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Abstract. In this paper we present a new algorithm to construct the
keys of the multivariate public key encryption scheme ZHFE. Construct-
ing ZHFE’s trapdoor involves finding a low degree polynomial of q-
Hamming-weight-three, as an aid to invert a pair of q-Hamming-weight-
two polynomials of high degree and high rank. This is done by solving
a large sparse linear system of equations. We unveil the combinatorial
structure of the system in order to reveal the hidden structure of the
matrix associated with it. When the system’s variables and equations
are organized accordingly, an almost block diagonal shape emerges. We
then exploit this shape to solve the system much faster than when ZHFE
was first proposed. The paper presents the theoretical details explaining
the structure of the matrix. We also present experimental data that con-
firms the notable improvement of the key generation complexity, which
makes ZHFE more suitable for practical implementations.
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1 Introduction

The eventual construction of large quantum computers has triggered the creation
and development of research in Post-Quantum Cryptography (PQC) [1]. PQC
is the branch of cryptography that is dedicated to the study of cryptosystems
that have the potential to resist quantum computer attacks. If such comput-
ers were built, Shor’s algorithm could be used to factorize integers and solve
the Discrete Logarithm Problem (DLP) in polynomial time [14]. This scenario
would annihilate most of our current security protocols, causing a worldwide
catastrophe.

Multivariate Public Key Cryptography (MPKC) [4] is an appealing Post-
Quantum alternative. The public key in an MPKC is usually a set of multivariate
quadratic polynomials over a finite field. A direct attack is to solve a system of
multivariate quadratic equations. Solving a random such system is an NP-hard
problem [8], and at the moment there is no known quantum algorithm that can
solve this problem efficiently. On the other hand, the computations on MPKC’s
are usually very efficient.
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Although efficient and secure MPK signature schemes do exist (cf. [5]), no
MPK encryption scheme has prevailed. One of the most researched alternative
for PKC encryption is the HFE cryptosystem, proposed in 1996 by Patarin
[10]. The idea behind HFE is to hide a core low degree polynomial over a large
field by means of two invertible affine transformations over a small field. The
composition of these maps, via a vector space isomorphism, yields the public
key polynomials. The restriction on the core polynomial degree is necessary to
make decryption possible. However, this restriction introduces a weakness in
HFE exploited by Faugère and Joux [7] to break HFE over the binary field
through a direct algebraic attack. The case of odd characteristic remained open
until Faugère et al. [2] improved the Kipnis-Shamir attack [9] and broke some
related HFE schemes.

Porras et al. [13] recently proposed an alternative to avoid both the direct
algebraic attack [6] and the Kipnis-Shamir attack [2]. They proposed a reduction
method to construct and invert pairs of q-Hamming-weight-two polynomials of
high degree and high rank. Using these polynomials they introduced a new family
of multivariate trapdoor functions. The trapdoor information includes a low
degree polynomial Ψ of q-Hamming weight three, used to invert the multivariate
trapdoor function consisting of two polynomials F and F̃ of q-Hamming weight
two. The polynomial Ψ is a linear combination of Frobenius powers of F and F̃
lifted to q-Hamming weight three by multiplying by X and Xq. Ψ can be found
by solving a large sparse linear system of equations resulting from vanishing the
high degree terms.

Based on the new trapdoor function, they proposed an HFE-type encryption
scheme named ZHFE [12]. They presented theoretical and practical evidence
that supports their claim that ZHFE resists the main attacks against this kind
of schemes, namely, the direct algebraic attack [6] and the Kipnis-Shamir attack
[2]. They also showed that encryption and decryption speed are comparable with
their counterparts in the HFE challenge 1 [10]. The main drawback of ZHFE is
that the vanishing equation system is very large. Solving it directly requires a
lot of time and memory. This situation represents an obstacle to consider ZHFE
for practical security protocols.

Our Contribution

In this paper we propose a new method for generating the ZHFE private key
efficiently. The main idea of this method is to conveniently sort the variables and
equations of the vanishing equation system coming from the reduction method
introduced in [12,13], in order to unveil its hidden structure. With this suitable
order, the matrix associated with this system presents a shape close to a block
diagonal matrix, as shown in Fig. 1.

The math required to expose the matrices’ hidden structure is important
in its own right. We carefully explain the combinatorial structure of Frobenius
powers of q-Hamming-weight-two univariate polynomials. We explain how they
match and mismatch when raised to q-Hamming weight three through multipli-
cation by q-Hamming-weight-one monomials.
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Fig. 1. Hidden structure of the matrix associated with the system S.

Understanding the vanishing equation system leads in the first place to a
direct and fast algorithm to construct its matrix. Moreover, we propose an algo-
rithm to solve the vanishing equation system very efficiently. More precisely, the
algorithm finds an element in the null space of an almost block diagonal matrix
over a finite field. We improved the asymptotic complexity from O(n3ω) in a
naive approach to O(n2ω+1), where n is the number of variables of the public
ZHFE polynomials and 2 ≤ ω ≤ 3 is a constant that depends on the specific
Gaussian elimination algorithm used. Moreover, for practical parameters, our
experiments show that the proposed key generation algorithm is much faster
than the one proposed in [12,13]. We reduced key generation time from a couple
of days to only a few minutes.

Another important contribution of this paper is that the new method for
solving the vanishing equation system does not require as much memory as the
method used in [12,13]. This is because we do not need to work with the com-
plete matrix of Theorem 2, but instead we now work with each block separately.
Moreover, once a block is used, it can be deleted, thus in total we are significantly
reducing the memory usage.

All these improvements turn ZHFE into an interesting alternative as a Post-
Quantum public key encryption scheme.

