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Abstract. We propose a security model for evaluating the security of
authenticated encryption schemes in the post-quantum setting. Our secu-
rity model is based on a combination of the classical Bellare-Namprempre
security model for authenticated encryption together with modifications
from Boneh and Zhandry to handle message authentication against quan-
tum adversaries. We give a generic construction based on the Bellare-
Namprempre model for producing an authenticated encryption protocol
from any quantum-resistant symmetric-key encryption scheme together
with any authentication scheme (digital signature scheme or MAC)
admitting a classical security reduction to a quantum-computationally
hard problem. We give examples of suitable authentication schemes
under the quantum random oracle model using the Boneh-Zhandry trans-
formation. We also provide tables of communication overhead calcula-
tions and comparisons for various choices of component primitives in
our construction.

Keywords: Authenticated encryption · Security models · Post-
quantum cryptography

1 Introduction

Authenticated encryption (AE) forms a critical component of our existing inter-
net infrastructure, with many widely used protocols such as TLS, SSH, and
IPsec depending on AE for their basic functionality. Despite this importance,
there is relatively little existing literature on the subject of combining post-
quantum authentication and encryption schemes in a provably secure way. A
few works [6,7,14] have dealt with the problem of post-quantum authenticated
key exchange, but do not provide any self-contained discussion of AE outside
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of the (much) more complicated context of key exchange; moreover, [6,14] sim-
ply use RSA and DH respectively for long-term authentication keys, on the
grounds that there is no immediate need for quantum-safe authenticity. In this
work, we adopt a different goal: we propose security definitions for post-quantum
AE with the goal of achieving authentication and confidentiality against fully
quantum adversaries, and give examples of such AE schemes constructed from
existing underlying symmetric-key and digital signature primitives, using the
quantum random oracle for the latter. Although our definitions are technically
new, they are largely based on combinations of existing ideas, allowing us to
reuse security proofs from other settings in the present context.

Note that our emphasis in this work is on constructing generic compositions
of confidentiality and authentication primitives, rather than specialized authenti-
cated encryption modes of operation as in the CAESAR competition [13]. While
specialized first-class primitives are certainly valuable, we feel that understand-
ing composed primitives represents a natural first step.

2 Security Definitions

Bellare and Namprempre [2] showed that an IND-CPA encryption scheme com-
bined with a SUF-CMA message authentication code under the Encrypt-then-
MAC paradigm yields an IND-CCA authenticated encryption scheme. We wish
to obtain a generalization of this construction which works against quantum
adversaries. As a starting point, we review the security definitions of Boneh and
Zhandry [5] for symmetric-key encryption schemes and digital signatures.

The most natural extension of IND-CPA security to the quantum setting con-
sists of allowing full unrestricted quantum queries to the encryption oracle. How-
ever, Boneh and Zhandry showed [5, Theorems 4.2 and 4.4] that this definition is
too powerful, in the sense that no encryption scheme satisfies this security defini-
tion. In place of full quantum queries, Boneh and Zhandry propose a definition in
which challenge messages can only be encrypted classically [5, Definition 4.5]:

Definition 1 (IND-qCPA). We say a symmetric-key encryption scheme E =
(Enc,Dec) is indistinguishable under a quantum chosen message attack (IND-
qCPA secure) if no efficient adversary A can win in the following game, except
with probability at most 1/2 + ε:

Key Generation: The challenger picks a random key k and a random bit b.
Queries: A is allowed to make two types of queries:

Challenge Queries: A sends two messages m0,m1, to which the challenger
responds with c∗ = Enc(k,mb).

Encryption Queries: For each such query, the challenger chooses ran-
domness r, and encrypts each message in the superposition using r as
randomness:

∑

m,c

ψm,c|m, c〉 �→
∑

m,c

ψm,c|m, c ⊕ Enc(k,m; r)〉

Guess: A produces a bit b′, and wins if b = b′.
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Similarly, Boneh and Zhandry define the notion of quantum chosen ciphertext
security [5, Definition 4.6]:

Definition 2 (IND-qCCA). We say a symmetric-key encryption scheme E =
(Enc,Dec) is indistinguishable under a quantum chosen ciphertext attack (IND-
qCCA secure) if no efficient adversary A can win in the following game, except
with probability at most 1/2 + ε:

Key Generation: The challenger picks a random key k and a random bit b. It
also creates a list C which will store challenger ciphertexts.

