley of the
cost map. This method is ideally suited for DGMP by explicitly taking advantage of
the information available from the motion feature trajectory means and variances.

MC-RRM combines the benefits of PRMs and RRTs for motion planning
problems over time-dependent cost maps in which a guiding path is provided.
A traditional PRM with uniform sampling could solve this problem to optimality as
the number of samples increases, but this approach is prohibitively slow for high
dimensional configuration spaces in which most of the configuration space is not
relevant for the task and due to challenges in temporally aligning a PRM plan to the
demonstrations for computing the metric. On the other hand, RRT provides a fast
incremental sampling-based algorithm for high dimensional spaces but is guaran-
teed to return a suboptimal solution [15]. MC-RRM builds on ideas from RRG and
RRT* [15] and uses the guiding path to incrementally build a roadmap that enables
finding an optimal solution as computation time is allowed to increase.

3.2.1 MC-RRM

MC-RRM takes as input a configuration space (C-space), a cost metric over the
C-space, a set of obstacles in the C-space, a collision detector, and a guiding path
~x ¼ ~x1; . . .; ~xTf g that traverses a local valley in the cost metric from the initial state
to a goal state. The cost metric is defined by He(x1, x2) > 0 for an edge between a
pair of arbitrary points x1 and x2 in C-space. MC-RRM returns a collision free
trajectory such that the sum of the edge costs over the path is minimized.

As shown in Sect. 3.2.2, we can compute the guiding path directly based on the
cost metric. With the newly observed obstacles in the execution environment, the
ideal trajectory defined by this guiding path may not be feasible because parts of the
trajectory collide with the obstacles. When the obstacles intercept the trajectory
sparsely, the collision-free part of the ideal trajectory is still likely to be the part of
the optimal path. Hence, the key challenge is to find optimal alternative pathways
for the in-collision sections of the guiding path.

In MC-RRM, the points along the guiding path are regarded as guide points,
whether in collision or not. At initialization of the MC-RRM, the collision-free
guide points are added as nodes to a global graph (i.e. the roadmap) and adjacent
points are connected by an edge if the edge is collision free. Due to obstacles, the
global graph may contain multiple disconnected components. Figure 4 shows an
example with two disconnected components. We denoted these components as Ci,
which are represented as subgraphs of the global graph. For each Ci, a node set is
maintained. The node set is initialized with the guide points from the corresponding
disconnected component. In the sampling process, we sample new nodes in a
manner similar to RRT for each of the Ci: a random sample is created; nearest
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neighbors in each Ci are selected; and each component is extended toward the
random sample up to a distance dmax where a new node is added. The newly added
nodes are connected by edges to the corresponding Ci as well as to the global graph.
Every time a new node is added to the global graph, it is connected to all nearby
nodes within some distance (as in RRG [15]), which could belong to any Ci. Until
the allowed computation is reached, we periodically run Dijkstra’s shortest path
algorithm to compute the path with lowest cost (Fig. 5).

We note that each Ci only maintains a node set and does not need to store edges.
Edges are only maintained in the global graph. As the sampling progresses, edges in
the global graph may connect nodes in one component with nodes in another
disconnected component. We maintain the components separately in order to
maintain the expansion bias from each component that was originally separated by

Fig. 4 MC-RRM in a 2D C-space where the guiding path intersects an obstacle (green polygon).
a The guiding path is added to the graph, resulting in two disconnected components shown in blue.
b, c Samples are drawn from a GMM (yellow), both components are extended, and nearest nodes
are connected (purple), forming a graph. d Lowest cost path (green) computed by Dijkstra’s
algorithm
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Fig. 5 Minimal path cost versus number of samples for one of the test cases. With traditional
PRM, the minimal cost path is larger than 7 � 106 with 100,000 samples
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an obstacle. This ensures that gaps in the guiding path introduced by obstacles are
incrementally explored from multiple directions.

In addition to growing the roadmap from collision-free nodes along the guiding
path, we also use a heuristic sampling bias. Rather than sampling uniformly in the
robot’s configuration space, we consider all the guide points with their covariance
matrices as a mixture of Gaussians. We sample configurations from this
distribution.

3.2.2 DGMP Execution Using MC-RRM

MC-RRM requires both a cost metric and a guiding path. For the cost metric, we
use H defined in Sect. 3.1.2. For the guiding path, we ignore obstacles and compute
the robot configuration (i.e. the joint angles) that minimizes the cost metric at each t,
t ¼ 1; . . .; T . To ensure satisfaction of the robot’s kinematic constraints, we min-
imize H at each t using Lagrange optimization as in Calinon et al. [9]. For the
sampling based motion planning algorithm, we compute the edge cost using our
cost metric: Heðx1; x2Þ ¼

R x2
x1
H x; k xð Þð Þdx where the integral is taken along the line

segment from x1 to x2 in C-space and k is a time alignment function that estimates
the corresponding time index of x in the original demonstration. In our current
implementation, k returns the time index of the nearest point on the guiding path.
This may introduce problems when the guiding path involves loops, which will be
addressed in future work. To efficiently discretize the line integral for He(x1, x2), we

approximate the function as Heðx1; x2Þ ¼
Pt2

t¼t1 þ 1 H
x2�x1ð Þt
t2�t1

þ x1; t
� �

, where t1 ¼
k x1ð Þ; t2 ¼ kðx2Þ the edge from x1 to x2, we assume the transition is performed in
constant speed and interpolate configurations along the edge.

4 Results

We applied DGMP to the Aldebaran Nao robot [3] to perform two household tasks.
The first task was to transfer sugar from a bowl to a cup in the presence of obstacles
as shown in Figs. 6 and 7. The second task was to clean the surface (Fig. 8) of a
table in the presence of obstacles as shown in Fig. 9.

The Aldebaran Nao includes 26 total degrees of freedom, including 5 DOF in
each arm, 1 DOF for bending at the hip, 1 DOF for opening and closing each
3-finger gripper, and the remaining DOFs for the legs and neck. In our experiments,
we used 6 DOF for each task: 5 DOF in the right arm and 1 DOF at the hip. We
implemented DGMP using the Python programming language. All computation
was performed on a 2.4 GHz Intel Xeon e5620 PC running 64-bit Linux.

In our first experiment, a sugar transfer task, the goal was to evaluate the ability
of DGMP to (1) learn task-specific constraints that are critical to the success of the
task, and (2) avoid novel obstacles in the environment. The robot was seated at a
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table with a sugar bowl and a cup, and, in some cases, other items. The task was to
scoop some sugar using a spoon and transfer the sugar to the cup without bumping
the bowl, the cup, or any other items that may be on the table. Other than the
demonstrations, we did not provide the method any explicit task-specific

Fig. 6 Execution of DGMP for the sugar transfer task. The robot successfully keeps the spoon
level while avoiding the jar, a novel obstacle not included in the demonstrations

Fig. 7 Execution of DGMP for the sugar transfer task. The robot successfully keeps the spoon
level while avoiding the canister, a novel obstacle not included in the demonstrations
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information; e.g. we never explicitly constrained the spoon to be level when
moving sugar from the bowl to the cup to prevent spillage. To successfully
accomplish this task, the robot needed to (1) automatically learn that the spoon
should be kept level as it moves from the bowl to the cup on order to prevent
spilling the sugar, and (2) successfully avoid obstacles on the table when per-
forming the task.

We conducted 7 kinesthetic demonstrations. In each demonstration, only the
sugar bowl and cup were on the table. We varied the placement of the sugar bowl

bowl

cup cup
jar

bowl

jar

Fig. 8 A top-down view of the workspace for two test cases. The demonstration mean (red) and
the MC-RRM plan (green) for the spoon motion, where two points near the spoon tip are tracked.
MC-RRM samples projected into the workspace are shown as blue dots. Depending on the
placement of the jar, the robot may detour above the jar (left) or to the side of the jar (right) in
order to keep the spoon level while still satisfying the kinematic constraints the robot

Fig. 9 Execution of DGMP for the table cleaning task. The robot successfully learned to keep the
paper towel on the table while avoiding the bowl, which was not included in any of the
demonstrations
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randomly within a 5 inch radius on the table across the demonstrations. We used 3
environment landmarks which were located on the chair, the cup, and the bowl.
Each end-effector trajectory contained the x, y, z coordinates of two points attached
to the robot (the end effector and the tip of the spoon), so each end-effector vector is
6 dimensional. Two points on the robot were chosen such that the appropriate tilt
and level of the spoon could be learned (via the covariance matrices) for different
stages of the task.

To evaluate performance of our method, we created 27 test cases. In each test
case, the location of the sugar bowl and of the obstacle were randomly determined.
The sugar bowl’s location varied within a 4 inch range and the obstacle was placed
in a 2.5 inch range. We provided the shape and locations of the bowl and obstacle
(as would be extracted from a vision system) to the motion planner and then
computed a plan for each test case. We then executed each plan on the Nao robot in
the experimental setup. After completing the demonstrations, the learning phase
required 42 s of computation time. In our unoptimized implementation, computing
a motion plan then required 1.5 s when no obstacle was present and an average of
410 s when an obstacle was present. We show the convergence of the method in
Fig. 5 and note that the cost metric of the path obtained by MC-RRM was orders of
magnitude lower than for standard PRM at equivalent computation times.

A test case was considered successful if the robot (1) scoops sugar from the bowl
and transfers it to the cup without spilling on the table or obstacle, and (2) does not
contact the obstacle, bowl, or cup. We considered a test case to be feasible if it was
possible for the robot to successfully accomplish the task given its kinematic
constraints. Of the 27 test cases, 3 were not feasible due to the obstacles being too
close to the robot’s rest pose.

DGMP succeeded in 22 of the test cases, resulting in a success rate of 92 % of
the 24 feasible test cases. In the two failure cases, the obstacle was very close to the
robot, which results in a narrow passage in the robot’s configuration space and the
MC-RRM could not find a solution within 100,000 samples. For the same test
cases, we also applied a pure learning-based approach in which we executed the
mean time-aligned trajectory. Due to obstacle collisions, this approach resulted in
only 3 successes, a success rate of 13 % of the feasible test cases. RRT resulted in
zero successes because it always spills the sugar due to lack of knowledge of task
constraints.

We also tested our method on a table cleaning task. As in the sugar transfer task,
the Nao robot was seated at a table. The objective was to wipe the table clean using
a grasped clump of paper towel. Six demonstrations were recorded of the robot
wiping the table in an S-shaped curve without any obstacles. During task execution,
a new obstacle was put on the table. To be successful, the robot needed to learn that
the paper towel needed to be kept on the surface of the table and avoid obstacles. In
all our task executions, DGMP was able to find a detouring path and successfully
complete the wiping task, as shown in the example in Fig. 9.

Videos of a Nao robot performing these tasks using DGMP are available at:
http://robotics.cs.unc.edu/DGMP.
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5 Conclusion and Future Work

We presented demonstration-guided motion planning (DGMP), a new framework
for planning motions for personal robots to perform household tasks. DGMP
combines the strengths of sampling-based motion planning and robot learning from
demonstrations to generate plans that (1) avoid novel obstacles in cluttered envi-
ronments, and (2) learn and maintain critical aspects of the motion required to
successfully accomplish a task. Sampling-based motion planning methods are
highly effective at computing paths from start to goal configurations that avoid
obstacles, but task constraints must be explicitly enumerated and programmed.
Instead, we used a set of expert demonstrations and automatically extract task
constraints by learning low variance aspects of the demonstrations. We then
introduced multi-component rapidly-exploring roadmaps (MC-RRM), a
sampling-based method that incrementally computes a motion plan that avoids
obstacles and optimizes the learned cost metric. We demonstrated the effectiveness
of DGMP using the Aldebaran Nao robot performing household tasks in a cluttered
environment, including moving a spoon full of sugar from a bowl to a cup and
cleaning the surface of a table. By effectively combining motion planning with
learning from demonstration, our robot using DGMP accomplished its task suc-
cessfully in over 90 % of its test cases for which a solution was feasible.

In the future work, we plan to extend our method to handle more general tasks
with loops and pauses. This could be done by improving the time alignment function
in the edge cost metric computation. We also plan to consider real-time sensing
(including scene and object recognition) and moving obstacles, which may involve
integrating perception-guided motion planning [21] with DGMP. We hope to build
on DGMP to enable personal robots to assist humans with a larger class of tasks.
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Learning from Experience
in Manipulation Planning: Setting
the Right Goals

Anca D. Dragan, Geoffrey J. Gordon and Siddhartha S. Srinivasa

Abstract In this paper, we describe a method of improving trajectory optimization
based on predicting good initial guesses from previous experiences. In order to
generalize to new situations, we propose a paradigm shift: predicting qualitative
attributes of the trajectory that place the initial guess in the basin of attraction of a
low-cost solution. We start with a key such attribute, the choice of a goal within a
goal set that describes the task, and show the generalization capabilities of our
method in extensive experiments on a personal robotics platform.

1 Introduction

We are interested in pushing the boundaries of trajectory optimization for robots
in complex human environments. Optimization techniques have been well-
documented to struggle in these domains by getting stuck in high-cost local
minima. We envision two possible means of alleviating the problem. The first is to
improve the optimizer itself by widening the basin of attraction of low-cost minima.
The second is to improve initialization and start with trajectories that are in the
basin of attraction of low-cost minima. In our previous work [1], we made progress
on the former by widening the basin of attraction of an efficient trajectory optimizer
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CHOMP [2] by taking advantage of the often available flexibility in goal selection.
In this work, we focus on the latter: learning to generate initial trajectories that
enable the optimizer to converge to low-cost minima.

So how does the robot acquire this trajectory-generating oracle? In designing the
oracle, we take advantage of three key features: the optimization process itself, the
repetition in the tasks, and the structure in the scenes. The optimization process
relieves us from the need to produce low-cost initial trajectories. The cost of the
trajectory is irrelevant, as long as it lies in the basin of attraction of a low-cost
trajectory. Repetition or similarity in tasks allows the oracle to learn from previous
experience how to produce trajectories. Finally, structure in the scenes suggests that
we can use qualitative attributes to describe trajectories. For example, in a kitchen,
we could say “go left of the microwave and grasp the object from the right.” These
attributes provide a far more compact representation of trajectories than a sequence
of configurations. This work combines all three features and proposes a learning
algorithm that, given a new situation, can generate trajectories in the basin of
attraction of a low-cost trajectory by predicting the values of qualitative attributes
that this trajectory should posses. As a consequence, instead of focusing on every
single voxel of a scene at once, we first make some key decisions based on previous
experience, and then refine the details during the optimization.

The idea of using previous experience to solve similar problems is not new. In
Artificial Intelligence, it is known as Case-Based Reasoning [3, 4], where the idea is
to use the solution to the most similar solved problem to solve a new problem. In
the MDP domain, Konidaris and Barto [5] looked at transferring the entire value
function of an MDP to a new situation. Stolle and Atkeson constructed policies for
an MDP by interpolating between trajectories [6], and then used local features
around states to transfer state-action pairs to a new problem [7, 8]. In motion
planning, learning from experience has included reusing previous collision-free
paths [9] or biasing the sampling process in randomized planners [10] based on
previous environments.

Jetchev and Toussaint [11] explored trajectory prediction in deterministic and
observable planning problems. They focused on predicting globally optimal tra-
jectories: given a training dataset of situations and their globally optimal trajecto-
ries, predict the globally optimal trajectory for a new situation. Much like
Case-Based Reasoning, their approach predicted an index into the training dataset
of trajectories as the candidate trajectory [11, 12] or clustered the trajectories and
predicted a cluster number [11, 13]. Since prediction is not perfect, a
post-processing stage, where a local optimizer is initialized from the prediction is
used to converge to the closest local minimum.

Our approach differers in two key ways. First, we take advantage of the necessity
of the optimization stage, and focus on the easier problem of predicting trajectories
that fall in the basin of attraction of low-cost minima. Second, by predicting
low-dimensional attributes instead of whole past trajectories, we are able to gen-
erate trajectories beyond the database of previous experience, allowing us to gen-
eralize further away from the training set.
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Although the dataset-indexing techniques are a promising start in the field of
learning from experience for trajectory optimization, they are limited: they are
reminiscent of earlier works in computer vision (e.g. [14]), where one way to
classify an image is to find the closest image in the training set according to some
features and predict its label (or find a set of closest images and verify their
predictions in post-processing). In 2006, the vision community started thinking
about learning the distance metric between images [15], and this is the state at
which trajectory prediction is now. In 2009 however, the object recognition com-
munity started changing this classification paradigm and shifting towards a much
more general way of recognizing objects based on a simple idea: predict attributes
of the object instead of the object itself, and then use the attributes to predict the
object [16, 17]. This not only improved recognition of known objects, but also
allowed learners to recognize objects they had never seen before. A similar tech-
nique was used in [18] to recognize from brain scans words that a subject was
thinking, by using physical attributes of the words as an intermediate representa-
tion. We propose to do the same for trajectory prediction: rather than predicting
trajectories directly, we predict qualitative attributes of the trajectories first, such as
where their goal point is or which side of an obstacle they choose, and then map
these qualitative attributes into initial guesses for a local optimizer.

In this work, after providing the motivation for the idea of using attributes in
trajectory prediction, we focus on one key such attribute of the trajectory: its end
point. Most manipulation tasks are described by an entire region of goals rather than
a single goal configuration, and our previous work [1] has shown that the choice of
a goal significantly impacts the outcome of the optimizer. Therefore, by getting
better at selecting good goals, we are able to initialize the optimizer in better basins
of attraction. We take advantage of the fact that the robot has easy access to locally
optimal trajectories though its local optimizer, and can obtain a rich dataset of
multiple trajectories for a situation along with their performance. We compare
several methods of learning to predict this attribute value, from predicting if a value
is the best choice or not, to learning to rank these values and selecting the highest-
ranking one as the prediction. We show that all these algorithms perform best when
they take into account additional data about sub-optimal performance (the “error” in
“trial-and-error”). Using this information, learners predict goals that achieve costs
within 8–9 % of the minimum cost in a test suite of reaching tasks with different
starting points, target object poses and clutter configurations. We also study the
generalization capabilities of the method, by evaluating its robustness to differences
between training and test distributions; and, we show examples where relying on a
library of previously executed trajectories is not suitable. We see this work as the
foundation for a learning framework where reinforcement from past experience can
be harnessed to guide trajectory optimizers in making the right decisions.
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2 Framework

2.1 Trajectory Optimization

Although our work can use any trajectory optimizer that produces consistent
solutions, we will revise here the details of a particular optimizer that has proven to
be very efficient in a wide range of manipulation tasks. In recent work [1], we
introduced Goal Set CHOMP, an optimizer that can bend trajectories out of col-
lision while remaining smooth, and that exploits the entire goal set of configurations
allowed by the task in order to find better solutions. This algorithm was an
improvement on the CHOMP optimizer [2], widening the basins of attraction of
low-cost solutions by allowing trajectories to adapt their goals.

CHOMP optimizes a functional that trades off between a smoothness and an
obstacle cost:

U½n� ¼ k fprior½n� þ fobs½n� s.t. h(n) = 0 ð1Þ

with the prior measuring a notion of smoothness such as sum squared velocities or
accelerations along the trajectory n, the obstacle cost pushing all parts of the robot
away from collision, and h capturing constraints on the trajectory.

We optimize the first-order Taylor Series expansion of U and h around nt within
a trust region shaped by a Riemannian metric A in the space of trajectories N . This
could be, for example, the Hessian of the prior cost, which will prefer smooth
deformations as opposed to small deformations in the Euclidean norm. The
resulting trajectory update rule looks like:

ntþ 1 ¼ argmin
n2N

U(nt)þ gTt (n� nt) +
gt
2

n� ntk k2A s.t. h(nt) + h0(nt)(n� nt) = 0

ð2Þ

A convenient representation of trajectories for CHOMP is as a vector of way-
points: n = (n [1], . . ., n [n]). In this case, a typical constraint for CHOMP is a fixed
goal: n [n] = qgoal. Goal Set CHOMP relaxes this assumption, and replaces the
constraint by hn(n [n]) = 0: the goal is restricted to a constraint surface instead of
fixed.

2.2 Trajectory Attribute Prediction

The term “trajectory prediction” refers to the problem of mapping situations S (task
descriptions) to a set of trajectories N that solve them:
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s : S! N ð3Þ

Previous work [11, 13] proposed solving this problem by learning to index into a
dataset of examples. This approach is limited by the dataset of previously executed
trajectories, much like, for example, the earlier work in object recognition was
limited by labeled images it used. In our work, we combine the idea of using a
lower dimensional representation of trajectories rather than the full dimensional
representation with the ability to predict new trajectories that generalize to more
different situations.

Our approach to solving the problem takes advantage of the capabilities of the
optimizer. Since this optimizer is local, it will not produce the globally optimal
trajectory independent of initialization, but it can produce various local minima
with different costs. The training data set therefore contains not only the best
trajectory found for the scene, but it can also include various other local optima. We
also emphasize that trajectory prediction serves as an initialization stage for the
optimizer, which leads to the following crucial observation: In order to predict the
optimal trajectory, we can predict any trajectory in its basin of attraction, and let
the optimizer converge.

So can we leverage this observation in such a way that we have the ability to
predict new trajectories (rather than only the ones in the dataset) while avoiding the
high dimensionality of the output space N ? We propose that there often exist some
lower-dimensional trajectory attributes such that predicting these attribute values,
rather than a full-dimensional trajectory, places the optimizer in the desired basin of
attraction. The insight is that in producing a trajectory, a planner is faced with a few
key decisions that define the topology of the trajectory. Once the right decisions are
made, producing a good trajectory comes down to local optimization from any
initialization that satisfies those decisions. This implies that we can reduce the
problem of predicting a good trajectory to that of predicting these core attributes,
and then mapping these core attributes to a trajectory. We will discuss each of these
two subproblems in turn.

2.3 Attributes

To explain the idea of attribute prediction, we start with the toy world from Fig. 1: a
point robot needs to get from a start to a goal while minimizing the cost in (1). If we
run CHOMP in this world, we get two solutions depending on the initial trajectory:
a low and a high cost one. In order to converge to the low-cost trajectory, we can
start with any trajectory to the right of the obstacle. Predicting the optimal trajectory
reduces to predicting a single bit of information: right versus left of the obstacle.

In higher dimensional problems, there aremany basins of attractions and instead of
globally optimal trajectories we can talk about good local minima versus high-cost
and sometimes infeasible local minima. In this setting, it is often the case that the
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lower-cost basins are still described by simple decisions (i.e. low-dimensional, even
discrete, trajectory attributes). Figure 2 shows an example where going above an
obstacle versus around it will determinewhether the optimizer converges to a low cost
trajectory versus a high cost one. In this case, a single bit of information will place the
optimizer in a good basin of attraction. An optimizer like CHOMP can be initialized
with a simple trajectory that satisfies this property, such as the one in Fig. 3, and, as
exemplified in the same figure, will bend it out of collision to a low-cost trajectory.

Based on this observation, we propose changing the trajectory prediction para-
digm to a trajectory attributes prediction problem where we first predict key attri-
butes that a good trajectory should have:

s : S! AðN; S) ð4Þ

Here, A(N, S) denotes the trajectory attributes, which are conditioned on the situ-
ation, e.g. “in front of the shelf” or “elbow up around the cabinet”. These attributes
implicitly define a subset of trajectories NA � N, and as a second step the optimizer
is initialized from any trajectory n 2 NA. The overall framework is

Fig. 1 A toy example that exemplifies the idea of attributes: there are two basins of attraction, and
a simple attribute (the decision of going right vs. left) discriminates between them

Fig. 2 High-dimensional problems are described by many basins of attraction, but there are often
attributes of the trajectory that can discriminate between low cost basins and high cost basins. In
this case, such an attribute is around versus above the fridge door
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S! AðN; S)! n 2 NA ! n�

with n* the locally optimal trajectory in the basin of attraction of n.
Constructing a trajectory from a set of attributes (A(N, S) ! n 2 NA) can be seen

as solving a simple constrained optimization problem: starting from a straight line
trajectory, we want to keep it short while satisfying certain constraints on a few of
its way-points. Since this problem is convex, generating a trajectory from attributes
is very fast. As an example of such a problem, “above X and then to the left of Y”
translates into two constraints on two way-points of a piecewise linear trajectory.
The example from Fig. 3 is an instantiation of that, with one constraint on one
mid-point, above the fridge door, which generates two straight line segments in
configuration space. Similarly, a goal attribute will be a constraint on the final
end-point of the trajectory.

3 Learning to Select Good Goals

Most manipulation tasks are described by an entire region of goals rather than one
particular configuration that the robot needs to be in such that it can achieve the task.
Goal sets appear in reaching for an object, placing it on a surface, or handing it off to
a person. In our previous work, we introduced Goal Set CHOMP, a trajectory
optimizer that can take advantage of the goal set in order to obtain lower-cost
solutions. However, this optimizer is still local, and the initial goal choice (the goal
the initial trajectory ends at) still has a high impact on the final cost of the trajectories.
Figure 4 plots this final cost for a variety of initial choices, in the problem of
reaching for a target object in a small amount of clutter. Because of the large

Fig. 3 Once the right choice is made (above the fridge door), we can easily create a trajectory that
satisfies it. This trajectory can have high cost, but it will be in the basin of attraction of a low-cost
solution, and running a local optimizer (e.g. CHOMP) from it produces a successful trajectory
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difference illustrated in the figure, the choice of a goal is a crucial component in the
optimizer’s initialization process. Once a choice is made, a trajectory n 2 NA that
satisfies this attribute value can be, for example, the straight line trajectory from the
start to that goal. For any given situation, we can run an optimizer like Goal
Set CHOMP with a straight line trajectory to each of the goals in a discretization of
the goal set. In this section, we describe several different ways of taking advantage of
this data in order to learn to predict what goal to initialize the optimizer with in order
to minimize cost.

3.1 Some Words on Features

To enable learning, we designed features that capture potential factors in deciding
how good a goal is. These are indicators of how much free space there is around the

Fig. 4 Left the robot in one of the goal configurations for grasping the bottle. Right for the same
scene, the black contour is a polar coordinate plot of the final cost of the trajectory Goal
Set CHOMP converges to as a function of the goal it starts at; goals that make it hard to reach the
object are associated with higher cost; the bar graph shows the difference in cost between the best
goal (shown in green and marked with *) and the worst goal (shown in red)

Fig. 5 Five of the features we are using. From left to right length of the straight line trajectory,
cost of the goal and of the straight line trajectory, free space radius around the elbow and collision
with the target object
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goal and how hard it is to reach it. A subset of these features are depicted in Fig. 5.
We constructed these indicators with simplicity in mind, as a test of what can be
done with very little input. We do however believe that much higher performance is
achievable with a larger set of features, followed perhaps by a feature selection
approach. We are also excited about the possibility of producing such features from
a much rawer set using feature learning, although important questions, such as
informing the algorithm about the kinematics of the robot, are still to be teased out.

3.1.1 A Minimal Set of Features

• The distance in configuration space from the starting point to the goal:
n n½ � � n 0½ �k k. Shorter trajectories tend to have lower costs, so minimizing this

distance can be relevant to the prediction.
• The obstacle cost of the goal configuration: the sum of obstacle costs for all

body points on the robot,
P

b c(xb(nn)), with c an obstacle cost in the work-space
and xb the forward kinematics function at body point b.

• The obstacle cost of the straight-line trajectory from the start to the goal
�n :
P

i

P
b c xb �n i½ �� �� �

. If the straight line trajectory goes through the middle of
obstacles, it can potentially be harder to reach a collision-free solution.

• The goal radius: a measure of the free space around the goal in terms of how
many goals around it have collision-free inverse kinematics solutions. For
example, the goal set of grasping a bottle can be expressed as a Workspace Goal
Region [19] with a main direction of freedom in the yaw of the end effector (this
allows grasping the bottle from any angle, as in Fig. 4). In this case, the feature
would compute how many goals to the left and to the right of the current one
have collision-free inverse kinematics solutions, and select the minimum of
those numbers as the goal radius. The closer the clutter will be to the goal, the
smaller this radius will be. It has the ability to capture the clutter at larger
distances than the second feature can.

• The elbow room: the maximum radius of a collision-free sphere located at the
elbow, indicating how much free space the elbow has around it for that par-
ticular goal configuration. Configurations that restrict the motion of the elbow
are potentially harder to reach.

• The target collision amount: the percent of the last m configurations of the initial
trajectory that are colliding with the target object 1

m

PN
i¼N�mþ 1 collidesðn½i�sgÞ.

Here, collides(q) = 1 when q is in collision with the target object and 0
other-wise. This feature is another factor in how easy it is to reach the goal—if
the initial trajectory passes through the target object, bending it out of collision
could be too difficult.
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3.1.2 Domain Adaptation

Among the features, the distance from the start as well as the initial trajectory cost
can differ substantially between different scenes, and so may cause difficulty for
generalization. A classical approach to deal with this problem is standardization,
which we can not do directly because of the large difference between our training
and test set statistics. The test set contains some scenes that are considerably harder,
and some that are far easier than any in the training set: training data will never
capture the entire diversity of the situations the robot will face. We still need to
generalize to these situations, so we normalize the distance and cost features in a
situation—this makes all situations have the same range of costs, allowing the
learner to distinguish among them. We then add in the mean values of these two
features, to give the learner access to how difficult the scene is, and only then
standardize. More sophisticated domain adaptation strategies (e.g., [20]) are an area
of future work.

3.2 Learners

We are comparing several learners, differing in the model they use (linear vs.
nonlinear), how they use the data and whether they focus on predicting the best cost
or on fitting the cost in general.

3.2.1 Classification

(a) The Vanilla Version: The easiest way to approach the problem of deciding
which goal is optimal is to directly predict if a goal will be optimal or not. For
every situation, we assign the goal corresponding to the minimum final cost
the value 1, and 0 to all the other goals.
We can now train a standard classifier, such as a Support Vector Machine, to
predict optimality of a goal. In a new scene, given a set of goal configurations,
this classifier will select any number of goals to be optimal, and we will select
a random one of these as the initial guess for the optimizer. If the classifier
predicts that none of these goals are optimal, then we select randomly among
all goals, i.e. the classifier has not given the optimizer any information.

(b) The Data-Efficient Version: Since we have access to costs and not just to the
binary decision of “is optimal”, another approach is to allow the classifier to
predict any goal within a certain percent of the minimum cost. This can help
by softening the data for the classifier, but there is of course a trade-off with
predicting higher cost goals. We determined the value for this trade-off (the
percent cutoff) on a validation set.
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3.2.2 Inverse Optimal Control

(a) The Vanilla Version: A different way to look at the problem is to treat the best
goals as expert demonstrations. In Inverse Optimal Control, we want to create
a cost function that explains why the experts are optimal—in our case, we
want a cost function cIOC in feature space such that the best goal does have the
best cost in every situation. Once we have this function, we can apply it to the
goals in a new scene and choose the goal g* = argming cIOC (fg) (here fg
denotes the features associated with goal g).
Taking the Maximum Margin Planning approach introduced in [21], we want
to find a cost function cIOC = wT f that makes the optimal goal have the lowest
cost by some margin. To improve generalization, we will require a larger
margin for goals that are farther away from the expert: in particular, we define
lðg; g0Þ to be the structured margin, which is zero when g ¼ g0 and large when
g and g0 are far apart. Then saying that some goal g is optimal means
wTfg�wTfg0 8g0. Adding in our structured margin, penalizing constraint
violations with a slack variable, and regularizing w, we have:

min
w

X
s

wT fgsexp �min
i

(wTfgsi � lðgsi ,gsexpÞ)
� �

þ k
2

wk k2 ð5Þ

where gsi denotes goal i in situation s, and lðg; g0Þ ¼ fg � f 0g
��� ���2 is the

structured margin which penalizes solutions from being far away in feature
space from the expert in situation s. Overall, w pays a penalty for allowing
non-expert goals to have low costs.
Taking the subgradient of (5) yields the following update rule:

w w� a
X
s

fgsexp � fgs�
� �

þ kw

 !
ð6Þ

where gs� = argmin
gi
ðwTfgsi � lðgsi ; gsexpÞÞ ð7Þ

This algorithm is targeted at identifying the minimum cost goal (7), ignoring
the costs associated with all other goals. It gains efficiency as it does not waste
resources trying to explain what happens with other goals. Whether this focus
on the expert pays off or not will be established in Sect. 4.

(b) The Data-Efficient Version: With IOC, there exists a way of introducing the
true cost information (which we do have, unlike typical IOC problems which
are only given expert examples), without losing the focus on the expert. By
changing the margin ls to be the true cost difference between the goal and the

Learning from Experience in Manipulation … 319



expert goal rather than the distance in features, lðgsi ; gsexpÞ ¼ Uðnfinalgexp Þ�
Uðnfinalgi Þ, the algorithm will ensure that the minimum with respect to its new
cost is close in true cost to the expert, i.e. has low cost. In future work, we are
interested in combining these two distance metrics and using a cutoff on cost
difference as in the next Sect. 3.2.3.

3.2.3 Regression

(a) The Vanilla Version: A third way to predict the minimum cost goals is to
predict the final cost associated to each of the goals:

f sgi ! Uðnfinalgi Þ

with nfinalgi the final trajectory obtained by initializing the optimizer with the
straight line to goal gi, and choose the best one:

g� ¼ argmin
gi

Uðnfinalgi Þ

This is sometimes referred to as arg min-regression. We looked at three dif-
ferent regressors:

• Linear Regression: w = F†C, with F a matrix concatenating every feature
vector on every situation, one per row, and C a vector concatenating all the
final costs obtained by Goal Set CHOMP, one per row.

• Gaussian Process: A wide Gaussian radial basis kernel performed the best,
since we need far knowledge transfers.

• Neural Network: We used the Back-Propagation Neural Network with one
hidden layer. We determined the number of nodes in this layer, as well as
the weight decay coefficient based on performance on a validation set.

(b) The Data-Efficient Version: Looking at the initial performance of Linear
Regression on the training set (Fig. 6, left), it becomes apparent that there are a
lot of data points with very high cost, and predicting that cost accurately is not
only unnecessary, but leads to not being able to identify the good solutions
from the mediocre ones. This suggests that even these regressors should not
use all the data, but rather focus their efforts on discriminating among the
lower-cost solutions by truncating the cost at some threshold. We selected this
threshold based on a validation set as shown in Fig. 6 (right). The plot shows
that a very low threshold degrades performance by confusing the learner to
pay attention to the high-cost outliers, and a very high threshold also degrades
performance by starving the learner of data. Figure 6 (center) portrays the new
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predictions based on the learned threshold, forming a much better fit for the
solutions we are interested in, while keeping the high-cost predictions suffi-
ciently high. We also tried to do the thresholding per scene instead of on the
entire training data, but this did not cause a significant improvement, because
the effect on how well the regressors can fit the data is minimal.

4 Experimental Results

4.1 Generalization from Limited Data

In a first experiment, we wanted to test how well we can generalize to new situ-
ations, going beyond the exemplars already executed. We used only two scenes for
training, shown in Fig. 7, where the goal was the grasp the bottle while avoiding the
table holding the object, as well as the box placed next to the target. We ran
CHOMP to each goal in a discretization of the goal set, and recorded the final cost.
Figure 7 shows the goals that produced the best cost for each of the scenes. We then
trained a neural network to predict this cost given only the first three features from
Sect. 3.1.1.

For testing, we moved the object to a very different location than in the training
examples, also shown in Fig. 7. With a Nearest-Neighbor approach, the robot
would identify one of the training scenes as closest, and initialize the optimizer
from the best final trajectory for that scene. In this case, all the trajectories go to a
goal that is sub-optimal or even colliding with the environment. The trajectory
attributes approach, however, allows us to go beyond these previously executed
trajectories. The learner predicts that goal shown on the right of Fig. 7 will produce
the best cost. This goal has never been optimal in the training examples, yet because
it stays away from clutter while maintaining a short distance from the starting
configuration, the learner will recognize it as better than the other choices. Indeed,
when initializing the optimizer from the straight line trajectory to that goal, the final

Fig. 6 From left to right the actual versus predicted cost without thresholding, the actual versus
predicted cost with thresholding, and the dependence of the fit error of a validation set of medium
and low cost examples on the threshold (on the left of the minimum, the regressors pays too much
attention to high costs, on the right it uses too little data)
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cost is only 1 % higher than the best path we were able to find using multiple
initializations of Goal Set CHOMP to the different goals.

4.2 Generalization Dependence on Train-Test Similarity

In this next experiment, we were interested in testing how far away from the
training data we can transfer knowledge to. We created one testing situation, and
trained two of the regressors (the Neural Network and the Gaussian Process) on
situations that are more and more different from the testing one. In Fig. 8, we plot
the performance in these cases as the percent of degradation of cost over the
minimum that Goal Set CHOMP can reach—the final cost corresponding to ini-
tializing the optimizer with a straight line trajectory to the best goal. These per-
formances, averaged across 15 different clutter configurations, are compared with
our baseline: what happens if we randomly choose a collision-free goal, without
any learning?

In the first setting, we train and test on the same dataset. Both the Neural
Network and the GP perform drastically better than the no-learning baseline. We
then change the situation slightly: first the clutter configurations change, then the
target object position changes by approx. 20 cm, followed by the starting config-
uration of the robot. In the last but one test, we change all these situation descriptors
drastically, and the performance decreases significantly, although the learning
algorithms still outperform the baseline. Finally, we show that more variety in the
training set can lead to better generalization. When we increase the number of
examples in the training set—we still train on very different situations, but we

Fig. 7 Two training situations along with their corresponding best goal, and a test situation in
which the correct goal is predicted. If the learner were constrained to the set of previously executed
trajectories, it would not have been able to generalize to this new scene
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provide a wider range with more possible starting configurations and target poses—
we notice that the performance again improves to about 8 % for both regressors.
The random choice baseline does of course not take into account this data and
performs the same, around 62 % degradation over the minimum cost.

4.3 Main Experiment

We are also interested in a realistic evaluation of the day-to-day performance of our
system, as well as establishing which learning approach from Sect. 3.2 is most
suitable for our problem. Should the learner focus on just the optimal goal or or
should it also focus on the sub-optimal goals and their performance?

We created a large set of training examples, comprising of 90 situations varying
in the starting configuration, target object pose, and clutter distribution. In each
situation, we ran Goal Set CHOMP starting from the straight line trajectory to each
of the collision-free goals in the discretized goal set (a total of 1154 examples) and
recorded the final cost. We also created a test set of 108 situations (1377 examples)
that differ in all three components from the training data.

Figure 9 (Left) shows the percentage of cost degradation over the minimum,
averaged across all testing situations, for the five approaches from Sect. 3.2. The
solid bars are the data-efficient versions of the algorithms: the regressors use
thresholds established on a separate validation set, IOC uses the cost distance for
the structured margin, and the classifier predicts goals close to the minimum as
well. The vanilla versions of these methods, shown with transparent bars, always
perform worse than their data-efficient counterparts.

Fig. 8 The loss over the minimum cost on the same test set when training on scenes that are more
and more different, until everything changes drastically in the scene and performance drops
significantly. However, the loss decreases back to around 8 % when training on a wide range of
significantly different scenes, showing that the algorithm can do far transfers if given enough
variety in the training data
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The best performer is our version of data-efficient IOC—this algorithm focuses
on predicting the expert rather than fitting cost, while taking into account the true
cost and ensuring that non-expert predictions have low cost. Although both IOC
and LR are linear, the advantage of IOC over LR is its expert prediction focus. The
non-linear regressors have similar performance as IOC, and their advantage is a
better fit of that data. The SVM is focusing on low-costs with a linear kernel, so its
performance is, as expected, close to LR.

In these experiments, we had a fairly fine discretization of the goal set per scene.
It makes sense to ask if we could get away with fewer choices. Figure 9 (Right)
indicates that the answer is yes: with 5 goals, for example, we can predict the
minimum cost better, and we this minimum is not a lot larger than the one con-
sidering, say, 20 goals.

5 Conclusion

In this paper, we proposed moving away from the learning from experience para-
digm of predicting trajectories from a library. We proposed instead to predict the
important attributes of trajectories that will place the initial guess for a trajectory
optimizer in a good basin of attraction. We presented a first step towards this
prediction paradigm by focusing on a very important trajectory attribute: the choice
of a goal. We showed that the learner can generalize well by predicting this attri-
bute, and presented results emphasizing the importance of our learning framework
in practice. The next step is identifying the set of attributes that are required in order
to differentiate between basins of attraction, based on both the optimizer and the
current situation the robot is in. In parallel, we must improve the optimizer itself, to
allow more flexibility in the prediction. We see this as an exciting challenge for

Fig. 9 Left Percentage loss over the best cost for all the methods. Solid bars are the data-efficient
versions, and transparent bars are the vanilla algorithms, which perform worse. Right The
predicted minimum cost versus the true minimum cost as function of the number of choices
considered
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machine learning and manipulation that will pave the road towards a more semantic
and hierarchical way of planning, based on the robot’s prior experience.
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Planning Complex Inspection Tasks Using
Redundant Roadmaps

Brendan Englot and Franz Hover

Abstract The aim of this work is fast, automated planning of robotic inspections
involving complex 3D structures. A model comprised of discrete geometric prim-
itives is provided as input, and a feasible robot inspection path is produced as
output. Our algorithm is intended for tasks in which 2.5D algorithms, which divide
an inspection into multiple 2D slices, and segmentation-based approaches, which
divide a structure into simpler components, are unsuitable. This degree of 3D
complexity has been introduced by the application of autonomous in-water ship
hull inspection; protruding structures at the stern (propellers, shafts, and rudders)
are positioned in close proximity to one another and to the hull, and clearance is an
issue for a mobile robot. A global, sampling-based approach is adopted, in which all
the structures are simultaneously considered in planning a path. First, the state
space of the robot is discretized by constructing a roadmap of feasible states;
construction ceases when each primitive is observed by a specified number of
states. Once a roadmap is produced, the set cover problem and traveling salesman
problem are approximated in sequence to build a feasible inspection tour. We
analyze the performance of this procedure in solving one of the most complex
inspection planning tasks to date, covering the stern of a large naval ship, using an a
priori triangle mesh model obtained from real sonar data and comprised of 100,000
primitives. Our algorithm generates paths on a par with dual sampling, with reduced
computational effort.
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1 Introduction

A variety of autonomous surveillance, inspection, and distribution tasks can be
solved using coverage path planning. Given an accurate model of the environment, a
path is designed in which an agent sweeps its geometric footprint over 100 % of a
required surface area. Manufacturing operations, security and maintenance inspec-
tions, painting, plowing, cleaning, environmental monitoring and mine-sweeping are
a few of the many applications in which coverage path planning enables faster task
completion compared with greedy or next-best-view strategies [9, 32].

In 2D workspaces with obstacles, cellular decomposition methods divide the free
space into simple, easily-covered pieces [8, 10], allowing a full sweep of the open
area. Alternatively, some applications call for the inspection of structure bound-
aries, and both deterministic (using Voronoi diagrams) [14, 35] and randomized
(sampling-based) approaches [13, 18] have been used.

In 3D workspaces, the inspection task is typically one of boundary coverage.
A structure is represented by a two-dimensional closed surface embedded in ℜ3,
and the sensor must sweep over 100 % of the interior or exterior surface area. This
problem is often solved by partitioning a 3D structure and planning individual
inspection paths for separate components. In a 2.5D approach, the workspace is
divided into 2D cross-sections, and planned paths over these cross-sections are
assembled into a full 3D inspection [4, 18]. If a complex structure is comprised of
distinct 3D components, one can plan individual inspection paths for each of them,
assuming there is no risk of collision with neighboring components. This approach
has been applied to painting the exterior surfaces of a car [5] and inspecting
buildings in an urban environment [4]. In the former case, a segmentation algorithm
automatically partitioned the car into topologically simple surfaces, and each was
covered individually using a lawnmower-type trajectory [6]. In the latter case, each
building was treated as an individual planning problem, and neighboring buildings
were ignored (this required sufficient clearance between buildings). The key enabler
for these modular approaches is that the plan for covering any one partition,
component, or cross-section can be developed with no knowledge of the others.

Our coverage application is the autonomous in-water inspection of a ship hull, a
3D structure with challenging complexity at the stern due to shafts, propellers, and
rudders in close proximity to one another and to the hull. The Bluefin-MIT
Hovering Autonomous Underwater Vehicle [21], pictured in Fig. 3, is tasked with
inspecting 100 % of the surface area at the stern using a forward-looking bathy-
metry sonar. Our vehicle is fully actuated and precision-maneuverable, but it cannot
fit into the spaces between the component structures at the stern. If a 2.5D approach
is adopted for coverage planning, it will need to be augmented with special, out-of-
plane views in this problem to grant visibility of confined areas that are occluded
in-plane. If a 3D modular approach is implemented, paths planned for component
structures are at risk of collision with neighboring structures.

In consideration of these factors, we take a global optimization approach, in
which all 3D protruding structures are considered simultaneously. The constraints
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are determined by the geometry of the 3D model provided as input. We use a
triangle mesh, typically comprised of thousands of primitives, to accurately model a
ship’s running gear. Rather than explicitly optimizing robot configurations over the
thousands of collision and visibility constraints posed by such geometry,
sampling-based planning is used to find feasible means for the robot to peer into the
low-clearance areas from a distance [25].

Sampling-based planning was first applied to a coverage problem by
Gonzalez-Baños and Latombe [18, 19], who used random sampling to construct a
solution to the 2D art gallery problem [33]. This method was recently utilized to
achieve 2D view-planning for a laser-equipped wheeled robot [7]. The method was
also extended to path planning in work by Danner and Kavraki, who approximated
the traveling salesman problem (TSP) over the solution to the art gallery problem,
planning inspections for complex 2D structures and for 3D cubes and pyramids
[13].

We extend this work in several ways to enable sampling-based coverage path
planning over complex, real-world 3D structures. We construct and analyze com-
putationally a redundant roadmap, in which each geometric primitive is observed
by multiple robot states. To enable fast planning over a large roadmap, tools from
multi-robot [31] and multi-goal [30] planning are utilized to enable lazy collision-
checking. The roadmap construction and collision-checking procedures are dis-
cussed in Sect. 2.

In Sect. 3 we discuss the methods by which the set cover problem (SCP) and
TSP are approximated in sequence to build an inspection tour from a redundant
roadmap. We compare two fast SCP approximation algorithms, the greedy algo-
rithm [22, 28] and the linear programming rounding algorithm [20], with the dual
sampling method of Gonzalez-Baños and Latombe.

In Sect. 4 we examine algorithm performance over ensembles of Monte Carlo
trials in which randomly-sampled primitives must be inspected by a point robot in a
3D workspace. For simplicity, this workspace is devoid of obstacles. Finally, in
Sect. 5 we apply the inspection-planning algorithm to a large-scale, real-world task,
planning the inspection of a ship hull by the HAUV.

2 Sampling-Based Planning Procedure

In developing an inspection path, we employ two sampling-based routines. First,
roadmap construction, which samples robot configurations and catalogs their sensor
observations, creates a discrete state space from which the inspection path will be
made. Second, a point-to-point planner, capable of finding collision-free paths for
multi-degree-of-freedom robots in obstacle-filled workspaces, finds feasible paths
joining the configurations on the roadmap. A stateflow diagram summarizing the
coverage path planning procedure from start to finish is given in Fig. 1.
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2.1 Roadmap Construction

Our algorithm adds configurations to a roadmap until each geometric primitive is
observed a requisite number of times, which we term the redundancy of the
roadmap. Construction begins with the selection of a geometric primitive which has
not been observed the required number of times. Robot configurations are sampled
uniformly at random in a local neighborhood of this primitive, avoiding exhaustive
sampling in empty portions of the workspace. A configuration is added to the
roadmap if it collects at least one required observation, and if the configuration is
free of collisions and occlusions. In addition to collision-checking, this requires ray
shooting; casting a line segment between the robot’s sensor and each of the
primitives inside the sensor footprint to ensure the line of sight is clear. After a
configuration is added to the roadmap, another primitive is selected, and the pro-
cedure repeats until the redundancy requirement is satisfied. The full roadmap
construction procedure is detailed in Algorithm 1.

Increased redundancy is intended to create a finely discretized state space from
which a smaller covering subset of robot states is chosen. This procedure stands in
contrast to that of prior work in sampling-based coverage [13, 18, 19], in which the
final set of configurations used in the inspection is pieced together one-by-one. The
dual sampling method, in each iteration, selects a geometric primitive that has not
been observed, and samples in a local neighborhood of this primitive. Samples are

Fig. 1 A stateflow diagram illustrating the coverage path planning procedure from start to finish.
a Steps of the procedure unique to the redundant roadmap method, including roadmap construction
and solution of the set cover problem over the roadmap. b Steps of the procedure unique to the
dual sampling method, including the sampling of local groups and iterative assembly of a set cover
solution. c Steps of the procedure that we apply in both methods, including set cover pruning and
the iterative solution of the traveling salesman problem
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drawn locally until a group of sufficient size is collected in which each sample
observes at least one required primitive. Unlike the redundant roadmap method, the
sample which contributes the largest quantity of new sensor information is
immediately added to the set cover, the rest of the group is discarded, and local
sampling continues elsewhere, until every primitive is observed at least once. The
key tunable parameter of this procedure is the size of the locally-sampled group,
which we term the number of local samples. We will compare the computational
efficiency of our approach with that of the dual sampling method. A stateflow
diagram of the dual sampling procedure to be implemented is given in Fig. 1.

2.2 Lazy Point-to-Point Planning

Efficient computation along roadmap edges is achieved with a lazy algorithm. As
the roadmap is constructed, an adjacency matrix is maintained in which all entries
represent the Euclidean norms among roadmap nodes. Computation of a Euclidean
norm is far simpler than collision-checking and observation-checking along every
edge of the roadmap. An initial inspection tour is computed over this naive adja-
cency matrix, and only the edges selected in the tour are collision-checked, not
every edge of the roadmap. The bi-directional rapidly-exploring random tree
(RRT) is utilized as the point-to-point planner [24]. Presumably, the computation of
RRTs over the edges of the inspection tour increases the lengths of some edges. To
address this, an iterative improvement procedure, similar to that of [30], is utilized.
After the first set of feasible paths is obtained, the costs in the adjacency matrix are
updated, and the inspection tour is recomputed using the new costs. This procedure
is repeated, and goal-to-goal costs are iteratively updated, until there is no further
improvement in the length of the returned path. Instead of requiring O(n2) calls to
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the RRT, this approach requires O(C ∗ n) calls, where C is the number of iterations
in which a new tour is computed. This procedure is detailed in Algorithm 2.

3 Constructing an Inspection Tour

An efficient implementation of the RRT subroutine is only useful if computations
over the the adjacency matrix are fast and efficient. However, the exact problem we
aim to solve, finding the shortest path that collects an element from every set (where
the sets are observations of primitives obtained at each roadmap node) is an
instance of the generalized traveling salesman problem (GTSP), which is NP-hard
and has no constant-factor approximation. Although branch-and-cut algorithms [16]
and reduction to a non-metric asymmetric TSP [26, 29] have been characterized,
these are not suitable for an iterative, real-time procedure (neither is solved by an
approximation algorithm with a guaranteed termination time). As of this writing, a
constant-factor approximation can only be obtained if each roadmap node is limited
to exactly two primitive sightings, in which case the problem reduces to a Tour
Cover [3]. We have found that stripping sensor information out of the roadmap to
achieve an equivalent Tour Cover undoes any benefit of a constant-factor
approximation.

Our approach is similar to that suggested by Current and Schilling [12], in which
a GTSP (referred to in their work as the Covering Salesman Problem, a special
geometric case of the GTSP [17]) is solved by posing, in sequence, a SCP sub-
problem and a Euclidean TSP subproblem. Both the SCP and Euclidean TSP can be
approximated to within a constant factor of optimality using fast, polynomial-time
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algorithms. Recent work on penalizing both viewing and traveling costs [34]
addresses the possibility of an arbitrarily bad result if a global optimization is
broken into separate SCP and TSP subproblems. Although this would be possible
for a sensor model with infinite range, the inspection problems for which our
algorithms are intended involve robots with decidedly finite sensing radii.
Specifically, our application of interest employs a bathymetry sonar with a 4 m
sensing radius. The workspace is much larger than this, and thus we believe there is
a strong correlation between the minimum-cardinality set cover and the
minimum-cost GTSP.

3.1 Set Cover Subproblem

To solve the set cover subproblem, we rely on polynomial-time approximation
algorithms that find solutions within guaranteed factors of optimality. We consider
two such algorithms, a greedy algorithm and a linear programming (LP) rounding
algorithm. The greedy algorithm [22, 28] simply adds to the set cover, on each
iteration, the roadmap node with the largest number of observed primitives not yet in
the cover. This algorithm solves the SCP within a factor of optimality that is bounded
above by ln(m) + 1, where m is the number of primitives required in the inspection.
The rounding algorithm [20] solves the LP relaxation of the SCP, and then rounds the
fractional solution according to a simple rule: if f is the largest number of roadmap
nodes which share sightings of a primitive, then any roadmap node whose fractional
decision variable is greater than or equal to 1/f is included in the cover. This method is
guaranteed to return a solution within a factor f of optimality.

In the ship hull inspection example to be presented below, there are more than
105 primitives required in the inspection, giving a greedy algorithm approximation
factor of about 12.5. At the same time, a typical value of f on a representative
roadmap for this task is about twenty. Since these are both fast algorithms, and the
approximation factors are of the same order, we will compare the two to assess their
performance in practice.

Although both algorithms produce feasible solutions, these can often be pruned
to yield feasible solutions of smaller size. Our pruning procedure, which runs in O
(n2m) time, identifies configurations in the set cover which observe no geometric
primitives uniquely, and in each iteration one of these configurations is randomly
selected and pruned from the cover. The procedure repeats until every configuration
in the cover is the unique observer of at least one geometric primitive.

3.2 Traveling Salesman Subproblem

To solve the TSP subproblem, we rely on another polynomial-time approximation.
The algorithm of Christofides [11] computes the minimum spanning tree
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(MST) over a graph, and then a minimum-cost perfect matching over the
odd-degree nodes of the MST, achieving an approximation factor of 1.5 when the
triangle inequality holds over the roadmap. Although our lazy computation pro-
cedure may occasionally violate the triangle inequality, RRT post-optimization
smoothing ensures that there are no paths from a roadmap node i to a roadmap node
k such than an alternate path from i to some node j to k is dramatically shorter. This
assumption has proven successful in MST-only variants (with factor-2) for single
and multi-agent coverage planning [13, 15], as well as pure multi-goal planning
[30].

The Christofides approximation gives a good starting point for the TSP, but we
also utilize a post-optimization improvement heuristic. Heuristics such as the Lin-
Kernighan algorithm [27], which iteratively improves a TSP solution by swapping
groups of edges, have succeeded in finding fast, high-quality solutions to very large
TSP instances in practice [2]. We apply the chained Lin-Kernighan improvement
procedure [1] for a short period of time after computation of each inspection tour.

4 Point Robot Test Case

First, we evaluate the performance of our inspection planning procedure on a point
robot test case. This problem addresses algorithm performance as a function of the
number of primitives, independent of collision and occlusion-checking. The unit
cube is populated with a designated number of randomly sampled points, and the
robot must plan a tour which observes them. Mimicking the HAUV inspection
problem, the point robot has a four-dimensional state, comprised of three spatial
coordinates, x, y, and z, and a yaw angle, θ. The sensor footprint is a cube, centered
at the robot’s location and designed to occupy one percent of the workspace vol-
ume, which is again representative of the parameters of a typical HAUV inspection
planning problem. There are no obstacles in the point robot’s workspace.

For several quantities of required primitives, ranging from 102 to 105, 100
instances of the planning procedure were run for each of three solution methods:
redudant roadmaps with a greedy set cover, redundant roadmaps with LP rounding,
and the dual sampling method. For the redundant roadmap cases, five different
redundancies were tested, ranging from 1 to 50. For the dual sampling cases, five
different numbers of local samples were tested, ranging from 10 to 1000. The
chained Lin-Kernighan improvement heuristic was applied for 0.5 s after each
computation of the Christofides TSP approximation. All trials were run on a
Lenovo T400 laptop with a 2.53 GHz Intel Centrino 2 processor and 3 GB of
RAM. To ensure the planning procedure was implemented using the very best data
structures and algorithm implementations available, a variety of high-performance
open-source software tools were utilized. A list of these software tools is included
in the Appendix.

To sample in the local neighborhood of a primitive, a random configuration is
constructed in a spherical coordinate system centered at the primitive. A range
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value is sampled uniformly at random between the minimum and maximum
viewing range of the robot, and corresponding azimuth and elevation angles are
randomly sampled as well. This places the robot at a position from which the
primitive is in viewing range. Finally, the yaw angle is selected deterministically,
such that a relative bearing of zero exists between the primitive and the robot. For a
higher-dimensional vehicle state, a closed-form solution for angular orientation may
not be available, and a Jacobian pseudoinverse method can be used to choose a
robot orientation.

Figure 2 displays the results of this series of point-robot simulations. Increasing
the redundancy of the coverage roadmap improved the quality of the greedy SCP
solution and the LP rounding solution, but the relative quality of the LP rounding
solution begins to worsen just short of a 1000-primitive inspection (for redun-
dancies greater than one). In addition, the LP rounding algorithm, for large numbers
of primitives, chooses much larger sets than the greedy algorithm. As a result, the
pruning of sets became prohibitively expensive and LP set covers were not solved
for large numbers of primitives.

Increasing the number of local samples in a dual sampling scheme improved the
quality of the solution, which was comparable with the results for redundant
roadmaps solved by the greedy set cover algorithm. As further basis for compar-
ison, the length of the optimal “lawnmower” path for the point-robot’s cube sensor
to achieve 100 % coverage of the continuous workspace is plotted alongside the
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Fig. 2 Inspection planning results from a point robot in an obstacle-free, unit-cube workspace, in
which the cube sensor is 1 % of the workspace volume. Inspection tour cost and computation time
are plotted as a function of the number of required primitives; each data point represents the mean
over 100 simulations. On left, LP rounding and greedy algorithm lines represent increasing
roadmap redundancy [1, 5, 10, 25, 50] downward on the vertical axis. Dual sampling lines have
increasing numbers of local samples, [10, 25, 100, 250, 1000] also moving downward. Roadmaps
on right plot refer to computation times for the same trials, with redundancy and numbers of local
samples increasing upward on the vertical axis. Due to prohibitively high computation time, larger
quantities of primitives were not tested using the LP rounding algorithm, indicated by the end of
the red lines
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tour costs in Fig. 2. For a low number of primitives, the sensor does not have to
cover the entire volume.

The two top-performing strategies, dual sampling and a redundant roadmap with
the greedy SCP algorithm, encounter a similar asymptotic performance barrier as
the local sampling and roadmap discretization is set finer and finer. Despite the
neighborhood optimization of the dual method, and the global scope of the
redundant roadmap, a bias persists due to the greedy basis for both methods.

5 AUV Inspection Test Case

Our procedure is next applied to a real-world problem, the inspection of the stern of
a ship by the HAUV. Inspections are planned for the SS Curtiss (Fig. 3), a 200 m
aviation logistics support ship, and the USCGC Seneca, an 80 m Coast Guard
Cutter. The complex structures are large; the Curtiss has a single propeller 7 m in
diameter and a shaft that is 1.5 m in diameter, while the Seneca has two shafts with
propellers that are 2.5 m in diameter.

We first surveyed the ships with vertical and horizontal lawnmower patterns at
safe distances of around 8 m. The preliminary surveys, although they did not

Fig. 3 An HAUV survey in progress at the SS Curtiss, a 200 m aviation logistics support ship. At
bottom right, an annotated diagram of the HAUV, model 1B
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achieve 100 % coverage of all structures, were intended to build a polygonal mesh
model of each ship’s stern suitable for planning a detailed inspection. For this, the
Poisson reconstruction algorithm [23], which is typically applied to laser point
clouds, was used to build watertight 3D meshes from acoustic range data, pictured
in Figs. 4 and 5. Each mesh shown has been discretized such that no triangle edge
is longer than 0.1 m, a resolution sufficient to identify a mine on the hull if all
vertices are observed. Also in Figs. 4 and 5, the sensor footprint represents the
sonar field of view when the sonar nods up and down through its full 180° range of
rotation. Although the sonar can only produce a single range scan at a time, we
assume that in this planned inspection, the vehicle, at each configuration, will nod
the sonar over its full range of angular motion to obtain a larger field of view. Paths
for the vehicle will be planned, as before, in x, y, z, and yaw angle θ.

Full-coverage roadmaps of varying redundancy were constructed, with 100
separate trials for each setting, using the same computer as the point-robot test case
and an identical local sampling procedure. Both the LP rounding and the greedy
SCP algorithm were again tested on these roadmaps, and the chained
Lin-Kernighan improvement heuristic was applied in the same manner as in the
point robot test case. Because a ship mesh comprises a large, non-convex obstacle,
and the HAUV is not a point robot, the inspection planning procedure was used in

Fig. 4 A polygonal mesh obtained from our original, safe-distance survey of the SS Curtiss is
depicted. The HAUV is illustrated in a configuration from which it observes a portion of the ship’s
rudder. The red patch shows mesh points imaged at a desired sensor range between 1 and 4 m, as
the sonar sweeps through 180° pitch. The ship mesh contains 107, 712 points and 214, 419
triangular faces. The propeller is approximately 7 m in diameter
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its entirety, including collision-checking of sampled configurations and use of the
bi-directional RRT to perform lazy inquiries of point-to-point paths.

As illustrated in Fig. 6, increased roadmap redundancy leads to an improvement
in tour length, but the size of the improvement evidently diminishes as the
redundancy increases. For solution of the set cover sub-problem, the LP rounding
algorithm was inferior to the greedy algorithm for all redundancy settings greater
than one, producing tours of greater length and also yielding set covers made up of
much larger sets. As roadmap redundancy increased, the LP rounding algorithm
required prohibitive amounts of time to eliminate unnecessary configurations from

Fig. 5 A polygonal mesh obtained from our original, safe-distance survey of the USCGC Seneca
is depicted. The HAUV is illustrated in a configuration from which it observes a portion of a shaft
and propeller strut. The red patch shows mesh points imaged at a desired sensor range between 1
and 4 m, as the sonar sweeps through 180° pitch. The ship mesh contains 131, 657 points and 262,
173 triangular faces. Each propeller is approximately 2.5 m in diameter
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Fig. 6 Histograms display the coverage topology of a typical set of roadmaps for an instance of
the SS Curtiss ship hull inspection task. The quantities of geometric primitives observed by
roadmap configurations are illustrated at left, and the quantities of shared sightings of geometric
primitives are illustrated at center. At right, a comparison of the LP Rounding Algorithm and
Greedy Algorithm for inspection of the SS Curtiss is depicted. A variety of roadmap redundancies
are examined, and the data for each redundancy represents the mean tour length over 100 trials
(except for points marked with a square, which were limited to 10 trials only due to exhaustive
computation time)
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the set cover, making this pruning step the single most time-consuming step of the
planning procedure. For problem instances using the greedy algorithm, runtime was
instead dominated by the roadmap construction procedure.

To provide a clearer picture of the impact of increased redundancy, Fig. 6 also
displays histograms showing roadmap coverage topology. It is clear that increased
redundancy both increases the size of the roadmap and increases the mean and
variance of the number of times a primitive is sighted.

In applying dual sampling to this planning problem, only three quantities of local
samples were tested: five, ten, and twenty. Beyond a value of twenty, computation
time grew prohibitively high. For each quantity of local samples, 100 separate trials
of the dual sampling algorithm were run. We then identified redundant roadmaps
with equivalent-or-better solution quality, and compared the computational per-
formance of the two methods.

Tables 1 and 2 compare the performance of these algorithms, for the SS Curtiss
and USCGC Seneca, respectively, in terms of mean tour length, mean computation
time, and mean number of ray shooting calls. The dual sampling algorithms, in
general, required more computation time than redundant roadmaps with greedy set
covers, for equivalent-or-better mission costs. In particular, dual sampling required
between 50 and 130° more ray shooting calls than redundant roadmaps. This data is
evidence that the selectivity of the dual sampling method becomes a burden for 3D

Table 1 Selected tour costs over 100 HAUV inspection planning trials, SS curtiss

Length of tour (m)
mean (Min., Max.)

Comp.
time (s)

R.S. Calls

Dual sampling with 5 local samples 263.8 (245.9, 281.0) 62.0 4.4 × 106

Roadmap of redundancy 3 (Greedy Alg.) 256.9 (241.9, 273.8) 54.1 2.5 × 106

Dual sampling with 10 local samples 250.7 (237.5, 266.9) 94.4 7.6 × 106

Roadmap of redundancy 5 (Greedy Alg.) 246.5 (229.7, 262.5) 72.3 3.5 × 106

Dual sampling with 20 local samples 240.1 (226.6, 256.1) 158.8 13.9 × 106

Roadmap of redundancy 10 (Greedy Alg.) 233.2 (213.6, 248.9) 118.1 6.0 × 106

Table 2 Selected tour costs over 100 HAUV inspection planning trials, USCGC Seneca

Length of tour (m)
mean (Min., Max.)

Comp.
time (s)

R.S. calls

Dual sampling with 5 local samples 347.0 (326.5, 372.7) 243.2 7.4 × 106

Roadmap of redundancy 2 (Greedy Alg.) 346.4 (326.7, 366.6) 219.6 4.8 × 106

Dual sampling with 10 local samples 330.3 (298.5, 348.2) 346.1 11.7 × 106

Roadmap of redundancy 3 (Greedy Alg.) 330.6 (311.1, 351.1) 285.4 6.5 × 106

Dual sampling with 20 local samples 316.0 (296.8, 344.4) 555.5 19.7 × 106

Roadmap of redundancy 5 (Greedy Alg.) 314.9 (297.0, 333.0) 434.9 9.8 × 106
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problems in which every sampled configuration must be checked against a large
number of geometric primitives. The difference in overall computation time, less
dramatic than the difference in ray shooting calls, was tempered by a significant cost
common to both algorithms, the iterative solution of the TSP using lazy
collision-checking. Representative HAUV inspection paths are depicted in Fig. 7.

6 Conclusion

In this work we presented an algorithm which plans fast, feasible inspection paths
giving 100 % sensor coverage of required geometric primitives. Key developments
are redundancy in a roadmap for coverage path planning, and the implementation of
an integrated solution procedure for sampling-based coverage planning over
complex 3D structures with several hundred thousand primitives (using highly
developed, open-source routines wherever possible).

Fig. 7 Representative examples of planned HAUV inspection paths, with views from beneath the
ships and from the side. The left half of the figure represents a roadmap of redundancy ten solved
using the greedy SCP algorithm for inspection of the SS Curtiss. The tour depicted is 234 m in
length and contains 167 distinct configurations. The right half of the figure represents the same
computation for the USCGC Seneca. The tour depicted is 297 m in length and contains 259
distinct configurations
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Redundancy improves the resolution of an initial covering roadmap, and we then
sequentially apply practical set cover and traveling salesman algorithms, with lazy,
point-to-point sampling-based planning. We have identified that this redundant
roadmap method, in comparison to a dual sampling procedure, yields a consistent
computational advantage in a large-scale, real-world coverage problem. Less time is
spent checking and cataloging sensor observations, and a comparable if not superior
planned path is produced as a result.

Future work entails the use of this method as a starting point for an iterative
improvement procedure, which will guide the redundant roadmap solution toward a
local optimum using continued sampling and the local replacement of configura-
tions within the inspection tour.
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Appendix

We give a table of open-source software resources used in our coverage path
planning implementation (See Table 3).

Table 3 Resources used for coverage path planning software implementation

Software Use Link

OpenSceneGraph KD-tree data structure for
triangle mesh, ray shooting

http://www.openscenegraph.org

FLANN KD-tree data structure for
nearest-neighbor queries

http://www.cs.ubc.ca/*mariusm/
index.php/FLANN/FLANN

OMPL RRT implementation http://ompl.kavrakilab.org/index.html

PQP Collision checking http://gamma.cs.unc.edu/SSV

Boost graph
library

Minimum spanning tree http://www.boost.org/doc/libs/1_46_
1/libs/graph/doc/index.html

Blossom IV Min-cost perfect matching http://www2.isye.gatech.edu/
*wcook/blossom4

Concorde Lin-Kernighan TSP heuristic http://www.tsp.gatech.edu/concorde.
html

Meshlab Processing and meshing of
acoustic data

http://meshlab.sourceforge.net

Point cloud
library

Viewer for rendering of paths
and meshes

http://pointclouds.org
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http://www.openscenegraph.org
http://www.cs.ubc.ca/%7Emariusm/index.php/FLANN/FLANN
http://www.cs.ubc.ca/%7Emariusm/index.php/FLANN/FLANN
http://ompl.kavrakilab.org/index.html
http://gamma.cs.unc.edu/SSV
http://www.boost.org/doc/libs/1_46_1/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_46_1/libs/graph/doc/index.html
http://www2.isye.gatech.edu/%7Ewcook/blossom4
http://www2.isye.gatech.edu/%7Ewcook/blossom4
http://www.tsp.gatech.edu/concorde.html
http://www.tsp.gatech.edu/concorde.html
http://meshlab.sourceforge.net
http://pointclouds.org
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Path Planning with Loop Closure
Constraints Using an Atlas-Based RRT

Léonard Jaillet and Josep M. Porta

Abstract In many relevant path planning problems, loop closure constraints
reduce the configuration space to a manifold embedded in the higher-dimensional
joint ambient space. Whereas many progresses have been done to solve path
planning problems in the presence of obstacles, only few work consider loop
closure constraints. In this paper we present the AtlasRRT algorithm, a planner
specially tailored for such constrained systems that builds on recently developed
tools for higher-dimensional continuation. These tools provide procedures to define
charts that locally parametrize manifolds and to coordinate them forming an atlas.
AtlasRRT simultaneously builds an atlas and a Rapidly-Exploring Random Tree
(RRT), using the atlas to sample relevant configurations for the RRT, and the RRT
to devise directions of expansion for the atlas. The new planner is advantageous
since samples obtained from the atlas allow a more efficient extension of the RRT
than state of the art approaches, where samples are generated in the joint ambient
space.