The paper is organized as follows. In Sect. 2, we review the main features of
the ZHFE encryption scheme. In Sect. 3, we present the new method for solving
the vanishing equation system, and in Sect. 4, we discuss the complexity of the
new method and present experimental data that confirms the efficiency of the
new algorithm. In Sect. 5 we discuss some remarks about security, and we finalize
giving some conclusions in Sect. 6.
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2 The ZHFE Encryption Scheme

The authors in [13] introduced a special reduction method to construct new can-
didates for multivariate trapdoor functions using q-Hamming-weight-two poly-
nomials of high degree and high rank. The idea of their construction is as follows.
Let n be a positive integer, F a finite field of size q, and g(y) ∈ F[y] a degree
n irreducible polynomial. Consider the field extension K = F[y]/ (g(y)) and the
vector space isomorphism ϕ : K → F

n defined by ϕ
(
u1 + u2y + . . . + unyn−1

)
=

(u1, u2, . . . , un). Take two HFE polynomials over K of the form

F (X) =
∑

aijX
qi+qj

+
∑

biX
qi

+ c, and

F̃ (X) =
∑

ãijX
qi+qj

+
∑

b̃iX
qi

+ c̃.

Denote by F0, F1, · · · , Fn−1 the Frobenius powers of F , and by F̃0, F̃1, · · · , F̃n−1

the Frobenius powers of F̃ . Let Ψ0 and Ψ1 be the q-Hamming-weight-three poly-
nomials defined by

Ψ0 = X
(
α1F0 + · · · + αnFn−1 + β1F̃0 + · · · + βnF̃n−1

)
, and

Ψ1 = Xq
(
αn+1F0 + · · · + α2nFn−1 + βn+1F̃0 + · · · + β2nF̃n−1

)
.

Fix a positive integer D such that every univariate polynomial equation
over K of degree less than D is solved efficiently using Berlekamp’s algorithm.
Choose the scalars αi, βi ∈ K uniformly at random. Then, determine coeffi-
cients aij , bi, c, ãij , b̃i, c̃ ∈ K, such that the q-Hamming-weight-three polynomial
Ψ = Ψ0 + Ψ1 has degree less than D. This leads to a sparse linear equation
system over the small field F with more variables than equations and thus with
nontrivial solutions. This vanishing equation system has about n3 variables, so
finding its solution via the Gaussian elimination process has complexity O(n3ω),
where 2 ≤ ω ≤ 3 is a constant that depends on the specific Gaussian elimination
algorithm used.

The multivariate trapdoor function is built in a similar way as the HFE
public key is constructed. Choose G = (F, F̃ ) as the core map, and then select
two invertible affine transformations S : F

n → F
n and T : F

2n → F
2n. The

multivariate trapdoor function is the map P : Fn → F
2n given by

P (x1, · · · , xn) =
(
T ◦ (ϕ × ϕ) ◦ G ◦ ϕ−1 ◦ S

)
(x1, · · · , xn).

Porras et al. used this multivariate trapdoor function to introduce a new
encryption scheme named ZHFE [12]. The ZHFE public key includes the field
F and its structure, and the trapdoor function P (x1, · · · , xn). The private key
includes the low degree polynomial Ψ , the two invertible affine transformations
S and T , and the scalars α1, · · · , α2n, β1, · · · , β2n. The inversion of the core
map G is accomplished by means of the low degree polynomial Ψ , the scalars
α1, · · · , α2n, β1, · · · , β2n, and Berlekamp’s algorithm.
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3 New Method

In this section we describe a new method to build the function Ψ necessary to
create the private key in ZHFE. First, we enumerate adequately the coefficients
of the polynomial F and F̃ in order to show the hidden structure of the matrix
associated with the vanishing equation system. Next, we propose a method to
solve efficiently the structured vanishing equation system.

3.1 Structure of the Matrix

The vanishing equation system arises from equating to zero the coefficients of
terms in Ψ = Ψ0 + Ψ1 of degree greater than or equal to D. We carefully explain
the combinatorial structure of the Frobenius powers of F and F̃ . We explain
how they match and mismatch when raised to q-Hamming-weight-three through
multiplication by q-Hamming-weight-one monomials.

We will consider the case when n is even. The case when n is odd is similar
and even easier. Our analysis focuses on the q-Hamming-weight-three terms of
Ψ , because q-Hamming-weight-two terms lead to and independent and much
simpler system. For k ∈ {0, . . . , n

2 } let Ak be the subset of Zn × Zn

Ak :=

{
{(i, (k + i) mod n)| 0 ≤ i < n} if 0 ≤ k < n

2 ,

[5pt]
{
(i, k + i)| 0 ≤ i < n

2

}
if k = n

2 .

Let A be the union of the A′
is. Each element (i, j) from A represents the

q-Hamming-weight-two term Xqi+qj

of an HFE polynomial. Note that each pos-
sible q-Hamming-weight-two term Xqi+qj

appears on a single Ai. Moreover, if
(i, j) ∈ A then (j, i) /∈ A.

Consider two HFE polynomials F and F̃ . We denote by Zh the coefficient of
Xqi+qj

in F or F̃ , where h ∈ Z
+ depends on (i, j) and on which polynomial the

term ZhXqi+qj

belongs to. We aim to sort these terms according to the partition
{Ak}n

2
k=0 of A. For (i, j) ∈ Ak, the coefficient of Xqi+qj

in F will be indexed
by 2nk + i so that they range from 2nk to 2nk + n − 1, and we will index the
coefficient of Xqi+qj

in F̃ by 2nk + n + i so that they range from 2nk + n to
2nk + 2n − 1.

