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Abstract. We examine the IND-qCPA security of the wide-spread block
cipher modes of operation CBC, CFB, OFB, CTR, and XTS (i.e., secu-
rity against quantum adversaries doing queries in superposition). We
show that OFB and CTR are secure assuming that the underlying block
cipher is a standard secure PRF (a pseudorandom function secure under
classical queries). We give counterexamples that show that CBC, CFB,
and XTS are not secure under the same assumption. And we give proofs
that CBC and CFB mode are secure if we assume a quantum secure PRF
(secure under queries in superposition).
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1 Introduction

Block ciphers are one of the most fundamental primitives in cryptography. On
its own, however, a block cipher is almost useless because it can only encrypt
messages of a fixed (and usually very short) length. Therefore block ciphers are
usually used in so-called “modes of operation”: constructions whose goal it is to
extend the message space of the block cipher, and possibly add other features or
more security in the process. Since most encryption in practice uses at some level
a mode of operation, the security of those modes of operation is of paramount
importance for the security of many cryptographic systems.

In the light of the possible advent of quantum computers,1 we have to ask: is
existing classical cryptography also secure in the presence of attackers with quan-
tum computers? In particular, does the security of common modes of operation
break down?

1 There seem to be no clear predictions as to when quantum computers will be available
and strong enough to attack cryptography. But it seems daring to simply assume
that they will not be available in the mid-term future, just because we do not have
clear predictions.
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In this paper, we study a number of common modes of operation, namely
those listed in the 2013 ENISA2 report on recommended encryption algorithms
[9]: CBC, CFB, OFB, CTR, and XTS. We study whether those modes are secure
in the quantum setting under comparable assumptions as in the classical setting,
and if not, we construct counterexamples.

The aforementioned modes of operation (except ECB and XTS) are known
to be IND-CPA secure in the classical setting, under the assumption that the
underlying block cipher is a pseudo-random function (PRF).3 ECB is known not
to have reasonable security for most applications, while the security of XTS is
an open question.

In the quantum case, there are two variants of the IND-CPA notion: “stan-
dard IND-CPA” and “IND-qCPA”. While standard IND-CPA lets the quantum
adversary perform only classical encryption queries, IND-qCPA (as defined by
[6]) allows the adversary to perform quantum encryption queries (i.e., queries
which are a superposition of different messages, to get a superposition of different
ciphertexts). In other words, IND-qCPA additionally guarantees security when
the encryption key is used to encrypt messages in superposition. (See below for
a discussion on the relevance of this notion.)

Similarly, there are two variants of the notion of a classical PRF in the
quantum setting: standard secure PRF and quantum secure PRF. In the first
case, the function cannot be distinguished from a random function when making
arbitrary classical queries to that function. In the second case, the function
cannot be distinguished from random when making arbitrary quantum queries,
i.e., when querying the function on a superposition of many inputs.

We can now ask the question: which variant of quantum PRFs is needed for
which variant of IND-CPA. As it turns out, if we merely wish to get standard
IND-CPA security, the answer is trivial: CBC, CFB, OFB, and CTR are secure
assuming that the underlying block cipher is a standard PRF. In fact, the original
security proofs of these schemes can be reused unmodified.4 (We hence abstain
from reproducing the original proofs in this paper and refer to the classical proofs
instead.) And ECB is still trivially insecure, and for XTS we still do not know
which security we achieve.

On the other hand, if we ask for IND-qCPA security, the picture changes
drastically. OFB and CTR mode can be shown IND-qCPA secure based on a
standard secure PRF. (The proof is relatively straightforward.)

2 European Union Agency for Network and Information Security. We chose this list
as a basis in order to investigate a practically relevant and industrially deployed set
of modes of operations.

3 If we want to be able to decrypt, then the block cipher should, of course, be a
pseudo-random permutation. But for mere security, PRF is sufficient.

4 Except that the set of adversaries we consider is, of course, that of quantum
polynomial-time adversaries, instead of classical polynomial-time adversaries. Note
that it is not always the case that a classical security proof goes through unchanged
in the quantum case. (A typical example are zero-knowledge proof systems where
rewinding is used in the classical proof. Rewinding-based proofs cannot be directly
translated to the quantum setting [1,12,15]).
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In contrast, we prove that CBC and CFB are not IND-qCPA secure based
when based on a standard secure PRF. In fact, for CBC and CFB we show that
the adversary can even recover the secret key using quantum queries. For XTS,
we show that the adversary can recover the second half of a plaintext if he can
provide the first half of the plaintext (and the adversary can get half of the key).
Although this does not formally contradict IND-qCPA (because IND-qCPA does
not allow the challenge query to be performed in superposition), it show that
XTS does not satisfy the intuitive notion of CPA security under superposition
attacks.

If, however, the block cipher is a quantum secure PRF, then CBC and CFB
are IND-qCPA secure. The proof of this fact, however, is quite different from
the classical security proof: since the block cipher is invoked in superposition,
we are in a situation similar to the analysis of quantum random oracles, which
are notoriously difficult to handle in the quantum case. (Note: this refers only to
the difficulties encountered in our proof. Our results are in the standard model,
not in the random oracle model.)

We summarize the results in Table 1. Our counter-examples are in the quan-
tum random oracle model, but our positive results are in the standard model
(no random oracle).

Table 1. Summary of our results. The superscripts refer to the bibliography or to
theorem numbers. “No in spirit” means that there is an attack using superposition
queries that does not formally violate IND-qCPA.