1 Introduction

In the recent years, there has been a growing interest around the problem of path
planning with loop closure constraints [3, 6, 10, 20, 27, 31]. The reason behind this
interest is that this problem appears in many relevant problems in Robotics such as
coordinated manipulation [19], motion planning with parallel robots [34], robot
grasping [25], constraint-based object positioning [24], or surgery robots [1]. This
problem is also crucial in Biochemistry, when searching for conformational
changes in molecular loops [37].
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The mainstream of research in path planning in the two last decades [4, 16] has
focused on variants of sampling-based path planners [14, 17] to efficiently solve the
problem of robots with open loop kinematics operating in environments cluttered
with obstacles. Obstacles induce a set of inequality constraints and planning
motions that respect these constraints can be a very tough task, especially when it
requires passing through narrow passages. Here, we address a more challenging
situation where, beside the obstacles, the problem includes loop closure constraints
represented by a set of equalities that must be fulfilled. Such constraints reduce the
configuration space to a manifold embedded in the higher-dimensional ambient
space defined by the joint variables involved in the problem.

The efficiency of sampling-based path planning approaches such as the
Rapidly-Exploring Random Trees (RRTs) relies in the so called Voronoi explo-
ration bias [17] which can only be obtained if the space to explore can be properly
sampled. Thus, ideally, these approaches would require an isometric parametriza-
tion of the configuration space from which a uniform distribution of samples can be
generated. Whereas for non-constrained systems such parametrization is straight-
forward, this is not the case when the loop closure constraints reduce the dimen-
sionality of the configuration space.

Distance-based formulations [9, 31] can provide a global parametrization of the
constrained configuration space for some particular families of mechanism with
kinematic loops. Other approaches try to infer the parametrization from large sets of
samples on the manifold [10], and task-space planners assume that a subset of
variables related to the end-effector are enough to parametrize the configuration
space [3, 27, 40].

In the absence of a global parametrization, Kinematics-PRM [8] samples a
subset of joint variables and uses inverse kinematics to find values for the remaining
ones. Unfortunately, this strategy is only valid for a limited class of mechanisms,
and although some improvements have been proposed [5], the probability of
generating invalid samples is significant. An alternative strategy to get valid con-
figurations is to sample in the joint ambient space and to converge to the config-
uration space after each tree extension using numerical iterative techniques, either
implementing random walks [38], or the more efficient Jacobian pseudoinverse
method [2, 6, 30]. Despite being probabilistically complete [3], a uniform distri-
bution of samples in the ambient space does not necessarily translate to a uniform
distribution in the configuration space, which reduces the efficiency of these
approaches. This problem is illustrated in Fig. 1 where the configuration space to be
explored is a torus-like manifold of diameter four times smaller than the ambient
space width. Figure 1a shows a RRT built from points sampled in the ambient
space that has a poor coverage of the manifold. With the AtlasRRT presented in this
paper, the process of diffusion is largely independent of the configuration space
shape and of the ambient space bounds which improves the coverage of the
manifold, as shown in Fig. 1b.

To improve the quality of the sampling, one can focus on a subset of the ambient
space around the configuration space [43]. However, with this method points are
still sampled in the ambient space, which can be of much higher dimensionality
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than the configuration space. Um et al. [35] sketch a lazy RRT scheme where
loosely coordinated RRTs are built on tangent spaces that locally approximates the
manifold and that have the same dimensionality as the configuration space.
However, the fact that the subtrees in different tangent spaces overlap affects the
quality of the resulting RRT.

From Differential Geometry, it is well known that a manifold can be described
by a collection of local parametrizations called charts, that can be coordinated
within an atlas [22]. Higher-dimensional continuation techniques provide principled
numerical tools to compute the atlas of an implicitly defined manifold starting from
a given point, whereas minimizing the overlap between neighboring charts [11, 12].
One-dimensional continuation methods, have been strongly developed in the con-
text of Dynamical Systems [15], whereas in Robotics, they have been mainly used
for solving problems related to Kinematics [26, 29]. To the best of our knowledge,
higher-dimensional continuation methods have been only used in Robotics to
evaluate the dexterity of mechanisms [39]. In a previous work [20], we introduced a
resolution complete path planner on manifolds based on higher-dimensional con-
tinuation tools. Despite its efficiency, this planner relies on a discretization of the
manifold and the exploration could be blocked in the presence of narrow corridors,
unless using a fine resolution with the consequent loose in performance. Moreover,
the number of charts generated with this planner scales exponentially with the
dimension of the configuration space. To overcome these limitations, we propose
here a probabilistic complete planner based on RRTs with the consequent gain of
efficiency, specially for high dimensional configuration spaces. The new method
called AtlasRRT is based on a coordinated construction of an atlas and a bidirec-
tional RRT. On the one hand, the atlas is used to adequately sample new config-
urations and thus, to retain the RRT Voronoi bias, despite exploring a non
Euclidean configuration space. On the other hand, the RRT is used to determine

Fig. 1 Two RRTs built on a torus-like manifold after throwing 500 samples. a With an ambient
space sampling, the exploration is focused on the outer parts of the torus and many samples do not
produce any tree extension. b With an AtlasRRT, the diffusion process is largely independent of
the ambient space which improves the coverage
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directions of expansion for the atlas, so that the charts generated are those useful to
find solution paths.

This paper is organized as follows. Next section introduce the main mechanisms
of the approach, showing how the atlas and the RRT expansions are coordinated.
Then, Sect. 3 formally describes the algorithms implementing the AtlasRRT
planner and in Sect. 4 we compare its performance to other state of the art methods
for several benchmarks. Finally, Sect. 5 summarizes the contributions of this work
and indicates points that deserve further attention.

2 Building an RRT on a Manifold

In this section, we first describe the elements describing a chart and how to build a
RRT within it. Next, we describe how to define an atlas properly coordinating the
charts to obtain a RRT covering the whole configuration space manifold.

2.1 RRT on a Chart

Let us consider a n-dimensional joint ambient space and a k-dimensional config-
uration space implicitly defined by a set of constraints

FðxÞ ¼ 0; ð1Þ

with F : Rn ! R
n�k, and n > k > 0. Note that we adopt the standard convention in

Kinematics [18] where the configuration space is defined as the set of points ful-
filling the constraints (this is sometimes called constrained configuration space) that
is embedded in the ambient space of the joint variables (called configuration space
in some approaches). Moreover, we assume that the configuration space is manifold
everywhere, without considering the presence of singularities.

A chart, Ci, locally parametrizes the k-dimensional manifold around a given
point xi with a bijective map, xj = ψi (uj

i), between points uj
i in R

k and points xj on
the manifold, with ψi(0) = xi. Following [23], this mapping can be implemented
using the k-dimensional space tangent at xi (see Fig. 2). An orthonormal basis for
this tangent space is given by the m × k matrix, Φi, satisfying

J xið Þ
U>

i

� �
¼ Ui

0
I

� �
; ð2Þ

with J(xi) the Jacobian of F evaluated at xi, and I, the identity matrix. Using this
basis, the mapping ψi is computed by first computing the mapping ϕi from points in
the tangent space to coordinates in the joint ambient space,
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xij ¼ /i uij
� �

¼ xi þUiuij; ð3Þ

and then, orthogonally projecting this point on the manifold to obtain xj. This
projection can be computed by solving the system

F xj
� � ¼ 0;

U>
i xj � xij
� �

¼ 0;

(
ð4Þ

using a Newton procedure where xj is initialized to xj
i and is iteratively updated by

the Δxj increments fulfilling

J xj
� �
U>

i

� �
Dxj ¼ �

F xj
� �

U>
i xj � xij
� �

" #
; ð5Þ

until the error is negligible or for a maximum number of iterations.
The inverse mapping w�1

i can be computed as the projection of a point on the
tangent subspace

uij ¼ w�1
i ðxjÞ ¼ U>

i xj � xi
� �

: ð6Þ

Using the mapping provided by a chart, Cj, we can define a RRT on the part of
the manifold covered by this chart, as shown in Fig. 2b. This can be achieved using
the standard RRT exploration mechanism and projecting to the manifold whenever
necessary. Thus, the tree is initialized at xi, a random point, ur, is drawn in a ball of
radius R in R

k and their coordinates in ambient space are obtained as xr = /i (ur).
Then, the point, xn, already in the RRT and closer to xr is determined. The tree is
extended from xn by interpolating between un = w�1

i (xn) and ur, using steps of a

xi

xij

x j

uij

urun(a) (b) δ

Fig. 2 a A chart Ci is implemented as a mapping xj ¼ wiðuijÞ between the tangent space at xi and
the manifold. b Growing a RRT on the manifold from a single chart. Black dots are the samples
thrown in the tangent space and blue dots are points on the manifold forming the RRT branches.
The inset shows the process of generating a branch by linear interpolation in the tangent space with
steps of size δ and successive projection
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small size d and projecting to the manifold after each step, as shown in the inset of
Fig. 2b. If the projected sample is collision free, it is added to the RRT. Otherwise
the tree extension is stopped. The result is a tree with points in the n-dimensional
ambient space, but actually defined from a k-dimensional space.

2.2 RRT on an Atlas

Unless for particularly simple problems, a single chart is not enough to parametrize
the whole configuration space. The validity area, V iVi, for a chart, Ci, is defined as
the set of points uij in the tangent space associated with Ci such that

uij
��� ���� bR; ð7Þ

xj � / uij
� ���� ���� e; ð8Þ

U>
i Uj

�� ��� 1� e; ð9Þ

where 0 < β < 1, R is the radius of the sampling ball, xj = ψi (uj
i) is the projection

of uj
i on the manifold, and Φj is the basis of the tangent space at xj.

The first condition in the definition of V i ensures that new charts are eventually
created if the boundaries of the search area are reached. The second condition
bounds the error between the tangent space and the manifold. The third condition
ensures a smooth curvature in the part of the manifold covered by Ci and a smooth
transition between charts. These two last conditions bound the distorsion introduced
by the chart map and, thus, ensure that a uniform distribution of samples in V i

translates to an approximately uniform distribution of configurations on the
manifold.

The validity area of a chart is not precomputed, but discovered as the RRT
grows. Whenever the RRT reaches a point outside the validity area of a given chart
Ci, a new chart is added to the atlas on the last point still in V i. To avoid the overlap
between the validity areas of neighboring charts we introduce a mechanism to
reduce the validity areas, similar to that in [11] (see Fig. 3). We associate a set of
inequalities, F i, to each chart. This set is initially empty and when two charts Ci and
Cj are neighbors (i.e., when the center of one of the charts are inside the validity
area of the other chart) the following inequality is added to F i

2u>uij � uij
��� ���2; ð10Þ

with uij ¼ w�1
i xj
� �

This reduces the validity area to a half space defined in the
tangent space associated to Cj given by the plane orthogonally bisecting vector ui

j.
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Similarly, the validity area of Ci is cropped with the inequality defined from
u j
i ¼ w�1

i xið Þ, the projection of xi on the tangent space associated with Cj. When a
given chart Ci is fully surrounded by neighboring charts, the intersection of the half
spaces defined by the inequalities in F i conform a polytope that conservatively
bounds the actual validity area for the chart, taking into account the presence of
neighboring charts.

The construction of an RRT on an Atlas proceeds as follows. First, a point ur is
sampled on the atlas. For this purpose, a chart Cr is randomly selected and a point is
sampled on the ball of radius R defined on the tangent space associated with this
chart. Random points not in the actual validity area (i.e., points not fulfilling the
inequalities in F r) are rejected and the sampling process is repeated. Thus, the
probability of generating a valid random point in a chart is proportional to the
volume of its actual validity area and therefore, the sampling process selects points
uniformly distributed within the area covered by the entire atlas.

The coordinates of sample ur in ambient space, xr, are computed using ϕr. Then,
xn, the node already in the RRT closer to xr, is determined, the random point xr is
projected to the tangent space of the chart Cc including xn, and the tree extension
proceeds in this chart as detailed in Sect. 2.1. The extension only stops if the
random point is reached or if the path is blocked by an obstacle. However, during
the tree extension the growing branch can leave Cc. If one of the inequalities in F c

is not fullfilled by the new point to be added to the RRT, the extension entered in
the validity area of the neighboring chart that generated the violated inequality in
F c. In this case, the tree extension continues in this neighboring chart by projecting
xr on it. If the RRT extension leaves the validity area of Cc but the new point fulfills
all the inequalities in F c (if any), a new chart is generated and the branch extension
continues on it (see Fig. 4). Note that after creating a chart, some of the nodes
assigned to neighboring charts might move to the area of validity of the new chart.

(a) (b)
Ci

C j

fR

Ci uij

Fig. 3 a When a RRT leaves the validity area of chart Ci, a new chart, Cj, is created and their
respective sampling areas are coordinated so that they do not overlap. b Cj adds an inequality, f, to
Ci reducing its actual validity area. Note that after adding f, the nodes in green move from Ci to Cj
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These nodes are directly identified since they are the ones that do not fulfill the
inequality introduced to by the new chart.

In the absence of other constraints, parameter β in Eq. (7) gives the ratio of
sampled points that are outside the validity area and, thus, the ratio of points that
will trigger the creation of new charts. Therefore, attending only to this criterion,
the probability of creating new charts is

p ¼ 1� bk: ð11Þ

xr

xr xnxn

x j
ε

Fig. 4 RRT extension on a one-dimensional cut. The RRT is extended towards xr, the randomly
selected point, from xn, the closest point already in the tree. In this case, xn is the center of a chart.
When the extension reaches a point (the green dot) where the error with respect to the chart at xn is
larger than ε, a new chart is created from the previous node already in the tree and xr is projected to
the new chart. Then, the RRT extension continues in the new chart until the projected xr is reached
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3 AtlasRRT Algorithm

Algorithm 1 gives the pseudo-code for the AtlasRRT planner implementing the
path planning approach described in the previous section. The algorithm takes xs
and xg as start and goal configurations, respectively, and tries to connect them with
a path on the manifold implicitly defined by a given set of constraints F. The
algorithm implements a bidirectional search method. To this end, two RRTs are
initialized (lines 1 and 2), with the start and the goal configurations as respective
root nodes. An atlas is also initialized with two charts centered at each one of these
points (line 3). Next, the algorithm iterates trying to connect the two trees (lines 5–
14). First, a configuration is sampled using the atlas and one of the RRT is extended
as much as possible towards this random sample from the nearest node already in
the tree, measured using the Euclidean distance. The other RRT is then extended
towards the last node added to the first tree, from the nearest node already in this
second tree. If this second extension reaches its objective, the trees are connected
and the nodes in the RRTs are used to reconstruct a path between xs and xg.
Otherwise, the two RRTs are swapped and the extension process is repeated. Note
that this top level search algorithm is the same as that in [3]. The differences appears
in how to sample random points and how to add branches to the RRTs.

Algorithm 2: Sampling on an atlas.
SampleOnAtlas(A)
input : The atlas, A.
output: A sample on the atlas.
repeat1

r ← RANDOMCHARTINDEX(A)2
ur ← RANDOMONBALL(R)3

until ur ∈ Fr4
RETURN(φr(ur))5

In the sampling process we take advantage of the atlas, as shown in Algorithm 2.
A chart is selected at random with uniform distribution and then, a point is sampled
within the ball of radius R bounding the sampling area of this chart. The process is
repeated until a point is inside the actual validity area associated with its selected
chart, i.e., until it fulfills all the inequalities associated with the chart, if any. Finally,
the sample returned is formed by the ambient space coordinates for the selected
point computed using the mapping ϕr for the selected chart, r.

The addition of a branch to a tree T is done following the steps detailed in
Algorithm 3. This procedure operates in the chart Cc including the node to be
extended, that is initially the chart associated to the nearest node n (line 1). The
sample to reach in the tree extension is projected on Cc (lines 2 and 3) and the
branch extension is iteratively performed while the branch is not blocked and xr is
not reached (lines 5–23). At each iteration, a node is added to the tree. To define the
node to add, a small step of size δ is performed in the parameter space of Cc from
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the parameters of the current node un towards the parameters for the goal sample,
ur. The resulting parameters uj are projected to the manifold to obtain the config-
uration xj (line 7). If the projection is not too far away from xn and if it is collision
free, the point is added to the tree. First, however, we verify if the new point is still
inside Cc. On the one hand, if the parameters for the point are outside the validity
area of this chart (line 12), a new chart is added to the atlas (line 13) which becomes
the chart where to operate. Procedure NEWCHART implements the chart creation, the
detection of neighboring charts, and the reassignment of tree nodes, if necessary.
On the other hand, if the parameters for the point are inside the validity area, but
outside the area defined by the inequalities associated with Cc, the point is in the
validity area of a neighboring chart. Procedure MOVETOCHART (line 17) identifies
this chart. Whenever the current chart changes (line 19), we compute the parameters
for the current sample and for the goal one in the new Cc. Note that this affects the
computation of the next point, at line 6. Finally, the new point is added to the tree
and associated with the current chart, Cc (line 23).

Algorithm 3: Adding a branch to the AtlasRRT.
ExtendTree (T,A,n,xr)
input : A tree, T , an atlas, A, the index of the nearest node in the tree, n, and the random

sample, xr .
output : The last node added to the tree or xn if no extension was performed.

1 c ← CHARTINDEX(n)
2 ur ← ψ−1

c (xr)
3 xr ← φc(ur)
4 BLOCKED ← FALSE

5 while not BLOCKED and un −ur > δ do
6 u j ← un+(ur −un)δ/ ur −un
7 x j ← ψc(u j)
8 if x j −xn > 2δ or COLLISION(x j) then
9 BLOCKED ← TRUE

10 else
11 NEW ← FALSE

12 if u j /∈ Vc then
13 c ← NEWCHART(A,xn)
14 NEW ← TRUE

15 else
16 if u j /∈ Fc then
17 c ← MOVETOCHART(xn,u j)
18 NEW ← TRUE

19 if NEW then
20 u j ← ψ−1

c (x j)
21 ur ← ψ−1

c (xr)
22 xr ← φc(ur)
23 n ← ADDNODE(T,A,c,x j)

24 RETURN(xn)
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Concerning the algorithm complexity and not considering the cost of collision
detection, the most expensive steps in the algorithm are the search for nearest nodes
in the tree (lines 7 and 9 of Algorithm 1), the identification of neighboring charts
when adding a chart to the atlas (line 13 of Algorithm 3), and the computation of
the mapping ψc in line 7 of Algorithm 3. The first two operations can be imple-
mented using hierarchical structures reducing their cost to be logarithmic in the
number of nodes of the corresponding tree and in the number of charts in the atlas,
respectively. The cost of computing the mapping ψc scales with O(n3) since it is
implemented as a Newton process with a bounded number of iterations where at
each iteration a QR decomposition is used.

The algorithm basically uses four parameters: R, ε, δ, and p that appears in
Eq. (11). R is a parameter defining the sampling area around a given point and can
be safely set to a large value since the other criteria defining the validity area of a
chart will eventually trigger the chart creation. ε regulates the amount of charts in
the atlas. To address problems with a configuration space of moderate to large
dimensionality it should not be set too small. A small δ should be used to avoid
undetected collision between consecutive nodes in the RRT and sudden changes in
the manifold curvature. Finally, p regulates the exploration since the larger this
parameter the stronger the bias towards unexplored regions. In our experience
adjusting the parameters is not an issue since the same values give good results for a
large set of problems.

The probabilistic completeness of the RRT generated on a single chart over its
sampling area is the same as that of a RRT defined in a k-dimensional Euclidean
space. Thus, any point in the collision free region including the root of the tree will
be eventually reached by the tree. In particular, points out of its validity area will be
eventually reached and, consequently, new charts will be generated. The proba-
bilistic completeness over the area covered by a new chart is also equivalent to that
of a plain RRT. Assuming that the transition between charts is continuous and
smooth, the local probabilistic completeness for each chart implies a global prob-
abilistic completeness for the overall algorithm.

4 Experiments

We implemented the AtlasRRT planner described through Sects. 2 and 3 in C. The
planner was integrated as a module of our position analysis toolbox [32], using
SOLID [33] as collision detector, the GNU Scientific Library [7] for the linear
algebra operations, and the kd-tree described in [42] for the nearest-neighbor
queries. In principle, simple formulations are advantageous for continuation
methods [36] and, thus, our position analysis toolbox is based on a formulation with
redundant variables that yields a system of simple equations only containing linear,
bilinear, and quadratic monomials [21]. This is a particularly challenging situation
since the manifold here arises not only because of the loop closure constraints, but
also due to the equations necessary to compensate for the redundancy in the
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formulation. Due to this redundancy, the planning system introduced in [35] can not
be directly applied to this case. Thus, for the sake of comparison we use the
HC-planner [20] and an adaptation of the planner introduced in [3] that is called
here CB-RRT. The HC-planner is a resolution completed planner on manifolds that
is based on a greedy best first search strategy on the graph implicitly defined by the
centers of the charts in the atlas. The CB-RRT planner shares the bi-directional
search strategy with AtlasRRT, but randomly samples in the joint ambient space
and uses the Jacobian pseudo-inverse procedure to converge to points on the
manifold when necessary. Note, however, that in our implementation some aspects
of the planner in [3] are not considered (i.e., the Task Space Regions and the direct
sampling using them) since they are neither included in the AtlasRRT. The com-
parison with the HC-Planner is used to evaluate the AtlasRRT search strategy
whereas the comparison with the CB-RRT is used to assess the advantage of the
atlas-based sampling strategy.

Figure 5 shows the four benchmarks used in this paper, ordered by increasing
configuration space dimensionality. The first one is a problem where a small sphere

Fig. 5 The four benchmarks used to test the AtlasRRT planner. a A small sphere moving on a
torus with obstacles and a narrow corridor. b The Barret arm solving a maze problem. c A planar
parallel manipulator moving a peg out of a cul-de-sac. d Two Stäubli Rx60 industrial arms
collaborating to move a cylindrical bar
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has to pass through a narrow corridor, while staying on the surface of a torus. This
example is used to emphasize the fact that AtlasRRT can be advantageous even
with simple manifolds. The second example is the Barret arm solving a maze where
the start configuration is depicted in the figure and the goal is marked with a red
spot.

The stick moved by the arm has to stay in contact with the maze plane and
perpendicular to it. Note, however, that the rotation around the stick is not blocked.
This problem is specially challenging due to the obstacles. The third example is a
planar mechanism similar to that used in [28] except that here, obstacles are con-
sidered since the manipulator has to move a peg attached to the point marked in red
out of a cul-de-sac. The goal pose of the end effector is also marked with a red spot.
This example is of mixed difficulty with respect to the arrangements of obstacles
and to the dimensionality of the configuration space. Finally, the fourth example is a
manipulation task with two Stäubli Rx60 industrial arms. In this case, collisions are
not considered and the difficulty of the task arises only from the loop closure
constraints and from the dimensionality of the configuration space.

Table 1 shows the performance comparison between the HC-planner, the
CB-RRT and the AtlasRRT, averaged over 25 runs and for a maximal execution
time of 600 s on a Intel Core i7 at 2.93 Ghz running Mac OS X with parameters set
to R = 0.75, ε = 0.5, δ = 0.05, and p = 0.9 for all the experiments. For each
benchmark, the table gives the dimensionality of both the configuration space, k,
and the ambient space, n. It also provides for each planner, the percentage of
success (in the Succ. column), and for the successful runs, the execution times (in
the Time column), as well as the number of charts and nodes required (given in the
Charts and Nodes columns, respectively).

The results show that the AtlasRRT has always a better (or the same) success
ratio than the HC-planner. For low dimensionality configuration spaces the HC-
planner, when successful, is significantly fast. However, as the complexity of the
obstacles grows, the probability of the HC-planner to fail also increases. The reason
behind these failures is that when the HC-planner tries to enter a narrow corridor
using too large charts, the atlas extension can get blocked as shown in Fig. 6. In
these situations, there is not straight line between the center of the charts at the
entrance of the corridor (marked with red dots) and the vertexes defining the frontier
of expansion of the atlas. These failures can be avoided using a smaller R, but this
will suppose an increase in memory use and a decrease in performance since more
charts will be generated for the same problem. In the same situation, AtlasRRT will
eventually grow a branch passing through the narrow passage, without adjusting the
chart size. As the dimensionality of the configuration space increases, the HC-
planner is also less efficient than AtlasRRT, even in problems without obstacles as
for the manipulation problem with the two Rx60.

AtlasRRT is faster and at least as reliable as CB-RRT in all cases. Since both
methods share the same search strategy, the better performance of the AtlasRRT
can be explained by the higher quality of the samples obtained from the atlas. Note
that, in general, AtlasRRT generates more nodes with a lower computational cost
than CB-RRT since it does not suffer from unfruitful extensions, as when sampling
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in the ambient space. Finally, the advantage of our method is particularly significant
in the Barret example where CB-RRT only succeeded once out of 25 attempts and
in the manipulation task problem with the two Rx60 where CB-RRT fails in all
cases.

5 Conclusions

In this paper, we presented the AtlasRRT algorithm, an approach that uses an atlas
to efficiently explore a configuration space manifold implicitly defined by loop
closure constraints. The atlas is a collection of charts that locally parametrize the
manifold. Samples are thrown uniformly on the charts and, since the error from the
chart to the manifold is bounded, the distribution of samples on the manifold is
close to be uniform. These samples are then used to efficiently grow a RRT con-
necting two given configurations and avoiding collisions with obstacles. This
strategy contrasts with state of the art approaches that generate samples on the
configuration space from uniformly distributed samples in the ambient space.

Since defining the full atlas for a given manifold is an expensive process, the
AtlasRRT algorithm intertwines the construction of the atlas and the RRT: the
partially constructed atlas is used to sample new configurations for the RRT, and
the RRT is used to determine directions of expansion for the atlas. The approach
retains the Voronoi exploration bias typical of RRT approaches in the sense that
exploration is strongly pushed towards yet unexplored regions of the configuration
space manifold.

The results included in this paper shows that our approach is more efficient than
existing state of the art approaches. A more thoughtful evaluation must be carried,
though, to fully characterize the performance of the new algorithm. Moreover,
several modifications to the basic AtlasRRT algorithm can be devised. In particular,
it might be useful to exploit the atlas structure to obtain a more meaningful distance
between samples than the Euclidean one. Moreover, the presented approach can be
combined with existing strategies to improve path planning in the presence of

Fig. 6 For a given
resolution, the HC-planner
can get blocked when trying
to enter in a narrow corridor
since it only considers
motions from the centers of
chart (the red points in the
figure) at the borders of the
atlas
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obstacles such as, for instance, the dynamic domain sampling [41] or the integration
of cost functions to focus the planning on the relevant parts of the configuration
space [13]. Finally, we would like to explore the possible extension of the proposed
planner to problems with differential constraints.
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continuation tools and for fruitful discussions during the elaboration of this work. This work has
been partially supported by the Spanish Ministry of Science and Innovation under projects
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Decentralized Control for Optimizing
Communication with Infeasible Regions

Stephanie Gil, Samuel Prentice, Nicholas Roy and Daniela Rus

Abstract In this paper we present a decentralized gradient-based controller that
optimizes communication between mobile aerial vehicles and stationary ground
sensor vehicles in an environment with infeasible regions. The formulation of our
problem as a MIQP is easily implementable, and we show that the addition of a
scaling matrix can improve the range of attainable converged solutions by
influencing trajectories to move around infeasible regions. We demonstrate the
robustness of the controller in 3D simulation with agent failure, and in 10 trials of a
multi-agent hardware experiment with quadrotors and ground sensors in an indoor
environment. Lastly, we provide analytical guarantees that our controller strictly
minimizes a nonconvex cost along agent trajectories, a desirable property for
general multi-agent coordination tasks.

1 Introduction

Decentralized control of robotic systems has enabled complex group behaviors such
as rendezvous, formation keeping and coverage to be applied to a wide range of
engineering problems; however, the absence of centralized computation increases
the demands on communication quality [1–4]. This paper focuses on the problem of
optimizing communication quality between a multi-agent network of mobile robots
and stationary sensors. In previous work [5] we developed a decentralized
gradient-based controller that provably optimizes communication quality amongst
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the network, but this approach is limited to environments where the entire space is
feasible. In practical scenarios, such as the indoor environment shown in Fig. 1,
there often exist regions of space that are hazardous or untraversable. Such
obstacles make designing the controller difficult for two main reasons: (1) the goal
state, or optimal communication configuration, is unknown a priori and (2) the
presence of infeasible regions introduce many constrained local minima that may be
less satisfactory solutions. This work uses nonlinear optimization techniques to
derive a decentralized controller that is easy to implement and addresses the
problem of communication optimization in the presence of infeasible regions.

The introduction of infeasible regions raises many challenges. The cost for the
communication optimization problem is nonconvex which is a necessary property
of many interesting distributed tasks [6]. Therefore we aim for simple-to-implement
controllers that have the desired properties of scalability, reliance only on local
information, and that descend the cost along the trajectories of each agent.
Gradient-based controllers are thus ideally suited. However, the presence of
infeasible regions breaks up the free space into several sets over which we must
optimize, introducing challenges both for convergence, and for the quality of the
converged solution. As an example, an aerial vehicle may get “stuck” behind a wall
that it could easily fly around if the direction of steepest descent of the cost happens
to be perpendicular to the obstacle edge as illustrated in Fig. 2b, and so we need to
consider a wider range of descent directions to avoid these scenarios. As a result of
gradient-based optimization over a nonconvex environment, achievable conver-
gence is either to a critical point of the cost in the best case, or to a point of
improved cost on the edge of an infeasible region. Our aim is to derive a controller
such that agents descend the cost along the generated trajectories, and where these

Fig. 1 Multi-agent field test environment with Ascending Technology Pelican quadrotors (solid
outlines) and stationary ground sensors (dashed outlines). Infeasible regions include the wall in the
center of the room, an open staircase that is partially visible on the right, and a table (out of view)
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trajectories are biased towards directions that avoid infeasible regions and thus have
a larger range of attainable improved cost solutions.

The use of gradient projection methods from nonlinear optimization [7] allows
us to formulate our nonconvex problem as a simple quadratic program where the
constraint set is a convex subset of the free space in the environment. We use the
solution of a mixed integer program to effectively select the convex feasible region
over which we optimize our cost and the result is a mixed integer quadratic program
(MIQP) that can be solved efficiently for each agent. We show that the addition of a
scaling matrix, that preserves the quadratic and thus efficiently solvable attributes of
the problem, allows the designer to influence vehicle trajectories to move around
infeasible regions and improve the range of attainable converged solutions. In
particular, in Sect. 3.2.1 we derive analytical results relating the heading angle to
the steepest descent direction for a chosen scaling matrix, and we show that we
retain descent of the cost. Theorem 3 shows the existence of a sequence of scaling
matrices such that our algorithm produces trajectories reaching unconstrained local
minima of the communication cost, if such a trajectory exists for the given initial
positions and environment. Although the derivation of a sequence of scaling
matrices that guarantees convergence to unconstrained local minima of the cost
remains an open question, in the Results Section we provide a heuristic selection of
scaling matrices that demonstrates good performance in simulation and hardware
experiments.

Section 4.1 presents our communication optimization algorithm and demon-
strates the performance of the controller and its robustness in the case of agent
failure. Lastly, in Sect. 4.2 we demonstrate our control method on real aerial
vehicles that must navigate through an indoor environment (Fig. 1) to optimize
communication amongst a network of three stationary ground vehicles.

(a) (b)

Fig. 2 Schematic showing the scaled direction and heading angle h and the change of heading
direction as the eigenvalues of Sk are changed in Fig. 3a. Simulation of basic scenario showing the
utility of scaling to avoid getting stuck behind the wall as in Fig. 3b. Here, a constant scaling
matrix Sk = S is used. When the scaled direction reaches a perpendicular angle to the gradient, the
trajectory moves along the steepest descent direction as discussed in Sect. 3.2.1
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1.1 Related Work

Artificial potential fields for obstacle avoidance as in [8–10], decomposition of the
environment using different notions of a graph through which to search the space
[11, 12], and shortest path methods as in [13], represent active areas of research for
the problem of vehicle coordination in environments with obstacles. In the current
work, final positions of the agents are local minima of the communication cost and
since this cost must be optimized iteratively, these local minima are unknown a
priori. Therefore we cannot assume knowledge of final goal states that we can
navigate towards, and we cannot disallow minima from being inside of infeasible
regions.

The characteristic that the optimization problem itself defines the agent trajec-
tories makes this problem particularly challenging. The paper [14] also addresses a
multi-agent optimization problem but for coverage of a 2D environment and uses a
clever mapping inversion. Methods similar in spirit to our work are Mixed Integer
Methods as in [15, 16], although these methods are different in that they also
consider navigation to known goal states. For our work we must also descend the
cost along agent trajectories as convergence to local minima of the cost and
maintenance of connectivity for the network hinge on this requirement. Thus a
strong motivation for this work is to ensure that descent of the cost is achieved at
each iteration. The requirement of provably descending the cost along vehicle
trajectories is common for many coordination tasks and thus illustrates the gener-
ality of the communication optimization problem to other multi-agent tasks [2–4].

2 Problem Formulation

In previous work [5], we derived a cost function that optimizes communication
quality among aerial vehicles and ground sensors. This cost uses a Signal to
Interference ratio (SIR) to weigh communication strength of a pair of vehicles
against interference from neighboring vehicles and is a weighted sum of two terms
where the first term maximizes the SIR of each individual link and the second term
equalizes SIR over all links. The resulting behavior of the controller is designed by
increasing or decreasing q, which is a scalar that assigns more or less weight to the
second term in the cost.

The cost H : Rðp�NÞ ! R is defined over all vehicle positions xki 2 R
p for

N vehicles at iteration k as:

Hðxk1; . . .; xkNÞ ¼
XN
i

XN
j 6¼i

�SIRij þ q
SIRij þ d

ð1Þ
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where i and j is shorthand for vehicles with positions xi and xj respectively, and d is
an arbitrarily small positive number to allow SIRij = 0. The Signal-to-Interference

Ratio ðSIRÞ : Rp ! R is given by SIRij ¼ fij
Ni þ

P
k2Ninj

fik
and the signal strength

between two communicating agents i and j is given by fij : Rp ! R. The signal
strength is given by fij ¼ P0

dbij
. All vehicles in the neighborhood of i not including j is

denoted Ninj;P0 2 R is a given maximum signal strength, b is a given dropoff
parameter and often b = 2, and dij = ‖xi − xj‖

2.1 Communication Optimization as a MIQP

We wish to move N agents along trajectories that descend the cost H(xk) from (1),
where xk 2 R

pxN is the vector of all vehicle positions at time k, while constraining
this trajectory to remain outside of infeasible regions for all time. For each vehicle
i with position xki 2 R

p at iteration k, we wish to move an amount sk > 0 along the
direction of steepest descent, −∇H(xk), but we must enforce the constraint to stay
within free space. The valueriHðxkÞ 2 R

p is the gradient of the cost H with respect
to the position of vehicle xi at time k and we note that although the cost is global,
the derivative ∇iH(x

k) depends only on local information and is distributed in this
sense. We subsequently drop the subscript i to simplify notation so that xk is the
position of vehicle i and ∇H(xk) refers to the gradient of H with respect to the
position of agent i.

Gradient projection methods from nonlinear optimization allow us to formulate
descent for our nonconvex cost while maintaining the constraint of staying a
convex set. Because the free space of the environment is almost never convex we
must divide the free space set into the intersection of many convex sets, which is
possible in particular for environments with convex polygonal infeasible regions
which is the case that we consider. We take advantage of the fact that each agent
needs to optimize H only over its local environment and employ a mixed integer
program to activate a local convex subset of the free space over which we can
perform gradient projection. The result is a Mixed Integer Quadratic Program
(MIQP):

min
x;t

x� ðxki � skriHðxkÞÞ�� ��
s:t:Alx� bl þ tlM; 8l 2 f1; . . .; Lg
XEl

j¼1

tlj �El � 1; 8l 2 f1; . . .; Lg

tlj 2 f0; 1g 8j; l

ð2Þ
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where sk is a scalar >0, L is the number of polygonal infeasible regions in the
environment, El is the number of edges for infeasible region l, M is a sufficiently
large scalar, and tl 2 R

El is a binary column vector returned by the MIQP for each
infeasible region, and Al 2 R

ðEl�pÞ; bl 2 R
El describe the convex, polygonal,

infeasible regions as defined next. We now provide the mathematical descriptions
of infeasible regions and free space sets returned as solutions from the MIQP:

Definition 1 (Infeasible Regions and Free Space Sets) Infeasible regions are
convex, polygonal sets that are the intersection of El halfspaces

TEl
i¼1 ðAix� biÞ.

A vehicle may not move through an infeasible region but we assume communi-
cation strength is not affected. The binary column vectors from (2) encode feasible
region constraints and thus a particular solution of binary variables t� 2 R

LEl

effectively “activates” one or more edges of each infeasible region such that these
selected edges are the valid constraints enforced in solving the MIQP. The inter-
section of the halfspaces corresponding to the activated obstacle edges is always a
closed and convex set denoted

XFt� ¼ XFðt�Þ ¼ fxjAlx� bl þ t�l Mg ð3Þ

where XF(t
*) is the closed, convex free space subset corresponding to the binary

variable solution t� of Eq. (2).

The intuition for the formulation in Eq. (2) is that each vehicle moves as far
along the direction of steepest descent of the cost H as possible while staying within
feasible space. The problem with this formulation however, is that if the direction of
steepest descent becomes perpendicular to the edge of an infeasible region then it is
possible to get stuck behind this edge even in the case where the vehicle may be
able to easily go around the obstacle by moving along a descent direction that is not
that of steepest descent, see Fig. 2b. We address this problem in the formulation of
the next section.

2.2 Use of Scaling to Avoid Regions of Infeasibility

The MIQP formulation from the last section can be solved efficiently using off-the
shelf optimizers, and results in a very simple form of a controller but suffers from
the limitation of always following the steepest descent direction, even in the case
where this direction is obstructed by an infeasible region. Thus, we wish to improve
the range of attainable solutions while conserving the simplicity of the MIQP from
the previous section. To this aim we propose use of the scaled gradient projection
method.

In nonlinear optimization theory the scaled gradient projection method is often
used to improve rate of convergence [7]. Our objective, however, is to influence the
vehicle trajectory towards directions that are not perpendicular to active constraint
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edges. In addition, the scaled gradient projection method amounts to the addition of
a term that is quadratic in the optimization variable x and thus is also a quadratic
program as in the previous case and can be easily solved. We define a new problem
whose optimization results in a feasible waypoint �xkS for agent i (where i subscripts
are dropped):

�xkS ¼ argmin
x

x� zk
�� ��

Sk

s:t:Alx� bl þ tlM 8l
XEl

j¼1

tlj �El � 1 8l 2 1; . . .; L

tlj 2 f0; 1g 8j; l

ð4Þ

where the matrix Sk 2 R
p�p is a positive definite matrix, and we use the notation

qk kSk¼ q0Skq; 8q 2 R
p to represent the scaled norm. For this scaled formulation,

the desired waypoint is

zk ¼ xk � skðSkÞ�1rHðxkÞ ð5Þ

A more compact definition of (4) can be written using the representation of the
free space set from (3) for each vector of binary variables t� that solve (4):

�xkS ¼ arg min
x2XFðt�Þ

zk � x
�� ��

sk ð6Þ

The position update rule for xkþ 1 is given by:

xkþ 1 ¼ xk þ akð�xkS � xkÞ ¼ xk þ akdk ð7Þ

where the stepsizes ak and sk satisfy Assumption 1:

Assumption 1 There exist stepsizes ak > 0 and sk > 0 that are sufficiently small
such that given a descent direction dk, a step along this direction will not intersect
an obstacle and will provide sufficient decrease of the cost in the sense of the
Armijo, or limited minimization rule that are standard in Nonlinear Programming
[7]. We assume that ak and sk satisfy these conditions throughout the paper.

A first order Taylor series expansion of the cost around the current point xk

shows that descent of the cost is possible for small enough stepsize along a valid
descent direction dk. In the case that the current iterate is at the edge of an obstacle,
the step-size would necessarily be zero to avoid intersecting the obstacle and the
method will stop. The requirement that Sk is positive definite is necessary to
maintain descent of the cost Hðxkþ 1Þ\HðxkÞ. In effect, our next waypoint xk+1 will
minimize distance in the sense of the scaled norm to our desired waypoint zk [7].
See Fig. 2.
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We define the descent direction dk ¼ �xkS � xk. The advantage is that now we can
steer our trajectory to any heading relative to the direction of steepest descent −∇H

(xk), as long as this direction satisfies dk ¼ �xkS � xk
� �j �xkS � xk

� �0rHðxkÞ\0
n o

where x′y is the dot product of a vector x and a vector y, and the achieved relative
heading angle h depicted in Fig. 2 is defined as:

h ¼ arccos
ð�rHðxkÞÞ0dk
rHðxkÞk k dkk k

� �
ð8Þ

We use this flexibility to assign preference to paths that entirely clear regions of
infeasibility that are in the direction of the negative gradient. In Sect. 3 we derive an
analytical relationship between Sk and h.

3 Analysis

3.1 Analysis of the Unscaled Controller

We show that the sequence of vehicle positions produced by the MIQP, in com-
bination with the update rule from (7) produces strict descent directions such that
Hðxkþ 1Þ\HðxkÞ for all k for stepsizes satisfying Assumption 1. Proving descent of
the cost, such that Hðxkþ 1Þ � HðxkÞ\0, is made challenging by the general
non-uniqueness of the solution for the binary variables t in Eq. (2). This in turn
means that the convex subset over which we perform optimization may not be
unique and may not contain the current iterate xk which makes the classical descent
proof for gradient projection methods not applicable.

From the result asserting that the cost is reduced at each iteration, and the fact
that the local minima of H are finite as shown in previous work, [5], we expect
convergence to a fixed point. This fixed point can either be at the edge of an
infeasible region where the projection �xk ¼ xk (stationary) as defined in Lemma 1.4
or can be a critical point of the cost H. In the following section we show how
scaling can be used to decrease the likelihood of getting “stuck” at the side of an
infeasible region.

We use the concept of a vector d being gradient-related.

Definition 2 (Gradient Related) A bounded direction sequence {dk}k∊K is
gradient-related to any subsequence {xk}k∊K that converges to a nonstationary point,
if:

lim
k!1

sup
k2j

rHðxkÞ0dðxkÞ\0 8k 2 K:
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We use the following properties of projection from [7]:

Lemma 1 (Properties of the projection onto a convex set X) Let X be nonempty,
closed and convex, and let [z]+ denote the projection of z 2 R

p onto X:

1. The projection of z 2 R
p exists, is unique, and minimizes ‖z − x‖ over x ∊ X.

2. It must hold that (z − [z]+)′(x − [z]+) � 0, 8x ∊ X
3. The projection function is continuous.
4. We have ~x ¼ ~x� srH ~xð Þ½ �þ for all s > 0 iff ~x is stationary.

We now seek to show that the dk produced by the solution to (2) are gradient
related for all k and thus for stepsizes satisfying Assumption 1 we have
Hðxkþ 1Þ � HðxkÞ\0.

Theorem 1 For the cost H that is differentiable everywhere, the sequence of
directions {dk} produced by solving the MIQP formulation and using the provided
update rule from (7) are directions of descent of the cost such that they satisfy the
gradient related property for points xk that are not stationary points of the cost.

Proof The proof is identical to that of Theorem 2 with the scaling matrix set to the
identity Sk = I. □

3.2 Analysis of the Scaled Gradient Projection Method
for Avoidance of Infeasible Regions

We provide analytical results for three main problems related to the scaled version
of the MIQP (4). First, we relate the scaling matrix Sk to the relative heading angle h
where this direction is relative to the direction of steepest descent. Second, we show
that the use of a scaling matrix generates trajectories for each agent over which the
cost is descended at each iteration. Lastly, we show that there exists a sequence
{Sk} of scaling matrices such that our formulation from (4) generates a trajectory
converging to the more desirable unconstrained local minima of H if such a tra-
jectory exists for the environment. Although the problem of deriving such a
sequence of scaling matrices remains open, in the Results section we provide a
heuristic method of generation of scaling matrices that circumvent regions of
infeasibility but do not guarantee convergence to unconstrained local minima of H.

3.2.1 Controlling the Relative Heading Angle to Avoid Regions
of Infeasibility

In this section we gain insight on how to design the scaling matrix to achieve the
desired relative heading angle, h. From our discussion in Sect. 2.2, we require that
the scaling matrix Sk must be a positive definite matrix and with an orthonormal
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choice of eigenvectors vi 2 R
p we can write Sk in a decomposed form

Sk = VKVT � V = [v1, …, vp] is a matrix of eigenvectors of Sk and K 2 R
p�p is a

diagonal matrix of eigenvalues [k1, …, kp] of S
k. Furthermore we know that that all

ki > 0 since Sk is positive definite. Therefore we can write any vector in R
p, in

particular the negative gradient vector −∇H(xk), as a linear combination of the vi’s.
In particular, we can write −∇H(xk) =

P
i=1
p fivi where fi are scalars representing

the component of −∇H(xk) in the direction of vi, and we consider normalized
eigenvectors such that ‖vi‖ = 1. By the Pythagorean theorem, and the fact that the vi
are orthogonal, we have that

rH xkð Þk k2¼
Xp
i¼1

fivið ÞT fivið Þ ¼
Xp
i¼1

fið Þ2 ð9Þ

We denote the unprojected heading direction ~dk , and note that this is ~dk ¼
zk � xk
� �

for the scaled gradient projection. From (5) we see that this is simply
sk(Sk)−1∇H(xk). If we again use Pythagorean Theorem to write the expression for
~dk

�� ��, and the dot product rH xk
� �0~dk we get:

~dk
�� ��2¼ sk

Xp
i¼1

1
ki
fivi

�����
�����
2

¼ skð Þ2
Xp
i¼1

1
ki

� �2

f2i ð10Þ

rH xk
� �0~dk ¼ sk

Xp
i¼1

1
ki

� �
f2i ð11Þ

Using the definition of the dot product and the definitions (10), (11), and (9), we
get an expression relating the relative heading angle h to the scaling matrix Sk via its
eigenvectors and eigenvalues:

cos hð Þ ¼ �rH xkð Þð Þ0~dk
rH xkð Þk k ~dk

�� �� ¼
Pp

i¼1
1
ki

	 

f2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i¼1
1
ki

	 
2
f2i

� � Pp
i¼1 fið Þ2

	 
s ð12Þ

This expression shows that the scaling matrix can be designed to achieve a
specific relative heading angle by careful choice of its eigenvectors and eigenval-
ues. In particular we notice that if Sk = I where I is the identity matrix and ki = 18i,
then cos hð Þ ¼ 1, the heading angle is zero and we move in the direction of steepest
descent as expected. Alternatively, putting a larger weight on the eigenvalues ki of
Sk such that kj 	 ki, 8j 6¼ i, will achieve the effect of causing the heading direction
~dk to align itself most with the component of −∇H(xk) along vi See Fig. 2 for a
schematic of a two dimensional case. However, as the ratio of ki gets larger, rate of

372 S. Gil et al.



convergence becomes slower so in general the heading angle h should not be made
larger than necessary.

Lastly, a result of (12) is that the direction ~dk can never be perpendicular to the
negative gradient for a positive definite scaling matrix Sk. As the eigenvector vi
approaches the perpendicular direction to −∇H(xk), the component of the negative
gradient vector along this direction fi ! 0 and thus, as seen from Eq. (10), ~dk

cannot be made to move in a direction that is perpendicular to −∇H(xk).

3.2.2 Analysis for the Scaled Gradient Projection Method

In the last section we showed that the addition of a scaling matrix Sk allows us the
flexibility to design the relative heading angle to avoid regions of infeasibility in the
environment. We now show that the resulting directions dk ¼ �xkS � xk where �xkS is
solved for from Eq. (4), are descent directions such that the cost is reduced over agent
trajectories. As in the unscaled case, finding descent directions dk for our problem is
made challenging due to the general non-uniqueness of the binary t variables in (4).
From the definition of gradient relatedness, the desired property we wish to show is
that ∇H(xk)′dk < 0 for all k and all solutions dk at iteration k. The intuition for our
proof method is to use the solution d1

k which is defined for the convex subset con-
taining the current iterate and which can be shown to always be gradient related, to
bound all other solutions dt

k that result from different solutions for the binary vari-
ables. From here we can show that∇H(xk)′dk < 0 for all dt

k and k. Using the result of dk

being gradient related for all k, combined with Assumption 1, we get descent of the
cost at each iteration such that Hðxkþ 1Þ\HðxkÞ.

To avoid cumbersome notation, we subsequently drop the S subscript from �xkS
and the reader should assume all projections �xk in this section are scaled projections.
We refer to a point xk as not stationary if it is not equal to its projection such that
�xk 6¼ xk.

Theorem 2 For the cost H : R p�Nð Þ ! R that is differentiable everywhere,
denoting the sequence of vehicle positions {xk} produced by solving the scaled
MIQP formulation in (4) and using the provided update rule from (7), we have
that all directions dkare directions of descent of the cost such that they satisfy the
gradient related property for all xknot stationary.

Proof We denote set containing the current iterate xk as XF1 , and the projection of z
k

onto XF1 as �x
k
1 and note that this is a solution of the scaledMIQP (6) over the set. From

Lemma 1.2 generalized to scaled projections, it holds that zk � �xk1
� �0

Sk xk � �xk1
� �� 0

for xk 2 XF1 and �x
k
1 2 XF1 . Expanding out this property and using the definition of z

k,
continuity of the projection, and the fact that we are considering projection onto a
single set XF containing the current iterate xk, we have that for all k (see [7]):
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skrH xk
� �0

�xk1 � xk
� �þ �xk1 � xk

�� ��2
Sk � 0; 8k ð13Þ

□

The term xk � �xk1
�� ��2

Sk [ 0 for all Sk positive definite and xk, nonstationary such

that xk 6¼ �xk1. Thus from (13), and Lemma 1.4, we have:

xk � �xk1
�� ��2

Sk [ 0 ) skrH xk
� �0

�xk1 � xk
� �

\0 ð14Þ

So that the direction dt
k is always gradient related for xk and �xk1 in the same

convex subset, where xk is non-stationary. We will use this inequality again later.
We aim to prove that all directions dkt ¼ �xk1 � xk produced from the solutions of
Eq. (4)

rH xk
� �0

�xkt � xk
� �

\0 8k ð15Þ

Because �xk1 is a valid solution to the projection of zk onto XF1 , we know that any
solution, �xk1, to the scaled MIQP in (4) must be within the elliptical set defined by
�xk1:

E1 ¼ cj c� zk
� �0

Sk c� zk
� �� rS

n o
; rS :¼ �xk1 � zk

� �
Sk �xk1 � zk
� � ð16Þ

Now we can write the gradient related condition that we wish to prove as:

�f � ¼ min
�xt

�rH xk
� �� �0

�xt � xk
� � ð17Þ

s. t. �xt 2 E1

where our desired condition is that �f � > 0 which ensures that the direction
�xt � xk
� �

is gradient related. The minimization problem written above is well-posed
in that f is a continuous function minimized over a compact set E1 and thus there
exists a minimum. Furthermore, this problem can be solved in closed form using
Lagrange multipliers to yield the condition:

�f � ¼ �rS þ skrH xk
� ��� ��2

Sk�1 [ 0 ð18Þ

If we take this a step further and substitute in the definition for rS from (16),
multiply through by (−1), expand, and simplify we get a new form for the
inequality condition that we wish to prove:

2skrH xk
� �0

�xk1 � xk
� �þ �xk1 � xk

� �0
Sk �xk1 � xk
� �

\0 8k ð19Þ
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We compare to the condition (14). From the reasoning shown in (14), we know
that 2skrH xk

� �0
�xk1 � xk
� �

\0 for �xk1 6¼ xk which is true by the nonstationary
assumption. Thus we have that this desired inequality always holds and all pro-
duced dk are descent directions as desired and this completes the proof.

To gain more intuition notice that the condition in Eq. (19) is equivalent to

requiring that rS ¼ �xk1 � zk
� �

Sk �xk1 � zk
� �

\rScr ¼ skrH xk
� ��� ��2

Sk�1 . Intuitively what

this means is that �xk1 is a valid projection of the desired waypoint zk where the
distance to zk is smaller from �xk1 than from xk in the scaled norm sense, such that
�xk1 � zk
� �

Sk �xk1 � zk
� �

\ xk � zk
� �

Sk xk � zk
� �

.
Because we attain descent of the cost at each iteration, and we are optimizing a

continuous function over a compact set so that minima are well defined as shown in
[5], we therefore expect convergence to a fixed point. This point can be at the edge
of an infeasible region or at a critical point of the cost, although the use of scaling
aims to circumvent those infeasible regions which do not contain local minima in
their interiors.

3.3 Existence of Optimal Sequence of Scaling Matrices

Because we optimize a nonconvex cost, we target convergence to local minima. For
the case where these local minima are reachable in feasible space, we consider a
sequence of scaling matrices {Sk} to be “optimal” if the controller resulting from
using Algorithm 1 generates trajectories for all vehicles that converge to an
unconstrained local minimum of H. The existence problem is to assert that if there
exists such a trajectory for the given environment, then there also exists a sequence
of scaling matrices such that the trajectory generated by Algorithm 1 is optimal. We
do not find such a sequence, this remains an interesting open question. Instead, we
prove the positive result for the existence problem.

Theorem 3 If 9{gk} ! xunc
* , where {gk} is a valid sequence of waypoints for each

vehicle that converges to an unconstrained local minimum, xunc
* , of H given x0, then

9{Sk} s.t.{xk} ! xunc
* , where {xk} is the trajectory sequence generated by using

Algorithm 1 for each vehicle. A sequence {gk} is valid if H{gk+1} − H{gk} < 0 for
all k, gk ∊ XF, 8k, 8k where XFis the entire feasible region of the environment, and
the stepsize between any consecutive points gk, gk+1satisfies Assumption 1 and
physical vehicle limits.

Proof From Proposition 2 we must satisfy −∇H(xk)′dk > 0 for all k. From (11) we
see that ki > 0 in order to satisfy this condition. We can write gk+1 − gk =

P
i=1
p aivi

for some appropriate ai since gkþ 1 � gk 2 R
p and the eigenvectors of Sk span R

p.
Since by the descent requirement on {gk} we have −∇H(xk)′(gk+1 − gk) > 0, 8k we
can choose orthonormal basis vectors vi of S

k such that ai > 0 and fi > 0 for all i,
where fi are from (9) and thus the choice of ki ¼ sk

ai
fi satisfies ki > 0, 8i and from the
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definition of dk from (10) we see that we can always achieve dk = gk+1 − gk, 8k for
this choice of k Since Sk is fully determined through its eigenvectors and eigenvalues
as Sk = VKV′ and we have shown that there exists a sequence {Sk} for which
{dk} = {gk+1 − gk} and thus the resulting sequence of agent positions {xk} reaches
the unconstrained local minimum of H if {gk} reaches the unconstrained local
minimum from given initial positions. □

4 Results

4.1 Algorithm and Simulation Example

In this section we summarize our control method in Algorithm 1 and suggest a
heuristic method for choosing an appropriate scaling matrix Sk for each vehicle. We
demonstrate our algorithm and the suggested method for finding Sk via a Matlab
simulation for four communication vehicles and eight ground sensor vehicles in
three-dimensional space (Fig. 3).

Algorithm 1 Decentralized Control for Optimized Comms (for agent i)

xk = x0, k = 0.
while k == 0 OR xk+1 −xk ≥ tol do

k ← k+1
{Compute scaling Sk using environment topology, see Algorithm 2.}
{Compute gradient using neighbors of agent i:} ∇iH(xk)
{Compute desired waypoint:} zk ← xk − sk(Sk)−1∇iH(xk)
{Compute: }x̄kS ←soln to (4)
{Compute feasible stepsize αk satisfying Assumption 1.}
{Compute new point xk+1 for agent i using stepsize αk:} xk+1 = xk −αk(x̄kS − xk).

end while

4.1.1 Heuristic Selection of Scaling Matrix Sk

We suggest one possible method for choosing a scaling matrix Sk for each vehicle
that is easily implemented and relies solely on map topology that is local to each
agent. We show via simulation, the performance of the resulting optimization and
its adaptive capabilities in the case of agent failures. For each agent, we draw a line
along the direction of steepest descent which is plotted as a blue line in Fig. 3a, call
this line gL. Let O be the first infeasible region intersected by gL. We wish to
compute Sk such that we move around O, so we compute the projection of the
intersection point onto each of the L edges of O and choose the point such that the

376 S. Gil et al.



chord from the current position xk to the edge point e� has the largest dot product
−∇H(xk)′(e* − xk). This represents a direction that is as close to the direction of
steepest descent as possible but that circumvents the infeasible region obstructing
this direction. This chord is plotted in red for each agent whose steepest descent
direction intersects an infeasible region in Fig. 3a. We use this chord to compute the
first eigenvector of Sk so that v1 ¼ ðe� � xkÞ= ðe� � xkÞ�� ��, then v2 and v3 are simply
any other unit vectors that are othornormal to each other and to v1. Finally, we can
set the eigenvalues k2; k3 [[ k1 to attain a direction dk closest to the v1 direction,
see discussion in Sect. 3.2.1 and Fig. 3a. We warn however that choosing the
eigenvalue ratios too large will inversely effect convergence rate and thus this
should not, in practice, be made larger than necessary. The matrix Sk is then
computed via its eigenvectors and eigenvalues as Sk = VKV′ where V and K are
defined in Sect. 3.2.1. If there is no infeasible region obstructing the direction gL
for that vehicle, or there exists no such edge point e� so that the dot product −∇H
(xk)′(e* − xk) > 0 (this is the case where no circumventing direction produces
descent in the cost H), we simply set Sk = I, where I is the identity matrix. This
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Fig. 3 a Scenario showing infeasible regions and 4 communication vehicles and 8 ground
sensors. b–d Adaptive behavior when one communication vehicle fails (red quadrotor): remaining
vehicles change trajectories to compensate. b Cost is always decreased along agent trajectories
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algorithm is summarized in 2. For the simulation in Fig. 3 we set k1 ¼ 1; k2 ¼
50; k3 ¼ 50 and achieved satisfactory convergence in an average of 150 iterations
where each iteration took on the order of 0.7 s using the CPLEX for Matlab toolbox
on a 2.4 GHz CPU laptop.

4.1.2 Discussion on When to Use Scaling

The use of scaling is most effective when applied at sufficient distance from path
obstructing infeasible regions. Since any descent direction dk must be less than
perpendicular to the negative gradient direction, as a vehicle gets closer to the edge
of an obstructing infeasible region, the range of descent directions that can clear the
obstructing region becomes smaller. Therefore we expect scaling to perform better
in environments where there are larger distances between obstacles, and where
scaling is applied at the time that an obstructing obstacle is detected as outlined in
Algorithm 2. Theorem 2 shows that as long as the scaling matrix Sk is strictly
positive definite, �xk 6¼ xk , and xk is not a critical point such that ∇H(xk) 6¼ 0, then
the resulting direction dk can never be perpendicular to the negative gradient
direction. For an intuitive explanation, consider the two dimensional case and the
un-projected direction d˜k from (10). As one of the eigenvectors of Sk, say v1,
becomes perpendicular to −∇H(xk), the component of the negative gradient in the
direction of v1 approaches zero, 11 ! 0 and �rHðxkÞ ! 12v2. Therefore the
direction ~dk ¼ skð 1k1 11v1 þ 1

k2
12v2Þ ! sk 1

k2
12v2 which is exactly the negative gra-

dient direction scaled by sk 1
k2
. This means that even if scaling is applied incorrectly

(almost perpendicular to the negative gradient), the resulting direction can never be
perpendicular and in fact will align with the negative gradient direction, although, if
k2 is a very large number it is seen that progress along this direction becomes very
slow and convergence rate suffers as discussed in Sect. 3.2.1. Also if the current
position is at a stationary point where the projection x¯k is equal to xk which may
occur at the side of an obstacle, or at a critical point of the cost where −∇H(xk) = 0,
the resulting direction is zero even if nonzero scaling is applied. This can be seen
easily from the update equation xkþ 1 ¼ xk þ akdk where dk ¼ ð�xk � xkÞ which is
zero if xk is stationary, or in free space dk ¼ �skðSkÞ�1rHðxkÞ ¼ 0 at a critical
point where ∇H(xk) = 0. Therefore the observations that (1) dk can never be per-
pendicular to the direction of steepest descent (and actually approaches the steepest
descent direction if scaling is applied perpendicular to the negative gradient), and
(2) that the direction dk is zero such that the method stops at stationary points or
critical points even for positive scaling Sk 6¼ I, and finally that (3) scaling is more
effective when applied at larger distances from path obstructing infeasible regions,
motivate our recommendation of applying scaling for any path obstructing infea-
sible region within the vehicle sensing radius.

378 S. Gil et al.



4.2 Hardware Experiments

The algorithm was validated in a decentralized hardware experiment with two
mobile quadrotor helicopters and three stationary ground sensors. This evaluation
was performed in a known GPS-denied indoor environment with obstacles (the
second floor atrium in the Stata Center at MIT). The hardware platform consisted of
Ascending Technologies Pelican quadrotors,1 each outfitted with a Hokuyo2

UTM-30LX laser range-finder and 1.6 GHz Intel Atom processor (for details see
[17]). Each vehicle performs onboard state estimation and control enabling com-
pletely autonomous flight. For practical purposes, each quadrotor communicates via
WiFi with a corresponding ground station laptop, where human input and planning
processes are run. The communication channel between the mobile and ground
sensors is simulated. The environment and vehicles are shown in Fig. 1.

Ten trials were run, each starting at the initial configuration shown in Fig. 4
(labeled (x0V1; x

0
V2) for vehicles 1 and 2, respectively). The obstacle positions are

overlayed on the gridmap in pink, and a solid outline denotes the configuration
space boundaries, or infeasible regions. These regions do not impede communi-
cation; rather, they represent unsafe or untraversable regions. In this environment
these obstacles were an open staircase, a thin wall, and a table. The quadrotors share

1Ascending Technologies GmbH. http://www.asctec.de.
2Hokuyo UTM-30LX Laser. http://www.hokuyo-aut.jp.
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real-time pose information and at each control iteration 10 Hz compute their next
waypoint according to Algorithm 1. The control commands were artificially
throttled at 1 Hz by the waypoint executor. Figure 4 shows the trajectory of each
vehicle during one trial, and the resulting local minima configuration to which they
converge. Note that vehicle 1 moved around the wall. Vehicle 2 initially moved
towards the wall, then converged to a point along the obstacle boundary distributed
between sensors 1 and 3 and vehicle 1. The average duration over all trials was 65 s
until convergence.

Video footage: http://groups.csail.mit.edu/drl/wiki/images/7/74/ISRR_v3d.mp4
or https://youtu.be/h-5Oiz7SM7o.

5 Discussion

We have presented a method for communication optimization in a heterogeneous
network of aerial and ground vehicles in an environment with infeasible regions
using the communication cost function from previous work [5]. We pursue
extension to the general nonsmooth case, and study of the effect of obstacles on
communication strength in future work. We have demonstrated both analytically
and through simulation and hardware experiments, the utility of using a sequence of
scaling matrices to improve the range of converged solutions by moving along
trajectories that avoid infeasible regions.

Acknowledgements The authors acknowledge the MAST Project under ARL Grant
W911NF-08-2-0004, the SMART Future Urban Mobility Project, and the NSFGRFP.
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Pre-image Backchaining in Belief Space
for Mobile Manipulation

Leslie Pack Kaelbling and Tomás Lozano-Pérez

Abstract There have been several recent approaches to planning and control in
uncertain domains, based on online planning in a determinized approximation of the
belief-space dynamics, and replanning when the actual belief state diverges from the
predicted one. In this work, we extend this approach to planning for mobile manip-
ulation tasks with very long horizons, using a hierarchical combination of logical and
geometric representations. We present a novel approach to belief-space preimage
backchaining with logical representations, an efficient method for on-line execution
monitoring and replanning, and preliminary results on mobile manipulation tasks.

1 Introduction

As robots become more physically robust and capable of sophisticated sensing,
navigation, and manipulation, we want them to carry out increasingly complex
tasks. A robot that helps in a household must plan over the scale of hours or days,
considering abstract features such as the desires of the occupants of the house, as
well as detailed geometric models that support locating and manipulating objects.
The complexity of such tasks derives from very long time horizons, large numbers
of objects to be considered and manipulated, and fundamental uncertainty about
properties and locations of those objects.

We have developed an approach to integrated task and motion planning that
integrates geometric and symbolic representations in an aggressively hierarchical
planning architecture, called HPN [10]. The hierarchical decomposition allows
efficient solution of problems with very long horizons and the symbolic represen-
tations support abstraction in complex domains with large numbers of objects and
are integrated effectively with the detailed geometric models that support motion
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planning. In this paper, we extend the HPN approach to handle two types of
uncertainty: future-state uncertainty about what the outcome of an action will be,
and current state uncertainty about what the current state actually is. Future-state
uncertainty is handled by planning in approximate deterministic models, perform-
ing careful execution monitoring, and replanning when necessary. Current-state
uncertainty is handled by planning in belief space: the space of sets or probability
distributions over possible underlying world states.

There have been several recent approaches to integrated task and motion plan-
ning [3, 13, 14] but they do not address uncertainty. The use of belief space (and
information spaces [11]) is central to decision-theoretic approaches to uncertain
domains [9].

2 Hierarchical Pre-image Backchaining

Most planning problems require time on the order of the minimum of: |S| and |Ah,
where S is the size of the state space, |A| is the size of the action space and h is the
horizon (the length of the solution). Our approach to making planning tractable is to
construct a temporal hierarchy of short-horizon problems, thus reducing the com-
plexity of the individual planning problems we have to solve. The hierarchical
approach will not always produce optimal plans; it is, however, complete in
domains for which the goal is reachable from every state.

We formalize the effects of the robot’s actions in a hierarchy of increasingly
abstract operator descriptions; this hierarchy is constructed by postponing the
consideration of preconditions of an action until more concrete levels of abstraction.
Figure 1 shows part of a hierarchical plan for washing an object and putting it into
storage. The operations are first considered abstractly, making a two-step,
high-level plan. Then, the plan to wash the object is elaborated into two steps, of
placing the object into the washer and then washing it. At the next level of
abstraction down, we plan first to pick the object, and then to place it in its
destination.

Even short-horizon plans are difficult to find when the branching factor is high.
Searching forward from an initial, completely detailed, state description typically
has a very high (or infinite) branching factor, and it can be difficult to prune actions
heuristically and maintain the effectiveness of the planner. We address this problem
by using pre-image backchaining [12], also known as goal regression [21], to
search backward from the goal description. We presume that the goal has a simple
abstract description, for example, requiring can A to be in cupboard B. That
description denotes an infinite set of possible world states (varying according to the
exact position of can A, the robot’s pose, the locations and states of other objects in
the world, the weather, etc.). Chaining backward from the goal, using symbolic
operator descriptions together with the goal-driven construction of geometric pre-
conditions, allows planning to proceed with a relatively low branching factor. Plan
10 in Fig. 1 shows a case in which, in order to place an object in storage, the
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planner determines that it must first clear out the region of space through which the
object must be moved, and then place the object. A geometric description of that
region of space was computed on demand to specify the pre-image of placing the
object into storage.

In the next two sections, we describe how to extend the HPN approach to handle
uncertainty. First, we consider the case in which the robot knows its current state,
but in which the world dynamics are stochastic. Then, we extend the method to the
case in which there is uncertainty about the current state of the world.

3 Future-State Uncertainty

The decision-theoretic optimal approach to planning in domains with probabilistic
dynamics is to make a conditional plan, in the form of a tree, supplying an action to
take in response to any possible outcome of a preceding action [22]. For efficiency
and robustness, our approach to stochastic dynamics is to construct a deterministic
approximation of the dynamics, use the approximate dynamics to build a plan,
execute the plan while perceptually monitoring the world for deviations from the
expected outcomes of the actions, and replan when deviations occur. This method
has worked well in control applications [4, 6, 15, 20] as well as symbolic planning
domains [23].

A0:Wash(a)

Plan 1 
In(a, storage)

Clean(a)

Plan 2 
Clean(a)

A0:Place(a, storage)

Plan 8 
Clean(a)

In(a, storage)

A1:Pick(a, aX) A1:Place(a, storage)

Plan 10
Clean(a) 

In(a, storage)

A0:ClearX(swept_aX, (a)) A2:Place(a, storage)

Plan 11 
Clean(a) 

HoldIng() = a
ClearX(swept_aX, (a))

Place(storage)

A2:Pick(a, aX)

Plan 9 
Clean(a) 

HoldIng() = a

Pick(a, aX)

A0:Place(a, washer) A1:Wash(a)

Wash

A1:Pick(a, aStart)

Plan 4
HoldIng() = a

Plan 3 
In(a, washer)

A1:Place(a, washer)

Plan 7
In(a, washer)

Fig. 1 Example of part of a hierarchical plan and execution tree
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Determinization There are several potential strategies for constructing a
determinized model. A popular approach is to assume, for the purposes of planning,
that the most likely outcome is the one that will actually occur. This method can
never take advantage of a less-likely outcome of an action, even if it is the only way
to achieve a goal. We pursue an alternative method, which considers all possible
outcomes, but rather than modeling them as a randomized choice that is made by
nature, instead modeling them as a choice that can be made by the agent [1]. This
method integrates the desire to have a plan with a high success probability with the
desire to have a plan with low action cost by adopting a model where, when an
undesirable outcome happens, the state of the world is assumed to stay the same,
allowing the robot to repeat that action until it has the desired result. If the desired
outcome has probability p of occurring and the cost of taking the action is c, then in
this model the expected cost to make the transition to the desired state is c/p. We
will search for the plan that has the least cost under this model.

Interleaved planning and execution The planning and execution process can
be thought of as a depth-first tree traversal. Figure 1 illustrates this: The blue nodes
represent planning problems at different levels of abstraction. The abstraction
hierarchy is not rigid: it is constructed on the fly as the structure of the problem
demands. Purple nodes are operations at different levels of abstraction, and green
nodes are primitive actions. Note that, for instance, the primitive actions in the
sub-tree for plan 2 are executed before plan 8 is constructed. This online, inter-
leaved planning allows the details of the construction of plan 8 to depend on the
concrete state of the world that came about as a result of the recursive planning and
execution of plan 2.

