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Abstract. We present quantum circuits to implement an exhaustive
key search for the Advanced Encryption Standard (AES) and analyze the
quantum resources required to carry out such an attack. We consider the
overall circuit size, the number of qubits, and the circuit depth as mea-
sures for the cost of the presented quantum algorithms. Throughout, we
focus on Clifford+T gates as the underlying fault-tolerant logical quan-
tum gate set. In particular, for all three variants of AES (key size 128,
192, and 256 bit) that are standardized in FIPS-PUB 197, we establish
precise bounds for the number of qubits and the number of elementary
logical quantum gates that are needed to implement Grover’s quantum
algorithm to extract the key from a small number of AES plaintext-
ciphertext pairs.

Keywords: Quantum cryptanalysis · Quantum circuits · Grover’s algo-
rithm · Advanced Encryption Standard

1 Introduction

Cryptanalysis is an important area where quantum algorithms have found appli-
cations. Shor’s seminal work invalidates some well-established computational
assumptions in asymmetric cryptography [27], including the hardness of factor-
ing and the computation of discrete logarithms in finite cyclic groups such as
the multiplicative group of a finite field. On the other hand, regarding symmet-
ric encryption, the impact of quantum algorithms seems less dramatic. While a
quantum version of related key attacks [26] would be a threat for block ciphers
provided that quantum access to the encryption function is given, as this requires
the ability to generate quantum superpositions of related keys, this attack model
is somewhat restrictive. In particular, the related key attack of [26] is not applica-
ble to, say, a context where a small number of plaintext-ciphertext pairs are given
and the goal is to identify the encryption key.
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It has been known for some time that in principle Grover’s search algorithm
[15] can be applied to the problem of finding the key: the square root speed-up
offered by Grover’s algorithm over a classical exhaustive key search seems to be
the most relevant quantum cryptanalytic impact for the study of block ciphers.
To actually implement such an attack, the Boolean predicate that is queried in
Grover’s algorithm needs to be realized as a circuit. Perhaps interestingly, even
for the most obvious target—the Advanced Encryption Standard [24], which in
its 256-bit version has recently been suggested to be quantum-safe [5]—to the
best of our knowledge no detailed logical level resource estimate for implement-
ing Grover’s algorithm is available. The seemingly simple task of implementing
the AES function actually requires some analysis as the circuit implementation
is required to be reversible, i.e., it must be possible to implement the opera-
tion via an embedding into a permutation. Once a reversible implementation is
known, in principle also a quantum implementation can be derived as the set of
permutations is a subset of all unitary operations.

Our contribution. We provide reversible circuits that implement the full
Advanced Encryption Standard AES-k for each standardized key size (i.e.,
k = 128, 192, 256). We establish resource estimates for the number of qubits
and the number of Toffoli gates, controlled NOT gates, and NOT gates. See
[23] for basic definitions of quantum and reversible logic gates. Furthermore, we
consider decompositions of the reversible circuits into a universal fault-tolerant
gate set that can then be implemented as the set of logical gates. As underlying
fault-tolerant gate set we consider the so-called set of Clifford+T gates.1 This
gate set is motivated, e.g., by the fact that this set of gates can be implemented
fault-tolerantly on a large set of codes, including the surface code family [13,14]
and concatenated CSS codes [25,28]. Clifford gates typically are much cheaper
than the T -gate which commonly is implemented using state distillation. When
breaking down the circuit to the level of T -gates we therefore pay attention to
reducing the overall T -count. See also [3,4] for techniques how to optimize the
T -count and [2] for techniques that allow to navigate the trade-space between T -
depth and the number of qubits used. For the particular case of the Toffoli gate
we use an implementation that requires 7 T -gates and several Clifford gates,
see [3,23]. There is a probabilistic circuit known that implements the Toffoli
gate with only 4 T -gates [16], however, as the architecture requirements will
be stronger in that measurement and feed-forward of classical information is
required, we focus on the purely unitary decomposition that requires 7 T -gates.
We remark however, that the only source of T -gates in this paper are Toffoli
gates, hence it is possible to use Jones’ Toffoli factorization mutatis mutandis
which leads to all given resource estimates for the T -count being multiplied by
4/7 and the requirement of 1 additional ancilla qubit. In our resource estimates
we do not to restrict interactions between qubits and leave the implementation,
e.g., on a 2D nearest neighbor array for further study, including an investigation