Queries: A is allowed to make three types of queries:
Challenge Queries: A sends two messages m0,m1, to which the challenger

responds with c∗ = Enc(k,mb).
Encryption Queries: For each such query, the challenger chooses ran-

domness r, and encrypts each message in the superposition using r as
randomness:

∑

m,c

ψm,c|m, c〉 �→
∑

m,c

ψm,c|m, c ⊕ Enc(k,m; r)〉

Decryption Queries: For each such query, the challenger decrypts all
ciphertexts in the superposition, except those that were the result of a
challenge query:

∑

c,m

ψc,m|c,m〉 �→
∑

c,m

ψc,m|c,m ⊕ f(c)〉

where

f(c) =

{
⊥ if c ∈ C
Dec(k, c) otherwise.

Guess: A produces a bit b′, and wins if b = b′.

We now discuss Boneh and Zhandry’s quantum security definition for signatures.
It is assumed that the adversary can query for signatures of superpositions of
messages. In this situation, the definition of existential unforgeability needs to be
modified, since a naive reading of the definition would allow the adversary simply
to measure a superposition and claim the resulting signature as an existential
forgery. To solve this problem we simply require the adversary to produce q + 1
signatures from q queries [5, Definition 3.2]:

Definition 3 (SUF-qCMA). A signature scheme S = (Gen,Sign,Ver) is
strongly unforgeable under a quantum chosen message attack (SUF-qCMA
secure) if, for any efficient quantum algorithm A and any polynomial q, the
algorithm A’s probability of success in the following game is negligible in λ:

Key Generation: The challenger runs (sk, pk) ← Gen(λ), and gives pk to A.
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Signing Queries: A makes a polynomial q chosen message queries. For each
query, the challenger chooses randomness r, and responds by signing each
message in the query using r as randomness:

∑

m,t

ψm,t|m, t〉 �→
∑

m,t

ψm,t|m, t ⊕ Sign(sk,m; r)〉

Forgeries: A is required to produce q + 1 message-signature pairs. The chal-
lenger then checks that all the signatures are valid, and that all message-
signature pairs are distinct. If so, the adversary wins.

Definition 4 (WUF-qCMA). A signature scheme S is weakly unforgeable
under a quantum chosen message attack (WUF-qCMA secure) if it satisfies the
same definition as SUF-qCMA, except that we require the q+1 message-signature
pairs to have distinct messages.

Note that our terminology differs slightly from Boneh and Zhandry [5], although
the content of the definitions is identical: Boneh and Zhandry use the terms
“strongly EUF-qCMA” and “weakly EUF-qCMA” instead of SUF-qCMA and
WUF-qCMA. In addition, Boneh and Zhandry have similar definitions for SUF-
qCMA and WUF-qCMA secure message authentication codes [4].

Finally, we give our definitions of INT-qCTXT and INT-qPTXT. We con-
structed these definitions by starting with the classical security definitions of
INT-CTXT and INT-PTXT from Bellare and Namprempre [2, Sect. 2], and mod-
ifying them in a manner similar to Boneh and Zhandry’s definition for digital
signatures (Definition 3).

Definition 5 (INT-qCTXT). An encryption scheme E = (Enc,Dec) satisfies
integrity of ciphertext under a quantum attack (INT-qCTXT security) if, for any
efficient quantum algorithm A and any polynomial q, the probability of success
of A in the following game is negligible in λ:

Key Generation: The challenger picks a random key k.
Encryption Queries: A makes a polynomial q such queries. For each such

query, the challenger chooses and randomness r, and encrypts each message
in the superposition using r as randomness:

∑

m,c

ψm,c|m, c〉 �→
∑

m,c

ψm,c|m, c ⊕ Enc(k,m; r)〉

Decryption Queries: For each such query, the challenger decrypts all cipher-
texts in the superposition, except those that were the result of a challenge
query: ∑

c,m

ψc,m|c,m〉 �→
∑

c,m

ψc,m|c,m ⊕ f(c)〉

where

f(c) =

{
⊥ if c ∈ C
Dec(k, c) otherwise.
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Forgeries: A is required to produce q + 1 message-ciphertext pairs. The chal-
lenger then checks that all the ciphertexts are valid, and that all message-
ciphertexts pairs are distinct. If so, the adversary wins.