Assume we have a PLAN procedure, which takes as arguments state, the current
world state, goal, a description of the goal set and abs a description of the level of
abstraction at which planning should take place; it additionally depends on a set of
operator descriptions that describe the domain dynamics. The PLAN procedure
returns a list ((−, g0), (a1, g1), …, (an, gn)) where the ai are operator instances,
gn = goal, gi is the pre-image of gi+1 under ai, and state 2 g0. The pre-image gi is
the set of world states such that if the world is in some state gi and action ai+1 is
executed, then the next world state will be in gi+1; these pre-images are subgoals
that serve as the goals for the planning problems at the next level down in the
hierarchy.

The HPN process is invoked by HPN (state, goal, abs, world), where state is a
description of the current state of world; goal is a set of world states; abs is a
structure that specifies, for any goal condition, the number of times it has served as
a plan step in the HPN call stack above it; and world is an actual robot or a
simulator in which primitive actions can be executed. In the prototype system
described in this paper, world is actually a geometric motion planner coupled with a
simulated or physical robot.
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HPN starts by making a plan p to achieve the top-level goal. Then, it executes
the plan steps, starting with action, a1. Each plan step is executed repeatedly, until
either its desired post-condition, gi, holds in the environment, which means that the
execution has been successful, or until its pre-condition, gi−1, ceases to hold in the
environment, which means that the suffix of the plan starting with this step can no
longer be expected to achieve the goal. If the pre-condition becomes false, then
execution of the plan at this level is terminated and control is returned to the level of
abstraction above.

This process will re-plan and re-execute actions until the goal is reached, as long
as the goal is reachable from every state in the determinized model.

4 Pre-image Backchaining in Belief Space

When there is uncertainty about the current state of the world, we plan in the space
of beliefs about the world state, instead of the space of world states itself. In this
work, we use probability distributions over world states as belief states. Planning in
this space enables actions to be selected because they cause the robot to gain
information that will enable appropriate physical actions to be taken later in the
plan, for instance.

Planning in belief space is generally quite complex, because it seems to require
representing and searching for trajectories in a very high-dimensional continuous
space of probability distributions. This is analogous to the problem of finding plans
in very high-dimensional continuous space of configurations of a robot and many
objects. We take direct advantage of this analogy and use symbolic predicates to
specify limited properties of belief states, as our previous approach [10] does for
properties of geometric configurations. So, for instance, we might characterize a set
of belief states by specifying that “the probability that the cup is in the cupboard is
greater than 0.95.” Pre-image backchaining allows the construction of high-level
plans to achieve goals articulated in terms of those predicates, without explicitly
formalizing the complete dynamics on the underlying continuous space.
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Traditional belief-space planning approaches either attempt to find entire poli-
cies, mapping all possible belief states to actions [9, 17, 19] or perform forward
search from a current belief state, using the Bayesian belief-update equation to
compute a new belief state from a previous one, an action and an observation [16].
In order to take advantage of the approach outlined above to hierarchical planning
and execution, however, we will take a pre-image backchaining approach to
planning in belief space.

HPN in belief space The basic execution strategy for HPN need not be changed
for planning in belief space. The only amendment, shown below, is the need to
perform an update of the belief state based on an observation resulting from exe-
cuting the action in the world:

After each primitive action is executed, an observation is made in the world and
the belief state is updated to reflect both the predicted transition and the information
contained in the observation obs. It is interesting to note that, given an action and an
observation, the belief state update is deterministic. However, the particular
observation that will result from taking an action in a state is stochastic; that
stochasticity is handled by the BHPN structure in the same way that stochasticity of
action outcomes in the world was handled in the HPN structure.

Hierarchical planning and information gain fit together beautifully: the system
makes a high-level plan to gather information and then uses it, and the interleaved
hierarchical planning and execution architecture ensures that planning that depends
on the information naturally takes place after the information has been gathered.

4.1 Symbolic Representation of Goals and Subgoals

When planning in belief space, goals must be described in belief space. Example
goals might be “With probability greater than 0.95, the cup is in the cupboard.” or
“The probability that more than 1 % of the floor is dirty is less than 0.01.” These
goals describe sets of belief states. The process of planning with pre-image
backchaining computes pre-images of goals, which are themselves sets of belief
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states. Our representational problem is to find a compact yet sufficiently accurate
way of describing goals and their pre-images.

In traditional symbolic planning, fluents are logical assertions used to represent
aspects of the state of the external physical world; conjunctions of fluents are used
to describe sets of world states, to specify goals, and to represent pre-images. States
in a completely symbolic domain can be represented in complete detail by an
assignment of values to all possible fluents in a domain. Real world states in
robotics problems, however, are highly complex geometric arrangements of objects
and robot configurations which cannot be completely captured in terms of logical
fluents. However, logical fluents can be used to characterize the domain at an
abstract level for use in the upper levels of hierarchical planning.

We will take a step further and use fluents to characterize aspects of the robot’s
belief state, for specifying goals and pre-images. For example, the condition “With
probability greater than 0.95, the cup is in the cupboard,”, can be written using a
fluent such as PrIn(cup, cupboard, 0.95), and might serve as a goal for planning.
For any fluent, we need to be able to test whether or not it holds in the current belief
state, and we must be able to compute the pre-image of a set of belief states
described by a conjunction of fluents under each of the robot’s actions. Thus, our
description of operators will not be in terms of their effect on the state of the
external world but in terms of their effect on the fluents that characterize the robot’s
belief. Our work is informed by related work in partially observed or probabilistic
regression (back-chaining) planning [2, 5, 18]. In general, it will be very difficult to
characterize the exact pre-image of an operation in belief space; we will strive to
provide an approximation that supports the construction of reasonable plans and
rely on execution monitoring and replanning to handle errors due to approximation.

In the rest of this paper, we provide examples of representations of belief sets
using conjunctions of logical fluents, for both discrete and continuous domains, and
illustrate them on example robotics problems.

5 Coarse Object Pose Uncertainty

We have a pilot implementation of the HPN framework on a Willow Garage PR2
robot, demonstrating integration of low-level geometric planning, active sensing,
and high-level task planning, including reasoning about knowledge and planning to
gain information. Figure 2 shows a planning problem in which the robot must move
the blue box to another part of the table. The actual state of the world is shown on
the left, and the mode of its initial belief is shown on the right.

Objects in the world are detected by matching known object meshes to point
clouds from the narrow stereo sensor on the robot; example detections are shown in
Fig. 3. As with any real perceptual system, there is noise in both the reported poses
and identities of the objects. Furthermore, there is significant noise in the reported
pose of the robot base, due to wheel slip and other odometric error. There is
additional error in the calibration of the stereo sensor and robot base. The state
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estimation process for the positions of objects is currently very rudimentary: object
detections that are significantly far from the current estimate are rejected; those that
are accepted are averaged with the current estimate. A rough measure of the
accuracy of the estimate is maintained by counting the number of detections made
of the object since the last time the robot base moved. A detailed description of the
geometric representation and integration of task and motion planning is available
[10]. Here, we emphasize uncertainty handling in the real robot. Here are three of
the relevant operator descriptions:

Fig. 2 The situation on the left is the real state of the world; the one on the right represents the
mode of the initial belief

Fig. 3 Point cloud (on right) for scene (on left); red points correspond to the models at their
perceived poses
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The PICK operator describes conditions under which the robot can pick up an
object O, making the fluent KHolding have the value O. The fluent name,
KHolding, is meant to indicate that it is a condition on belief states, that is, that the
robot know that it is holding object O. The primitive pick operation consists of
(1) calling an RRT motion planner to find a path for the arm to a ‘pregrasp’ pose,
(2) executing that trajectory on the robot, (3) grasping the object, then (4) lifting the
object to a ‘postgrasp’ pose.

The operator description has a free variable M, which describes a trajectory for
the robot base and arm, starting from a home pose through to a pose in which the
object is grasped; one or more possible values of M are generated by a procedure
that takes constraints on grasping and motion into account and uses an efficient
approximate visibility-graph motion planner for a simple robot to find a path. This
is not the exact path that the motion primitives will ultimately execute, but it serves
during the high-level planning to determine which other objects need to be moved
out of the way and where the base should be positioned while performing the pick
operation. The preconditions to the primitive pick operation are that: the swept
volume of the path for the arm be known to be clear, with the exception of the
object to be picked up; that the object O be known to be in a pose that allows it be
picked up when the robot base pose is the one specified by M; that the robot is
known not to be currently holding anything; that the robot base is known to be near
the pose specified by M, and that the pose of the object O is known with respect to
the robot’s base pose in M with accuracy level 3 (that is, it has to have had at least
three separate good visual detections of the object since the last time the base was
moved).

The LOOKAT operator looks at an object O from the base pose specified in
motion M, and can make the fluent LocAccuracy(O, M, N) true, which means that
the accuracy of the estimated location of object O is at least level N. The primitive
operation computes a head pose that will center the most likely pose of object O in
its field of view when the robot base is in the specified pose and moves the head to
that pose. The image-capture, stereo processing, and object-detection processes are
running continuously and asynchronously, so the primitive does not need to
explicitly call them. This operation achieves a location accuracy of N if the base is
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known to be in the appropriate pose and the object had been previously localized
with accuracy N − 1.

The MOVEBASE operator moves to the base pose specified in motion M. The
primitive operation (1) calls an RRT motion planner to find a path (in the full
configuration space of the base and one arm—the other arm is fixed) to the con-
figuration specified in M and (2) executes it. It requires, as a precondition, that the
swept volume of the suggested path be known to be clear. Importantly, it also
declares that it has the effect of invalidating the accuracy of the estimates of all
object poses.

Figure 4 shows a fragment of the planning and execution tree resulting from an
execution run of the system. At the highest level (not shown) a plan is formulated to
pick up the box and then place it in a desired location. This tree shows the picking
of the box. First, the system makes an abstract plan (Plan 4) to pick the box, and
then refines it (Plan 5) to three operators: moving the base, looking at the box until
its location is known with sufficient accuracy, and then executing the pick primitive.
The robot base then moves to the desired pose (green box); once it has moved, it
observes the objects on the table and updates its estimate of the poses of all the
objects. In so doing, it discovers that part of the precondition for executing this plan
has been violated (this corresponds to the test in the last line of code for BHPN) and
returns to a higher level in the recursive planning and execution process. This is
indicated in the planning and execution tree by the orange boxes, showing that it
fails up two levels, until the high-level PICK operation is planned again. Now, Plan
6 is constructed with two steps: making the swept volume for the box clear, and
then picking up the box. The process of clearing the swept volume requires picking
up the soup can and moving it out of the way; this process generates a large
planning and execution tree which has been elided from the figure. During this
process, the robot had to move the base. So Plan 18 consists of moving the base to
an appropriate pose to pick up the box, looking at the box, and then picking it

A1:Pick(box, ?)

Plan 4
Holding = box

Replan 
Holding = box

Plan 5 
Holding = box

A2:Pick(box, m1)

Antecedent Fail 
ClearX(swept16, (box)) = True

A0:LookAt(box, m1, 3) A3:Pick(box, m1)A0:MoveBase(m1)

Antecedent Fail 
ClearX(swept16, (box)) = True

Plan 18 
Holding = box

A0:MoveBase(m2) A0:LookAt(box, m2, 3) A3:Pick(box, m2)

A1:LookAt(box, m2, 2)

Plan 19 
CanPickFrom(box, m2) = True

Holding = nothing 
LocAccuracy(box, m2, 3) = True 

RobotLoc(m2) = True 
ClearX(swept18, (box)) = True

MoveBase(m2)

Look(box) Look(box)

Plan 8
CanPickFrom(box, m2) = True 

Holding = nothing 
ClearX(swept17, (box)) = True

A0:remove(soup, swept17)

Subtree for moving soup out of the way

A1:ClearX(swept17, (box))

MoveBase(m1)

Plan 7 
CanPickFrom(box, m2) = True

Holding = nothing 
ClearX(swept17, (box)) = True

Plan 6 
Holding = box

A0:ClearX(swept17, (box)) A2:Pick(box, m2)

A1:LookAt(box, m2, 3)

PickUp(box, m2)

Fig. 4 Partial planning and execution tree for picking up the box, in which the robot notices that
the soup can is in the way and removes it
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up. Because the robot was able to visually detect the box after moving the base, the
LOOKAT operation only needs to gather two additional detections of the object,
and then, finally, the robot picks up the box.

6 Fine Object Pose Uncertainty

In the previous example, we had a very coarse representation of uncertainty: the
robot’s pose was either known sufficiently accurately or it wasn’t; the degree of
accuracy of a position estimate was described by the number of times it had been
observed. For more fine-grained interaction with objects in the world, we will need
to reason more quantitatively about the belief states. In this section, we outline a
method for characterizing the information-gain effects of operations that observe
continuous quantities in the environment. We then illustrate these methods in a
robotic grasping example.

6.1 Characterizing Belief of a Continuous Variable

We might wish to describe conditions on continuous belief distributions, by
requiring, for instance, that the mean of the distribution be within some value of the
target and the variance be below some threshold. Generally, we would like to derive
requirements on beliefs from requirements for action in the physical world. So, in
order for a robot to move through a door, the estimated position of the door needs to
be within a tolerance equal to the difference between the width of the robot and the
width of the door. The variance of the robot’s estimate of the door position is not
the best measure of how likely the robot is to succeed: instead we will use the
concept of the probability near mode (PNM) of the distribution. It measures the
amount of probability mass within some d of the mode of the distribution. So, the
robot’s prediction of its success in going through the door would be the PNM with
d equal to half of the robot width minus the door width.

For a planning goal of PNM(X, d) > h, we need to know expressions for the
regression of that condition under the a and o in our domain. In the following, we
determine such expressions for the case where the underlying belief distribution on
state variable X is Gaussian, the dynamics of X are stationary, a is to make an
observation, and the observation o is drawn from a Gaussian distribution with mean
X and variance r2o.

For a one-dimensional random variable X�Nðl; r2Þ,

PNMðX; dÞ ¼ U
d
r

� �
� U

�d
r

� �
¼ erf

dffiffiffi
2

p
r

� �
;
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where U is the Gaussian CDF. If, at time t the belief is Nðlt;r2t Þ, then after an
observation o, the belief will be

N
ltr

2
0 þ or2t

r20 þ r2t
;
r20r

2
t

r20 þ r2t

� �

So, if PNMðX; dÞ ¼ ht ¼ erf dffiffi
2

p
r

� �
then

PNMðXtþ 1; dÞ ¼ htþ 1 ¼ erf
dffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 + r2t
r20r

2
t

s !

Substituting in the expression for r2t in terms of ht, and solving for ht, we have:

ht ¼ PNMregressðhtþ 1; d; r
2
oÞ ¼ erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erf�1ðhtþ 1Þ2 � d2

2r2o

s0@
1
A:

So, to guarantee that PNMðXtþ 1; dÞ[ htþ 1Þ holds after taking action a and
observing o, we must guarantee that PNMðXt; dÞ[PNMregressðhtþ 1; d; r2oÞ holds
on the previous time step.

6.2 Integrating Visual and Tactile Sensing for Grasping

In general, visual sensing alone is insufficient to localize an object sufficiently to
guarantee that it be grasped in a desired pose with respect to the robot’s hand.
Attempts to grasp the object result in tactile feedback that significantly improve
localization. The Willow Garage reactive grasping ROS pipeline [8] provides a
lightweight approach to using the tactile information, assuming that the desired
grasp orientation is fixed relative to the robot (rather than the object). Other work
[7] takes a belief-space planning approach to this problem. It constructs a
fixed-horizon search tree (typically of depth 2), with branches on possible obser-
vations. That approach is effective, but computationally challenging due to (1) re-
planning on every step; (2) a large branching factor and (3) the fact that a
completely detailed belief-state update must be computed at each node in the
forward search tree.

In this section, we outline an approach of intermediate complexity. It makes a
complete plan using a deterministic and highly abstract characterization of preim-
ages in belief space, which is very efficient. It can handle objects of more general
shapes and different grasping strategies, and automatically trades off the costs and
benefits of different sensing modalities.
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Operator descriptions We have reformulated the pick operator from Sect. 5,
with the accuracy requirement for the location of O specified with the fluent
PNMLoc(O, h, dp), which is true if and only if the probability that object O’s
location is within dp of its most likely location is greater than h. The definition of
near is now on three-dimensional object poses with threshold dp, selected
empirically.

The threshold h is a free parameter here. If dp is the amount of pose error that can
be tolerated and still result in a successful grasp, then this operator says that if we
know the object’s location to within dp with probability h, then we will succeed in
grasping with probability h. This success probability is reflected in the cost model.

We have two ways of acquiring information. The first is by looking with a
camera. The field of view is sufficiently wide that we can assume it always observes
the object, but with a relatively large variance, r2vision, in the accuracy of its observed
pose, and hence a relatively small increase in the PNM.

LOOK(O, h, d) : PNMLoc(O, h, d) = T:
pre: PNMLoc(O, PNMRegress(h, d, r2vision), d) = T
cost: 1

The second method of gaining information is by attempting to grasp the object.
If the probability of the object’s pose being within the hand’s size of the mode is
very low, then an attempt to grasp is likely to miss the object entirely and generate
very little information. On the other hand, if the probability of being within a hand’s
size of the mode is high, so that an attempted grasp is likely to contact the object,
then observations from the touch sensors on the hand will provide very good
information about the object’s position.
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In this operator description, we use the PNMRegress procedure as if the infor-
mation gained through an attempted grasp were the result of an observation with
Gaussian error being combined with a Gaussian prior. That is not the case, and so
this is a very loose approximation; in future work, we will estimate this
non-Gaussian PNM pre-image function from data.

Both the GRASP and TRYGRASP operations are always executed with the mode
of the belief distribution as the target pose of the object. This planning framework
could support other choices of sensing actions, including other grasps or sweeping
the hand through the space; it could also use a different set of fluents to describe the
belief state, including making distinctions between uncertainty in position and in
orientation of the object.

State estimation In order to support planning in belief space, we must imple-
ment a state estimator, which is used to update the belief state after execution of
each primitive action in BHPN. The space of possible object poses is characterized
by x, y, h, assuming that the object is resting on a known stable face on a table of
known height: x and y describe positions of the object on the table and h describes
its orientation in the plane of the table.

The grasping actions are specified by [targetObjPose, grasp], where
targetObjPose is a pose of the object and grasp specifies the desired placement of
the hand with respect to the object. An action consists of moving back to a pregrasp
configuration with the hand open, then performing a guarded move to a target hand
pose and closing the fingers. The fingers are closed compliantly, in that, as soon as
one finger contacts, the wrist moves away from the contacting finger at the same
time the free finger closes. The resulting two-finger contact provides a great deal of
information about the object’s position and orientation. During the guarded move, if
any of the tactile sensors or the wrist accelerometer is triggered, the process is
immediately halted. In the case of an accelerometer trigger, the fingers are com-
pliantly closed.

The observations obtained from grasping are of the form

½handPose; gripperWidth; trigger; contacts�;

where handPose is the pose of the robot’s hand (reported based on its proprio-
ception) at the end of the grasping process; gripperWidth is the width of the gripper
opening; trigger is one of {rightTip, leftTip, accel, None} indicating whether the
motion was stopped due to a contact from one of the fingertip sensors, the
accelerometer, or was not stopped; and contacts is a list of four Boolean values
indicating whether each of four sensors (left finger tip, right finger tip, left internal
pad, and right internal pad) is in contact.

In order to perform state estimation, we need to provide an observation model Pr
(o|s, a), which specifies the probability (or density) of making a particular obser-
vation o if the object is actually in pose s and the robot executes the action specified
by a. There is stochasticity in the outcome of commanded action a due to both to
error in the robot’s proprioception and in its controllers, causing it to follow a
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trajectory t that differs from the one specified by a. So, we can formulate the
observation probabilities as

Pr(o s; aj ) =
Z
t

Pr(o s; tj )Pr(t s; aj ):

Decomposing o into c (contacts and trigger) and h (hand-pose and gripper
width), we can write

Pr(o s; aj ) =
Z
t

Pr(c,h s; tj )Pr(t s; aj ):

¼
Z
t

Pr(c s; tj )Pr(h tj )Pr(t s; aj )

However, the integral is too difficult to evaluate, so we approximate it by con-
sidering the trajectory t that maximizes the right hand side

Pr(o s; aj ) � max
t

Pr(c s; tj )Pr(h tj )Pr(t s; aj ):

This, too, is difficult to compute; we approximate again by assuming that there is
little or no error in the actual contact sensors, and so we consider the set of
trajectories that would generate the contacts c if the object were at pose s; sðc; sÞ, so

Pr(o s; aj ) � max
sðc;sÞ

Pr(h tj )Pr(t s; aj ):

Weconsider the class of trajectories that are rigid displacements of the commanded
trajectory a that result in contacts c, and such that no earlier point in the trajectory
would have encountered an observed contact. We compute the configuration space
obstacle for the swept volume of the gripper relative to the object placed at s. Facets of
this obstacle correspond to possible observed or unobserved contacts. We first
compute ah, which is the displacement of a that goes through the observed hand pose
h, and then seek the smallest displacement of ah that wouldmove it to s(c, s); this is the
smallest displacement d that produces a contact in the relevant facet of the
configuration-space obstacle. We assume that the displacements between actual and
observed trajectories are Gaussian, so we finally approximate Pr(o|s, a) asG (d, 0, r2)
whereG is theGaussian PDF for value d in a distributionwithmean 0 and variance r2.

The relationship between observations and states is highly non-linear, and the
resulting state estimates are typically multi-modal and not at all well approximated
by a Gaussian. We represent the belief state with a set of samples, using an adaptive
resolution strategy to ensure a high density of samples in regions of interest, but
also to maintain the coverage necessary to recover from unlikely observations and
to maintain a good estimate of the overall distribution (not just the mode).
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Results Using BHPN with the operator descriptions and state estimator descri-
bed in this section, we constructed a system that starts with a very large amount of
uncertainty and has the goal of believing with high probability that it is holding an
object. Figure 5 shows an example planning and execution tree resulting from this
system. It plans to first look, then do an attempted grasp to gain information, and
then to do a final grasp. It executes the Look and the TryGrasp steps with the
desired results in belief space, and then it does another grasp action. At that point,
the confidence that the robot is actually grasping the object correctly is not high
enough. However, the PNM precondition of the Grasp action still holds, so it
replans locally and decides to try the Grasp action again, and it works successfully.

We compared three different strategies in a simulation of the PR2: using only the
TryGrasp action to gain information, using only the Look action to gain informa-
tion, and using a combination of the Look and TryGrasp actions, mediated by the
planner and requirements on PNM. We found the following average number of
actions required by each strategy:

• TryGrasp only: 6.80 steps
• Look only: 73 steps (estimated)
• LookandTryGrasp: 4.93 steps

The Look operation has such high variance that, although in the limit the PNM
would be sufficiently reduced to actually grasp the object, it would take a very long
time. The estimate of 73 is derived using the PNM regression formulas (and in fact
the planner constructs that plan). The TryGrasp-only strategy works reasonably
well because we limited the region of uncertainty to the workspace of the robot arm,
and it can reasonably easily rule out large parts of the space. Were the space larger,
it would take considerably more actions. Using the Look action first causes the
PNM to be increased sufficiently so that subsequent TryGrasp actions are much
more informative. It also sometimes happens that, if the noise in the TryGrasp
observations is high, the PNM falls sufficiently so that replanning is triggered at the
high level and a new Look action is performed, which refocuses the grasp attempts
on the correct part of the space. These results are preliminary; our next steps are to
integrate this planning process with the rest of the motion and manipulation
framework.

A0:Grasp()

Replan 
(Holding() = True)

Grasp

Plan 1
Holding() = True

A0:Look(0.500, 0.300) A0:TryGrasp(0.800, 0.015)

Look TryGrasp Grasp

Fig. 5 Planning and execution tree for grasping, showing the initial plan, and a re-execution
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7 Conclusion

This paper has described a tightly integrated approach, weaving together percep-
tion, estimation, geometric reasoning, symbolic task planning, and control to
generate behavior in a real robot that robustly achieves tasks in complex, uncertain
domains. It is founded on these principles: (1) Planning explicitly in the space of the
robot’s beliefs about the state of the world is necessary for intelligent
information-gathering behavior; (2) Planning with simplified domain models is
efficient and can be made robust by detecting execution failures and replanning
online; (3) Combining logical and geometric reasoning enables effective planning in
large state spaces; and (4) Online hierarchical planning interleaved with execution
enables effective planning over long time horizons.
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Realtime Informed Path Sampling
for Motion Planning Search

Ross A. Knepper and Matthew T. Mason

Abstract Robot motions typically originate from an uninformed path sampling
process such as random or low-dispersion sampling. We demonstrate an alternative
approach to path sampling that closes the loop on the expensive collision-testing
process. Although all necessary information for collision-testing a path is known to
the planner, that information is typically stored in a relatively unavailable form in a
costmap. By summarizing the most salient data in a more accessible form, our
process delivers a denser sampling of the free space per unit time than open-loop
sampling techniques. We obtain this result by probabilistically modeling—in real
time and with minimal information—the locations of obstacles, based on collision
test results. We demonstrate up to a 780 % increase in paths surviving collision test.

1 Introduction

The motion planning problem is to find a path or trajectory that guides the robot
from a given start state to a given goal state while obeying constraints and avoiding
obstacles. The solution space is high dimensional, so motion planning algorithms
typically decompose the problem by searching for a sequence of shorter, local
paths, which solve the original motion planning problem when concatenated.

Each local path comprising this concatenated solution must obey motion con-
straints and avoid obstacles and hazards in the environment. Many alternate local
paths may be considered for each component, so planners select a combination of
paths that optimizes some objective function. In order to generate such a set of
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candidate paths, the planner must generate many more candidate paths, each of
which must be verified against motion constraints and collision-tested prior to
consideration. Motion planners generate this large collection of paths by sam-
pling—most often at random or from a low-dispersion sequence.

All the information needed to find collision-free path samples exists within the
costmap, but the expensive collision test process prevents that information from
being readily available to the planner. A negative collision-test result (i.e. no col-
lision) is retained for future consideration, but a positive collision-test result is
typically thrown away because the path is not viable for execution. Such planners
may later waste time sampling and testing similar paths that collide with the same
obstacle.

This policy of discarding information about colliding paths highlights a major
inefficiency, which especially impacts realtime planning. Every detected collision
provides a known obstacle location. This observation may not seem significant at
first, as all detected collisions represent known obstacles in the costmap. However,
not all such obstacles are equally relevant to a given local planning problem, and so
we can benefit by storing relevant costmap obstacles in a form more immediately
available to the planner. We argue that the planner may derive increased perfor-
mance by feeding back the set of collision points, known from prior collision tests,
to the path sampling process, as in Fig. 1.

1.1 Path Sampling and Path Parametrization

The general path sampling problem is to supply a sequence of distinct paths {p1,
p2,…} = P � X, the continuum space of paths. Often, these paths are not para-
metrized directly by their geometry but instead are described by their means of
generation. For instance, some planners consider only straight-line paths. Given a
current robot state x0 2 X, the configuration space, a straight-line path is uniquely
specified by connecting x0 to an arbitrary sampled state xf 2 X. In such planners, it is
expected that the robot is able to execute arbitrary paths, and so the boundary value
problem is easy to solve because it is under-constrained.

Sensing Cost 
Map

Action

Path 
Sampling

Simulation Collision 
Testing

Planner

Fig. 1 Typical data flow within a robot closes the loop around the sense-plan-act cycle, but the
planner itself runs open-loop. We close the planning loop, informing path sampling with the results
of collision-testing earlier paths
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Definition 1 Given start and end states, the boundary value problem (BVP) is to
find any feasible path from the start to the goal (i.e. the local planning problem).
A variant of this problem is to find the shortest such path. □

Some classes of robotic systems possess velocity constraints that limit the
direction in which they may move instantaneously. The most well known example
of these nonholonomic constraints is the difficulty of parallel parking a car. In such
highly constrained, underactuated systems, the set of feasible paths F is much
smaller than the space of all paths, X. Thus, an arbitrary path sample drawn from X
is unlikely to be in the feasible set F. In such cases, the BVP is difficult to solve.

For constrained systems, we may avoid solving the BVP by instead sampling in
U, the space of actions. Suppose we have a “black box” model of the robot’s
response to a control input, which is a mapping M : U ! F. Sampling in the
control space offers several advantages: (1) all sampled paths trivially obey motion
constraints; and (2) we may precompute a diverse set of such paths. For a mobile
robot, these paths are independent of initial position and heading, depending only
on their derivatives (we ignore external interference such as wind or wheel slip).
Therefore, a relatively small lookup table suffices to describe an expressive set of
robot motions.

1.2 Prior Work

The motion planning community has invested considerable effort in the topic of
non-uniform and adaptive sampling. The literature on this topic largely concerns
probabilistic roadmaps (PRMs), which sample states rather than paths. Hsu et al.
[11] provide a survey of recent work in non-uniform sampling for PRMs. We touch
on a few of the broad approaches here.

One approach employs a fixed strategy to bias configuration sampling towards
narrow corridors—parts of the C-space that are less likely to be sampled on their
own due to their small measure [1, 9, 17]. These works all restrict the sampling
consideration to points, whereas we sample directly in the space of paths, using a
distribution that varies in reaction to new collision test results.

The non-uniform sampling field has largely moved towards such adaptive
strategies. For instance, Jaillet et al. [12] restrict sampling to size-varying balls
around nodes in an RRT to avoid testing paths that would go through obstacles. Yu
and Gupta [19] perform sensor-based planning in which a PRM is incrementally
constructed based on the robot’s partial observations of obstacles. Exploratory
motions are selected by maximizing information gain. Another recent adaptive
approach is to construct a meta-planner with several tools at its disposal; such
planners employ multiple sampling strategies [10] or multiple randomized roadmap
planners [16], based on a prediction of which approach is most effective in a given
setting.
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One important feature of our work is the use of information from all collision
tests, including positive results, to minimize entropy in a model approximating
obstacle locations. The work of Burns and Brock [3–6] bears considerable
resemblance to ours in this regard. They describe an adaptive model of obstacle
locations in C-space based on previous collision test results. Their model utilizes
locally weighted learning to select state [4] or path [5] samples that reduce model
uncertainty. We likewise develop a model of obstacle location, although ours
inhabits the workspace, and its simplicity is better suited to realtime applications.
Burns and Brock subsequently observe, as we do, that model refinement is not an
end in itself, but merely a means to the end of finding collision-free paths [6]. We
proceed from this observation to consider what level of refinement is appropriate, in
the context of constrained paths, based on the maximum width of corridor we are
willing to miss discovering.

Separately, Burns and Brock describe an entropy-guided approach to the
selection of configuration samples likely to unify two connected components of the
PRM graph [3]. In later work [6], they augment this approach with the notion of
utility, which combines information gain regarding obstacle locations with the
value of a resulting sample for solving the planning problem. Utility-guided sam-
pling selects the configuration expected to solve the eventual planning problem
most efficiently.We take a similar approach, in that we sample a combination of
paths intended to navigate the space and to refine our obstacle model.

2 Informed Path Sampling Approach

In closing the loop on path sampling, we must feed back knowledge of obstacles
reachable by the robot (in the form of collision-test results) into the sample space of
paths, be it X or U, so that we can suppress from the sampled path sequence future
paths intersecting those regions of the workspace.

A collision can be described as an ordered pair c = (p, s), with p 2 F and s 2
I = [0, 1], a time/distance parameter describing where on the path the collision
occurred. A path is a mapping p : I ! X. Thus, c maps directly into a state x 2 X,
identifying the location of an obstacle. However, this collision state is special
because it is known to be reachable by an action u 2 U. In fact, x is probably
reachable by a continuum of other actions, of which we can easily precompute a
sampled subset for each possible collision point.

Our approach to path sampling feedback in highly constrained systems is to keep
the feedback entirely within the action space, by which such paths are parametrized.
We first collision test some paths drawn from a low-dispersion sequence [7]. After
finding the first collision point, its location biases future action samples. We may
construct, a priori, a list of correspondences between possible action samples to
accelerate this process.
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Often, collision-test routines are able to identify the precise location where a
collision occurred. Knowing that workspace point w is part of an obstacle, we may
eliminate from our sampled sequence all paths passing through the set cs(w), the set
of robot configurations xi 2 X in which the robot intersects the workspace point
w. To eliminate these paths, we must store the list of actions by which they are
parametrized.

In order to identify the set of paths passing unacceptably close to an obstacle
point w, we precompute a proximity look-up table (PLUT), as shown in Fig. 2.
Suppose our precomputed path set P contains N paths, each discretized into
M points. The PLUT stores, for every ordered pair of paths (pi, pj ) in P, the
shortest distance to the kth discretized point on pj.

PLUTðpi,pj,kÞ ¼ min
w2pi

d w,pj
k
M

� �� �
, ð1Þ

where d(w1, w2) gives the Euclidean distance between two points.
Now, given a collision c = (pj, s), we would like to find out if another path pi

would collide with the same obstacle. We simply query the PLUT as

PLUTðpi,pj,sMÞ\rr, ð2Þ

where rr is the radius of the robot (or an inscribed circle of the robot). When this
condition holds, the collision test would fail. Knowing this, we may eliminate the
path without a test, and spend the CPU time considering other paths.

However, we may go beyond short-circuiting the collision-test to estimating the
probability distribution on obstacle locations using the principle of locality, which
states that points inside an obstacle tend to occur near other points inside an
obstacle. We propose a series of models of locality and two path sampling prob-
lems, which we address using our models. The key to success of this approach is
that the final evaluation be less costly than the collision tests it replaces.

Fig. 2 Given a path set of
N paths, each discretized into
M points, the proximity
look-up table (PLUT) stores
for each ordered pair of paths
a list of shortest distances to
each discrete point on the
second path. Thus, there are a
total of MN2 unique PLUT
entries
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3 Probabilistic Foundations

In this paper, we develop a series of probabilistic models that enable us to rapidly
select paths for collision test that maximize one of two properties. First, in order to
find valid robot motions, we must sample a selection of collision-free paths for
execution. Second, we wish to sample broadly within the free space of paths,
including in proximity to obstacles. The precision with which we know the
obstacle/free-space boundaries directly relates to the size of narrow corridor we
expect to find.

The workspace comprises a set of points divided into two categories: obstacle
and free. The function

obs : W ! b, ð3Þ

where b = {true, false} reveals the outcome that a particular workspace point w is
either inside (true) or outside of an obstacle. Building on such outcomes, we then
describe an event of interest. A path collision-test takes the form

pct : P ! b, ð4Þ

which returns the disjunction of obs(w) for all w within the swept volume (or swath)
of the path. A result of true indicates that this path intersects an obstacle.

Using these concepts as a basis, we pose two problems:

1. Exploitation. We are given a set of workspace points inside obstacles, C ¼
w1,. . .wmf g and a set of untested paths Punknown ¼ p1,. . .pnf g. Knowing only a

finite subset of the continuum of obstacle-points, find the path that minimizes
the probability of collision:

pnext ¼ argmin
Pi2P

Prðpct(pi,CÞÞ: ð5Þ

2. Exploration. Suppose we have a model of uncertainty U (Psafe, C) over the
collision status of a set of untested paths, Punknown in terms of a set of tested
paths and known obstacle-points. Find the path pnext 2 Punknown giving the
greatest reduction in expected uncertainty:

Uexp pið Þ ¼ U Psafe [ pif g,C� �
Pr :pct pi,Cð Þð Þ

þU Psafe,C[ cif g� �
Pr pct pi,Cð Þð Þ ð6Þ

pnext ¼ argmax
Pi2Punknown

U Psafe,C
� �� UexpðpiÞ: ð7Þ

These two considerations are essentially the same as those encapsulated in the
utility function of Burns and Brock [6] (see Sect. 1.2).
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4 Locality

Thus far, we have demonstrated how a single failed collision test may serve to
eliminate an entire set of untested paths from consideration because they pass
through the same obstacle point. We may extend this approach one step further
using the principle of locality.

Definition 2 The principle of locality states that if a robot state is in collision with
an obstacle, then that state is contained in a neighborhood ball of obstacle points. □

Two contributing factors combine to produce the locality effect. First, the
non-zero volume of the robot means that even a point obstacle results in a set of
robot states cs(t) in collision with that point. The second factor is that real-world
obstacles occupy some volume in space.

Given a known collision point, we employ the principle of locality to define a
function expressing the probability that a new path under test is in collision with the
same obstacle. A locality model takes the following general form:

loc(pi jC) = Pr(pct(piÞ jC) ð8Þ

Here, C may be a single point collision outcome or a set of collisions. If omitted,
it is assumed to be the set of all known collisions.

This function depends on many factors, including the size and shape of the robot
as well as the distribution on size and shape of obstacles in the environment. The
most important parameter, however, is the distance between the new path and the
known collision site. Thus, we may establish a rapidly computable first-order
locality model in which we abstract away the size and shape of obstacles using a
single distribution on radius, as in Fig. 3. We discuss several intermediate locality
model formulations before coming to the final form.

Fig. 3 The robot (red disc at left) considers two paths. The bottom path fails its collision test. The
locality model does not know the full extent of the obstacle (gray), but it can approximate the
obstacle using a probability distribution (concentric circles) and can estimate the likelihood of the
top path colliding
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4.1 General Locality Model

By explicitly modeling locality, we may reason about which paths are more or less
likely to be in collision with any known obstacle, even with only partial information
about its location. A path sampling algorithm, when informed by a locality model,
provides a path sequence ordered by likelihood of collision, given currently known
collision sites. We propose here a general model of locality that can be expected to
produce collision-free path samples with high probability.

In constructing a general locality model, we abstract away many parameters; we
consider both the robot and obstacles to be balls (in ℝ2 or ℝ3), and the obstacles are
assumed uniform in radius. We relax some of these assumptions later, in Sect. 4.4.
For now, these restrictions permit us to simplify the model by removing bearing
from consideration. Thus, the general model’s prediction of future collisions is
purely a function of range from the known collision site to the path. The fixed radii
of both the obstacles (ro) and the robot (rr) result in the intuitive notion of locality:
that its influence is over a limited range only.

The precise formulation of the general locality model, as depicted in Fig. 4, is
based on maintaining a probability distribution on possible locations of the obstacle
centroid, given a known collision site. In this naive model, the location of the
centroid is described by a uniform distribution over B(ro), a ball of radius ro
centered at the colliding position of the robot. A path pi sweeps out a swath S(pi) of
width 2ro + 2rr. Any non-empty set B(ro) \ S(pi) represents some probability of
collision. This general model then predicts that the probability of collision is

ro

(a) (b)

rr
ro

Fig. 4 The general locality model: a Given a point known to be in collision with an obstacle
(center red dot), the blue inner circle of radius ro represents possible locations of the centroid of the
obstacle. The green outer circle comprises points possibly occupied by some part of the obstacle.
b The probability that a new candidate robot path is collision-free equals the fraction of possible
obstacle centroids outside a swath of width 2ro + 2rr

. The blue region represents the set of possible
centroids, while the green region depicts possible obstacle extents
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locgeneral pi j cð Þ ¼ jBðroÞ \ SðpiÞj
jBðroÞj : ð9Þ

If we regard pi as a straight line, then in 2D the probability of collision is the
ratio of the area of a circular segment to the area of the whole circle, which is [2]:

fsegmentðrÞ ¼
1
pr2e

r2e cos
�1 r�re

re
� ðr � reÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rer � r2

p� �
if 0� r� 2re

0 otherwise,

(
ð10Þ

where r is the range between the path and the collision point. We call re the range
of effect, which we set equal to ro here.

Definition 3 The range of effect of a known collision point describes the radius
around that point at which paths are regarded to be at risk of collision with the
known obstacle. □

4.2 Simple Locality Model

We now propose an even simpler locality model, which closely approximates (10)
but makes use of the existing PLUT. Instead of path area, we consider only the
point on the new path most closely approaching the known collision point. This
new locality model employs the raised cosine distribution:

frcdðrÞ ¼
1
2re

1þ cos p r
2re

� �h i
if 0� r� 2re

0 otherwise:

(
ð11Þ

For a straight or gently curving path, this approximation is very good. Then, the
probability that a new path pi will collide with the same obstacle represented by the
previous collision c = (pj, s) is simply

locsimpleðpi j cÞ ¼ frcdðPLUT(pi,pj,sMÞ�rrÞ: ð12Þ

Note that here we are no longer maintaining an explicit probability distribution
on the location of an obstacle but instead a heuristic estimate of the risk of a single
path relative to a single collision site.

4.3 Handling Multiple Collision Sites

Given a known collision site, both (9) and (12) provide a tool for selecting a
candidate path to minimize the probability of collision. However, we have not yet
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addressed the issue of multiple known collision sites. The likelihood that two
workspace points have the same obstacle outcome correlates strongly with the
distance between them, by virtue of describing the same obstacle. The estimate of
collision likelihood for an untested path depends on what statistical independence
assumptions we make among known collision points.

Figure 5 depicts a situation in which two collision sites appear to be correlated.
However, many possible policies for estimating statistical independence among a
set of collision points, such as clustering, are complex to compute and implement.

In contrast, we may conservatively assume that all collisions are independent, in
which case basic probability theory states that

locðpÞ ¼ locðp j fc1,. . .,cngÞ ¼ 1�
Y

i2f1;...;ng
ð1� loc(p j ciÞÞ: ð13Þ

If some collision sites are actually part of the same obstacle, then we are
overestimating the likelihood of collision for p. In the absence of any knowledge
regarding correlation, however, the most conservative policy is the safest. Thus, we
now have the means to address Problem 1, Exploitation:

pnext ¼ argmin
pi2P

loc(piÞ: ð14Þ

In the next section, we explore an information theoretic approach to safely
adjusting this pessimistic model.

4.4 Adaptive Locality Model

The locality models presented in Sects. 4.1–4.2 incorporate only positive collision
test outcomes. Those static models conservatively estimate an obstacle distribution

p
test

c1

c2

Fig. 5 Two collision sites c1 and c2 are located in close proximity. Intuition suggests that c2
should be ignored when computing the risk of collision of path ptest. Either the two sites belong to
the same obstacle, or else the obstacle at c2 is “blocked” by the obstacle at c1
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spread over a large but finite range of effect. We now construct an adaptive locality
model capable of incorporating both positive and negative collision-test outcomes.

If we should happen to discover a safe path psafe passing within collision site c’s
range of effect, then we may use this new information to refine the obstacle model
of c. In effect, we adjust the locality function to act over a smaller range in the
direction of psafe. As Fig. 6a shows, no path ptest that is separated from c by psafe can
possibly be at risk of collision with this obstacle. This adaptive model effectively
relaxes the earlier, rigid assumptions on obstacle size and independence of collision
sites. In modeling such geometric relations, we depart from prior work addressing
locality.

Following an update to the model, all future probability estimates involving
c incorporate this new information. Although the independence assumption may
initially make nearby paths like ptest appear riskier than they should (Fig. 5), the
adaptive model rapidly cancels out this effect after finding a safe path to shrink each
collision point’s range of effect.

In addressing the problem of how to adaptively adjust obstacle distributions in
reaction to a collision-free path, a variety of approaches present themselves. One
possible approach is to shrink the range of effect for the obstacle at c, as in Fig. 6b,
which supposes that the obstacle is smaller than initially thought. Another
approach, to shift the entire distribution away from the safe path as in Fig. 6c,
assumes that the obstacle size was correctly estimated, but its position was off.

We adopt a compromise position. We prefer that the collision site remains the
center of a distribution in order to keep range checks efficient via look-up table.
However, we also prefer to avoid altering the range of effect of the opposing side,
about which we have no new data. We therefore split the range of effect into several
regions of influence (“sides”) centered around each collision site. In 2D, we have
left and right sides of the obstacle, as in Fig. 7. In 3D, the division is topologically
more arbitrary, although we split the obstacle into four sides.

p p
test safe

2ro
c

p
safe

c

(a) (b) (c)

p
safe

c

2ro

Fig. 6 a Given a collision point c and neighboring collision-free path psafe, the blue circle
represents a distribution on obstacle locations, some of which are invalidated by psafe. The more
distant candidate path ptest is not at risk of collision with the obstacle represented by c. b and c Two
simple hypotheses on obstacle scale and position explain these two results. The distribution shown
in Fig. 4b is simpler to represent during online path sampling
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In splitting the locality model into several directions, we require a rule to con-
sistently associate each path with a particular side of the collision point. The sides
are defined relative to the pose of the robot before executing the path. The sides
meet at the line a, an axis running through the start pose and the collision point. We
assign names to the sides describing their position relative to the robot’s frame of
reference. Sides are determined by

left = sgn(t� p � uÞ ð15Þ

top = sgn(t� p � a� uÞ, ð16Þ

where u denotes the robot’s up vector, p the projection of c onto the path, and t the
tangent vector of the path at this point, as in Fig. 8. These sides may be precom-
puted for each path. In 2D, it is particularly convenient to augment the PLUT with a
sign indicating on which side of the path each possible collision point lies.

Figure 9 shows a family of paths on the left side of an obstacle. We deem each
path equally likely to collide with the obstacle because they each approach equally
near to the collision point, c. This assignment of paths to a single side of an obstacle
places assumptions on the path’s shape. We assume here that curvature is bounded
and that paths are reasonably short. Previous work by Knepper et al. [15] thor-
oughly discusses these assumptions.

p
c safe

2ro

Fig. 7 The range of effect on
each side of collision site c is
maintained separately. The
left range began at 2ro, but it
was reduced after successfully
collision-testing path psafe

t
p
stte

p

u
c

a

Fig. 8 In three dimensions,
the adaptive locality model’s
range of effect is split into
four sides. The robot’s up
vector, u, and the vector
pointing toward the collision
point, a, are used to define
which of four sides the path
ptest is on. As illustrated, the
path is on the top-left side
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5 Path Entropy

Having established an adaptive locality model, we now consider a means to reap
maximal advantage from its predictive capabilities in order to solve Problem 2,
Exploration. It is important to select paths for collision test that cause the model to
rapidly converge to an accurate description of obstacles, while simultaneously min-
imizing failed collision tests. Given a set of collision sites, the best path to collision test
is that path with maximum entropy according to the current model parameters.

Definition 4 An untested path’s entropy (sometimes called Shannon entropy)
refers to the expected amount of information about the safety of other untested
paths that would be gained from collision-testing it. A path’s entropy is

HðpctðpÞÞ ¼ � PrðpctðpÞÞ log PrðpctðpÞÞ � Prð:pctðpÞÞ log Prð:pctðpÞÞ:h ð17Þ

In order to maximize our understanding of the true distribution of obstacles with
the fewest possible samples, we choose to sample the maximum entropy path:

ptest ¼ argmax
pi2P

HðpctðpiÞÞ: ð18Þ

Based on current information, the maximum entropy path has maximal uncer-
tainty with regard to its collision with obstacles; its probability of collision is nearest
to 50 %. Testing this particular path will therefore increase total knowledge more
than any other. The result will be either a path that significantly reduces the range of
effect for some known collision point(s) or a new collision point that is far from
known collisions. In either case, model accuracy increases with maximal utility.

The policy of maximizing entropy was proposed by Jaynes [13] for the purpose
of estimating an unknown distribution. Maximum entropy has been specifically
applied to decision theory [8], as we employ it here. The decision that maximizes
entropy is the one that minimizes the worst case possible outcome. In our case, the
worst outcome is rediscovering a known result because it wastes computation time
for no gain. This outcome takes two forms: testing a path passing through a known

c

Fig. 9 A family of paths, all
of which pass to the left of the
collision site, c. Despite the
variety of shapes, each path
intrudes equally into the left
range of effect of c, and thus
they would each reduce its left
range of effect equally

Realtime Informed Path Sampling … 413



collision site, or retesting a known-safe path. This C-minimax approach [18] is
capable of reasoning simultaneously about an entire family of probability distri-
butions, called C—in our case, a range of theories about obstacle extent.

If the maximum entropy policy is pursued repeatedly, path selection proceeds to
discover a sequence of safe paths and collision sites that are progressively nearer to
each other, thus establishing precisely the boundaries separating the obstacles from
free space. Knowing these boundaries may accelerate the process of sampling and
testing paths more densely within the free space. In prior work [15], we provide one
possible approach to this process.

Refining these boundaries is a process of diminishing returns, however. As we
discover safe paths progressively closer to obstacles, the margin of uncertainty
becomes so low that additional maximum entropy path samples provide negligible
advantage for a variety of reasons: (1) the cost of collision testing a path often
increases with greater obstacle proximity; (2) there is a computational cost asso-
ciated with path sampling that is proportional to the number of known collision
sites; and (3) paths close to obstacles are poor choices for execution. These factors
could be incorporated into a utility function [6], but this remains as future work.
Thus, we should not exclusively pursue the maximum entropy sampling policy, but
also select path samples far from obstacles to maximize safety and path diversity.

We utilize several strategies to combine exploration and exploitation in a hybrid
approach. In the absence of any uncertainty from our locality model (such as before
the first collision site has been discovered), we sample from a low-dispersion
sequence. In the presence of uncertainty, we compute the fraction f of the total
allowed plan time that has already elapsed (recall that we assume realtime plan-
ning). With probability f we pursue an exploitation (obstacle avoidance) sampling
strategy, whereas with probability 1 – f we instead pursue an exploration (boundary
finding) strategy to refine our locality model. Sampled paths very near to known
obstacles are set aside without testing for later use, since they make poor candidates
for traversal. This threshold distance reflects a willingness to overlook very narrow
corridors while other options avail themselves. We search these risky paths if there
is time at the end of the plan cycle, after exhausting other paths for test.

6 Experimental Results

We conducted a set of experiments in simulation in order to obtain a sufficient
quantity of trials to recognize statistically meaningful trends. Experimental setup is
as in our earlier work [14], in which trials comprise sets of one-hundred planning
problems; in each one, the curvature-constrained robot attempts to navigate through
randomly generated 2D point-obstacle environments, each based on a query
comprising start and goal poses. The robot moves continuously while replanning at
a fixed rate. A heuristic function selects goal-directed local paths from a set of 2,401
paths. A low-fidelity global planner helps guide the robot to the goal. In order to
assess the effect of various path sampling strategies, we varied replan cycle time.
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Figure 10 shows a screen capture of our simulator, indicating known collision sites
(in C-space) and ranges of effect. We consider four path sampling strategies:

• Low dispersion—sequence generated by the Green-Kelly algorithm [7]
• Avoid obstacles—pure exploitation; sample as far as possible from obstacles
• Find boundaries—pure exploration; selects maximum entropy path
• Hybrid approach—combines “avoid obstacles” and “find boundaries” strategies.

We present results on three of the strategies in Fig. 11. We see an increase in
safe paths produced per unit time for both pure obstacle avoidance (up to 7.8x) and

Fig. 10 Simulator depiction
of locality model, showing:
collision-free paths (blue),
known collision sites (red
dots), and their ranges of
effect (concentric
semicircles). Note that the
dots correspond to the nearest
edge of each C-space
obstacle—the point most
relevant from the robot’s
current pose. Not all obstacles
(black) are relevant to the
current local plan
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Fig. 11 All tests in these plots were run at an obstacle density of 2 %. a The locality model
provides up to a 7.8x increase in the fraction of paths collision-free per replan cycle. As replan
cycle time increases, we see regression toward the mean, as a larger total fraction of available paths
are collision tested. b In success rate at solving planning queries, we see that the “avoid obstacles”
strategy suffers in performance, whereas the hybrid approach, which strikes a balance between
exploration and exploitation of the locality model, performs increasingly well as it has more time
to gather information
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the hybrid approach (up to 3x), compared to a fixed low dispersion sequence.
However, pure obstacle avoidance sampling suffers a drop in performance at
solving planning queries, which the hybrid approach overcomes. Note that the
low-dispersion sampler actually declines slightly in performance as more samples
are allowed, which is consistent with earlier results [14]. The hybrid planner shows
a trend of increasing performance as it improves its locality model.

7 Discussion

In real time planning, performance is sensitive to the computational cost associated
with collision testing. Alternatives that alleviate some of that computation can be
beneficial, provided that such alternatives are computationally efficient themselves.
In this paper, we present a strategy for informed path sampling that guides the
search away from obstacles and towards safe or unexplored parts of the workspace.
Although obstacle information is already available to the planner in costmap form,
we obtain a significant increase in performance by representing the most salient
subset of those obstacles in a more immediately accessible form.

We utilize a proximity look-up table to accelerate this process. Even so, our
statistical model describing nearby obstacles and their relationship is necessarily
simple. This model makes use of the principle of locality to search appropriately far
from obstacle locations already discovered in prior collision tests to maximally
reduce uncertainty. Using our probabilistic locality model, we trade off between
exploration and exploitation in order to discover a variety of safe paths while
largely avoiding searching colliding paths.
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Asymptotically Near-Optimal Is Good
Enough for Motion Planning

James D. Marble and Kostas E. Bekris

Abstract Asymptotically optimal motion planners guarantee that solutions
approach optimal as more iterations are performed. There is a recently proposed
roadmap-based method that provides this desirable property, the PRM� approach,
which minimizes the computational cost of generating the roadmap. Even for this
method, however, the roadmap can be slow to construct and quickly grows too
large for storage or fast online query resolution. From graph theory, there are many
algorithms that produce sparse subgraphs, known as spanners, which can guarantee
near optimal paths. In this work, a method for interleaving an incremental graph
spanner algorithm with the asymptotically optimal PRM� algorithm is described.
The result is an asymptotically near-optimal motion planning solution. Theoretical
analysis and experiments performed on typical, geometric motion planning
instances show that large reductions in construction time, roadmap density, and
online query resolution time can be achieved with a small sacrifice of path quality.
If smoothing is applied, the results are even more favorable for the near-optimal
solution.

1 Introduction

Probabilistic roadmap planners [16] utilize an offline phase to build up knowledge
about the configuration space (C-space) and solve many practical motion planning
problems. Traditionally, many of these planners focus on feasibility and may return
paths of low quality; considerably different from the optimal ones. Path quality can
be measured in terms of clearance, or smoothness [34], but this work focuses on
path quality measures that are metric functions such as length or traversal time.
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Smoothing can be used to improve path quality and algorithms exist that produce
roadmaps with paths that are deformable to optimal ones [13, 31]. Hybridization
graphs [29] combine multiple solutions into a higher quality one that uses the best
portions of each input path. These techniques, however, can be expensive for the
online resolution of a query, especially when multiple queries must be answered.

Alternatively, it is possible to construct larger, denser roadmaps that better
sample the C-space by investing more preprocessing time. For instance, a planner
that attempts to connect a new sample to every existing node in the roadmap will
eventually provide optimal solutions, a property known as asymptotic optimality.
While roadmaps with this property are desirable for their high path quality, their
large size can be problematic. Large roadmaps impose significant costs during
construction, storage, transmission and online query resolution, so they may not be
feasible for some applications. The recently proposed k-PRM� algorithm [14]
minimizes the number of neighbors each new sample has to be connected to while
still providing asymptotic optimality. Even so, the density of roadmaps produced by
k-PRM� can be very high, resulting in slow online query resolution times, as shown
in Fig. 1.

This paper argues that a viable alternative is to compute roadmaps with
asymptotically near-optimal guarantees. By relaxing the optimality guarantees, it is
possible to construct roadmaps that are sparser, faster to build, and can answer
queries more quickly while providing solution paths with near-optimal guarantees.
Additionally, these roadmaps tend to return a solution in the same homotopic class
as the optimum one, so smoothing brings path quality even closer to optimal in
practice.

The theoretic foundations for this work lie in graph theory. In particular, graph
spanners are sparse subgraphs with guarantees on path quality. Roadmaps with
Useful Cycles [25] are, in fact, spanners. Edges that pass the “usefulness” test are
added to the roadmap because not doing so would violate the guarantees about path
quality. In Sect. 3, this idea is applied to an asymptotically optimal roadmap
planner to produce the Incremental Roadmap Spanner (IRS) algorithm. This
planner can incrementally construct an asymptotically near-optimal roadmap faster
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Fig. 1 Relaxing the requirement to find asymptotically optimal solutions, a large decrease in
roadmap density and solution query time can be achieved for the problem shown on the left side.
The larger this relaxation (stretch factor), the sparser the roadmap. These results are averaged over
1000 random queries on 10 runs of 50,000 vertex roadmaps. The k-PRM� algorithm corresponds
to a stretch factor equal to 1, which results in a considerably higher query resolution time
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than an asymptotically optimal one can be constructed. The resulting graph is also
sparse, which is beneficial in any application where small roadmaps are preferable.

1.1 Related Work

There has been a plethora of techniques on sampling and connecting configurations
to achieve computational efficiency in roadmap construction [2, 11, 28, 30, 32, 35].
Certain algorithms, such as the Visibility-based Roadmap [32], Incremental Map
Generation [35] and the Reachability Roadmap [8] focus on returning a connected
roadmap that covers the entire C-space. A reachability analysis suggested that
connecting roadmaps is more difficult than covering the C-space [10]. A method is
available to characterize the contribution of a sample to the exploration of the C-
space [23], but it does not address how connectivity contributes to path quality.

Work on creating roadmaps that contain high quality paths has been motivated
by the objective to efficiently resolve queries without the need for a post-processing
optimization step of the returned path. Certain techniques aim to compute all dif-
ferent homotopic solutions [13, 31]. Another approach inspired by Dijkstra’s
algorithm extracts optimal paths from roadmaps for specific queries [18] but may
require very dense roadmaps. The Useful Cycles approach implicitly creates a
roadmap spanner with small number of edges [25] and has been combined with the
Reachability Roadmap Method to construct connected roadmaps that cover 2D and
3D C-spaces and provide high quality paths [9]. A method filters nodes from a
roadmap if they do not improve path quality measures [26].

Tree-based algorithms [12, 19] focus on single query planning, but they do not
provide the preprocessing properties of roadmaps. A tree is already a sparse graph
and it becomes disconnected when removing edges. Bi-RRT produces arbitrarily
bad paths with high probability and can miss high quality paths [14, 24]. Anytime
RRT [6] is an approach that incrementally improves paths.

Roadmaps require a solution to the two-point boundary value problem, i.e.,
computing a path that connects exactly two states of a moving system. On the other
hand, tree-based kinodynamic planners can operate on such environments. Such
planners can benefit, however, from an approximate roadmap to estimate distances
between states and the goal region that take into account C-space obstacles. Such
distance estimates can be used as a heuristic in tree expansion to bias the selection
of states closer to the goal and solve problems with dynamics faster [4, 20].

The RRG, RRT�, and PRM� family of algorithms [14] provide asymptotic opti-
mality for general configuration spaces. RRG and RRT� are based on RRT, a
tree-based planner. The Anytime RRT� approach [15] extends RRT� with anytime
planning in dynamic environments and can incrementally improve path quality.
PRM� is a modification of standard PRM. The proposed technique is based on a
variation of PRM�, i.e., k-PRM�, during the offline, roadmap-building step. More
details on k-PRM� will be provided in Sect. 2.1.

Asymptotically Near-Optimal Is Good Enough for Motion Planning 421



1.2 Contribution

The contributions of this paper are the following:

1. The paper proposes a method for quickly constructing sparse roadmaps that
provide high quality solutions to motion planning queries (IRS).

2. It provides an analysis of IRS showing the following:

a. IRS has an asymptotic time complexity close to that of k-PRM�.
b. Roadmaps constructed by IRS will provide solutions asymptotically

near-optimal in the same spaces that k-PRM� would provide asymptotic
optimality.

3. Experimental evidence showing that roadmaps constructed by IRS have the
following properties:

a. faster construction time
b. sparsity, which results in faster online query resolution
c. higher path quality than the theoretical lower bounds
d. even more favorable comparison when smoothing is applied

Specifically, a method similar to Useful Cycles [25] is formalized as a graph
spanner algorithm and is interleaved with k-PRM�. It is shown that a constant factor
of the asymptotic optimality (asymptotic near-optimality), is maintained. IRS can
incrementally construct a roadmap spanner in a continuous space, while most graph
spanner algorithms are formulated to operate on an existing roadmap. Because IRS
operates on an asymptotically optimal planner, it provides asymptotically
near-optimal guarantees that the Useful Cycles approach did not since it employed a
constant number of neighbors. IRS produces sparser roadmaps faster than k-PRM�.
Previous work by the authors [22] has utilized state-of-the-art graph spanner
algorithms with good complexity performance to prune the edges of a roadmap
constructed with k-PRM�.

The proposed method balances two extremes in terms of motion planning
solutions. On one hand, the connected component heuristic for PRM can connect the
space very quickly with a very sparse roadmap, but can produce very poor solu-
tions. On the other hand, the k-PRM� algorithm provides asymptotically optimal
roadmaps that may be very dense and slow to construct. With IRS it is possible to
tune the solution quality degradation relative to k-PRM� and select a parameter, the
stretch factor, that will return solutions arbitrarily close to the optimal ones, while
still constructing sparse roadmaps relatively fast.

The theoretical guarantees on path quality that this technique provides are tested
empirically in a variety of motion planning problems in SE(3). In all of these
environments, the majority of the edges can be removed while increasing mean path
length by only a small amount, which can be further reduced by utilizing path
smoothing. Path degradation is most pronounced for paths that are very short, while
longer paths are less affected. The sparsity of the roadmaps produced is a valuable
feature in itself, but a marked decrease in construction time is also measured.
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2 Foundations

A robot can be abstracted as a point in a d-dimensional configuration-space (C-
space) where the set of collision-free configurations define Cfree � C [21]. The
experiments performed for this paper use the space of rigid body configurations (SE
(3)) as the C-space, but the proposed method is applicable to any C-space that is
also a metric and probability space for reasons described in Sect. 3. Once Cfree can
be calculated for a particular robot, one needs to specify initial and goal configu-
rations to define an instance of the path planning problem:

Definition 1 (The Path Planning Problem) Given a set of collision-free configu-
rations Cfree � C, initial and goal configurations qinit, qgoal 2 Cfree, find a continuous
curve r 2 R ¼ q q : 0; 1½ �j ! Cfreef g where rð0Þ ¼ qinit and rð1Þ ¼ qgoal.

The PRM algorithm [16] can find solutions to the Path Planning Problem by
sampling configurations in Cfree then trying to connect them with local paths. It
starts with an empty roadmap and then iterates until some stopping criterion is
satisfied. For each iteration, a configuration in Cfree is sampled and the k-nearest
neighbors are found. For each of these neighbors, an attempt is made to connect
them to the sampled configuration with a local planner. If such a curve in Cfree can
be found, an edge between the two configurations is added to the roadmap.

Once the stopping criterion is met, the offline phase of the algorithm is complete.
The result is a graph G = (V, E) that reflects the connectivity of Cfree and can be
used to answer query paIRS of the form (qinit, qgoal) 2 Cfree � Cfree where qinit is
the starting configuration and qgoal is the goal configuration. This type of graph is
known as a roadmap. The procedure for querying it is to add qinit and qgoal to the
roadmap is similar to the way sampled configurations are added during the offline
phase. Then, a discrete graph search is performed to find a path on the roadmap
between the two configurations.

2.1 k-PRM�

Asymptotic optimality is the property of an algorithm that, given enough time,
solutions to the path planning problem will almost surely converge to the optimum
as defined by some cost function.

Definition 2 (Asymptotic Optimality in Path Planning) An algorithm is asymp-
totically optimal if, for any path planning problem (Cfree, qinit, qgoal) and cost
function c : R ! R� 0 that admit a robust optimal solution with finite cost c�, the
probability that it will find a solution of cost c� converges to 1 as the number of
iterations approach infinity.

Asymptotic optimality is defined only for robustly feasible path planning
problems as defined in the presentation of k-PRM� [14]. Such problems have a
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minimum clearance around the optimal solution and cost functions with a conti-
nuity property.

The standard PRM, as described above, attempts to connect sampled configu-
rations to a fixed number, k, of nearest neighbors. It has been shown that this
prevents the algorithm from providing asymptotic optimality [14]. The k-PRM�

algorithm rectifies this deficiency by making k a logarithmic function of the size of
the roadmap. Specifically, k(n) = kPRM log n where kPRM > e(1 + 1/d). It has been
proven that roadmaps constructed with this variation will almost surely converge to
optimal solutions [14]. That is, k-PRM� is asymptotically optimal.

2.2 Graph Spanners

A graph spanner, as formalized in [27], is a sparse subgraph. Given a weighted
graph G = (V, E), a subgraph GS = (V, ES � E) is a t-spanner if for all pairs of
vertices (v1, v2) 2 V, the shortest path between them in GS is no longer than t times
the shortest path between them in G. Because t specifies the amount of additional
length allowed, it is known as the stretch factor of the spanner.

A simple method for spanner construction, which is a generalization of
Kruskal’s algorithm for the minimum spanning tree, is given in Algorithm 1 [1].
Instead of accepting only edges that connect disconnected components, this algo-
rithm accepts edges that provide shortcuts. Kruskal’s algorithm is recovered by
setting t to a large value.

The inclusion criteria on line 1 ensures that no edges required for maintaining
the spanner property are left out. From the global ordering of the edges performed
on line 1, it has been shown that the number of edges retained by this algorithm is
reduced from a potential Oðn2Þ to OðnÞ [1].

The quadratic number of shortest path queries puts the time complexity into
Oðn3 log nÞ, however, much work has been done to find algorithms that reduce this.
Most perform clustering in a preprocessing step and one method uses this idea to
reduce the time complexity to O(m), where m is the number of edges [3].

A number of spanner algorithms take advantage of the implicit weights of a
Euclidean metric space to speed up the process. Most of these operate on complete
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Euclidean graphs [7, 17]. These algorithms can’t be used on roadmaps that operate
in C-spaces with obstacles because obstacles remove edges of the complete graph.

A concept central to the proposed technique and graph spanners is that of
asymptotic near-optimality. This is a relaxation of asymptotic optimality that per-
mits an algorithm to converge to a solution that is within t times the cost of the
optimum.

Definition 3 (Asymptotic Near-Optimality in Path Planning) An algorithm is
asymptotically near-optimal if, for any path planning problem (Cfree, qinit, qgoal) and
cost function c : R ! R� 0 that admit a robust optimal solution with finite cost c�,
the probability that it will find a solution of cost c � tc� for some stretch factor t �
1 converges to 1 as the number of iterations approach infinity.

3 Approach

The high-level approach is to combine the construction of an asymptotically
optimal roadmap with the execution of a spanner algorithm. These two tasks can be
performed sequentially (first the roadmap, then the spanner), or incrementally by
interleaving the individual steps of each task.

3.1 Sequential Roadmap Spanner

An asymptotically optimal roadmap G generated by k-PRM� can be used to con-
struct an asymptotically near-optimal roadmap GS by selectively removing existing
edges. Simply applying an appropriate spanner algorithm to the roadmap accom-
plishes this and has been studied by the authors in previous work [22].

This approach can be wasteful, however. Every edge in G has been checked for
collisions, but many of these will be discarded by the spanner algorithm. An
incremental spanner algorithm that accepts or rejects on an edge-by-edge basis,
such as Algorithm 1, is a better alternative. If all collision detection is deferred until
after the offline phase of k-PRM� is complete (similar to lazy PRM [5]) then edges
rejected by the spanner algorithm can skip collision detection all together. Since
collision detection is frequently the most expensive operation in motion planning,
the time savings could be substantial. Additionally, the graph spanner algorithm
used [3] was not able to provide a large reduction in edges for low stretch values.
For example, in one environment it was only able to reduce the edge count by
15.3 % for a stretch factor of 3. The incremental method described in the next
section was able to achieve a 70.5 % edge reduction for the same experimental
parameters.
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A potential downside to using an incremental spanner algorithm is higher time
complexity. If the entire graph is available at once, then an algorithm that has linear
time complexity and guarantees on the number of edges removed can be used [3].
In practice, however, the time saved by avoiding collision detection dominates the
additional cost of using an incremental spanner algorithm.

3.2 Incremental Roadmap Spanner

The Incremental Roadmap Spanner (IRS, Algorithm 2) takes the idea of a
sequential roadmap spanner one step further. Here, roadmap and spanner con-
struction are interleaved. When the roadmap algorithm adds an edge, the spanner
algorithm can reject it before collision detection and before it is added to the
roadmap. Before discussing the implementation of the algorithm, some subroutines
must be defined:

SAMPLEFREE uniformly samples a random configuration in Cfree.
NEAR(V, v, k) returns the k configurations in set V that are nearest to configu-

ration v with respect to a metric function. This can be implemented as a linear
search through the members of V or as something more involved, such as a nearest
neighbors search in a kd-tree.

COLLISIONFREE(v, u) detects if there is a path between configurations v and u in
Cfree. A local planner plots a curve in C from v to u. Points along this curve are
tested for membership in Cfree and if any fail, the procedure returns false.

STOPPINGCRITERIA determines when to stop looking for a solution. Some potential
stopping criteria are:

• a solution of sufficient quality has been found
• allotted time or memory have been exhausted
• enough of the C-space has been covered

or some combination of these or other criteria.
WEIGHT(v, u) returns the positive edge weight of (v, u). In the context of motion

planning, the weight of an edge is frequently the cost of moving the robot from
configuration v to configuration u along the curve provided by a local planner.

SHORTESTPATH(V, E, v, u) returns the cost of the shortest path between v and
u. Note that the actual shortest path cost isn’t required, just whether it is larger than
t times the weight of the edge (v, u). Instead of naively applying a full graph search,
a length variation of Dijkstra’s algorithm search can be employed. Additionally,
edges that connect two disconnected components can be added without doing any
kind of search because the shortest path cost in this case is infinite.
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First, the roadmap G = (V, E) is initialized to empty (line 2). Then, it iterates
until STOPPINGCRITERIA returns true (line 2). For each iteration, SAMPLEFREE is called
and returns v 2 Cfree (line 2). The number of nearest neighbors is calculated (line 2).
The k-nearest neighbors of v, U are found by calling NEAR(V, v, k) (line 2). If NEAR

does not return U ordered by distance from v, then it must be sorted on line 2. For
each potential edge connecting v to a neighbor in U, the inclusion criteria must be
met before it is added to the roadmap. First, if a path exists between v and u with
cost less than t times the weight of (v, u) then that edge can be rejected because it
contributed little to path quality (line 2). Second, the edge must be checked for
collision (line 2), as it is with other variations of PRM. If the local planner does not
succeed in finding a curve in Cfree the edge is rejected. If the edge passes both
inclusion tests, it is added to the roadmap (line 2). Finally, the sampled vertex is
added to the roadmap (line 2) and the next iteration is started.

A notable departure that IRS makes from Algorithm 1 is that the edges are not
ordered globally. This ordering is not required to preserve solution quality, how-
ever, as will be shown in Sect. 3.3. A local ordering of potential edges is performed
on line 2. This doesn’t affect the theoretical bounds on solution quality, but can be
seen as a heuristic that improves the sparsity of the final roadmap.