Mode of Classical Standard (quantum) IND-qCPA?

operation IND-CPA? IND-CPA? (with PRF) (with qPRF)

ECB no no no no

CBC yes [16] yes no (Lemma 2) yes (Theorem3)

CFB yes [16] yes no (Lemma 3) yes (Theorem3)

OFB yes [16] yes yes (Lemma 2) yes (Theorem2)

CTR yes [16] yes yes (Lemma 2) yes (Theorem2)

XTS unknown [10] unknown “no in spirit” (Lemma 4) unknown

On the IND-qCPA Security Notion. The IND-qCPA security notion [6]
models passive security against adversaries that have access to the encryption of
(chosen) plaintexts in superposition. The obvious question is: do we need that?

– The most obvious reason is that in the future, we might want to encrypt
messages in superposition for some legitimate purpose. E.g., the encryption
scheme is used as part of a quantum protocol. (That is, a protocol that
actively uses quantum communication, not just a classical protocol secure
against quantum adversaries.)

– A second argument (made in [7]) is that with continuing miniaturization, sup-
posedly classical devices may enter the quantum scale, and thus “accidentally”
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encrypt messages in superposition. (Personally, we have doubts how realistic
this case is, but we mention it for completeness.)

– There is, however, a reason why insecurity under notions such as IND-qCPA
may affect the security of a purely classical system in the presence of a quan-
tum attacker. If a classical protocol is proven secure (with respect to a quan-
tum adversary), intermediate games in the security proof may actually contain
honest parties that run in superposition. This happens in particular if zero-
knowledge proof systems or similar are involved [12,15]. For example, in [13,
Sect. 5], the security proof of a classical protocol did not go through because
the signature scheme was not secure under quantum queries (they had to
change the protocol considerably instead). Encryption schemes that are not
just standard IND-CPA, but IND-qCPA might help in similar situations.

1.1 Our Techniques

We briefly summarize the techniques we use to prove or disprove the security of
the various modes of operation.

IND-qCPA Security of OFB and CTR Mode Using a Standard PRF.
Both OFB and CTR mode are stream ciphers. That is, in both cases, encryption
can be represented as Enck(M) = Gk(|M |; r)⊕M , where Gk is a pseudorandom
generator with key k for some randomness r. Thus, to encrypt a superposi-
tion

∑
i αi|Mi〉 of messages of length �, all we need to do is to compute c :=

Enck(0) = Gk(�; r), and then to compute
∑

i αi|Enck(Mi; r)〉 =
∑

i αi|Mi ⊕ c〉.
Since computing Enck(0) can be done using a classical encryption query, it follows
that superposition encryption queries can be simulated using classical encryp-
tion queries. Hence the IND-qCPA security of OFB and CTR can be directly
reduced to the standard IND-CPA security of the same schemes. And standard
IND-CPA security is shown exactly in the same way as in the classical setting.

IND-qCPA Security of CBC and CFB Mode Using a Quantum Secure
PRF. To show security of CBC and CFB mode, we cannot directly follow the
classical security proof since that one relies inherently on the fact that the block
cipher (the PRF) is queried only classically. Instead, we use the following tech-
niques to prove CBC security:

– Since the block cipher is a PRF, we can assume it to be a truly random
function H (to which the adversary has no access, since he does not know the
key). CBC encryption is thus performed as sketched in Fig. 1(a).

– We replace the challenge encryption (i.e., the encryption query where the
adversary should distinguish between Enc(m0) and Enc(m1)) step by step by
randomness. That is, we consider a sequence of hybrid games, and in the i-th
game, the first i blocks of the challenge ciphertext are replaced by uniformly
random bitstrings. Once all ciphertext blocks are replaced by randomness, the
probability of guessing whether m0 or m1 was encrypted is obviously 1

2 . Thus,
all we need to show is that replacing one block of the challenge ciphertext by
randomness leads to a negligible change in the advantage of the adversary.
The situation is depicted in Fig. 1(b).
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Fig. 1. (a) CBC mode (using a random function H instead of the block cipher).
(b) Modified challenge ciphertext computation (c1 replaced by randomness). We need
to prove that replacing c2 by a random value leads to an indistinguishable view.

– Say we want to show that c2 = H(m2 ⊕ c1) is indistinguishable from ran-
dom (the situation in Fig. 1(b). At a first glance, this seems simple: m2 ⊕ c1
is uniformly random, so the probability that it collides with other H-queries
is negligible, hence H(m2 ⊕ c1) is uniformly random. However, this argu-
ment does not hold in the quantum setting: since some encryption queries are
performed in superposition, it can be that H was queries on all inputs simul-
taneously, hence we cannot say that H was not queried at m2 ⊕ c1 before.
Fortunately, we can use the “One-way to Hiding (O2H) Lemma” from [14]
here. This lemma basically says: for a uniformly random x, to show that
H(x) is indistinguishable from random, we need to show: when running the
adversary, and aborting at a randomly chosen H-query, and measuring the
input to that query (disturbing the superposition), then the probability that
the outcome is x is negligible.
In the present setting this means: if we measure a random H-query during the
execution of the IND-qCPA game, the probability that the argument equals
m2 ⊕ c1 is negligible. For example, the probability that one of the h-queries
before the challenge encryption equals m2 ⊕ c1 is trivially negligible, because
c1 has not yet been chosen at that point.

– For the H-queries performed during the challenge query, we use the fact that
H is indistinguishable from a random permutation [18]. In that case, the
H-query inputs are uniformly random due to the fact that c2 is chosen uni-
formly at random (remember that we replaced c2 by a random value), hence
they collide with m2 ⊕ c1 only with negligible probability.

– For the H-queries performed after the challenge query, we cannot use the same
argument, because those queries can be performed in superposition. However:
if we only care whether the chosen H-query has input m2 ⊕ c1, then, instead
of just measuring the H-query input, we can measure in the computational
basis all registers involved in the encryption. Then we observe that measuring
all registers commutes with the operations performed during encryption, so
equivalently we can assume that that measurement happens at the beginning
of the encryption (and in particular measures the plaintext). And that means,
for the purposes of bounding the probability of measuring H-query input
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m2 ⊕ c1, we can assume that we encrypt a classical plaintext. From here, the
argument from the previous item applies.