Definition 6 (INT-qPTXT). An encryption scheme E = (Enc,Dec) satis-
fies the integrity of plaintext under a quantum attack (INT-qPTXT secure) if
it satifies the same definition as INT-qCTXT, except that we require the q + 1
message-ciphertext pairs to have distinct messages.

3 Main Theorem

In this section, we prove that an IND-qCPA encryption scheme together with
a SUF-qCMA signature or MAC scheme yields an authenticated encryption
scheme via the Encrypt-then-MAC method, satisfying the respective privacy
and integrity guarantees of IND-qCCA (Definition 2) and INT-qCTXT (Defin-
ition 5), the quantum analogues of the classical notions of IND-CCA and INT-
CTXT security used in Bellare and Namprempre [2]. We begin by showing a
WUF-qCMA MAC implies INT-qPTXT security:

Theorem 1. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄)
be the authenticated encryption scheme obtained from SE and MA via the
Encrypt-then-MAC method. Given any adversary I against SE, we can construct
an adversary F such that

AdvINT-qPTXT

SE (I) ≤ AdvWUF-qCMA
SE (F ).

Proof. (Based on [2, Theorem 4.1]) We construct the adversary F as follows:

1. Use the key Ke.
2. Run I.
3. On query Enc(M) (where M can be in superposition):

C ′ ← E(Ke,M); τ ← Tag(C ′); Return C ′ ‖ τ to I

4. On query Ver(C):

Parse C as C ′ ‖ τ ′; v ← Ver(C ′, τ ′); Return v to I

until I halts.

Let Ci = C ′
i ‖ τi for i ∈ {1, . . . , q + 1} be the Ver queries of I that lead to

winning game INT-qPTXTSE , after q queries to Enc. Let Mi = D(Ke, C
′
i). We

know that due to the property of INT-qPTXT of SE , at most q of them were
obtained from the q queries to Enc of I; hence C ′

is were the result of at most q
queries of F to Tag, but we obtained q + 1 valid tags. Hence, F wins whenever
WUF-qCMAMA I wins INT-qPTXTSE .
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Although our proof of Theorem1 is for MACs, the same proof works for
digital signatures (replacing the Tag oracle with the Sign oracle).

Next we show that a SUF-qCMA signature or MAC implies an INT-qCTXT
authenticated encryption scheme.

Theorem 2. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄)
be the authenticated encryption scheme obtained from SE and MA via encrypt-
then-MAC composition method. Given any adversary I against SE, we can con-
struct an adversary F such that

AdvINT-qCTXT

SE (I) ≤ AdvSUF-qCMA
SE (F ).

Proof. (Based on [2, Theorem 4.4]) Here we use the same adversary as in The-
orem 1. Let Ci = C ′

i ‖ τi for i ∈ {1, . . . , q + 1} be the Ver queries of I that lead
to winning game INT-qCTXTSE , after q queries to Enc. If only at most q of
the Ci’s were returned to I by Enc, then at most q were queried by F with Tag
(i.e., the corresponding C ′

is). Hence, F wins whenever SUF-qCMAMA I wins
INT-qCTXTSE .

Again, the proof of Theorem2 carries over to digital signatures as well, replacing
the Tag oracle with a Sign oracle.

We now show that the authenticated encryption scheme in Encrypt-then-
MAC inherits the IND-qCPA property from the underlying encryption scheme:

Theorem 3. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄)
be the authenticated encryption scheme obtained from SE and MA via the
Encrypt-then-MAC composition method. Given any adversary A against SE,
we can construct an adversary Ap such that

AdvIND-qCPA

SE (A) ≤ AdvIND-qCPA
SE (Ap).

Furthermore, Ap uses the same resources as A.

Proof. (Based on [2, Theorem 4.3]) We construct Ap as follows:

Km ← Km

Run A
On query to Enc

C ← Enc(M)
τ ← Tag(Km, C)
Return C ‖ τ to A
Until A halts and returns b

Return b.