Since the spanner property is tested before the collision check, many expensive
collision checks can be avoided. This property greatly improves running time for
practically sized roadmaps, as shown in Sect. 4.

3.3 Analysis

Theorem 1 IRS is asymptotically near-optimal.

Proof The proof of Theorem 1 relies on the asymptotic optimality of k-PRM� [14],
on which IRS is based. The proposed technique has two differences from k-PRM�.
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First, on line 2, the potential neighbors of a newly added vertex are ordered by
non-decreasing distance from the new vertex. This would have no effect on the
asymptotic optimality of k-PRM� because edges are rejected based solely on col-
lisions with obstacles. The order that edges are tested for collisions has no effect on
those tests.

The second difference, on line 2, adds an additional acceptance criterion. This
has the effect of making the edges in a roadmap output by IRS a subset of those
output by k-PRM�.

Consider a pair of such roadmaps, G = (V, E) returned by k-PRM� and GS = (V,
ES � E) returned by IRS. For each rejected edge (v, u) in E/ES, there was a path
from v to u with a cost less than t times the weight of (v, u). This invariant is
enforced by line 2.

The shortest path r in G between any two points a, b 2 V has cost c�. This path
may contain edges that are in E but not in ES. For each of these edges (v, u), there
exists an alternate path in GS, with cost cðv;uÞ � t � wðv; uÞ. Therefore, there is a path
rS between a and b in GS with cost

P rS
ðv;uÞcðv;uÞ � t � c�. In other words, since each

detour is no longer than t times the cost of the portion of the optimal path it
replaces, the sum cost of all of the detours will not exceed t times the total cost of
the optimal path.

3.4 Time Complexity

• Time complexity breakdown for k-PRM� (ignoring constant time operations):

– For each of n iterations:

NEAR (e-approximate): log n
For each log n neighbors:

COLLISIONFREE: logd p

For each of the n iterations of k-PRM�, a nearest neighbors search and collision
checking must be performed. An e-approximate nearest neighbor search can be
done in log n time producing k(n) = log n neighbors. The edge connecting the
current iteration’s sample to each of these neighbors must be checked for collision
at a cost of logd p time, where p is the number of obstacles. So, the total running
time of k-PRM� is Oðn � ðlog nþ log n � logd pÞÞ, which simplifies to
Oðn � log n � logd pÞ.
• Time complexity breakdown for IRS (ignoring constant time operations):

– For each of n iterations:

NEAR (e-approximate): log n
neighbor ordering: log n � log log n
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For each log n neighbors:

COLLISIONFREE: logd p
SHORTESTPATH > t �WEIGHT: td log n � log(td log n) (average case)

For IRS, two additional steps are performed. At every iteration, k = log
n neighbors must be sorted by distance to the sampled vertex. Because many
implementations of NEAR return the list of neighbors in order of distance, the cost of
this can be zero. If this is not the case, however, the cost of sorting these k neigh-
bors is O(k log k), and since k = log n, the final result is: Oðlog n � logðlog nÞÞ.

A shortest path search must also be performed for each potential edge. If done
across the entire roadmap, this has a cost of O(m log n) = O(n log2 n), where m is
the number of edges and m = n log n, since each node is connected to at most log
n neighbors. The shortest path algorithm will expand only the vertices with path
cost from v that is lower than t � wðv; uÞ. This is due to the fact that the algorithm
requires only knowledge about the existence of a path between v and u shorter than
that. When t = 1, the number of nodes expanded by such a search is, at most, k(n) 2
O(log n). Assuming a uniform sampling distribution, the expected number of nodes
that may be expanded when t > 1 is proportional to td log n (based on the volume of
a d-dimensional hyper-sphere). This brings the expected time complexity of IRS to

O n � log nþ log n � log log nþ log n � logd pþ td log n � log td log n
� �� �� �� �

which simplifies to : O n � td log n � td log n � log td log n
� �� �

; or for fixed t and d :

O n � log2 n � log log n
� �

which is asymptotically slower than k-PRM�. However, as will be shown experi-
mentally in Sect. 4, the very large constants involved in collision checking that can
be skipped by IRS makes this a faster algorithm for roadmaps of practical size.

3.5 Size Complexity

The number of edges in a spanner produced by Algorithm 1 is O(n) with constants
related to t and d. This bound does not hold for IRS because, without a global
ordering of edges, there is no guarantee that the minimum spanning tree is con-
tained within the spanner. Because of this, the space complexity cannot be bounded
lower than that provided by k-PRM�, which is O(n log n). The experimental results,
however, suggest that the dominant term is linear as the number of edges added at
each iteration appear to converge to a constant.
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4 Evaluation

All experiments were run using the Open Motion Planning Library (OMPL) [33] on
2 GHz processors with 4 GB of memory. Four representative environments were
chosen from those distributed with OMPL in addition to the simple environment
shown in Fig. 1.

alpha puzzle: The entire free space is highly constrained in this classical motion
planning benchmark (Fig. 2a).

apartment: The piano is the robot in this environment with a very expensive
collision detection cost (Fig. 2b).

bug trap: A rod shaped robot must orient itself to fit through the narrow passage
and escape a three-dimensional version of the classical bug trap (Fig. 2c).

cubicles: Two floors of loosely constraining walls and obstacles must be navi-
gated (Fig. 2d).

For each environment, five roadmaps of 50,000 vertices were generated by
k-PRM, k-PRM�. For IRS, 10 different roadmaps were generated for each of 8
stretch factors. On each of these roadmaps, 1000 random start and goal pairs were
queried and various qualities of the resulting solutions were measured.

4.1 Construction Time

Although the expected asymptotic time complexity of IRS is worse than that of
k-PRM�, the large constants involved in collision detection dominate the running
time in these experiments. Since IRS reduces the number of collision checks
required, running time is reduced the higher the stretch factor is. This is shown in
Fig. 3, where a stretch factor of t = 2 allows IRS to construct a 50,000 node
roadmap in under half the time of k-PRM�. The diminishing returns shown for
higher stretch factors reflect the larger area of the graph that must be searched for
shortest paths.

Fig. 2 Environments used in the experiments with example configurations for the robot. a Alpha
puzzle. b Apartment. c Bug trap. d Cubicles
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4.2 Space Requirements

While each roadmap contains the same number of vertices (50,000), the space
required for connectivity information is reduced by up to 95 %. Environments with
a more connected free space had a larger reduction in the number of edges because
they had more edges that could be removed while still maintaining connectivity
(Fig. 4).

4.3 Solution Quality

In Fig. 5, path quality is measured by querying a roadmap with 1000 random start
and goal configurations. The lengths of the resulting paths increase as the number of

ed
ge

s 
(m

ill
io

ns
)

0.
0

0.
5

1.
0

1.
5

2.
0

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
vertices vertices

kPRM*

IRS 

t=1.5

t=2

t3

kPRM* IRS 

t=1.5

t=2 

t=3

tim
e 

(s
)

0
10

00
20

00
30

00
40

00
50

00
60

00

Fig. 3 Construction time and roadmap density for k-PRM� and IRS in the apartment
environment averaged over 5 runs. Despite a higher asymptotic complexity, practically sized
roadmap spanners can be more quickly constructed because fewer edges must be checked for
collision. A dramatic reduction in the number of edges is shown for stretch factor as low as 1.5

k−PRM  k−PRM* IRS
apartment bugtrap

stretch factor
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

alpha cubicles

ed
ge

s 
(m

ill
io

ns
)

1
2

3

0
1

2
3

4

0
1

2
3

4

0
1

2
3

4
5

Fig. 4 The roadmap density in 10 different 50,000 node roadmaps for each environment.
Environments with denser obstacles have fewer edges than k-PRM� but gain a smaller
improvement from IRS

Asymptotically Near-Optimal Is Good Enough for Motion Planning 431



edges in the spanner is reduced. For these random starting and goal configurations,
the average extra cost is much shorter than the worst case guaranteed by the stretch
factor.

It is interesting which paths are most affected by this increase in path length. The
worst degradation happens for short paths, where taking a detour of even a single
vertex can increase the path length by a large factor. Path quality degradation in
IRS is plotted in Fig. 6 as a function of its length in a roadmap generated by
k-PRM�. All shortest paths to 10 random vertices are averaged over 5 different
roadmaps.

In Fig. 7, the trade-off between roadmap density and path quality is directly
compared. Although k-PRM can provide either a sparser roadmap or higher quality
solutions than IRS, it cannot provide a better trade-off except in the apartment
environment.
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4.4 Query Resolution Time

Query resolution time includes the time it takes to connect the start and goal
configurations to the roadmap and perform an A� search. The connection time is not
affected by the number of edges in the roadmap, only the number of vertices. Since
each roadmap has the same number of vertices, the roadmap connection time is
fixed and variations in query resolution time can be attributed to differences in the
running time of the A� search. As shown in Fig. 8, this variation is very large.
Removing edges from the roadmaps reduces the query resolution time by up to
70 %.

4.5 Effects of Smoothing

For each query, a simple approach for path smoothing was tested. Nonconsecutive
vertices on the path that were near each other were tested for connectivity. If they
could be connected, then the path is shortened by removing intervening vertices.
This is a greedy and local method for smoothing, but it executes in less than40 ms,
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search. Higher stretch factors produce roadmaps with fewer edges that can be searched more
quickly
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and produced impressive results (Fig. 9). Note that the gap between the smoothed
and unsmoothed solution length indicates that both k-PRM� and IRS have yet to
converge to the optimal solution.

The smoothing time increases as the sparsity of the roadmap increases. This
reflects the larger number of vertices in solutions from these roadmaps. However,
the time taken to smooth the solutions is two orders of magnitude shorter than the
query resolution time in these experiments, although it may become consequential
in other environments or for other smoothing techniques.

5 Discussion

This work shows that it is practical to compute sparse roadmaps in C-spaces that
guarantee asymptotically near-optimal paths. The experimental results suggest that
it is possible for these roadmaps to have considerably fewer edges than roadmaps
with asymptotically optimal paths, while resulting in much smaller degradation in
path quality relative to the almost optimal roadmaps. The stretch factor parameter
provides the ability to tune this trade-off. The experiments confirm that roadmaps
constructed with lower stretch factors can have higher path quality but are denser.

The existing approach removes only edges from the original roadmap. Since,
however, the roadmap is embedded in a continuous C-space, it may be that nodes of
the roadmap are redundant for the computation of near optimal paths. Future work
will investigate how to remove nodes from roadmaps so that the quality of a path
answering a query in the continuous space is guaranteed not to get worse than the
specified stretch factor.

Finally, it is important to study the relationship of the resulting spanner road-
maps with methods that guarantee the preservation of the homotopic path classes in
the C-space [13]. Intuitively, homotopic classes tend to be preserved by the spanner
because the removal of an important homotopic class will have significant effects in
the path quality.

stretch factor

so
lu

tio
n 

le
ng

th
0

10
20

30
40

50
60

1 2 3 4 5 6

alpha

0
50

10
0

15
0

1 2 3 4 5 6

apartment

0
10

20
30

40

1 2 3 4 5 6

bugtrap

0
20

0
40

0
60

0

1 2 3 4 5 6

cubicles
smoothed unsmoothed

Fig. 9 A comparison between smoothed and unsmoothed solution lengths of 1000 random query
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spanners to preserve homotopic path classes. Note that a stretch factor of t = 1 corresponds to
k-PRM�
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Robust Adaptive Coverage for Robotic
Sensor Networks

Mac Schwager, Michael P. Vitus, Daniela Rus and Claire J. Tomlin

Abstract This paper presents a distributed control algorithm to drive a group of
robots to spread out over an environment and provide adaptive sensor coverage of
that environment. The robots use an on-line learning mechanism to approximate the
areas in the environment which require more concentrated sensor coverage, while
simultaneously exploring the environment before moving to final positions to
provide this coverage. More precisely, the robots learn a scalar field, called the
weighting function, representing the relative importance of different regions in the
environment, and use a Traveling Salesperson based exploration method, followed
by a Voronoi-based coverage controller to position themselves for sensing over the
environment. The algorithm differs from previous approaches in that provable
robustness is emphasized in the representation of the weighting function. It is
proved that the robots approximate the weighting function with a known bounded
error, and that they converge to locations that are locally optimal for sensing with
respect to the approximate weighting function. Simulations using empirically
measured light intensity data are presented to illustrate the performance of the
method.
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1 Introduction

In this paper we present a distributed control algorithm to command a group of
robots to explore an unknown environment while providing adaptive sensor cov-
erage of interesting areas within the environment. This algorithm has many
applications in controlling teams of robots to perform tasks such as search and
rescue missions, environmental monitoring, automatic surveillance of rooms,
buildings, or towns, or simulating collaborative predatory behavior. As an example
application, Japan was hit by a major earthquake on March 11, 2011 that triggered a
devastating tsunami causing catastrophic damage to the nuclear reactors at
Fukushima. Due to the risk of radiation exposure, humans could not inspect (or
repair) the nuclear reactors, however, a team of robots could be used to monitor the
changing levels of radiation. Using the proposed algorithm, the robots would
concentrate on areas where the radiation was most dangerous, continually providing
updated information on how the radiation was evolving. This information could be
used to notify people in eminent danger of radiation exposure due to the changing
conditions. Similarly, consider a team of waterborne robots charged with cleaning
up an oil spill. Our controller allows the robots to distribute themselves over the
spill, learn the areas where the spill is most severe and concentrate their efforts on
those areas, without neglecting the areas where the spill is not as severe.

Sensor coverage algorithms have been receiving a great deal of attention in recent
years. Cortés et al. [6] considered the problem of findin an optimal sensing configu-
ration for a group of mobile robots. They used concepts from locational optimization
[8, 26] to control the robots based upon gradient descent of aweighting functionwhich
encodes the sensing quality and coverage of the environment. Thisweighting function
can be viewed as describing the importance of areas in the environment. The control
law for each robot is distributed and only depends on the robot’s position and the
positions of its neighbors’. However, all robots are required to know the weighting
function a priori which restricts the algorithm from being deployed in unknown
environments. There have been several extensions to this formulation of coverage
control. In [7], the robots were assumed to have a limited sensing or communication
range. Pimenta et al. [18] incorporated heterogeneous robots, and extended the
algorithm to handle nonconvex environments. The work [13] used a distributed
interpolation scheme to recursively estimate the weighting function. Similarly, [23]
removed the requirement of knowing the weighting function a priori by learning a
basis function approximation of the weighting function on-line. This strategy has
provable convergence properties, but requires that the weighting function lies in a
known set of functions. The purpose of the present work is to remove this restriction,
greatly broadening the class of weighting functions that can be approximated.

Similar frameworks have been used for multi-robot problems in a stochastic
setting [1]. There are also a number of other notions of multi-robot sensor coverage
(e.g. [3, 5, 11, 16]), but we choose to adopt the locational optimization approach for
its interesting possibilities for analysis and its compatibility with existing ideas in
adaptive control [15, 21, 25].
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As noted above, this work extends [23] by removing restrictions on the
weighting function, so that a much broader class of weighting functions can be
provably approximated. Typically, the form of the weighting function is not known
a priori, and if this is not accounted for directly then the learning algorithm could
chatter between models or even become unstable. Also, in simulations performed
with a realistic weighting function, the original algorithm only explores in a local
neighborhood of the robots resulting in a poor approximation of the weighting
function. However, the algorithm we propose here explores the entire space, suc-
cessfully learning the weighting function with provable robustness. The robots first
partition the environment and perform a Traveling Sales Person (TSP) based dis-
tributed exploration, so that the unknown weighting function can be adequately
approximated. They then switch, in an asynchronous and distributed fashion, to a
coverage mode in which they deploy over the environment to achieve positions that
are advantageous for sensing. The robots use an on-line learning mechanism to
approximate the weighting function. Since we do not assume the robots can per-
fectly approximate the weighting function, the parameter adaptation law for
learning this function must be carefully constructed to be robust to function
approximation errors.

Without specifically designing for such robustness, it is known that many dif-
ferent types of instability [10] can occur. Several techniques have been proposed in
the adaptive control literature to handle this kind of robustness, including using a
dead-zone [17, 20], the r-modification [10], and the e1-modification [14]. We chose
to adapt a dead-zone technique, and prove that the robots learn a function that has
bounded difference from the true function, while converging to positions that are
locally optimal for sensing with respect to the learned function.

The paper is organized as follows. In Sect. 2 we introduce notation and for-
mulate the problem. In Sect. 3 we describe the function approximation strategy and
the control algorithm, and we prove the main convergence result of the paper.
Section 4 gives the results of a numerical simulation with a weighting function that
was determined from empirical measurements of light intensity in a room. Finally,
conclusions and future work are discussed in Sect. 5.

2 Problem Formulation

In this section we build a model of the multi-robot system, the environment, and the
weighting function defining areas of importance in the environment. We then
formulate the robust adaptive coverage problem with respect to this model.

Let there be n robots with positions pi tð Þ in a planar environment Q � R
2. The

environment is assumed to be compact and convex.1 We call the tuple of all robot

1These assumptions can be relaxed to certain classes of nonconvex environments with obstacles
[2, 4 18].
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positions P ¼ ðp1; . . .; pnÞ 2 Qn the configuration of the multi-robot system, and we
assume that the robots move with integrator dynamics

_pi ¼ ui; ð1Þ

so that we can control their velocities directly through the control input ui. We
define the Voronoi partition of the environment to be V Pð Þ ¼ V1 Pð Þ; . . .;Vn Pð Þf g,
where

ViðPÞ ¼ q 2 Qj q� pik k� q� pj
�� ��; 8j 6¼ i

� �
;

and �k k is the l2-norm. We think of each robot i as being responsible for sensing in
its associated Voronoi cell Vi. Next we define the communication network as an
undirected graph in which all robots whose Voronoi cells touch share an edge in the
graph. This graph is known as the Delaunay graph. Then the set of neighbors of
robot i is defined as N i :¼ jjVi [Vj 6¼ ;� �

:

We now define a weighting function over the environment / : Q 7!R[ 0 (where
R[ 0 denotes the strictly positive real numbers). This weighting function is not
known by the robots. Intuitively, we want a high density of robots in areas where
/ qð Þ is large and a lower density where it is small. Finally, suppose that the robots
have sensors with which they can measure the value of the weighting function at
their own position, / pið Þ with very high precision, but that their quality of sensing
at arbitrary points, / qð Þ, degrades quadratically in the distance between q and pi.
That is to say the cost of a robot at pi sensing a point at q is given by 1

2 q� pik k2.
Since each robot is responsible for sensing in its own Voronoi cell, the cost of all
robots sensing over all points in the environment is given by

HðPÞ ¼
Xn
i¼1

Z
ViðPÞ

1
2

q� pik k2/ðqÞdq: ð2Þ

This is the overall objective function that we would like to minimize by controlling
the configuration of the multi-robot system.2

The gradient of H can be shown3 to be given by

@H

@pi
¼ �

Z
ViðPÞ

ðq� piÞ/ðqÞdq ¼ �MiðPÞðCiðPÞ � piÞ; ð3Þ

2We have pursued an intuitive development of this cost function, though more rigorous arguments
can also be made [24]. This function is known in several fields of study including the placement of
retail facilities [8] and data compression [12].
3The computation of this gradient is more complex than it may seem, because the Voronoi cells
Vi(P) depend on P, which results in extra integral terms. Fortunately, these extra terms all sum to
zero, as shown in, e.g. [19].
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where we define MiðPÞ :¼
R
ViðPÞ /ðqÞdq and CiðPÞ :¼ 1=MiðPÞ

R
ViðPÞ q/ðqÞdq: We

call Mi the mass of the Voronoi cell i and Ci its centroid, and for efficiency of
notation we will henceforth write these without the dependence on P. We would
like to control the robots to move to their Voronoi centroids, pi ¼ Ci for all i, since
from (3), this is a critical point of H, and if we reach such a configuration using
gradient descent, we know it will be a local minimum. Global optimization of H is
known to be NP-hard, hence it is standard in the literature to only consider local
optimality.

2.1 Approximate Weighting Function

Note that the cost function (2) and its gradient (3) rely on the weighting function
/ qð Þ, which is not known to the robots. In this paper we provide a means by which
the robots can approximate / qð Þ online in a distributed way and move to decrease
(2) with respect to this approximate / qð Þ.

To be more precise, each robot maintains a separate approximation of the
weighting function, which we denote /̂ðq; tÞ. These approximate weighting func-
tions are generated from a linear combination of m static basis func-
tions,KðqÞ ¼ K1ðqÞ � � �KmðqÞ½ �T, where each basis function is a radially
symmetric Gaussian of the form

KjðqÞ ¼ 1
2pr

exp
q� lj
�� ��2

2r2

( )
; ð4Þ

with fixed width r and fixed center lj. Furthermore, the centers are arranged in a
regular grid over Q. Each robot then forms its approximate weighting function as a
weighted sum of these basis functions /̂iðq; tÞ ¼ KðqÞTâiðtÞ; where âiðtÞ is the
parameter vector of robot i. Each element in the parameter vector is constrained to lie
within some lower and upper bounds 0\amin\amax\1 so that âiðtÞ 2 ½amin; amax�m.
This function approximation scheme is illustrated in Fig. 1. Robot i’s approximation
of its Voronoi cell mass and centroid can then be defined as M̂iðP; tÞ :¼R
ViðPÞ /̂iðq; tÞdq and ĈiðP; tÞ :¼ 1=M̂iðP; tÞ

R
ViðPÞ q/̂iðq; tÞdq, respectively. Again, we

will drop the dependence of M̂i and Ĉi on (P, t) for notational simplicity.
We measure the difference between an approximate weighting function and the

true weighting function as the L1 function norm of their difference, so that the best
approximation is given by

a :¼ argmin
â2 amin;amax½ �m

max
q2Q

jK qð ÞTâ� / qð Þj; ð5Þ
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and the optimal function approximation error is given by

/eðqÞ :¼ KðqÞTa� /ðqÞ: ð6Þ

It will be shown in the proof of Theorem 1 that the L1 norm gives the tightest
approximation bound with our proof technique. The only restriction that we put on
/ qð Þ is that it is bounded over the environment, or equivalently, the approximation
error is bounded, /e qð Þj j �/emax

\1. We assume that the robots have knowledge
of this bound, /emax

. The theoretical analysis in the previous work [23] was not
robust to function approximation errors in that it required /e qð Þ � 0. One of the
main contributions here is to formulate an algorithm that is provably robust to
function approximation errors. We only require that the robots have a known bound
for the function approximation error, /emax

.
Finally, we define the parameter error as ~ai tð Þ :¼ âi tð Þ � a. In what follows we

describe an online tuning law by which robot i can tune its parameters, âi, to
approach a neighborhood of the optimal parameters, a. Our proposed controller
then causes the robots to converge to their approximate centroids, pi ! Ĉi for all
i. An overview of the geometrical objects involved in our set-up is shown in Fig. 2.

3 Robust Adaptive Coverage Algorithm

In this section we describe the algorithm that drives the robots to spread out over the
environment while simultaneously approximating the weighting function online.
The algorithm naturally decomposes into two parts: (1) the parameter adaptation
law, by which each robot updates its approximate weighting function, and (2) the
control algorithm, which drives the robots to explore the environment before
moving to their final positions for coverage. We describe these two parts in separate
sections and then prove performance guarantees for the two working together.

Fig. 1 The weighting function approximation is illustrated in this simplified 2-D schematic. The
true weighting function /ðqÞ is approximated by robot i to be /̂iðq; tÞ. The basis function vector
KðqÞ is shown as three Gaussians (dashed curves), and the parameter vector âiðtÞ denotes the
weighting of each Gaussian
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3.1 Online Function Approximation

The parameters âi used to calculate /̂i q; tð Þ are adjusted according to a set of
adaptation laws which are introduced below. First, we define two quantities,

Ki tð Þ ¼ K0 þ
Z

s2Xi tð Þ

K sð ÞK sð ÞTds; and ki tð Þ ¼
Z

s2Xi tð Þ

K sð Þ/ sð Þds; ð7Þ

where Xi tð Þ ¼ sj s ¼ pi sð Þ for some s 2 0; t½ �f g is the set of points in the trajectory
of pi from time 0 to time t, and K0 is a positive definite matrix. The quantities in (7)
can be calculated differentially by robot i using _Ki tð Þ ¼ Ki tð ÞKi tð ÞT _pi tð Þj j with
initial condition K0, and _ki tð Þ ¼ Ki tð Þ/i tð Þj _pi tð Þj with zero initial conditions,
where we introduced the shorthand notation Ki tð Þ :¼ K pi tð Þð Þ and
/i tð Þ :¼ / pi tð Þð Þ. We require that K0 [ 0, though it can be arbitrarily small. This
will ensure that Ki tð Þ[ 0 for all time because

R
s2Xi tð Þ K sð ÞK sð ÞTds� 0 and the

sum of a positive semi-definite matrix and a positive definite matrix is positive

definite. This, in turn, ensures that K�1=2
i always exists, which will be crucial in the

control law and proof of convergence below. As previously stated, robot i can
measure /i tð Þ with its sensors. Now we define another quantity

: Convexenvironment : Weighting function

: Robot location

: Voronoi region 
of robot

: True centroid

: Estimated 
centroid

True position error Estimated 
position error

Fig. 2 A graphical overview of the quantities involved in the controller is shown. The robots
move to cover a bounded, convex environment Q their positions are pi, and they each have a
Voronoi region Vi with a true centroid Ci and an estimated centroid Ĉi. The true centroid is
determined using a sensory function /ðqÞ, which indicates the relative importance of points q in
Q. The robots do not know /ðqÞ, so they calculate an estimated centroid using an approximation
/̂iðqÞ learned from sensor measurements of /ðqÞ
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Fi ¼
R
Vi
K qð Þ q� pið ÞTdq RVi

q� pið ÞK qð ÞTdqR
Vi
/̂i qð Þdq : ð8Þ

Notice that Fi can also be computed by robot i as it does not require any knowledge
of the true weighting function, /.

The “pre” adaptation law for âi is now defined as

_̂aprei ¼ �cBdz Kiâi � kið Þ � f
X
j2N i

lij âi � âj
� �� kFiâi: ð9Þ

where c, f, and k are positive gains, lij is the length of the shared Voronoi edge
between robots i and j, and Bdz �ð Þ is a dead zone function which gives a zero if its
argument is below some value. We will give Bdz careful attention in what follows as
it is the main tool to ensure robustness to function approximation errors. Before
describing the dead zone in detail, we note that the three terms in (9) have an
intuitive interpretation. The first term is an integral of the function approximation
error over the robot’s trajectory, so that the parameter âi is tuned to decrease this
error. The second term is the difference between the robot’s parameters and its
neighbors’ parameters. This term will be shown to lead to parameter consensus; the
parameter vectors for all robots will approach a common vector. The third term
compensates for uncertainty in the centroid position estimate, and will be shown to
ensure convergence of the robots to their estimated centroids. A more in-depth
explanation of each of these terms can be found in [23].

Finally, we give the parameter adaptation law by restricting the “pre” adaptation
law so that the parameters remain within their prescribed limits amin; amax½ � using a
projection operator. We introduce a matrix Iproji defined element-wise as

Iproji :¼
0 for amin\âi jð Þ\amax

0 for âi jð Þ ¼ amin and _̂aprei jð Þ� 0
0 for âi jð Þ ¼ amax and _̂aprei jð Þ� 0
1 otherwise,

8>><
>>: ð10Þ

where (j) denotes the jth element for a vector and the jth diagonal element for a
matrix. The entries of Iproji are only nonzero if the parameter is about to exceed its
bound. Now the parameters are changed according to the adaptation law

_̂ai ¼ C _̂aprei � Iproji
_̂aprei

� �
; ð11Þ

where C 2 R
m	m is a diagonal, positive definite gain matrix. Although the adap-

tation law given by (11) and (9) is notationally complicated, it has a straightforward
interpretation, it is of low computational complexity, and it is composed entirely of
quantities that can be computed by robot i.

As mentioned above, the key innovation in this adaptation law compared with
the one in [23] is the dead zone function Bdz. We design this function so that the

444 M. Schwager et al.



parameters are only changed in response to function errors that could be reduced
with different parameters. More specifically, the minimal function error that can be
achieved is /e, as shown in (6). Therefore if the integrated parameter error
Kiâi � kið Þ is less than /e integrated over the robot’s path, we have no reason to
change the parameters. We will show that the correct form for the dead zone to
prevent unnecessary parameter adaptation is

Bdz xð Þ ¼ 0 if C xð Þ\0
x
xk kC xð Þ otherwise,

�
ð12Þ

where C xð Þ :¼ K1=2
i

��� ��� K�1=2
i x

��� ���� K�1=2
i bi

��� ���/emax
� K�1=2

i K0

��� ���amax

� 	
and

bi :¼
R
s2Xi tð Þ K sð Þds. This condition can be evaluated by robot i since bi tð Þ can be

computed differentially from _bi ¼ Ki _pij j with zero initial conditions, we have
already seen how to compute Ki, and /emax

, amax, and K0 are known.

3.2 Control Algorithm

We propose to use a control algorithm that is composed of a set of control modes,
with switching conditions to determine when the robots change from one mode to
the next. The robots first move to partition the basis function centers among one
another, so that each center is assigned to one robot, then each robot executes a
Traveling Salesperson (TSP) tour through all of the basis function centers that have
been assigned to it. This tour will provide sufficient information so that the
weighting function can be estimated well over all of the environment. Then the
robots carry out a centroidal Voronoi controller using the estimated weighting
function to drive to final positions. We call the first mode the “partitioning” mode,
the second the “exploration” mode, and the third the “coverage” mode. This
sequence of control modes is executed asynchronously in a distributed fashion,
during which the function approximation parameters are updated continually with
(9) and (11).

For each robot we define a mode variable Mii 2 partition; explore; coverf g. In
order to coordinate their mode switches, each robot also maintains an estimate of
the modes of all the other robots, so that Mij is the estimate by robot i of robot j’s
mode, and Mi :¼ Mi1; . . .;Minð Þ is an n-tuple of robot i’s estimates of all robots’
modes. Furthermore, the modes are ordered with respect to one another by parti-
tion < explore < cover, so that the max Mi;Mj

� �
function is the maximum

between each element of the two mode estimate tuples, Mi and Mj, according to
this ordering. These mode estimates are updated using the flooding communication
protocol described below. We first describe the algorithmic structure of the con-
troller, then define the behavior within each mode, and finally prove the
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convergence of the coupled control algorithm and learning algorithm to a desirable
final configuration.

The two algorithms below run concurrently in different threads. Algorithm 1
defines the switching conditions between control modes, and Algorithm 2 describes
the flooding protocol that each robot uses to maintain its mode estimates.

The control laws within each mode are then defined as follows. In the partition
mode, each robot uses the controller
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upartitioni ¼ k
1
N l

i



 

 X
j2N l

i

lj � pi

0
@

1
A; ð13Þ

where N l
i :¼ ljj lj � pi

�� ��� lj � pk
�� ��8k 6¼ i

� �
is the set of the closest basis

function centers to robot i, lj are the basis function centers from (4), and N l
i



 

 is the
number of elements in N l

i . In the explore mode, each robot drives a tour through
each basis function center in its neighborhood,lj for j 2 N l

i . Any tour will do, but a
good choice is to use an approximate TSP tour. Finally, for the “cover” mode, each
robot moves toward the centroid of its Voronoi cell using

ucoveri ¼ k Ĉi � pi
� �

; ð14Þ

where k is the same positive gain from (9).
Using the above control and function approximation algorithm, we can prove

that all robots converge to the estimated centroid of their Voronoi cells, that all
robots function approximation parameters converge to the same parameter vector,
and that this parameter vector has a bounded error with the optimal parameter
vector. This is stated formally in the following theorem.

Theorem 1 (Convergence) A network of robots with dynamics (1) using Algorithm
1 for control, Algorithm 2 for communication, and (9) and (11) for online function
approximation has the following convergence guarantees:

lim
t!1 pi tð Þ � Ĉi p; tð Þ�� �� ¼ 0 8i; ð15Þ

lim
t!1 âi tð Þ � âj tð Þ

�� �� ¼ 0 8i; j; ð16Þ

and lim
t!1 âi tð Þ � ak k�

Pn
j¼1 2 Kj tð Þ1=2

��� ��� Kj tð Þ�1=2bj tð Þ
��� ���/emax

þ Kj tð Þ�1=2K0

��� ���amax

� 	
mineig

Pn
j¼1 Kj tð Þ

� 	 8i:

ð17Þ
Proof The proof has two parts. The first part is to show that all robots reach “cover”
mode and stay in “cover” mode. The second part uses a Lyapunov type proof
technique similar to the one in [23] to show that once all robots are in “cover”
mode, the convergence claims of (15)–(17) follow.

Firstly, the “partition” mode simply implements a K-means clustering algorithm
[9], in which the basis function centers are the points to be clustered, and the robots
move to the cluster means. This algorithm is well-known to converge in the sense
that for any epartition there exists a time Tpartition

i at which the distance between the
robot and the centers’ mean is less than epartition, therefore all robots will reach
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Mii = explore at some finite time. After this time, according to Algorithm 1, a robot
will remain stopped until all of its mode estimates have switched to “explore.”
Suppose the first robot to achieve Mi = (explore,…, explore) does so at time Tf .
This means that at some time in the past all the other robots, j, have switched to
Mjj = explore and stopped moving, but none of them have Mj = (explore,…,
explore) (otherwise they would be the first). Therefore at Tf all robots are stopped.
Suppose the last robot to achieveMi = (explore,…, explore) does so at Tl. From the
properties of Algorithm 2 we know that Tl � Tf � nT (the maximum time between
the first robot to obtain Mi = (explore,…, explore) and the last robot to do so is
nT).At time Tl, the first robot to have Mi = (explore,…, explore) will still be
stopped, because it waits for nT seconds after achieving Mi = (explore,…,
explore), hence when any robot obtains Mi = (explore,…, explore), all other robots
are stopped. Even though the robots may compute their TSP tours at different times,
they are all at the same positions when they do so. Therefore, each basis function
center is in at least one robot’s TSP tour. Consequently, when all robots have
completed their TSP tours, mineig

Pn
i¼1 Ki

� �
will be similar in size to maxeigPn

i¼1 Ki
� �

making the bound in (17) small.
Each tour is finite length, so it will terminate in finite time, hence each robot will

eventually enter the “cover” mode. Furthermore, when some robots are in “cover”
mode, and some are still in “explore” mode, the robots in “cover” mode will remain
inside the environment Q. This is because Q is convex, and since Ĉi 2 Vi � Q and
pi 2 Q, by convexity, the segment connecting the two is in Q. Since the robots have
integrator dynamics (1), they will stay within the union of these segments over time,
pi tð Þ 2 [ s[ 0 Ci sð Þ � pi sð Þð Þ, and therefore remain in the environment Q. Thus at
some finite time, Tcover, all robots reach “cover” mode and are at positions inside Q.

Now, define a Lyapunov-like function

V ¼ Hþ 1
2

X
i

~aTi C
�1~ai; ð18Þ

which incorporates the sensing cost H, and is quadratic in the parameter errors ~ai.
We will use Barbalat’s lemma to prove that _V ! 0 and then show that the claims
of the theorem follow. Barbalat’s lemma requires that V is lower bounded, non-
increasing, and uniformly continuous. V is bounded below by zero since H is a
sum of integrals of strictly positive functions, and the quadratic parameter error
terms are each bounded below by zero.

Now we will show that _V� 0. Taking the time derivative of V along the
trajectories of the system and simplifying with (3) gives

_V ¼
X
i

� Ĉi � pi
�� ��2kM̂i þ ~aTi kFiâi þ ~aTi C

�1 _̂ai
� 	

:
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Substituting for _̂ai with (11) and (9) gives

_V ¼ �
X
i

Ĉi � pi
�� ��2kM̂i þ c~aTi Bdz Ki~ai þ keið Þþ f~aTi

X
j2Ni

lij âi � âj
� �þ ~aTi Iproji

_̂aprei

 !
;

where kei :¼
R
s2Xi tð Þ K sð Þ/e sð ÞdsþK0a. Rearranging terms we get

_V ¼ �
X
i

Ĉi � pi
�� ��2kM̂i þ c~aTi Bdz Ki~ai þ keið Þþ ~aTi Iproji

_̂aprei � f
Xm
j¼1

âTj L Pð Þâj
 !

;

ð19Þ

where âj :¼ â1j. . .âmj
� �T

is the jth element in every robot’s parameter vector,
stacked into a vector, and L Pð Þ� 0 is the graph Laplacian for the Delaunay graph
which defines the robots communication network (please refer to the proof of
Theorem 2 in [23] for details). The first term inside the first sum is the square of a
norm, and therefore is non-negative. The third term in the first sum is non-negative
by design (please see the proof of Theorem 1 from [23] for details). The second sum
is nonnegative because L Pð Þ� 0. Therefore, the term with the dead-zone operator
Bdz is the only term in question, and this distinguishes the Lyapunov construction
here from the one in the proof of Theorem 1 in [23].

We now show that the dead-zone term is also non-negative by design. Suppose
the condition C Ki~ai þ keið Þ\0 from (12). Then Bdz K~ai þ keið Þ ¼ 0 and the term is
zero. Now suppose C Ki~ai þ keið Þ� 0. In that case we have

0� K1=2
i

��� ��� K�1=2
i Ki~ai þ keið Þ

��� ���� K�1=2
i bi

��� ���/emax
� K�1=2

i K0

��� ���amax

� 	
;

which implies

0 � K�1=2
i Ki~ai þ keið Þ

��� ���� K�1=2
i bi

��� ���/emax
� K�1=2

i K0

��� ���amax

� K1=2
i ~ai þK�1=2kei

��� ���� K�1=2
i

Z
Xi tð Þ

K sð Þ/e sð ÞdsþK0a

 !�����
�����

� K1=2
i ~ai þK�1=2

i kei

��� ���2� K�1=2
i kei

� 	T
K1=2

i ~ai þK�1=2
i kei

� 	
¼ K1=2

i ~ai
� 	T

K1=2
i ~ai þK�1=2

i kei
� 	

¼ ~aTi Ki~ai þ keið Þ:

ð20Þ

Robust Adaptive Coverage for Robotic Sensor Networks 449



Then from the definition of the dead-zone operator, Bdz �ð Þ, we have

~aTBdz Ki~ai þ keið Þ ¼ ~aT Ki~ai þ keið Þ
Ki~ai þ keik k C Ki~ai þ keið Þ� 0;

since the numerator was shown to be non-negative in (20), and C(�) is non-negative
by supposition. Therefore the dead-zone term is non-negative in this case as well.
We conclude therefore that _V� 0.

The final condition to prove that _V ! 0 is that _V must be uniformly contin-
uous, which is a technical condition that was shown in [23], Lemmas 1 and 2. These
lemmas also apply to our case, since our function _V is the same as in that case
except for the dead-zone term. Following the argument of those lemmas, the
dead-zone term has a bounded derivative everywhere, except where it is
non-differentiable, and these point of non-differentiability are isolated. Therefore, it
is Lipschitz continuous and hence uniformly continuous, and we conclude by
Barbalat’s lemma that _V ! 0.

Now we show that _V ! 0 implies the convergence claims stated in the theorem.
Firstly, since all the terms in (19) are non-negative, each one must separately
approach zero. The first term approaching zero gives the position convergence (15),
the last term approaching zero gives parameter consensus (16) (again, see [23] for
more details on these). Finally, we verify the parameter error convergence (17). We
know that the dead-zone term approaches zero, therefore either
limt!1 ~aTi Kt~ai þ keið Þ ¼ 0, or limt!1 C Ki~ai þ keið Þ� 0. We already saw from (20)
that ~aTi Kt~ai þ keið Þ ¼ 0 implies C Ki~ai þ keið Þ� 0, thus we only consider this later
case. To condense notation at this point, we introduce

di :¼ K1=2
i

��� ��� K�1=2
i bi

��� ���/emax
� K�1=2

i K0

��� ���amax

� 	
. Then from

limt!1 C Ki~ai þ keið Þ� 0 we have

0� lim
t!1 K1=2

i

��� ��� K�1=2
i Ki~ai þ keið Þ

��� ���� di
� 	

� lim
t!1 Ki~ai þ keik k � dið Þ;

and because of parameter consensus (16), 0� limt!1 Kj~ai þ kej
�� ��� dj
� �

for all j.
Then summing over j, we have

0 � lim
t!1

Xn
j¼1

Kj~ai þ kej
�� ���Xn

j¼1

dj

 !

� lim
t!1

Xn
j¼1

Kj~ai þ
Xn
j¼1

kej

�����
������X

n

j¼1

dj

 !

� lim
t!1

Xn
j¼1

Kj~ai

�����
������ Xn

j¼1

kej

�����
�����












�X

n

j¼1

dj

 !
:
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The last condition has two possibilities; either

limt!1
Pn

j¼1 Kj~ai
��� ���[ Pn

j¼1 kej

��� ���� 	
, in which case

0� lim
t!1

Xn
j¼1

Kj~ai

�����
������ Xn

j¼1

kei

�����
������X

n

j¼1

dj

 !
� lim

t!1

Xn
j¼1

Kj~ai

�����
������ 2

Xn
j¼1

dj

 !
;

ð21Þ

where the last inequality uses the fact that
Pn

j¼1 kei

��� ���� Pn
j¼1 dj. Otherwise,

limt!1
Pn

j¼1 Kj~ai
��� ���\ Pn

j¼1 kej

��� ���� 	
, which implies limt!1

Pn
j¼1 Kj~ai

��� ���\k
�

Pn
j¼1 djkÞ which in turn implies (21), thus we only need to consider (21). This

expression then leads to 0� limt!1 mineig
Pn

j¼1 Kj

� 	
~aik k � 2

Pn
j¼1 dj

� 	
, and

dividing both sides by mineig
Pn

j¼1 Kj

� 	
(which is strictly positive sincePn

j¼1 Kj [ 0), gives (17). □

4 Simulation Results

The proposed algorithm is tested using the data collected from previous experi-
ments [22] in which two incandescent office lights were placed at the position (0, 0)
of the environment, and the robots used on-board light sensors to measure the light
intensity. The data collected during these previous experiments was used to gen-
erate a realistic weighting function which cannot be reconstructed exactly by the
chosen basis functions. In the simulation, there are 10 robots and the basis functions
are arranged on a 15 	 15 grid in the environment.

The proposed robust algorithm was compared against the standard algorithm
from [23], which assumes that the weighting function can be matched exactly. The
true and optimally reconstructed (according to (5)) weighting functions are shown
in Fig. 3a, b, respectively. As shown in Fig. 3c, d, with the robust and standard
algorithm respectively, the proposed robust algorithm significantly outperforms the
standard algorithm and reconstructs the true weighting function well. The robot
trajectories for the robust and standard adaptive coverage algorithm are shown in
Fig. 4a, b, respectively. Since the standard algorithm doesn’t include the explo-
ration phase, the robots get stuck in a local area around their starting position which
causes the robots to be unsuccessful in learning an acceptable model of the
weighting function. In contrast, the robots with the robust algorithm explore the
entire space and reconstruct the true weighting function well.
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True Weighting Function Optimally Reconstructed 

Robust Algorithm Standard Algorithm 

(a) (b)

(d)(c)

Fig. 3 A comparison of the weighting functions. a The true weighting function. b The optimally
reconstructed weighting function for the chosen basis functions. c The weighting function for the
proposed algorithm with deadzone and exploration. d The previously proposed algorithm without
deadzone or exploration

Robust Algorithm Standard Algorithm
1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0
0 0.6   0.8 1

0
00.2 0.4 0.6   0.8 10.2 0.4

Fig. 4 The vehicle trajectories for the different control strategies. The initial and final vehicle
position is marked by a circle and cross, respectively
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5 Conclusions

In this paper we formulated a distributed control and function approximation
algorithm for deploying a robotic sensor network to adaptively monitor an envi-
ronment. The robots robustly learn a weighting function over the environment
representing where sensing is most needed. The function learning is enabled by the
robots exploring the environment in a systematic and distributed way, and is
provably robust to function approximation errors. After exploring the environment,
the robots drive to positions that locally minimize a cost function representing the
sensing quality of the network. The performance of the algorithm is proven in a
theorem, and demonstrated in a numerical simulation with an empirical weighting
function derived from light intensity measurements in a room. The authors are
currently working toward hardware experiments to prove the practicality of the
algorithm.
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A Multi-robot Control Policy
for Information Gathering in the Presence
of Unknown Hazards

Mac Schwager, Philip Dames, Daniela Rus and Vijay Kumar

Abstract This paper addresses the problem of deploying a network of robots to
gather information in an environment, where the environment is hazardous to the
robots. This may mean that there are adversarial agents in the environment trying to
disable the robots, or that some regions of the environment tend to make the robots
fail, for example due to radiation, fire, adverse weather, or caustic chemicals.
A probabilistic model of the environment is formulated, under which recursive
Bayesian filters are used to estimate the environment events and hazards online. The
robots must control their positions both to avoid sensor failures and to provide
useful sensor information by following the analytical gradient of mutual informa-
tion computed using these online estimates. Mutual information is shown to
combine the competing incentives of avoiding failure and collecting informative
measurements under a common objective. Simulations demonstrate the perfor-
mance of the algorithm.
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1 Introduction

Networks of robotic sensors have the potential to safely collect data over large
scale, unknown environments. They can be especially useful in situations where the
environment is unsafe for humans to explore. In many such situations, robots are
also susceptible to hazards. It is important to design exploration and mapping
algorithms that are hazard-aware, so that the robotic sensor network can effectively
carry out its task while minimizing the impact of individual robot failures. In this
paper we propose an algorithm, based on an analytic expression for the gradient of
mutual information, that enables a robotic sensor network to estimate a map of
events in the environment while avoiding failures due to unknown hazards.

Consider, for example, the recent tragic accident at the Fukushima nuclear power
plant in Japan, which sustained critical damage from a large earthquake and tsunami
in March, 2011. The algorithm we propose here could be used by a team of flying
quadrotor robots with cameras to inspect the plant for structural damage, keeping
human workers at a safe distance. With our algorithm the robots could build a map
of the areas that are likely to have structural damage, while simultaneously building
a map of the radiation hazards, to avoid failure due to radiation exposure. This
scenario is illustrated in Fig. 1. Both the event map and the hazard map are esti-
mated online using a recursive Bayesian filter, where the event map is estimated
from evidence of structural damage seen by the cameras, and the hazard map is
estimated by the previous failures of other robots. The robots move along the

(a) (b)

Fig. 1 The tragic accident at the Fukushima nuclear power plant in Japan is a fitting scenario for
our algorithm. Hypothetical maps of the events and hazards are shown over an image of the
Fukushima plant from http://maps.google.com/. On the left, the events of interest are structural
defects represented by the explosion symbols, and the contour lines represent the probability of
detecting these defects. Sensors move to determine where the structural defects are by increasing
the informativeness of their sensor readings. Black circles represent sensors that see a defect while
white circles do not see a defect. On the right, the hazards are radiation sources represented by the
� symbol, and the contours represent the probability of failure due to radiation damage. By
moving to increase informativeness, the robots implicitly avoid hazards that may cause failure
thereby preventing information from being collected. The grayed-out robot in the center has failed
due to the high radiation levels. a Event map. b Hazard map
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gradient of mutual information, which gives the direction of expected maximum
information gain given the current maps, thereby driving the exploration of the
environment. Our algorithm could also be used, for example, to monitor forest fires
while avoiding fire damage, taking ocean measurements while avoiding damage
from adverse weather, or mapping a chemical spill site while avoiding failure from
caustic chemicals.

In all of these examples, the robots must move to both avoid hazards and provide
useful sensor information. Although these two objectives may seem to be in conflict
with one another, they are in fact complementary. If we want to map the events as
precisely as possible, we implicitly want the robots to avoid hazardous areas, since
the failure of a robot makes it unable to contribute to estimating the event map in
the future. We use the gradient of mutual information to move the sensors so that
their next measurements are as informative as possible. The gradient strategy blends
the avoidance of hazards and the seeking of information into one probabilistically
consistent objective. We propose a probabilistic model of the environment, the
sensors, and the task, and derive the Bayesian filters for updating the event and
hazard maps. We then prove a general theorem showing that the analytical gradient
of mutual information has a simple form similar to mutual information itself. To our
knowledge, this is the first proof of such an expression to appear in the literature.
The mutual information gradient is then used to control the robots. We do not
consider decentralization of the algorithm in this paper, though that will be a central
concern of future work, and several existing methods can be adapted for
decentralization.

1.1 Related Work

Mutual information is one of the fundamental quantities in information theory [6,
20] and has been used extensively as a metric for robotic sensor network control
and static sensor placement. For example, in [1, 7] mutual information is used as a
metric for driving robotic sensor networks in gridded environments for target
tracking and exploration tasks. Also, [8] focused on decentralization and scalability
using particle filters to approximate mutual information for target tracking. Recently
in [10] the gradient of mutual information was used to drive a network of robots for
general environment state estimation tasks, and a sampling method was employed
to improve computational efficiency. In [5] a mutual information method was used
to control robots building maps of radiation intensity in an environment. The
property of submodularity of mutual information was used in [11, 12] for placing
static sensors at provably near-optimal positions for information gain. The tech-
nique was extended to Gaussian processes in [13]. Approximations on information
gain for static sensor placement were derived in [3] and an informative trajectory
planning algorithm was presented in [2]. In a different but related application, [22]
uses mutual information to place static sensors to provide localization information
to a mobile robot.
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Our method differs in at least two important ways from those described above.
Firstly, our work is specifically concerned with estimating and avoiding environ-
mental hazards as well as estimating events. To our knowledge no works combining
these objectives using mutual information have appeared in the literature. Secondly,
we use an analytically derived expression for the gradient of mutual information for
control. All the works above, save one, use grid-based finite difference methods to
increase mutual information. The exception is [10], which employs the same
analytical gradient of mutual information as we do here, but we have reserved the
presentation of the proof of that result for this paper. In [5] the authors show that the
gradient of mutual information approaches zero asymptotically in their problem,
and thereby avoid computing it in their controller. To the authors knowledge, the
only other appearance of a gradient of mutual information in a general form is
derived in [18] in the context of channel coding.

Many other methods that do not use mutual information have been proposed for
mapping and exploring environments with robotic sensor networks. For example
[15] uses the error variance of a distributed Kalman filter to drive robots to estimate
environmental fields. In [19] a Voronoi based coverage algorithm from [4] is
augmented with online learning and exploration to estimate a scalar field in the
environment. Similarly, [16] expanded this coverage algorithm with online inter-
polation of an environmental field. Artificial potential fields have been used in [9]
for multi-robot deployment and exploration, and [14] uses a probabilistic coverage
model for multi-robot deployment.

The question we address in this paper is: How do we choose the next positions
x1; . . .; xn to make the next Bayesian estimate of the event state as precise as
possible? As already described, implicit in this question is the tendency to avoid
hazards because a failed robot is an uninformative robot. However, in our scenario,
as in real life, all the robots will eventually fail. To counteract the depletion of
robots, we let there be a base station located in the environment that deploys new
robots to replace ones that have failed. We let the rate of releasing new robots
balance the rate of failed ones, so that the total number of robots is constant at all
times. However many other interesting possibilities exist.

The rest of this paper is organized as follows. We define notation and formulate
the problem in Sect. 2. We derive the Bayesian filters to estimate the hazards and
events in Sect. 3. In Sect. 4 we derive the analytical gradient of mutual information
and specialize it for our hazard-aware exploration problem. Finally, Sect. 5 presents
the results of numerical simulations and conclusions and future work are discussed
in Sect. 6..

2 Problem Formulation

Consider a situation in which n robots move in a planar environment Q � R
2. The

robots have positions xiðtÞ 2 Q and we want to use them to sense the state of the
environment while avoiding hazardous areas that may cause the robots to fail. Let
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the positions of all the robots be given by the vector x ¼ xT1 � � � xTn
� �

: The robots
give simple binary sensor measurements yi 2 f0; 1g indicating wether or not they
have sensed an event of interest near by. They also give a signal to indicate their
failure status fi 2 f0; 1g, where fi ¼ 1 means that the robot has failed. Denote the
random vector of all sensor outputs by y ¼ ½y1 � � � yn�T and the vector of all failure
statuses as f ¼ ½f1 � � � fn�T (Table 1).

The task of the robot network is to estimate the state of the environment with as
little uncertainty as possible. While the robots move in continuous space, we
introduce a discretization of the environment to represent the environment state. We
let the state of the environment be modeled by a random field s ¼ ½s1 � � � sms �T , in
which each random variable sj represents the value of the field at a position qj 2 Q
and ms is the number of discrete locations. Each of these random variables takes on
a value in a set sj 2 S, and the environment state has a value s 2 S ¼ Sms .
Similarly, the hazard level, which is related to the probability of failure of the robot,

is modeled as a random field h ¼ hT1 . . .h
T
mh

h i
in which hk represents the hazard level

at position qk 2 Q; and takes on a value in a set H. Then the hazard state of the
whole environment has a value h 2 H ¼ Hmh In general, S and H may be infinite
sets, however one special case of interest is S ¼ f0; 1g, and H ¼ f0; 1g, so the state
and hazard distributions denote the presence or absence of a target or a hazard,
respectively, in a grid cell. Note that the use of the phrase grid cell refers to an
element in the discretization of the environment, which need not be a square grid.
We will work with the more general framework to include the possibility that some
areas may be more important than others, or that there may be multiple events or
hazards in a single grid cell. Also note that the discretization of the environment for
state and hazard estimation need not be the same, for example we might need more
precise localization of events than hazards. Let /0ðsÞ and w0ðhÞ denote the robots’
initial guess at the distribution of the state and the hazards, respectively, which can
be uniform if we have no prior information about the events or hazards.

Table 1 List of symbols xi Position of sensor i

yi
t Reading of sensor i at time t

fi
t Failure status of sensor i at time t

qj Centroid position of grid cell j

sj Event state in grid cell j

hj Hazard state in grid cell j

x Stacked vector of sensor positions

y1:t Time history of measurements up to t

f1:t Time history of failures up to t

Q Environment

s Full event state of environment

h Full hazard state of environment
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Furthermore, in our scenario the robots have some probability of failure due to
the hazards in the environment. Let the probability of failure of a robot at xi due to
hazard level hj at location qj be given by P fi ¼ 1 j hj ¼ 1

� � ¼ aðxi; qjÞ assume that
the hazards act independently of one another and that the probability of failure when
infinitely far away from a hazard is given by Pf;far, so that

P fi ¼ 0 j hð Þ ¼ 1� Pf;far
� � Y

j j hj¼1

P fi ¼ 0 j hj
� � ¼ 1� Pf;far

� � Y
j j hj¼1

1� a xi; qj
� �� �

:

ð1Þ

In words, the probability of a robot not failing is the product of the probability of it
not failing due to any individual hazard. This gives the probability of a robot failing
due to any number of hazards in the environment as

P fi ¼ 1 j hð Þ ¼ 1� 1� Pf;far
� � Y

j j hj¼1

1� a xi; qj
� �� �

: ð2Þ

When a robot fails, its sensor will output 0 with probability 1, that is, its sensor
reading gives no indication of whether or not there is an event of interest near by,
giving the conditional probability Pðyi ¼ 1 j fi ¼ 1; sÞ ¼ 0: In this case, the sensor
will naturally provide no further information about event or hazard locations.

If the robot does not fail, the sensor output, yi, is a Bernoulli random variable
with the probability of yi ¼ 1 due to a state value sj at position qj given by
P yi ¼ 1 j fi ¼ 0; sj
� � ¼ lðxi; qjÞ, and the probability that yi ¼ 0 the complement of

this. We again assume that state locations act independently on the robot’s sensor
and that the probability of a false positive reading is Pfp so that

P yi ¼ 0 j fi ¼ 0; sð Þ ¼ 1� Pfp
� � Y

j j sj¼1

1� l xi; qj
� �� �

: ð3Þ

Then the probability that a robot’s sensor gives yi ¼ 1 for a given environment state
is the complement of this,

P yi ¼ 1 j fi ¼ 0; sð Þ ¼ 1� 1� Pfp
� � Y

j j sj¼1

1� l xi; qj
� �� �

: ð4Þ

We defer the discussion of specific forms of the functions a and µ to Sect. 5,
however potential choices for the case where a hazard or event is present would be a
decreasing exponential, a Gaussian function, or, in the simplest case, a constant
(e.g. close to 1) inside some distance to qj and some other constant (e.g. close to
zero) outside. We will see that when µ or a have compact support in Q, there are
computational benefits.

Now we consider the group of robots together. We derive three quantities that
will be used in the Bayesian filters and control law; the likelihood function of the
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sensor measurements given the failures, the events, and the hazards, P y j f ; s; hð Þ;
the likelihood function of the failures given the events and the hazards, P f j s; hð Þ;
and the likelihood function of the sensor measurements given the events and the
hazards, P y j s; hð Þ:

For Pðy j f ; s; hÞ; assume that each robot’s measurement is conditionally inde-
pendent of the hazards and the other robots’ measurements given its own failure
status and the environment state, Pðy j f ; s; hÞ ¼Qn

i¼1 Pðyi j fi; sÞ . Supposing we
know the failure status of each robot, we can compute the measurement likelihood
to be

P y j f ; s; hð Þ ¼
Y
i j fi¼0

P yi j fi ¼ 0; sð Þ
Y
j j fj¼1

P yj j fj ¼ 1; s
� �

;

but Y
j j fj¼1

P yj j fj ¼ 1; s
� � ¼ Y

j j yj¼0;fj¼1

P yj j fj ¼ 1; s
� � Y

j j yj¼1;fj¼1

P yj j fj ¼ 1; s
� �

;

and the set fj j y ¼ 1; fj ¼ 1g ¼ 00 and Pðyj ¼ 0 j fj ¼ 1; sÞ ¼ 1; therefore this
product reduces to 1. Then we have

P y j f ; s; hð Þ ¼
Y

i j yi¼0;fi¼0

P yi ¼ 0 j fi ¼ 0; sð Þ
Y

j j yj¼1;fj¼0

P yj ¼ 1 j fj ¼ 0; s
� �� 1

¼
Y

i j yi¼0;fi¼0

Yms

k¼1

1� l xi; qkð Þð Þ
 ! Y

j j yj¼1;fj¼0

1�
Yms

l¼1

1� l xj; ql
� �� � !

ð5Þ

where we use (4) and (3) to get the last equality.
Next we derive the failure likelihood, Pðf j s; hÞ: Conditioned on knowledge of

the hazards, the failures are independent of the events and each other, so
Pðf j s; hÞ ¼Qn

i¼1 Pðfi j hÞ. Then using (1) and (2) we obtain

P f j s; hð Þ ¼
Y
i j fi¼0

Ymh

k¼1

1� a xi; qkð Þð Þ
Y
j j fj¼1

1�
Ymh

l¼1

1� a xj; ql
� �� � !

: ð6Þ

Finally, in the case that we want to predict an information gain for a future
measurement, the failures are not yet known, so we will need the quantity
P y j s; hð Þ: This leads to
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P y j s; hð Þ ¼
X

f2f0;1gn
P y j f ; s; hð ÞPðf j s; hÞ ¼

X
f2f0;1gn

Yn
i¼1

P yi j fi; sð ÞPðfi j hÞ

¼
Yn
i¼1

X
fi2f0;1g

P yi j fi; sð ÞPðfi j hÞ;
ð7Þ

where, as we already saw, Pðfi ¼ 0 j hÞ ¼ Qmh
j¼1 1� aðxi; qjÞ
� �

and Pðfi ¼ 1 j hÞ ¼
1� Pðfi ¼ 0 j hÞ and similarly Pðyi ¼ 0 j fi ¼ 0; sÞ ¼Qms

j¼1 ð1� lðxi; qjÞÞ and
P yi ¼ 1 j fi ¼ 0; sð Þ ¼ 1� P yi ¼ 0 j fi; sð Þ and finally P yi ¼ 0 j fi ¼ 1; sð Þ ¼ 1 and
P yi ¼ 1 j fi ¼ 1; sð Þ ¼ 0: Next we use these quantities to derive a recursive
Bayesian filters for maintaining a distribution over all possible event and hazard
states.

3 Bayesian Estimation

As our robots move about in the environment, we wish to make use of their
measurements and failure statuses at each time step in order to recursively estimate
the events and hazards in the environment. We will show in this section, surpris-
ingly, that the event and hazard estimates are either statistically independent, or they
are deterministically linked (knowledge of either one fully determines the other).
An unexpected consequence of the natural formulation in Sect. 2 is that there can
be no statistical dependence between the event and hazard estimates except these
two extremes. We let the robots collect measurements yt synchronously at times
t ¼ 1; 2; . . .; and we denote the tuple of all measurements up to time t by y1:t ¼
ðy1; . . .; ytÞ: We use a similar notation for failures, so that f 1:t ¼ ðf 1; . . .; f tÞ is the
tuple of all failure statuses up to time t. Furthermore, define the event distribution
estimate up to time t to be /tðsÞ :¼ P s j y1:t; f 1:tð Þ and the hazard distribution up to
time t to be wtðhÞ :¼ Pðh j y1:t; f 1:tÞ: The main result of this section is stated in the
following theorem.

Theorem 1 (Bayesian Filtering) The distributions for hazards and events given all
information up to time t are independent with P s; h j y1:t; f 1:tð Þ ¼ /tðsÞwtðhÞ; as-
suming that h and s are not deterministically linked, and that their initial distri-
butions are independent, Pðs; hÞ ¼ /0ðsÞw0ðhÞ Furthermore, /tðsÞ and wtðhÞ can
be computed recursively with the Bayesian filters

/t sð Þ ¼ P yt j f t; sð Þ/t�1ðsÞP
s2S P yt j f t; sð Þ/t�1ðsÞ ; ð8Þ
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and

wtðhÞ ¼ P f t j hð Þwt�1ðhÞP
h2H P f t j hð Þwt�1ðhÞ : ð9Þ

In the case that the events and the hazards are deterministically linked, the
Bayesian filter update for the distribution is given by

P s j y1:t; f 1:t� � ¼ P yt j f t; sð ÞP f t j sð ÞP s j y1:t�1; f 1:t�1ð ÞP
s2S P yt j f t; sð ÞP f t j sð ÞP s j y1:t�1; f 1:t�1ð Þ : ð10Þ

Proof We will argue the existence of these two distinct cases by mathematical
induction. We first prove (9) and then use it to prove (8). We will then derive (10)
directly from the assumption that s and h are deterministically related.

To obtain an inductive argument, suppose that at t − 1 the hazard estimate
wt�1ðhÞ ¼ P h j y1:t�1; f 1:t�1ð Þ ¼ P h j f 1:t�1ð Þ is independent of the sensor measure-
ments y1:t−1. Then the recursive Bayesian filter update for time t gives

wtðhÞ ¼ P yt; f t j hð Þwt�1ðhÞP
h2H P yt; f t j hð Þwt�1ðhÞ :

Now assuming that h and s are not deterministically related, we get P yt; f t j hð Þ ¼
P yt j f t; hð ÞP f t j hð Þ ¼ P yt j f tð ÞP f t j hð Þ; where the last equality is because given the
failure, f t, the measurement, yt, is independent of the hazards, h, as described in the
previous section. This leads to

wtðhÞ ¼ P yt j f tð ÞP f t j hð Þwt�1ðhÞ
P yt j f tð ÞPh2H P f t j hð Þwt�1ðhÞ ;

and we can cancel the factor of P yt j f tð Þ from the numerator and denominator to
obtain (9). Now notice that wtðhÞ ¼ P h j y1:t; f 1:tð Þ ¼ P h j f 1:tð Þ remains indepen-
dent of the measurements at time t. The initial distribution, w0ðhÞ; must be inde-
pendent of y1:t (because no measurements have been collected yet), therefore by
mathematical induction the hazard estimate distribution conditioned on the failures
is always independent of the measurements.

Using a similar mathematical induction argument, suppose that the hazard and
event estimates are independent given the measurements and failures up to time
t − 1, so P h; s j y1:t�1; f 1:t�1ð Þ ¼ /t�1ðsÞwt�1ðhÞ: Then the Bayesian update for their
joint distribution at time t is given by
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P s; h j y1:t; f 1:t� � ¼ P yt; f t j s; hð Þ/t�1ðsÞwt�1ðhÞP
s2S

P
h2H P yt; f t j s; hð Þ/t�1ðsÞwt�1ðhÞ :

Factoring the numerator using the conditional independences described in Sect. 2,
we get

P s; h j y1:t; f 1:t� � ¼ P yt j f t; sð ÞP f t j hð Þ/t�1ðsÞwt�1ðhÞP
s2S

P
h2H P yt j f t; sð ÞP f t j hð Þ/t�1ðsÞwt�1ðhÞ ;

and separating terms that depend on s from those that depend on h yields

P s; h j y1:t; f 1:t� � ¼ P yt j f t; sð Þ/t�1ðsÞP
s2S P yt j f t; sð Þ/t�1ðsÞ

P f t j hð Þwt�1ðhÞP
h2H P f t j hð Þwt�1ðhÞ ;

We recognize the right most fraction as the Bayesian update from (9), and the left
most expression can be factored as P s; h j y1:t; f 1:tð Þ ¼ P s j h; y1:t; f 1:tð ÞwtðhÞ; which
gives

P s j h; y1:t; f 1:t� �
wtðhÞ ¼ P yt j f t; sð Þ/t�1ðsÞP

s2S P yt j f t; sð Þ/t�1ðsÞ jw
tðhÞ:

The fraction on the right is independent of h, so we conclude that P s j h; y1:t; f 1:tð Þ ¼
P s j y1:t; f 1:tð Þ ¼ /tðsÞ; and we obtain the Bayesian update in (8). Therefore if the
estimate distributions of s and h are independent at time t − 1 they will also be so at
time t, and by induction, if their initial distributions are independent then they will
remain so for all time.

Finally, in the case that the hazards and the events are deterministically related,
the standard recursive Bayesian filter yields

P s j y1:t; f 1:t� � ¼ P yt; f t j sð ÞP s j y1:t�1; f 1:t�1ð ÞP
s2S P yt; f t j sð ÞP s j y1:t�1; f 1:t�1ð Þ ;

which factors straightforwardly to the expression in (10). □
For the remainder of the paper, we consider the case where the hazards and the

events are not deterministically related, so the filtering equations are given by (8) with
(5) for the event update, and (9) with (6) for the hazard update. The robots use these
filter equations to maintain estimates of the events and hazards in the environment.
Next we consider using these estimates to derive an information seeking controller.
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4 Control Using the Mutual Information Gradient

In this section we will derive an analytic expression for the gradient of mutual
information in general terms, then specialize it to use the distributions of events and
hazards found with the Bayesian filters in the previous section. This will lead to an
information seeking controller for our robots.

In information theory [6, 20], the mutual information between two random
vectors s and y is defined as

IðS; YÞ ¼
Z

y2Y

Z
s2S

Pðs; yÞ log Pðs; yÞ
PðsÞPðyÞ dsdy:

where we let e be the base of the logarithm, and S and Y are the range of s and y,
respectively. We write s and y as though they were continuous valued for sim-
plicity, though similar expressions can be written for discrete valued and general
random variables. Mutual information indicates how much information one random
variable gives about the other. In our scenario, we want to position our robots so
that their next measurement gives the maximum amount of information about the
event distribution.

Consider the situation in which the distribution Pðs; yÞ depends on a parameter
vector x 2 R

2n. We write Pxðs; yÞ to emphasize this dependence. Likewise, let
PxðsÞ :¼

R
y2Y Pxðs; yÞdy; PxðyÞ :¼

R
s2S Pxðs; yÞds; and

IxðS; YÞ :¼
Z

y2Y

Z
s2S

Pxðs; yÞ log Pxðs; yÞ
PxðsÞPxðyÞ dsdy;: ð11Þ

In our case x is the positions of the robots, but the following result holds in a general
context. We can compute the gradient of the mutual information with respect to the
parameters x using the following theorem.

Theorem 2 (Mutual Information Gradient) Let random vectors s and y be jointly
distributed with distribution Pxðs; yÞ that is differentiable with respect to the
parameter vector x 2 R

2n over Qn � R
2n. Also, suppose that the support S�Y of

Pxðs; yÞ; does not depend on x. Then the gradient of the mutual information with
respect to the parameters x over Qn is given by

@IxðS; YÞ
@x

¼
Z

y2Y

Z
s2S

@Pxðs; yÞ
@x

log
Pxðs; yÞ

PxðsÞPxðyÞ j dsdy: ð12Þ

Proof The theorem follows straightforwardly by applying the rules of differentia-
tion. Notably, several terms are identically zero, yielding the simple result.
Differentiating (11) with respect to x, we can move the differentiation inside the
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integrals since S and Y do not depend on the parameters x. Then applying the
chain rule to the integrand results in

@IðS; YÞ
@x

¼
Z

y2Y

Z
s2S

@Pðs; yÞ
@x

log
Pðs; yÞ
PðsÞPðyÞ dsdyþ

Z
y2Y

Z
s2S

Pðs; yÞPðsÞPðyÞ
Pðs; yÞ

� @P s; yð Þ
@x

1
PðsÞPðyÞ �

@PðsÞ
@x

PðyÞPðs; yÞ
PðsÞPðyÞð Þ2 �

@PðyÞ
@x

PðsÞPðs; yÞ
PðsÞPðyÞð Þ2

" #
dsdy;

where we have suppressed the dependence on x to simplify notation. Bringing
1=ðPðsÞPðyÞÞ in front of the brackets gives

@IðS; YÞ
@x

¼
Z

y2Y

Z
s2S

@Pðs; yÞ
@x

log
Pðs; yÞ
PðsÞPðyÞ dsdy

þ
Z

y2Y

Z
s2S

@Pðs; yÞ
@x

� @PðsÞ
@x

Pðy j sÞ � @PðyÞ
@x

Pðs j yÞ
� �

dsdy:

Consider the three terms in the second double integral. We will show that each of
these terms is identically zero to yield the result in the theorem. For the first term we
have Z

y2Y

Z
s2S

@Pðs; yÞ
@x

dsdy¼ @

@x

Z
y2Y

Z
s2S

Pðs; yÞdsdy¼ @

@x
1 ¼ 0:

For the second term we have

Z
y2Y

Z
s2S

@PðsÞ
@x

Pðy j sÞdsdy¼
Z

s2S

@PðsÞ
@x

Z
y2Y

Pðy j sÞdy

0
B@

1
CAds

¼ @

@x

Z
s2S

PðsÞds ¼ 0;

and the third term follows similarly if we interchange y and s. □

Remark 1 The result holds for the general definition of mutual information and
makes no assumptions as to the distribution of the random variables, or the form of
the dependence of Pxðs; yÞ on its parameters. The result also holds for generally
distributed random variables including discrete valued ones (although we have
written the theorem for continuous valued ones).

