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Abstract. This paper introduces a new central trapdoor for multivari-
ate quadratic (MQ) public-key cryptosystems that allows for encryption,
in contrast to time-tested MQ primitives such as Unbalanced Oil and
Vinegar or Hidden Field Equations which only allow for signatures. Our
construction is a mixed-field scheme that exploits the commutativity of
the extension field to dramatically reduce the complexity of the exten-
sion field polynomial implicitly present in the public key. However, this
reduction can only be performed by the user who knows concise descrip-
tions of two simple polynomials, which constitute the private key. After
applying this transformation, the plaintext can be recovered by solving a
linear system. We use the minus and projection modifiers to inoculate our
scheme against known attacks. A straightforward C++ implementation
confirms the efficient operation of the public key algorithms.
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1 Introduction

Since the inception of public-key cryptography, cryptographers have made a
huge effort to find new and better computational problems that feature the
elusive trapdoor — a small piece of information that can turn an otherwise hard
to invert function into one that can easily be inverted. This on-going search
effort has lead to a tremendous diversification of the computational problems
that underpin public-key cryptography. This diversification is a good thing: by
keeping all the eggs in separate baskets, a breakthrough in one area is unlikely
to spill over to other areas, thus limiting the catastrophic potential of scientific
advances.

Of particular interest to this paper is the class of problems known as multi-
variate quadratic (MQ) systems of equations. Not only do cryptosystems based
on this primitive offer performance advantages over well-established ones such as
RSA or systems based on elliptic curves, MQ cryptography is also conjectured
to be post-quantum — that is to say, it holds promise of resisting attacks on
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quantum computers. From this point of view, MQ cryptography is certainly a
promising line of research.

The key challenge in the design of MQ cryptosystems is to find a suitable
central mapping F : Fn

q → F
m
q which should be easily invertible in addition to

being expressible in terms of multivariate quadratic polynomials. The trapdoor
information cannot be recovered efficiently from the public key as it is hidden by
two affine transformations. Many central mappings have been proposed, most of
which fall in two main categories [32]: single field schemes, such as UOV [17],
Rainbow [7] and the triangular variants [31], where the central polynomial system
is chosen to have a particular structure that enables efficient inversion; and mixed
field schemes, such as C* [19], HFE [22] and Multi-HFE [3], where arithmetic in
the base field is mixed with arithmetic in an extension field. However, despite
the abundance of proposals, MQ cryptography has an awful track record as most
of these proposals have been broken [2,14,18,28,29,32].

Consequently, much research in the area of MQ cryptography has been
devoted to patchwork — finding small modifications to existing systems that
render specific attacks infeasible. A few examples among many that fall into
this category are the minus modifier (“−”) [25], which inoculates HFE-type sys-
tems against Gröbner basis attacks and linearization attacks; vinegar variables
(“v”) [17], which combines elements from different trapdoors and like “minus”
is capable of making a Gröbner basis attack prohibitively expensive; and projec-
tion (“p”) [9] which appears to successfully thwart the Dubois et al. differential
attack [10,11] on SFLASH.

However, the search for modifications to fix broken systems has an equally
bad track record. Many of the MQ systems that were supposedly inoculated
against some attack by the introduction of a modification, were broken by minor
variants of that same attack. For example, both the multivariate generalization
and the odd field characteristic variant of HFE were introduced and designed
specifically to thwart the algebraic attack on HFE [14]; however, neither variant
has managed to withstand cryptanalysis [2]. Another example is given by the
fate of SFLASH, one of the three recommended signature schemes of the NESSIE
project [1]. The addition of the minus modifier to the basic C∗ construction did
not save the scheme from a new type of differential attack [10,11]. The rapid
spawn of attacks that break the inoculated systems seems to suggest the need
for a more prudent design strategy: searching for fundamentally different basic
principles for MQ trapdoors, rather than tinkering on the edges of existing ones.

Related work. Encryption schemes have been the bane of multivariate quadratic
cryptography. No MQ encryption scheme has withstood the test of time, while
several MQ signature schemes have. However, some very recent results and pro-
posals in this area pose new and interesting challenges for cryptanalysts.