– Altogether, the probability of measuring m2 ⊕ c1 in any H-query is negligible.
Then the O2H lemma implies that the H(m2 ⊕ c1) is indistinguishable from
random. And by iterating this indistinguishably, we can replace the whole
challenge ciphertext by randomness. And then the adversary has only proba-
bility 1

2 of guessing which challenge plaintext was encrypted.

This shows that CBC mode is IND-qCPA secure if the block cipher is a quantum
secure PRF. The security of CFB mode is shown very similarly.

Insecurity of CBC and CFB Mode Using a Standard Secure PRF. To
show that CBC and CFB mode are insecure using a standard secure PRF, we
first construct a specific block cipher BC as follows:

BCk(x) := EH(k)

(
droplastbit (x ⊕ (k‖1) · lastbit(x))

)

where E is a standard secure PRF and H refers to a random oracle. (This
construction is not really a block cipher because it is not infective and hence
not decrypt able. The definition of BCk can be refined to make it decryptable,
we omit this technicality in this proof overview, see Sect. 3.1.) This block cipher
has the special property of being k‖1-periodic: BCk(x) = BCk(x ⊕ (k‖1)). In
particular, this it cannot be a quantum secure PRF, even if E is. Namely, given
superposition access to BCk, Simon’s algorithm [11] allows us to recover k‖1 given
quantum oracle access to BCk.5 This idea also allows us to break CBC mode
when CBC mode uses BCk as its underlying blockcipher. If we encrypt a single
block message m using CBC, we get the ciphertext (c0,BCk(c0 ⊕ m)). Although
the message m is XORed with the random IV c0, the period remains the same,
namely k‖1. Thus, using what is basically Simon’s algorithm, using superposition
queries to CBC mode, we get k‖1 (more precisely, one bit of information about it
for each superposition query). This reveals the key k completely and in particular
shows that CBC is not IND-qCPA secure.

The question of course is whether BCk is indeed a standard secure PRF.
Even though the adversary has only classical access to BCk, the proof cannot
be purely classical: we use a random oracle H that the adversary can query
in superposition. Instead, we use again the O2H lemma [14] mentioned above.
This allows us to replace H(k) by a random key y in the definition of BCk. Now
the analysis of BCk becomes purely classical and basically amount to showing
that the adversary cannot guess two inputs to BCk that lead to the same input
for Ey. (Using the actual, decryptable construction of BCk, this proof becomes
technically a bit more complex, but still follows the same ideas.)

In the case of CFB mode, the attack is similar, except that here we need to
encrypt two-block messages in order to get a ciphertext that depends in a k‖1-
periodic way on the plaintext. (Since the first message block is not fed through
the block cipher in CFB mode.)
5 A similar idea was already used in [17] to show that there is a standard secure PRF

that is not quantum secure. However, their construction had a period with respect
to +, not to ⊕, which makes it unsuitable for showing the insecurity of CBC mode.
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Insecurity of XTS Mode Using a Standard Secure PRF. To attack XTS,
we use the same basic idea as for CBC and CFB. However, there are some
additional complications. In XTS, two keys k1, k2 are used. Each ciphertext
block is computed as ci := αi−1L ⊕ BCk2(α

i−1L ⊕ mi). Here L := BCk1(I) is a
secret value that is derived from a nonce I (thus L stays fixed throughout one
encryption operation, but changes from ciphertext to ciphertext). If we use the
block cipher constructed above (when breaking CBC), we can easily derive k2:
since BCk2 is k2-periodic, so is BCk2(α

i−1L ⊕ mi). Thus with one single block
encryption we would be able to retrieve one bit of k2 using Simon’s algorithm.
However, retrieving k2 does not help us in decrypting XTS mode, since we do
not know k1, and hence cannot compute the value L. Also, the fact that BCk1(I)
is k1-periodic does not help us to retrieve k1 since we do not have any control
over I. Instead, we use the following trick. We construct

BCk(x, y) := EH(k)(droplastbit (x ⊕ (k‖1) · lastbit(x)) ,

droplastbit (y ⊕ fk(x) · lastbit(x))

where fk is a suitable function depending on k (with the property that lastbit(
fk(·)) = 1). (We interpret message blocks are pairs x, y by splitting them in the
middle.) Again we ignore in this proof overview that BCk cannot be decrypted,
the more involved construction given in the full version [2] avoids this problem.

Now BCk is k-periodic in x, and fk(x)-periodic in y for fixed first input x.
Using this block cipher, we can first use the attack technique described for CBC
mode to recover k2 (by encrypting a number of one block messages). The main
difference is that now we create a plaintext that is a superposition in the first half
of the block (x), and fixes the second block (y := 0). Now, instead of recovering
k1 (which seems impossible), we can recover the message L used during a given
encryption query: We encrypt a message where the x-part of each block is 0,
and the y-part of each block is the superposition of all messages. Since BCk2

is invoked with αi−1L ⊕ mi when encrypting mi, we have that the first half of
the input to BCk2 is the first half of αi−1L. Thus BCk2 is fk2(firsthalf (αi−1L))-
periodic. Thus from message block i, using Simon’s algorithm, we get one bit of
fk2(firsthalf (αi−1L)). Since we know k2, this reveals one bit of information about
αi−1L. Thus we get a bit each about many different αi−1L (for different i), and
this allows us to compute L. If our ciphertext, in addition to the superposition-
message-blocks contains parts that are unknown, we can then decrypt those
using our knowledge of L and k2. (Note that we cannot use this knowledge to
decrypt another ciphertext, since each ciphertext uses a different L.) Thus, we
can decrypt ciphertexts whose plaintexts are partially under our control (and in
superposition), and partially unknown.