Remark 2 It is interesting that the gradient of IxðS; YÞ has the same form as IxðS; YÞ
itself, except that the first occurrence of Pxðs; yÞ is replaced by its gradient with
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respect to x. To the authors’ knowledge, this analytic expression for the gradient of
mutual information has not been reported in the literature despite the proliferation
of gradient based methods for maximizing mutual information in various applica-
tions ranging from channel coding [17, 18], to medical imaging alignment [21], to
the control of roboticsensor networks [7]. In [18] the authors derive an expression
that can be shown to be equivalent to a special case of Theorem 2 in which PðsÞ is
not a function of x.

Remark 3 Arbitrary derivatives of mutual information can also be calculated,
though the fortuitous cancellations do not necessarily hold for higher order
derivatives. In our robotic sensing scenario, for example, it would be interesting to
compute the Hessian of mutual information to examine the coupling between the
control laws for neighboring robots.

We will use the result in Theorem 2 to design a controller for our robotic sensor
network. Writing the result in terms of quantities that we already know, we have

@IxðS; YÞ
@x

¼
X

y2f0;1gn

X
s2S

X
h2H

@Pxðy j s; hÞ
@x

/tðsÞwtðhÞ

� log

P
h2H Pxðy j s; hÞwtðhÞP

s2S
P

h2H Pxðy j s; hÞ/tðsÞwtðhÞ ;
ð13Þ

where /tðsÞ and wtðhÞ come from the Bayesian filter Eqs. (8) and (9), respectively,
and Pxðy j s; hÞ comes from (7). The only remaining necessary term is the gradient
of the measurement likelihood, which we can compute straightforwardly from (7) to
be

@Px yi ¼ 1 j s; hð Þ
@x

¼ P fi ¼ 0 j hð ÞP yi ¼ 0 j s; hð Þ
X
j j sj¼1

1
1� l xi; qj

� � @l xi; qlð Þ
@xi

� P fi ¼ 0 j hð ÞP yi ¼ 1 j s; hð Þ
X

k j hk¼1

1
1� a xi; qkð Þ

@a xi; qkð Þ
@xi

;

ð14Þ

and when yi ¼ 0 it is simply the negative of this, @Px yi¼0 j s;hð Þ
@x ¼ � @Px yi¼1 j s;hð Þ

@x : We
propose to use an information seeking controller of the form

xiðtþ 1Þ ¼ xðtÞþ k
@IxðS;YÞ

@xi
@IxðS;YÞ

@xi

��� ���þ e
; ð15Þ

where k > 0 is a maximum step size, and e > 0 is a small factor to prevent sin-
gularities when a local minimum of mutual information is reached. Although this
controller uses a gradient, it is not, strictly speaking, a gradient controller and a
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formal analysis of its behavior would be expected to be quite difficult. This is
because the mutual information changes at each time step due to the integration of
new sensor measurements into the Bayesian event estimate and hazard estimate.
Intuitively, the controller moves the robots in the direction of the highest immediate
expected information gain. An alternative approach would be to use a finite time
horizon over which to plan informative paths using the information gradient.
Indeed, our controller can be seen as a special case of this with a horizon length of
one time step. Such an approach would have an exponential time complexity in the
length of the horizon, however, making even a short time horizon computationally
impractical.

Empirically, the controller drives the robots to uncertain areas while veering
away from suspected hazard sites, learned through the failures of previous robots.
The robots eventually come to a stop when they estimate the event state s of the
environment with high confidence (i.e. when the entropy of /tðsÞ approaches zero).
While hazard avoidance does not explicitly appear in the control law, it is implicit
as an expected robot failure will decrease the amount of information gained at the
next time step. This is true even when robots are replaced, since the mutual
information gradient is agnostic to the replacement of sensors. It only considers the
information gain it expects to achieve with its current robots by moving them in a
particular direction. So when deciding in what direction to move, each robot bal-
ances the benefit of information received with the possibility of failure by moving in
that direction. As future work, it would also be interesting to explicitly account for
sensor losses by enforcing a total sensor loss budget, or a maximum sensor loss
rate.

4.1 Computational Considerations

Unfortunately, one can see from (13) that the computation of @IxðS; YÞ=@x is, in
general, in Oðn2n jH j jSjÞ where n is the number of sensors. For example, if the
hazard and event states are both binary, we have a complexity of Oðn2nþms þmhÞ;
where ms is the number of event grid cells and mh is the number of hazard grid
cells. Therefore this algorithm is not computationally practical for even a moderate
number of robots or grid cells.

We are currently investigating two methods for decreasing the complexity of the
control strategy, which will be detailed in a paper that is soon to follow. One
involves a successive grid refinement procedure. In this procedure the robots begin
with a coarse grid. Those grid cells that reach a threshold probability of containing
an event or hazard are re-partitioned into a finer grid, while those grid cells with
small probability are lumped together into a large cell. This procedure has the
benefit of delivering arbitrarily fine event and hazard maps. The simulations
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described in Sect. 5 use a simplified version of this procedure. The second method
that we are investigating is to assume a limited correlation structure among the grid
cells in the environment. If two grid cells are statistically independent when they are
separated by more than a fixed distance, the algorithm complexity reduces signif-
icantly. There also exist other methods for overcoming computational limitations,
which include using Monte Carlo methods to approximate the sums in (13) in a
decentralized way, as in [10], or particle filters as in [8].

5 Simulation Results

We carried out Matlab simulations with the controller (15) over R2 with the sensor
detection probability

l xi; qj
� � ¼ Pfp þ 1� Pfp � Pfn

1þ exp c xi � qj
�� ��� rsense
� �� � ;

with Pfp ¼ 0:01; Pfn ¼ 0:05; c ¼ 1 rsense ¼ 2; and the robot failure probability

a xi; qj
� � ¼ Pf;far þ 1� Pf;far � Ps;near

� �
exp � xi � qj

�� ��2
2r2fail

 !
;

with Pf;far ¼ 0; Ps;near ¼ 0:1; rfail ¼ 1:25 and uniform initial event and hazard
distributions. The control gains used in (15) were k ¼ 0:1 and e ¼ 10�10 . We used
a simplified version of the grid refinement procedure described in Sect. 4.1 in which
the environment was first divided into a 4 � 4 grid until the entropy of the event
distribution dropped below 0.1, indicating a high degree of certainty in the esti-
mates at that resolution. Then the entire grid was refined to 8 � 8, and when the
entropy again dropped below 0.1, it was refined to 16 � 16. At any time if the
probability of occupancy for an event (or hazard) was less than 10−15 for a cell, its
occupancy probability was set to zero, the event (or hazard) distribution was
renormalized appropriately, and that cell was ignored in all future event (or hazard)
distribution updates. This successive grid refinement and pruning was found to
dramatically improve computation speed.

The results of simulations with three robots, three events, and one hazard are
shown in Fig. 2. The failure of two robots can be seen in Fig. 2a by the discon-
tinuities in the green and black robot paths (new robots are introduced at the lower
left corner of the environment to compensate for the failed ones). The event dis-
tribution is shown in Fig. 2b where the locations of the three events have been
localized down to one grid square. Similarly, Fig. 2c shows the hazard distribution,
in which the hazard has been localized to a 4 � 4 block of grid squares. The robots
do not seek to refine the hazard estimate because it is sufficient for them to avoid the
hazard an continue mapping the events. The decreasing trend in the entropy (or
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uncertainty) of the event and hazard estimates can be seen in Figs. 2d. The mutual
information, shown in Fig. 2e, can be interpreted as the expected decrease in
entropy, hence it tends to be large when there are large entropy drops. The entropy
jumps at iteration 266 and 383, when the grid is refined to 8 � 8 and 16 � 16,
respectively.
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Fig. 2 This figure shows simulation results for three robots in an environment initially divided
into a 4 � 4 grid, then refined to an 8 � 8 grid at the 266th iteration, and finally to a 16 � 16 grid
at the 383rd iteration. Frame 2(a) shows the paths of the three robots which start from the lower left
of the environment. The red ‘�’ marks the location of a hazard and the three blue ‘O’s show the
locations of events. The robots with the solid green and dotted black paths both fail once when
they come too close to the hazard, after which two replacement robots are introduced at the lower
left. Frames 2(b) and 2(c) show the final event and hazard distribution estimate, respectively. The
events have been localized down to one grid square and the hazard down to a 4 � 4 region. Frame
2(d) shows the entropy, a measure of uncertainty, of the event (solid) and hazard (dotted)
estimates. Both entropies decrease as the robots learn the event and hazard locations. They jump at
the 266th and 383rd iteration when the grid is refined, as expected. The mutual information (or the
expected drop in entropy) verses time is shown in frame 2(e). a Robot paths. b Event estimate.
c Hazard estimate. d Event and hazard estimate entropy. e Mutual information
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6 Conclusions

In this paper we proposed a multi-robot control policy that utilizes measurements
about events of interest to locally increase the mutual information, while also using
the history of robot failures to avoid hazardous areas. The central theoretical con-
tribution of this paper is a new analytical expression for the gradient of mutual
information presented in Theorem 2, which provides a principled approach to
exploration by calculating robot trajectories that lead to the greatest immediate
information gain. Despite minimal data from the binary sensors and a binary failure
signal, the robot team is able to successfully localize events of interest and avoid
hazardous areas. The event state and hazard fields over the environment are esti-
mated using recursive Bayesian filters. The main drawback of the approach is high
computational complexity, which makes the controller difficult to compute in
realistic environments. We are currently investigating techniques for reducing the
complexity and decentralizing the algorithm to run over a multi-robot network.

Acknowledgements This work was funded in part by ONR MURI Grants N00014-07-1-0829,
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Motion Planning Under Uncertainty Using
Differential Dynamic Programming
in Belief Space

Jur van den Berg, Sachin Patil and Ron Alterovitz

Abstract We present an approach to motion planning under motion and sensing
un-certainty, formally described as a continuous partially-observable Markov
decision process (POMDP). Our approach is designed for non-linear dynamics and
observation models, and follows the general POMDP solution framework in which
we represent beliefs by Gaussian distributions, approximate the belief dynamics
using an extended Kalman filter (EKF), and represent the value function by a
quadratic function that is valid in the vicinity of a nominal trajectory through belief
space. Using a variant of differential dynamic programming, our approach iterates
with second-order convergence towards a linear control policy over the belief space
that is locally-optimal with respect to a user-defined cost function. Unlike previous
work, our approach does not assume maximum-likelihood observations, does not
assume fixed estimator or control gains, takes into account obstacles in the envi-
ronment, and does not require discretization of the belief space. The running time of
the algorithm is polynomial in the dimension of the state space. We demonstrate the
potential of our approach in several continuous partially-observable planning
domains with obstacles for robots with non-linear dynamics and observation models.

1 Introduction

Motion planning under uncertainty, or belief-space planning, has received con-
siderable interest in the robotics community over the past decade. The objective is
to plan a path (or rather a control policy) for a robot in partially-observable state
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spaces with spatially varying degrees of motion and sensing uncertainty, such that
the expected cost (as defined by a user-specified cost-function) is minimized.
Optimal solutions lead the robot through regions of the state space where the most
information on the state is gained through sensing and the least information is lost
due to motion uncertainty in order to maximize, for instance, the probability of
reaching a specified goal location while avoiding collisions with obstacles. This
problem is formally described as a partially-observable Markov decision process
(POMDP), on which a large body of work is available in the literature.

Solutions to POMDPs are known to be extremely complex [17], since they
attempt to compute a control policy over the belief space, which in the most general
formulation is an infinite-dimensional space of all possible probability distributions
over the (finite-dimensional) state space. Solutions based on discrete or discretized
state and action spaces are inherently subject to the “curse of dimensionality”, and
have only been successfully applied to very small and low-dimensional state
spaces.

In this paper, we present a method to approximate a locally optimal solution to
the POMDP problem with continuous state and action spaces and non-linear
dynamics and observation models, where we assume a belief can be represented by
a Gaussian distribution. Our approach uses a variant of differential dynamic pro-
gramming to perform value iteration, where the value function is approximated
using a quadratization around a nominal trajectory, and the belief dynamics is
approximated using an extended Kalman filter. The result is a linear control policy
over the belief space that is valid in the vicinity of the nominal trajectory. By
executing the control policy, a new nominal trajectory is created around which a
new control policy is constructed. This process continues with second-order con-
vergence towards a locally-optimal solution to the POMDP problem. Unlike gen-
eral POMDP solvers that have an exponential running time, our approach does not
rely on discretizations and has a running time that is polynomial in the dimension of
the state space.

Our approach builds off of and generalizes a series of previous works that have
addressed the same problem of creating applicable approximations to the POMDP
problem. Our work combines and extends ideas from previous work in order to
overcome their key limitations. In particular, our approach (i) does not assume
maximum-likelihood observations, (ii) does not assume fixed estimator or control
gains, (iii) does not require discretizations of the state and action spaces, (iv) runs in
polynomial time, (v) takes into account obstacles, and (vi) converges towards a
locally-optimal control policy given an initial nominal trajectory. We do assume
that the dynamics and observation models and cost functions are sufficiently
smooth, and that the belief about the state of the robot is well described by only its
mean and its variance. We show the potential of our approach in several illustrative
partially-observable domains containing obstacles for robots with non-linear
dynamics and observation models.
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2 Previous Work

Partially observable Markov decision processes (POMDPs) [22] provide a princi-
pled mathematical framework for planning under uncertainty in partially-observable
environments. They are known to be of extreme complexity [17], and can only be
directly applied to problems with small and low-dimensional state spaces [14].
Recently, several POMDP algorithms have been developed that use approximate
value iteration with point-based updates [1, 15, 16, 18]. These have been shown to
scale up to medium-sized domains. However, they rely on discretizing the state
space or the action space, making them inevitably subject to the “curse of dimen-
sionality”. The methods of [3, 5, 8, 21] handle continuous state and action spaces,
but maintain a global (discrete) representation of the value function over the belief
space. In contrast, our approach is continuous and approximates the value function in
parametric form only in the regions of the belief space that are relevant to solving the
problem, allowing for a running time polynomial in the dimension of the state.

Another class of works, to which our method is directly related, assume a linear-
quadratic Gaussian (LQG) framework to find approximately locally optimal feed-
back policies. In the basic LQG derivation [2], motion and sensing uncertainty have
no impact on the resulting policy. As shown in [23], the LQG framework can be
extended such that it accounts for state and control dependent motion noise, but still
implicitly assumes full observation (or an independent estimator) of the state.
Several approaches have been proposed to include partial and noisy observations
such that the controller will actively choose actions to gain information about the
state. Belief roadmaps [20] and icLQG [9] combine an iterative LQG approach with
a roadmap, but this approach does not compute a (locally) optimal solution. The
approaches of [6, 7, 19] incorporate the variance into an augmented state and use
the LQG framework to find a locally-optimal control policy. However, these
approaches assume maximum-likelihood observations to make the belief propaga-
tion deterministic. LQG-MP [24] removes this assumption, but only evaluates the
probability of success of a given trajectory, rather than constructing an optimal one.
Belief trees [4] overcome this limitation by combining a variant of LQG-MP with
RRT* to find an optimal trajectory through belief space. Vitus and Tomlin [25]
propose an alternative solution that involves solving a chance constrained optimal
control problem. However, these approaches does not solve a POMDP as they
assume fixed control gains along each section of the trajectory independent of the
context. The work of [13] takes into account state and control dependent motion
and observation noise by an interleaved iteration of the estimator and the controller.
This approach, however, does not allow for obstacles and converges towards a
locally-optimal controller that assumes fixed estimator gains. Our approach com-
bines and generalizes these approaches as it does not assume maximum-likelihood
observations, does not assume fixed control or estimator gains, and takes into
account the existence of obstacles in the environment to compute locally-optimal
policies that maximize the probability of reaching a goal location while avoiding
collisions.
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3 Preliminaries and Definitions

We begin by defining POMDPs in their most general formulation (following [22]).
Then, we specifically state the instance of the problem we discuss in this paper.

3.1 General POMDPs

Let X � R
n be the space of all possible states x of the robot, U � R

m be the space
of all possible control inputs u of the robot, and Z 2R

k be the space of all possible
sensor measurements z the robot may receive. General POMDPs take as input a
stochastic dynamics and observation model, here given in probabilistic notation:

xtþ 1 � p½xtþ 1jxt; ut�; zt � p½ztjxt�; ð1Þ

where xt 2 X ; ut 2 U; and zt 2Z are the robot’s state, control input, and received
measurement at stage t, respectively.

The belief b [xt] of the robot is defined as the distribution of the state xt given all
past control inputs and sensor measurements:

b½xt� ¼ p½xtju0; . . .; ut�1; z1; . . .; zt�: ð2Þ

Given a control input ut and a measurement zt+1, the belief is propagated using
Bayesian filtering:

b½xtþ 1� ¼ g p½ztþ 1jxtþ 1�
Z

p½xtþ 1jxt; ut�b½xt�dxt; ð3Þ

where η is a normalizer independent of xt+1. Denoting belief b[xt] by bt, and the
space of all possible beliefs by B � fX ! ½0; 1�g, the belief dynamics defined by
Eq. (3) can be written as a function b : B � U � Z ! B:

btþ 1 ¼ b½bt; ut; ztþ 1�: ð4Þ

Now, the challenge of the POMDP problem is to find a control policy pt : B !
U for all 0 � t < ‘, where ‘ is the time horizon, such that selecting the controls
ut ¼ pt½bt� minimizes the objective function:

E
z1;...;z‘

c‘ b‘½ � þ
X‘�1

t¼0

ct bt; ut½ �
" #

; ð5Þ

for given immediate cost functions c‘ and ct. The expectation is taken given the
stochastic nature of the measurements.
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A general solution approach uses value iteration [22], a backward recursion
procedure, to find the control policy pt for each stage t:

v‘½b‘� ¼ c‘½b‘� ð6Þ

vt½bt� ¼ min
ut

ct½bt; ut� þ E
ztþ 1

vtþ 1½b½bt; ut; ztþ 1��½ �
� �

ð7Þ

pt½bt� ¼ argmin
ut

ct½bt; ut� þ E
ztþ 1

vtþ 1½b½bt; ut; ztþ 1��½ �
� �

; ð8Þ

where vt½bt� : B ! R is called the value function at time t.

3.2 Problem Definition

The complexity of POMDPs stems from the fact that B, the space of all beliefs, is
infinite-dimensional, and that in general the value function cannot be expressed in
parametric form. We address these challenges in our approach by representing
beliefs by Gaussian distributions, approximating the belief dynamics using an
extended Kalman filter, and approximating the value function by a quadratization
around a nominal trajectory through the belief space.

Specifically, we assume we are given a (non-linear) stochastic dynamics and
observation model, here given in state-transition notation:

xtþ 1 ¼ f½xt; ut;mt�; mt �N ½0; I�; ð9Þ

zt ¼ h½xt; nt�; nt �N ½0; I�; ð10Þ

where mt is the motion noise and nt is the measurement noise, each drawn from an
independent Gaussian distribution with (without loss of generality) zero mean and
unit variance. Note that the motion and sensing uncertainty can be state and control
input dependent through manipulations on mt and nt within the functions f and h,
respectively.

The belief, denoted bt ¼ ðx̂t;RtÞ, is assumed to be defined by the mean x̂t and
variance Rt of a Gaussian distribution N ½x̂t;Rt� of the state xt . Similar to the
general case, our objective is to find a control policy ut = pt [bt] that minimizes the

cost function E c‘½b‘� þ
P‘�1

t¼0 ct½bt; ut�
h i

. In our case, we assume in addition that

the Hessian matrix @2c‘
@b@b ½b� is positive-semidefinite for all b, and that the Hessian

matrix @2ct
@u@u ½b; u� is positive-definite for all b, u, and t. Further, we assume that the

initial belief b0 ¼ ðx̂0;R0Þ is given.
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4 Approach

To approximate a locally optimal solution to the Gaussian POMDP problem as
formulated above, we follow the general solution approach as sketched in Sect. 3.1.
First, we approximate the belief dynamics using an extended Kalman filter. Second,
we approximate the value function using a quadratic function that is locally valid in
the vicinity of a nominal trajectory though the belief space. We then use a variant of
differential dynamic programming to perform the value iteration, which results in a
linear control policy over the belief space that is locally optimal around the nominal
trajectory. We then iteratively generate new nominal trajectories by executing the
control policy, and repeat the process until convergence to a locally-optimal
solution to the POMDP problem. We discuss each of these steps in this section, and
analyze the running time of our algorithm.

4.1 Belief Dynamics and the Extended Kalman Filter

Given a current belief bt ¼ ðx̂t;RtÞ, a control input ut, and a measurement zt+1, we let
the belief evolve using the extended Kalman filter (EKF). The EKF is widely used
for state estimation of non-linear systems [26], and uses the first-order approxima-
tion that for any vector-valued function f[x] of a stochastic variable x we have:

E½f½x�� 	 f½E½x��; Var½f½x�� 	 @f
@x

½E½x�� � Var½x� � @f
@x

½E½x��T : ð11Þ

The EKF update equations are then given by:

x̂tþ 1 ¼ f½x̂t; ut; 0� þKtðztþ 1 � h½f½x̂t; ut; 0�; 0�Þ; ð12Þ

Rtþ 1 ¼ ðI � KtHtÞCt; ð13Þ

where

Ct ¼ AtRtAT
t þMtMT

t ; At ¼ @f
@x

½x̂t; ut; 0� Mt ¼ @f
@m

½x̂t; ut; 0�;

Kt ¼ CtH
T
t ðHtCtH

T
t þNtN

T
t Þ�1; Ht ¼ @h

@x
½f½x̂t; ut; 0�; 0�; Nt ¼ ½f½x̂t; ut; 0�; 0�:

Note that all of these matrices are functions of bt and ut. Equations (12) and (13)
define the (non-linear) belief dynamics. The second term of Eq. (12), called the
innovation term, depends on the measurement zt+1. Since the measurement is
unknown in advance, the belief dynamics are stochastic. Using Eq. (10) and the
assumptions of Eq. (11), the innovation term is distributed according to
N ½0;KtHtCt�:
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Defining bt ¼ x̂t
vec½Rt �

" #
as a true vector, containing the mean x̂t and the columns

of the variance Rt (obviously, in our implementation we exploit the symmetry of Rt

to eliminate the redundancy), the belief dynamics are given by:

btþ 1 ¼ g½bt;ut� þwt; wt �N ½0;W ½bt; ut��; ð14Þ

where

g½bt; ut� ¼ f½x̂t; ut; 0�
vec½ðI � KtHtÞCt�
� �

; W bt; ut½ � ¼ KtHtÞCt 0
0 0

� �
: ð15Þ

4.2 Value Iteration

We perform value iteration backward in time to find a locally optimal control policy
using a variant of differential dynamic programming [10]. We approximate the
value function vt [b] as a quadratic function of the form

vt½b� ¼ 1
2
bTStbþ bTst þ st; ð16Þ

with St 
 0, that is approximately valid around a nominal trajectory in belief space
ð�b0; �u0; . . .; �b‘; �u‘Þ; which we assume is given (we will discuss initialization and
iterative convergence of the nominal trajectory to a locally optimal trajectory in the
next subsection).

For the final time t ¼ ‘, the value function v‘ is approximated by setting

S‘ ¼ @2c‘
@b@b ½�b‘�, s‘ ¼ @c‘

@b ½�b‘� � S‘�b‘; and s‘ ¼ c‘½�bn� � �bT‘ s‘ � 1
2
�bT‘ S‘�b‘; which

amounts to a second-order Taylor expansion of c‘ around the point �b‘. The value
functions and the control policies for the stages ‘[ t
 0 are computed by back-
ward recursion—following Eq. (7), we get:

vt½b� ¼ min
u

ct½b; u� þE vtþ 1½g½b; u� þwt�½ �ð Þ

¼ min
u

ct½b; u� þ 1
2
g½b; u�TStþ 1g½b; u� þ ½b; u�Tstþ 1 þ stþ 1

�

þ 1
2
tr Stþ 1W ½b; u�½ �

� ð17Þ

¼ min
u

qt½b; u�ð Þ; ð18Þ

where qt [b, u] groups together the terms in Eq. (17). The trace-term in Eq. (17)
follows from the fact that E[xT Qx] = E[x]T Q E[x] + tr[Q Var[x]] for any
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stochastic variable x. It is this term that ensures that the stochastic nature of the
belief dynamics is accounted for in the value iteration. To approximate the optimal
value of u as a function of b we take the second-order Taylor expansion of qt [b,
u] in ð�bt; �utÞ:

vt½b� 	 min
~u

1
2

~b
~u

� �T
Ct ET

t
Et Dt

� �
~b
~u

� �
þ ~b

~u

� �T ct
dt

� �
þ et

 !
; ð19Þ

where ~u ¼ u� �ut and ~b ¼ b� �bt; and

Ct ¼ @2qt
@b@b

�bt; �ut½ �; Dt ¼ @2qt
@u@u

�bt; �ut½ �; Et ¼ @2qt
@u@b

�bt; �ut½ �;

cTt ¼ @qt
@b

�bt; �ut½ �; dTt ¼ @qt
@u

�bt; �ut½ �; et ¼ qt �bt; �ut½ �:
ð20Þ

Equation (19) is then solved by expanding the terms, taking the derivative with
respect to ~u and equating to 0 (for ~u to be actually a minimum, Dt must be positive-
definite—we will discuss this issue in Sect. 4.4). We then get the solution:

~u ¼ �D�1
t Et~b� D�1

t dt: ð21Þ

Hence, the control policy for time t is linear and given by:

ut ¼ ptðbtÞ ¼ Ltbt þ lt; Lt ¼ �D�1
t Et; lt ¼ �D�1

t ðdt � Et�btÞþ �ut: ð22Þ

Filling Eq. (21) back into Eq. (19) gives the value function vt [b] as a function of
only b in the form of Eq. (16). Expanding and collecting terms gives:

St ¼ Ct � ET
t D

�1
t Et; ð23Þ

st ¼ ct � ET
t D

�1
t dt � St�bt; ð24Þ

st ¼ et � 1
2
dTt D

�1
t dt � �bTt st �

1
2
�bTt St�bt: ð25Þ

This recursion then continues by computing a control policy for stage t − 1.

4.3 Iteration to a Locally-Optimal Control Policy

The above value iteration gives a control policy that is valid in the vicinity of the
given nominal trajectory. To let the control policy converge to a local optimum, we
iteratively update the nominal trajectory using the most recent control policy, as in
differential dynamic programming [10]. Given the initial belief b0 ¼ ðx̂0;R0Þ, and
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an (arbitrary) initial series of control inputs �uð0Þ0 ; . . .; �uð0Þ‘�1; which can be obtained
using RRT motion planning [11], for instance, let the initial control policy be given

by Lt
(0) = 0 and Ið0Þt ¼ �uð0Þt for all t. We then compute the nominal trajectory

ð�bðiÞt ; �uðiÞÞ of the i’th iteration (starting with i = 0) by forward integrating the control
policy in the deterministic (zero-noise) belief dynamics:

�bðiÞ0 ¼ b0; �uðiÞt ¼ LðiÞt �bðiÞt þ IðiÞt ; �bðiÞtþ 1 ¼ g �bðiÞt ; �uðiÞt
h i

; ð26Þ

Then, using the value iteration procedure as described above given the nominal
trajectory of the i’th iteration, we find the control policy, i.e. the matrices L(i+1) and
vectors l(i+1) for the i + 1’th iteration. We then recompute a nominal trajectory
using Eq. (26), and reiterate. This lets the control policy converge to a locally
optimal trajectory with a second-order convergence rate [12].

4.4 Ensuring Convergence

To ensure that the above algorithm in fact converges to a locally-optimal control
policy, the algorithm must be augmented with some subtle but important changes,
common to approaches based on differential dynamic programming [10, 12, 27].

First, to make sure that in each step of the value iteration we actually minimize the
value function (rather than maximizing it), matrixDtmust be positive definite, which
is not the case in general. In addition, to ensure that the trajectory iteration converges to

a local optimum, the matrices S as well as the entire matrix Ct ET
t

Et Dt

� �
of Eq. (19)

must be positive-semidefinite [12]. To enforce these requirements, while retaining the
most amount of second-order information about the value function, we proceed as

follows. Let Rt ¼ @2ct
@u@u

�bt; �ut½ �;which is by definition positive-definite (see Sect. 3.2).
Note that ct [b,u] is one of the terms of qt [b,u], of whichDt is theHessianwith respect

to u. Thenwe decompose thematrix ~Qt ¼ Ct ET
t

Et Dt � Rt

� �
intoQt ¼ VKVT such that

K is a diagonal matrix containingQt’s eigenvalues. Second, we construct ~K by setting
all negative elements of K to 0, and construct ~Qt ¼ V ~KVT : Matrix ~Qt is now a

positive-semidefinite version of Qt . Subsequently, we let
~Ct ~ET

t
~Et ~Dt

� �
¼

~Qt þ 0 0
0 Rt

� �
; such that ~Dt is positive definite, and is positive-semidefinite. Now, the

matricesCt, Dt, andEt are replaced by ~Ct; ~Dt; and ~Et, respectively, in Eqs. (21)–(25). If
these changes are made, it is automatically guaranteed that the matrices St are

positive-semidefinite. Note that s‘ is positive-semidefinite too, since @2c‘
@b@b

�b‘½ � is
positive-definite by definition (see Sect. 3.2).
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These changes do not affect the second-order convergence characteristic of the
algorithm. However, as with Newton’s method, this second order convergence is
only achieved if the current nominal trajectory is already close to the locally-optimal
trajectory. If the current nominal trajectory is “far away” from the local optimum,
using second-order approaches may overshoot local-minima, which significantly
slows down convergence, or even results in divergence. To address this issue, we
make an additional change to the algorithm, following [27]. We limit the increment
to the control policy by adding a parameter ɛ to Eq. (21): ~u ¼ �~D�1

t
~Et~b� e~D�1

t dt:
Initially, ɛ = 1, but each time a new control policy is computed that creates a tra-
jectory with higher cost than the previous nominal trajectory (the cost of a trajectory
is evaluated using value iteration as above without updating the control policy), the
new trajectory is rejected, and ɛ is reduced by a factor b\1, and the iteration
continues. When a new trajectory is accepted, e is reset to 1. This change is
equivalent to using backtracking line search to limit the step size in Newton’s
method and guarantees convergence to a locally-optimal control policy [27].

4.5 Running Time Analysis

Let us analyze the running time of our algorithm. The dimension of the state is n,
and we assume for the sake of analysis that the dimension of the control inputs and
the measurements are O(n). As the belief contains the covariance matrix of the state,
the dimension of a belief is O(n2). Hence, the matrix Ct of Eq. (20) contains O(n

4)
entries. Each of these entries is computed using numerical differentiation, and
requires multiplying matrices of size n � n within the belief propagation, taking O
(n3) time. Hence, the total running time of a single step of the value iteration is O
(n7). A complete cycle of value iteration takes ‘ steps (‘ being the time horizon),
bringing the complexity to O(‘n7). The number of such cycles needed to obtain
convergence cannot be expressed in terms of n or ‘, but as noted before, our
algorithm converges with a second-order rate to a local optimum.

5 Environments with Obstacles

We presented our approach above for general immediate cost functions c‘½b� and ct
[b, u]. In typical LQG-style cost functions, the existence of obstacles in the envi-
ronment is not incorporated, while we may want to minimize the probability of
colliding with them. We incorporate obstacles into the cost functions as follows.

Let O � X be the region of the state space that is occupied by obstacles. Given a
belief bt ¼ ðx̂t;RtÞ; the probability of colliding with an obstacle is given by the
integral overO of the probability-density function ofN ½x̂t;Rt�. As described in [24],
this probability can be approximated by using a collision-checker to compute the
number r½bt� of standard-deviations one may deviate from the mean before an
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obstacle is hit. A lower-bound on the probability of not colliding is then given by
c½n=2; r½bt�2=2�; where c is the regularized gamma function, and n the dimension of
the state. A lower-bound on the total probability of not colliding along a trajectory is
subsequently computed as

Q‘�1
t¼0 c½n=2; r½bt�2=2�; and this number should be maxi-

mized. To fit this objective within the minimizing and additive nature of the POMDP
objective function, we note that maximizing a product is equivalent to minimizing
the sum of the negative logarithms of the factors. Hence, we add to ct [b, u] the term
f ½r½b�� ¼ �log c½n=2; r½b�2=2� to account for the probability of colliding with
obstacles (note that f ½r½b�� 
 0Þ; potentially multiplied by a scaling factor to allow
trading-off with respect to other costs (such as the magnitude of the control input).

While the above approach works well, it should be noted that in order to compute
the Hessian of qt [b, u] at b̂t (as is done in Eq. (20)), a total of O(n

4) collision-checks
with respect to the obstacles need to be performed, since the obstacle term f [r [b]] is
part of qt [b, u]. As this can be prohibitively costly, we can instead approximate the
Hessian of f [r [b]] using linearizations, which involves only O(n2) collision checks.
To this end, let us approximate f [r] by a second-order Taylor expansion at r½b̂t�:

f ½r½b�� 	 1
2
aðr½b� � r½�bt�Þ2 þ bðr½b� � r½�bt�Þþ f ½r½�bt��; ð27Þ

where a ¼ @2f
@r@r ½r½�bt�� and b ¼ @f

@r ½r½�bt�� (note that this requires only one
collision-check). Now, we approximate ðr½b� � r½�bt�Þ using a first-order Taylor
expansion:

r½b� 	 ðb� �btÞTaþ r½�bt� , r½b� � r½bt� 	 ~b
T
a; ð28Þ

where aT ¼ @r
@b ½�bt� (note that this requires O(n2) collision-checks). By substituting

Eqs. (28) in (27), we get

f ½r½b�� 	 1
2
~b
TðaaaTÞ~bþ ~b

TðbaÞþ f ½r½�bt��: ð29Þ

Hence, aaaT is an approximate Hessian of the obstacle term f [r [b]] of qt [b, u] that
requires only O(n2) collision-checks to compute. Further, aaaT is guaranteed to be
positive-semidefinite since a > 0.

6 Results

We evaluate our approach in two scenarios with obstacles: a point robot with linear
dynamics that is navigating in a 2-D light-dark environment (adapted from Bry and
Roy [4]) and a non-holonomic car-like robot with second-order dynamics moving
in a partially-observable environment with spatially varying sensing capabilities.
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Our method takes as input a collision-free trajectory to the goal. A naïve tra-
jectory computed using an uncertainty-unaware planner might stray very close to
the obstacles in the environment and accumulates considerable uncertainty during
execution. We show that our method improves the input trajectory to compute a
locally-optimal trajectory and a corresponding control policy that safely guides the
robot to the goal, even in the presence of large motion and measurement noise.

6.1 Light-Dark Environment

We consider the case of a point robot moving in a 2-D environment with obstacles
shown in Fig. 1. The robot localizes itself using measurements from sensors in the
environment, the reliability of which varies continuously as a function of the
horizontal coordinate of the robot’s position. The experiment is set up such that the
robot needs to move away from the goal in order to better localize itself before
moving through the narrow passage and reaching the goal.

We assume the following linear dynamics model with control-dependent noise:

xtþ 1¼ f xt, ut,mt½ � ¼ xt þ ut þM ut½ � �mt; ð30Þ

where the xt ¼ ðx; yÞ 2 R
2 is the robot’s position, the control input ut 2 R

2 is the
robot’s velocity, and the matrix M ut½ � scales the motion noise mt proportional to the

Fig. 1 Point robot moving in a 2-D environment with obstacles. aAn initial collision-free trajectory
is computed using an RRT planner. b Nominal trajectory and the associated beliefs of solution
computed using our method. The robot moves away from the goal to better localize itself before
reaching the goal with significantly reduced uncertainty. Execution traces of the robot’s true state
starting from the initial belief (c) and a different initial belief (d), while following the computed
control policy. e Nominal trajectory computed by ignoring the innovation term in the belief
dynamics. The optimization is unable to progress sufficiently to the region of the environment with
reliable sensing, resulting in considerable uncertainty in the robot state near the obstacles and at the
goal. f Execution traces of the robot’s true state starting from the initial belief and ignoring the
innovation term are much noisier as compared to the execution traces shown in (c)
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control input ut. We assume the following linear observation model with state-
dependent noise:

zt¼ h xt,nt½ � ¼ xt þN xt½ � � nt; ð31Þ

where the measurement vector zt 2 R
2 consists of noisy measurements of the

robot’s position and the matrix N xt½ � scales the measurement noise based on a
sigmoid function of the horizontal coordinate of the robot’s position x (as shown in
Fig. 1). The robot is able to obtain reliable measurements in the bright region of the
environment, but the measurements become noisier as the robot moves into the dark
regions.

We use the following definitions of cl bl½ � and ct bt; ut½ � in the cost function to be
minimized (Eq. (5)):

c‘ b‘½ � ¼ x̂T‘Q‘x̂‘ þ tr Q‘R‘½ �; ct bt; ut½ � ¼ uTt Rtut þ tr QtRt½ � þ f r b‘½ �½ �; ð32Þ

where the term x̂T‘Q‘x̂‘ þ tr Q‘R‘½ � ¼ E xT‘Q‘x‘
� �

encodes the final cost of arriving at
the goal, uTt Rtut penalizes the control effort along the trajectory, tr QtRt½ � penalizes
the uncertainty, and f r bt½ �½ � encodes the obstacle cost term. We use recurring state
and control cost matrices of Qt = I and Rt = I and the final cost matrix, Q‘ = 10‘I in
our experiments.

Results and discussion: In our experiment, we provide a collision-free initial
trajectory computed using an RRT planner [11] (Fig. 1a) as input to our method.
The control policy convergence took 2.75 s on a 3.33 Ghz Intel® i7TM PC.
Figure 1b shows the nominal trajectory and associated beliefs of the solution
computed by our method. The robot’s trajectory visits the region of the environ-
ment with reliable sensing for better localization before moving through the narrow
passage.

We simulated the robot’s execution of the computed control policy using the
given dynamics and measurement models with synthetic noise. Figure 1c shows the
traces of the true state of the robot x across 25 simulations where the initial state of
the robot x0 is sampled from the initial belief b0. We also initialized the robot state
from a different initial belief to evaluate the robustness of the control policy. The 25
execution traces from these runs are shown in Fig. 1d. Even if the initial belief is far
away from the nominal trajectory, the control policy is able to safely guide the robot
to the goal. We also evaluated our method quantitatively by computing the per-
centage of executions in which the robot was able to avoid obstacles across 1000
simulation executions for 10 random initial beliefs. In our experiments, in 93 %
(standard deviation: 3 %) of the executions, the robot was able to safely traverse the
narrow passage without colliding with obstacles.

Figure 1e shows the nominal trajectory computed by ignoring the innovation
term in Eq. (12), i.e. making the assumption that all future observations will obtain
their maximum-likelihood measurement estimates. Under this assumption, the
optimization is unable to progress sufficiently to the region of the environment with
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reliable sensing, which results in considerable uncertainty in the robot state near the
obstacles and the goal. As expected, the execution traces from 25 simulations
(Fig. 1f) are considerably noisier as compared to the execution traces obtained
using our method. The expected cost of the solution found using our method is 19.9
units while the expected cost of a solution that ignores the innovation term is 143.0
units for the parameters suggested above. This indicates that it is important to take
into account the true belief of the robot while computing the control policy and
ignoring the innovation term can lead to sub-optimal policies.

Our solution also agrees with the solution found by Bry and Roy [4] for this
experiment. Our method directly optimizes the path rather than relying on RRT*,
resulting in an order of magnitude faster computation times.

6.2 Non-holonomic Car-Like Robot

We consider the case of a non-holonomic car-like robot navigating in a 2-D
environment with obstacles shown in Fig. 2. We initialize our method with a
collision-free trajectory to the goal which is computed using an RRT planner [11].

The state x ¼ ðx; y; h; vÞ 2R
4 of the robot consists of its position (x, y), its

orientation h and speed v. The control input vector u ¼ ða;/Þ consists of an

Fig. 2 A car-like robot with second order dynamics moving in a 2-D environment with obstacles.
The robot obtains measurements from two beacons (marked by blue squares) and an on-board
speedometer. a An initial collision-free trajectory is computed using an RRT planner. b Nominal
trajectory computed using our method. Notice how the car-like robot localizes itself by moving
closer to the beacon before reaching the goal. c Execution traces of the robot’s true state starting
from the initial belief for the control policy computed in (b). The jaggedness of the paths is due to
the large amount of artificial motion and measurement noise introduced in the simulation. The
control policy is safely able to guide the robot to the goal, in spite of the large amount of noise.
d Nominal trajectory computed by varying the cost matrices (Qt = 10I). The robot tries to reduce
the uncertainty in its state by visiting both the beacons. e Execution traces of the robot’s true state
starting from the initial belief for the control policies computed in (d)
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acceleration a and the steering wheel angle /. The motion uncertainty is scaled by a
constant matrix M. This gives the following non-linear dynamics model:

xtþ 1 ¼ f xt; u;mt½ � ¼
xt þ svt cos ht
yt þ svt sin ht

ht þ svttan(/Þ=d
vt þ sa

2
664

3
775þMmt ð33Þ

where s is the time step and d is the length of the car-like robot.
The robot localizes itself using signal measurements from two beacons b1 and b2

placed in the environment at locations �x1; �y1 and �x2; �y2 respectively. The strength of
the signal decays quadratically with the distance to the beacon. The robot also
measures its current speed using an on-board speedometer. The measurement
uncertainty is scaled by a constant matrix N. This gives us the following non-linear
observation model:

zt ¼ h xt; nt½ � ¼
1= xt � �x1ð Þ2 þ yt � �y1ð Þ2 þ 1
� 	

1= xt � �x2ð Þ2 þ yt � �y2ð Þ2 þ 1
� 	

vt

2
64

3
75þNnt; ð34Þ

where the observation vector zt 2 R
3 consists of two readings of signal strengths

from the beacons and a speed measurement from the speedometer. Figure 2a
visually illustrates the quadratic decay in the beacon signal strengths in the envi-
ronment. The robot is able to obtain very reliable measurements in the bright
regions of the environment, but the measurements become noisier as the robot
moves into the dark regions due to the decreased signal-to-noise ratio.

We consider a similar cost function as Eq. (32) for this experiment and use
recurring state and control input cost matrices of Qt = I and Rt = I and the final cost
matrix, Q‘ ¼ 10‘I; where ‘ is the number of sections along the initial RRT
trajectory.

Results and discussion: The control policy computation took 15.3 s on a
3.33Ghz Intel® i7TM PC. Figure 2b shows the nominal trajectory and associated
beliefs of the solution computed by our method. The robot moves closer to the
beacon for better localization before reaching the goal. In contrast to the initial
trajectory (Fig. 2a), the locally-optimal trajectory also moves away from the
obstacles and takes a safer path to the goal.

Figure 2c shows the traces of the true state of the robot x across 25 simulations
where the initial state of the robot x0 is sampled from the a priori belief b0. We
evaluated our method quantitatively by computing the percentage of executions in
which the robot was able to avoid obstacles across 1000 simulation executions
where the initial state of the robot x0 is sampled from the a priori belief b0. In our
experiments, 96 % of the executions were collision-free. The results indicate that
the computed control policy is safely able to guide the robot to the goal region in
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spite of the large amount of motion and measurement noise encountered during
execution.

The cost matrices Qt and Rt determine the relative weighting between mini-
mizing uncertainty in the robot state and minimizing control effort in the objective
function. Figure 2d shows the nominal trajectory of the solution computed by
changing the cost matrix Qt = 10I. Notice that the trajectory visits both the beacons
for better localization and minimizing uncertainty, at the expense of additional
control effort. We simulated 1000 execution runs using the new control policy, of
which 98 % were collision-free.

Figure 3 shows the nominal trajectory when a different initial trajectory is
provided as input to our method. The presence of obstacles in the environment
forces our method to locally optimize trajectories within a single homotopy class. In
contrast to considering a large number of initial candidate trajectories for evaluation
as in LQG-MP [24], our method would only require trajectory initializations within
each homotopy class to compute a globally optimal solution.

7 Conclusion and Future Work

We presented a general approach to motion planning under uncertainty by com-
puting locally-optimal solutions to continuous POMDP problems in environments
with obstacles. Our approach generalizes earlier work on Gaussian-based POMDPs
by removing several key limiting assumptions, and overcomes the main drawback
of approaches based on discretizations of the state space by having a running time
that is polynomial (O(n7)) rather than exponential in the dimension of the state.

Our approach has several limitations. First, we represent beliefs using Gaussian
distributions. This may not be an acceptable approximation in some applications,
for instance ones where multi-modal beliefs are expected to appear. However, the
class of problems where Gaussian distributions are applicable is large, as is proven
by the widespread use of the extended Kalman filter for state estimation, for
instance in mobile robotics. Second, we require the dynamics, observation, and cost
functions to be smooth, since our method relies on gradients to iterate towards a
locally-optimal solution. Our approach would therefore not work directly in some
experimental domains shown in previous work where there are abrupt boundaries
between sensing regimes (e.g. inside or outside the field of view of a camera).

Fig. 3 A different initial
trajectory results in a different
locally-optimal solution. Our
method is able to improve
trajectories within a single
homotopy class
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Subjects of ongoing and future work include improving the running time of the
algorithm. While O(n7) is polynomial, it may still be too high for robots with
complex dynamics and high-dimensional state spaces. The running time can
potentially be brought down to O(n5) if we can avoid computing Hessian matrices.
A derivation of our approach based on a quasi-Newton variant of differential
dynamic programming [27] may achieve this, and may allow for the direct appli-
cation of our approach to real-world domains involving complex dynamics such as
autonomous quadrotor flight, medical needle steering, or even manipulation of
deformable tissue.
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Rosbridge: ROS for Non-ROS Users

Christopher Crick, Graylin Jay, Sarah Osentoski, Benjamin Pitzer
and Odest Chadwicke Jenkins

Abstract We present rosbridge, a middleware abstraction layer which provides
robotics technology with a standard, minimalist applications development framework
accessible to applications programmers who are not themselves roboticists. Rosbridge
provides a simple, socket-based programmatic access to robot interfaces and algo-
rithms provided (for now) by ROS, the open-source “Robot Operating System”, the
current state-of-the-art in robot middleware. In particular, it facilitates the use of web
technologies such as Javascript for the purpose of broadening the use and usefulness
of robotic technology. We demonstrate potential applications in the interface design,
education, human-robot interaction and remote laboratory environments.

1 Introduction

At present, we are at the cusp of a revolution in robotics. For most of the field’s
history, scientific progress has been hindered by the fact that to have a robot meant
investing a great deal in its mechanical engineering and low-level control systems.
The result being that every researcher had a different system with different
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capabilities. Furthermore, robots were extremely expensive, both in terms of money
and researchers’ time. Only very well-funded laboratories could have a robot, and
the scope of the robot’s activity was constrained by the resources, research focus
and imagination of the scientists and engineers that created it.

The emergence of widely-available common robot architectures promises to
mitigate the “silo effect” that has heretofore lessened the impact and wider appli-
cation of research contributions within robotics. Furthermore, developments in
robot middleware have begun to create the software engineering infrastructure vital
to fostering interoperability and code reuse, a necessary prerequisite to the use of
robots on a large scale.

However, the current state of robot middleware is such that users and developers
must make a heavy ontological commitment to a particular environment and phi-
losophy in order to use it to its full effect. Furthermore, middleware designers have
(perhaps by necessity) assumed that users of their systems would be roboticists
themselves, well-versed in the low-level systems programming and complex con-
trol and decision algorithms which have always been a part of robotics research. We
developed rosbridge to expose these systems to the much wider world of general
applications developers, with the hope of unleashing for the first time a “web-scale”
revolution in robot availability and accessibility.

2 Background

Several robot middleware system have been proposed to enable code sharing
among roboticists. These middleware systems include Player/Stage [8], the
Carnegie Mellon Navigation Toolkit (CARMEN) [24], Microsoft Robotics Studio
[13], YARP [17], Lightweight Communications and Marshalling (LCM) [12], and
ROS [20], as well as other systems [14]. These middleware systems provide
common interfaces that allow code sharing and reuse. While middleware systems
differ in their design and features, they typically provide a communication mech-
anism, an API for preferred languages, and a mechanism for sharing code through
libraries or drivers. Middleware systems typically require developers to code within
the middleware framework, and often within a specified build environment.

At their heart, many of these middleware packages provide a messaging and
marshalling protocol between processes running on multiple machines connected in
some fashion to robotic hardware. The framework permits, say, a stereo camera to
deliver images to a stereo image processor, which in turn can send a depth map to
an object recognition routine, which then routes coordinates to an inverse-
kinematics driver, which sends motor commands to processes delivering voltages to
individual servos. In a complex robot architecture, the number of independent
processes and the information that interconnects them quickly becomes massive.
Even so, deep down, the system is merely serializing and routing messages, and
rosbridge takes advantage of this fact. By way of analogy, web applications have
developed huge and complex backends that span continents and perform
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breathtaking feats of traffic analysis, shaping, routing, data acquisition and con-
glomeration, but still communicate with browsers and each other over the HTTP
protocol. Likewise, robots and their controlling middleware can grow arbitrarily
complex on the back end, but with rosbridge they can communicate with an
application layer over a single socket and a plain-text protocol.

3 ROS

Rosbridge is designed to work initially within the paradigm established by the ROS
middleware system currently maintained by theOpen Source Robotics Foundation.
ROS uses a peer-to-peer networking topology; systems running ROS often consist
of a number of processes called nodes, possibly on different machines, that perform
the system’s computation. Nodes communicate with each other by passing mes-
sages. Under ROS, messages are data structures made up of typed fields. Messages
may be made up of standard primitive data types, as well as arrays of primitives.
Messages can include arbitrarily nested structures and arrays.

Nodes can use two types of communication to send messages within the ROS
framework. The first is synchronous and is called a service. Services are much like
function calls in traditional programming languages. Services are defined by a
string name and a pair of messages: a request and a response. The response returns
an object which may be arbitrarily complex, ranging from a simple boolean indi-
cating success or failure to a large point cloud data structure. Only one node can
provide a service of a specific name.

The second type of communication is asynchronous and is called a topic. Topics
are streams of objects that are published by a node. Other nodes, “listeners”, may
subscribe by registering a handler function that is called whenever a new topic
object becomes available. Unlike services, listener nodes are unable to use their
subscription to the topic to communicate to the publisher. Multiple nodes may
concurrently publish and/or subscribe to the same topic and a single node may
publish and/or subscribe to multiple topics.

Unlike many other robot middleware systems, ROS is more than a set of libraries
that provide only a communication mechanism and protocol. Instead, nodes are
developed within a build system provided by ROS. The intent is that a system
running ROS should be comprised of many independent modules. The build system
is built on top of CMake [16], which performs modular builds of both nodes and the
messages passed between them.

Furthermore, ROS has assimilated a number of tools, algorithms and systems
which can serve as a basis for complex robot control. Thus a full suite of ROS
packages provides vision processing algorithms [3], 3D point cloud interpretation
[21] and simultaneous localization and mapping (SLAM) [10], among many others.
This represents the largest effort to date to foster a robotics community that supports
code-sharing and building on the prior work of others. This alone serves as reason
for applying the rosbridge architecture to ROS initially.
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4 Rosbridge

Rosbridge provides an additional level of abstraction on top of ROS, as depicted in
Fig. 1. Rosbridge treats all of ROS as a “back end”. This shields application
developers from needing intimate knowledge of low-level control interfaces,
middleware build systems and sophisticated robotic sensing and control algorithms.
At a bare minimum they must understand the build and transportation mechanisms
of the middleware package. Rosbridge layers a simple socket serialization protocol
over all of this complexity, on top of which application developers of all levels of
experience can create applications.

ROS abstracts individual robot capabilities, allowing robots to be controlled
through messages. It also provides facilities for starting and stopping the individual
ROS nodes providing these capabilities. Rosbridge encapsulates these two aspects
of ROS, presenting to the user a unified view of a robot and its environment. The
Rosbridge protocol allows access to underlying ROS messages and services as
serialized JSON objects, and in addition provides control over ROS node execution
and environment parameters (Fig. 2).

Fig. 1 Recreating traditional abstraction layers in robotics with rosbridge. As depicted at left,
software development depends on well-established layers of abstraction. Developers and engineers
working at each layer possess very different skill sets, but the enterprise succeeds due to
well-defined abstractions and interfaces. At present, robotics must deal with all of these layers at
once, limited by both their own skills and by the unwieldiness inherent in poorly-abstracted
systems (center). At right, rosbridge attempts to establish a more clear abstraction boundary to
address this problem
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Rosbridge allows simple message handling over both HTML5 websockets and
standard POSIX IP sockets. For example, a simple Python client which handles data
being published on a ROS topic called “/sensorPacket” can be written, simply, as

host_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host_sock.connect((host_address, host_port))
host_sock.send(’raw\r\n\r\n’)
host_sock.send(’\x00{"receiver":"/rosbridge/subscribe","msg":["/sensorPacket",0,]}\xff’)
while True:

incoming = source_socket.recv(1024)
#handle sensorPacket data

This paradigm can be exploited in any language that supports IP sockets, which
is to say, all of them. Thus rosbridge enables robot application development in a
user’s language of choice.

5 ROSJS

Computing paradigms have developed over the years, from batch systems to
timeshared mainframes to standalone desktops to client-server architectures to
ubiquitous web-based applications. Current technology allows transparent admin-
istration, redundant storage, and instantaneous deployment of software running on
wildly heterogenous platforms, from smartphones to multicore desktops. This rel-
atively new and extremely ecosystem has spawned a population of users who
understand basic web technologies such as HTML and Javascript [7]. Familiarity
with basic web technologies extends beyond expert application developers to users
who would not necessarily call themselves programmers, but who nevertheless use
the web for all manner of creation and communication and are familiar with the
basic technologies. One of the goals of rosbridge is to broaden robotics to this vast

Fig. 2 Rosbridge serializes all applicable ROS topics and services over a single socket interface
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untapped population of writers, artists, students, and designers. Javascript has
become the default language of the web and as such is one of the most popular
languages in the world. We hope to leverage a small part of that popularity to open
robotics to an entirely new audience and to make working with robotics easier for
those who are already familiar.

Because this is one of rosbridge’s primary goals, we have provided a large and
full-featured rosbridge library in Javascript, known as rosjs. rosjs is designed to
integrate ROS with the web as unobtrusively and universally as possible. Its only
advanced dependency is on the HTML5 [19] technology of websockets. Currently
browsers such as Safari, Opera, and Chrome fully support them, as does the nightly
build of Firefox. Universality has been one of the key factors in the success of the
web, and accordingly rosjs is implemented as a simple Javascript library, com-
pletely agnostic with respect to preferred development frameworks. Rosbridge is
built using serialized JSON objects, which are themselves basic Javascript object
syntax.

rosjs is now a large library supporting many complex features for visualization
and interaction with sophisticated ROS-based manipulation and navigation algo-
rithms. However, it can be used for extremely simple code. The following
demonstrates how little Javascript code is required to send navigation commands to
a robot.

<html><head>
<script>type="text/javascript" src="ros.js"</script>
...
var ros = new connection("ws://10.100.0.100:9090")
...
ros.publish(’/cmd_vel’,’geometry_msgs/Twist’,

’{"linear:{"x":’+x+’,"y":0,"z":0},"angular:{"x":0,"y":0,"z":’+z+’}}’);
...

JSON is simple enough that the serialization can be done by hand, as in the
above example. However, many JSON libraries exist to make the construction
easier and less error-prone.

rosjs was designed to meet the needs of developers with web programming
experience. There are multiple advantages to the ability to develop robot applica-
tions in the browser. Web browsers are familiar and widely-used interfaces, even by
non-techical users. Allowing users to access robots through the internet may pro-
vide insights into new applications for robotics, as well be used as a tool to recruit
potential scientists to the field. Javascript allows for rapid and flexible user interface
and visualization development. Applications developed within a web browser are
also portable across platforms, and updates and new functionality can be easily
provided.
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6 Rosbridge in Remote Laboratories

While middleware systems allow for code sharing and reuse, many researchers are
limited by the overhead (and sometimes pure impossibility) of reproducing results
on similar platforms. Large platforms like mobile manipulators are expensive and
difficult to obtain for researchers at smaller institutions or companies. It is rare for
researchers to have access to common platforms, let alone shared data, especially in
fields focused on active learning or those requiring user studies. Additionally, the
great difficulty in reproducing experimental results has hindered the robotics field
for many years. It is often difficult to assess which proposed approaches per- form
best. In fields where online learning and user demonstrations are required,
researchers do not perform research on common platforms, let alone on shared data.
A remote lab where users can compare results and share experimental data will help
provide a more scientific basis for comparison.

A remote robotic laboratory would allow researchers to run experiments and
compare against results produced on a common platform. We developed rosbridge
and its supporting rosjs libraries in part to support the development of experimental
infrastructure for the creation of remote robotic laboratories.

Figure 3 depicts a remote lab interface developed with rosjs to support research
into learning from demonstration. Users can access a PR2 robot to demonstrate
pick-and-place tasks, specifically setting a table. In addition, they can observe the
robot’s actions through a variety of sensors and camera streams, all provided
through the rosbridge framework. During each session data is logged and stored in a
publicly available repository. Custom controllers and learning algorithms, provided
in public code repositories, can use the data and provide policies for desired tasks
on the robot.

Fig. 3 A complex remote lab interface using rosjs and WebGL
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There are many technical challenges to address when creating such a remote lab.
The functionality provided by rosjs is instrumental to overcoming them. A web
interface is required so that users can work with the robot remotely. The user must
have some way of controlling the robot, either with code or through teleoperation.
Users must also be able to visualize the result of the control. Security measures are
required for the safety of the robot.

7 Rosbridge in Human-Robot Interaction

One of the strengths of rosbridge (and its Javascript application-layer library rosjs)
is its support for quickly and easily creating remote user interfaces. Much of the
teleoperation work in robotics has traditionally been aimed at tasks where robots
operate in environments that are hazardous to human users, such as robotic surgery
[18], search and rescue [5], and outer space [1]. In these applications, users are
typically experts who have devoted a significant amount of training time to the
difficult task of controlling the robot and interacting with its interfaces. Our goal
with rosbridge is to allow application developers to create interfaces that are
intuitive even for novice users.

Furthermore, even expert user interface designers are not necessarily experts in
ROS or robotics generally. The expertise needed for developing rewarding and
intuitive interactions over a simple Javascript web interface, however, is widespread
and generally available.

Rosbridge has the potential to increase the number of people using, interacting
with and programming robots. A recent trend in machine learning has examined the
use of truly large data sets for learning rather than attempting to generalize from a
small amount of data. Researchers in data mining and machine translation have able
to take advantage of Google’s index of billions of crowdsourced documents and
trillions of words to show that simple learning algorithms that focus upon recog-
nizing specific features outperform more conceptually sophisticated ones [11]. We
conjecture that similar successes would be observed if large amounts of data could
be collected for learning with robots. Human-robot interaction studies, to date, more
often number in the dozens of subjects [2]. Opening up robots to the vast number of
users on the world wide web provides the opportunity to gain a large number
demonstrations from many different users.

The robotics community has made a few forays into human robot interaction
over the internet. Goldberg et al. placed a robot in a garden and allowed users to
view and interact with the robot over the web. Users were able to plant seeds, water,
and monitor the garden [9]. Taylor and Trevelyan created a remote lab in which
users perform tasks involving brightly colored blocks [23]. Schulz et al. examined
the use of web interfaces to remotely operate mobile robots in public places [22].
This worked focused on letting remote users interact with humans within the
robots’ environment and did not examine the effect of the visualizations in a
learning task. Burgard and Schulz have explored handling delay in remote
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operation/teleoperation of mobile robots using predictive simulation for visualiza-
tion [4].

In previous work, we have used rosbridge to leverage precisely this large net-
work effect [6]. HRI research into the character of interfaces and visualizations
which lead to successful human teaching of robot behavior was able to draw on a
large pool of participants and develop 276 use cases and eighty thousand points of
data.

8 Rosbridge in Education

The simplicity and system independence of rosbridge make it a very powerful tool
for programming and robotics education. The ease of hooking into a robot system
using simple sockets and text-based JSON messages means that students have a
very gentle learning curve. In addition, programming languages and environments
that have been expressly designed for educational purposes can easily be extended
to communicate with rosbridge.

Figure 4 shows robotics development in the Scratch environment [15], a visual
programming system designed for children to learn and understand programming
concepts. A very simple extension to Scratch allows students interact with robots
programmatically. The system has been used by middle-school students, who were
able to program robots to perform basic closed loop behaviors such as line fol-
lowing and bump exploration, without ever being aware of the underlying com-
plexities of ROS itself.

We are currently developing higher-level courses to take advantage of rosbridge,
as well. At the college level, robotics classes have traditionally spent a great deal of
time just “hacking on the machine”, dealing with and learning about the massive
infrastructure necessary to get robots to do useful things. Rosbridge short-circuits
this process, allowing students to spend more time learning about higher-level

Fig. 4 Robotic control using
the Scratch educational
programming environment
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control and perception and less time wondering how to extract images from a
camera stream or compile behaviors in an abstruse and poorly-documented pro-
gramming environment.

9 Rosbridge Without ROS

In addition to extending ROS, rosbridge can be extended to provide similar func-
tionality for other middleware systems. The messaging protocol at the core of most
robot middleware can be translated into JSON objects just as ROS messages can,
and passed through the same sockets using the same interface. Our goal is to not
only extend ROS to but to also advocate that this additional level of abstraction may
be beneficial to other middleware systems.

We are currently developing rosbridge support for the LCM system [12]. This
will create a common interface for robots running ROS and LCM to send messages
to each other, and for application developers to write software that can support
robots running either system.

10 Conclusions and Future Work

In this paper, we described rosbridge, a high-level middleware abstraction layer that
exposes robot functionality to developers as a simple interaction over a socket. In
addition, we have developed rosjs, a Javascript library on top of rosbridge, that
supports extensive interaction and visualization of higher-level ROS constructs. We
believe that web-based interaction with robots provides the largest potential pool of
new users and developers, and so expanding and enhancing rosjs has consumed the
largest share of our development resources. However, the rosjs framework also
serves as a model for the development of other libraries for other languages.
Interaction with rosbridge can be as simple as desired—no more than sending text
strings over sockets—but of course advanced functionality should be developed to
support whatever tasks a user wishes. Rosbridge enables that development in purely
agnostic fashion.

We plan to develop rosbridge as much as possible into a simple nexus for
robotics technology to meet general application development. Already we have
begun work on an LCM component for rosbridge, with the hope of supporting
general application development for robots using either form of middleware. In
addition, we hope to support device manufacturers who need a simple,
low-overhead means of interfacing with other computer systems. An embedded
robot system might not be able to accommodate the computational demands of a
ROS system onboard, but if it can send and receive plain-text messages over a
POSIX socket, it can easily interface with ROS over rosbridge. This would greatly
expand the technological resources available to the robot.
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Rosbridge enables ROS to communicate with the web, applications developers
to communicate with robots, and robotics researchers to communicate with each
other. All of these are necessary for robots to succeed in the world.

References

1. H. Aldridge, W. Bluethmann, R. Ambrose, M. Diftler, Control architecture for the robonaut
space humanoid, in Proceedings of the First IEEE/RAS Conference on Humanoid Robotics
(2000)

2. C.L. Bethel, R.R. Murphy, Use of large sample sizes and multiple evaluation methods in
human-robot interaction experimentation, in AAAI Spring 2009 Symposium: Experiment
Design for Real-World Systems (2009)

3. G.R. Bradski, V. Pisarevsky, Intel’s computer vision library: applications in calibration, stereo
segmentation, tracking, gesture, face and object recognition, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2000)

4. W. Burgard, D. Schulz, Beyond Webcams: An Introduction to Online Robots, Chap, Robust
Visualization for Online Control of Mobile Robots (MIT Press, 2002), pp. 241–258

5. J.L. Casper,R. Robin, A.J. Murphy, Workflow study on human-robot interaction in user, in
Proceedings of the 2002 IEEE International Conference on Robotics and Automation (2002)

6. C. Crick, S. Osentoski, G. Jay, O.C. Jenkins, Human and robot perception in large-scale
learning from demonstration, in Proceedings of the 6th ACM/IEEE Conference on Human—
Robot Interaction (2011)

7. ECMA-262: ECMAScript language specification, 5th edn. (2009), URL http://www.
ecmainternational.org/publications/standards/Ecma-262.htm

8. B. Gerkey, R.T. Vaughan, A. Howard, The player/stage project: tools for multi-robot and
distributed sensor systems, in Proceedings of the 11th International Conference on Advanced
Robotics (2003), pp. 317–323

9. K. Goldberg, H. Dreyfus, A. Goldman, O. Grau, M. Gržinić, B. Hannaford, M. Idinopulos, M.
Jay, E. Kac, M. Kusahara, (eds.), The Robot in the Garden: Telerobotics and Telepistemology
in the Age of the Internet (MIT Press, Cambridge, 2000)

10. G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping with
raoblackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

11. A. Halevy, P. Norvig, F. Pereira, The unreasonable effectiveness of data. IEEE Intell. Syst. 8–
12 (2009)

12. A. Huang, E. Olson, D. Moore, LCM: lightweight communications and marshalling, in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(2010)

13. J. Jackson, Microsoft Robotics Studio: A Technical Introduction. IEEE Robot. Autom. Mag.
82–87 (2007)

14. J. Kramer, M. Scheutz, Development environments for autonomous mobile robots: a survey.
Auton. Robots 101–132 (2007)

15. J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The scratch programming
language and environment. Trans. Comput. Educ. 10(4), 1–15 (2010)

16. K. Martin, B. Hoffman, Mastering CMake: A Cross-platform Build System (Kitware Inc,
2008)

17. G. Metta, P. Fitzpatrick, L. Natale, YARP: yet another robot platform. Int. J. Adv. Robot. Syst.
43–48 (2006)

18. A.M. Okamura, Methods for haptic feedback in teleoperated robot-assisted surgery. Ind.
Robot. 31(6), 499–508 (2004)

19. M. Pilgrim, HTML5: Up and Running (O’Reilly Media, 2010)

Rosbridge: ROS for Non-ROS Users 503

http://www.ecmainternational.org/publications/standards/Ecma-262.htm
http://www.ecmainternational.org/publications/standards/Ecma-262.htm


20. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng,
Ros: an open-source robot operating system, in Proceedings of the Open-Source Software
Workshop of the International Conference on Robotics and Automation (2009)

21. R.B. Rusu, S. Cousins, 3D is here: point cloud library (PCL), in Proceedings of the IEEE
Conference on Robotics and Automation (ICRA) (2011)

22. D. Schulz, W. Burgard, D. Fox, S. Thrun, A.B. Cremers, Web interfaces for mobile robots in
public places. IEEE Robot. Autom. Mag. 7, 48–56 (2000)

23. K. Taylor, J. Trevelyan, A telerobot on the world wide web, in National Conference of the
Australian Robot Association (1995)

24. K. Wyobek, E. Berger, H.V. der Loos, K. Salisbury, Perspectives on standardization in mobile
robot programming: the Carnegie Mellon Navigation (CARMEN) toolkit, in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (2003), pp. 2436–
2441

504 C. Crick et al.



Introduction to the Robot Town Project
and 3-D Co-operative Geometrical
Modeling Using Multiple Robots

Ryo Kurazume, Yumi Iwashita, Koji Murakami
and Tsutomu Hasegawa

Abstract This paper introduces the author’s research project called the “Robot
Town Project”. Service robots, which co-exist with humans and provide various
services in daily life, must have sufficient ability to sense changes in the environ-
ment and deal with a variety of situations. However, since the daily environment is
complex and unpredictable, it is almost impossible with current methods to sense all
the necessary information using only a robot and the attached sensors. One
promising approach for robots to co-exist with humans is to use IT technology, such
as a distributed sensor network and network robotics. As an empirical example of
this approach, the authors have started Robot Town Project. The aim of this
research project is to develop a distributed sensor network system covering an area
of a block in a town in which there are many houses, buildings, and roads, and
manage robot services by monitoring events that occur in the town. This paper
introduces currently available technologies including an RFID-tag-based localiza-
tion system, distributed sensor systems for moving object tracking, and object
management systems using RFID tags. For the construction of 3-D geometrical
models of large-scale environments, a measurement and modeling system using a
group of multiple robots and an on-board laser range finder is also introduced.
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1 Introduction

The demand for service robots that can co-exist with humans and provide various
services in daily life is expected to increase in the next few decades. These robots
must have sufficient ability to sense changes in the environment and cope with a
variety of situations. However, since the daily environment is complex and
unpredictable, it is almost impossible with current methods to sense all the nec-
essary information using only a robot and the attached sensors. One of the
promising approaches to develop service robots which co-exist with humans is
using IT technology, such as a distributed sensor network and network robotics.
The basic idea of this approach is that robots provide a variety of services based on
environmental information not only from on-board sensors, but also from sensor
networks in the environment. An empirical example of the above approach has been
implemented in the research project called the “Robot Town Project” (Fig. 1). The
aim of this research project is to develop a distributed sensor network system
covering an area of a block in a town in which there are many houses, buildings,
and roads, and manage robot services by monitoring events that occur in the town.
The sensed events are notified to the “Town Management System, TMS”, and each
robot receives appropriate information about the surroundings and instructions for
proper services. There are several researches for the embedded sensor systems in
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daily human life environment [4, 9, 15, 19, 21, 25, 27]. However, the most of
researches so far are limited to area of a single room or a few rooms.

This paper provides a brief introduction to the Robot Town Project and intro-
duces some technologies developed in this project, including an RFID-tag-based
localization system, a distributed sensor system for moving object tracking, and an
object management system using RFID tags. For the construction of 3-D geo-
metrical models of large-scale environments, a measurement and modeling system
using a group of multiple robots and an on-board laser range finder is also intro-
duced, and large-scale geometrical modeling experiments in indoor and outdoor
environments are presented.