Porras et al. proposed a new central trapdoor which they call ZHFE [24].
Up until this point, the extension field polynomial in HFE-based cryptosystem
required the number of nonzero coefficients to be small and its degree to be
relatively low, so as to allow efficient root calculation. The idea of Porras et al.
exchanges this single low-degree polynomial for a pair of high-degree polynomials
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that make up the central map. Additionally, these polynomials are chosen such
that there exists a third polynomial, Ψ(X ), which is a function of the first two
and yet has low degree. In order to invert a given image, it suffices to factorize
this third polynomial. As the degree of the polynomials increases, so does the
degree of regularity of the system. This increase in the degree of regularity, in
turn, renders a direct algebraic attack infeasible, even though the very same
attack broke the regular HFE cryptosystem.

Tao et al. proposed a multivariate quadratic encryption scheme called Simple
Matrix Encryption, or simply ABC Encryption [27]. Their construction is based
on a fundamentally new idea: embedding polynomial matrix arithmetic inside the
central trapdoor function. The trapdoor can be inverted with high probability
because the matrix, albeit evaluated in a single point, can be reconstructed from
the output. With high probability this matrix can be inverted, giving rise to a
system of linear equations which describe the input.

Our contributions. We introduce a new central trapdoor for multivariate
quadratic encryption schemes. Our proposal is a mixed-field scheme — similar
to the C∗ and HFE string of proposals because we use an embedding function
to pretend as though a vector of variables in the base field were actually a single
variable in the extension field. However, our proposal is notably different from its
predecessors, where the restriction on the degree of this embedded polynomial
was key both to their efficiency and to their demise; our proposal allows for a
high-degree embedded polynomial and undoes this complexity by exploiting the
commutative property of the extension field. Our proposal allows for encryption,
in stark contrast to most other members of the HFE family.

Like the ABC Encryption Scheme, decryption of a ciphertext consists of
essentially solving linear systems. This linear system is parameterized by the
particular ciphertext or message: every possible ciphertext or message implicitly
defines a unique linear system. Knowledge of the private key allows the user to
obtain the linear system efficiently, while the adversary who attacks the system
without this crucial information has no advantage to solve the quadratic system.

Like ZHFE, the central map consists of two high-degree extension field poly-
nomials that satisfy a special relation which is obviously hidden from the adver-
sary. The decryption algorithm exploits this relation to turn the otherwise hard
inversion problem into an easy one.

Another important similarity between our map and both ABC and ZHFE
is that all three are expanding maps, i.e., Fn

q → F
m
q where m = 2n. This com-

monality is no accident, because in order allow unique decryption, the map must
be injective. However, if m ≈ n, the differential of this nearly-bijective map is
readily differentiable from that of a random one — not a desirable property for
multivariate quadratic maps to have.

Despite these similarities, the main advantage of our scheme is that its con-
struction is notably different from ABC and ZHFE. Consequently, as-yet undis-
covered weaknesses or even attacks that affect ABC or ZHFE may leave our
scheme intact. Furthermore, this diversification opens the door for a combina-
tion of strategies whose end result reaps the benefits of both worlds. Certainly
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the case of HFEv proves that such a combination may indeed increase both
security and performance.

In line with a common theme throughout MQ cryptography, we are unable to
prove the security of our scheme or even to reduce it to a plausible computational
assumption. An exhaustive list of all known attacks on MQ systems and why
they fail against our system is beyond the scope of this paper. Nevertheless, we
identify several pertinent attacks that may be launched against a näıve imple-
mentation of our scheme, and we propose strategies to thwart them. Patarin’s
linearization attack [21] is foiled by the minus modifier and repeated applica-
tions of the same modifier make the extended MinRank attack [4,18] as well as
the direct algebraic attack [14] prohibitively inefficient. The scheme seems nat-
urally resistant to Dubois et al.’s differential attack [10,11], but we nevertheless
recommend to use the projection modifier, which is the proper countermeasure
against this attack.

Outline. We introduce notation and recall basic properties of MQ systems as
well as of extension field embeddings in Sect. 2. Next, Sect. 3 defines the trapdoor
proposed in this paper as well as several necessary modifiers. We recommend
parameters for 80 bits of security in the first part of Sect. 4 and afterwards
discuss the efficiency of our scheme, both from a theoretical point of view and by
referencing timing results from a software implementation. Section 5 concludes
the text.