1 As is common, we do not distinguish between T =

(
1 0
0 exp(iπ/4)

)
and T †-gates.
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of the remaining quantum circuit placement problems [21] that will have to be
solved for the logical gate lists that are produced by our approach.

One of our main findings is that the number of logical qubits required to
implement a Grover attack on AES is relatively low, namely between around
3, 000 and 7, 000 logical qubits. However, due to the large circuit depth of
unrolling the entire Grover iteration, it seems challenging to implement this algo-
rithm on an actual physical quantum computer, even if the gates are not error
corrected. It is worth noting that much of the circuit cost within each Grover iter-
ation originates from the key expansion, i. e., from deriving the round keys and
that the overall depth is a direct result of the serial nature of Grover’s algorithm.

2 Preliminaries: Grover’s Algorithm

Before going into technicalities of how to implement AES as a quantum circuit,
we briefly recall the interface that we need to provide to realize a key search,
namely Grover’s algorithm [15]. The Grover procedure takes as an input a quan-
tum circuit implementing a Boolean function f : {0, 1}k −→ {0, 1} in the usual
way, i.e., via a quantum circuit Uf that implements |x〉|y〉 �→ |x〉|y ⊕ f(x)〉,
where x ∈ {0, 1}n and y ∈ {0, 1}. The basic Grover algorithm finds an element
x0 such that f(x0) = 1. Denoting by H the 2 × 2 Hadamard transform, the
Grover algorithm consists of repeatedly applying the operation G to the initial
state |ψ〉 ⊗ |ϕ〉, where |ψ〉 = 1√

2k

∑
x∈{0,1}k |x〉, |ϕ〉 = 1√

2
(|0〉 − |1〉), and where

G is defined as

G = Uf

(
(H⊗k(2|0〉〈0| − 12k)H⊗k) ⊗ 12

)
, (1)

where |0〉 denotes the all zero basis state of the appropriate size. Overall, G has
to be applied a number of O(

√
N/M) times in order to measure an element x0

such that f(x0) = 1 with constant probability, where N is the total number of
candidates, i.e., N = 2k, and provided that there are precisely M solutions, i.e.,
M = |{x : f(x) = 1}|; see also [23, Sect. 6.1.2], [8] for an analysis. If we know that
there is only one solution, i.e., M = 1, this means that we can find a solution
by applying H⊗k+1 to the initial state |0〉⊗k ⊗ |1〉 and then applying G�, where
� = 	π

4

√
N�, followed by a measurement of the entire quantum register which

will yield a solution x0 with high probability [23, Sect. 6.1.4], [8].
As we will show in the following section, we can indeed define a function

f from the set of possible keys, i.e., k ∈ {128, 192, 256} for the case of AES,
such that there is (plausibly) precisely one solution to the problem of finding the
correct key K that was used to encrypt a small set of given plaintext-ciphertext
pairs, i.e., we can (plausibly) enforce the situation M = 1 by defining a suitable
function f . We remark, however, that it is possible to modify Grover’s algorithm
in various ways so that it can cope with a larger (but known) number M > 1 of
solutions or even with a completely unknown number of solutions: as mentioned
above, if the number M of solutions is known, O(

√
N/M) iterations are enough,

however, if the number is unknown, there is an issue that it is not possible to
pick the right number of iterations a priori. Nonetheless, there is a variant of
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Fig. 1. (a) Quantum circuit to implement Grover’s algorithm. The algorithm consists
of creating the equal superposition