2 Robot Town Project

This section introduces the core technologies in the Robot Town Project, including
the current implementation of TMS and distributed sensor systems using RFID
tags, laser range finders, and cameras.

2.1 Town Management System, TMS

TMS is the core technology in this project. A prototype TMS in a home environ-
ment has already been developed and tested for human-robot co-operation based on
practical scenarios. Figure 2 shows the experimental house for the Robot Town
Project.

The TMS consists of a database and API libraries (Fig. 3). The database is
developed in MySQL and stores object information acquired using distributed
sensors embedded in the environment and the robots: moving object information
such as position and velocity of robots and humans; and environmental information

Outward Indoor

Fig. 2 Experimental house
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including semantic and metric maps. SOAP (Simple Object Access Protocol) is
adopted for the interface protocol, and a web-based service is provided. Robots (and
operators) are able to access the database using APIs and obtain necessary infor-
mation for providing service to humans.

2.2 Distributed Sensor Systems

Information stored in TMS is updated regularly using distributed sensors and
robots. In the experimental house of the Robot Town Project shown in Fig. 2,
several distributed sensor systems are installed. For example, two types of RFID
tags are placed uniformly on the floor. Robots that are equipped with an RFID tag
reader can identify their positions by reading the tags and then querying the TMS.
To detect the movement of humans, laser range finders and cameras are placed on
the floor.

2.2.1 RFID Tag System for Robot Localization

Under the carpet of the floor, 4,000 passive RFID tags are placed as shown in
Fig. 4. These tags consist of two types: a high frequency (13.56 MHz) passive
RFID tag (Texas Instruments RI-I01-112A, ISO15693) and a low frequency
(34.2 kHz) passive RFID tag. The high-frequency RFID tags are placed at an
interval of 12.5 cm, while the low-frequency RFID tags are placed at an interval of
25 cm. The yard of the house is also covered by 400 RFID tags.

Robots can identify their positions by reading these tags and querying TMS
about their positions based on the tag labels to give a position accurate to within a
few centimeters. Detectable areas of the tags are 1 cm for high-frequency tags and
40 cm for low-frequency tags.

Sensor system
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infomation DB
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RF-IC tag
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Map 
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Pull

Push
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Fig. 3 Town management system, TMS
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2.2.2 Laser and Vision Sensor System

As mentioned above, the position of a robot can be detected by the RFID tag
systems if the robot is equipped with an RFID tag reader. However, the position of
humans and robots that are not equipped with RFID tag readers cannot be identified
using this system. Therefore, the experimental house is equipped with several
distributed sensors for detecting the motion of humans and robots [7, 14].

For example, 2-D laser range finders (SICK LMS-200) and cameras (Point Grey
Dragonfly2) are placed 1 m above the floor, and not only the position but also the
posture of the humans is tracked [8]. Figures 5 and 6 show the system configuration

Low frequency High frequency

Low frequency tags
Low frequency tags

Fig. 4 RFID tag system in and around the experimental house

Environment

Sensor node

Sensor node Sensor node

Sensor node

Sensor node Sensor node

Hub

Host computer IEEE 1394 Cameras

Laser range finders
Sensor unit

Fig. 5 Tracking system using laser range finders and cameras
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and the sensor positions in the house. Ceiling pyroelectric sensors are also used for
detecting humans in some rooms where privacy should be respected.

Figure 7 shows the position tracking experiment using distributed laser range
finders and cameras. Five persons are tracked simultaneously using a single
MCMC/SIR particle filter [14]. The posture of the humans is also detected using the
cameras (Fig. 8) [8].
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2.2.3 Object Management System Using RFID Tags

All of the objects such as drinks, clothes, and shoes in the experimental house are
managed by TMS using the attached RFID tags, and robots can identify these
objects by reading the tags and querying the identification numbers to TMS. RFID
tag readers are placed on the cabinets and refrigerators (Fig. 9) [18] to recognize
objects placed in them. On the other hand, robots query the TMS about the nec-
essary object information and can know their positions and current status, such as
in-use or empty.

loadcellRFID antenna

Fig. 9 Intelligent shelf

Fig. 8 Posture estimation of humans using captured camera images
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2.2.4 Experiments for Robot Service

Experiments using two types of service robots were conducted as shown in Fig. 10.
Using voice, a human operator ordered a service robot to bring shoes and cloth (a),
the robot queried the TMS about these positions and retrieved them based on the
attached RFID tags (b, c), and then a carrier robot conveyed them to the human
operator (d–f). All the information from the RFID tags on a floor, laser and vision
sensors, and service robots was managed centrally by the TMS.

3 Environmental Geometrical Modeling Using Mobile
Robots

3.1 Geometrical Modeling of Large-Scale Environments

For a service robot working in a daily environment with humans, an accurate map
of a surrounding environment is indispensable. In order to avoid collision with
environments and provide various services safely, these maps should contain not
only 2-D information which is popular in some robotic applications such as path
planning, but also 3-D information such as stair step height or 3-D positions of

Human

Service robot

Human

Carrier robotCarrier robot

(a) (b)

(c)

(e) (f)

(d) Carrier robot

Service robot

Fig. 10 Robot service experiment
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obstacles. However, most of maps used for a service robot are created by hand
currently, and this task, especially for creating detailed 3-D maps, is quite laborious
and these maps are not re-created very often. Therefore, from the point of view of
efficiency and maintainability, these maps should be constructed using robots
themselves automatically.

For constructing 3-D models of large-scale environments using a 3-D range
sensor such as a laser range finder, a number of partial range images are taken from
different viewpoints around the targets. These images are aligned using
post-processing procedures, such as the ICP algorithm [1, 2]. However, in general,
when sufficiently exact scan pose estimates are not available, a human operator
registers the positions before applying the ICP method in order to ensure that the
images converge to the proper poses. Also, all of the images must contain sufficient
feature shapes and must sufficiently overlap each other, which requires dense
scanning from a number of positions, in order to precisely register the range images
using the ICP algorithm.

Another approach that requires no post-processing procedures such as the ICP
algorithm can also be considered, which involves the precise identification of the
position of the range sensor at each measurement. As an example of this approach,
several systems that use GPS [23, 33] to determine the position of the range sensor
have been proposed. However, special instruments and techniques, such as a
Real-time Kinematic (RTK) system or the Virtual Reference Station (VRS) method,
are required in order to achieve highly precise position identification using current
GPS.

This section introduces a 3-D measurement system for large-scale environments
using a group of mobile robots and an on-board laser range finder [12, 13]. The
proposed system uses the Co-operative Positioning System (CPS) [10, 11] for
multiple robots, which has been proposed as a highly precise position identification
technique for mobile robots. This system can construct 3-D models of large-scale
environments without any post-processing procedure such as the ICP algorithm or
manual intervention. In addition, it is possible to register range images even if the
number of measurements is few and the data is sparse. It is also possible to con-
struct a 3-D model in environments where GPS is not available, such as in an
indoor environment.

3.2 Related Work

The proposed system is related to the Simultaneous Localization And Mapping
(SLAM) method [3, 5, 16, 22, 29–32], which has attracted a great deal of attention
in the robotics community. In the proposed system, the obtained 3-D model can be
refined by applying ICP as shown in [12]. Obviously, the refined measurement
position from ICP can also be fed back to the positioning system. This closed-loop
control will increase the accuracy of both the 3-D model and the robot position like
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SLAM systems. The following two elements are essential to create a high-accuracy
environmental map with 3D measurement robot systems.

(1) High accuracy self-localization system
(2) High accuracy measurement system for surrounding environment

There are several issues to be considered for Item (1). The self-localization
method that has been proposed until now, for example, odometry, does not have the
ability to measure the self-location of a mobile robot with high accuracy in a bumpy
area or in an environment with pitch differences. The SLAM system requires the
characteristic features of the environment and has the same problems as odometry,
which is the accumulation of measurement error caused by the measurement device.
To reduce error accumulation, loop detection and refinement of the obtained models
and paths are the principal, critical issues in SLAM.

Besides these methods, co-operative localization using a team of mobile robots
also has been attracting much attention as a highly-precise self-localization tech-
nique so far [6, 11, 17, 20, 24, 26, 28]. In this method, robots are localized
sequentially and alternatively by observing the positions of other robots in a team
instead of natural or artificial stable landmarks. The first idea of the co-operative
localization was introduced by Kurazume et al. [11]. Each mobile robot in a team
repeats to move and stop, acts as a mobile landmark. The basic algorithm of this
method is also introduced in Sect. 3.3 in this paper.

Concerning Item (2), systems using a laser range finder are effective and often used
from the point of view of cost and accuracy. Originally, laser range finders were
large-scale, expensive, and intolerant of vibrations. However, recently, smaller and
more inexpensive laser range sensors have been developed and are readily available.

3.3 Co-operative Positioning System (CPS)

Let us consider the system in which a mobile robot equipped with an on-board laser
range finder moves around a measurement target and scans the target from several
different positions. If all of the measurement positions are identified with high
accuracy, the range data acquired at each position can be converted to the global
co-ordinate system by a simple co-ordinate transformation calculation.

To achieve highly accurate positioning of mobile robots, Kurazume et al. pro-
posed the Co-operative Positioning System (CPS) [11]. In this system, multiple
robots with highly precise measurement devices for their mutual positions are
controlled co-operatively. This can lead, compared to conventional positioning
techniques, to high positioning accuracy, even in unknown and uneven
environments.

The basic principle of CPS is as follows: Divide the robots into group A and
group B. Group A remains stationary and acts as a landmark while group B moves.
Group B then stops and acts as a landmark for group A. This alternating behavior is
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repeated until the target position is reached. By using the concept of “portable
landmarks,” CPS has a far lower accumulation of positioning errors than dead
reckoning and can work in three dimensions, which is not possible by ordinary dead
reckoning. In addition, CPS can be used in an unknown environment, since there is
no need to place landmarks beforehand.

An example of CPS is shown in Fig. 11. This example is for a robot system
consisting of a parent robot with a sensing device such as a laser range finder and
two child robots. The sensing device can measure the relative positions of the child
robots from the parent robot. First, assume that the initial position of the parent
robot is measured or defined beforehand.

(1) Child robots 1 and 2 are moved and stopped.
(2) The parent robot measures the distance, azimuth, and elevation angles to child

robot 1 and identifies the position of child robot 1.
(3) The position of child robot 2 is identified in the same manner as in Step 2.
(4) The parent robot moves and stops. The distances, azimuth, and elevation

angles to child robots 1 and 2 are then measured, and the position of the parent
robot is calculated using the triangular surveying technique.

(5) Repeat Steps 1 through 4 until the target position is reached.

Though the principle of CPS is simple, a position calculation that suppresses
error accumulation is rather complicated [10]. In CPS, although the accuracy is
quite high, measurement errors are gradually accumulated with the characteristics
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of the errors depending on the moving histories of the robots. To minimize error
accumulation by taking the moving histories into account, a nonlinear least squared
method based on the sequential estimation of error covariance matrices is proposed.
In this method, the error accumulation is repeatedly estimated by calculating the
error covariance matrices by taking the accuracy of a sensing device and the relative
positions between robots into account. The position of each robot is determined
using the accumulated error covariance matrices so that the positioning error is
minimized at each positioning. In addition, several optimum moving strategies
which minimize the error accumulation are proposed. Note that it is possible to
refine the error accumulation after closing a loop by the parent robot using tech-
niques developed in SLAM [3, 5, 16, 22, 29–32]. The experimental results after
applying ICP was reported in [12].

3.4 Construction of a 3-D Environmental Map Using
Multiple Robots

This section introduces a measurement system for the precise construction of a 3-D
environmental map by combining CPS for multiple robots and a laser range finder.
In this system, mobile robots move around a large-scale target and scan the target
by an on-board 3-D laser range finder from several viewpoints. Each measurement
position is precisely identified by CPS using a parent robot and two child robots.
First, the sixth CPS machine model, called CPS-VI, which is equipped with a 2-D
laser range finder and a scanning mechanism, is introduced, and the experimental
results for the construction of indoor and outdoor environmental maps by CPS-VI
are given.

3.4.1 Sixth CPS Machine Model (CPS-VI)

Figure 12 shows the sixth CPS machine model, CPS-VI. This system consists of a
parent robot and two child robots. The parent robot is equipped with an on-board
2-D laser range finder (LMS 151, Sick), a high-precision two-axes altitude sensor
(MD900T, Applied Geosystems), an automatic leveling system (Rizumu, AS-21),
and a total station for the survey (GPT-9005A, TOPCON Ltd.), which is used to
measure the relative positions of the child robots. Even if the body is tilted on a
slope, the body inclination is compensated by an automatic leveling system, and
precise positioning of the robots is achieved. The 2-D laser range finder can acquire
2-D slit-like range data within the range of 50 m and 270°. The parent robot has a
rotating table on the top of its body, and by rotating the table around the vertical
axis while scanning using the 2-D laser range finder, 360° 3-D range images as
shown in Fig. 13 are acquired in 37.8 s.
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3.4.2 Experiments to Construct the Indoor and the Outdoor
Environmental Maps

Experiments for constructing 3-D maps are carried out using CPS-VI in a long
corridor environment (Fig. 14). In these experiments, the parent robot and the two
child robots moved, stopped, and identified their positions 38, 7, and 8 times
respectively, respectively. Total moving distance of the parent robot was 210 m.
After identifying their positions, the parent robot captured 3-D range images at each
stationary position by rotating the on-board 2-D laser range finder around the
vertical axis. The obtained range images are transformed into the global co-ordinate
system by simple co-ordinate transformation calculations using the positioning
result measured by CPS. No post-processing procedure is applied. In these
experiments, the parent robot repeated the laser scanning from 33 positions and
obtained about 40,340,000 points. Figures 14 and 15 shows the total view of the
resulting 3-D map.
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Fig. 12 The developed tunnel shape measurement system

Fig. 13 Range data obtained
in one scan
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To verify the accuracy of the obtained 3D model, we compared the measured
positions of a same point (door corner) before and after the movements along the
corridor with a loop and estimated the modeling error. The error between these
points is 0.098 m, compared to the moving distance of the parent robot of 180.9 m,
that is, the error is only 0.054 % of the total distance traveled.

Next, a construction experiment was done to obtain 3-D environmental maps in
the outdoor environments with the difference in height of 5 m. The robots moved
around buildings and the outer walls of a building were measured from 20 positions
and 3-D models were constructed of the building. The path of the parent robot and
the obtained map are shown in Figs. 16 and 17. The modeling error in this
experiment is 0.116 m, compared to the total travel distance of the parent robot of
343 m, which is 0.034 % of the distance traveled.

Fig. 14 Photo and measured shape of corridor

70m

Loop35m

Error 0.098mm

Total distance 180.9m

Fig. 15 3D model of
corridor

130m

Error 0.116m

Fig. 16 Measured shapes and errors in outdoor environment
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3.4.3 Experiment to Construct a Map of Large-Scale Urban District

Furthermore, using the proposed system, an urban district environmental map of the
Fukuoka Island City area, which is located in the Higashi-ku district of Fukuoka
City, Japan, was created. The experiment environment consists of a house and a
park, where the difference in height is approximately 2 m. Some of the results are
shown in Fig. 18. In this experiment, the parent robot measured its surroundings at
45 different viewpoints and moved around up to 115.8 m in x-direction and
131.8 m in the y-direction while traveling a total of 543.4 m. Compared to the 44
movements of the parent robot, the child robots traveled and changed their locations

point A
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Fig. 18 Obtained 3-D environmental map (overall view)
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8 times. We evaluated the errors of the 3D model in three points (Point A, B, and C)
indicated in Fig. 18. The errors between the local models measured in the different
positions in these points were 57 mm, 372 mm, and 494 mm, respectively. The
experiment shows that the proposed system has the ability to create a precise 3-D
environmental map, even in a large outdoor environment.

3.5 Application for the Digital Archive of Large-Scale
Cultural Heritage Sites

Finally, an example of the application of the proposed system for the digital archive
of a large-scale Japanese cultural heritage site is considered.

The Dazaifu Shrine (Dazaifu Tenmangu) (Fig. 19) located in Fukuoka, Japan,
was established in 919 in memory of Sugawara no Michizane, a famous Japanese
scholar, politician, and poet. The main shrine of the Dazaifu Tenmangu was built in
1591 and is registered as an important cultural property of Japan. The size of the
main shrine and the yard are about 250 m × 100 m.

We conducted a 3-D digital archive experiment on the main shrine of Dazaifu
Tenmangu and the vast garden by the robot system proposed in this paper.
Figure 19 shows the view of the main shrine of Dazaifu Tenmangu. The parent
robot moved and measured the Dazaifu Tenmangu from 76 places on the inside and
outside of the main shrine and the garden.

Fig. 19 Main shrine of Dazaifu Tenmangu (Dazaifu Shrine)
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4 Conclusions

This paper briefly introduces the research project Robot Town Project. The aim of
this research project is to develop a distributed sensor network system covering an
area of a block in a town in which there are many houses, buildings, and roads, to
manage robot services by monitoring events that occur in the town. The sensed
events are notified to the TMS, and each robot receives appropriate information
regarding the surroundings and instructions for proper service. This paper intro-
duced the developed systems in this project, including RFID-tag-based localization
system, distributed sensor systems for moving object tracking, and object man-
agement system using RFID tags.

In addition, a 3-D measurement system using multiple mobile robots was
introduced for geometrical modeling of large-scale environments. This system is
composed of multiple mobile robots and an on-board laser range finder, and a
highly precise positioning technique named the Co-operative Positioning System
(CPS) is adopted to localize the robots. Measurement experiments in unknown and
large in-door/outdoor environments were successfully carried out using the newly
developed multiple-robot system, called CPS-VI.
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(B) (23360115).

References

1. P.J. Besl, N.D. McKay, A method for registration of 3-d shapes. IEEE Trans. Pattern Anal.
Mach. Intell. 2(14), 239–256 (1992)

2. Y. Chen, G. Medioni, Object modelling by registration of multiple range images. Image Vis.
Comput. 3(10), 145–155 (1992)

3. D.M. Cole, P.M. Newman, Using laser range data for 3d slam in outdoor environment, in
Proceedings of IEEE International Conference on Robotics and Automation, 2006, pp. 1556–
1563

4. I.A. Essa, Ubiquitous sensing for smart and aware environments: Technologies toward the
building of an aware home, in Position Paper for the DARPA/NSF/NIST workshop on Smart
Environment, 1999

5. A. Howard, Multi-robot simultaneous localization and mapping using particle filters. Int.
J. Robot. Res. 25(125), 1243–1256 (2006)

6. A. Howard, M.J. Matarić, G.S. Sukhatme, Putting the ‘i’ in ‘team’: an ego-centric approach to
cooperative localization, in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), 2003, pp. 868–892

7. Y. Iwashita, R. Kurazume, T. Mori, M. Saito, T. Hasegawa, Model-based motion tracking
system using distributed network camera, in Proceedings of IEEE International Conference on
Robotics and Automation, 2010, pp. 3020–3025

8. Y. Iwashita, M. Saito, R. Kurazume, T. Hasegawa, Motion tracking in daily environment
using distributed image and laser sensors, in The First International Workshop on Human
Behavior Sensing, 2010

Introduction to the Robot Town Project … 521



9. C.D. Kidd, R. Orr, G.D. Abowd, C.G. Atkeson, I.A.E. an Blair MacIntyre, E.D. Mynatt, T.
Starner, W. Newstetter, The aware home: a living laboratory for ubiquitous computing
research, in Proceedings of the Second International Workshop on Cooperative Buildings,
Integrating Information, Organization, and Architecture, 1999, pp. 191–198

10. R. Kurazume, S. Hirose, An experimental study of a cooperative positioning system. Auton.
Robot. 8(1), 43–52 (2000)

11. R. Kurazume, S. Nagata, S. Hirose, Cooperative positioning with multiple robots, in
Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, 1994,
pp. 1250–1257

12. R. Kurazume, Y. Noda, Y. Tobata, K. Lingemann, Y. Iwashita, T. Hasegawa, Laser-based
geometric modeling using cooperative multiple mobile robots, in Proceedings of IEEE
International Conference on Robotics and Automation, 2009, pp. 3200–3205

13. R. Kurazume, Y. Tobata, Y. Iwashita, T. Hasegawa, 3d laser measurement system for large
scale architectures using multiple mobile robots, in Proceedings of the 6th International
Conference on 3-D Digital Imaging and Modeling (3DIM2007) (2007)

14. R. Kurazume, H. Yamada, K. Murakami, Y. Iwashita, T. Hasegawa, Target tracking using sir
and mcmc particle filters by multiple cameras and laser range finders, in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 3838–3844

15. J.H. Lee, K. Morioka, A. Ando, H. Hashimoto, Cooperation of distributed intelligent sensors
in intelligent environment. IEEE/ASME Trans. Mechatr. 9(3), 535–543 (2004)

16. M.D. Marco, A. Garulli, A. Giannitrapani, A. Vicino, Simultaneous localization and map
building for a team of cooperating robots: a set membership approach. IEEE Trans. Robot.
Autom. 19(2), 1243–1256 (2003)

17. L. Montesano, J. Gaspar, J. Santos-Victor, L. Montano, Cooperative localization by fusing
vision-based bearing measurements and motion, in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005, pp. 2333–2338

18. K. Murakami, T. Hasegawa, K. Shigematsu, F. Sueyasu, Y. Nohara, B. Ahn, R. Kurazume,
Position tracking system for commodities in a daily life environment, in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 3712–3718

19. Y. Nakauchi, T. Fukuda, K. Noguchi, T. Matsubara, Intelligent kitchen: Cooking support by
lcd and mobile robot with ic-labeled objects, in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005, pp. 2464–2469

20. E. Nerurkar, S. Roumeliotis, A. Martinelli, Distributed maximum a posteriori estimation for
multi-robot cooperative localization, in Proceedings of IEEE International Conference on
Robotics and Automation, 2009, pp. 1402–1409

21. Y. Nishida, T. Hori, T. Suehiro, S. Hirai, Sensorized environment for self-communication
based on observation of daily human behavior, in Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2000, pp. 1364–1372

22. A. Nüchter, H. Surmann, K. Lingemann, J. Hertzberg, S. Thrun, 6d slam with an application in
autonomous mine mapping, in Proceedings of IEEE International Conference on Robotics
and Automation, 2004, pp. 1998–2003

23. K. Ohno, T. Tsubouchi, S. Yuta, Outdoor map building based on odometory and rtk-gps
positioning fusion, in Proceedings of IEEE International Conference on Robotics and
Automation, 2004, pp. 684–690

24. S. Panzieri, F. Pascucci, R. Setola, Multirobot localization using interlaced extended Kalman
filter, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2006, pp. 2816–2821

25. A. Pentland, Smart rooms. Sci. Am. 54–62 (1996)
26. I. Rekleitis, G. Dudek, E. Milios, Multi-robot cooperative localization: a study of trade-offs

between efficiency and accuracy, in Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2002, pp. 2690–2696

27. T. Sato, T. Harada, T. Mori, Environment-type robot system “robotic room” featured by
behavior media, behavior contents, and behavior adaptation. IEEE/ASME Trans. Mechatr. 9
(3), 529–534 (2004)

522 R. Kurazume et al.



28. J. Spletzer, A. Das, R. Fierro, C. Taylor, V. Kumar, J. Ostrowski, Cooperative localization and
control for multi-robot manipulation, in Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 2, 2001, pp. 631–636

29. S. Thrun, A probabilistic online mapping algorithm for teams of mobile robots. Int. J. Robot.
Res. 20(5), 335–363 (2001)

30. S. Thrun, M. Montemerlo, The graph slam algorithm with applications to large-scale mapping
of urban structures. Int. J. Robot. Res. 25(5–6), 403–429 (2006)

31. R. Triebel, P. Pfaff, W. Burgard, Multi-level surface maps for outdoor terrain mapping and
loop closing, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2006, pp. 2276–2282

32. J. Weingarten, R. Siegwart: Ekf-based 3d slam for structured environment reconstruction, in
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005,
pp. 2089–2094

33. H. Zhao, R. Shibasaki, Reconstructing a textured cad model of an urban environment using
vehicle-borne lase range scanners and line cameras. Mach. Vis. Appl. 14, 35–41 (2003)

Introduction to the Robot Town Project … 523



Soft Mobile Robots with On-Board
Chemical Pressure Generation

Cagdas D. Onal, Xin Chen, George M. Whitesides and Daniela Rus

Abstract We wish to develop robot systems that are increasingly more elastic, as a
step towards bridging the gap between man-made machines and their biological
counterparts. To this end, we develop soft actuators fabricated from elastomer films
with embedded fluidic channels. These actuators offer safety and adaptability and
may potentially be utilized in robotics, wearable tactile interfaces, and active
orthoses or prostheses. The expansion of fluidic channels under pressure creates a
bending moment on the actuators and their displacement response follows theo-
retical predictions. Fluidic actuators require a pressure source, which limits their
mobility and mainstream usage. This paper considers instances of mechanisms
made from distributed elastomer actuators to generate motion using a chemical
means of pressure generation. A mechanical feedback loop controls the chemical
decomposition of hydrogen peroxide into oxygen gas in a closed container to
self-regulate the actuation pressure. This on-demand pressure generator, called the
pneumatic battery, bypasses the need for electrical energy by the direct conversion
of chemical to mechanical energy. The portable pump can be operated in any
orientation and is used to supply pressure to an elastomeric rolling mobile robot as a
representative for a family of soft robots.
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1 Introduction

There is currently a need to develop robotic devices that rely upon new
high-performance soft actuators. Compliance allows conformation, which is
desirable for adaptability in the device’s negotiation with the world. A low mini-
mum stiffness ensures safety in human interaction [1]. Many application areas will
benefit from advances in practical soft actuation mechanisms including medical
robotics, artificial muscles, and human interaction devices such as tactile or haptic
interfaces.

Many candidate materials are under investigation to realize soft actuators. Many
of these studies focus on materials that convert electrical energy to mechanical
energy utilizing electroactive polymers [2] including dielectric elastomers [8, 12],
electrostrictive polymers [14], and piezoelectric polymers [5]. The electrical oper-
ation principle of these actuators constrain their utility, as they require large electric
fields or deformable electrodes [8].

In this paper, we describe a new soft mobile robot and demonstrate its loco-
motion. The robot relies on two novel robotic components: pressure-controlled soft
actuators and a portable power source for these actuators.

The pressure-operated low-power soft actuators, called fluidic elastomer actua-
tors (FEAs) [4] comprise synthetic elastomer films operated by the expansion of
embedded channels under pressure. Pressure readily creates stresses inside the
elastomer, which strains the material for actuation. Once pressurized, the actuator
keeps its position with little or no additional energy consumption. The FEAs in this
work consume 27.5 mJ of energy for 20.7 kPa pressure input. The stiffness of an
FEA increases with applied pressure inside the embedded channels. This makes the
material more resistant to disturbances once actuated. In case of a power failure, it
can be designed to either go limb or keep its last position, both of which may be
useful for safety in different scenarios.

Pressure is a convenient actuation source as it induces local deformation in a soft
substrate [19], giving a large actuation range limited only by the mechanical
strength of the material. In general, using direct mechanical energy in the form of
pressure bypasses the need for electrical energy and its constraints. On the other
hand, an important limitation on fluidic actuation is the necessity of a pressure
source [7].

Our solution is to utilize a chemical approach to achieve portable and silent
pressure generation. This is the equivalent of a battery for fluidic systems as it
offloads pressure generation to a controlled gas generating chemical process.
Specifically, we report on-demand pressure generation by the mechanical
self-regulation of the decomposition of hydrogen peroxide (H2O2) into oxygen (O2)
gas in a closed container. The pressure output of the pneumatic battery powers
FEAs for practical applications. An aqueous H2O2 solution is the fuel in these
devices. It provides high power and is easily replaced with a fresh solution when
depleted. Pure H2O2 has a theoretical energy density of 2.7 kJ/g, one of the highest
in common monopropellant fuels. While this optimal value cannot be fully utilized
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at room temperature operation, it indicates the potential of H2O2 as a practical
power source. A key feature of our portable pump design is its rotation-invariant
usage, which enables the battery to operate in any orientation.

Hydrogen peroxide has been used previously as a monopropellant [21] and
recently in robotics applications [6, 18, 20]. A recent work utilized H2O2 to build a
self-powered microfluidic lab-on-a-chip system [13]. Using H2O2 to generate
pressure has the benefit of using no conventional power source for operation.
Hydrogen peroxide naturally decomposes into oxygen and water with no harmful
byproducts at a slow rate. This reaction speeds up in the presence of a catalyst [15].
Once this exothermic reaction starts, it continues until all of the H2O2 is consumed
or the catalyst is removed. In previous works, relief valves were utilized to peri-
odically vent the gas to keep the pressure build-up under control [18].

The contributions of this work are as follows:

• Modeling, design, fabrication, and evaluation of fluidic elastomer actuators.
• Modeling, design, fabrication, and evaluation of a portable power source for the

actuators.
• A robot built using six FEAs and one portable power source, and locomotion

experiments.

The organization of this paper is as follows. Section 2 briefly outlines the
architecture of a soft robot that utilizes fluidic actuation for mobility and/or
manipulation. We identify components that need to be developed to realize such a
robot. In Sect. 3 we describe and analyze a bending-type composite fluidic elas-
tomer actuator theoretically and experimentally. In Sect. 4, we present a method of
self-regulation of the catalyzed decomposition of hydrogen peroxide using a
mechanical feedback loop that controls the reaction based on the pressure inside the
pump. We present the theory behind this concept and experimentally verify its
operation. Finally, in Sect. 5, we illustrate the application of the pneumatic battery
to power a rolling mobile robot made of six bending FEAs. The result is a complete
chemically powered fluidic elastomer actuation system.

2 Soft Robot Architecture

The basic architecture of a soft robot made of fluidic actuators is shown in Fig. 1.
The soft robot architecture includes all the traditional components of a robot system
(i.e. control, perception, actuation). The unique modules are the fluidic actuator
system, the pressure source for the actuators, and the interface of the actuators to the
robot’s control system.

The actuation power source for this application needs to be a pressure generation
device that is portable in order to be incorporated in the robotic body. Support
hardware comprises miniature valves that are also preferably energy-efficient. The
next section describes the actuation modules for the soft robot.
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3 Fluidic Elastomer Actuators Modeling and Experiments

The operational principle behind our design for FEAs relies on using pressure for
actuation. In an elastomeric substrate, expansion of embedded fluidic channels due
to pressure input creates overall deformation of the actuator. By the inclusion of
appropriate physical constraints, this deformation is forced to follow desired
motions.

The design of bending FEAs utilized in this work is shown in Fig. 2. Parallel
rectangular fluidic channels reside inside the elastomeric film. The channels are
connected on two ends in a meandering arrangement. Without any constraints, the
material tends to undergo tensile deformation. With an inextensible thin layer
placed on one side, we can convert this axial deflection to an out-of-plane bending
motion. Using certain patterns of constraints, we can also induce torsion or local-
ized deformations on the same material.

The FEAs were fabricated by molding in two layers. Molds were created using a
StratasysTM Prodigy PlusTM fused deposition modeling system. The first layer was
a 5 mm thick elastomer with open channels on one side. The second layer was a
1.3 mm thick solid elastomer, same length and width as the first piece. The two
pieces were attached together in the thickness direction using an uncured thin layer
of the same material as glue such that the open channels were sealed off. For a
bending actuator, the second layer also embedded a fabric mesh as an inextensible
thin sheet to constrain the axial deformation of this layer. The curing time for each
step was about 24 h.

Note that FEAs are modular in nature, such that placing these actuators in various
arrangements yield a multitude of functionalities. Some of these functionalities

Actuation System
Power/Pressure

Source
Fluidic Elastomer

Actuators

Valves &
Supporting 
Hardware

Valve & Sensor
Drivers

Computation and
Control Perception

Fig. 1 The architecture of a soft robot using fluidic actuation. Components addressed in this work
are shaded in blue
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are demonstrated in Fig. 3. A parallel combination of bending actuators creates a 1-D
linear positioner. Placing two bending actuators together in such a way that they
sandwich and share a single inextensible layer yields bidirectional bending. A serial
arrangement of these bidirectional bending FEAs in alternating bending directions
create a soft kinematic chain similar to an octopus arm.

In what follows, we derive a basic static model of displacement based on the
geometry and material properties of the actuator. Applied pressure P inside the
rectangular channels with height hc and length lc creates axial stresses rx in the
material with height ht and length lt given as:

rx ¼ P
hc

ht � hc
: ð1Þ

The resulting strain ex is a nonlinear function of the induced stresses. The total axial
deformation dx of the material is the combination of the individual expansions of
n channels resulting in:

dx ¼ nlcexðrxÞ: ð2Þ

P
P

P P P P P
P

(a)

(b)

(c)

Fig. 2 The design of
bending-type fluidic
elastomer actuators. Fluidic
channels are embedded in the
elastomer and an inextensible
thin layer is placed on the top
(depicted in red) to induce
bending. Top- and side-view
sketches of the actuator are
shown in (a) and (b),
respectively. The bending
motion due to the pressure in
the channels is depicted in (c)
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In this case, the elastomer is further constrained by an inextensible thin sheet on one
side, which causes the actuator to undergo bending deformation. The inextensible
sheet constitutes the neutral axis of bending in the composite. Thus, the total
bending angle h can be calculated from the contributions of each channel as:

h ¼ 2n arctan
lcexðrxÞ
2hc

: ð3Þ

Finally, the total out-of-plane displacement dy of the actuator under these conditions
is written as:

dy ¼ lt
h
ð1� cos hÞ: ð4Þ

The experimental setup for the investigation of the bending displacement of an
FEA under pressure input is shown in Fig. 4. The actuator is clamped on one end
and pressure is supplied to the fluidic channels from the side at the base. The out
of-plane bending deflection is measured by image processing of a calibrated camera
feed.

The bending displacement measurements in Fig. 4 were made by image pro-
cessing in Matlab, using a LogitechTM Webcam Pro 9000 camera attached to a
custom setup, clamping the FEAs on one end and tracking the tip of the actuator

Fig. 3 a–c A soft linear actuator made of twelve fluidic elastomer bending actuators. d–e A soft
kinematic chain made of four bidirectional fluidic elastomer bending actuators arranged in series
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using color segmentation. The vertical position of the actuator tip was tracked
for this measurement. FEAs were placed vertically, such that the bending axis
coincided with the direction of gravity. Pressure measurements were made in
Matlab, using a HoneywellTM ASDX030 gage pressure sensor and a National
InstrumentsTM NI USB-6008 data acquisition system.

The elastomer samples used for the experiments were 38.1 mm long, 38.1 mm
wide, and 6.35 mm thick stripes of Smooth-onTM EcoflexTM Supersoft 0030 sili-
cone rubber. They embedded 13 fluidic channels that were 1 mm long, 33 mm
wide, and 3 mm thick.

The experimental deflection response of a silicone rubber FEA for pressure
inputs ranging from 1 psi to 3 psi (6.9–20.7 kPa) is depicted in Fig. 5 with the
corresponding simulation results according to the given model shown by the dashed
curve. The stress-strain relationship of the material is determined by a power
function fit to the experimental true stress and strain data.

Fig. 4 Photo sequence of a fluidic elastomer bending actuator with large actuation range. As the
pressure increases from 0 psi in (a) to 3 psi in (d), the embedded channels expand laterally and
bend the composite due to an inextensible thin sheet on the top layer. Upon removal of the
pressure, the initial configuration in (a) is restored. Input pressure values are 1, 2, and 3 psi (6.9,
13.8, and 20.7 kPa) from (b) to (d), respectively. The expansion of fluidic channels is visible in (d)
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4 Self-regulated Pressure Generation

The FEAs require a small pressure source of comparable size. In this section, we
describe the design, modelling and implementation of a chemically operated por-
table pressure source we call a pneumatic battery.

The pneumatic battery mechanism that enables self-regulation in pressure gen-
eration from an aqueous H2O2 solution is depicted in Fig. 6 with a sketch and
corresponding prototype. 50 % wt. H2O2 solutions were acquired from
Sigma-AldrichTM and diluted with deionized water as needed.

The pump has a cylindrical body, which makes it rotationally invariant. On one
side resides an elastomeric deflector that embeds a cylindrical air chamber
at atmospheric pressure sealed off from the pump by a thin circular membrane.
The deflection of the membrane is dependent upon the pressure in the
pump. Self-regulation is achieved by this deflection, creating a mechanical feedback
loop.

As catalyst, 0.2 mm thick sheets of 92.5 % pure silver (Ag) are placed on the
deflector, around the membrane. The membrane is offset from another disk-shaped
elastomeric layer with a boss by a defined distance. With increasing pump pressure,
the membrane deflects inside and pulls the soft layer towards the catalyst pack. At a
cut-off pressure value, the opposite layer completely conforms to the catalyst sur-
face and stops the reaction. The deflector was molded in two parts from EcoflexTM

0030 silicone rubber and glued using an uncured thin layer of the same material
such that the air chamber was sealed off. The air chamber inside the deflector was
sealed at ambient conditions.

An outlet is placed on the other side of the pump to use the generated gas
pressure for actuation. The gas is filtered by a polytetrafluoroethylene (PTFE)
membrane with sub-micron pores. The filters were WhatmanTM 7582-004 WTP
Range PTFE membranes with 47 mm diameter and 0.2 µm pore size. The
hydrophobic nature of this filter keeps the solution inside the pump while allowing
the gas to be removed. The rotational invariance of the mechanism makes it a good
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displacement of a fluidic
elastomer actuator versus the
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candidate for devices that do not necessarily have a defined constant direction of
gravity, since it is operational in any orientation.

The prototype shown in Fig. 6 is made from a cylindrical hollow acrylic con-
tainer 50.8 mm diameter and 3.2 mm thickness, laser machined acrylic lids and
custom silicone rubber seals. The deflector is attached to the left lid. The PTFE filter
and a pipe fitting are placed on the right lid.

The critical pressure of the pump Pc is tuned based on the following theoretical
study. Static plate deflection theory predicts that the deflection w of a clamped
circular membrane with radius rm under a pressure difference DP ¼ Pc � Pin is:

wðrÞ ¼ DPr4m
64K

1� r
rm

� �2
 !2

; ð5Þ

where K is the flexural rigidity and m is the Poisson’s ratio of the plate. If the air
chamber is connected to the atmosphere, its internal pressure Pin remains constant
and this equation is enough to engineer the necessary amount of offset or membrane
thickness for a given target cut-off pressure. For safety, to reduce the possibility of
H2O2 leakage, this work uses a closed air chamber.

H2O2

H2O2

F
ilt

er
F

ilt
er

(a)

(b)

(c)

Fig. 6 Side-view sketches
(a, b) and the prototype (c) of
the self-regulating chemical
pneumatic pump mechanism,
using hydrogen peroxide as a
fuel. A deflector on the left
side deforms with increasing
pressure and completely seals
off the catalyst pack (gray)
from the solution at a tuned
critical pressure in (b),
effectively stopping the
reaction. The gas is filtered
through a hydrophobic
membrane filter on the right
side before the outlet
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Consequently, the membrane deflection decreases the volume of the air chamber
and increases its internal pressure due to the ideal gas law. With sufficiently thick
walls, the volume V of the air chamber with initial height h is solely due to the
membrane deflection. The pressure dependant chamber volume is written by inte-
grating Eq. 5 over the membrane area as:

V ¼ pr2m h� DPr4m
192K

� �
: ð6Þ

From ideal gas law, air chamber internal pressure must satisfy:

r4m
192K

P2
in þ h� Pcr4m

192K

� �
Pin � hPo ¼ 0; ð7Þ

where Po is the initial pressure of the air chamber, typically equal to atmospheric
pressure. The positive root of Eq. 7 is the final pressure in the air chamber. Given
the radius of the offset boss ro, the displacement of the opposite layer towards the
catalyst pack is calculated as w(ro) from Eq. 5. We use this theory to tune the design
parameters in order to achieve a certain critical pressure suitable for the FEA
actuation needs.

An experimental pressure self-regulation data is displayed in Fig. 7. For this
demonstration, we designed a deflector such that a silicone rubber membrane with
3 mm thickness deflects for about 2.7 mm under a critical pump pressure of
51.7 kPa (7.5 psi). We used a boss height of 2.5 mm to ensure proper conformation
and sealing of the catalyst.
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Fig. 7 Experimental results of pressure self-regulation in the pump using an approximately 10 %
H2O2 solution in water. The reaction stops at a critical pressure value of 51.7 kPa (7.5 psi) due to
the deflection of the membrane sealing the catalyst off the solution. The target cut-off pressure is
indicated by the dashed line. The pump is vented at 16 min
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5 A Soft Mobile Rolling Robot Prototype Powered
by the Pneumatic Battery

Using the FEAs in Sect. 3 and the pneumatic battery in Sect. 4, we designed and
fabricated a soft mobile robot (see Fig. 8). The robot has a cylindrical body with
80 mm diameter and 63 mm length. It is made of six equally spaced bending FEAs
cantilevered on the periphery of the robot, parallel to the cylinder surface. The
FEAs have the same dimensions as in Sect. 3 and their weight is 12.5 g. They act as
flaps to bend out when actuated and apply torque, pushing the body forward. The
actuators are fabricated separately and attached to the robot using silicone epoxy.
The cylindrical body is molded from the same elastomeric material and an acrylic
cylinder is placed in the center, which becomes the peroxide pump body when
assembled. The total weight of the robot without the H2O2 solution is 210 g.

The first experiment we conducted aimed to measure the capability of the H2O2

pump to supply pressure to a single FEA, which is analyzed in Fig. 9. In this
experiment, the pressure in the pump is measured while fluidic channels in the
elastomer are pressurized and vented continuously with a 2 s period using the
generated gas.This figure depicts that the pressure generation in the pump is can-
celed by the gas usage of the actuator at around 24.1 kPa (3.5 psi). This data is
averaged over several hundred runs.

The integration of the chemical pressure generator to functional devices made of
fluidic elastomer actuators is exemplified by the hexagonal rolling mechanism with
6 FEAs in Fig. 10. The hydrogen peroxide pump rests in the center and constitutes
the body and the payload of the roller in addition to providing on-board pressure.
The internal volume of the pump is approximately 50 ml. A 30 ml (36 g) fresh
50 % H2O2 aqueous solution is used for these experiments.

Fig. 8 Prototype of a rolling
mobile robot using six
bending-type fluidic
elastomer actuators to propel
itself forward. The hollow
cylinder in the center is the
housing for the pneumatic
battery
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The rolling motion is also selected to underline the utility of the inherent rota-
tional invariance in this chemical pump design. This soft robotic system uses an
external valve array, controlled by an operator to demonstrate the proof-of-concept
of on-board pressure generation with a controlled chemical reaction.

Pressurized gas taken from the outlet fitting at the center of the pump feeds the
external solenoid valve array. In this experiment, we actuated each FEA manually
to induce rolling. It takes 7 s for a single rolling step. The body travels at
approximately 40.2 mm for each rolling step. Even though the pneumatic battery
keeps generating pressure, we did not exceed one full rotation in this experiment
since the robot is tethered to the valve array.

Finally, to achieve a fully autonomous soft mobile robot, we fabricated a pro-
totype roller with embedded valves and control as shown in Fig. 11. Six com-
mercial solenoid latching valves are embedded in the elastomeric body under each
FEA. A circular custom PCB equipped with an ATtiny13A microcontroller and
driving electronics handle the control logic. The electronics and valves have low
power requirements, suitable to operate from miniature LiPoly batteries. The valves
are activated in a time sequence with a period of 10 s for each rolling step. This
robot can roll itself on a flat surface without user intervention.

Fig. 9 Pressure inside the
pump settles to a finite value
while driving an FEA in (a).
Zoomed-up view of the same
experiment shows spikes in
the data corresponding to each
actuation period in (b)
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(a)

(b)
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(d)

Fig. 10 Photo sequence of a pneumatic rolling mechanism made from six FEAs, rolling on a flat
surface using pressure generated by an on-board hydrogen peroxide pump. Three rolling steps are
shown from (a)–(d). The actuated flaps visible in (b)–(d) generate the necessary force to take one
rolling step. The output tubing from the pump coils with each rolling step. Red arrows are
augmented to better illustrate the motion
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6 Discussion

We discussed a soft robot that uses a class of pressure-operated soft actuators,
tagged the fluidic elastomer actuators (FEAs). The soft mobile robot consisted of 6
FEAs that bend out and roll the body forward. We observed that an algorithm that
actuates the FEAs in sequence induces rolling locomotion of such a soft robotic
design.

We theoretically analyzed and experimentally studied the displacement response
of bending-type FEAs. The resulting theory provided insight to FEA operation
based on the geometry and material properties of the elastomer. Pressure generation
was offloaded to a chemical process, namely the catalyzed decomposition of
hydrogen peroxide. With a unique mechanical self-regulation mechanism, this
chemical reaction is controlled to keep the pressure constant at a predefined value.
This chemomechanical generator, called the pneumatic battery, powered FEAs with
no electrical energy consumption as a proof-of-concept demonstration.

Silent and portable operation of this mechanism provides an important step
towards the common application of soft fluidic actuators in functional devices. The
cheap and fast fabrication of FEAs in addition to their inherent safety makes them
useful in human interactions. Potential applications include artificial muscles [17],
assistive or rehabilitative devices, haptic or tactile displays and interfaces. Such
applications will benefit from a distributed arrangement of these actuators in
arbitrary 3D shapes.

Silver oxidizes when exposed to air, which leads to catalyst degradation.
Switching to an alternative catalyst such as platinum may be one solution. Also, it

Fig. 11 Soft mobile roller
prototype with on-board
control electronics and
embedded valves
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has been suggested that a high pH may help this reaction and tin becomes an
effective catalyst in a basic solution [18]. A thorough investigation of the pressure
build-up rate in the pump for different catalysts and pH values is necessary for
optimized operation.

We haven’t considered the temperature in the pump. Especially for high H2O2

concentrations, the temperature increase becomes large and affects the cut-off
pressure value. An open air chamber would circumvent this problem, with a loss of
safety from peroxide leakage.

While we demonstrated pressure generation in a practical size, some open
questions remain to be answered. For example, can we further miniaturize this
chemical pump such that it is embedded inside the elastomer substrate?
Microfabrication technologies certainly offer the means to build scaled-down ver-
sions of the same design. The catalyst area, however, would be much smaller for a
millimeter scale prototype. A distributed structure with many mini-pumps working
in parallel may be helpful. On the other hand, a change in the current design to
utilize a scaled-down Kipp generator to constitute the self-regulation mechanism in
smaller scales seems promising.

Currently, commercial solenoid valves drive the actuators. We are interested in
miniature valves that can be embedded in the actuator body itself to achieve a fully
embedded actuation system that is directly addressable. Recent studies on micro-
fabricated valves [10, 11] and microfluidic multiplexers [16] provide some options.
We recently developed custom compact and energy-efficient valves controlled by
electropermanent magnets to this end [9].

Similarly, we are interested in soft sensing elements that can be placed inside the
FEAs. These sensors will provide feedback on the shape of the actuator and
improve controllability [3].
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Computational Human Model as Robot
Technology

Yoshihiko Nakamura

Abstract The study of computational approach to human understanding has been
the history of artificial intelligence. The robotics developments in algorithms and
software have prepared the powerful research tools that were not available when the
study of intelligence started from unembodied frameworks. The computational
human model is a large field of research. The author and the colleagues have
studied by focussing on behavioral modeling and anatomical modeling. The aims of
study on human modeling are double faces of a coin. One side is to develop the
technological foundation to predict human behaviors including utterance for robots
communicating with the humans. The other side is to develop the quantitative
methods to estimate the internal states of the humans. The former directly con-
nected to the development of robotic applications in the aging societies. The latter
finds fields of application in medicine, rehabilitation, pathology, gerontology,
development, and sports science. This paper survey the recent research of the
authors group on the anatomical approach to the computational human modeling.

1 Introduction

The study of artificial intelligence arose from a question “how can one make
machines understand things?” [1]. Understanding shall be followed by prediction
and then by action. Understanding is formally defined only in the relationship
between two or more. One may think of a solitary machine on a planet in the outer
space analyzing its environments to understand. Even in this case understanding is
defined between the machine and who receives the information. Although the
author hardly imagines understanding defined only in the relationship among
artificial things and not inheriting anything defined in the relationship among the
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human beings, it is still possible to say that it may be emergent among isolated
artificial things, which is certainly a scientific matter of discussion.

The author’s interests, however, are in understanding defined involving the
human beings. Since the prediction and action of the others would be a function
without which any animal species could have survived, we are talking about un-
derstanding as a communication function defined in the relationship among the
human beings as an inheritance from the biological evolution. The basic principle of
understanding would be finding the relationship of cause and effect. The animal
species have spent a large resource for developing the function for survival. The
human beings have developed the brain for the function with special focus on the
social relationship. It is an author’s scope that the way how we understand the nature
and the environments is also based on the function to understand social relationship of
cause and effect. In this sense, the function to understanding a human before oneself,
namely predicting the human’s future action and utterance is the baseline of the study.

The author and colleagues focus on the study of computational approach to
human understanding. The aims of study are double faces of a coin. One side is to
develop the technological foundation to predict human behaviors including utter-
ance for robots communicating with the humans. The other side is to develop the
quantitative methods to estimate the internal states of the humans. The former
directly connected to the development of robotic applications in the aging societies.
The latter finds fields of application in medicine, rehabilitation, pathology, geron-
tology, development, and sports science.

The components of research tools are common technologies developed in
robotics kinematics, dynamics, and optimization. The anatomical structures of
human body and the captured behavioral data provide the information to the phe-
nomenological approach. The approach is based on computer simulation. Simon [2]
raised in his book of 1969 an interesting question “how can a simulation ever tell us
anything that we do not already know?” and answered in a affirmative way in
particular on simulation of poorly understood systems. The data and the compu-
tational technologies of robotics allow the useful computational approach to the
poorly understood problem on estimating the internal states of the human.

1.1 Computing from Behavior

The computational model from behavioral data was first being inspired by the
coevolution theory of Deacon [3] and the Mimesis theory of Donald [4] where the
mimetic acquisition is the model of symbol emergence. The symbolic system and
the brain concurrently evolved in the coevolution theory by mutually interacting
under the evolutional pressure for survival. The idea that the statistical modeling to
allow the bidirectional computation of perception and action was also come to mind
when we learned and excited about the Mirror neuron hypothesis [5, 6]. The unified
bidirectional computation was so attractive as an architecture for the computational
model of behavior system even it was still controversial in biological neuroscience.
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Inamura et al. [7, 8] applied the Hidden Markov Model to develop proto-symbol
system of the human whole-body motion. The pseud-distance measure was used to
introduce topology into the set of proto-symbols. Takano et al. [9] demonstrated the
human-robot communication in realtime using the proto-symbol system for both
perception and action engines and a motion capturing system. The demonstration
was shown at EXPO2005 in the style of a fighting event of a human and a
small-size humanoid robot. Unsupervised automatic segmentation and clustering
were studied by [10–12].

The motion prediction based on the symbolic and structured database was
developed and demonstrated as “the Crystal Ball” [13]. The integration of the
motion symbol system with the natural language system has been studied by
Takano et al. [14–16] based on the common mathematical framework of statistics.

1.2 Computing from Anatomy

Coordination of human motion is a central paradigm of neuroscience [17, 18]. For
the computational modeling of human musculoskeletal system there is rich litera-
tures in biomechanics [19–21]. We developed the whole body musculoskeletal
model for applying robotic algorithms of kinematics, dynamics, and optimization
[22]. The study has been extended by integrating spinal nerves and mathematical
model of neural connectivity in the spine. The musculoskeletal computational
model has been applied to various professional subjects such as athletes, a dram
player, a singer and so on. The neuromuscular model has been focussed to construct
the reflex model of such as spinal reflex and cutaneous reflex.

In the following sections the development of the computational model of human
from anatomical knowledge is to be explained in details.

2 Musculoskeletal Model with Grouped Muscles [23]

The musculoskeletal human model consists of a musculo-tendon network and a
skeleton. The skeleton is a set of rigid links connected by mechanical joints, while
the musculo-tendon network is composed of the elements to drive and/or constrain
the bones including muscles, tendons, ligaments, and cartilages. The model used in
this paper is basically the same as the one used in [22] but contains the following
improvements:

• Many small muscles around the spine are added to reduce the joint torque errors
observed in [22]. The number of muscles grew from 366 to 989.

• The muscles are grouped according to their role (for example, extend the left
knee), which will be used in the inverse dynamics computation later.
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Figure 1 shows the new model and Table 1 summarizes the complexity of the
model used in this paper.

In [22] we proposed an inverse dynamics algorithm for the musculoskeletal
human model, which computes the ground contact forces and muscle tensions by
solving the following equation:

sG ¼ JT f þ JTCsC ð1Þ

Fig. 1 The musculoskeletal human model used in this paper. Left front view, center back view,
right a snapshot from a captured walk motion

Table 1 Complexity of the
musculoskeletal model

Musculo-tendon network

Muscles 989

Tendons 50

Ligaments 117

Cartilages 34

Total wires 1190

Muscle groups 78

Virtual links 72

Skeleton

Bones 200

Bone groups 53

Total DOF 155
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where
sG generalized forces
J Jacobian matrix of the wire length w.r.t. the generalized coordinates
f wire tensions
JC Jacobian matrix of the contact points w.r.t. the generalized coordinates
sC ground contact forces.

The solution consists of the following two steps:

1. Compute the ground contact forces sC by only considering the rows of Eq. (1)
corresponding to the 6 DOF of the hip joint. We apply quadratic programming
to solve the optimization problem (Table 2).

2. Eliminate sC from Eq. (1):

s0G ¼ sG � JTCsC ¼ JT f : ð2Þ

and compute the muscle tensions by solving another optimization by either
linear programming (LP) or quadratic programming (QP).

In this paper, we adopt the same method as [22] for step (1). The rest of this section
describes our improvement of the algorithm for step (2).

In [22] we found that LP solves our complex optimization problem much faster
than QP. However, the inherent problem of LP is that the resulting muscle tensions
can be both temporally and spatially discontinuous. Spatial discontinuity implies
that the tensions of geometrically close muscles can be completely different, which
is not likely to happen in human body.

We solve this problem by considering a measure of variation of tensions of the
muscles in each group. The new LP formulation is summarized as follows:

For constant vectors with positive components as, af, and am, find ds, df, dm, and
f that minimize

Z ¼ aTs ds þ aTf df þ aTmdm ð3Þ

subject to

�ds � s0G � JT f � ds ð4Þ

ds� 0 ð5Þ

Table 2 Neural transmission
speed of each nerve fiber
[33, 34]

Type of fiber Transmission speed (m/s)

a motor fiber 100

Ia fiber 75

Ib fiber 75

II fiber 55

Computational Human Model as Robot Technology 545



�df � f � f � � df ð6Þ

df � 0 ð7Þ

�fmax � f � 0 ð8Þ

�dm �EGf � dm ð9Þ

dm � 0 ð10Þ

where the third term of Eq. (3) has been added to consider the muscle tension
variation. The detailed description of the equations will be given in the subsequent
paragraphs.

The first term of Eqs. (3), (4) and (5) try to minimize the error of Eq. (2) to
assure the physical validity of the result. Instead of including Eq. (2) as an equality
condition, we relax the problem because Eq. (2) may not have an exact solution. By
including the term aTds in the objective function Eq. (3), we can obtain the mini-
mum possible values of for elements of ds, which are constrained to be positive by
the inequality condition Eq. (5). On the other hand, Eq. (4) ensures that the error of
Eq. (3) is smaller than ds. By combining these constraints, we can minimize the
error of Eq. (3).

The second term of Eqs. (3), (6) and (7) tries to bias f towards a given desired
wire tension vector f�. The user can, for example, specify the relationship between a
pair of flexor and extensor muscles by supplying appropriate values to f�. For
example, this information could be obtained by electromyograph
(EMG) measurements for biomechanical applications [24]. Simply setting f� = 0
gives the minimum wire tensions.

Equation (8) represents the upper and lower bounds of the wire tensions where
fmax � 0 is the vector of maximum muscle tensions. The elements of fmax can be
selected independently for each muscle. We may also consider the muscle length
and its velocity to compute fmax by Hill’s muscle model [25].

Finally, the third term of Eqs. (3), (9) and (10) are included to equalize as much
as possible the tensions of muscles in the same group. In quadratic programming,
this term could be replaced by adding squared sum of wire tensions to the evalu-
ation function. Suppose group m includes nm muscles and Gm denote the set of their
indices. The average tension of group m is computed by

�fm ¼ 1
nm

X
k2Gm

fk ð11Þ

where fk is the tension of the k-th muscle. The difference between the average
tension and the k-th ðk 2 GmÞ muscle’s tension is
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Dfmk ¼ �fm � fk ¼ EGmkf ð12Þ

where EGmk is a row vector whose i-th element is (1 − nm)/nm for i = k, 1/nm for
i 2 Gm and i 6¼ k, and 0 otherwise. By collecting EGmkðk 2 GmÞ for all groups and
stacking them vertically, we obtain the matrix EG in Eq. (9).

We verified the effect of the improvements by performing inverse dynamics
computation for a motion in which the subject bends the spine back and forth.
Figure 2 is the results of inverse dynamics computations using the model in [22]
and the improved one. In each graph, the dashed black line represents the required
joint torque obtained by Newton-Euler inverse dynamics computation, while the
blue and red lines are the joint torques computed from the muscle tensions obtained
by the old and new models, respectively. The new model yields much more precise
and smooth muscle tensions.

3 Independent Component Analysis of Muscle
Tensions [26]

We apply a statistical method called independent component analysis (ICA) [27] to
analyze the muscle tension data. This method estimates the original signals
underlying multi-dimensional time sequence data, assuming that the data are rep-
resented as a linear mixture of nongaussian and mutually independent signals. ICA
tries to compute the different signal sources, while Principal Component Analysis
(PCA) tries to obtain the common sources.

Fig. 2 The joint torques of the third neck vertebra (left) and the sixth rib vertebra (right). Black
dashed result of Newton-Euler inverse dynamics computation; blue computed from the muscle
tensions obtained by the ungrouped model; red computed from the muscle tensions obtained by
the grouped model
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We compute a constant matrix WICA 2 RNw�NICA , which maps the vector of
independent signals s 2 RNICA to the computed muscle tensions f 2 RNw:

f ¼ WICAs ð13Þ

where Nw is the number of muscles included in the musculoskeletal model
(Nw = 989 in our model), NICA (NICA < Nw) is the manually-selected number of
independent component sources.

We apply ICA to the muscle tension data of 989 wires computed for 1000
frames (10 s) of motion capture data. Figure 3 shows the errors between the
original and reconstructed muscle tensions for various choices of NICA.

According to the anatomical knowledge, all the muscles in the human body are
controlled by 124 left/right and anterior/posterior rami of the spinal nerve. The 989
muscles in our model are connected to 120 of these rami. We, therefore, verify the
validity of applying ICA with NICA = 120. Figure 3 shows that the error slowly
increases for smaller NICA until NICA = 120, and the error is 5.11 % at NICA = 120.
The error increases rapidly for NICA < 120. Figure 4 compares the original and
reconstructed muscle tensions with NICA = 120. Figure 5 represents the average and
variance of the errors between original and reconstructed tensions of all muscles.
These results indicate that we can represent the 989 tensions by as few as 120
independent components. Based on these results and facts, we choose NICA = 120
in the rest of the paper.

We next confirm that the independent components and spinal neural signals have
one-to-one correspondence to show the possibility of using the independent com-
ponents s as the spinal neural signals. Let us define a matrix C 2 RNICA�Nw , whose (i,
j)-th element is 1 if i-th ramus and j-th muscle are connected and 0 otherwise. Then
we calculate

Fig. 3 Variation of error
between original and
reconstructed muscle tensions
with number of independent
components
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P ¼ CWICA ð14Þ

where the (i, j)-th element of P 2 RNICA�NICA represents the sum of elements of WICA

corresponding to the j-th independent components and muscles connected to the i-
th ramus. If there is one-to-one correspondence between the independent compo-
nents and rami, each row and column of P would have only one outstanding peak.
Figure 6 shows the value of 5 representative rows of P, where the horizontal axis
represents the column indices. It is obvious from the graph that most of the lines
(the rows of P) have only one outstanding peak at different columns. Figure 7
marks the column index of the element where each row of P has its peak, in which

Fig. 4 Original and
reconstructed muscle (Soleus)
tensions. Blue line original
muscle tensions; Dashed red
line muscle tensions
reconstructed by ICA

Fig. 5 Average and variance
of error between original and
reconstructed tensions of all
wires
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the horizontal axis represents the indices of the rami and the vertical axis represents
the indices of the independent components. In this case, the rami marked by an oval
in the figure which correspond to the neuroplexuses share the same independent
component. Each group of rami Th1–Th5, Th6–Th8, and Th9–Th12 also shares the
same independent component. We suspect that the reason for these duplications of
independent components is that the walk motion used in this experiment did not
activate the muscles connected to these rami, which are abdominal muscles. Except
for these rami, we can observe that almost each ramus corresponds to a different
independent component.

Fig. 6 Values of selected
rows of P displayed in the
order of column

Fig. 7 The location of
maximum column in each
row of P
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4 Reflex Model and Time Delay Identification [28]

The nerve network is composed of the following elements: a motor neurons, c
motor neurons, and interneurons, the efferent pathway, muscle, muscle spindle, the
Golgi tendon organ, and the afferent pathway. Figure 8 shows our neuromuscular
network model. The model is constructed as a six-layered neural network, which
represents:

1. NNJ,i(i = 1,…, nm) (filled circle): Neuromuscular junctions on the muscles,
where nm represents the total number of muscles. This layer receives and
integrates the motion command signal from the a motor neuron in the spinal
nerve ramus. The integrated signal activates the muscle and produces tension.

2. NMS,i(i = 1,…, nm) (filled square): Muscle spindles that measure the muscle
length and its velocity. The values are computed by forward or inverse
kinematics.

3. NGT,i(i = 1,…, nm) (filled triangle): The Golgi tendon organs that measure the
muscle tensions. The values can be computed from the muscle activity (the
motion command signal) using the Hill-Stroeve muscle model [29, 30] or from
the inverse kinematics and dynamics.

Fig. 8 The neuromuscular network modeled with 6 layered neural network. Each layer represents
central nerve system, spinal nerve rami, a motor neuron, neuromuscular joint, muscle spindle and
Golgi tendon organ. The part enclosed by dashed rectangle represents the somatosensory reflex
network model
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These layers are connected to each other as follows: solid lines from NNJ to NMS

and NGT, dashed lines from NMS and NGT to NMS.
The weight parameters of the somatosensory reflex model are identified using

experimental human motion data. The muscle length, velocity and tension are
computed using the inverse kinematics and dynamics computations [31], and the
muscle activity is computed using the physiological muscle model [29, 30]. We
train this network model so that it outputs the computed muscle activity at NNJ

when the somatosensory information is fed back to NMS and NGT.
The reflex arc consists of the proprioceptive sensory receptors, the Ia and II

nerve fibers, the interneurons and a motor neuron, and the a motor fiber. The total
time delay in somatosensory reflex therefore consists of:

• Signal transmission by the Ia/II fiber and the a motor fiber.
• Time between the beginning of muscle extension to the beginning of muscle

spindle actual potential discharge.
• Synaptic transmission from the Ia/II fiber to the a motor neuron or interneuron.
• Signal transmission from the end plate to the muscle fiber.
• Diffusion of action potential along the muscle fiver.
• Induction of muscle contraction by the action potential (excitation-contraction

coupling).

The time delay for a particular muscle can be estimated from physiological
properties. The delay (1) (dT) can be estimated by dividing the length of the fiber
between a spinal nerve ramus and muscle [32] by the neural signal transmission
speed shown in Table 3 [33, 34]. The delays (2)–(6) (dt) have been investigated
experimentally. In Quadriceps, for example, the time delay caused by (1) is 16 ms,1

and the time delay caused by (2)–(6) is 9–14 ms. So the total time delay of
monosynaptic extension reflex of Quadriceps is therefore 25–30 ms.2

We identify and cross validate the somatosensory reflex network with some
different time-delay condition dT 0 ¼ dT þ dtðdt ¼ 0; 5; 10; 15; 30; 60 msÞ to con-
firm this.

Our hypothesis is that the nature and evolution would have formed human
motions that best consistent with the muscular dynamics and the neuro physio-
logical constraints. The hypothesis may allow to find the time delay searching for
the most accurate results in identification among those with various time delays.

The inverse kinematics computation based on a nDOF (= 143)-DOF skeleton
model calculates the joint angle data h 2 RnDOF�T , and the lengths of nm(= 989)
muscles and their velocities l; _l 2 Rnm�T . Then an inverse dynamics calculation is
carried out to obtain the generalized force data sG 2 RnDOF�T and we estimate the
muscle tensions f 2 Rnm�T using a biological muscle model and mathematical
optimization. Finally the muscle activity a 2 Rnm�T is computed based on the

1The distance between Quadriceps and spinal nerve ramus is 800 mm.
2This delay is often observed as the latency of knee-jerk reflex.
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biological muscle model that represents the relationship between muscle tension,
activity, length, and its velocity [29, 30].

We estimate the sensor activities from those physical quantities. The
somatosensory information of the i-th muscle associated with the somatosensory
reflex are mi, the activity of muscle spindle, and gi, the activity of Golgi tendon
organ. The former feeds back the information of muscle length and its velocity, and
the latter feeds back the muscle tension as follows:

miðtÞ ¼ 4:3iiðtÞ0:6 þ 2liðtÞþ dmi ðt ¼ 1; . . .; TÞ ð15Þ

giðtÞ ¼ fiðtÞ: ð16Þ

Equation (15) represents muscle spindle model proposed by Prochazka and
Gorassini [35] that considers the discharge rate of the Ia nerve fiber. ai; mi; gi 2
RTði ¼ 1; . . .; nmÞ are normalized to [0 − 1].

Then we identify the parameters of the somatosensory reflex model. First, the
somatosensory information fed back by the proprioceptive sensory receptors,

mref ; gref 2 RnSNn2m , are computed considering the time delay of nerve signal
transmission. The reflex arc between muscles goes through one or more spinal rami,
and we consider them separately. If the i-th muscle and j-th muscle are connected
via the k-th spinal nerve ramus:

mref ðnSNnmði� 1Þþ nSNðk � 1Þþ jÞðtÞ
¼ mjðt � dT 0

i;j;kÞ
ð17Þ

gref ðnSNnmði� 1Þþ nSNðk � 1Þþ jÞðtÞ
¼ gjðt � dT 0

i;j;kÞ
ð18Þ

where dT 0
i;j;k is the time delay caused by the nerve signal transmission from i-th

muscle to j-th muscle via k-th spinal nerve ramus computed from the nerve length
and neural transmission speed. Then we use the simple back propagation to obtain

the weight parameters Wref ;m and Wref ;gð2 Rnm�nSNn2mÞ that satisfy:

Table 3 Mapping between
EMG electrode and muscle

# of channel Name of muscle

ch01/09 Right/left rectus femoris

ch02/10 Right/left vastus lateralis

ch03/11 Right/left tibialis anterior

ch04/12 Right/left gluteus maximus os

ch05/13 Right/left biceps femoris caput longum

ch06/14 Right/left biceps femoris caput breve

ch07/15 Right/left gastrocnemius

ch08/16 Right/left soleus
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aðtÞ ¼ rðWref ;m mref ðtÞþWref ;g gref ðtÞÞ ð19Þ

where r(�) is the sigmoid function:

rðxÞ ¼ 2
1

1þ e�x �
1
2

� �
: ð20Þ

We consider the anatomical neuronal binding between the spinal nerve ramus
and the muscles [36, 37] as the constraints of these weight matrices. If the i-th
muscle and j-th muscle are not anatomically connected via the k-th spinal nerve
rams, (i, nSNnm(i − 1) + nSN (k − 1) + j)-th elements of Wref,m and Wref,g are con-
strained to be 0. The convergence calculation continues until the residue at the
muscle activity:

daðtÞ ¼ aðtÞ � rðWref ;m mref ðtÞþWref ;g gref ðtÞÞ ð21Þ

becomes sufficiently small. The following three types of motions are measured for
the analysis:

1. Step motion in 100 step/min by Subject A (DATA100).
2. Step motion in 170 step/min by Subject A (DATA170).
3. Step motion with changing its speed from 120 step/min to 150 step/min in 6 s

by Subject A (DATA120−150).
4. Jump motion by Subject B (DATAjump).
5. Squat motion by Subject B (DATAsquat).

The speed of stepping is controlled with a metronome.
First, we train the model with seven different time delays using the motion data

DATA120−150. Figure 9 shows the result of identification of the somatosensory
reflex network model. The standard back-propagation algorithm [38] is carried out
for the training where the learning rate is 0.01, forgetting rate is 0.001, and the
number of iteration is 1000. The horizontal axis represents time [sec] and vertical
axis represents the normalized activity of right Vastus Lateralis. The top and bottom
graph show the first and last 2.5 s of DATA120−150 respectively. The black dashed
line represents the muscle activity computed using the musculoskeletal model, and
the solid lines represent the reconstructed activity using the identified somatosen-
sory reflex networks with different time delays as shown in the figure.

Then we apply these somatosensory reflex network models to the other motion
data DATA100, DATA170, DATAjump, and DATAsquat for cross validation. The
cross validation is performed for each of the seven time delays and the resulting
errors are evaluated.

Figure 10 show the results of the cross validation. In each graph, the horizontal
axis represents time [sec] and vertical axis represents the normalized activity of
right Rectus Femoris. The top graph shows the result of DATAjump and bottom
graph shows the result of DATAsquat in Fig. 10. The line types and colors are same
as in Fig. 9.
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Figure 11 summarizes the results. The horizontal axis represents the offset of
time delay, and the vertical axis represents the average error of the lower-body
normalize muscle activity and its standard deviation. The black dashed line is the
result of DATA120−150, the red solid line is the result of DATA100, the green solid
line is the result of DATA170, the blue solid line is the result of DATAjump, and the
cyano solid line is the result of DATAsquat.