Similarly, we index the coefficients of the q-Hamming-weight-one monomials
by setting Zn(n+1)+i and Zn(n+1)+n+i to be the coefficients of Xqi

in F and F̃ ,
respectively. With the terms indexed in this fashion, F and F̃ are as follows

F (X) =

n
2∑

k=0

⎛

⎝
∑

(i,j)∈Ak

Z2nk+iX
qi+qj

⎞

⎠ +
n−1∑

i=1

Zn(n+1)+iX
qi

+ C,

F̃ (X) =

n
2∑

k=0

⎛

⎝
∑

(i,j)∈Ak

Z2nk+n+iX
qi+qj

⎞

⎠ +
n−1∑

i=1

Zn(n+1)+n+iX
qi

+ C̃.
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For 0 ≤ k ≤ n
2 , we define the k−th part of F as

kF (X) :=
∑

(i,j)∈Ak

Z2nk+iX
qi+qj

.

For (i, j) ∈ Ak, the Frobenius powers of Xqi+qj

mod
(
Xqn − X

)
fall within a

set indexed by Ak, moreover, the k−th part of F q�

is equal to the k−th part
of F , raised to the power q�. In order to prove this, we introduce the following
definition.

Definition 1. For (i, j) ∈ Ak, and � ∈ Zn we define

i � � :=
{

i − � mod n if k �= n
2

i − � mod n
2 if k = n

2 .

Proposition 1. For 0 ≤ � ≤ n − 1, k

[
F (X)q�

]
= [kF (X)]q

�

.

Proof.

[kF (X)]q =

⎛

⎝
∑

(i,j)∈Ak

Z2nk+iX
qi+qj

⎞

⎠

q

mod (Xqn − X)

=

⎛

⎝
∑

(i,j)∈Ak

Zq
2nk+iX

qi+1+qj+1

⎞

⎠ mod (Xqn − X)

=
∑

(i,j)∈Ak

Zq
2nk+(i�1)X

qi+qj

.

So, by iterating this � times, we obtain

k

[
F (X)q�

]
=

∑

(i,j)∈Ak

Zq�

2nk+(i��)X
qi+qj

= [kF (X)]q
�

.

Using the notation for the �−th Frobenius power of F as F�, we have k[F�] =
[kF ]�. Since the Ak

′s are mutually disjoint, if 2 < q and (i, j) ∈ Ak, the only
term in F� that has the monomial Xqi+qj

is Zq�

2nk+(i��)X
qi+qj

. We thus get the
following result.

Corollary 1. If (i, j) ∈ Ak and s ∈ {0, 1}, then the coefficient of Xqs+qi+qj

in
Ψs is

n−1∑

�=0

αns+�+1Z
q�

2nk+(i��) +
n−1∑

�=0

βns+�+1Z
q�

2nk+n+(i��).

This corollary determines the coefficients of the q-Hamming-weight-three
monomials in Ψ0 and Ψ1. Since Ψ = Ψ0 + Ψ1, in order to determine the coef-
ficients of the q-Hamming-weight-three monomials of Ψ , we only need to find
the q-Hamming-weight-three monomials that Ψ0 and Ψ1 share. The following
lemma gives the conditions under which this holds
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Lemma 1. Assume 2 < q, (i, j) ∈ Ak and (s, t) ∈ A.

1. For 0 ≤ k < n
2 , q0 + qi + qj = q1 + qs + qt if and only if

(a) i = 1, s = 0 and j = t, or
(b) j = 1, t = 0 and i = s.

2. For k = n
2 , q0 + qi + qj = q1 + qs + qt if and only if i = 1, s = j = n

2 + 1 and
t = 0.

Proof. Throughout this proof we will use the uniqueness of the q-ary expansion
of integers. Suppose q0+qi+qj = q1+qs+qt. If i = j, then q0+2qi = q1+qs+qt,
but this is absurd since q > 2 and q1 does not appear in the q-ary expansion
of q0 + 2qi. Now, if i �= j, the uniqueness of the q-ary expansion of q0 + qi + qj

shows us that one of the following cases must hold:

1. i = 1, s = 0 and j = t
2. j = 1, t = 0 and i = s
3. i = 1, t = 0 and j = s
4. j = 1, s = 0 and i = t.

Suppose 0 ≤ k < n
2 . We now show that cases 3 and 4 are not possible.

Suppose i = 1, t = 0 and j = s, then (s, 0) ∈ A and therefore s > n
2 , but j = s,

then (1, j) ∈ Ak with 0 ≤ k < n
2 and j > n

2 , but this is a contradiction since in
this case n

2 > k = j − 1 > n
2 − 1, so case 3 is not possible. Now, if case 4 holds,

i.e., if j = 1, s = 0 and i = t, proceeding as before we see that (0, t) ∈ A and so
t ≤ n

2 , but then (i, 1) ∈ Ak with 0 ≤ k ≤ n
2 and i = t ≤ n

2 , which is absurd since
(1, i) ∈ Ak (note this also shows that case 4 is not possible when k = n

2 ). It is
straightforward to see that cases 1 and 2 are actually achievable.

Now suppose k = n
2 . We claim that only case 3 is possible. Indeed, case 4 is

not possible as we pointed out in the previous paragraph. Suppose case 1 holds,
then i = 1, s = 0 and j = t and therefore (1, j) ∈ An

2
, then j = n

2 + 1 = t so(
0, n

2 + 1
) ∈ A, which is absurd since

(
n
2 + 1, 0

) ∈ An
2 −1 ⊆ A. If case 2 holds,

i.e., j = 1, t = 0 and i = s, we would then have (i, 1) ∈ An
2
, but this is absurd

since there is no element of this form in An
2
. Finally, the only possibility left is

case 3, which is only achievable by taking i = 1, s = j = n
2 + 1 and t = 0.

We can now precisely describe the coefficients of the q-Hamming-weight-three
monomials in Ψ .