∑
x |x〉 in the upper register which for the case

of AES has k = 128, 192, 256 qubits and a single qubit state |−〉 = |0〉 − |1〉 in the
lower register. The operator G is the Grover iterate and is applied a total number
of �π

4

√
2k� many times. (b) One round of Grover’s algorithm. Shown is the operator

G = Uf

(
(H⊗k(2|0〉〈0| − 12k )H⊗k) ⊗ 12

)
and its circuit decomposition. Note that the

effect of the gates between the two layers of Hadamard gates is to invert the phase of
the basis state |0〉 on the upper k bits (up to a global phase).

the algorithm which finds a solution in expected running time O(
√

N/M) even
when the number M of solutions is unknown [8, Sect. 6].

There are several ways out of this dilemma which we mention briefly for
completeness but point out that we did not implement these alternatives: one
can first apply a quantum algorithm to count the number of solutions [8,10]
or one can do an exponential search on the number of iterations [8,9], or one
can employ an adaptive schedule in which the Grover operator is changed to an
operator that rotates by different angles depending on the index of the iteration
[30], thereby driving the oscillation of the quantum state into a bounded region
(the “fixed point”) which then yields a solution upon measurement.

Returning to the case of Grover’s algorithm with a unique solution, we now
study the number of gates and the space requirements needed in order to imple-
ment the algorithm. We consider the gates shown in Fig. 1, in particular we first
focus on the circuit shown in part (b) of the figure and analyze its complexity.
While H is a Clifford operation, besides the operation Uf which involves the
classical computation of (several) AES functions, we also have to determine the
cost κ for the operation (2|0〉〈0| − 1) in Eq. (1). This reduces to the implemen-
tation of a k-fold controlled NOT gate, where for us k ∈ {128, 192, 256}. The
resource estimates for this gates in terms of Toffoli gates can be obtained from
[6] to be (as n ≥ 5): 8k − 24 Toffoli gates which evaluates to 1, 000, 1, 512, and
2, 024 Toffoli gates per phase operation (2|0〉〈0|−12k), respectively. For the num-
ber of Clifford+T gates (counting only T s) one could directly apply an upper
bound by multiplying κ with 7, however, one can derive a slightly better bound:
as shown in [29] (see also [20]), one can employ phase cancellations and show
an upper bound of 32k − 84 for a k-fold controlled NOT gate, i.e., we obtain
4, 012, 6, 060, and 8, 108 for the T -count per phase operation for the three key
sizes k ∈ {128, 192, 256}.

We spend the rest of the paper to obtain estimates for f : {0, 1}k → {0, 1}
which proceeds by first mapping K �→ (AESK(m1), . . . ,AESK(mr)) and then
computing the equality function of the resulting vector with the given ciphertexts
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c1, . . . , cr, where ci ∈ {0, 1}128. In other words, we define the value of f on a
given input key K ∈ {0, 1}k (where k ∈ {128, 192, 256}) as follows:

f(K) := (AESK(m1) = c1) ∧ . . . ∧ (AESK(mr) = cr).

As argued below, it is plausible that r = 3, 4, 5 are sufficient for the three stan-
dardized AES key sizes. The equality function can be implemented by a multiply
controlled NOT gate that has 128r (many controls where r = 3, 4, 5) and a single
target. Using the above formulas this leads to Toffoli counts of 3, 048, 4, 072, and
5, 096, respectively, as well as T -counts of 12, 204, 16, 300, and 20, 396, respec-
tively. We return to the question of providing exact quantum resource estimates
for Grover’s algorithm in Sect. 3.4 after the implementation details of the “ora-
cle” function Uf have been derived in the subsequent sections.

3 Implementing the Boolean Predicate—Testing a Key

An essential component needed in Grover’s algorithm is a circuit which on input
a candidate key |K〉 indicates if this key is equal to the secret target key or not. To
do so, the idea is to simply encrypt some (fixed) plaintext under the candidate
key and compare the result with the (assumed to be known) corresponding
ciphertext under the secret target key.