The result of identification shows that the somatosensory reflex network models
can learn the muscle activity pattern with only 2–4 % error. The difference of

Fig. 9 The computed activity
of right Vastus Lateralis and
reconstructed data for
DATA120−150 using the
identified
neuromusculoskeletal system
model. Black dashed line
computed muscle activity, red
solid line reconstructed data
by somatosensory reflex
system whose time delay is d
T + 0 ms, green solid line
dT + 5 ms, blue solid line
dT + 10 ms, cyano solid line
dT + 30 ms, magenta solid
line dT + 120 ms. Top first
part of stepping motion,
bottom last part of stepping
motion
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time-delay offset has little impact on the result of identification if the offset is less
than 30 ms. If the time delay offset is greater than 60 ms, the wave shape of
reconstructed muscle activity becomes inaccurate in both timing and amplitude.

The cross validations using DATA100 and DATA170 show that the identified
somatosensory reflex network model can estimate the muscle activity with 2 %
error when the time-delay offset is less than 10 ms. The difference due to the
time-delay offset is more significant than at the identification. Both DATA100 and
DATA170 show the minimum error when the time-delay offset is 10 ms. In par-
ticular, the simulated muscle activity with 10 ms offset is more accurate at the peaks

Fig. 10 The computed
activity of right Rectus
Femoris and reconstructed
data for DATAjump and
DATAsquat using the
identified
neuromusculoskeletal system
model. The parameter of
somatosensory reflex is
identified using DATA120

−150. The color of lines are
same as in Fig. 9 Top
DATAjump, bottom
DATAsquat
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of the wave form than the others. This time delay is within the range of measured
delay of knee-jerk reflex (between dT + 9 and dT + 14 ms). The precision of the
reconstruction is somewhat surprising because the novel stepping motions are much
slower or faster than the learned motion, and the muscle usage, especially the
co-contraction pattern, is likely to change depending on the speed. Our result
suggests that humans apply similar control strategies for a wide range of instances
of the same behavior.

The result of cross validations using the motion data DATAjump, DATAsquat

show that the identified somatosensory reflex network model can estimate the
muscle activity with 5 % error when the time-delay offset is 5 ms. These motions
are significantly different from stepping, so the usage of synergist and antagonist
muscles and the pattern of co-contraction must be entirely different. For example,
the co-contraction of the muscles around knee joint at the preparatory phase of
jumping motion is not included in the normal stepping motion, and it can be
computed only with the measured EMG. The reconstructed activities of Rectus
Femoris and Vastus Intermedius have impulsive shapes that are same as those seen
in the activities computed using the dynamics computation and optimization,3 if the
offset of time delay is appropriately selected. The difference due to the time-delay
offset is much more significant than the cross validations with DATA100 and
DATA170.

The comparison between the results of cross validation using DATA100,
DATA170, and DATAjump, DATAsquat shows the interesting results about the offset
of time delay. Figure 11 shows that the error changes particularly in DATAjump and
DATAsquat, though it does not change so much in DATA100 and DATA170. From
statistical point of view, the error does not change so much if the patterns of data
used for the identification and cross validation are similar (e.g. between DATA120

Fig. 11 Errors and their
variances between computed
and estimated muscle
activities. Black dashed line
DATA120−150, red solid line
DATA100, green solid line
DATA170, blue solid line
DATAjump, cyano solid line
DATAsquat

3We use the measured EMG to estimate the activity of Rectus Femoris, so its co-contraction during
the jump and squat motions appears in the computed activities.
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−150, DATA100, and DATA170), or there is no relationship between the
somatosensory information and muscle activity. The phenomenon that the relation
between the time-delay offset and the error of cross validation is not ever-increasing
or -decreasing and has a minimum value suggests that the reflex system is opti-
mized for a particular time delay. Furthermore, this length of time delay roughly
matches the value estimated from the anatomical structure and geometry of the
human body.

The result that the somatosensory reflex network model identified using the
stepping motion can be generalized to jumping and squat motions suggests that
there is a possibility that the human body can generate whole-body motions only
from simple motion command signals. In this model, muscle activity patterns can
be generated by giving the first few frames of muscle length, its velocity and
tension. This information will work as the trigger for the somatosensory reflex
network model to generate the muscle activity of the rest of motion.

5 Dermatome and Cutaneous Reflex Model [39]

The skin is clearly segmented by the nerves, which is known as dermatome. The
most part of body except for the face is segmented by the spinal nerves. One would
not be surprised if the segment of skin and the group of muscles which are asso-
ciated with the same or closer spinal nerve would have more mutual synaptic
connections. The reflex by cutaneous sensation can be studied based on the
anatomical kinematics and dynamics like the spinal reflex among skeletal muscles
as we have seen in the previous section. The dermatome segmented by spinal
nerves are illustrated by Fig. 12 as shown in the reference of anatomy [40].

We made preliminary experiments to study the cutaneous reflex by remotely
generating cutaneous sensation using small vibrating devices. The devices were
attached on each side of legs at the dorsum of foot, heel, shank, posterior surface of
knee, and anterior and posterior surfaces of thigh. Table 4 shows the correspon-
dence of the positions of vibrating devices and the spinal nerves.

The vibrating devices of 315 Hz and 3G was made by using the vibrating motors
commonly used for mobile phones. The twelve devices were attached. Only one of
them vibrated for 0.9 s at a time without letting the subject know of the location and
the start timing. The vibrating sensation by the ith device among ns(= 12) can be
represented by a step function of si as follows (Fig. 13):

si ¼ uðtÞ ð22Þ

uðtÞ ¼ 1 if stimulation,
0 otherwise:

�
ð23Þ

The cutaneous reflex model was constructed by integrating the cutaneous sen-
sation to the spinal reflex model of skeletal muscles discussed in the previous
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section as seen in Fig. 14. The learnt neural network for the spinal reflex of skeletal
muscles were used and the new nodes and arcs of neural network were added to
accommodate the cutaneous reflex.

Fig. 12 3D colored dermatome model

Table 4 The connection
between skin and spinal
nerves

Part of skin Spinal nerves

Dorsum of foot L5

Heel L5, S2

Shank L4

Posterior surface of knee L3, S2

Anterior surface of thigh L3

Posterior surface of thigh S2
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The proprioceptive sensation mref and gref and the cutaneous sensation sref of the
ith muscle or skin segment associated with the jth muscle through the kth
interneuron in the spine are represented by

Atteching Position

Fig. 13 Atteching position.
The vibelation motors are
atteched on the dorsum of
foot, heel, shank, posterior
knee, anterior thigh and
posterior thigh
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Fig. 14 The block diagram
of neural network model
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mref ðtÞ ¼ mjðt � dti;j;kÞ ð24Þ

gref ðtÞ ¼ gjðt � dti;j;kÞ ð25Þ

sref ðtÞ ¼ siðt � dti;j;kÞ ð26Þ

where mi(t) is the activity of muscle spindle of the ith muscle at time t, gi(t) is the
activity of the Golgi tendon organ of the ith muscle at time t, and si(t) is the
sensation of the ith skin segment at time t. dti, j,k implies the time delay when the ith
muscle or skin segment is connected to the jth muscle through the kth interneuron in
the spine and is determined by length of neural pathway and the transmission rate.

The weight matrices Wm, Wg, Ws are acquired by the back-propagation
learning.

âðtÞ ¼ rðWm mref ðtÞþWg gref ðtÞþWs sref ðtÞÞ ð27Þ

where sigmoid function r(�) is represented by

rðxÞ ¼ 2ð 1
1þ e�x

� 1
2
Þ ð28Þ

The iterative computation continues to update and determine the weight matrix
W�

s by minimizing da(t) given by

dâðtÞ ¼ aðtÞ � rðWm mref ðtÞþWg gref ðtÞþW�
s sref ðtÞÞ ð29Þ

where muscle activity a(t) is the reference signal computed by EMG and the inverse
dynamics. Weighting matrices Wm and Wg are determined beforehand by training
the neural network using the motion data in the absence of the cutaneous sensation.

Using motion capture system (MAC Eagle System), floor force sensors (Kistler),
wireless EMGs (Delsys), the data of stationally standing and walking motions are
obtained for the cases with and without cutaneous sensation by the vibrating
devices. The seven major muscles of lower limbs were used for computation such
as Gluteus Maximus, Rectus Femoris, Vastus Medialis, Semimembranosus, Tibialis
Anterior, Gastrocnemius, and Soleus.

The results of muscle activity estimation of left Gluteus Maximus and left
Semimembranosus are shown in Fig. 15 for the stationally standing motion. Blue
dotted lines are the estimation from EMGs and the inverse dynamics. Red solid
lines are the output from the neural network trained using the blue dotted lines as
the reference signals. The mean error is 1.02 � 10−2.

Figure 16 shows the results with the learnt neural network with the cutaneous
sensation at the left heel using the vibration device. Left Gluteus Maximus and left
Semimembranosus are shown for the stationally standing motion. Blue solid lines
are the estimated activities of muscles from EMGs and the inverse dynamics. Red
solid lines are computed muscle activities using the learnt neural network with the
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muscle lengths and their velocities for the stationally standing and the simulated
cutaneous sensation of Eq. (23). Green dotted lines are the computed muscle
activities without the cutaneous sensation. The cutaneous sensation was given at
t = 0.05 s and the difference appeared hereafter between the red and green lines.
The skin segment of left heel connects to L5 and S2, which have projections to
Gluteus Maximus, Semimembranosus. The muscle activities due to the projection
compensate the difference between the blue and green lines.

The results of muscle activity estimation of left Rectus Femoris and left
Semimembranosus in walking motion without cutaneous sensation is shown in
Fig. 17. Blue dotted lines are estimation from EMGs and the inverse dynamics. Red
solid lines are the output from the neural network trained using the blue dotted lines
as the reference signals. The mean error is 2.67 � 10−2.

Figure 18 shows the results with the learnt neural network with the cutaneous
sensation at the posterior surface of left knee using the vibration device. Left Rectus
Femoris and left Semimembranosus are shown for the walking motion. The lines
are corresponding to the cases of Fig. 16. The skin segment of posterior surface of
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Fig. 15 Computed activities
of left Gluteus Maximuis and
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left knee connects to L3 and S2. S2 has a projection to Semimembranosus, which
compensates the difference between the blue and green lines of left
Semimembranosus.

The simulation results are shown in the following two figures. Four different
cutaneous sensations are applied at stationally standing motion and the data was
used for training the neural network. The simulated cutaneous sensation was vir-
tually applied to the left heel and the dosum of left foot respectively in Figs. 19 and
20. The sensation started at t = 0.05 s.

Gluteus Maximus, Semimembranosus, and Tibialis Anterior were activated and
lifted up the toe with bending the knee in the both cases of sensations. The dif-
ference was observed at Soleus, which did not show the reaction against the sen-
sation at the dorsum of foot while it did against that at the heel. The results show
that the cutaneous sensation at the heel characterizes Soleus with antagonistic
activation.
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Fig. 17 Computed activities of left Rectus Femoris and left Semimembranosus in walking motion
without cutaneous sensation

0

0.5 Rectus Femoris

0
0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.5

[sec]

A
ct

iv
ity

Semimembranosus

EMG and inverse dynamics
Output of NN without stimulation
Output of NN with stimulation

Stimulation

contact

Fig. 18 Computed activities of left Rectus Femoris and left Semimembranosus in walking motion
with cutaneous sensation
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6 Summary

It was fortunate that the author could start the series of study with CREST Project
(1998–2003) “Development of Brain-Informatics Machines through Dynamical
Connection of Autonomous Motion Primitives.” The computational foundation of
musculoskeletal model of the human whole body was developed. The proto-symbol
space and bi-directional computation of human motion data was studied as a
mathematical model of the mirror neuron using the Hidden Markov Model.

JSPS Grant-in-Aid-For Scientific Research (S) (2003–2008) “Development of
Dynamics-Based Information Processing Model of Intelligence” provided a great
support to extend the research. The human-robot communication based on the
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mathematical model of mirror neuron (Mimesis model) was applied to the realtime
human-robot interaction. Computational model of spinal reflex was developed
based on the musculoskeletal model of the whole human body.

The current study is under the support of JSPS Grant-in-Aid-For Scientific
Research (S) (2008–2013) “Establishing Human-Machine Communication through
Kinesiology and Linguistic Integration.” The anatomical modeling and behavioral
modeling are to be integrated in statistical computation with the natural language
model. The communication of humanoid with the human beings are studied.

The development of software for high-definition neuromusculoskeletal model
and the large behavioral data base with statistical modeling is currently undergoing
being supported by MEXT Next-Generation Supercomputer Strategic Project, Field
1: Predictive Life Science, Medicine, and Pharmaceutical Foundation (2011–2016).

The author would like to acknowledge contributions of many colleagues and
students at YNL, Department of Mechano-Informatics, University of Tokyo. In
particular, without discussions with Katsu Yamane, Akihiko Murai, and Yuki
Ibuka, the coauthors of the papers quoted in this paper, this work would neither
have reached the current state and nor have been as enjoyable as it is.

References

1. M. Minsky, Semantic Information Processing (The MIT Press, 1969)
2. H.A. Simon, The Sciences of the Artificial, 2nd edn. (The MIT Press, 1968, 1981)
3. T. Deacon, Symbolic Species: The Co-evolution of Language and the Brain (W.W. Norton and

Company Inc, 1997)
4. M. Donald, Origin of the Modern mind (Harvard University Press, Cambridge, 1991)
5. V. Gallese, A. Goldman, Mirror neuron and the simulation theory of mind-reading. Trends

Cogn. Sci. 2(12), 493–501 (1998)
6. G. Rizzolatti, L. Fogassi, and V. Gallese, Neurophysiological mechanisms underlying the

understanding and imitation of action. Nat. Rev. 661–670 (2001)
7. H. Ezaki, T. Inamura, Y. Nakamura, I. Toshima, Imitation and primitive symbol acquisition of

humanoids by the integrated mimesis loop, in Proceedings of the 18th IEEE International
Conference on Robotics and Automation, pp. 4208–4213 (2001)

8. T. Inamura, I. Toshima, H. Tanie, Y. Nakamura, Embodied symbol emergence based on
mimesis theory. Int. J. Robot. Res. 23(4), 363–377 (2004)

9. W. Takano, K. Yamane, T. Sugihara, K. Yamamoto, Y. Nakamura, Primitive communication
based on motion recognition and generation with hierarchical mimesis model, in Proceedings
of the IEEE International Conference on Robotics and Automation, pp. 3602–2609 (2006)

10. B. Janus, Y. Nakamura, Unsupervised probabilistic segmentation of motion data for mimesis
modeling, in Proceedings of IEEE International Conference on Advanced Robotics, (2005),
pp. 411–417

11. D. Kulic, Y. Nakamura, Scaffolding on-line segmentation of full body human motion patterns,
in Proceedings of the IEEE/RSJ 2008 International Conference on Intelligent Robots and
Systems, pp. 2860–2866 (2008)

12. D. Kulic, H. Imagawa, Y. Nakamura, Online acquisition and visualization of motion
primitives for humanoid robots, in Proceedings of the 18th IEEE International Symposium on
Robot and Human Interactive Communication, pp. 1210–1215 (2009)

Computational Human Model as Robot Technology 565



13. W. Takano, D. Kulic, H. Imagawa, Y. Nakamura, What do you expect from a robot that tells
your future? the crystal ball, in Proceedings of the IEEE International Conference on Robotics
and Automation (2010)

14. W. Takano, Y. Nakamura, Incremental learning of integrated semiotics based on linguistic and
behavioral symbols, in Proceedings of the IEEE International Conference on Intelligent
Robots and Systems, pp. 2545–2550 (2009)

15. W. Takano, Y. Nakamura, Associative processes between behavioral symbols and a large
scale language model, in Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 2404–2409 (2010)

16. W. Takano, H. Imagawa, Y. Nakamura, Prediction of human behaviors in the future through
symbolic inference, in Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 1970–1975 (2011)

17. T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed
mathematical model. J. Neurosci. 5, 1688–1703 (1985)

18. M. Katato, Y. Maeda, Y. Uno, R. Suzuki, Trahectory formation of arm movement by cascade
neural network model based on minimum torque-change criterion. Biol. Cybern. 62(4), 275–
288 (1990)

19. S.L. Delp, J.P. Loan, A computational framework for simulating and analyzing human and
animal movement. IEEE Comput. Sci. Eng. 2, 46–55 (2000)

20. T. Komura, P. Prokopow, A. Nagano, Evaluation of the influence of muscle deactivation on
other muscles and joints during gait motion. J. Biomech. 37(4), 425–436 (2004)

21. F.C. Anderson, M.G. Pandy, Static and dynamic optimization solutions for gait are practically
equivalent. J. Biomech. 34, 153–161 (2001)

22. Y. Nakamura, K. Yamane, Y. Fujita, I. Suzuki, Somatosensory computation for man-machine
interface from motion capture data and musculoskeletal human model. IEEE Trans. Rob. 21
(1), 58–66 (2005)

23. Y. Nakamura, K. Yamane, A. Murai. “Macroscopic Modeling and Identification of the Human
Neuromuscular Network, in Proceedings of the 28th IEEE EMBS Annual International
Conference, pp. 99–105 (2006)

24. K. Yamane, Y. Fujita, Y. Nakamura, Estimation of physically and physiologically valid
somatosensory information, in Proceedings of IEEE International Conference on Robotics
and Automation, pp. 2635–2641, Barcelona, Spain, April 2005

25. A.V. Hill, The heat of shortening and the dynamic constants of muscle. Proc. Royal Soc.
Lond. B126, 136–195 (1938)

26. A. Murai, K. Yamane, Y. Nakamura, Modeling and Identification of the Human Neu-
romusculoskeletal Model’s Somatic Refrex Network, in Proceeding of 2007 JSME
Conference on Robotics and Mechatronics (ROBOMEC’07) (2007) (in Japanese)

27. A. Hyva¨rinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, 2001)
28. A. Murai, K. Yamane, Y. Nakamura, Effects of Nerve Signal Transmission Delay in

Somatosensory Reflex Modeling Based on Inverse Dynamics and Optimization, in Proceeding
of IEEE International Conference on Robotics and Automation, Anchorage, USA (2010)

29. A. Hill, The heat of shortening and the dynamic constants of muscle. Proc. Royal Soc. Lond.
B126, 136–195 (1938)

30. S. Stroeve, Impedance characteristics of a neuro-musculoskeletal model of the human arm I:
posture control. J. Biol. Cybern. 81, 475–494 (1999)

31. Y. Nakamura, K. Yamane, Y. Fujita, I. Suzuki, Somatosensory computation for man-machine
interface from motion capture data and musculoskeletal human model. IEEE Trans. Rob. 21,
58–66 (2005)

32. J.H. Warfel, The Extremities: Muscles and Motor Points (Lea & Febiger, Philadelphia, 1974)
33. J. Erlanger, H.S. Gasser, Electrical Signs of Nervous Activity (University Press, Philadelphia,

1937)
34. D.P.C. Lloyd, C.C. Hunt, A.K. McIntyre, Transmission in fractionated monosynaptic spinak

reflex system. J. Gen. Physiol. 38, 789–799 (1955)

566 Y. Nakamura



35. A. Prochazka, M. Gorassini, Models of ensemble firing of muscle spindle afferents recorded
during normal locomotion in cats. J. Physiol. 507, 277–291 (1998)

36. C.D. Clemente, Gray’s Anatomy ed 30 (Lea & Febiger, Phyladellphia, 1985)
37. A.M.R. Agur, Grant’s Atlas of Anatomy (Williams & Wilkins, Baltimore, 1991)
38. A.E. Bryson, Yu-Chi Ho, Applied Optimal Control (Blaisdell, New York, 1969)
39. Y. Ibuka, A. Murai, Y. Nakamura, Modeling of Somatic Reflex Network with Cutaneous

Sensation,in Proceeding of JSME Robotics and Mechatronics Conference (ROBOMECH)
(2011)

40. F.H. Netter, Atlas of Human Anatomy, 4th edn. (Elsevier, 2006)

Computational Human Model as Robot Technology 567



Part V
Control



Grasping and Fixturing as Submodular
Coverage Problems

John D. Schulman, Ken Goldberg and Pieter Abbeel

Abstract Grasping and fixturing are concerned with immobilizing objects. Most
prior work in this area strives to minimize the number of contacts needed. However,
for delicate objects or surfaces such as glass or bone (in medical applications), extra
contacts can be used to reduce the forces needed at each contact to resist applied
wrenches. We focus on the following class of problems. Given a polyhedral object
model, set of candidate contacts, and a limit on the sum of applied forces at the
contacts or a limit on any individual applied force, compute a set of k contact points
that maximize the radius of the ball in wrench space that can be resisted. We present
an algorithm, SatGrasp, that is guaranteed to find near-optimal solutions in linear
time. At the core of our approach are (i) an alternate formulation of the residual
radius objective, and (ii) the insight that the resulting problem is a submodular
coverage problem. This allows us to exploit the submodular saturation algorithm,
which has recently been derived for applications in sensor placement. Our approach
is applicable in situations with or without friction.

1 Introduction

The problem of choosing contact points on an object to securely hold it is relevant
to robotics and manufacturing. Robotics is concerned with grasping, where a single
robot uses a multi-fingered hand to hold an manipulate an object, or multiple robots
cooperate to pick up a large object. Manufacturing is concerned with fixturing,
where a machinist uses locators and clamps to immobilize a part for operations such

J.D. Schulman (&) � K. Goldberg � P. Abbeel
Department of Electrical Engineering and Computer Science,
University of California, Berkeley, USA
e-mail: joschu@berkeley.edu

K. Goldberg
e-mail: goldberg@berkeley.edu

P. Abbeel
e-mail: pabbeel@cs.berkeley.edu

© Springer International Publishing Switzerland 2017
H.I. Christensen and O. Khatib (eds.), Robotics Research,
Springer Tracts in Advanced Robotics 100, DOI 10.1007/978-3-319-29363-9_32

571



as inspection or machining. In both grasping and fixturing, there are often con-
straints on the forces that can be applied at the contact points.

Most prior work in this area strives to minimize the number of contacts needed
for force closure, known to be four in the plane and seven in three dimensions.
However, for delicate objects or surfaces such as glass or bone, extra contacts can
be used to reduce the forces needed at each contact to resist applied wrenches.

Researchers have proposed a number of approaches to extend the notions of
form and force closure with scalar “quality” measures for grasping or fixturing
configurations. We use the wrench-space quality measures proposed by [1, 2].
These elegant measures are based on convex geometry and maximize the distur-
bance that can be resisted given bounds on the contact forces. See [3] for a review
on quality metrics. The metrics we consider are as follows:

• Q1: The norm of the smallest wrench that can’t be resisted, given a constraint on
the sum of the normal forces.

• Q∞: The norm of the smallest wrench that can’t be resisted, given a constraint
on the maximum normal force.

The notion of norm in wrench space is not well-defined, since the wrench vector has
force and torque components, which have different units. Ferrari and Canny [2]
address this problem by using the length scale of the object as a dimensional
constant that relates forces to torques; we describe a different solution in Sect. 3
based on the minimum-volume ellipsoid containing a set of realistic wrenches.

Our main contributions are as follows:

• Approximate formulas (they are not exact due to discretization) that allow for
fast calculation of Q1 and Q∞ and their generalizations that incorporate friction.

• A fast algorithm for selection of contact points that maximize Q1 and Q∞ out of
a set of candidate contacts, which is guaranteed to give a near-optimal solution.
The runtime is roughly linear in the number of candidates and the number of
contacts.

2 Related Work

The Q1 metric for grasping and its geometric interpretation was originally proposed
by Kirkpatrick et al. [1]. They provided a fast algorithm to find the subset of a set of
two-dimensional vectors with maximal residual radius (defined in Sect. 3), but
suggested that this problem is hard in higher-dimensional spaces. A later paper [4]
provides a probabilistic algorithm to optimize the Q1 metric in the frictionless case.
Another article investigates fast methods for calculating the Q∞ metric but not
optimizing it [5].

The problem of contact point selection has also been studied from the per-
spective of fixture design. Brost and Goldberg [6] provide an algorithm to find
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viable peg and clamp placements in a planar modular fixturing apparatus, and Brost
and Peters [7] extend these results to three dimensions and incorporate quality
metrics. These methods require searching through a large number of configurations
—exponential in the number of contacts. Wang [8] optimizes a different quality
metric, which does not inherently guarantee force closure or force limits, by using
the greedy algorithm on a max-det problem.

3 Background: Geometry of Quality Metrics

In this section, we review the geometric interpretation of Ferrari and Canny’s
quality metrics and introduce some notation. Given k frictionless contact points,
suppose that applying unit normal forces at these contacts generates wrenches w1,
w2,…, wk. Then if we apply normal forces f1, f2,…, fk, the total wrench is

w ¼
X
i

fiwi: ð1Þ

Under the L1 constraint
P

i fi � 1, the set of attainable wrenches w is ConvexHull(0,
w1, w2,…, wk). Under the L∞ constraint maxi fi ≤ 1, the set of attainable wrenches is
MinkowskiSum(w1, w2,…, wk). In both cases, the constraint fi ≥ 0 is implied.

The residual radius of a compact set C is defined as the distance from the origin
to the boundary of C:

rresðCÞ ¼ distðx;RnnCÞ: ð2Þ

The quality metrics, informally defined in the introduction, are formally defined
as follows:

Q1 ¼ rresðConvexHullðw1;w2; . . .;wkÞÞ; ð3Þ

Q1 ¼ rresðMinkowskiSumðw1;w2; . . .;wkÞÞ: ð4Þ

These quality metrics can be generalized to the case where there is friction. Now
the wrench applied through the ith contact is Gi fi, where Gi is a matrix and fi is a
vector describing forces and torques that can be applied at that contact. Let f⊥ be the
normal force, and let f jj be the vector of frictional components. Then the truncated
friction cone for that contact is defined as follows:

FCi ¼ fGif j Af jj
�� ��� f?; f? � cg; ð5Þ

where the matrix A depends on the friction model and friction coefficients.
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If there is an L1 constraint on the normal forces,
P

i f
?
i ¼ 1, then the set of

attainable wrenches is ConvexHull(FC1, FC2,…, FCk). If there is an L∞ constraint
on the normal forces, maxi f ⊥ = 1, then the set of attainable wrenches is
MinkowskiSum(FC1, FC2,…, FCk). For contacts with friction, the quality functions
are defined as

Q1 ¼ rresðConvexHullðFC1;FC2; . . .;FCkÞÞ; ð6Þ

Q1 ¼ rresðMinkowskiSumðFC1;FC2; . . .;FCkÞÞ: ð7Þ

3.1 Natural Norms in Wrench Space

The quality metrics Q1 and Q∞ depend on a norm in wrench space. Since force and
torque have different units, it is not obvious how to define the norm of vectors in
wrench space, so that we can talk about the size of the ball of wrenches that can be
resisted. We propose to define the norm in wrench space in a natural way that
depends on the object being immobilized and the disturbances applied to it.

First consider the set of “disturbances”—wrenches that will be applied to the
object. This set will typically include the wrench due to gravity, and it might
contain all the wrenches arising from forces applied to the surface. Next calculate
the minimum-volume enclosing ellipsoid for these points (see [9], 8.4 for a dis-
cussion of this problem.) We will change coordinates so that this ellipsoid becomes
a unit ball. The most extreme points in our set of expected wrenches will have norm
1.

Specifically, if the ellipsoid is parameterized as

fw j Aw� xck k� 1g: ð8Þ

then we transform into normalized coordinates x = Aw, so in our new coordinates,
the ellipsoid is

fxj x� xck k� 1g: ð9Þ

For the rest of this paper, we will be working in the space of normalized wrenches,
but for clarity, we will refer to these normalized wrenches with the letter w.

Under this metric, 1=Q1 is the maximum (i.e., worst-case) normal force that
needs to be applied at some contact to resist the set of disturbances, and 1=Q1 is the
maximum sum of normal forces. Therefore, we can optimize these quality functions
if our goal is to minimize the applied normal forces given a known set of
disturbances.
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4 Alternate Formulation of Quality Metrics

In this section, we will derive an alternate expression for the residual radius of a
convex set. Besides being efficient to evaluate, this alternate form reveals that the
radius maximization problem can be solved by methods that exploit submodularity.

For frictionless contact points, we have that

Q1 ¼ rresðConvexHullðw1;w2; . . .;wkÞÞ ¼ min
yk k¼1

max
i

jyTwijþ ð10Þ

Q1 ¼ rresðMinkowskiSumðw1;w2; . . .;wkÞÞ ¼ min
yk k¼1

X
i

jyTwij þ : ð11Þ

Where |�|+ is the “positive part”, i.e.,

jxjþ ¼ x if x� 0;
0 otherwise:

�
ð12Þ

For contact points with frictions, where the forces that can be applied at each
contact lie in a truncated friction cone FC, we have that

Q1 ¼ rres ConvexHullðw1;w2; . . .;wkÞð Þ ¼ Q1 ¼ min
yk k¼1

max
i

hFCiðyÞ; ð13Þ

Q1 ¼ rres MinkowskiSumðw1;w2; . . .;wkÞð Þ ¼ min
yk k¼1

X
i

hFCiðyÞ; ð14Þ

where hFCiðyÞ ¼ maxx2FCiy
Tx.

The key concept for proving these proposition is the support function, illustrated
in Fig. 1. Given compact, convex set C and point y, the support function hC (y) is
defined as [10]

hCðyÞ ¼ max
x2C

yTx ð15Þ

For yk k = 1, the support function tells us the height of C in the direction y. The
support function has the following properties:

hConvexHullðC1;C2;...;CnÞðyÞ ¼ max
i

hCiðyÞ ð16Þ

hMinkowskiSumðC1;C2;...;CnÞðyÞ ¼
X
i

hCiðyÞ ð17Þ
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Proposition 1 For compact, convex set C containing the origin,

rresðCÞ ¼ min
yk k¼1

hCðyÞ ð18Þ

¼ min
yk k¼1

max
x2C

yTx ð19Þ

Proof See appendix.

Combining this proposition with Eqs. (16) and (17), we obtain the formulas in
Eqs. (13) and (14), which specialize to Eqs. (10) and (11) in the frictionless case.

We can evaluate these formulas by discretizing the sphere (or hypersphere) {y
|∥y∥ = 1}. As we show in the appendix, if we choose 6n2 samples on the 2-sphere or
12n5 samples on the 5-sphere, then the error of this approximation of hC (y) is

roughly
ffiffi
p

p
2n j sin h j xk k, x and y correspond to the minimum of hC, and θ is the angle

between x and y.
In the frictionless case, the computational cost of evaluating the quality function

is just due to calculating the matrix of inner products yi � wj. In the frictional case,
hFCi (y) is not much harder to compute. Using the parametrization from Eq. (5), a
straightforward calculation shows that for c = 1

hFCiðyÞ ¼
1 if y 2 FCi

yTGk
i þ A�1G?T

i y
�� ����� ���

þ
otherwise

(
ð20Þ

where we have written Gi ¼ G?
i jGk

i

h i
corresponding to the normal and frictional

components.

Fig. 1 An illustration of the
support function hC for a
rectangular set C, evaluated at
two unit vectors y1 and y2
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5 Quality Function Optimization as a Submodular
Coverage Problem

Given a set of candidate contact points indexed by S = {1, 2,…, k}, we would like
to find a subset S0 � S to optimize the quality function. In other words, we would
like to choose the subset of our truncated friction cones whose convex hull or
Minkowski sum has maximal residual radius. So we are solving the following
optimization problems:

max
S0�S

Q1 ¼ max
S0�S

min
yk k¼1

max
i2S0

hFCiðyÞ; ð21Þ

max
S0�S

Q1 ¼ max
S0�S

min
yk k¼1

X
i2S0

hFCiðyÞ; ð22Þ

subject to the cardinality constraint |S’| ≤ k.
Krause et al. [11] introduced the submodular saturation algorithm (henceforth

called SATURATE), which solves problems where we are trying to optimize the
minimum of a collection of objectives:

max
S0�S

min
i

Fiðs0Þ; subject to S0j j � k: ð23Þ

When the functions Fi are submodular, there are theoretical performance guarantees
on this algorithm. Namely, if we relax the cardinality constraint to jS0j � ak (where
α is a parameter depending on the problem) and run the algorithm, then the αk-
element solution found by SATURATE is guaranteed to be better than the optimal
k-element solution. SATURATE is very fast, and involves performing the greedy
algorithm several times with a transformed objective function. See the appendix for
a review of SATURATE and the value of α.

The expresions maxi2S0hFCiðyÞ and
P

i2S0hFCiðyÞ are both submodular functions
of the set S0, since max and sum are submodular. Each direction in wrench space
y indexes a different objective function that we are trying to optimize. Therefore,
optimization of the quality functions over S0 has exactly the form given in Eq. (23),
so SATURATE can be applied to this problem. To apply the algorithm, we need to
calculate hFCiðyjÞ for every pair consisting of a contact point i and a direction in
wrench space j. In the frictionless case we just need to calculate yTj wi for each pair.
Then to evaluate the objective functions when we perform SATURATE, we merely
need to take the max and sum over the columns of a table—an extremely cheap
operation.
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6 Analysis of Solutions Found by SatGrasp

Figure 2 illustrates the solutions found by SatGrasp, which involves using
SATURATE to optimize the right-hand side of Eqs. (10) or (13) on a grid of y. This
example illustrates that SATURATE has some look-ahead ability unlike greedy
algorithms—it makes a different sequence of choices depending on the number of
contacts requested.

Figures 3 and 4 illustrate that SatGrasp can efficiently and sensibly select a large
number of contact points. Running a combinatorial search to optimize the objective
is impractical, even for merely seven contact points, corresponding to the minimum

Fig. 2 We selected a subset of 4, 5 or 6 contact points out of 15 candidates, using either the
saturate algorithm or an exhaustive search to optimize the Q∞ metric. Arrows indicate which
contacts (black dots) were chosen, not force direction

Fig. 3 Fixture locations chosen on a three-dimensional object. From left to right 10, 20, 40
contacts
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for force closure. The larger number of contact points is redundant from the per-
spective of force closure but useful when there are force limits at each contact. We
generated a set of disturbance wrenches that will be applied to the object (unit
forces applied at the contacts) and used SATURATE to find a set of contacts that
maximize the residual radius of the resulting polytope in wrench space. Because the
disturbances have norm of at most 1 in the transformed coordinates (see Sect. 3), 1/
rres is the maximum contact force needed to resist all of the disturbances.

7 Conclusions

We used some basic tools from convex geometry to find alternate formulas for the
classic quality metrics. Since they are cheap to evaluate, these formulas may be
useful in their own right for fast quality computation, especially in the frictional
case. However, more interestingly, they reveal that the contact point selection
problem can be viewed as a multi-objective submodular coverage problem, and
SATURATE provides an efficient, near-optimal solution. We found that our
algorithm can select a large number of contact points out of a larger number of
candidates in an extremely modest amount of time.

As far as we know, the SATURATE algorithm has exclusively been applied to
problems of observation selection and information maximization. Our work hints at
an approach that may have other applications in engineering design. We must build
our system with a small set of supports so that our system can survive a set of
disturbances. Each disturbance has its own cost function, which is submodular in

Fig. 4 Maximum contact forces needed to resist a given set of wrenches as the number of contacts
is increased. The computational time of SatGrasp procedure remains extremely modest. In
contrast, a combinatorial search takes a prohibitive amount of time even to find the minimal
number of contacts needed for force closure (namely seven)
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the set of supports. In our work, the supports were contact points and the distur-
bances are the wrenches that might be applied to the object. Then, one uses
SATURATE to find the best set of supports to handle the worst-case disturbance.

8 Extensions and Future Work

These methods could be generalized to select from a set of surface or edge contacts,
rather than point contacts. Highly redundant sets of contacts are useful for fixturing
of deformable objects and objects that have limits on structural stress. We plan to
investigate quality functions for such objects and extend SatGrasp to these settings.

Acknowledgements We would like to thank Mark Meckes for providing the proof to Proposition
1 (see [12]) and James O’Brien for providing us with 3D models.

Appendix

Proof of Proposition 1 We use the fact that for two convex sets A and B, A � B if
and only if hA�hB (i.e., hA(x) ≤ hB(x) for all x). Let Br be the ball of radius r around
the origin. If r̂ ¼ rresðCÞ, then it follows that

Br̂�C ð24Þ

hBr̂ðyÞ� hCðyÞfor all yk k ¼ 1 ð25Þ

r̂ ¼ rresðCÞ� min
yk k¼1

hCðyÞ ð26Þ

On the other hand, let ~r ¼ min yk k¼1hCðyÞ. Then

hB~rðyÞ� hCðyÞfor all yk k ¼ 1 ð27Þ

hB~r � hC since h is homogeneous ð28Þ

B~r �C ð29Þ

~r ¼ min
yk k¼1

hCðyÞ� rresðCÞ ð30Þ

Thus min yk k¼1 hCðyÞ ¼ rres Cð Þ ⃞

580 J.D. Schulman et al.



Discretization Error in Formula for Residual Radius

We will consider a particular scheme for deterministically sampling the p-dimen-
sional sphere (a subset of Rpþ 1) and bound the error that results when one evaluates
the support function hC (y) at only the sampled points y to approximate its mini-
mum. We take an n × n × � � � × n grid on every p-dimensional facet of the
p + 1-dimensional hypercube. This requires (2p + 2)np points.

Let yn = argmin hC (yi) be the optimal sampled point, and let y* = argmin
hc(y) be the exact optimal point. Let xn = argmax yTn x.

yTxn ¼ xnk kcos hxn;y ð31Þ

d
dh

yTxn ¼ � xnk ksin hxn;y ð32Þ

yTn xn � yT	 xn ¼ � xnk ksin ~hDh ð33Þ

where hyn;xn � ~h� hy	;xn , and Dh ¼ hyn;xn�hy	;xn . Next, note that hðy	Þ� yT	 xn so

hðynÞ � hðy	Þ� xnk kjsin ~hDhj ð34Þ

The largest possible Δθ occurs at the nearby part of each face, between the
vector (1, 0,…, 0) and 1; 1

2n ; . . .;
1
2n

� �
, where cosðDhÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p=4n2
p

. It follows that

Dh�
ffiffiffi
p

p
2n

ð35Þ

Thus

hðynÞ � hðy	Þ� xnk kjsin ~hDhj ð36Þ

� xnk kj sin hxn;yn jð
ffiffiffi
p

p
2n

þ p
4n2

Þ ð37Þ

Submodular Saturation Algorithm

SATURATE finds solutions to problems where we are simultaneously trying to
optimize a collection of submodular objectives.

max
S0�S

min
i

FiðS0Þ; subject to jS0j � k ð38Þ
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If we run saturate and request a αk-element solution, it will give a solution that’s
better than the optimal k-element solution, where

a ¼ 1þ logðmax
s2S

X
i

FiðsÞÞ ð39Þ

This bound applies when the functions Fi take integer values. Thus to apply this
result to a general problem of the form in Eq. (38), we must typically rescale and
then round the objective functions. In the present problem, we can rescale and
round the values hFCiðyjÞ, or, in the frictionless case yTj wi. Now the αk-element
solution found by SATURATE is no longer guaranteed to be better than the optimal
k-element solution, however, the difference is small and due to rounding error.

Here we describe the SATURATE algorithm for self-containedness. The key
idea is as follows: if the optimal value is c, then there is no benefit if an objective
function exceeds c. Thus we define the truncated objective functions

bFi;cðSÞ ¼ maxfFiðSÞ; cg ð40Þ

If the original objectives Fi are submodular, then the truncated versions are also
submodular. Now our goal is to saturate all of the objective functions bFi;cðSÞ, i.e.,
achieve the value c. The mean of the truncated functions, Fc, is also submodular,
and it describes progress towards this goal.

FcðSÞ ¼
X
i

bFi;cðSÞ ð41Þ

To optimize Fc, we can use the greedy algorithm, which is guaranteed to give good
solutions since it is submodular. (The greedy k-element solution is bested by the
optimal k-element solution by at most a factor of 1 − 1/e).

We initially don’t the largest value of c that our greedy algorithm will suc-
cessfully achieve (i.e., saturate all of the objective functions), so we use a binary
search over the range of possible values. For each c, we greedily optimize Fc. If we
saturate all of the bFi;c, then we next try a larger c. If we fail to saturate them all, we
next use a lower value of c.

SATURATE runs the greedy algorithm about 10 times with the transformed
objective function. Thus the running time is roughly linear in |S| and k. It is actually
somewhat faster than O(k) because we can use a “lazy greedy” algorithm that does
not test elements that are guaranteed to give less improvement than some element
that we’ve already tested.
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A Unified Perturbative Dynamics
Approach to Online Vehicle Model
Identification

Neal Seegmiller, Forrest Rogers-Marcovitz, Greg Miller
and Alonzo Kelly

Abstract The motions of wheeled mobile robots are governed by non-contact
gravity forces and contact forces between the wheels and the terrain. Inasmuch as
future wheel-terrain interactions are unpredictable and unobservable, high perfor-
mance autonomous vehicles must ultimately learn the terrain by feel and extrapo-
late, just as humans do. We present an approach to the automatic calibration of
dynamic models of arbitrary wheeled mobile robots on arbitrary terrain. Inputs
beyond our control (disturbances) are assumed to be responsible for observed
differences between what the vehicle was initially predicted to do and what it was
subsequently observed to do. In departure from much previous work, and in order
to directly support adaptive and predictive controllers, we concentrate on the
problem of predicting candidate trajectories rather than measuring the current
slip. The approach linearizes the nominal vehicle model and then calibrates the
perturbative dynamics to explain the observed prediction residuals. Both systematic
and stochastic disturbances are used, and we model these disturbances as functions
over the terrain, the velocities, and the applied inertial and gravitational forces. In
this way, we produce a model which can be used to predict behavior across all of
state space for arbitrary terrain geometry. Results demonstrate that the approach
converges quickly and produces marked improvements in the prediction of tra-
jectories for multiple vehicle classes throughout the performance envelope of the
platform, including during aggressive maneuvering.
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1 Introduction

We concentrate in this paper on the problem of calibrating the faster-than-real-time
models that are used in mobile robot predictive control and motion planning. In
obstacle avoidance, lane change maneuvers, and path following the predicted motion
of the vehicle is the basis for the precise specification of the inputs whichwill generate
the desired behavior. The mapping between inputs and resultant behavior depends
critically on terrain conditions which vary significantly over time and space so it
cannot be pre-programmed. The mapping must be either perceived from non-contact
sensing or learned from experience. We take the latter approach in this paper.

Motion models of ground robots have many uses, but the aspects of
wheel-terrain interaction that are needed for accurate models are neither well known
nor easily measurable in realistic situations. Published methods are mostly designed
to use measurements to estimate present state for feedback controllers. Model-based
approaches have been applied to estimate longitudinal wheel slip and to detect
immobilization of mobile robots [11]. Analytical models also exist for steering
maneuvers of planetary rovers on loose soil [4]. Some published methods lump all
of the unknown soil parameters into slip ratios and a slip angle and use velocity
measurements to aid in estimation. An Extended Kalman Filter (EKF) and a Sliding
Mode Observer have been developed to estimate the slip ratio parameters [12, 7].
An EKF has also been used to estimate the slip angles and longitudinal slippage for
a wheeled mobile robot [8]. Visual terrain recognition has also been employed for
terrain-dependent slip estimation [2].

Other researchers have addressed the problem of model identification for ground
robots. For example, algorithms have been developed to learn soil parameters given
wheel-terrain dynamic models [10]. However, there is little precedent in the liter-
ature for the calibration of predictive models despite the fact that they are funda-
mental to virtually every decision that a mobile robot makes. The only precedent
known to us is [3] where our colleagues constructed an artificial neural network that
was trained offline. Our method learns a predictive model by capturing the
underlying dynamics as a function of all of input space and it is calibrated on-line
based on whatever trajectories the vehicle is executing.

The literature on identifying stochastic differential equations is even less devel-
oped, at least in robotics applications. One of the authors [5] presented methods for
calibration of odometry error models which are similar to the methods used here. By
contrast, [1] presents off-line coordinate ascent methods for tuning Kalman filters
automatically. Other than these two references, we can find nothing that even
slightly anticipates our efforts here to calibrate stochastic dynamics on-line. In this
paper we present a kind of meta Kalman filter, running in real time, which calibrates
the uncertainty in the system model used in the pose estimation filter.

Unlike all previous work, our method exploits the excellent short term accuracy
of pose sensing that is available on mobile robots (inertial navigation, real-time
kinematic GPS, or visual odometry) by using measurements of relative pose rather
than velocity. In effect, we integrate the model rather than differentiate the
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measurements. In our recent initial work, we have developed on-line calibration
techniques for learning vehicle slip rates [9]. In this paper, we extend those tech-
niques to a more elegant formulation of the perturbative dynamics that incorporates
all of initial condition errors, 3D terrain, and stochastic disturbances, all using the
same underlying model. We first develop a somewhat general 3D land kinematic
vehicle model in Sect. 2. This model, along with the pose residual observations, is
integrated into an EKF in Sect. 3 to calibrate deterministic slip and in Sect. 4 to
calibrate residual random disturbance covariance. The results are presented in
Sect. 5 along with the experimental set-up which is followed by brief conclusions
in Sect. 6.

2 System Modeling

Our fundamental approach is to linearize the system dynamics in order to capture, in
a dynamical model, the first order evolution of pose prediction error caused by input
disturbances. The disturbances are inputs to deterministic and stochastic differential
equations and their values depend on the state of the environment and of the vehicle.
Once the model is linearized, the perturbative dynamics provide a derived system
model describing the mean behavior of deterministic error. Likewise, stochastic
calculus provides the first order evolution of the state covariance, so the same
linearization can be used to estimate the remaining random error in a probabilistic
sense. In both cases, the calibration process is performed on-line using a Kalman
filter and, in this way, the system can adapt rapidly to changes in the terrain. The state
vectors in the estimation systems are the parameters which characterize the distur-
bances as functions over the terrain, the inputs, and the applied forces.

For any vehicle moving over a terrain surface, ignoring the suspension deflec-
tions, there are three instantaneous degrees of freedom of motion as long as the
vehicle remains in contact with the terrain, (Fig. 1).

The true inputs to a vehicle typically have dimensions of power, force, curvature,
linear velocity, or angular velocity. However, we are interested in predictive models
of the platform under the influence of its control system, so the system boundary
encloses the controller as well. We find a velocity driven model to be most
appropriate. This choice also leads to some simplification of the perturbative
dynamics because the dynamics are driftless and the transition matrix is available in
closed form.

Fig. 1 Vehicle Dynamics.
Three degrees of freedom
remain in the general case
after terrain contact is
enforced. Disturbances and
inputs are expressed in the
body frame
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Given the vehicle’s commanded linear and angular velocities, we have the
following unconstrained kinematic differential equation for the time derivatives of
the position and yaw with respect to a ground fixed frame of reference.

_x

_y
_h

2
64

3
75 ¼

chcb chsbsc� shcc 0

shcb shsbscþ chcc 0

0 0 cc
cb

2
64

3
75

Vx

Vy

Vh

2
64

3
75

c ¼ cosðÞ, s ¼ sinðÞ, c ¼ roll, b ¼ pitch, h ¼ yaw

ð1Þ

A more precise model would be a 6 degree of freedom unconstrained differential
equation subject to 3 constraints requiring the suspension and the roll c, pitch b, and
altitude z to adjust the wheel contact patches to remain in contact with the terrain.
This level of precision would complicate the formulation and require a numerical
solution for a kind of constrained transition matrix. Such precision is also unwar-
ranted here because the above model is the nominal model only. The context is
already one of characterizing deviations from this nominal model.

The terrain is assumed to be rigid and the predicted attitude angles above are
computed by a perception system. If the terrain is not rigid, attitude and altitude
disturbances can be added to the model, but note that such disturbances do not have
the dimensions of velocities so their effects do not compound with time as do errors
in dead reckoning. In plainer terms, the attitude error at the end of a 3 s prediction
depends, to first order, on the terrain model at that instant rather than the history of
attitude errors to that point. Conversely, wheel slip is a velocity disturbance which
must be integrated to ascertain its first order effect on terminal position error. For
this reason, we omit attitude and altitude errors from the perturbative model and
thereby avoid the need to linearize (or even represent) the constraints at all.

Subject to the above caveats, this model is the general case for a vehicle moving
on an arbitrary rigid surface with the (maximum possible) three degrees of velocity
freedom. The model is relevant to rough terrain motion prediction because it is the
inputs, rather than the state, which are confined to 3 degrees of freedom. Our
general motion model, with pose vector q ¼ ½x y h�> and input vector u ¼
½Vx Vy Vh�>, therefore has the form:

_q ¼ f ðq; uÞ ð2Þ

2.1 Linearized Dynamics

We will now develop the linearized perturbation dynamics of this system. The first
and most crucial step is to compute the linear relationship, known as the transition
matrix, between the pose at any point in time and that at any later point in time. We
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can estimate the effects of the disturbances duðtÞ on the pose errors dqðtÞ by writing
the linear perturbation dynamics:

d _q ¼ FðtÞdqðtÞþGðtÞduðtÞ ð3Þ

The Jacobians FðtÞ and GðtÞ depend on the reference trajectory and they are
taken with respect to the variables defined in Eq. (1). The attitude angles are treated
as known inputs based on earlier comments so the system dynamics are really of the
form _q ¼ f ðq; u,XÞ for attitude angles X. After a little manipulation (see [6] for
detail), the Jacobians reduce to:

FðtÞ ¼ @f =@q ¼
0 0 � _y
0 0 _x
0 0 0

2
4

3
5 ð4Þ

GðtÞ ¼ @f =@u ¼
chcb chsbsc� shcc 0
shcb shsbscþ chcc 0
0 0 cc

cb

2
4

3
5 ð5Þ

The transition matrix of the system is easy to derive in this case because all
powers of the system Jacobian F vanish. Consider the matrix integrating factor:

Wðt, sÞ ¼
Z t

s

FðfÞ df ¼
0 0 �Dy
0 0 Dx
0 0 0

2
4

3
5 ð6Þ

The predicted history point displacements are defined as Dxðt, sÞ ¼ xðtÞ � xðsÞ and
Dyðt, sÞ ¼ yðtÞ � yðsÞ: It is well-known in linear systems theory that when the
above matrix commutes with itself, as it does in this case, its matrix exponential is
the transition matrix:

Uðt, sÞ ¼ exp Wðt, sÞ½ � ¼ IþWðt, sÞ ¼
1 0 �Dy
0 1 Dx
0 0 1

2
4

3
5 ð7Þ

It will also be convenient to define the input transition matrix:

Cðt, sÞ ¼ Uðt, sÞGðsÞ ð8Þ

Now the main result for this section is given by what we will call the vector
superposition integral:

dqðtÞ ¼ Uðt, t0Þdqðt0Þþ
Z t

t0

Cðt, sÞduðsÞ ds ð9Þ
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This result expresses how the effects of errors in initial conditions dqðt0Þ and the
input (systematic) disturbances duðsÞ are projected forward and integrated over
time to produce the errors in the pose.

3 Systematic Model Identification

This section formulates a solution to the problem of identifying the system equa-
tions in order to enable better predictions of the effects of disturbances. Because the
system state is always the integral of its velocity, producing the correct velocity will
produce the correct state, whether the velocity errors are caused by slip or some
other phenomena. We will therefore, without loss of generality, represent errors in
motion prediction in terms of instantaneous values of forward slip rate dVx, lateral
slip rate dVy, and angular slip rate dVh: Such input perturbations are additive to the
inputs so they are expressed in the coordinates of the body frame where they are
likely to be constant under steady state conditions.

Of course, the slip rates will certainly depend on the terrain and the trajectory so
they will not be constant under non steady-state conditions. Therefore, the general
relationship between time varying slip rates and pose errors is not a function; it is
the functional given by Eq. (9) that depends on the entire error history. In this case,
the relevant theory for finding an unknown function is variational optimal control.
The real-time solution of the resulting Euler-Lagrange (partial differential) equa-
tions seems ill-advised, so we will use parameterization to convert to a more
conventional estimation problem. The small disturbance inputs will be assumed to

depend on an unknown set of parameters a, so that duðaÞ ¼ dVx dVy dVh

� �>
.

Substituting into Eq. (9):

dqða,tÞ ¼ Uðt, t0Þdqðt0Þþ
Z t

t0

Cðt, sÞduða; sÞ ds ð10Þ

Once the reference trajectory is specified, this is a vector-valued function of a
vector of parameters, and time, which depends on the terrain and the inputs.

3.1 Linearizing the Perturbation Integral

For the identification system, we will need the linear algebraic relationship between
the error inputs du and the error pose dqðtÞ that is predicted to occur at the end of
the prediction interval ðt � t0Þ on some trajectory qðtÞ. For our parameterized pose
errors, the derivative of Eq. (10) is a Jacobian matrix. Since differentiation can be

590 N. Seegmiller et al.



moved inside the integral sign by Leibniz rule and inside the matrix product by the
rules of matrix differentiation, the derivative of Eq. (10) is:

Ja ¼
@dqðtÞ
@a

¼
Z t

t0

Cðt, sÞ @du
@da

ds ¼
Z t

t0

Cðt, sÞUaðsÞ ds ð11Þ

3.2 Formulating the Kalman Filter

This section formulates a Kalman filter that calibrates the predictive model on-line
based on experience. We will reinterpret Eq. (1) (with slip velocities added) as a
measurement process where the change in pose qðtÞ is reinterpreted as an obser-
vation of an unknown du.

hðxÞ ¼ Dq
pred

¼
Z t

t0

chcb chsbsc� shcc 0
shcb shsbscþ chcc 0
0 0 cc

cb

2
4

3
5 VxðsÞþ dVxðsÞ

VyðsÞþ dVyðsÞ
VhðsÞþ dVhðsÞ

2
4

3
5ds ð12Þ

Note that the prediction is a suitably nonlinear function of the angular slip
dVhðsÞ because it affects the yaw angle in the rotation matrix inside the integral and
the observation is nonlinear in that angle. It is for this reason that we chose to use
the full nonlinear prediction in an extended Kalman filter rather than use the lin-
earized dynamics in Eq. (9). We used the linearized dynamics, rather, to compute
the Jacobian. We have used the notation qðtÞ for the system motion state, and called
it a pose, in order to distinguish it from the state vector x of the identification
Kalman filter.

The overall approach is to predict, at regular intervals, given the input trajectory
uðtÞ for the last few seconds, a prediction of the change in pose qðtÞ � qðt0Þ. This
prediction is then compared to an actual measurement of the pose change to form an
innovation that the filter must explain in terms of errors in the slip parameters. It
would be possible to use recently produced terrain models in order to calibrate
perception errors as well, but we have chosen to provide the attitude angles from the
historical state as known inputs.

Note that our integrated dynamics formulation introduces the three gauge free-
doms of motion in the plane due to the introduction of the initial conditions. If all
measurements were transformed by a rigid planar transform, the innovations would
be unaffected because they must use the initial pose measurement as initial con-
ditions. One approach is to define error states that absorb the error of the initial
measurement relative to the others, but we have chosen instead to form the inno-
vation in the coordinates of the initial body frame to eliminate the initial conditions
altogether.
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3.3 Systematic Model

Our models are predictive, so they must be formulated in terms of predictable
quantities regardless of whatever measurements of recent motions may be available.
Measurements of applied forces at the wheels are not typically available, but the
inertial forces caused by wheel reactions can be measured directly or computed
from velocities.

Slip velocities are represented as functions of linear and angular velocity, their
products (representing lateral acceleration) and applied gravitational force (com-
puted from attitude angles). This representation includes the slip angle of auto-
motive engineering as the coefficient relating lateral slip to longitudinal velocity,
but it permits other linear relationships to be learned as well. The approach allows
us to learn a model for how slip depends on arbitrary terrain and inputs even as they
vary over time. Such a general model is a prerequisite for identifying the system
on-line based on whatever trajectories it is executing. None of our vehicles accept a
lateral velocity command, so the slip velocity is expressed over commanded speed
Vx, and angular velocity Vh. The result of these formulation decisions is a slip
surface defined over this input space, expressed in coordinates fixed to the body. Of
course, this model can be modified arbitrarily to suit different situations.

dVx ¼ a1Vx þ a2jVhj þ a3VxjVhj þ a4gx
dVy ¼ a5Vx þ a6Vh þ a7VxVh þ a8gy
dVh ¼ a9Vx þ a10Vh þ a11VxVh þ a12gx þ a13gy

ð13Þ

The quantity jVhj appears in order to force longitudinal slip to be an even
function of turn direction. The components of gravity gx and gy are computed from
the known magnitude of gravity and the attitude angles.

We will be interested in a filter state vector formed from the parameters, a:

x ¼ a1 a2 . . . aN½ �> ð14Þ

The elimination of the gauge freedoms comes at the cost of introducing a
measurement transformation. The transformed measurement is the difference
between the measured terminal and initial pose (q

f ;meas
and q

i;meas
respectively) as

measured by the pose estimation system, converted to initial pose coordinates.

z ¼ qi
f ;meas

¼ ðRw
i Þ�1 q

f ;meas
� q

i;meas

� �
ð15Þ

The Jacobian is H ¼ Ja, a 3� N matrix derived above in Sect. 3.1. The mea-
surement uncertainty is derived from the uncertainty in the pose estimation system,
being careful to express any needed correlations, including the correlation intro-
duced in Eq. (15) by the conversion of coordinates.

592 N. Seegmiller et al.



4 Stochastic Model Identification

The random error behavior of the system can be “calibrated” in the sense that the
covariance of pose predictions can be required to agree with the observed scatter of
earlier predictions. Such an approach can be confusing because we are calibrating
the equation that normally serves as the covariance dynamics in a Kalman filter
with another Kalman filter.

The underlying system dynamics are not linear as described above. It was
possible to compute a nonlinear predictive measurement h(x) in the systematic case,
but here we must be content with a linear approximation or attempt nonlinear
covariance propagation on-line. We chose a linear approximation because the
computation must be fast and the trajectories are always relatively short. Once the
decision of a linear filter is made, the random error dynamics are easy to derive
from the systematic. Recall that the relationship between input noise covariance
NðtÞ and pose covariance PðtÞ in continuous time is given by what we will call the
matrix superposition integral:

PðtÞ ¼ Uðt, t0ÞPðt0ÞUðt, t0Þ> þ
Z t

t0

Cðt, sÞN(s)Cðt, sÞ>ds ð16Þ

All of the (trajectory dependent) matrices above are known except for the input
random disturbance covariance NðtÞ ¼ Exp½duðtÞduðtÞ>�. Once it is known, the
pose prediction covariance PðtÞ ¼ Exp½dqðtÞdqðtÞ>� can be computed. The nota-
tion is chosen to distinguish these matrices from analogous ones called P and Q in
the Kalman filter used to estimate them.

The linearization of the prediction integral proceeds analogously to the deter-
ministic case. To save space, we will present only the highlights. The Jacobian of
the pose covariance P taken with respect to the input covariance N is the derivative
of a matrix with respect to a matrix—a 4th order tensor. In the simplest case, the
noise sources are constants, assumed not to depend on the trajectory, and NðtÞ is a
3 × 3 symmetric positive definite matrix with 6 independent elements. The
Jacobian can also be regarded as a set of six matrices. The derivative of P(t) with
respect to the ði; jÞ element of N is:

Jnij ¼ @PðtÞ
@nij

¼
Z t

t0

c
i
ðt, sÞc

j
ðt, sÞ>ds ð17Þ

where c
i
ðt, sÞ is the ith column of Cðt, sÞ:

While a Kalman filter with a “state matrix” can be defined, it is conceptually
simpler to collect the 6 independent elements of P into a state vector and the
independent elements of N into a measurement vector and reorganize the Jacobian
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as appropriate. The Kalman filter is then analogous to the deterministic case where
the measurement is the sample covariance matrix S computed from the pose
innovations after the systematic component of error has been removed.

SðtkÞ ¼ 1
ðn� 1Þ

Xk¼n

k¼1

dqi
f ;lmeas

ðtkÞdqif ;measðtkÞ
> ð18Þ

When calibrating online, the luxury of repeating the same path multiple times to
observe scatter is unavailable. It takes just a little effort to define the predicted
variance of n samples taken from n different distributions. It can be shown from the
total probability theorem [5] that the average of all of the predicted covariance
matrices for each of the trajectories is the predicted covariance for the sample.
However, our experiments have produced very consistent estimates of covariance
based on presenting innovations to the stochastic identification filter one single
predicted covariance P(t) at a time.

5 Results

Experiments were conducted on three vehicles. Crusher is a six-wheeled skid-
steered vehicle with an advanced active suspension. It is capable of autonomously
driving through deserts, mountains, forests, wetlands, and other extreme environ-
ments. In order to show applicability to other platforms, tests were also conducted
on the LandTamer (skid-steered, hydraulic) and RecBot (Ackerman-steered, elec-
tric). In all cases, a high-end IMU and differential GPS unit were used for ground
truth motion measurement. Our method should work just as well with visual
odometry or any other system that measures motion, on the scale of a few seconds,
with error significantly less than the prediction errors being resolved (Fig. 2).

The first results presented are for the Crusher vehicle driving on rough, grassy
terrain at Camp Roberts in California. In this dataset Crusher traverses steep slopes
of up to 29° (see Fig. 3) which enables the identifier to predict the dependence of
slip on the x and y components of the gravity vector, as well as commanded
forward and angular velocities. The vehicle is commanded to drive at speeds up to
6 m/s and angular velocities up to 4 rad/s. The improvement in predicted change in
pose at the end of 2-s path segments is shown in Fig. 4. The standard deviation of
along track error and cross track error are reduced by 71 % and 81 % respectively.
The standard deviation of heading prediction error is reduced by 90 %. Note that
the mean error is also reduced from 1.9 m to near zero. In these and all other scatter
plots, all of the data is processed but only 1000 data points are plotted. The data
points are equally spaced in time and span the entire experiment.

The time to converge depends primarily on the initial parameter estimates and
the diversity of input path segments. Figure 5a shows the pose prediction perfor-
mance on holdout Camp Roberts data after calibrating for limited periods ranging
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Fig. 2 From left to right Crusher, LandTamer, RecBot

Fig. 3 Left The path of the Crusher vehicle in the Camp Roberts test. During the test Crusher
traverses steep slopes; roll angles range from –28 to 29° and pitch ranges from –22 to 17°. Right
Image captured by one of Crusher’s cameras; Crusher traverses both a dirt road and tall dry grass

Fig. 4 Scatter plots of along track and cross track error for the Crusher vehicle at Camp Roberts.
Each point represents predicted pose error at the end of a 2-s path segment. The left figure shows
predicted pose error with no slip calibration, the right figure shows online prediction error during
calibration. The three standard deviation error ellipse of the points is shown by the solid red line.
The dashed green line ellipse (just inside the red ellipse) is the average pose uncertainty predicted
by the stochastic calibration filter
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from 0 to 300 s. Based on pose prediction error, the filter converges within 4 min of
driving when starting from the uncalibrated case (i.e. all slip parameters initialized
to zero). When starting from the mean calibration for the Crusher vehicle on other
datasets, the filter converges in only seconds, Fig. 5b.

The slip surfaces learned by the filter on the Camp Roberts dataset are shown in
Fig. 6. Note that forward slip is negatively correlated with the absolute value of the
commanded angular velocity, jVhj: Lateral slip depends primarily on centripetal
acceleration ðVxVhÞ as expected. Angular slip is predominantly a linear function of
the commanded angular velocity. As expected, the filter learned a positive corre-
lation between forward slip and the x component of the gravity vector ðdVx ¼
� � � þ 0:256gxÞ and between lateral slip and the y component
ðdVy ¼ � � � þ 0:043gyÞ.

Figure 7 provides a visual summary of the extreme cases that are being predicted
well in the Crusher datasets. First, it is important to note that Crusher’s effective turn
rate is only a third of the commanded rate. This is partly due to the fact that four of
six wheels are slipping sideways and resisting motion in a tight turn. There is
evidently no yaw rate feedback used to compensate these gross errors. Furthermore,
when turning on a hill, the wheels on the high side carry no load and are therefore
unable to generate traction. The result is that turning becomes impossible and turn
commands cause more or less translational motion perpendicular to the terrain

Fig. 5 Plots of the mean and standard deviation of pose prediction error versus calibration time on
the Camp Roberts dataset. The model is calibrated for 0–300 s of driving then evaluated on
holdout data (the remainder of the 13 min data log). a shows results when starting from a
completely uncalibrated model (all slip parameters initialized to zero), and b shows results when
starting from the average calibration on other Crusher datasets
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gradient. These effects and others depend on the orientation of the terrain gradient in
the body frame, just as our model is formulated to learn them.

Crusher was also driven on muddy slopes during a rainstorm at Gascola,
Pennsylvania (see Fig. 8). Large reductions in motion prediction error were
observed similar to the Camp Roberts results despite the difficult weather condi-
tions, Fig. 9. The standard deviation of along track, cross track, and heading error
were reduced by 71 %, 82 %, and 87 % respectively.

In another experiment, data was collected on the Land Tamer vehicle in a muddy
gravel lot after a heavy rain. Data was collected as the vehicle was commanded to

Fig. 6 Plots of the slip surfaces for the Crusher Camp Roberts dataset. These surfaces show the
predicted forward, lateral, and angular slip as a function of the commanded forward and angular
velocity (Vx and Vθ), according to (13). These surfaces correspond to zero x and y components of
the gravity vector (i.e. driving on flat ground)

Fig. 7 Predicted and measured paths under different conditions for Crusher. The plan views show
predicted paths without slip modeling (dash-dot red) with slip modeling (dashed blue) and
measured path (solid green). Attitude signals roll (solid red) and pitch (dash-dot blue) are shown
underneath. The paths are 10 s long. The ellipses are estimates of uncertainty at 2 s intervals. Left
Crusher diving at Camp Roberts with a –20° roll. Commanded turns in either direction are
correctly predicted to be impossible. Right Crusher driving uphill at Gascola on 15° to 20° slope.
25 % longitudinal wheel slip is correctly predicted
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drive in circles at various speeds and curvatures (0.25–1.0 m/s and 0.4–0.6 m–1).
As seen in the error scatter plot, Fig. 10, the large cross track error bias was almost
completely removed by the calibrated wheel slip model.

Finally, tests were also conducted on the RecBot vehicle, a medium size
drive-by wire UGV. The vehicle is Ackerman-steered in contrast to the previous
skid-steered data sets. Data was collected as the RecBot was driven randomly on a
grass lawn for just over five and half minutes at speeds up to 4.8 m/s. The grass was
mostly level and flat, except for large tractor treads that added variance to the slip
rates. Results for the RecBot vehicle are presented in Fig. 11.

In addition to learning models of wheel slip, our formulation can be used to learn
models of the vehicle powertrain. The powertrain model maps nominal velocity
commands ðVx; VhÞ to actual wheel angular velocities (as measured by encoders)
and is learned online in parallel with slip model. The powertrain modeling is not the
dominant effect in our experiments, so we omit the details due to space limitations.

Fig. 8 Left Path of the Crusher vehicle in the Gascola test. During the test, roll angles range from
–25 to 25° and pitch ranges from –26 to 16°. Right Image captured by one of Crusher’s cameras;
Crusher traverses muddy terrain and vegetation. Note the raindrops on the lens in the image

Fig. 9 Scatter plots of along track and cross track error for the Crusher vehicle at Gascola. Each
dot represents predicted pose error 2 s in the future
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6 Conclusion

The capacity to adapt to changes in slip and traction while predicting aggressive
maneuvers accurately is a fundamental requirement of self-sufficient, high perfor-
mance robots. Because the relevant mechanical properties of the terrain are not
directly observable, predicting motion accurately has always been regarded as a
difficult problem. We undertook it anyway because we felt that even a poor model
was better than the present state of the art which ignores such issues completely.
We have developed a capacity to enable mobile robots to be much more informed
about their own mobility, both in terms of the mapping from their inputs to outputs
and in terms of the residual random error in that mapping.

Fig. 10 Scatter plots of along track and cross track error for the LandTamer vehicle driving
circles on wet gravel. Each dot represents predicted pose error 2 s in the future

Fig. 11 Scatter plots of along track and cross track error for the RecBot vehicle driving in grassy
yard. Each dot represents predicted pose error 4 s in the future. Improvements are not as
pronounced here because the terrain and the trajectories are less extreme
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While our black box approach teaches us little about the underlying terrame-
chanics, it has been quite successful in predicting motion under conditions of
significant wheel slip, on significant slopes, during aggressive maneuvers. It applies
without modification across multiple vehicle classes including Crusher which
represents the possible worst case of high speed skid steer platforms. Because our
vehicle model is velocity-based, and not force-based, skidding with locked brakes
and certain other slip scenarios are not predicted, but will be investigated in future
work.

The implementation is straightforward and lightweight from a processing point
of view. Path integrals are the same computations already performed in model
predictive control, but we need only the path followed and only one path segment
every few seconds. The systematic and stochastic Kalman filters are of 13 and 6
states respectively and can run at frequencies in excess of 100 Hz. In effect, the
computations are negligible compared to the processing load of motion control and
pose estimation. We hope to show in future work how our identification system can
coexist with a model predictive control system and a pose estimation system so that
both benefit from continuously calibrated, more accurate models of the platform
motion during aggressive maneuvering.
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Prediction and Planning Methods
of Bipedal Dynamic Locomotion Over
Very Rough Terrains

Luis Sentis, Benito R. Fernandez and Michael Slovich

Abstract Although the problem of dynamic locomotion in very rough terrain is
critical to the advancement of various areas in robotics and health devices, little
progress has been made on generalizing gait behavior with arbitrary paths. Here, we
report that perturbation theory, a set of approximation schemes that has roots in
celestial mechanics and non-linear dynamical systems, can be adapted to predict the
behavior of non closed-form integrable state-space trajectories of a robot’s center of
mass, given its arbitrary contact state and center of mass (CoM) geometric path.
Given an arbitrary geometric path of the CoM and known step locations, we use
perturbation theory to determine phase curves of CoM behavior. We determine step
transitions as the points of intersection between adjacent phase curves. To discover
intersection points, we fit polynomials to the phase curves of neighboring steps and
solve their differential roots. The resulting multi-step phase diagram is the loco-
motion plan suited to drive the behavior of a robot or device maneuvering in the
rough terrain. We provide two main contributions to legged locomotion: (1) pre-
dicting CoM state-space behavior for arbitrary paths by means of numerical inte-
gration, and (2) finding step transitions by locating common intersection points
between neighboring phase curves. Because these points are continuous in phase
they correspond to the desired contact switching policy. We validate our results on
a human-size avatar navigating in a very rough environment and compare its
behavior to a human subject maneuvering through the same terrain.
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1 State of the Art

In dynamic walking we can classify techniques in various categories:
(1) trajectory-based techniques, (2) limit cycle-based techniques, (3) prediction of
contact, and (4) hybrids of the previous three.