Proposition 2. If 2 < q and (i, j) ∈ Ak, then the coefficient of Xq0+qi+qj

in Ψ
is one of the following:

(i)
1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k+p)+((i−p)��) + βpn+�+1Z
q�

2n(k+p)+n+((i−p)��)

)
]

(ii)
1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k−p)+((n
2 p+1)��) + βpn+�+1Z

q�

2n(k−p)+n+((n
2 p+1)��)

)
]
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(iii)
1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k−p)+(i��) + βpn+�+1Z
q�

2n(k−p)+n+(i��)

)
]

(iv)
n−1∑

�=0

α�+1Z
q�

2nk+(i��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(i��)

Moreover, (i) holds if i = 1 and k �= n
2 , (ii) holds if i = 1 and k = n

2 , (iii) holds
if j = 1 and (iv) holds otherwise.

Proof. Let (i, j) ∈ Ak. Suppose at first that i = 1 and k �= n
2 . Note that in this

case (0, j) ∈ Ak+1. By Corollary 1, the coefficient of Xq0+q1+qj

in Ψ0 is

n−1∑

�=0

α�+1Z
q�

2nk+(1��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(1��).

By Lemma 1, the only monomial in Ψ1 equal to Xq0+q1+qj

is Xq1+q0+qj

,
whose coefficient by Corollary 1 is

n−1∑

�=0

αn+�+1Z
q�

2n(k+1)+(0��) +
n−1∑

�=0

βn+�+1Z
q�

2n(k+1)+n+(0��).

Since Ψ = Ψ0 + Ψ1, the coefficient of Xq0+q1+qj

in Ψ is

n−1∑

�=0

α�+1Z
q�

2nk+(1��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(1��)

+
n−1∑

�=0

αn+�+1Z
q�

2n(k+1)+(0��) +
n−1∑

�=0

βn+�+1Z
q�

2n(k+1)+n+(0��),

i.e.,

1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k+p)+((1−p)��) + βpn+�+1Z
q�

2n(k+p)+n+((1−p)��)

)
]

.

Now suppose i = 1 and k = n
2 , i.e. i = 1 and (i, j) ∈ Ak. Clearly j = n

2 + 1.

By Corollary 1, the coefficient of Xq0+q1+q
n
2 +1

in Ψ0 is

n−1∑

�=0

α�+1Z
q�

2nk+(1��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(1��).

By Lemma 1, the only monomial in Ψ1 equal to Xq0+q1+q
n
2 +1

is Xq1+q
n
2 +1+q0

,
and by Corollary 1, its coefficient is
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n−1∑

�=0

αn+�+1Z
q�

2n(k−1)+((n
2 +1)��) +

n−1∑

�=0

βn+�+1Z
q�

2n(k−1)+n+((n
2 +1)��).

Then, the coefficient of Xq1+q
n
2 +1+q0

in Ψ is

n−1∑

�=0

α�+1Z
q�

2nk+(1��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(1��)

+
n−1∑

�=0

αn+�+1Z
q�

2n(k−1)+((n
2 +1)��) +

n−1∑

�=0

βn+�+1Z
q�

2n(k−1)+n+((n
2 +1)��),

i.e.,

1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k−p)+((n
2 p+1)��) + βpn+�+1Z

q�

2n(k−p)+n+((n
2 p+1)��)

)
]

.

The other cases are obtained in a similar fashion.

Recall that the polynomial Ψ is constructed so that its degree is smaller than
an adequate parameter D. Therefore, we get a system S of vanishing equations,
where the variables are the coefficients of the polynomials F and F̃ , and each
equation corresponds to the coefficient of every term in Ψ of degree higher than D

equated to zero. From now on, we refer to the variables of the form Zq�

2nk+pn+(i��),
with p ∈ {0, 1}, as the variables associated with the group Ak; and to the
coefficient of Xqs+qi+qj

in Ψ equated to zero as the (s, i, j) equation. The matrix
associated with this system has a very distinct structure as stated in the following
theorem.

Theorem 1. Let n, q, and D be positive integers such that 2 < q, 1 < r =
	logq D
 < n

2 , and q + 2qr−1 < D ≤ qr. Then, we can reorganize adequately the
rows of the matrix associated with S so that it has the form shown in Fig. 1, and
for 0 ≤ k ≤ n

2 , the size of the submatrix Mk is a × b, with

a =

⎧
⎨

⎩

2(n − r + k) if k < r
2n if r ≤ i < n

2
n if k = n

2

and b =
{

2n2 if k �= n
2

n2 if k = n
2

.

Proof. Note first that the condition q+2qr−1 < D ≤ qr guarantees that for each
(i, j) ∈ A, D ≤ q + qi + qj if and only if D ≤ q0 + qi + qj , and they are both
true only if i ≥ r or j ≥ r. So given 0 ≤ k ≤ n

2 , the number of (s, i, j) equations
such that D ≤ qs + qi + qj , where s ∈ {0, 1} and (i, j) ∈ Ak, is equal to twice
the number of elements (i, j) ∈ Ak such that i ≥ r or j ≥ r, i.e.