3.1 Ensuring Uniqueness of the Solution

As AES always operates on 128-bit plaintexts, at least for 192-bit and 256-
bit keys we have to assume that fixing a single plaintext-ciphertext pair is not
sufficient to determine a secret key uniquely.

Arguing with the strict avalanche criterion [11,19] exactly in the same way as
in [26, Sect. 2.1], we can plausibly assume that for every pair of keys (K,K ′) ∈
{0, 1}k×k with K �= K ′ the condition

(AESK(m1), . . . ,AESK(mr)) �= (AESK′(m1), . . . ,AESK′(mr))

holds for some suitable collection of plaintexts m1, . . . ,mr. The reason for this
is that, for a fixed plaintext, when flipping a bit in the secret key, then each bit
of the corresponding ciphertext should change with probability 1/2. Hence, for r
simultaneous plaintext-ciphertext pairs that are encrypted under two secret keys
K ′ �= K we expect to get different results with probability about 1 − 2−rn, if
the plaintexts are pairwise different, where n denotes the length of the message.
Hence out of a total of 22k − 2k key pairs (K,K ′) with K �= K ′, about (22k −
2k) · 2−rn ≤ 22k−rn keys K ′ �= K are expected to give the same encryptions.
Hence it seems plausible to estimate that

r > �2k/n� (2)

plaintexts suffice to ensure that for every K ′ �= K at least one separating plain-
text is available. As AES has 128-bit plaintexts we have that n = 128, i.e.,
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Eq. (2) implies that for key length k the adversary has r > �2k/128� plaintext-
ciphertexts pairs (m1, r1), . . . , (mr, cr) for the target key available. In other
words, to characterize the secret target key uniquely, we assume that r = 3
(AES-128), r = 4 (AES-192), and r = 5 (AES-256) suitable plaintext-ciphertext
pairs are known by the adversary.

3.2 Reversible and Quantum Circuits to Implement AES

We assume that the reader is familiar with the basic components of AES. For a
detailed specification of AES we refer to FIPS-PUB 197 [24]. To realize this round-
oriented block cipher as a reversible circuit over the Toffoli gate set, respectively
as a quantum circuit over the Clifford+T gate set, we need to take care of the key
expansion, which provides all needed 128-bit round keys, as well as the individual
rounds. While the number of rounds depends on the specific key length k, the
four main functions—AddRoundKey, MixColumns, ShiftRows, and SubBytes—
that are used to modify the 128-bit internal state of AES are independent of k.

First, we discuss the realization of these four functions, before going into
details of combining them with the key expansion into complete round functions
and a full AES. In our design choices, we tried to keep the number of qubits low,
even when this results in a somewhat larger gate complexity. For instance, to
implement the F256-multiplications within SubBytes, we opted for a multiplier
architecture requiring less qubits, but more Clifford and more T -gates.

3.2.1 Circuits for the Basic AES Operations
The internal AES state consists of 128 bits, organized into a rectangular array
of 4 × 4 bytes. We will devote 128 qubits to hold the current internal state.

AddRoundKey. In the implementation of the key expansion, we ensure that the
current round key is available on 128 dedicated wires. Implementing the bit-
wise XOR of the round key then reduces to 128 CNOT gates which can all be
executed in parallel.

MixColumns. Since MixColumns operates on an entire column of the state or
32 (qu)bits at a time, the matrix specified in [24] was used to generate a 32× 32
matrix. An LUP-type decomposition was used on this 32×32 matrix in order to
compute this operation in place with 277 CNOT gates and a total depth of 39.
Example 1 offers a similar but smaller version of an LUP-type decomposition as
we used.

ShiftRows. As ShiftRows amount to a particular permutation of the current
AES state, we do not have to add any gates to implement this operation as
it corresponds to a permutation of the qubits. Instead, we simply adjust the
position of subsequent gates to make sure that the correct input wire is used.