Trajectory-based techniques are techniques that track a time-based joint or task
space trajectory according to some locomotion model such as the Zero Moment
Point (ZMP). The state of the art of these methods includes generalized
multi-contact locomotion behaviors, developed in [1] and more recently, a time
delay extension to the ZMP method for locomotion in moderately uneven terrain,
developed by [2].

Prediction of contact placement are techniques that use dynamics to estimate
suitable contact transitions to produce locomotion or regain balance. In [3], simple
dynamic models are used to predict the placement of next contacts to achieve desire
gait patterns. Finding feasible CoM static placements given frictional constraints
was tackled in [4, 5]. In [6], stable locomotion, in the wide sense of not falling
down, is studied by providing velocity based stability margins. This work is used to
regain stability when the robot’s is pushed out, and lead to the concept of Capture
Point.

Limit cycle based techniques were pioneered by McGeer [7] through the field
of passive dynamic walking. In [8] the authors study orbital stability, and the effect
of feedback control to achieve asymptotic stability. Optimization of open-loop
stability is investigated in [9]. In [10], the authors analyze the energetic cost of
bipedal walking and running as well as the role of leg sequencing. In [11], the
authors developed a dynamic walker using artificial muscles and principles of
stability of passive walkers. In [12], a methodology for the analysis of state-space
behavior and feedback control are presented for various physical robots. Step
recovery in response to perturbations is studied in [13] supported by a linear bipedal
model in combination with an orbital energy controller. In [14], the selection of gait
patterns based on studying the interplay between robustness against perturbations
and leg compliance is investigated.

Hybrid methods include [15], where the stability of passive walkers is studied
and a controller obeying the rule, “in order to prevent falling backward the next
step, the swing leg shouldn’t be too far in front”, in the words of the author, is
suggested. Stochastic models of stability and its application for walking on mod-
erately rough unmodeled terrain are studied in [16]. The design of non-periodic
locomotion for uneven terrain is investigated in [17]. In [18], the authors explore
the design of positivity-based controllers to achieve walking on different ground
slopes. Optimization-based techniques for locomotion in rough terrains are pre-
sented in [19]. Locomotion in very rough terrain is presented in [20], where the
authors exploit optimization and static models as a means to plan locomotion. More
recently, the authors of [21] have proposed a very efficient planner that can generate
a discrete sequence of multi-contact stances using static criteria. Also recently, we
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made a theoretical contribution in the form of an extended abstract [22] to enable
walking at fast speeds in very difficult variable terrain.

2 Summary of Our Approach

We present here a new contribution that tackles rough terrain locomotion by
exploring CoM state-space manifolds and transitional contact states.

Our approach, can be explained algorithmically in terms of various phases,
namely (1) geometric planning, (2) perturbation-based CoM phase generation, and
(3) dynamic step planning based on locating common intersection points between
neighboring CoM phase curves. The geometric planning phase consists of applying
standard kinematic planning techniques to obtain initial guesses of feet contact
locations and CoM geometric path. Perturbation-based CoM phase generation is
our first contribution and consists on: (1) formulating CoM accelerations based on
the contact state, (2) incorporating the dependencies between Sagittal and vertical
accelerations due to the given CoM geometric path, and (3) using perturbation
theory to predict phase curves of the CoM in the vicinity of the step contacts and
given initial and final conditions of the step. The step solver is our second con-
tribution and consists on finding step transitions by locating common intersection
points between neighboring CoM phase curves. Because these points are contin-
uous in phase they correspond to the desired contact switching policy.

3 Mathematic Derivations

3.1 Dynamic Behavior from Single Contact Point

Dynamic equilibrium (a principle derived from Newton’s Laws of Motion and
Lagrange-d’Alembert Formalism) states that the sum of acting moments on a
moving system equals the net inertial moment. Given a contact scenario, such as the
one shown in Fig. 1, this principle translates into the following moment balance
expression

Xns
i¼1

pcopi � fri þ
Xns
i¼1

mri ¼ pcom � fcom þM gð Þþmcom; ð1Þ
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where pcopi is the i-th foot contact pressure point (with respect to the coordinate
origin), i ¼ 1; . . .; ns; the number of supporting limbs; fri and mri are the reaction
force and moment at the pressure point; pcom is the vector from the origin (of
coordinates) to the CoM; fcom and mcom are the net force and moment acting on the
CoM;M is the robot’s mass and g is gravitational constant expressed upwards in the
direction of the reaction forces.

Due to the complexity of the algorithms, in this paper we will first address
locomotion as transitions involving one support limb. Therefore, the above equation
becomes

pcopk � frk þmrk ¼ pcom � fcom þM gð Þþmcom; ð2Þ

where, k is the limb in contact with the terrain, pcopk is the limb’s Center of Pressure
(CoP) point. The above equation is vectorial and represents three orthogonal
moments. Because we aim first at controlling planar robots in the Sagittal direction,
we consider only solutions that produce accelerations in that direction, i.e.

pcopk � frk ¼ pcom � fcom þM gð Þþmcom
� �Y

: ð3Þ

Fig. 1 Definition of
coordinates of center of mass
(CoM), center of pressures
(CoP), and their position
coordinates, pcom; pcopi ; pcopj .
Also shown are reaction
forces, fri ; frj and the CoM’s
acceleration, acom
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where the Y symbolizes the Sagittal plane (x-coordinate for frontal direction and z-
coordinate for vertical).

Considering dynamic equilibrium in forces we obtain

frk ¼ fcom þM g; ð4Þ

and therefore we can rearrange Eq. (3) as

pcom � pcopk
� �� frk
� �Y¼ mY

com: ð5Þ

Solving this equation for the CoP in the Sagittal direction leads to the solution

pcopk ½x� ¼ pcom½x� �
fr½kx�
fr½kz�

pcom½z� � pcopk ½z�
� �� mcom½y�

fr½kz�
: ð6Þ

Considering that fr½kx� ¼ Macom½x�, and fr½kz� ¼ M acom½z� þ g
� �

we rewrite the above
equation as

acom½x� ¼
pcom½x� � pcopk ½x�
� �

acom½z� þ g
� �

pcom½z� � pcopk ½z�
ð7Þ

Here, we have assumed a point mass model of the robot, with all of its weight
located at its center of mass. As such, there are no inertial moments generated about
the center of mass. Also, note that a similar equation could be derived for accel-
erations in the lateral direction, but for the sake of simplicity we do not consider
them in this first study.

3.2 Integration of Geometric Path

Considering that acom½x� , €pcom½x�; the above equation is dynamic and nonlinear. As
such, the major challenge that it poses is that it does not have a closed form
solution, specially if pcom½z� and acom½z� are time varying. This difficulty corresponds
to the case of our study.

Almost all previous work that has addressed Eq. (7) has tackled the solution by
simplifying it, constraining CoM trajectories to a fixed height, i.e. pcom½z� ¼
constant: These type of solutions have led to the concept of the Zero Moment Point
(ZMP). However, in doing so, locomotion trajectories cannot be considered for
arbitrary terrains nor natural motion involving vertical changes of the hip can be
predicted. Therefore, our first contribution is on predicting the behavior corre-
sponding to the general case of Eq. (7). Because there are two variables that need to
be solved, i.e. the trajectories of the center of mass on the Sagittal and vertical
directions, we need to first seed geometric dependencies based on an initial guess.
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There are many options to determined these dependencies, ranging from ensuring
kinematic constraints, generating biomimetic patterns, or minimizing electric and
mechanical power. For the time being, let us pick the option of ensuring kinematic
constraints.

In such case, one simple dependency that fulfills the needs is to draw a piecewise
linear geometric path of the humanoid’s CoM behavior that changes slope with the
terrain while complying with kinematic constraints. In Fig. 2 we depict two
hypothetical paths, one linear and one sinusoidal. Let us consider the linear case
first with a static contact and use it to predict the CoM dynamic behavior. More
generally, if the CoM geometric path is piecewise linear, it can be specified through
equations of two or more intersecting lines, i.e.

pcom½z� ¼

a1 pcom½x� þ b1; pcom 2 P1

a2 pcom½x� þ b2; pcom 2 P2

..

.

aN pcom½x� þ bN ; pcom 2 PN

8>>><
>>>:

ð8Þ

Fig. 2 Phase diagrams of CoM behavior using perturbation theory: These phase diagrams
correspond to Matlab simulations of CoM behavior given a foot contact point, a desired CoM
kinematic path, and varying boundary conditions given at the apex of the step (i.e. when the CoM
is directly above the foot contact point)
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where, Pk represents the path of the CoM over step k, ai represents the slope of the
piecewise lines, and bi represents the corresponding vertical crossing points.
Moreover, the acceleration profile can be extracted by differentiating twice the
above piecewise equation, i.e.

pcom½z� ¼ ai pcom½x� þ bi ) acom½z� ¼ aiacom½x�: ð9Þ

Plugging the above acceleration in (7) we get

acom½x� ¼
pcom½x� � pcopk ½x�
� �

aiacom½x� þ g
� �

ai pcom½x� þ bi � pcopk ½z�
; ð10Þ

and since acom½x� appears both on the left and right hand sides, we can rewrite the
equation as

acom½x� ¼
pcom½x� � pcopk ½x�
� � � g
bi þ ai pcopk ½x� � pcopk ½z�
� � : ð11Þ

Notice that the denominator and the second term in the numerator above are
constants, so the above equation is of the form €x ¼ bðx� aÞ; which is linear and as
such has an exact solution.

However, in the more general case, kinematic paths do not necessarily map to
piecewise linear functions, but instead should be based on more sophisticated
mappings. For instance, an efficient gait can be produced by following circular arcs,

i.e. pcom½z� ¼ r2 � p2com½x�
� �0:5

: In that case path accelerations for a given step can be

expressed by differentiating the arc, i.e.

acom½z� ¼ � r2 � p2com½x�
� ��1:5

p2com½x�t
2
com½x�

� r2 � p2com½x�
� ��0:5

t2com½x�

� r2 � p2com½x�
� ��0:5

pcom½x� acom½x�

ð12Þ

where, r is the radius of the arc. Plugging the above acceleration dependency in (7)
we get

acom½x� ¼ pcom½x� � pcop½kx�
� � N pcom½x�; tcom½x�; pcop½kx�

� �
D pcom½x�; pcopk ½x�; pcopk ½z�
� � ; ð13Þ

with
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N, g� r2 � p2com½x�
� ��1:5

p2com½x�t
2
com½x�

� r2 � p2com½x�
� ��0:5

t2com½x�

ð14Þ

D, r2 � p2com½x�
� �0:5

�pcopk ½z�

þ pcom½x� � pcopk ½x�
� �

r2 � p2com½x�
� ��0:5

pcom½x�:
ð15Þ

The acceleration of Eq. (13) is non-linear and therefore there is no closed-form
solution anymore.

If the CoM geometric paths are generated by a more sophisticated planner with
more complex kinematic dependencies, the acceleration profile will be non-linear
with general expression

acom½x� ¼ pcom½x� � pcop½kx�
� � � U pcom½x�; tcom½x�; pcopk ½x�; pcopk ½z�

� �
; ð16Þ

where, U( � , � , � ,�Þ is a non-linear function, and as such does not have a closed form
solution.

3.3 State-Space Behavior Prediction from Perturbation
Theory

Our objective is to extract state-space trajectories for arbitrary kinematic CoM
paths, Pk: We refer to numerical integration to address the difficulty of solving
non-linear differential equations such as Eq. (16). In particular, perturbation theory,
has been widely used to solve the trajectory of celestial bodies and complex
physical phenomena. Perturbation theory, is a set of methods that enable to
approximate solutions from problems that do not have exact solutions, by looking
into the solution of an exact related problem. In our case, we have the exact solution
of accelerations given positions and contact points and we seek to approximate the
solution of the CoM trajectory versus its velocity, i.e. the state-space trajectory.

Let us study our case. For simplicity, we call x, pcom½x� and therefore we can
write Eq. (16) as

€x ¼ f ðx; _xÞ; ð17Þ

where f ðx; _xÞ is the RHS of Eq. (16). We assume that €x is approximately constant
for small perturbations of x. By integrating over a small time period, � (the per-
turbation), and for boundary conditions ðxk; _xkÞ we approximate the behavior of
neighboring points as
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_xkþ 1 � _xk þ€xk�; ð18Þ

xkþ 1 � xk þ _xk�þ 0:5€xk�2: ð19Þ

From Eq. (18) we find an expression of the perturbation in terms of the velocities
and acceleration, � � _xkþ 1 � _xkð Þ=€xk; and substituting in Eq. (19), with €xk ¼ f ðxkÞ;
we get

xkþ 1 �
_x2kþ 1 � _x2k

� �
2 f ðxkÞ þ xk; ð20Þ

which is the state-space approximate solution that we were looking for.
The pipeline for finding state-space trajectories goes as follows: (1) choose a

very small time perturbations �, (2) given known velocities _xk and accelerations €xk
and using Eq. (18), we get the next velocity _xkþ 1; (3) using Eq. (20) we get the
next position xkþ 1; (4) plot the points ðxkþ 1; _xkþ 1Þ in the phase plane. We also
notice, that we can iterate this recursion both forward and backward. If we iterate
backward, we need to choose a negative perturbation �.

Let us apply this method to the case of complex CoM paths as characterized by
the general acceleration of Eq. (16). We apply it to two different trajectories, one
where the CoM follows a downward linear path, Fig. 2a–c and another one where
the CoM follows a sinusoidal wave, Fig. 2d–f. The results of these two studies are
shown in Fig. 2. In both cases the contact foot is located at point pcop½x�; pcop½z�

� � ¼
ð0; 0Þ½m�: For both studies, we provide various initial conditions at the apex (i.e.
when the CoM is on top of the contact point), corresponding to the initial position
and velocity, and using the proposed perturbation method obtain the phase diagram
using forward and backward propagation. The reason why the Sagittal phase dia-
gram of the linear CoM path is symmetrical is because Sagittal CoM accelerations
are independent of vertical variations. This is not the case when the path is
sinusoidal.

4 Motion Planning

Equipped with the perturbation method, which has allowed us to predict phase
diagrams given arbitrary CoM paths and contact locations, we are now in the
position to use it to plan dynamic walk in a very rough terrain.
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4.1 Cascading Multiple CoM Phases

We have built a rough terrain set-up (see Fig. 4) in the Human Centered Robotics
Lab at UT which consists of several steps of a variety of heights and widths.
Figure 3, shows the resulting data of dynamically walking over this terrain, for both

Fig. 3 Concatenation of steps: The top graph shows the kinematic trajectory of the human CoM
(derived using motion capture) versus a piecewise linear approximation that we use to generate the
automatic walking simulation. The red dots correspond to the position of the foot contacts. The
bottom figure shows Matlab plots of Sagittal phase curves for the human and the automatic
simulation. The red circles correspond to apexes of the steps. The green squares correspond to
contact transitions of the automatic walk. The purple squares correspond to contact transitions of
the human walk. Notice, that during the climbing of the first step of the stairs results in a smooth
CoM pattern for the human walk. This is due to the smoothening effect of dual contact during the
stance phase. This is not the case during the automatic walk because we have neglected the dual
contact phase and therefore the transitions between contacts are instantaneous. Besides this
difference, the rest of the walk correlates well
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our human subject and the automatic planner presented throughout this paper. As
we will see in the results section, the automatic planner approximates feet locations
and CoM kinematics from the human, and automatically derives the dynamic walk.
In particular, the CoM path has been approximated with piecewise linear segments,
which are shown laid over the human CoM path extracted from a motion capture
process.

Traversing the terrain of Fig. 4 involves making several steps, 7 in our example
which are marked with red circles in Fig. 4. We are interested in displaying the
phase diagram of the CoM for all steps for both the human and automatic walks. By
plotting phase behavior for each step we can determine the intersections between
neighboring steps (before and after), and therefore, derive the precise phase points
to switch between steps. Because we have derived phase behavior for arbitrary
CoM kinematics and feet locations, finding step intersections yields the motion and
contact plan needed to dynamically walk over the rough terrain.

Let us focus on the automatic walk of the results section. We have used the
perturbation method of Eq. (20) to derive phase curves for every step in forward
and backward modes with respect to the contact point. Boundary conditions cor-
responding to CoM position and velocity are provided at the apex of each step. For
this example we have used similar values than the human. However, mimicking the
human is not needed in the general case. We do it here to compare results between
the planner and the human. The valleys of the bottom graph of Fig. 3 correspond to
the deceleration/acceleration pattern of single steps. They are in fact the same type
of curves than those predicted in Fig. 2, this time derived for every step of the
desired sequence given the desired boundary conditions. As such, the green squares
shown in Fig. 3 correspond to the points where two curves from neighboring steps

Fig. 4 Step solver: The center graph depicts phase curves for the two steps given the CoM path
shown on the left. We fit polynomials and find the differential root between the adjacent curves to
find the point of intersection
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have the same position and velocity and therefore correspond to the necessary
contact transitions to switch to the next step.

The pipeline for automatically planning the walk in the rough terrain is therefore
as follows: (1) develop CoM geometric path to overcome the terrain, (2) choose
boundary conditions, i.e. position and velocity, of the CoM at the apex of each step,
(3) using the perturbation method of Eq. (20), predict phase curves for each step,
(4) find the phase intersections between neighboring steps which represent the
phase point where the transition between steps need to occur, (5) the resulting
multi-step phase diagram is the locomotion plan that will be fed to a control stage.

4.2 Phase Intersections to Determine Step Transitions

From Fig. 3, it becomes clear that we derive the locomotion curves by finding the
phase intersection between steps. We illustrate this procedure by studying the step
to step transition on a particular example. Let us focus on the graphs shown in
Fig. 4. The left graph shows our test example, with a CoM path consisting of a
circular path first, continued by a line path. The motivation to use different curves is
to illustrate the versatility of our method on working with any CoM path. The
positions of the first and second step are also shown as red circles. The center graph
depicts the phase curves for the first and second steps. We have used boundary
conditions equal to x0; _x0ð Þ ¼ ð0; 0:6Þ and x1; _x1ð Þ ¼ 0:4; 0:45ð Þ at the apexes of
steps 1 and 2 respectively. The pictures showing the human are only to illustrate the
switching strategy between steps but they have not been used to derive CoM
geometric paths for this particular example.

Because the perturbation method of Eq. (20) is numerical, it is not obvious to
derive the intersection point between CoM phases. Our approach goes as follows,
(1) fit a polynomial of order 5 using Matlab’s polyfit() function, to each of the two
CoM phases, (2) subtract the two polynomials and find its roots using Matlab’s
roots() function, (3) discard imaginary roots, (4) get the point of intersection within
CoM position range, and (5) extract the CoM velocity intersection by evaluating the
polynomial at the CoM position intersection. If we apply this pipeline to the
example of Fig. 4 we get that the step intersection is at xs; _xsð Þ ¼ ð0:3; 0:7Þ:

5 Results

Based on the methods described in the previous sections, we have conducted a
study of locomotion in the Sagittal/vertical plane on a very rough terrain. Using a
human-size robot model, we consider a variable stepped terrain with height vari-
ations between 0 and 40 cm and width variations between 20 and 40 cm. The goal
of the planner is to maneuver the robot throughout the total length of the terrain.
The speed specifications are determined to cruise the terrain at an average speed of
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0.6 m/s, although this choice could be arbitrary. We also assume that the robot
starts and finishes with zero velocities and it increases velocity according to a
trapezoidal profile similar to that of our human subject. Once more, our planner
does not need human specifications, but we use them for comparison (see Fig. 3).
Velocity specifications are given only at each new step, corresponding to the
moment when the center of mass Sagittal position crosses the corresponding sup-
porting foot, namely the apex of the step. We consider steps to be spanned from
apex to apex. Also for simplicity, we consider only single-support phases, with
instantaneous transition between feet. The contact locations and CoM geometrical
path are given by the human subject and we assume a point mass model of
the robot, with all of the weight located at its waist. The human subject traversing
the terrain is shown in Fig. 6. His height is 184 cm and his weight is 80.5 kg at the
time of the experiment.

An analysis of the experiments is shown in the caption text of Figs. 5 and 6.

Fig. 5 Automatic locomotion planner: Using the proposed locomotion planner and based on
human kinematic data, we create artificial CoM trajectories and determine contact transitions to
achieve the desired design specifications of the walk. The snapshots on the upper left show a mix
reality sequence derive from our planner. Time trajectories of CoM Sagittal and vertical behavior
are shown to the right and are derived from the phase curves. A separate planner computes feet
trajectories to synchronize with CoM behavior and switch step at the desired contact intersections
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6 Conclusions and Outlook

Locomotion in very rough terrain can be formulated as a non-linear dynamical
process. As such, it does not have a closed-form solution in most cases. We have
resorted to perturbation theory as an effective tool to predict state space curves of
CoM behavior. By cascading multiple phase curves of CoM behavior around step
contacts and finding intersection points, we have generalized the planning of
locomotion curves for arbitrary terrains. These prediction and planning methods
represent important contributions to locomotion.

The strong correlation of locomotion curves shown in Fig. 3, which compare
artificial and human walks, demonstrate the validity of our methods. However, to be
deployable, our method needs to further include multicontact stages such as when
the two feet are in contact with the ground for some period of time. In such case, we
will need to derive new dynamic models involving the effect of multicontact. We
anticipate, that in such cases the effect of internal forces will play an important role
of the acceleration profile. The Multicontact/Grasp matrix of [23] presents a
powerful method to derive dynamic behavior given frictional constraints and ten-
sion forces between feet. Moreover, during multicontact phases, there will be
multiple phase curves that will fulfill frictional constraints. This fact will enable to
consider solutions that minimize some criterion such as effort.

Constraining the locomotion paths to the Sagittal-vertical plane has allowed us
to tackle rough terrain locomotion effectively. However, practical locomotion needs
to include the 3 dimensions of space. In such case, CoM geometric paths need to be
planned in the full 3D space and a lateral dynamic model similar to Eq. (7) needs to
be consider. Although this work has explore modeling and planning issues, an
important component for locomotion is the choice of a controller. Operating in state
space opens opportunities to implement robust controllers. We plan to tackle this
problem in the context of whole-body compliant control [23]. The proposed
methods can be used to tackle a wide variety of issues such as rough terrain

Fig. 6 Data extraction from human walk: A human subject walks over a rough terrain. Marker
tracking is implemented and used to extract approximate CoM paths as well as Sagittal and vertical
CoM trajectories and velocities
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locomotion, disturbance robustness, parameter uncertainty, internal force behavior,
optimization of performance parameters, and feasibility conditions for planners.
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Autonomous Navigation of a Humanoid
Robot Over Unknown Rough Terrain

Koichi Nishiwaki, Joel Chestnutt and Satoshi Kagami

Abstract The present paper describes the integration of laser-based perception,
footstep planning, and walking control of a humanoid robot for navigation over
previously unknown rough terrain. A perception system that obtains the shape of
the surrounding environment to an accuracy of a few centimeters is realized based
on input obtained using a scanning laser range sensor. A footstep planner decides
the sequence of stepping positions using the obtained terrain shape. A walking
controller that can cope with a few centimeters error in terrain shape measurement
is achieved by combining 40 ms cycle online walking pattern generation and a
sensor feedback ground reaction force controller. An operation interface that was
developed to send commands to the robot is also presented. A mixed-reality display
is adopted in order to realize intuitive interfaces. The navigation system is imple-
mented on the HRP-2, a full-size humanoid robot. The performance of the proposed
system for navigation over unknown rough terrain is investigated through several
experiments.
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1 Introduction

Biped robots are considered to be suitable for use on terrain having obstacles,
discontinuous height changes, and roughness. On the other hand, since biped robots
are naturally unstable, enabling a biped robot to walk over such terrain is a chal-
lenging problem. The solution to this problem requires an accurate perception
system, a path planner that decides step placement, and a robust walking controller.

We developed a walking controller for a humanoid robot capable of handling
unknown roughness, such as an unknown height change of up to a few centimeters
and an unknown inclination of up to 10° [1]. Recently, small scanning-type laser
range sensors that can be mounted on a humanoid robot have become available, and
an accuracy of a few centimeters is achieved when observing an area a few meters
away from the robot. We use this performance matching to realize the navigation of
a humanoid robot over unknown rough terrain.

Successful integrations of on-board sensing, footstep planning, and walking
control were reported using a stereo camera system [2], a laser range sensor [3], and
a monocular camera [4]. In order to achieve sufficient measurement accuracy and
realize walking control, the stereo camera system and laser range sensor are
operated under the assumption that the environment consists of horizontal plane
segments. The monocular camera requires advance knowledge of the shapes of the
objects in the environment. Assumptions or previous knowledge of the shapes of
the objects in the environment are not used in the present study.

Although the shape of the surrounding environment can be obtained with suf-
ficient accuracy online, it is difficult to implement knowledge on the environment,
such as identifying objects that should not be stepped on. In addition, we do not
assume the existence of a global map. We herein present an interface for assigning
commands to the robot using the high-level knowledge of a human operator. An
outline of the path or movement direction may be the commands given to the robot,
and the system plans the locations of steps locally using the obtained terrain shape.
The planned footsteps can be checked through a mixed-reality interface.

Figure 1 shows the overview of the autonomous navigation system. We
described each component technology in Sect. 2 through Sect. 5. Then, experi-
ments on the full-size humanoid HRP-2 robot are shown in Sect. 6, followed by a
discussion and conclusions.

2 Laser-Based Perception System

Terrain shape map generation using a laser range sensor is described in this section.
The terrain map for the footstep planning is represented as a grid of cells. Each cell
has a height value and an information value that indicates whether the height of the
cell is observed. A cell size of 0.02 m × 0.02 m is used for the system presented
herein.
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We adopted the UTM-X002S (Hokuyo Automatic Co. LTD.) as a scanning-type
laser range sensor. The scanning frequency is 100 Hz, and the angular resolution is
0.625°. The UTM-X002S can perform measurement from a distance of up to 30 m.
The sensor is attached to a swinging mechanism, which is mounted to the torso of a
humanoid robot as shown in Fig. 2.

Obtained distance data are converted into absolute 3D positions using the
position of the robot and the angle of the swinging mechanism. An optical motion
capture system (Motion Analysis Corp. Eagle Digital System) is used to localize the
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robot in an absolute coordinate system. The map is then updated, and the newer
observation replaces the height value at the corresponding cell. We used this
approach in the current implementation because this approach can better handle
changes in the environment and the expected accuracy of the measurement relative
to the robot position will be better when the point is measured from nearby. In the
future, the use of SLAM technologies for localizing the robot position and inte-
grating the multiple measurement for realizing better accuracy will be investigated.

An experiment to obtain a terrain map on a flat office floor while standing still
was carried out to evaluate the accuracy of the map generation. Figure 3 (left)
shows the experimental setup. The map region is limited to the light blue area of the
floor (5 m × 5 m rectangle). The sensor swung between 15° and 90° from the
horizontal plane. Each upward and downward scan required 2 s. The obtained map
is shown in Fig. 3 (right). Two sets of arrows show the positions of the left and
right feet, and the yellow area indicates cells whose height has not been obtained.
Figure 4 shows the height error of the map with respect to the distance from the
laser range sensor.

Fig. 3 Evaluation of the terrain shape measurement (left photograph of the experimental setup,
right obtained terrain map)
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Figure 5 shows an example of a map obtained for complex terrain. The terrain
map obtained after walking though the terrain is superimposed on an image cap-
tured by a ceiling camera in the right image.

3 Footstep Planning

The footstep planner uses an A* search to generate a sequence of footstep locations
to reach a given goal state. Possible foot transitions are restricted by limiting the
landing positions of the swing foot relative to the stance foot to a finite number. An
example of a limited transition set is shown in Fig. 6. The figure shows the possible
landing positions of the right foot as white rectangles and the left stance foot as a
gray rectangle. The terrain shape of the stepping position is evaluated. Then,
whether the robot can step on this positions judged and the quality of the position is
calculated as the cost of the location. The inclination, roughness, stability, largest

Fig. 5 An example of acquisition of a terrain map for a complex environment

Fig. 6 Example of transition
sets for footstep planning
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bump, and safety of the terrain are used as metrics for both the abovementioned
judgment and the cost calculation [5].

Using fewer possible transitions in the candidate set will facilitate making the
planner available online. On the other hand, if the number of possible transitions is
too small, a sequence of footprints that traverses rough terrain will not be found
because the possible landing position is also limited by the shape of the terrain. We
proposed an adaptive action model by which to address this problem [6]. The basic
idea is to try to maintain the number of possible transitions even over rough terrain.
If a possible transition is not valid because of the terrain shape, an appropriate
transition near the original position is searched as an alternative position. This
method generates suitable landing position candidates that fit the given terrain
shape.

In some cases, we prefer to give not only the goal but also an outline of the path,
so that the knowledge and intention of the operator can be transferred to the
navigation system more clearly. We built a path planner that takes the guide curve
into consideration [7]. A heuristic for the A* search is generated from the guide
curve so that the search will be carried out along the curve.

Free leg trajectories that will not hit the terrain while moving are planned after
deciding the sequence of the footprints.

4 Walking Control

The requirements for walking control as a part of the autonomous navigation
system are the realization of footprints and free leg trajectory assigned online by the
footstep planner and managing the error of the terrain shape that is generated by the
perception system.

Humanoid walking was commonly realized by constructing a dynamically stable
trajectory in advance using dynamics parameters and executing this trajectory with
sensor feedback, if needed. This procedure was adopted because bipedal humanoids
have a complicated dynamic model.

In recent years, several studies on the online generation of dynamically stable
walking patterns have been published (e.g., [8–18]). We extended this approach and
constructed a system that generates walking patterns at a very high frequency, e.g.,
a cycle of 40 ms, and which considers the actual motion of the robot as the initial
condition of each generation. Maintenance of the dynamic stability of actual
walking is realized by this high-frequency generation from the actual motion
conditions. We achieved a walking controller that can handle an unknown change
of level of a few centimeters or an unknown inclination of up to 10° by combining
the high-frequency walking pattern generation system with a sensor feedback
ground reaction force controller [1]. This controller is adopted in order to realize
footprints assigned online and to manage the perception error.
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4.1 Dynamically Stable Pattern Generation

Figure 7 shows an overview of the dynamically stable trajectory-generation system.
The role of this system is to generate dynamically stable walking trajectories that
start from the estimated actual motion.

Since trajectory generation takes some time (We currently start each generation
at 36 ms before the starting time of 40 ms-trajectory length), the initial conditions
at some point in the future should be estimated using the current motion status. Let
tinin and testn ¼ tinin � Test be the start time of the nth motion and the decision time for
the nth initial condition, respectively (Test ¼ 0:036 s in the current implementation).
The initial position of the torso in the transformation matrix representation of the
nth trajectory is decided by using the estimated absolute position of the torso at
testn ðwTt

est ðtestn ÞÞ, as follows:

wT
t
nðtinin Þ = wT

t
estðtestn Þ ðwTt

n�1ðtestn ÞÞ�1
wT

t
n�1ðtinin Þ ð1Þ

The initial positions of the left and right feet are decided in the same manner.
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Fig. 7 Overview of
dynamically stable trajectory
generation
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The trajectories for the horizontal torso position are used for maintaining bal-
ance. Foot position and posture trajectories and torso height and posture trajectories
(s(t) in Fig. 7) are designed to follow the given command smoothly from the
estimated initial conditions.

The initial position of the center of mass is calculated from the estimated initial
torso and foot positions ðwTt

nðtinin Þ; w Tl
nðtinin Þ; w Tr

nðtinin ÞÞ. Then, the desired trajectory
of the center of mass (CM) is generated from the reference ZMP trajectory by
applying preview control theory [19]. The desired CM trajectory is converted to a
horizontal torso position trajectory by applying a slightly modified version of the
resolved momentum control method [20]. Here, the trajectories of the feet and other
components of the torso are used in deciding the horizontal torso position.

Finally, inverse dynamics calculations are carried out in order to decide the
desired ground reaction force necessary to execute the generated motion. The
calculated ground reaction force will be the control reference of the sensor feedback
part of the system.

4.2 Sensor Feedback Modification

The goal of sensor feedback modification is to realize the specified torso motion in
the absolute coordinate system for a short-term timescale, even if the terrain shape
is different than expected. Gradual divergence from the given trajectories will not be
a significant problem because the repetitive trajectory generation compensates for
the divergence by using the actual motion for the initial conditions. We basically
adopted two types of feedback control in the sensor feedback modification: ground
reaction force control and control of the absolute posture of the torso. In order to
ensure that the torso motion is not sensitive to differences in the terrain shape, we
attempt to control the ground reaction force at the feet rather than the actual foot
positions.

Figure 8 shows an overview of the sensor feedback control system. Estimation
of the position and posture in the absolute coordinate system is carried out in this
loop using a cycle of 1 ms. The estimated information is used to decide the ori-
entation of the coordinate system, which is used for the ground reaction force
control, and is sent to the trajectory generation system.

Ground reaction force control is implemented as a impedance control of the foot
positions with a zero spring coefficient. The inputs of the control are the desired
reaction force and velocity. The desired velocity of the feet assigned by the tra-
jectory generation system is modified according to the ground contact phase. The
assigned ground reaction force is then modified according to the error of the torso
angular velocity. This works as a torso posture damping control and attempts to
maintain the absolute torso posture specified by the trajectory generation system.
Finally, impedance control is carried out using the desired center of pressure as the
control point, and the desired foot positions are decided.
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5 Operation Interface

Three different operation interfaces for giving commands to the autonomous nav-
igation system are presented in this section.

5.1 Graphic User Interface

The most basic interface specifies the goal on the obtained terrain map using a GUI
(Fig. 9c). The corresponding experimental setup is shown in Fig. 9a. An outline of
the path can also be specified using this interface (Fig. 9d). The corresponding
experimental setup is shown in Fig. 9b. The knowledge of the operator of the
terrain and the preferred route can be transferred to the navigation system by
providing an outline of the path. A problem with this interface is that the goal may
be in an area in which the terrain shape has not been obtained, as shown in Fig. 9.
The operator needs to determine the target environment by some other means and
its correspondence to the map shown in the GUI system.
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Center of Pressure (each foot) 
Force Ratio between Feet 
Desired Ground Reaction Force

Reactive Sensor Feedback Control

Update Estimated Absolute 
Positions of Torso & Feet

Ground Reaction Force Control
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Fig. 8 Overview of the
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5.2 MR Interactive Interface

The second interface is a mixed-reality interface. The operator wears a head-
mounted display (HMD) and uses a game controller (controller). The positions of
both the HMD and the controller are localized by the optical motion capture system
in the same absolute coordinate system as that in which the robot is localized. The
operator can draw an outline of a path or specify a goal using the controller, and the
drawn path and the goal is superimposed on the HMD view, as well as the planned
path (Fig. 10). Commands to the robot, such as start walking, can be assigned using
the same interface, as shown in Fig. 10 (right). The operator can specify the goal or
the outline path intuitively even if the target position has not yet been observed by
the perception system. A drawback of this interface is that the operator must be in
the operation area in order to specify the positions.

5.3 Joystick Interface

In order to overcome the drawback of the previous interface, another mixed-reality
interface is introduced. The camera view of the robot is displayed on a monitor, and
the desired direction and rotation of locomotion is assigned by manipulating the
triangle shape in the view using a joystick (Fig. 11). The footstep planner is used

Fig. 10 Mixed-reality interface for navigation control

Fig. 9 Graphic user interface for navigation control
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for global path planning rather than local path planning. The footstep planner plans
a sequence of a few steps that realizes the desired movement as well as adaptation
to the local terrain shape. The interface realized remote control of the autonomous
locomotion. However, there is a drawback in that the operator has to become more
involved with the locomotion control.

6 Experiments

We implemented the proposed control system on the HRP-2, a full-size 38-DOF
humanoid robot. Terrain map building and footstep planning were carried out on a
computer outside of the robot, and laser range sensor data and the planned result
were sent from/to the robot via Ethernet. At each step the robot takes, the planner
begins to compute a new plan based on the position of the robot and the step that is
being taken. By computing a new plan at each step, the robot can use the recent
perception results and adjust slips, or other deviations from the plan. Footstep
planning is repeated more frequently with the joystick interface in order to achieve a
better response to the change of the joystick input.

We installed a Core 2 3.06 GHz CPU board in the robot. Dynamically stable
walking pattern generation and sensor feedback control were implemented on the
CPU together with sensor processing and motor servo control. The dynamically
stable trajectory generation runs at 40 ms cycles and requires approximately 30 ms
to generate a pattern of 40 ms in length. At the same time, the sensor feedback
control runs at a 1 ms cycle for executing the generated trajectories.

Photographs of experiments to investigate autonomous navigation over previ-
ously unknown rough terrains are shown in Figs. 12, 13 and 14. Each experiment
uses a different interface system described in the previous session.

In the experiment shown in Fig. 12, pebbles were placed on the slope. The GUI
was used to assign the commands. The GUI view is superimposed in the top left
corner of each photograph. The yellow area indicates that the height is unknown.
Since the operator knows the environment, the operator drew an outline of the path,
including the area in which the height was unknown. The terrain map was incre-
mentally built during walking, and the obtained map was used online for planning

Fig. 11 Joystick interface for
navigation control
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the footprints that fit the terrain. Online incremental map building and replanning
worked well, and the robot successfully reached the goal by approximately fol-
lowing the provided outline.

Figure 12 shows the case in which the mixed-reality interface was used. The
view of the operator through the HMD is shown in the first four photographs and is
superimposed at top right corner of each of the other photographs. Starting from the
fifth photograph, the view superimposed at the bottom right corner shows the
obtained terrain map superimposed on the image captured by the ceiling camera.
The robot successfully walked through the previously unknown rough terrain by
approximately following the provided outline.

An autonomous navigation experiment involving the joystick interface is con-
ducted as shown in Fig. 14. The view shown to the operator is superimposed at the
top left corners of the photographs. The green triangle indicates the commanded
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Fig. 12 Photographs of an experiment on autonomous navigation over unknown terrain (GUI)
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Fig. 13 Photographs of an experiment on autonomous navigation over unknown terrain
(mixed-reality interface)
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Fig. 14 Photographs of an experiment on autonomous navigation over unknown terrain (joystick
interface)
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direction and rotation. The obtained map and planned footprints projected onto the
map are shown in the bottom left corner of the photographs. The operator suc-
cessfully guided the robot using the joystick interface by watching only the view
shown at top left.

7 Conclusion

An integrated system of online perception, footstep planning, and walking control
of a humanoid robot for navigating on previously unknown rough terrains was
proposed. A laser-based perception system realized online measurement of the
surrounding terrain shape with an accuracy of a few centimeters. The robust
walking control enabled a humanoid robot to walk over previously unknown rough
terrain with an unknown roughness of a few centimeters. Operation interfaces using
a mixed-reality display enabled commands to be fed to the system intuitively.

Localizing the robot using odometry and laser sensor data as well as the con-
struction and use of a larger-scale map will be investigated in future research.
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Hybrid System Identification via Switched
System Optimal Control for Bipedal
Robotic Walking

Ram Vasudevan

Abstract While the goal of robotic bipedal walking to date has been the devel-
opment of anthropomorphic gait, the community as a whole has been unable to
agree upon an appropriate model to generate such gait. In this paper, we describe a
method to segment human walking data in order to generate a robotic model
capable of human-like walking. Generating the model requires the determination of
the sequence of contact point enforcements which requires solving a combinatorial
scheduling problem. We resolve this problem by transforming the detection of
contact point enforcements into a constrained switched system optimal control
problem for which we develop a provably convergent algorithm. We conclude the
paper by illustrating the performance of the algorithm on identifying a model for
robotic bipedal walking.

1 Introduction

Bipedal robotic walking has been extensively studied with the principal ambition of
achieving anthropomorphic gait. The generation of human-like gait would have a
dramatic impact on the design of robotic assistive devices and prosthetics [1, 3, 23].
Unfortunately this goal that had originally motivated many roboticists to study
bipedal rather than quadrupedal or hexapedal robotics has been primarily ignored in
favor of studying the generation of any type of stable or energy minimizing gait.
This transformation of purpose is best reflected in the disparate number of models
considered in the literature. These bipedal models are differentiated by not only
considering the number of degrees of freedom i.e. the inclusion of knees or feet, but
also by considering the temporal ordering of events or discrete phases during
walking termed a domain breakdown.
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Traditionally most models of bipedal robots employed a single domain [11, 24,
29], which assumes an instantaneous double support phase and usually excludes the
presence of feet (models of this form began with the so called compass gait biped,
which did not have knees or feet). Adding feet to the bipedal robot results in the
need to extend the domain breakdown beyond a single discrete phase, which is
typically done by either adding a phase where the heel is off the ground or a double
support phase where both feet are on the ground, or any combination thereof [6,
25]. Adding knees that lock further complicates the picture, forcing the need to have
phases in which the knee is locked and unlocked [5, 7, 14, 22]. When one considers
a biped with knees and feet, the possible number and type of domain breakdowns
becomes daunting. At this point, depending on the researcher and the objective,
different temporal orderings have been chosen ranging from one discrete phase to
five, e.g., [12] considers one, [6, 25] considers two, [19] considers three, [5, 13]
considers four and [22] considers five.

This lack of consistency among models in the literature motivates the desire to
determine if there does in fact exist a “universal” model dictated by empirical
observation of human gait that should be used by bipedal robots in order to generate
human-like gait. Biomechanists have worked diligently employing such observa-
tion to detail how the musculoskeletal system behaves during walking [4, 18, 20,
30] and have segmented human walking gait by considering shock absorption,
initial limb stability and preservation of progression into seven distinct qualitatively
described functional phases [16]; however, since a robotic biped and human employ
fundamentally distinct constructs in order to generate gait, these empirical obser-
vations alone are insufficient in guiding a bipedal roboticist to a mathematical
model of a robotic biped. The idea of employing such observations is not novel in
the robotics community either as some roboticists have fixed a robotic model of a
biped and tracked the human trajectories in order to generate controllers for this
fixed model robotic biped [23]. We instead seek a method to extract a mathematical
model of a biped from empirical observation of human gait.

Recently, we devised a means to view these empirical observations in a fashion
that allowed for the separation of a mathematical model into a piece that was
determined by the construction of the biped, i.e. an intrinsic component corre-
sponding to the Lagrangian, and a piece that reflected a choice made by the
roboticist, i.e. an extrinsic component corresponding to the sequence of contact
point enforcements [2]. This abstraction of human walking which we detail in this
paper, allowed us to segment flat-ground human walking by determining the
sequence of constraint enforcements via a function fitting approach [2] and a per-
sistent homology approach [26] which both produced an identical “universal”
model of flat-ground human walking. This insight allowed for the construction of a
control law via feedback linearization that produced human-like gait [21]. Though
this abstract view of human walking allowed for a means to segment human
walking, the ad hoc method used to perform this segmentation limited the utility of
our approach to flat-ground walking.

The goal of this paper is to resolve the makeshift nature of our system identi-
fication scheme. We accomplish this task by translating our determination of the
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sequence of contact point enforcements into a constrained nonlinear switched
system optimal control problem. A switched system is a system whose state is
governed by a finite number of differential equations. The control parameter for
such systems has a discrete component, the sequence of modes, and two continuous
components, the duration of each mode and the continuous input. The difficulty
with the optimal control of such systems is that it requires the resolution of a mode
scheduling problem. We recently resolved this shortcoming by developing a bilevel
hierarchical algorithm that divided the problem into two nonlinear constrained
optimization problems [9, 10]. The result, which we describe in this paper, is an
algorithm that provides a sufficient condition to guarantee the local optimality of the
mode duration and continuous input while decreasing the overall cost via mode
insertion. Importantly this provides a way to automatically generate a model of a
bipedal robot capable of generating anthropomorphic gait from human data.

This paper is organized as follows: Sect. 2 describes how the Lagrangian of a
biped together with a temporal ordering of constraints completely determines a
mathematical model of a biped; Sect. 3 describes how to recast the problem of
contact point enforcement into a constrained switched system optimal control
problem; Sect. 4 describes an algorithm to solve this problem; Sect. 5 describes the
performance of the algorithm; and Sect. 6 concludes the paper.

2 From Constraints to Robotic Models

In this section, we begin by describing the tool employed in the literature to
describe bipedal walking robots: hybrid systems and then show how a Lagrangian
for the biped that is intrinsic to it along with the sequence of active constraints
(chosen by a robotocist) allows one to explicitly construct a hybrid system model of
a biped. Hybrid systems have been studied in a variety of contexts and have been
used successfully to model bipeds since they naturally display both discrete and
continuous behavior. We begin by defining a class of hybrid systems able to
mathematically formalize bipedal walking.

Definition 1 A hybrid dynamical system in a cycle is a tuple

HC ¼ ðC;D;U; S;D;FÞ;

where

• C ¼ ðV ;EÞ is a directed cycle where V is the set of vertices with each vertex
corresponding to a mode of the system and E is the set of edges,

• D is the domain where D � M � U � R
n � R

m and M is the state space and is
an embedded smooth submanifold of Rn,

• U � R
m is the set of controls where U is a compact connected set containing the

origin,
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• S ¼ fSege2E is a set of guards, where Se�D,
• D ¼ fDege2E is a set of reset maps, where De : SejM ! M is a smooth map,
• F ¼ ffvgv2V , where fv is a control vector field on M, i.e., fvðx; uÞ 2 TxM:

2.1 Modeling an Unconstrained Biped

To understand how to model a robotic biped, consider a configuration space for the
biped Q, i.e., a choice of (body or shape) coordinates for the robot where typically
q : ½0;1Þ ! Q is a function describing the evolution of a collection of (relative)
angles between each successive link of the robot. The Lagrangian of a bipedal
robot, L : TQ ! R, can be stated in terms of kinetic and potential energies as:

LðqðtÞ; _qðtÞÞ ¼ KðqðtÞ; _qðtÞÞ � VðqðtÞÞ; ð1Þ

where ðqðtÞ; _qðtÞÞ 2 TQ. The Euler-Lagrange equations yield the equations of
motion, which for robotic systems are stated as:

DðqðtÞÞ€qðtÞþHðqðtÞ; _qðtÞÞ ¼ BðqðtÞÞuðtÞ; ð2Þ

where DðqðtÞÞ is the inertia matrix, BðqðtÞÞ is the torque distribution matrix,
BðqðtÞÞuðtÞ is the vector of actuator torques and HðqðtÞ; _qðtÞÞ contains the Coriolis,
gravity terms and non-conservative forces grouped into a single vector [15].

The continuous dynamics of the system depend on which constraints are
enforced at any given time, while the discrete dynamics depend only on the tem-
poral ordering of constraints. Constraints and their enforcement are dictated by the
number of contact points of the system. Explicitly, let the set of contact points be
C ¼ fc1; c2; . . .; ckg, where each ci is a specific type of contact possible in the biped,
either with the ground or in the biped itself (such as the knee locking). Contact
points introduce holonomic constraints on the system, which are vector valued
functions gc : Q ! R

nc , that must be held constant for a contact point to be
maintained, i.e., gcðqðtÞÞ ¼ constant 2 R

nc fixes the contact point but allows
rotation about this point if feasible. It is useful to express the collection of all
holonomic constraints in a single diagonal matrix gðqðtÞÞ 2 R

nc� Cj j. Another class
of constraints that are important are unilateral constraints, hc for c 2 C, which are
scalar valued functions, hc : Q ! R, that dictate the set of admissible configura-
tions of the system; that is hcðqðtÞÞ� 0 implies that the configuration of the system
is admissible for the contact point c. These constraints can also be put in the form of
a diagonal matrix hðqðtÞÞ 2 R

Qj j� Qj j. A domain breakdown is a directed cycle
together with a specific choice of contact points on every vertex of that graph. That
is if C ¼ fc1; c2; . . .; ckg is a set of contact points and C ¼ ðV ;EÞ is a directed cycle
then a domain breakdown is a function B : C ! Z

k
2 such that BðvÞi ¼ 1 if ci is in

contact on v and BðvÞi ¼ 0 otherwise.
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2.2 A Hybrid Dynamical Model of a Biped

We now demonstrate that given a Lagrangian, a directed cycle, and a domain
breakdown, a hybrid system can be explicitly constructed. Since the Lagrangian is
intrinsic to a robot, this result proves that a domain breakdown, which is determined
by the enforced contact points, alone dictates the mathematical model of a biped.

The domain of the hybrid system is the direct product of the tangent space of the
configuration space of the robot and the input space U which is dictated by the set
of available actuators on the robot. The vector field in each mode is constructed by
imposing the constraints as specified by the domain breakdown. For the mode
v 2 V , the holonomic constraints that are imposed are given by:

gvðqðtÞÞ ¼ gðqðtÞÞBðvÞ; ð3Þ

where the domain breakdown dictates which constraints are enforced. Differentia-
ting the holonomic constraint yields a kinematic constraint:

JvðqðtÞÞ _qðtÞ ¼ 0; ð4Þ

where JvðqðtÞÞ ¼ RowBasis @gvðqðtÞÞ
@q

� �
is a basis for the row space of the Jacobian

(this removes any redundant constraints so that Jv has full row rank). The kinematic
constraint yields the constrained dynamics in that mode:

DðqðtÞÞ€qðtÞþHðqðtÞ; _qðtÞÞ ¼ BðqðtÞÞuðtÞþ JvðqðtÞÞFvðqðtÞ; _qðtÞ; uðtÞÞ ð5Þ

which enforces the holonomic constraint; here D, H and B are as in Eq. (2) and
FvðqðtÞ; _qðtÞ; uðtÞÞ is a wrench [15]. To determine the wrench FvðqðtÞ; _qðtÞ; uðtÞÞ,
we differentiate the kinematic constraint and combine this result with Eq. (5):

Fvðq; _q; uÞ ¼ J�1
v ðqÞ DðqÞJ�1

v ðqÞ _JvðqÞ _q
� �þHðq; _qÞ � BðqÞu� �

; ð6Þ

where we have suppressed the dependence on t in q; _q, and u. Therefore, for
xðtÞ ¼ ðqðtÞ; _qðtÞÞ, substituting Eq. (6) into Eq. (5) yields the control vector field
fvðxðtÞ; uðtÞÞ. Importantly, notice that only the holonomic constraints but not the
unilateral constraints appear in the control vector field and that the actual position to
be maintained by the contact point as dictated by the holonomic constraints never
appears inside of the control vector field. We now construct the guards and reset
maps for a hybrid system using the domain breakdown. From the wrench
FvðqðtÞ; _qðtÞ; uðtÞÞ, one can ensure that the contact point is enforced by considering
inequalities on the friction which can be stated in the form: lvðqðtÞÞTFvðqðtÞ;
_qðtÞ; uðtÞÞ� 0, with lvðqðtÞÞ a matrix of friction parameters and constants defining
the geometry of the contact point (see [13] for more details). These are coupled with
the unilateral constraint in each mode, hvðqðtÞÞ ¼ hðqðtÞÞBðvÞ, to yield the set of
admissible configurations:
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AvðqðtÞÞ; _qðtÞ; uðtÞÞ ¼ lvðqðtÞÞTFvðqðtÞ; _qðtÞ; uðtÞÞ
hvðqðtÞÞ

� 	
� 0: ð7Þ

The guard is just the boundary of the domain with the additional assumption that
the set of admissible configurations is decreasing, i.e., the vector field is pointed
outside of the domain, or for an edge e ¼ ðv; v0Þ 2 E,

Ge ¼ ðq; _q; uÞ 2 TQ� U : Av q; _q; uð Þ ¼ 0 and _Avðq; _q; uÞ� 0

 �

; ð8Þ

where we have suppressed the dependence on t in q; _q, and u. The reset map is
derived by considering the impact equations which are given by considering the
constraints enforced on the subsequent mode. For an edge e ¼ ðv; v0Þ 2 E, the
post-impact velocity _qðtþ Þ is given in terms of the pre-impact velocity _qðt�Þ and
determines the reset map:

Reðqðt�Þ; _qðt�ÞÞ ¼ qðt�Þ
I � D�1JTv0 ðJv0D�1JTv0 Þ�1Jv0 Þ _qðt�Þ
� 	

; ð9Þ

where I is the identity matrix, Jv0 is the Jacobian matrix in mode v0, D is the inertia
matrix, and we have suppressed the dependence on q(t) in the Jacobian and inertial
matrices. The result of this analysis is that given a domain breakdown and a bipedal
robot (which determines just the unconstrained Lagrangian), the hybrid model for
the biped is completely determined. If we then segment human walking by con-
sidering the sequence of contact point enforcements, we can extract a hybrid model
for a biped that is capable of generating human-like gait. Unfortunately the
determination of this sequence from human data requires resolving a combinatorial
problem.

3 Switched Optimal Control Formulation

To address this combinatorial problem, remember that given a biped and a set of
contact points one can immediately write down a finite set of constrained control
vector fields indexed by V since only the holonomic constraints affect the vector
field and the value that must be maintained by the contact point as dictated by the
holonomic constraint never appears in the control vector field. The set of constraints
do not immediately translate into a set of guards since the value of the unilateral
constraint is required. In order to determine the sequence of contact point
enforcements, we can track the human data by choosing the optimal sequence of
vector fields wherein we allow arbitrary switching between vector fields. In this
section, we describe how to address this problem.

Any trajectory of a switched system is encoded by a sequence of discrete modes,
a corresponding sequence of times spent in each mode, and the continuous input
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over time. To formalize the optimal control problem, we define four spaces: R is the
discrete mode sequence space, S is the transition time sequence space, U is the
continuous input space, and N

W is the objective mapping space, where W 2 N. We
begin by describing each of these spaces in detail. For notational convenience we
define an additional vector field, f0ð�; �Þ ¼ 0, in which the trajectories stop evolving.
The discrete mode sequence space is most readily thought of as an infinite
dimensional space with elements that contain only a finite number of non-zero
vector fields:

R ¼
[1
N¼1

r 2 ðV [f0gÞNjrðjÞ 2 vj �N; rðjÞ ¼ 0 j[N
n o

: ð10Þ

We define #r ¼ maxfj 2 NjrðjÞ 6¼ 0g, i.e. #r is the number of modes in the
sequence. Second, let an element of the transition time sequence space be a
sequence whose elements correspond to the amount of time spent in each discrete
mode:

S ¼
[1
N¼1

s 2 l1jsðjÞ	 0 8j �N; sðjÞ ¼ 0 8j [N

 �

; ð11Þ

where l1 denotes the space of absolutely summable sequences. Third, we define the
continuous input space, U:

U ¼ fu 2 L2ð½0;1Þ;RmÞjuðtÞ 2 U; 8t 2 ½0;1Þg: ð12Þ

Finally, let the objective mapping space, NW , be the set of W–tuples with ele-
ments in the natural numbers, where W is equal to the number of objectives in our
problem, which we soon define. Elements in this space define a mapping between
each of our objectives and an element of our discrete mode sequence space. These
objectives as we show below are useful in ensuring that our algorithm “sees” the
changes in contact point enforcement. We combine these four spaces together to
define our optimization space, X , as follows:

X ¼ fðr; s; u; wÞ 2 R� S � U � N
W jsðkÞ ¼ 0 8k[#r; andxðiÞ�#r 8ig;

and we denote n 2 X by a 4–tuple nðr; s; u; xÞ. Maintaining the notion of absolute
times, which we call the jump time sequence :l : N� X ! ½0;1Þ: is also useful:

lði; nÞ ¼ 0 if i ¼ 0Pi
k¼1 sðkÞ if i 6¼ 0:

�
ð13Þ

Let lf ðnÞ ¼ sk kl1¼
P1

k¼1 sðkÞ. We also define, p : ½0;1Þ � X ! ðV [f0gÞ to
return the mode corresponding to an absolute time t:
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pðt; nÞ ¼
rðminfi lði; nÞ[ tgj Þ if t\lf ðnÞ
rð#rÞ if t ¼ lf ðnÞ
0 if t[ lf ðnÞ

8<
: ð14Þ

We suppress the dependence on n in l; p, and lf whenever the choice of n is clear
in context. For notational convenience, we write lðiÞ for li.

Given n 2 X and x0 2 M, the corresponding trajectory, xðnÞ, is the solution to:

_xðtÞ ¼ fpðtÞðDðpðt�Þ;pðtþÞÞðxðtÞÞ; uðtÞÞ; 8t	 0; xð0Þ ¼ x0; ð15Þ

where D is the reset map (when pðt�Þ ¼ pðtþ ÞD is assumed to be the identity) and
where we have suppressed the dependence on x0 in xðnÞ. Let the cost function
J : X ! R for our optimization problem be defined as:

JðnÞ ¼
Zuf
0

LðxðnÞðtÞ; uðtÞ; tÞdtþ
XW
i¼1

/iðxðnÞðlxðiÞ; lxðiÞÞÞ: ð16Þ

Given n 2 X and a finite set of functions, rj : M ! R; j 2 J we constrain the
state by demanding the state satisfy rjðxðnÞðtÞÞ� 0 for each t 2 ½0; lf 
 and each
j 2 J . Moreover given n 2 X and a finite set of functions, gk : S ! R; k 2: K we
constrain the transition times by requiring they satisfy gkðsÞ� 0 for each k 2 K. We
compactly describe all the constraints by defining a new function w:

wðnÞ ¼ max max
j2J

max
t2½0;lf 


rjðxðnÞðtÞÞ;max
k2K

gkðsÞ
 !

: ð17Þ

With these definitions, we can state our problem.

Multiple Objective Switched System Optimal Control Problem

min
n2X

JðnÞ
s:t: wðnÞ� 0

ð18Þ

Since we are interested in the construction of an algorithm that provably converges
to minima of our problem, we make the following assumptions on the dynamics,
cost, and constraints:

Assumption 1 The functions L and fv are Lipschitz and differentiable in x and u for
all v 2 V . In addition, the derivatives of these functions with respect to x and u are
also Lipschitz.

Assumption 2 The functions /i; rj, and gk are Lipschitz and differentiable in their
argument for all i 2 f1; . . .;Wg; j 2 J and k 2 K. In addition, the derivatives of
these functions with respect to their arguments are also Lipschitz.
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Assumption 1, together with the controls being measurable and uniformly
bounded functions, is sufficient to ensure the existence, uniqueness, and bound-
edness of the solution to our differential Eq. (15). Assumption 2 is a standard
assumption on the objectives and constraints and is used to prove the convergence
properties of the algorithm defined in the next section.

4 Algorithm Design

In this section, we present an optimization algorithm to determine a numerical
solution to our problem. Since the focus of this paper is the application to bipedal
walking, we focus on presenting a high-level description of the algorithm, but a
more explicit description of the various pieces of the algorithm and a proof of its
convergence can be found in [9, 10].

Given n 2 X ; the algorithm works by employing a variation, q, that inserts a
mode â and control û at time t̂ into n for a length of time determined by the
argument to the variation. The algorithm stops when this variation does not produce
either a reduction in the cost or infeasibility. Since the initialization of an opti-
mization algorithm can be non-trivial, we construct an algorithm known in the
optimization literature as a Phase I/Phase II algorithm [17]. A Phase I algorithm
takes any point in the optimization space and finds a feasible point, and a Phase II
algorithm finds a local minimum given a feasible point as an initial condition. Our
algorithm divides the problem into two nonlinear constrained optimization
problems:

Bi-Level Optimization Scheme

Stage 1: Given a fixed discrete mode sequence, employ a Phase I/Phase II
algorithm to find either a locally optimal transition time sequence and
continuous control or a locally optimal infeasible transition time
sequence and continuous control.

Stage 2: Given a transition time sequence and continuous control, employ the
variation, q, to modify the discrete mode sequence to find either a lower
cost discrete mode sequence if the initialization point is feasible, or find
a less infeasible discrete mode sequence if the initialization point is
infeasible. Repeat Stage 1 using the modified discrete mode sequence.

In order to formalize this description, notice first that Stage 1 can be transformed
into a classical optimal control problem over the switching instances and contin-
uous control by employing the time-free transformation (Sect. 5 of [10] describes
this transformation). Let â : S � U ! S � U be a function that solves Stage 1. To
formalize Stage 2, we begin by defining the variation, q. Given n 2 X , consider an
insertion of a mode, â and control, û, at time t̂. This insertion is characterized by
g ¼ ðâ; t̂; ûÞ 2 Hn � Q� T n � U where T n ¼ 0; lf

� �
. Given n 2 X ; and g 2 Hn,

we let q : 0;1½ Þ ! X denoted qðgÞðkÞ describe this type of insertion (q is defined
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explicitly in Definition 2 in [10], its argument denotes the duration of the insertion,
and we have suppressed the dependence on n). Figure 1 illustrates a pair (r, s) after
they are modified by the function qðgÞ.

We employ the variation, q, to characterize when an optimal point has been
reached. Observe that after Stage 1 the only way to locally reduce the cost or
infeasibility is by modifying the discrete mode sequence. Given this procedure, a
point n ¼ ðr; s; u;wÞ 2 X satisfies our optimality condition if (s, u) is a locally
optimal solution to Stage 1 and if the best modification of the discrete mode
sequence via the variation, q, does not produce a decrease in the cost, J, whenever
the point n is feasible, or does not produce a decrease in the constraint, w, whenever
the point n is infeasible.

Given any function F : X ! R
k for some k 2 N; let us define the directional

derivative of F composed with q for k[ 0 by:

Dðn;gÞF ¼ lim
k#0

1
k

F q
ðgÞ ðkÞ

� �
� FðnÞ

h i
ð19Þ

In order to check if we have arrived at a point that satisfies the optimality condition,
we first study the effect of the variation, q, on the cost, J, using the first order
approximation of its change due to the insertion, Dðn;gÞJ. If this derivative is neg-
ative, then one can argue that it is possible to decrease the cost via the variation.
Second, consider the first order approximation of our constraint, w, with respect to
q, denoted by Dðn;gÞw, to determine if the infeasibility decreases due to the insertion.
Again if this derivative is negative, then it is possible to decrease the infeasibility
via the variation. Using these results, we define an optimality function,
h : X ! �1; 0ð 
:

hðnÞ ¼ min
g2Hn

1ðn; gÞ; 1ðn; gÞ ¼ max Dðn;gÞJ;Dðn;gÞwþ c1wðnÞ

 �

if wðnÞ	 0;
max Dðn;gÞJ � c2wðnÞ;Dðn;gÞw


 �
if wðnÞ[ 0;

�
ð20Þ
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Fig. 1 Diagram illustrating the transition from r to qðgÞr ðkÞ and s to qðgÞr ðkÞ. The top line is the
original r and s, and the bottom line shows the result for k[ 0
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where c1; c2 [ 0 are design parameters. Note that hðnÞ� 0 for each n 2 X , since
given a value n we can always perform an insertion that leaves the trajectory
unmodified, e.g. given n 2 X and t̂ 2 T n choose g ¼ ðpð̂tÞ; t̂; uð̂tÞÞ, hence in that
case Dðn;gÞJ ¼ Dðn;gÞw ¼ 0.

To appreciate the utility of our optimality function consider three cases. First, if
at a feasible point, wðnÞ� 0, and if hðnÞ\0, then a mode insertion which reduces
the cost while remaining feasible is possible. Second, if at an infeasible point,
wðnÞ[ 0, and if hðnÞ\0, then a mode insertion which reduces the infeasibility
without resulting in too large an increase in the cost is possible. Third, if we are at a
feasible point and the cost cannot be decreased using the variation q, or if we are at
an infeasible point and the infeasibility cannot be decreased using the variation q,
then hðnÞ ¼ 0. Therefore, the optimality function can serve as a stopping criterion
for the Bi-Level Optimization Scheme since its zeros encode points that satisfy our
optimality condition. Note that the c1; c2 terms in the optimality function capture
the possibility that the reduction in cost or constraint may result in too large an
increase in the infeasibility or cost, and therefore maybe undesirable (Sect. 2.5 of
[17] describes this utility).

An insertion that reduces the cost or infeasibility tells us nothing about the length
of time to actually perform an insertion for. Comparing our algorithm to a simple
finite dimensional optimization algorithm, knowing that an insertion is plausible
would compare to knowing that the gradient of the cost function was negative.
During finite dimensional optimization, a step size in the direction of the gradient is
chosen by performing a linear search. We can apply an identical algorithm in this
instance. Given a; b 2 ð0; 1Þ, let the maximum insertion length be:

kðn;gÞ ¼ max
k2N

bk wðqðgÞðbkÞÞ� 0; JðqðgÞðbkÞÞ � JðnÞ� abk1ðn; gÞn o
ð21Þ

whenever wðnÞ� 0, and otherwise let:
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kðn;gÞ ¼ max
k2N

bk wðqðgÞðbkÞÞ � wðnÞ� abk1ðn; gÞn o
: ð22Þ

Algorithm 1 describes our numerical method to solve the Multiple Objective
Hybrid Optimal Control Problem. Comparing steps of Algorithm 1 with our
Bi-Level Optimization Scheme notice that Step (2b) encodes Stage 1 and Step (2a)
encodes Stage 2. Due to limited space and since the focus of this paper is the
application of this algorithm to bipedal walking, we do not include a proof of the
convergence, a derivation of the pieces, or a description of the implementation of
our algorithm but these can all be found in [9, 10].

5 Application

In this section, we illustrate the application of our optimal control scheme to the
identification of a robotic biped model. We focus our attention on the identification
of a model considered in the literature rather than human data in order to gauge the
performance of our algorithm.

The model used to generate this ground truth data is a 2D biped with knees and a
torso for a total of six links. Figure 2 illustrates this model. Observe that it is a
two-mode hybrid system. The two modes denoted rf and lf arise due to the
enforcement of a foot contact point and the model presumes that only one contact
point is enforced at any instant in time. The configuration space has coordinates
H ¼ (hrf ; hrk; hrh; hlf ; hlk; hlh) (we index these coordinates by i = 1, …, 6 for con-
venience), which means the domain of each mode has coordinates (H; _H) and is a
12-dimensional manifold. Due to space constraints, we do not include the hybrid
system description here explicitly, but this information can be found online. We
generate a sample stable walking trajectory from this model by employing
numerical integration and the techniques described in [21]. The ground truth mode
sequence and amount of time spent in each mode can be found in the second row of
Table 1. Figure 3 illustrates the sample trajectory that we employ for identification.

To apply our algorithm, we assume that there are two contact points and that
only one is enforced at any instant in time. In doing so we arrive at a switched
system with two vector fields: rf and lf. In practice we know the initial condition,

rf

Fig. 2 The 2-mode hybrid
system employed in this
section. The lf (or rf) mode
has a control vector field
where the lf (or rf) is
constrained
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i.e. x0, of the human data that we wish to track; therefore, we presume our optimal
control scheme is also aware of this initial condition.

Denoting the observed trajectory by ð bHðtÞ; bHðtÞÞ, we set the running cost equal
to:

LðH(t), _H(t); u(t); tÞ ¼ 0:001
Zuf
0

X6
i¼1

_hiðtÞ � _̂hiðtÞ
��� ���2

2

� �
dt: ð23Þ

Table 1 The results of our switched optimal control scheme using the model described in Fig. 2
and the sample trajectories drawn in Fig. 3

r0 x0 s0 rf xf sf Computation
time

(lf, rf) N/A (0.445.445) N/A N/A N/A N/A

(lf, rf) 1 (0.445, 0.445) (lf, rf) 1 (0.445, 0.445) 201 (s)

(lf, rf) 1 (0, 0.889) (lf, rf) 1 (0.445, 0.445) 222 (s)

(lf, rf) 1 (0.889, 0) (lf, rf) 1 (0.445, 0.445) 239 (s)

(rf, rf) 1 (0.445, 0.445) (rf, lf, rf, rf) 3 (0.01, 0.431, 0, 0.448) 537 (s)

(lf, lf) 1 (0.445, 0.445) (lf, lf, rf) 1 (0.424, 0.02, 0.445) 394 (s)

(rf, lf) 1 (0.445, 0.445) (rf, lf, rf, lf) 3 (0.04, 0.463, 0, 0.406) 568 (s)

The ground truth data is in the second row, the 0 subscript is the initialization, the f subscript is the
result of our algorithm, and the computation time was determined on an AMD Opteron, 8 core,
2.2 GHz, 16 GB RAM machine
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Observe from the sample trajectories that the transition between different modes is
detectable due to the change in velocity due to impact. Since these transition points
are particularly important, we include objectives at these transition times t̂ equal to:

/ðH(t), _H(t); tÞ ¼ 0:05
X6
i¼1

_hiðtÞ � _̂hið̂tÞ
��� ���2

2
þ 5ðt � t̂Þ2

� �
: ð24Þ

We constrain H 2 �p; p½ 
6; _H 2 �30; 30½ 
6, and the total time to be equal to the
length of the sample trajectory. Notice that our dynamics, running cost, objectives,
and constraints satisfy the assumptions required in order to ensure the convergence
of our optimal control scheme.

To evaluate the robustness of our approach, we consider the behavior of our
scheme under a variety of modal sequence initializations. Since it is clear from the
data that there are two steps, we focus on two element mode sequence initializa-
tions. The result of our algorithm under these different initializations are described
in Table 1. Notice that regardless of the modal and transition time sequences chosen
for initialization the algorithm nearly converges to the ground truth modal and
transition time sequences.

6 Conclusion

This paper presents the first steps toward automatically identifying a hybrid
dynamical model for robotic walking from human data. To achieve this goal, the
first half of the paper presented a means to view human walking data in a way that
allowed for the immediate extraction of a robotic bipedal walking model capable of
human-like gait. Unfortunately extracting this model required solving a combina-
torial problem. The second half of this paper addresses this shortcoming by
reformulating the combinatorial problem into a switched optimal control problem
and presenting an algorithm to solve this problem. To illustrate the validity of this
approach, our paper presented an example where in place of the human data,
simulated data was employed.

While the application of this paper was limited to a simple bipedal model, our
result provides a means to automatically extract a model capable of generating task
dependent anthropomorphic periodic motion. That is, if we are given data of a
person walking upstairs or a person running we are able to construct a mathematical
model of this periodic motion that is employable by a robotic biped. In fact, our
method in this instance generates a task-driven mathematical model of periodic
motion comparable to the notion of a central pattern generator [8]. As such, this
result could have important ramifications to our understanding of both robotic and
human periodic motion particularly for prosthetic design and rehabilitation.
Moreover, several recent papers describe more efficient implementations of

648 R. Vasudevan



switched system optimal control which have consistently found better quality
minimizers across a wide variety of benchmarks [27, 28].
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