We can see that if A wins, then so does Ap, since a winning output for A is a
winning output for Ap; the tag can be ignored.
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Finally, we prove that INT-qCTXT and IND-qCPA security imply IND-
qCCA security (Theorem 4). The proof relies on three games G0, G1, and G2

as defined in Fig. 1. These games are based on the corresponding three games
from Fig. 7 of [2], except that we modify the games mutadis mutandis to conform
to our quantum definitions (Definitions 1 and 2).

Fig. 1. Games G0, G1, and G2. Game G1 contains the code in the box while G0 does
not. The functions Enc∗ and Dec∗ refer to the encryption and decryption oracle func-
tions from Definition 2.

The proof of Theorem4 uses the identical until bad lemma [2, Lemma 2.1]:

Lemma 1. (Identical until bad lemma) Let Gi and Gj be identical until bad
games, and A an adversary. Then for any y: Pr[GA

i =⇒ y]−Pr[GA
j =⇒ y] ≤

Pr[Gj sets bad].

It is not immediately clear (to us, anyway) that the identical until bad lemma
holds for quantum adversaries. Fortunately, in Theorem4, we only need the
special case i = 0, j = 1, and y = true, and in this case we can prove the result
for quantum adversaries. We use the following lemma of Shoup [15, Lemma 1].

Lemma 2. Let E,E′, and F be events defined on a probability space such that
Pr[E ∧ ¬F ] = Pr[E′ ∧ ¬F ]. Then we have |Pr[E] − Pr[E′]| ≤ Pr[F ].

This lemma holds regardless of whether or not the adversary is classical or
quantum, as it is a mathematical statement. Define the event E to be [GA

0 =⇒
true] and E′ to be [GA

1 =⇒ true]. Define F to be [GA
1 sets bad]. Observe that in

this case E ∧ ¬F corresponds to the outcome M =⊥ in the game G0, meaning
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that A wins the game. Similarly, E′ ∧ ¬F corresponds to the outcome M =⊥
in G1, meaning that A wins the game. Note that for M =⊥, both G0 and G1

return the same responses, and hence have the same probability of winning.
Hence, Pr[E ∧¬F ] = Pr[E′ ∧¬F ], which means Lemma 1 of [15] can be applied
to obtain |Pr[E] − Pr[E′]| ≤ Pr[F ]. Finally, we need to remove the absolute
values, to obtain Pr[E′] ≤ Pr[E]. It is easy to see that we can do so, because for
G0 we sometimes return the message, while for G1, we always return M = ⊥,
so that the success probability of G0 is at least that of G1. Hence the identical
until bad lemma holds for quantum adversaries in the special case where i = 0,
j = 1, and y = true.

We recall Definition (1) in [2]:

AdvIND-CCA
SE (A) = 2 · Pr[IND-CCAA

SE =⇒ 1] − 1.

The quantum version of this definition is:

AdvIND-qCCA
SE (A) = 2 · Pr[IND-qCCAA

SE =⇒ 1] − 1.

Theorem 4. Let SE = (K, E ,D) be an encryption scheme. Let A be an IND-
qCCA adversary against SE running in time t and making qe Enc queries and
qd Dec queries. Then, we can construct an INT-qCTXT adversary Ac and IND-
qCPA adversary Ap such that

AdvIND-qCCA
SE (A) ≤ 2 · AdvINT-qCTXT

SE (Ac) + AdvIND-qCPA
SE (Ap).

Furthermore, Ac runs in time O(t) and makes qe Enc queries and qd Ver queries,
while Ap runs in time O(t) and makes qe queries of target messages Mi.