SubBytes. This operation replaces one byte of the current state with a new
value. For a classical implementation, a look-up table can be an attractive
implementation option, but for our purposes, explicitly calculating the result of
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this operation seems the more resource friendly option. Treating a state byte as
element α ∈ F2[x]/(1+x+x3+x4+x8), first the multiplicative inverse of α (leav-
ing 0 invariant) needs to be found. This is followed by an affine transformation.
To find α−1 we adopt the idea of [1] to build on a classical Itoh-Tsujii multiplier,
but we work with in-place matrix multiplications. Specifically, we compute

α−1 = α254 = ((α · α2) · (α · α2)4 · (α · α2)16 · α64)2, (3)

exploiting that all occurring exponentiations are F2-linear. Using again an LUP-
type decomposition, the corresponding matrix-multiplication can be realized in-
place, using CNOT gates only. And by adjusting the positions of subsequent
gates accordingly, realizing the permutation is for free, no gates need to be
introduced for this.

Example 1. Squaring in F2[x]/(1 + x + x3 + x4 + x8) can be expressed as multi-
plying the coefficient vector from the left with

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1
0 1 0 0 0 1 0 0
0 0 0 0 1 1 1 1
0 0 1 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 1
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From this, we see that in-place-squaring can be implemented with only twelve
CNOT gates. The resulting circuit is shown in Fig. 2.

To realize the six multiplications in Eq. (3), we use a general purpose multi-
plier in the underlying binary field. We opted for a design by Maslov et al. [22],
which requires less than 60 % of the number of qubits than a more recent design
in [18]. This comes at the cost of an increased gate complexity, however, and
a different design choice could be considered. For the specific polynomial basis
representation of F256 at hand, Maslov et al.’s design, requires 64 Toffoli plus
21 CNOT gates, which with Amy et al. [3] translates into 64 · 7 = 448 T - plus
64 · 8 + 21 = 533 Clifford gates.

Noticing that three of the multiplications in Eq. (3) are actually duplicates,
it turns out that four multiplications suffice in order to implement the inversion.
Trying to reduce the number of total qubits required at each step, the actual
calculation of computing α−1 fits into 40 qubits total, producing |α〉, |α〉−1,
and twenty-four reinitialized qubits as output. To do so, and reinitialize qubits,
we invest twelve linear transformations and eight F256-multiplications, totalling
3584 T -gates and 4539 Clifford gates.

Once α−1 is found, the affine transformation specified in [24] must be com-
puted, which can be done with an LUP-type decomposition; four uncontrolled
NOT gates take care of the vector addition after multiplication with a matrix.
In total one 8-bit S-box requires 3584 T -gates and 4569 Clifford gates.
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Fig. 2. Squaring in F2[x]/(1 + x + x3 + x4 + x8)

SubBytes—an alternative implementation minimizing qubits. The inversion α �→
α−1 (where 0 is mapped to 0) can be seen as a permutation on F256. This
permutation is odd, while quantum circuits with NOT, CNOT, and Toffoli gates
on n > 3 qubits generate the full alternating group A2n of even permutations.
Hence we have to use one ancilla qubit, i.e., nine qubits in total. The task is then
to express a permutation on 512 points in terms of the generators corresponding
to the NOT, CNOT, and Toffoli gates. While computer algebra systems like
Magma [7] have built-in functions for this, the resulting expressions will be
huge. In order to find a short factorization, we compute a stabilizer chain and
corresponding transversals using techniques similar to those described in [12].
We use a randomized search to find short elements in each transversal. As it is
only relevant to implement the exact function when the ancilla qubit is in the
state |0〉, we choose the first 256 points in the basis for the permutation group
as those with the ancilla in the state |0〉, and the remaining 256 points as those
with the ancilla in the state |1〉. This allows to compute a factorization modulo
permutations of the last 256 points. With this approach, we found a circuit with
no more than 9695 T -gates and 12631 Clifford gates, less than three times more
gates than the version above, but using only 9 instead of 40 qubits in total.