1.2 Related Work

Boneh et al. [4] have argued the requirement of quantum-accessible random ora-
cle model to prove post-quantum of BR encryption scheme introduced in [3].
They have proved the CCA security of hybrid encryption scheme introduced
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in [3] in the quantum random oracle model. Ebrahimi and Unruh in [8] prove
the CCA security of Fujisaki-Okamoto transform in the quantum random ora-
cle model. In [5] Boneh and Zhandry construct the first message authentication
codes (MACs) that are existentially unforgeable against a quantum chosen mes-
sage attack and show that quantum-secure PRF leads to quantum-secure MACs.
In [7], Damg̊ard et al. study secret sharing scheme and multiparty computation
where the adversary make ask superposition queries. They also examine the zero
knowledge protocols and use the secret sharing results to design zero knowledge
proofs for all of NP in the common reference string model.

1.3 Organisation

In Sect. 2 we provide the various security definitions and lemmas used through-
out the paper. Section 2.1 contains the definition of all the modes of operations
discussed. In Sect. 3.1, we provide the a standard-secure construction of a PRF
used in CBC the and CFB attack. Section 3 describes the attack on the CBC
mode of operation based on that standard-secure PRF. (The insecurity of CFB
and XTS are deferred to the full version [2].) Finally, in Sect. 4 we show how
to achieve the IND-qCPA security for OFB, CTR, CBC, and CFB modes of
operation.

2 Notation and Tools

Notation. By x ← A(y) we denote an algorithm A that takes an input y outputs
a value that is assigned to x. We write x ← AH(y) if A has access to an oracle H.

By (A ← B) we refer to the set of all functions from A to B. x
$←− A represents

an x which is uniformly randomly chosen from the set A. {0, 1}n represents the
bit-strings of length n and a‖b for strings a and b represents the concatenation
of two strings. For two vectors a and b, a � b denotes the dot product between
two vectors. We use η(t) to denote a function with a security parameter t. If we
say a quantity is negligible(denoted negl.) we mean that it is in o(ηc) or 1−o(ηc)
for all c > 0. We use the notation A ≈ B to say that quantity A has negl.
difference with quantity B. For an n−bit string a and binary variable b, a · b = a
if b = 1 otherwise a · b = 0n. For a string x = x1x2x3 · · · xn where xi is the
i − th bit we use functions lastbit and droplastbit such that lastbit(x) = xn and
droplastbit(x) = xix2 · · · xn−1.

Definition 1 (IND-CPA). A symmetric encryption scheme Π = (Gen,Enc,
Dec) is indistinguishable under chosen message attack (IND-CPA secure) if no
classical poly-time adversary A can win in the PrivKCPA

A,Π (t) game, except with
probability at most 1/2 + negl:

PrivKPrivKPrivKCPACPACPA
A,ΠA,ΠA,Π (t) game:

Key Gen: The challenger picks a random key k ← Gen and a random
bit b.
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Query: Adversary A chooses two messages m0,m1 and sends them to
the challenger. Challenger chooses r

$←− {0, 1}∗ and responds with c∗ =
Enck(mb; r).
Guess: Adversary A produces a bit b′, and wins if b = b′.

Definition 2 (IND-qCPA [6]). A symmetric encryption scheme Π =
(Gen,Enc, Dec) is indistinguishable under quantum chosen message attack (IND-
qCPA secure) if no efficient adversary A can win in the PrivKqCPA

A,Π (t) game,
except with probability at most 1/2 + negl:

PrivKPrivKPrivKqCPAqCPAqCPA
A,ΠA,ΠA,Π (t) game:

Key Gen: The challenger picks a random key k and a random bit b.
Queries

- Challenge Queries: A sends two messages m0,m1 to which the
challenger responds with c∗ = Enck(mb; r).
- Encryption Queries: For each such query, the challenger chooses
randomness r, and encrypts each message in the superposition using
r as randomness:

∑

m,c

ψm,c

∣
∣m, c

〉→
∑

m,c

ψm,c

∣
∣m, c ⊕ Enck(m; r)

〉

Guess: A produces a bit b
′
, and wins if b = b

′
.

Definition 3 (Standard-Security [17]). A function PRF is a standard-secure
PRF if no efficient quantum adversary A making classical queries can distinguish
between a truly random function and a function PRFk for a random k. That is,
for every such A, there exists a negligible function ε = ε(t) such that

∣
∣ Pr
k←K

[APRFk() = 1] − Pr
O←YX

[AO() = 1]
∣
∣< ε.

Definition 4 (Quantum-Security [17]). A function PRF is a quantum secure
PRF if no poly-time quantum adversary A making quantum queries can distin-
guish between truly random function and the function PRFk for a random k.

Lemma 1 (One Way to Hiding (O2H) [14]). Let H : {0, 1}t → {0, 1}t be
a random oracle. Consider an oracle algorithm AO2H that makes at most qo2h

queries to H. Let B be an oracle algorithm that on input x does the following:
pick i

$←− {1, . . . , qo2h} and y
$←− {0, 1}t, run AH

O2H(x, y) until (just before) the
i − th query, measure the argument of the query in the computational basis,
output the measurement outcome. (When AO2H makes less than i queries, B
outputs ⊥ /∈ {0, 1}t.) Let,

P 1
AO2H := Pr[b′ = 1 : H

$←− ({0, 1}t → {0, 1}t), x
$←− {0, 1}t, b′ ← AH

O2H(x, H(x))],
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P 2
AO2H

:= Pr[b′ = 1 : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, y

$←− {0, 1}t,

b′ ← AH
O2H(x, y)],

PB := Pr[x′ = x : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, x′ ← BH(x, i)].