Proof. We have:

Pr[IND-qCCAA
SE =⇒ true] = Pr[GA

0 =⇒ true]

= Pr[GA
1 =⇒ true]+

(Pr[GA
0 =⇒ true] − Pr[GA

1 =⇒ true])

≤ Pr[GA
1 =⇒ true] + Pr[GA

1 sets bad] (1)

The last inequality follows from the identical until bad lemma in the special case
i = 0, j = 1, and y = true (which we proved above). Now, observe that for Dec,
G1 always returns ⊥, and hence

Pr[GA
1 =⇒ true] = Pr[GA

2 =⇒ true]. (2)

Let us now define the adversary Ap. It simply runs A, answering A’s chal-
lenge and encryption queries with its own queries, and answering A’s queries for
decryption with ⊥. It outputs whatever A outputs. Hence, we get:

Pr[GA
2 =⇒ true] ≤ Pr[IND-qCPAAp

SE =⇒ true]. (3)
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Next, we define the adversary Ac. The adversary Ac picks a random bit b, then
runs A and answers its queries as follows. For challenge and encryption queries,
Ac submits challenge and encryption queries and returns the results to A. For
the Dec query, Ac submits it to the Ver oracle, and, regardless of the response,
returns ⊥ to A. Hence, we get:

Pr[GA
1 sets bad] ≤ Pr[INT-qCTXTAc

SE =⇒ true]. (4)

Combining the definition

AdvIND-qCCA
SE (A) = 2 · Pr[IND-qCCAA

SE =⇒ 1] − 1

with Eqs. (1), (2), (3), and (4), we obtain

AdvIND-qCCA
SE (A) ≤ 2 · AdvINT-qCTXT

SE (Ac) + AdvIND-qCPA
SE (Ap).

Combining Theorems 2, 3, and 4, we obtain our main theorem:

Theorem 5. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄)
be the authenticated encryption scheme obtained from SE and MA via the
Encrypt-then-MAC composition method. Given that SE is IND-qCPA and MA
is SUF-qCMA, then the resulting SE is IND-qCCA.

Proof. By Theorem 2, since MA is SUF-qCMA, we get that SE is INT-qCTXT.
Also, by Theorem 3, since SE is IND-qCPA, we get that SE is also IND-qCPA.
Finally, because SE is INT-qCTXT and IND-qCPA, by Theorem 4, we get that
it is IND-qCCA.

As with Theorems 1, 2 and 5 also holds with digital signature schemes used
in place of MACs.

4 Quantum-Resistant Strongly Unforgeable Signature
Schemes

In this section we examine some concrete choices of strongly unforgeable signa-
ture/MAC schemes which could be suitable for our AE construction. We limit
ourselves to only a few representative examples to illustrate the general idea. We
focus on signature schemes as in our view they are somewhat more interesting,
but similar ideas apply to MACs [4]. We begin with a review of the Boneh-
Zhandry transformation [5, Construction 3.12] for transforming any classically
strongly secure digital signature scheme into a SUF-qCMA scheme:

Construction 6. Let Sc = (Genc,Signc,Verc) be a be a signature scheme, H be
a hash function, and Q be a family of pairwise independent functions mapping
messages to the randomness used by Signc, and k some polynomial in λ. Define
S = (Gen,Sign,Ver) where:
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– Gen(λ) = Genc(λ)
– Sign(sk,m) :

• Select Q ∈ Q, r ∈ {0, 1}k at random.
• Set s = Q(m), h = H(m, r), σ = Signc(sk, h; s). Output (r, σ).

– Ver(pk,m, (r, σ)) :
• Set h = H(m, r). Output Verc(pk, h, σ).

If the original signature scheme Sc is SUF-CMA against a classical chosen mes-
sage attack performed by a quantum adversary, then by [5, Corollary 3.17] the
transformed scheme S is SUF-qCMA in the quantum random oracle model.

Furthermore, if the verification function in the signature scheme Sc involves
independently deriving the value of σ and checking whether or not the derived
value matches the value which was originally sent, a further optimization is
possible: one can hash σ to reduce its length to a minimum. We employ this
optimization in our examples.

4.1 Strong Designated Verifier Signatures from Isogenies

A strong designated verifier signature (SDVS) scheme [10] is a digital signature
scheme in which only a designated party (specified at the time of signing) can
verify signatures, and verification requires that party’s private key. Note that
an SDVS is enough for AE, since only the two parties participating in the AE
protocol need to be able to verify signatures.