⎧
⎨

⎩

2(n − r + k) if k < r
2n if r ≤ k < n

2
2n
2 if k = n

2 .
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For 0 < k ≤ n
2 , we have (0, k) ∈ Ak and (1, k) ∈ Ak−1, so by Proposition 2

the (0, 1, k) equation only contains variables associated with the groups Ak−1

and Ak. On the other hand, for 0 ≤ k < n
2 −1 and (i, 0) ∈ Ak, (i, 1) ∈ Ak+1 and

by the Proposition 2 the (0, i, 1) equation only contains variables associated with
Ak and Ak+1. Furthermore, note that (n

2 + 1, 0) ∈ An
2 −1 and (1, n

2 + 1) ∈ An
2
,

so the (0, 1, n
2 + 1) equation contain only variables associated with An

1 −1 and
An

2 −1.
According to Lemma 1 and Corollary 1, if (i, j) ∈ Ak and i, j /∈ {0, 1}, then

the (0, i, j), (1, i, j) equations only contain variables associated with Ak. Then,
for each k the elements of the form (0, j), (1, j + 1), (i, 0) and (i + 1, 0) are
the only ones that have elements associated with a group different to Ak. So,
given 0 < k < n

2 , the number of equations in S that contain variables associated
with Ak and Ak+1 is equal to the number of elements (i, j) ∈ Ak such that
i = 1 and j ≥ r; or j = 0 and i ≥ r. Similarly, the number of equations in S
that contain variables associated with Ak and Ak−1 is equal to the number of
elements (i, j) ∈ Ak such that i = 0 and j ≥ r; or j = 1 and i ≥ r. Finally,
the number of equations in S that only contain variables associated with Ak is
equal to the number of elements (i, j) ∈ Ak, such that i, j /∈ {0, 1}.

Clearly, for each (i, i) ∈ A0 with i ≥ r, the (0, i, i) and (1, i, i) equations
appear in the system S and only have variables associated with A0. So, for any
equation of the system S there are two possibilities, either it does not contain
variables associated with A0 or it only contains variables associated with A0.

Suppose 1 < k ≤ r − 2. Even though by Proposition 2 the (1, 0, k) equation
contains variables associated with Ak−1 and Ak, that equation does not appear in
the system because k ≤ r. Analogously, we conclude that the (0, 1, k+1) equation
does not appear in the system. On the other hand, (n−k, 0), (n−k+1, 1) ∈ Ak,
and since 1 < k ≤ r−2 and r < n

2 , then r < n−k < n−1 and so the (1, n−k, 0)
equation appears in the system; and by Proposition 2 it has variables associated
with Ak and Ak+1. Also, since r < n − k + 1 ≤ n − 1, the (0, n − k + 1, 1)
equation appears in the system and contains variables associated with Ak−1 and
Ak. Consequently, for 1 < k ≤ r − 2 the system S only has one equation that
contains variables associated with Ak and Ak−1, and S only has one equation
that contains variables associated with Ak and Ak+1. For every other equation
in S, either it only contains variables associated with Ak or it does not contain
variables associated with Ak at all.

Now, if k = r − 1, then (0, r − 1), (1, r) ∈ Ar−1. The (1, 0, r − 1) equation
has variables associated with Ar−1 and Ar−2, but it does not appear in the
system. Clearly, the (0, 1, r) equation is the only one in S that contains variables
associated with Ar−1 and Ar. If in particular 2 < r < n

2 , then r < n
2 + 1 <

n − (r − 1) < n − 1. Thus, r < n − (r − 1) + 1 ≤ n − 1 and finally we have that

(n − (r − 1), 0) = (0 + (n − (r − 1)), (r − 1) + (n − (r − 1)) mod n) , and

(n − (r − 1) + 1, 1) = (0 + (n − (r − 1)) + 1, (r − 1) + (n − (r − 1) + 1) mod n) .

Therefore, (n − (r − 1), 0), (n − (r − 1) + 1, 1) ∈ Ar−1 and, by Proposition 2,
the (1, n − (r − 1), 0) equation appears in the system and contains variables
associated with Ar and Ar−1. Likewise, the (0, n − (r − 1) + 1, 1) equation
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appears in the system and has variables associated with Ar−1 and Ar−2. Notice
that, if r = 2, then Ar−1 = A1, and (0, 1) is the unique element of the form
(i, 1) in A1. Consequently, and since 0, 1 < r, no equation contains variables
associated with Ar−1 and Ar−2 in the system; in contrast, if r > 2, there is
only one equation in S that contains variables associated with Ar−1 and Ar−2,
namely, the (0, n − (r − 1) + 1, 1) equation.

If r ≤ k < n
2 , then n

2 ≤ n − k < n − k + 1 ≤ n − 1. By similar reasons as
above, the (1, 0, k) and (0, n − k + 1, 1) equations are the only ones in S that
have variables associated with Ak and Ak−1. Furthermore, the (0, 1, k + 1) and
(1, n− k, 0) equations are the only ones in S that have variables associated with
Ak and Ak−1. All equations of the form (s, i, j) with (i, j) ∈ Ak are in S, and
they only contain variables associated with Ak.

For k = n
2 , the (1, 0, n

2 ) and (0, 1, n
2 + 1) equations are the only ones that

contain variables associated with An
2 −1 and An

2
. Moreover, the (s, i, j) equations

with s ∈ {0, 1} and (i, j) ∈ An
2

are the only ones in S that contain variables
associated with An

2
.

Therefore, we can reorganize the rows of the matrix associated with the
vanishing equation system S so that it has the desired structure.

Remark 1. The conditions 1 < r < n
2 and q + 2qr−1 < D ≤ qr in Theorem 1 are

merely technical. If we omit these conditions, the matrix is still quite structured
but it is a bit harder to describe. Moreover, these conditions do not restrict much
the values D can take. For example, if we choose the parameters suggested in
[12] for a practical implementation of ZHFE, q = 7 and n = 56, then r could be
in the interval [1, 28] and the possible values for D are as shown in Table 1.