Then,
∣
∣P 1

AO2H
− P 2

AO2H

∣
∣≤ 2qo2h

√
PB.

2.1 Modes of Operation

Definition 5 (ECB Scheme). For a given permutation E : K × {0, 1}t →
{0, 1}t we define the symmetric encryption scheme ΠECB = (Gen,Enc,Dec) as
follows:
Gen: Pick a random key k

$←− K.
Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c1 · · · cn, where ci = E(k,mi) for 0 < i ≤ n.
Dec: For a given cipher-text C = c1 · · · cn and key k; m̂i := E−1(k, ci) for
0 < i ≤ n.

Definition 6 (CBC Scheme). For a given permutation E : K × {0, 1}t →
{0, 1}t we define the symmetric encryption scheme ΠCBC = (Gen,Enc,Dec) as
follows:
Gen: Pick a random key k

$←− K.
Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where c0

$←− {0, 1}t and ci = E(k,mi ⊕ ci−1) for 0 <
i ≤ n.
Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E−1(k, ci) ⊕ ci−1

for 0 < i ≤ n.

Definition 7 (CFB Scheme). For a given function E : K × {0, 1}t → {0, 1}t

we define the symmetric encryption scheme ΠCFB = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K.

Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where c0

$←− {0, 1}t and ci = E(k, ci−1) ⊕ mi for 0 <
i ≤ n.
Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E(k, ci−1) ⊕ ci for
0 < i ≤ n.

Definition 8 (OFB Scheme). For a given function E : K × {0, 1}t → {0, 1}t

we define the symmetric encryption scheme ΠOFB = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K.

Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where c0 = r0

$←− {0, 1}t, ri = E(k, ri−1) and ci = ri⊕mi

for 0 < i ≤ n.
Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E(k, ci−1) ⊕ ci for
0 < i ≤ n.
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Definition 9 (CTR Scheme). For a given function E : K × {0, 1}t → {0, 1}t

we define the symmetric encryption scheme ΠCTR = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K.

Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where c0

$←− {0, 1}t and ci = E(k, c0 + i) ⊕ mi for
0 < i ≤ n.
Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E(k, c0 + i) ⊕ ci

for 0 < i ≤ n.

Definition 10 (XTS Scheme). For a given permutation E : K × {0, 1}t →
{0, 1}t we define the symmetric encryption scheme ΠXTS = (Gen,Enc,Dec) as
follows:
Gen: Pick random keys k1 and k2 i.e., k1

$←− K and k2
$←− K.

Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where ci = E(k1,mi ⊕ Δi) ⊕ Δi for 0 < i ≤ n, Δ =
αi−1L, L = E(k2, I) and α is the primitive element of the field F

n
2 . Here I is

a publicly known nonce that is agreed upon out of band (but that is different in
different ciphertexts).
Dec: For a given cipher-text C = c1 · · · cn; and key k; m̂i := E(k, ci ⊕ Δi) ⊕ Δi

for 0 < i ≤ n.

3 Quantum Attacks on CBC, CFB, and XTS
Based on Standard Secure PRF

We show that CBC and CFB mode are not IND-qCPA secure in general when
the underlying block cipher is only a standard secure PRF, and that XTS has a
chosen-plaintext attack using superposition queries. For this, in Sect. 3.1 we first
construct a block cipher that is a standard secure PRF (but are intentionally
not quantum secure). Then, in Sect. 3.2 we show how to break CBC and CFB,
respectively, when using that block cipher.

3.1 Construction of the Block Cipher for CBC

To show that a standard secure PRF is not sufficient for IND-qCPA security
of CBC and XTS modes of operation we need a block cipher that is standard
secure PRF but not quantum secure. Our first step is to construct such a block
cipher and prove it to be standard secure. In this section we provide two such
constructions of block cipher that would be later used to show insecurity of CBC
and XTS against a quantum adversary respectively.

Construction 1:

BCk(x) = EH(k)1

(
droplastbit(x ⊕ (k‖1) · lastbit(x))

)

∥
∥tH(k)2

(
x ⊕ (k‖1) · lastbit(x)

) ⊕ lastbit(x),
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where, E : {0, 1}n−1 × {0, 1}n−1 → {0, 1}n−1 is a standard secure PRF, t :
{0, 1}n × {0, 1}n → {0, 1} is a standard secure PRF, H : {0, 1}n → {0, 1}n ×
{0, 1}n is a random oracle and the key k

$←− {0, 1}n−1.

Theorem 1. Construction 1 is a standard secure PRF for any quantum adver-
sary D given classical access to BCk and quantum access to the random oracle H.

We give the proof in the full version [2].
Thus, we have proved that the given construction is pseudo-random and

hence a standard secure PRF.

3.2 Attack on CBC Mode of Operation

We choose a block cipher BC as in Construction 1 in Sect. 3.1 for the construction
of the ΠCBC scheme (Definition 6). As proved, this block cipher is a standard
secure PRF (i.e., if the quantum adversary has only classical access to it).

Lemma 2. There exists a standard secure pseudo-random function such that
ΠCBC is not IND-qCPA secure (in the quantum random oracle model).

Proof. Let the ΠCBC scheme use the block cipher BC, we use one block message
to attack the ΠCBC scheme. We know that the adversary has quantum access
to the ΠCBC scheme, hence a quantum adversary can query the superposition
of all messages of size equal to the block length of BC (i.e., n). The adversary
prepares the quantum registers M and C to store quantum messages and receive
quantum cipher-texts respectively. The adversary then stores the superposition
of all the messages in M (i.e.,

∑
m 2−n/2|m〉) of size equal to block size of BC

and string |02n−1〉|+〉 in C equal to twice the block size of BC respectively,
and makes an encryption query. The corresponding reply is then stored in the
quantum register C. The attack has been sketched in Fig. 2.