3.2.2 Key Expansion
Standard implementation of the key expansion for AES-k (k = 128, 192, 256)
separates the original k-bit key into 4, 6 or 8 words of length 32, respectively
and must expand the k-bit key into forty-four words for k = 128, fifty-two words
for k = 192 and sixty words for k = 256. Each AES key expansion uses the
same operations and there are only slight differences in the actual round key
construction. The operations are RotWord, a simple rotation, SubBytes, and
Rcon[i], which adds xi−1 ∈ F256 to the first byte of each word.

While the three different versions of AES employ up to 14 rounds of com-
putation, the key expansion is independent of the input. The words created by
the key expansion were divided into two categories: the words needing SubBytes
in their computation and those that do not. The words not involving SubBytes
can be recursively constructed from those that do by a combination of XORings
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Table 1. Quantum resource estimates for the key expansion phase of AES-k, where
k ∈ {128, 192, 256}.

#gates Depth #qubits

NOT CNOT Toffoli T Overall Storage Ancillae

128 176 21,448 20,480 5,760 12,636 320 96

192 136 17,568 16,384 4,608 10,107 256 96

256 215 27,492 26,624 7,488 16,408 416 96

making them simple to compute as needed, saving up to 75 % of the storage cost
of the key expansion. The most expensive of these is word 41 or w41 in AES-128
which is constructed by XORing 11 previous words costing 352 CNOT gates and
a total depth of 11.

Since SubBytes is costly, the remaining words are stored as they are con-
structed. In a classical AES implementation, these words (every fourth or sixth)
are produced by starting with the previous word, however in this construction
the previous word must be constructed, and removed, as needed. For exam-
ple, in AES-128, to construct w8, first w7 must be constructed as follows:
w7 = w4 ⊕ w3 ⊕ w2 ⊕ w1.

This can be done on the previously constructed word (here w4) saving qubits,
gates, and depth. Since the construction of w8 involves the use of w4 the above
process needs to be repeated to be removed before the end of construction of
w8. For the construction of these words, similar to ShiftRows, RotWord can be
eliminated if the position of the gates is shifted to use the correct wires. Since
SubWord applies SubBytes to each byte of the word independently, each of the
four SubBytes computations can be done concurrently.

Example 2. Below is the construction of w8. Notice that w7 is constructed on
top of w4.
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To allow each of the four SubBytes routines per round to perform simulta-
neously, 96 auxilary qubits would be needed, along with the 32 needed to store
the new word. With each word constructed requiring the previous word be con-
structed first, we did not reduce the depth further. Computation costs are listed
in Table 1 (the listed qubit costs do not include storing the original key).

3.2.3 AES Rounds
AES starts with a simple whitening step—XORing the input with the first four
words of the key. Since, in this case, the input is a fixed value, and adding a
fixed value can be done by simply flipping bits, approximately 64 uncontrolled
NOT gates are used on the first four key words to start round one. This can be
reversed later when needed, but saves 128 qubits. If this is not the case, then
128 qubits are needed to store the input and 128 CNOT gates can be used to
compute this step. While the 10, 12, or 14 rounds of AES all apply the same basic
functions, the circuit structure differs slightly per round to reduce qubits and
depth. SubBytes must be computed 16 times per round, requiring 384 auxiliary
qubits for all to be done simultaneously or an increase in depth is needed. Using
only the minimum 24 auxiliary qubits and the 128 qubits needed to store the
result, it was noticed that all 16 SubBytes calculations per round could be done
with a maximum depth of 8 SubBytes cycles.