Sun, Tian, and Wang in [17] present an isogeny-based SDVS scheme, and
give a classical security reduction to the SSDDH problem [11], which is believed
to be infeasible on quantum computers. This reduction qualifies as a straight-line
reduction in the sense of the security framework of Song [16], and hence remains
valid for quantum adversaries. However, the reduction only establishes SUF-
CMA security, not SUF-qCMA security. Applying the Boneh-Zhandry transfor-
mation (Construction 6), we obtain the following SDVS scheme, which is SUF-
qCMA:

Setup: Fix a prime p = �eAA �eBB · f ± 1, a supersingular base curve E over
Fp2 , generators {PA, QA} of E[�eAA ], and generators {PB , QB} of E[�eBB ].
Let H1,H2 : {0, 1}∗ → {0, 1}k be independent secure hash functions (with
parameter k), and Q a family of pairwise independent functions mapping
messages to the randomness used in signing.

Key Generation: A signer selects at random mS , nS ∈ Z/�eAA Z, not both
divisible by �A, and then computes an isogeny φS : E → ES = E/〈[mS ]PA +
[nS ]QA〉 and the values φS(PB) and φS(QB). The private key is (mS , nS)
and the public key is the curve ES and the points φS(PB) and φS(QB).
A designated verifier selects at random mV , nV ∈ Z/�eBB Z, not both divisible
by �B , and then computes an isogeny φV : E → EV = E/〈[mV ]PB+[nV ]QB〉
and the values φV (PA) and φV (QA). The private key is (mV , nV ) and the
public key is the curve EV and the points φV (PA) and φV (QA).
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Signing: Select at random Q ∈ Q, r ∈ {0, 1}k for use in the Boneh-Zhandry
transformation. Compute s = Q(m), h = H1(m, r), and φ′

S : EV → ESV =
EV /〈[mS ]φV (PA) + [nS ]φV (QA)〉. Set σ = H2(h||j(ESV )||s). The signature
is (r, σ).

Verification: Compute φ′
V : ES → ESV = ES/〈[mV ]φS(PB) + [nV ]φS(QB)〉

and h = H1(m, r). Set σ′ = H2(h||j(ESV )||Q(m)). Verify that σ′ ?= σ.

4.2 Ring-LWE Signatures

As another example, we combine the Ring-LWE signature scheme of Güneysu
et al. [8] with Construction 6 from [5] to obtain a SUF-qCMA signature scheme
based on Ring-LWE:

Setup: Set R = Fq/〈xn + 1〉 where n is a power of 2. Let H1 : {0, 1}∗ → {0, 1}k
and H3 : {0, 1}∗ → R be independent secure hash functions (with parameter
k) and Q a family of pairwise independent functions mapping messages to
the randomness used in the signing function. Choose a bound B on the
maximum coefficient size.

Key Generation: A signer generates two small polynomials s1(x), s2(x) ∈ R,
selects a(x) ∈ R at random, and computes the public key t(x) = as1(x) +
s2(x).

Signing: Select Q ∈ Q, r ∈ {0, 1}k at random for the Boneh-Zhandry transfor-
mation, and y1(x), y2(x) ∈ R at random for the signature scheme. Compute
s = Q(m), h = H1(m, r), and c(x) = H3(BitString(a(x)y1(x)+y2(x))||h||s).
Finally, compute z1(x) = s1(x)c(x) + y1(x) and z2(x) = s2(x)c(x) + y2(x).
Check that the coefficients of the polynomials z1(x), z2(x) are within the
bound B; if not, restart. The signature is (r, z1(x), z2(x), c(x))

Verification: Check that the coefficients of the polynomials z1(x), z2(x) are
within the bound B; if not, reject. Compute x h = H1(m, r), and check
whether c(x) ?= H3(a(x)z1(x) + z2(x) − t(x)c(x)||h||Q(m)). If so, accept;
otherwise reject.

5 Quantum-Resistant Authenticated Encryption Schemes

We give a generic construction of authenticated encryption schemes which are
provably quantum-resistant in the sense of IND-qCTXT and IND-qCCA. For
the underlying encryption scheme, we assume that a classical symmetric-key
block cipher E in a suitable block cipher mode of operation with random IVs
will suffice to provide quantum security, taking care to use 2� key sizes to obtain
� bits of security. We refer to [1] for a discussion of the choice of the mode of
operation. For the MAC/signature scheme we can employ the Boneh-Zhandry
transformation on any SUF-CMA scheme secure against quantum adversaries as
described in Sect. 4. Combining those two components, we obtain an IND-qCCA
and IND-qCTXT authenticated encryption scheme as follows:
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Setup:
1. Choose parameters for the underlying encryption and signature schemes.
2. Let H : {0, 1}∗ → {0, 1}k be a secure hash function (with security para-

meter k).
3. Let Q be a family of pairwise independent functions mapping messages

to the randomness used in the signature scheme.
Key generation:

1. Alice chooses her private parameters for the encryption and signature
schemes. If required, she produces and publishes the corresponding pub-
lic keys.