After application of encryption algorithm Enc of ΠCBC the message and
cipher-text registers contain the following data

∣
∣M,C

〉
=

∑

m

2−n/2
∣
∣m

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(m ⊕ c0))

〉∣
∣+

〉
.

The adversary now XORs c0 to the message register by using a CNOT gate.
Hence, the quantum bits of the system changes to6

∣
∣M,C

〉
=

∑

m

2−n/2
∣
∣m ⊕ c0

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(m ⊕ c0))

〉∣
∣+

〉
.

Using y = m ⊕ c0 we have,
∣
∣M,C

〉
=

∑

m

2−n/2
∣
∣y

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(y))

〉∣
∣+

〉
.

6 Here, k is the key for the block cipher BC.
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Fig. 2. Attack on 1 block CBC using Simon’s algorithm

Also, we have that
∣
∣M,C

〉
=

∑

m

2−n/2
∣
∣y

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(y ⊕ (k‖1)))

〉∣
∣+

〉
.

Hence,

∣
∣M,C

〉
=

∑

y

2−n+1
2

(|y〉 + |y ⊕ (k‖1)〉)√
2

∣
∣c0

〉 ∣
∣droplastbit(BCk(y))

〉∣
∣+

〉
,

We now apply n Hadamard gate (i.e.,H⊗n) giving us the state

∣
∣M, C

〉
=
∑

y

∑

z

2− n+1
2

((−1)y�z + (−1)(y⊕(k‖1))�z)√
2

∣
∣z
〉 ∣
∣c0
〉 ∣
∣droplastbit(BCk(y))

〉∣
∣+
〉

As (−1)(y�z) = 1 or −1 and doesn’t affect the outcome of register (except in
phase) we can remove y. Therefore, we have

∣
∣M,C

〉
=

∑

z

2−n+1
2 (−1)y�z (1 + (−1)z�(k‖1))√

2

∣
∣z

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(y))

〉∣
∣+

〉
.

Hence, if z � (k‖1) = 0 we have (up to normalization)

2(−1)y�z
∑

z

∣
∣z

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(y))

〉∣
∣+

〉

otherwise the superposition collapses to zero string. Now if the n−bits of message
register is measured one gets a vector z such that z�(k‖1) = 0. Hence, to retrieve
k we can repeat the same attack again and again until we get n− 1 independent
vectors vi’s (we know that the last bit of (k‖1) is 1). Now using the gaussian
elimination one can retrieve the n − 1 bits of k, thereby breaking the ΠCBC

scheme.

A very similar attack also breaks CBC mode:

Lemma 3. There exists a standard secure pseudo-random function such that
ΠCFB is not IND-qCPA secure (in the quantum random oracle model).

And for XTS mode we get (using a more complex attack):



Post-Quantum Security of the CBC, CFB, OFB, CTR, and XTS 57

Lemma 4. There exists a standard-secure pseudo-random function (in the ran-
dom oracle model) such that ΠXTS admits an attack of the following form: The
adversary first performs a number of superposition encryption queries. Then the
adversary performs a superposition encryption query where the first half of the
plaintext is an adversary chosen superposition of messages, and the second half
is a bitstring m unknown to the adversary. Then the adversary can compute m.

Details and proofs are given in the full version [2].

4 IND-qCPA Security of OFB and CTR
Modes of Operation

In this section, we analyze the quantum security of OFB and CTR modes of oper-
ation. Our motive is to prove the security of these schemes against the quantum
adversary based on IND-qCPA definition (Definition 2) in Sect. 2. These two
modes of operation are similar in working thence similar proofs.

We provide a generic proof for any cryptographic-system with encryption
function which XOR’s the message with a random pad based on the length
of message and random key. This proof shows that IND-qCPA security of the
scheme reduces to the fact that it is IND-CPA secure.

Lemma 5. Let Π = (Gen,Enc,Dec) be an encryption scheme with encryption
algorithm as Enck(M) = Gk(|M |; r) ⊕ M , for randomness r, given message M
and key k ← Gen. If Π is IND-CPA secure then it is IND-qCPA secure.

Proof. Let Pr[PrivK qCPA
Aq,Π (t) = 1] = ε(t)+ 1

2 , for a poly-time quantum adversary
Aq. We construct an efficient quantum adversary A such that Pr[PrivKCPA

A,Π (t) =
1] = ε(t) + 1

2 . Adversary AEnck(1t) works as follows:

1. A prepares two quantum registers M and C being message and ciphertext
registers respectively.

2. Runs Aq, whenever Aq queries encryption oracle on superposition of messages
answer the queries in the following way:
– the quantum message and

∣
∣0|M |〉 are stored in M and C respectively,

– query s := Enck(0|M |) = Gk(|M |; r), where r is the randomness.
– apply unitary operator Uto quantum register M and C where U

∣
∣M,C

〉
:=∣

∣M,C ⊕ M ⊕ s
〉
.

– send the register
∣
∣M,C

〉
to the adversary Aq.

3. When Aq asks the challenge query send it to the challenger and send received
result back to Aq.

4. Continue to answer any encryption oracle query as in step 2.
5. Aq outputs the result b′, send b′ to the challenger.

It is clear that Pr[PrivKCPA
A,Π (t) = 1] = Pr[PrivK qCPA

Aq,Π (t) = 1] = 1
2 +ε(t) and

A is poly-time.
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Theorem 2. If E is a standard secure pseudo-random function then ΠOFB and
ΠCTR schemes are IND-qCPA secure.