Since SubBytes is not done in place, and AES-k requires 128 qubits per
round, the computation takes 128 qubits times the number of rounds per AES,
in addition to the number of qubits needed to store the original key. This number
can be reduced by reversing steps between computations to clear qubits for future
use. Once SubBytes has been applied, the input can be removed by reversing
enough steps (but the output could not be removed as its counterpart (inverse)
is gone). Since AES-128 employs 10 rounds, using 512 qubits for storage and
24 auxiliary qubits, allows the reverse process to be applied three times. For
AES-192 and AES-256, we used 640 qubits for storage since we did not manage
to have three rounds of reversing on 536 qubits.

Example 3. The reverse process representation for AES-128. Notice this method
leaves Round 4, Round 7 and Round 9 with no way to be removed unless the
entire process is reversed.
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For AES-192 and AES-256 the reversing process is done after rounds five, nine
and twelve, requiring only 128 qubits more than AES-128.

As stated, ShiftRows is for free and using an LUP-type decomposition for
MixedColumns allows this process to be done in place using 277 CNOT gates
with a maximum depth of 39. To compute all 10 rounds of AES-128, 536 qubits
were needed, 664 qubits were used to compute the 12 rounds of AES-192 and 14
rounds of AES-256.

The XORing of the round keys can be done directly on top of the input for
each round. If the round key needed is already constructed, 128 CNOT gates
with a depth of 1 are used to complete the round. If the round key is not already
constructed and thus a combination of constructed keys, then it only requires
this process to be done multiple times. AES-128 requires this to be done 11 times
(the most) in the case of w41, increasing the depth and CNOT gate count by at
most 11.

3.3 Resource Estimates: Reversible AES Implementation

The numbers listed in the three tables below show the costs in gates, depth and
qubits to achieve the output of each AES-k system.

3.4 Resource Estimates: Grover Algorithm

From the discussion in the previous sections we obtain a reversible circuit for
computing AESK(mi), i.e., a circuit C that implements the operation |K〉|0〉 �→
|K〉|AESK(mi)〉. The overall circuit to implement Uf is shown in Fig. 3. The
AES layer can be applied in parallel, however, as the used ancilla qubits have
to be returned clean after each round, we have to uncompute each AES box
within each round. Hence the depth (and T -depth) increases by a factor of 2
within each invocation of Uf . The total number of gates (and T -gates) on the
other hand increases by a factor of 2r as all boxes have now to be counted. The
number of qubits is given by r times the number of qubits within each AES box.

Once the AES boxes have been computed, the result is compared with the
given ciphertexts c1, . . . , cr. Note that as AES operates on plaintexts/ciphertexts
of length 128 we have that ci ∈ {0, 1}128 throughout. The comparison is done

Table 2. Quantum resource estimates for the implementation of AES-128.

#gates Depth #qubits

T Clifford T Overall

Initial 0 0 0 0 128

Key Gen 143,360 185,464 5,760 12,626 320

10 Rounds 917,504 1,194,956 44,928 98,173 536

Total 1,060,864 1,380,420 50,688 110,799 984
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Table 3. Quantum resource estimates for the implementation of AES-192. The lower
gate count in Key Gen and the lower depth, when compared to AES-128, arises from
using the additional available space to store intermediate results and to parallelize
parts of the circuit.

#gates Depth #qubits

T Clifford T Overall

Initial 0 0 0 0 192

Key Gen 114,688 148,776 4,608 10,107 256

12 Rounds 1,089,536 1,418,520 39,744 86,849 664

Total 1,204,224 1,567,296 44,352 96,956 1,112

Table 4. Quantum resource estimates for the implementation of AES-256.