Table 1. Possible values of D for q = 7 and n = 56.

r Without the restriction With the restriction

2 7 < D ≤ 49 21 < D ≤ 49

3 49 < D ≤ 343 105 < D ≤ 343

4 343 < D ≤ 2401 693 < D ≤ 2401

3.2 The Matrix over the Small Field

Recall that we aim at determining the coefficients Zk such that the polynomial
Ψ has degree less than D. Initially, each coefficient Zk is seen as a variable. In
that way, every term of the form αns+�+1Z

q�

k in Ψ can be seen as an F-linear
transformation from K to K. Since the big field K is a vector space over the
small field F, any F-linear transformation K → K can be seen as an F-linear
transformation F

n → F
n. Let Ans+� be the matrix over F that represents the

F-linear transformation Z �→ αns+�+1Z
q�

with respect to the canonical basis.
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Let (i, j) be an element in Ak for some k �= n
2 . We know that the coefficient

of Xqs+qi+qj

in Ψs is

n−1∑

�=0

αns+�+1Z
q�

2nk+(i��) +
n−1∑

�=0

βns+�+1Z
q�

2nk+n+(i��). (1)

We can see the expression in (1) as an F-linear transformation T k
s,i : K2n → K,

such that its (ns+i)-th variable is Z2nk+ns+i, where s ∈ {0, 1} and i = 0, . . . n−1.
In that way, the matrix that represents T k

s,i is [A|B] with

A =
[
Ans+i Ans+i−1 · · · Ans Ans+n−1 · · · Ans+(i+1)

]
,

B =
[
Bns+i Bns+i−1 · · · Bns Bns+n−1 · · · Bns+(i+1)

]
,

where Ans+� and Bns+� are the matrices that represent the F-linear transforma-
tions αns+�+1Z

q�

and βns+�+1Z
q�

, respectively. Furthermore, the matrix that
represents the F-linear transformation Tk from K

2n to K
2n, defined by

Tk = (T k
0,0, · · · , T k

0,n−1, T
k
1,0, · · · T k

1,n−1),

is as shown in Fig. 2.

Fig. 2. Matrix representation of Tk : K2n → K
2n.

Similarly, for (i, j) ∈ An
2
, we can define the F-linear transformation T

n
2

s,i from

K
n to K, so that the matrix that represents T

n
2

s,i is [A|B] with

A =
[

Ans+i + Ans+ n
2 +i · · · Ans + Ans+ n

2
Ans+n−1 + Ans+ n

2 −1 · · · Ans+(i+1) + Ans+ n
2 +(i+1)

]
,

B =
[

Bns+i + Bns+ n
2 +i · · · Bns + Bns+ n

2
Bns+n−1 + Bns+ n

2 −1 · · · Bns+(i+1) + Bns+ n
2 +(i+1)

]
.
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The matrix that represents the F-linear transformation

Tn
2

= (T
n
2
0,1, . . . , T

n
2
0, n

2 −1, T
n
2
1,0, . . . , T

n
2
1, n

2 −1)

is presented in Fig. 3.

Fig. 3. Matrix representation of Tn
2

: Kn → K
n.

Recall that the homogeneous system S contains all (s, i, j) equations such
that qs + qi + qj ≥ D, where s ∈ {0, 1} and (i, j) ∈ A. Theorem 1 explains
the hidden structure of the matrix associated with S. We now consider S with
the order given in Theorem 1, so that the i−th equation in S can be seen as
Li(Z0, . . . , ZN ) = 0, where Li is an F-linear transformation from K

N to K and
N is two times the number of variables of the polynomial F . In that way, S can
be seen as L(Z1, . . . , ZN ) = 0, where L = (L1, . . . , Lt) and t is the number of
equations in the system S.

Theorem 2. Let n, q, and D be positive integers such that q > 2, 1 < r =
	logq D
 < n

2 and q+2qr−1 < D ≤ qr−1. Then, the matrix M̃ that represents the
F-linear transformation L is formed by n

2 +1 submatrices M̃0, . . . , M̃n
2

arranged
in the same way as in the matrix in Fig. 1. For 0 ≤ i ≤ n

2 , the size of the
submatrix M̃i is a × b, where
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a =

⎧
⎪⎨

⎪⎩

2n(n − r − i) if i < r

2n2 if r ≤ i < n
2

n2 if i = n
2

, b =

{
2n2 if i �= r

n2 if i = n
2 .

Remark 2. The blocks M̃i and M̃i+1 overlap in a block of pn rows if and only if
the blocks Mi and Mi+1 overlap in p rows.

Remark 3. The submatrices M̃0, . . . , M̃n
2

are small modifications of the matrix
in Fig. 2. More precisely, for r ≤ k < n

2 , M̃k can be obtained simply by permuting
the rows of the matrix in Fig. 2, placing in the upper part the rows that come
from equations in S with variables associated with both Ak and Ak−1. Also, for
0 ≤ k ≤ r−1, M̃k can be obtained by removing the blocks of rows that represent
expressions with (i, j) ∈ Ak, i < r and j < r, and adequately permuting rows as
above.

Note that Theorem 2, together with the description of the submatrices above,
provide a direct and fast algorithm to construct the matrix M̃ . Given αi’s and
βi’s we construct Ans+� and Bns+� as the matrices that represent the F-linear
transformations Z �→ αns+�+1Z

q�

and Z �→ βns+�+1Z
q�

, respectively. Then, we
assemble the matrices in Figs. 2 and 3 for all k’s, and sort their rows according
to Remark 3. Finally, we put them together as described in Theorem 2. However,
as we will see in the next subsection, we never really have to construct the whole
matrix M̃ . Since we just aim at finding a non-trivial element in its null space,
we can exploit its structure to do so more efficiently.

3.3 An Algorithm to Solve the System

In this section, we will first describe an algorithm for finding random elements in
the null space of the matrix M̃ . The algorithm is based on the hidden structure
of the matrix unveiled in Theorem2. Then, we will discuss the probability that
this algorithm terminates.