2. Bob chooses his private parameters for the encryption and signature
schemes. If required, he produces and published the corresponding public
keys.

Encryption: Suppose Bob wants to send a message m ∈ {0, 1}∗ to Alice.
1. Using the common encryption key e that he shares with Alice, encrypt

the message using the underlying symmetric-key encryption scheme to
obtain c = E(e,m).

2. Select Q ∈ Q, r ∈ {0, 1}k at random.
3. Compute t = Q(m).
4. Computes the value h = H(c, r).
5. Using h and his private signing key s, Bob computes the authentication

tag σ = Sign(s, h; t).
6. The ciphertext is {c, r, σ}.

Decryption: Suppose Alice receives ciphertext {c, r, σ} from Bob.
1. Compute the value h = H(c, r).
2. Using h and Bob’s public signing key p, compute the verification function

Ver(s, h, r, σ), if it returns true, continue; if not, stop.
2. Using the common encryption key e that she shares with Bob, decrypt

the message and obtain m = D(e, c).

Again, in the case where the verification function in the signature scheme
involves independently deriving the value of σ and checking that the derived
value matches the value which was originally sent, we can hash σ prior to trans-
mission to reduce its length to a minimum.

6 Overhead Calculations and Comparisons

In this section we study the communication costs of our AE scheme, from the
point of view of both per-message communication overhead and key transmission
overhead.

6.1 Communication Overhead

Recall that the ciphertext which Bob sends to Alice consists of the triplet (c, r, σ),
where c is the underlying ciphertext content, r is a k-bit nonce, and σ is the
signature tag. In the case where the verification function in the signature scheme
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involves independently deriving the value of σ, we can hash σ down to k bits as
well. For a security level of � bits, the minimum value of k required for collision
resistance is 2� bits in the quantum setting [3]. The per-message communication
overhead of the scheme is thus 4� bits in the case where the signature tag can be
hashed, and 2�+ |σ| bits otherwise. Note that in the former case the per-message
communications overhead is always the same, independent of which component
schemes are chosen.

6.2 Public Key Overhead

For the overhead involved in transmitting the public keys to be used for the
signature scheme, we use the table of Fujioka et al. [7], augmented with some
more recent results as described below. Although [7] deals with the case of post-
quantum authenticated key exchange, the same key sizes apply to the AE setting.

With the exception of Ring-LWE as explained below, we aim for 128-bit
quantum security. For Ring-LWE, we use the numbers from [8]. Since the scheme
in [8] is based on power-of-2 cyclotomic rings, there is a large jump in parameter
size between n = 29 and n = 210, with the former providing 80 bits of security
and the latter 256 bits of security. There is no intermediate power of 2 that
would provide 128 bits of security. For this reason, we list both 80-bit and 256-bit
security levels in our table. The numbers for NTRU are from Schanck et al. [14].
For isogeny-based SDVS schemes we use the recent results of [12]. Note that
SDVS schemes require two-way transmission of public keys even if the encrypted
communication is one-way, whereas standard signature schemes require two-way
transmission of public keys only for two-way communication (Table 1).

Table 1. Key transmission overhead

Signature scheme Bits

Ring-LWE (80-bit security) [8] 11600

Ring-LWE (256-bit security) [8] 25000

NTRU [14] 5544

Code-based [7] 52320

Multivariate polynomials [9] (via [7]) 7672000

Isogeny-based [12] 3073

7 Conclusion

We propose a security model for authenticated encryption against fully quan-
tum adversaries, based on the classical security model of Bellare and Namprem-
pre together with the Boneh and Zhandry framework for modeling quantum
adversaries. We provide concrete examples of authenticated encryption schemes
satisfying our security model along with estimates of overhead costs for such
schemes.
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