#gates Depth #qubits

T Clifford T Overall

Initial 0 0 0 0 256

Key Gen 186,368 240,699 7,488 16,408 416

14 Rounds 1,318,912 1,715,400 52,416 114,521 664

Total 1,505,280 1,956,099 59,904 130,929 1,336

Fig. 3. The reversible implementation of the function Uf is shown in further detail. In
this case the key size k = 128 is considered for which r = 3 invocations of AES suffice
in order to make the target key unique. For the cases of k = 192 the number of parallel
AES boxes increases to r = 4 and for k = 256 to r = 5, however, the overall structure
of the circuit is common to all key sizes.

by a multiply controlled NOT gate and the controls are either 0 or 1 depending
on the bits of ci. This is denoted by the superscript ci on top of the controls
in Fig. 3. We can now put everything together to estimate the cost for Grover’s
algorithm based on the AES-k resource estimates given in the previous section:
denoting by sk the total number of qubits, tk the total number of T -gates, ck the
total number of Clifford gates, δk the overall T -depth and Δk the overall depth,
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Table 5. Quantum resource estimates for Grover’s algorithm to attack AES-k, where
k ∈ {128, 192, 256}.

k #gates Depth #qubits

T Clifford T Overall

128 1.19 · 286 1.55 · 286 1.06 · 280 1.16 · 281 2, 953

192 1.81 · 2118 1.17 · 2119 1.21 · 2112 1.33 · 2113 4, 449

256 1.41 · 2151 1.83 · 2151 1.44 · 2144 1.57 · 2145 6,681

where k = 128, 192, 256, then we obtain the following estimates for the overall
Grover algorithm. The space requirements are 3s128 + 1 qubits for AES-128,
4s192 + 1 qubits for AES-192, and 5s256 + 1 qubits for AES-256.

Regarding the time complexity, we obtain that per Grover iteration we need
6t128 many T -gates for AES-128 plus the number of T -gates needed for the 384-
fold controlled NOT inside Uf and the 128-fold controlled NOT to implement the
phase (2|0〉〈0|−1). We estimated the T -counts of these two operations earlier to
be 12,204 and 1,000 respectively. Overall, we have to perform 	π

4 2k/2� iterations,
i.e., we obtain for the overall T -gate count for Grover on AES-128 the estimate of

⌊π

4
264

⌋
· (

6t128 + 13, 204
)

= 9.24 · 1025 = 1.19 · 286

many T -gates. Similarly, we can estimate the number of Clifford gates which
for simplicity we just assume to be 6c128, ignoring some of the Clifford gates
used during the rounds. For AES-192 we have to perform 	π

4 296� iterations
and for AES-256 we have to perform 	π

4 2128� iterations. For the T -count of
the controlled operations we obtained 16, 300 + 1, 512 = 17, 812 and 20, 396 +
2024 = 22, 420 earlier. Overall, this gives for Grover on AES-192 the estimate of
3.75 ·1036 = 1.81 ·2114 many T -gates and for Grover on AES-256 the estimate of
4.03 ·1045 = 1.41 ·2151 many T -gates. For the overall circuit depth we obtain the
number of rounds times 2 times δk, respectively Δk, ignoring some of the gates
which do not contribute significantly to the bottom line. The overall quantum
resource estimates are given in Table 5.

4 Conclusion

When realizing AES, only SubBytes involves T -gates. Moreover, SubBytes is
called a minimum of 296 times as in AES-128 and up to 420 times in AES-256.
As shown above, for all three standardized key lengths, this results in quantum
circuits of quite moderate complexity. So it seems prudent to move away from
128-bit keys when expecting the availability of at least a moderate size quantum
computer.

As mentioned in the context of the discussion about Grover’s algorithm in
the presence of an unknown number of solutions, the implementation of the algo-
rithms in [10] for quantum counting, [9] for general amplitude amplifications, and
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[30] for fixed-point quantum search might lead to space-time tradeoff implemen-
tations of the function f . This might in particular be beneficial for the circuit
mentioned in [30] as this does not incur a space overhead and can deal with
an unknown number of solutions, provided an upper bound on the number of
solutions is known a priori. We leave the question of providing quantum resource
estimations for attacking AES and other block ciphers by means of such fixed-
point versions of Grover’s algorithm for future work. Also an interesting area
of future research is the resource cost estimation of recently proposed quantum
linear and differential cryptanalysis [17].
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