Proof. ΠOFB and ΠCTR schemes are IND-CPA secure when E is standard secure
pseudo-random function. Thus, result follows from Lemma5.

5 IND-qCPA Security of CBC and CFB
Mode of Operation

IND-qCPA security of CBC and CFB modes of operation are conditional on the
existence of quantum secure primitives. We use the One-way to Hiding Lemma
[14] (Lemma 1) to prove the bound for any quantum adversary that attacks the
system.

We define Enci,H
CBC (M) := c0c1 · · · cn, where cj

$←− {0, 1}t for j ≤ i and
cj = H(mj ⊕ cj−1) for i < j ≤ n. Similarly we define, Enci,H

CFB (M) := c0c1 · · · cn,

where cj
$←− {0, 1}t for j ≤ i and cj = H(cj−1) ⊕ mj for i < j ≤ n.

In the next lemma we prove that probability of distinguishing the output of
CBC Enci,H

CBC from Enci+1,H
CBC by a quantum adversary having access to oracle

Enci,H
CBC is negligible in t, where t is the security parameter. As the proof for

Enci,H
CBC and Enci+1,H

CFB is similar we provide the instances for Enci,H
CFB in paren-

theses �� wherever there is a difference. Also, we use Enci,H to represent the
encryption functions of Enci,H

CBC and Enci,H
CFB to generalize the proof.

Lemma 6. For any i with i : 0 ≤ i ≤ p(t) − 1, and every quantum adversary A
that makes at most qA queries,

∣
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

b′ ← AEnci,H (Enci,H(Mb))] − Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H ; b′ ← AEnci,H (Enci+1,H(Mb))]
∣
∣
∣≤ O

(
p(t)2qA

2

2
t
2

)

,

where p(t) is the maximum number of blocks in the message M and t is the
length of each message block.

Proof.

ε(t) =
∣
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

b′ ← AEnci,H (Enci,H(Mb))] − Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H ; b′ ← AEnci,H (Enci+1,H(Mb))]
∣
∣
∣
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For a given message M = m0m1 · · · mn let Ẽnc
i

H(M, c0, · · · , ci) := ĉ1ĉ2 · · · ĉn

where

ĉj =
{

cj 0 ≤ j ≤ i
H(ĉj−1 ⊕ mj) �= H(ĉj−1) ⊕ mj� i < j ≤ n

Then we have,

ε(t) =
∣
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

c0, . . . , ci
$←− {0, 1}t; b′ ← AEnci,H (Ẽnc

i

H(Mb, c0, . . . , ci))]−
Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

c0, . . . , ci+1
$←− {0, 1}t; b′ ← AEnci,H (Ẽnc

i+1

H (Mb, c0, . . . , ci+1))]
∣
∣
∣ (1)

We put ci := x ⊕ mi+1
b �= x� where mi+1

b is the (i + 1)th block of the message

Mb and x
$←− {0, 1}t. This means that ci is uniformly random as x is randomly

chosen. Therefore,

ε(t) =
∣
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b

$←− {0, 1}; M0, M1 ← AEnci,H ;

c0, . . . , ci−1
$←− {0, 1}t, x

$←− {0, 1}t, ci := x ⊕ mi+1
b �:= x�;

b′ ← AEnci,H (Ẽnc
i

H(Mb, c0, . . . , ci))] − Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b
$←− {0, 1};

M0, M1 ← AEnci,H ; c0, . . . , ci−1
$←− {0, 1}t, x

$←− {0, 1}t, ci := x ⊕ mi+1
b �ci := x�,

y
$←− {0, 1}t, ci+1 := y�:= y ⊕ mi+1

b �; b′ ← AEnci,H (Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣
∣
∣ (2)

By definition of Ẽnc
i

H , we have Ẽnc
i

H(Mb, c0, · · · , ci) = Ẽnc
i+1

H (Mb, c0, · · · , ci+1)
with ci+1 := H(x) �:= H(x) ⊕ mi+1

b �. Hence,

ε(t) =
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b

$←− {0, 1}; M0, M1 ← AEnci,H ;

c0, . . . , ci−1
$←− {0, 1}t, x

$←− {0, 1}t, ci := x ⊕ mi
b�:= x�, ci+1 := H(x)�:= H(x) ⊕ mi+1

b �;

b′ ← AEnci,H (Ẽnc
i+1

H (Mb, c0, . . . , ci+1))] − Pr[b = b′ : H ← ({0, 1}t → {0, 1}t),

b
$←− {0, 1}; M0, M1 ← AEnci,H ; c0, . . . , ci−1

$←− {0, 1}t, x
$←− {0, 1}t, y

$←− {0, 1}t,

ci := x⊕mi
b�:= x�, ci+1 := y�:= y ⊕mi+1

b �; b′ ← AEnci,H (Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣
∣
∣

We define an adversary AO2H that makes oracle queries to random function
H

$←− ({0, 1}t → {0, 1}t). AO2H with given inputs x and y does the following:
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Adversary AH
O2H(x, y):

M0,M1 ← AEnci,H

b
$←− {0, 1}

c0, . . . , ci−1
$←− {0, 1}t; ci = x ⊕ mi+1

b �= x�; ci+1 = y�= y ⊕ mi+1
b �;

compute C := Ẽnc
i

H(Mb, c0, c1, . . . , ci+1)

b′ ← AEnci,H (C)

return b′ = b

We note here that adversary AO2H can answer the adversary A’s query as it
has oracle access to H. Let qo2h be the number of H-queries made by AO2H , it
is clear that qo2h ≤ 3p(t)qA. Let q1, q2 and q3 denote the number of queries that
AO2H makes to H before the challenge query, during challenge query and after
challenge query respectively.7

It is clear that:

ε(t) =
∣
∣
∣Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x

$←− {0, 1}t, b̃ ← AH
O2H(x, H(x))]

− Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x
$←− {0, 1}t, y

$←− {0, 1}t, b̃ ← AH
O2H(x, y)]

∣
∣
∣ (3)

Let B be an oracle algorithm described in the O2H lemma (Lemma 1). There-
fore, we have that ε(t) ≤ 2qo2h

√
PB, where we have the probability PB as

PB = Pr[x = x′ : j
$←− {1, . . . , qo2h}, x

$←− {0, 1}t,H
$←− ({0, 1}t → {0, 1}t),

x′ ← BH(x, j)]

=
1

qo2h
· Pr[x = x′ : x

$←− {0, 1}t,H
$←− ({0, 1}t → {0, 1}t), x′ ← BH(x, j)]

︸ ︷︷ ︸
:=P j

B

To evaluate P j
B we consider three cases depending whether the j-th H-query

is before, during, or after the challenge query.
Case I (j ≤ q1):

In this case, the j-th iteration query to the oracle H is computed before the
challenge query is done. So adversary A does not get access to x while queries are
done. Therefore, adversary A’s queries are independent of x, as it never executes
challenge query and beyond. As the adversary A never used the x for any query
we can therefore say that fixing x to be any string should not affect argument
of the query. Therefore, we fix input x as the null string 0n.

P j
B = Pr[x = x′ : x

$←− {0, 1}t,H
$←− ({0, 1}t → {0, 1}t), x′ ← BH(0, j)] ≤ 2−t.

7 We can assume without loss of generality that AO2H performs exactly q1, q2, q3
queries respectively. If it performs less, we simply add dummy queries.
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Case II (q1 ≤ j ≤ q1 + q2):
In this case the j-th iteration query to the oracle H is made during the

challenge query (i.e, q1 < j ≤ q1 + q2). Therefore, oracle algorithm B can stop
adversary A at any of the following queries:

H(mi+2
b ⊕y), H(mi+3

b ⊕H(mi+2
b ⊕y)), · · · , H(m

p(t)
b ⊕H(m

p(t)−1
b ⊕· · · H(mi+2

b ⊕y) · · · ))
�
H(y) ⊕ mi+2

b , H(H(y) ⊕ mi+2
b ) ⊕ mi+3

b , · · · , H(H(H(· · · H(y) ⊕ mi+2
b ) · · · )) ⊕ m

p(t)
b

�

By using result from Zhandry [18] on distinguishing a random function from a
random permutation we have,

P j
B ≤ Pr[x = x′ : H

$←− Perm(), x $←− {0, 1}t, x′ ← BH(x, j)] + O

(
j3

2t

)

Note that the argument of the j-th query is s := mi+j−q1+1
b ⊕ H(mi+j−q1

b ⊕
· · ·⊕H(mi+2

b ⊕y) · · · ) �s := H(· · · H(H(y)⊕mi+2
b ) · · ·⊕mi+j−q1

b )⊕mi+j−q1+1
b �.

From the definition of O2H lemma we know that y is chosen independently at
random from x and H. It is easy to see that for a fixed message Mb s would be
assigned an output by a permutation that is independent of x but dependent on
y since the input to first call to H is mi+2

b ⊕ y �y�. Therefore,

P j
B ≤ Pr[x = x′ : H

$←− Perm(), x
$←− {0, 1}t, x′ = s]+O(

j3

2t
) ≤ 1

2t
+O

(
j3

2t

)

≈ O

(
j3

2t

)

Case III (j ≥ q1 + q2):
In this case, the j-th iteration query to the oracle H is computed after the

challenge query is done. We have j > q1 + q2. Adversary A makes many encryp-
tion oracle queries and eventually measures the argument of one of the H oracle
query and stops. Say it measures in the kth H oracle query of j-th encryption
query.

P j
B := Pr[x = x′ : x

$←− {0, 1}t,H
$←− ({0, 1}t → {0, 1}t), x′ ← BH(x, j)]

The circuit diagram in Fig. 3 represents the working of adversary AO2H .
AO2H answers encryption queries using oracle access to H. Let the quantum
message (possibly entangled) to be stored in the quantum register M and the
corresponding ciphertext in the quantum register C. The encryption circuit is
composed of the quantum gates UIV , UH , CNOT and measurements. Where
UIV |M〉 = |M⊕IV 〉, UH |M,C〉 = |M,C⊕H(M)〉, CNOT |M,C〉 = |M,C⊕M〉,
and the measurements are in the computational basis of the message space. Thus,
in each case I,II,III we have P j

B ∈ O
(

q3
o2h
2−t

)
.8

The unitary gates used to compose the circuits are diagonal in the compu-
tational basis and hence commute with the measurements. Therefore, moving
8 Note that in Fig. 3 we measure all registers, not only the query register. This does

not change P j
B since the additional measurements are performed on registers that

are not used further.
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Fig. 3. Composition of Encryption Oracle using H oracle

the measurements prior to the unitary operations do not affect the probability
distribution of the output. Hence, we can measure the message register M before
performing the unitary operations. Thus, it is similar to the Case II where we
have a query on a classical message.

Therefore, we have P j
B = O( j3

2t ).

Hence by the definition of PB we have, PB ≤ O( q3
o2h
2t ). Therefore, we have

that ε(t) ≤ qo2h

√
PB ≤ qo2h

√
O( qo2h3

2t ) = O( qo2h
3

2t )

Theorem 3. If the function E is a quantum secure PRF then ΠCBC and ΠCFB

is IND-qCPA secure.

This follows now easily from Lemma 6 and the fact that Enci,H(Mb) is indepen-
dent of its argument Mb for i = p(t). We give the details in the full version [2].
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