As seen in Sect. 3.2, the matrix M̃ is almost block diagonal, with blocks
M̃1, . . . , M̃n

2
overlapping in a few rows. In order to illustrate the method, suppose

we have only two blocks M̃1, M̃2. We first split each block in two blocks Ui and
Li so that the matrix has the form

M̃ =

⎡

⎣
U1 0
L1 U2

0 L2

⎤

⎦ .

Next we find an element y2 in the null space of L2. Then, we compute r = U2y2.

Then we find an element y1 such that
[
U1

L1

]
y1 =

[
0

−r

]
. It is easy to see that

M̃

[
y1

y2

]
= 0. This process can be iterated through the whole matrix regardless

of the number of blocks.
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To formally describe the algorithm, we introduce the following notation. For
r ≤ i ≤ n

2 , let Li be the matrix that results from removing the first 2n rows from
M̃i, and let Li be the matrix that results from removing the first n rows from

M̃i, for 2 ≤ i < r. For each 2 ≤ i ≤ n
2 , Ui is the matrix such that M̃i =

[
Ui

Li

]

(for i = 1, we define U1 = M̃1). The expression y $←− W denotes that y is an
element chosen uniformly at random from the set W . Algorithm 1 describes an
algorithm to find a solution of the equation M̃y = 0.

Algorithm 1. Finds an element in the null space of M̃

Input: M̃0, M̃1, . . . , M̃n
2
, blocks of M̃ as described in Theorem 2

1: W :=
{
z | Ln

2
z = 0

}

2: for i = n
2
, . . . , 1 do

3: yi
$←− W

4: ri := Uiyi

5: W :=

{
z | Liz =

[
0

−ri

]}

6: if W = ∅ then
7: stop algorithm

8: W :=
{
z | M̃0z = 0

}

9: y0
$←− W

10: return y = [y0,y1, . . . ,yn
2
]T

It is easy to see that if this algorithm terminates, the output y is an element
in the null space of M̃ . Moreover, the converse is also true.

Proposition 3. If x is a vector in the null space of the matrix M̃ , then x can
be the output of Algorithm1.

Proof. Let x be an element in the null space of M̃ , say x = [x1, x2, . . . , xt]T ,
with t = n2(n + 1). For 0 < i ≤ n

2 , we define xi = [xti−1+1, xti−1+2, . . . , xti
]T ,

where ti := 2in2, for 0 < i < n
2 , t0 := 0 and tn

2
:= t. Since x is an element in

the null space of M̃ and M̃i =
[
Ui

Li

]
, then

Ln
2
xn

2
= 0.

Let us define the vector rn
2

as

rn
2

= Un
2
xn

2
.

Since x is a element in the null space of M̃ , we must have that

Ln
2 −1xn

2 −1 =
[

0
−rn

2

]
.
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So, xn
2 −1 belongs to the solution set of the equation

Ln
2 −1z =

[
0

−rn
2
.

]

In general, for 0 ≤ i < n
2 , xi−1 belongs to the solution set of the equation

Liz =
[

0
−ri+1,

]

where ri = Uixi.

This proposition shows that every element of the null space of M̃ can be
output by Algorithm1. Moreover, the element in the null space is still chosen
with uniform distribution. This is because Algorithm1 obtains each element x
by finding its projections xi, and this is performed uniformly.

Algorithm 1 does not always terminate. In case it fails, we would have to run
it again. However, we claim that the probability of failure is very small. Note that
the termination of the Algorithm1 depends on W not being empty for each i =
n
2 , . . . , 1. So, a sufficient condition to guarantee that the Algorithm1 terminates
is that each matrix Li be of full rank. Therefore, for a uniformly random instance
of ZHFE, the probability that the Algorithm1 terminates is greater than the
probability that for each i the rank of Li is equal to its number of rows. In
order to give an estimate for this probability, we ran extensive experiments for
different values of n and computed the rank of Li for i = r, . . . , n

2 (see Table 2).
For every single instance and for each i = r, . . . , n

2 , the matrix Li was full rank.

Table 2. Computation of the rank of the Li’s with q = 7 and D = 106. For every
generated instance, the matrices are full rank.

n Number of instances

8 80000000

16 4000000

32 100000

56 5000

4 Complexity of the New Method

The new method introduced in this paper to solve the vanishing equation sys-
tem finds an element in the null space of an almost-block diagonal matrix with
n
2 + 1 blocks, as depicted in Fig. 1. The size of each block is at most 2n2 × 2n2,
so reducing each block to its echelon form has complexity O ((

n2
)ω), where the

parameter 2 ≤ ω ≤ 3 is a constant that depends on the specific Gaussian elimi-
nation algorithm used (e.g., ω = 3 for a classical Gaussian elimination algorithm
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and ω < 2.376 for an asymptotically improved algorithm). Therefore, the com-
plexity of the new method is O (

n
(
n2

)ω) = O (
n2ω+1

)
. This improves the naive

approach used in [12], which costs O ((
n3

)ω) = O (
n3ω

)
, if a dense Gaussian

elimination algorithm is used. Since the matrix of the vanishing equation system
is sparse, even the old method could take advantage of its sparsity. Although
the complexity of sparse algorithms is harder to compare with, our experiments
confirm a significant improvement against sparse methods too.

We performed experiments in order to compare the new method with the
one used in [12] for solving the vanishing equation system. We built different
ZHFE private keys using both methods. In Table 3 we present these results for
different sets of parameters. All the experiments were performed using Magma
v2.21-1 [3] on a server with a processor Intel(R) Xeon(R) CPU E5-2609 0 @
2.40GHz, running Linux CentOS release 6.6. It is important to notice that the
experiments for the old method where performed on Magma using the Nullspace
command. Magma’s Nullspace implementation exploits the matrix sparsity using
the Markowitz Pivot Strategy. Hence, in practice, we are comparing our new
method with an sparse matrix solving algorithm.

Table 3. Private key generation: comparison between the new and old methods.

Method New method Old method

q D n CPU time [s] Memory [MB] n CPU time [s] Memory [MB]

7 106 8 0.07 ≤32 8 0.43 ≤32

7 106 16 1.46 ≤32 16 25.41 131

7 106 32 67.29 64 32 2285.44 3452

7 106 56 1111.26 235 55a 216076.27 53619

17 106 8 0.08 ≤32 8 0.45 ≤32

17 106 16 2.02 68 16 26.63 160

17 106 32 122.86 93 32 2095.94 3785

17 595 56 2712.63 353 55a 226384.28 59658
aExperiments run on a different machine: Magma V2.20-2 on a Sun X4440 server,
with four Quad-Core AMD OpteronTM Processor 8356 CPUs running at 2.3 GHz.

Note the significant reduction in the time needed to construct the keys for
ZHFE. It is also evident that, for the new method, the memory needed to build
the ZHFE keys is considerably less than the memory needed in [12].

5 Remarks About Security

Although a more rigorous study of the security of ZHFE is out of the scope of
this paper, this aspect is not affected by the proposed key generation improve-
ment. The matrix M̃ is simply a rearrangement of the sparse matrix used in the
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original approach to construct the ZHFE private key. Moreover, Proposition 3
guarantees that the new algorithm would not miss any solution of the system
and as remarked in Sect. 3, the solution is chosen under the same uniform distri-
bution. This matrix M̃ has about n2 free variables, so the size of its null space is
about qn2

. This number is huge for practical values of the parameters. Thus, in
principle, the unveiled structure of the matrix M̃ does not represent an obvious
threat to the security of ZHFE. Nevertheless, this aspect should be considered
more deeply and will be part of future research.

The security of ZHFE was studied in detail in [12], and we base the pertinence
of this paper on those arguments. Nevertheless, it recently came to our attention
new works exposing a rank weakness on the original ZHFE [11,15]. Perlner and
Smith-Tone prove that if we write Ψ(X) = X(L11F +L12F̃ )+Xq(L21F +L22F̃ ),
and the Lij maps have full rank, then the rank of ZHFE is no larger than⌈
logq D

⌉
+2 [11]. They also argue that if we select the Lij maps to have reasonable

corank c, then the Q-rank does not appear to be a weakness for ZHFE. They
further propose a “minus” modification of ZHFE, called ZHFE−, which adds a
projection to the original ZHFE, by removing r polynomials from the public key.
They recommend the following parameters for this new proposal:

ZHFE− : (q, n,D, r, c) = (7, 55, 105, 2, 6).

They claim that with these parameters the public key Q-rank is about 12, and
the degree of regularity is estimated to be 9, which implies a security level of at
least 80 bits.

We performed extensive experiments to see how our new key generation
method behaves for the parameters proposed in [11]. We found that for the
parameters (q, n,D, r, c) = (7, 55, 105, 2, 6), both the new and old methods pro-
duce only the trivial solution Ψ(X) = 0, even though the kernel is not triv-
ial. We also found that for those parameters, c must be chosen in {1, 2} for
a nontrivial Ψ(X) to exist. Using a different value for q, we realised that for
(q, n,D, r) = (3, 55, 105, 2), the corank c must be chosen in {1, 2, 3} for a non-
trivial Ψ(X) to exist. We also found that if we want to obtain a nontrivial Ψ(X)
for (q, n,D, r) = (3, 55, 170, 2), the corank c must be chosen in {1, 2, 3, 4}. Again,
in all these cases both the new and old methods work fine. In order to construct
a ZHFE key using Lij maps with corank c = 6, the parameter D must be
increased. We discovered for instance that the new and old methods work for
(q, n,D, r, c) = (3, 56, 1462, 2, 6). Table 4 shows the results of the experiments
run for some choices of the parameters.

According to our extensive experiments, we can say that our new algorithm
works flawlessly, when we use Lij maps with positive corank, including the case
c = 6. Moreover, we can say that for any fixed set of parameters, the origi-
nal method finds a nontrivial Ψ(X) if and only if the new algorithm finds a
nontrivial Ψ(X).
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Table 4. Computation of ZHFE keys for (q,D, c) = (3, 1462, 6), (q,D, c) = (3, 490, 5)
and (q,D, c) = (3, 170, 4). For every generated instance, the algorithm terminated
successfully

n Number of instances

16 400000

32 5000

56 400

6 Conclusions

We have proposed a novel way to solve the vanishing equation system necessary
to construct keys in ZHFE. By exposing its almost-block diagonal structure,
we unleashed a series of improvements in ZHFE key generation. We can now
construct the matrix associated with the system faster, and store it more effi-
ciently. Moreover, we can find solutions to the system asymptotically faster.
These improvements turn ZHFE from an only theoretical proposal, into a viable
Post-Quantum public key encryption scheme.

In order to achieve these, we had to understand the combinatorial structure of
Frobenius powers of q-Hamming-weight-two univariate polynomials. We expect
this understanding will serve as a tool to explore a bigger family of encryption
schemes, i.e., generalizations of ZHFE in which the polynomial Ψ is obtained
multiplying by more than two powers of the form Xqi

.
We also found that, in terms of success, our new algorithm works just as

good as the original method, when considering Lij maps with positive corank,
as proposed in [11].

We foresee further improvements in ZHFE derived from this work. Since the
vanishing equation system has several free variables, we can fix some variables
for all instances of the trapdoor function. Knowing the structure of the matrix
allows us to do so in a way that further speeds up key generation, and reduces
secret key size.

We must not discard the theoretical results of this paper as a useful tool to
get a better understanding of the security of ZHFE.
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