2 Preliminaries

2.1 Notation and Definitions

We use small case letters (s) to denote scalars in the base field; extension field
elements are denoted by calligraphic capital letters (C); small case bold letters
(v) denote column vectors; and regular capital letters are used for matrices (M).

Let Fq denote the finite field with q elements, which we call the base field.
With any combination of a finite field Fq with a polynomial f(x) ∈ Fq[x] one can
associate a finite ring E = Fq[x]/〈f(x)〉 of residue classes after division by f(x).
If f is irreducible over Fq and has degree n, then E = Fqn is a finite field we call
the extension field. There exists a natural homomorphism ϕ : (Fq)n → Fqn that
maps a vector v = (v1, . . . , vn)T ∈ F

n
q onto an element V ∈ Fqn of the extension

field. We can apply this embedding function to the vector of indeterminates x
in order to get the extension field indeterminate X = ϕ(x).

2.2 Multivariate Quadratic Systems

The public key of an MQ cryptosystem is a system of quadratic polynomials
mapping n input variables to m output variables: P : F

n
q → F

m
q ; the public

operation consists of evaluating this system of polynomials in a point. The secret
key consists of a pair of invertible affine mappings on the input and output
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variables, S and T , and an alternate quadratic system of polynomials, F : Fn
q →

F
m
q , such that P = T ◦ F ◦ S. The affine transformations are trivially inverted;

the central system F is constructed in such a way that it is also easy to invert.
However, the attacker cannot efficiently recover F from P and calculate the
inverse as F is hidden by the affine transformations. A schematic overview is
given in Fig. 1.

S F T

P
public knowledge

private knowledge

encryption or signature verification

decryption or signature generation

Fig. 1. Schematic representation of multivariate quadratic cryptosystems.

Given a central trapdoor F it is easy to construct a multivariate quadratic
cryptosystem by composing it with two affine transformations. This process is
out of the scope of the present paper. Rather, we restrict our attention to the
construction of the central trapdoors.

3 Central Map

3.1 The Basic Construction

Let A ∈ F
n×n
q be a random matrix over the base field. Then Ax ∈ (Fq[x])n

represents a vector where each element is a linear polynomial in x. And then
α(x) = ϕ(Ax) is an extension field element. The square matrix that represents
multiplication by α(x) is denoted by αm(x) ∈ F

n×n
q . We use α(X ) to stress

the fact that α may also be considered as a univariate polynomial in X over
the extension field, regardless of its representation, although the degree of this
polynomial is larger than one.

Similarly, let β(x) = ϕ(Bx) for a random n × n matrix B ∈ F
n×n
q . With

these polynomials α and β, we define the central trapdoor as follows:

F : Fn
q → F

2n
q : x �→

(
αm(x)x
βm(x)x

)
. (1)

To see how we are able to invert F(x) =
(
d1

d2

)
, consider first the equality

α(x)β(x) = β(x)α(x) which holds due to the commutativity of the extension
field. We can proceed to construct a system of linear equations in x:

βm(x)d1 − αm(x)d2 = 0 . (2)
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While Gaussian elimination is in this case guaranteed to find a solution, this
solution need not be unique. Nevertheless, this set of solutions is expected to
be small, in accordance with the number of solutions to random linear systems.
Moreover, this set can be pruned by iteratively plugging the potential solution
into the function F and verifying that the correct output image (d1;d2) is pro-
duced.

3.2 Modifiers

The trapdoor as described above is insecure. In particular, it is broken by the
bilinear attack, the MinRank attack, as well as an algebraic attack using fast
Gröbner basis algorithms. We apply the “minus” to inoculate basic EFC against
these attacks. While not strictly necessary, “projection” may guard against new
differential attacks at very little cost whereas “Frobenius tail” drastically drops
the cost of decryption.

Minus. Although Patarin’s linearization attack [21] was originally conceived to
attack C∗, it also applies to unprotected EFC. Indeed, Eq. 2 describes a bilinear
polynomial in the plaintext and ciphertext, whose coefficients can be calculated
using linear algebra after obtaining enough plaintext-ciphertext pairs. Once these
coefficients are known, obtaining a plaintext that matches a given ciphertext is
easy. However, dropping just one polynomial from the public key is enough to
foil this attack. In this case, the attacker must guess the missing information for
every plaintext-ciphertext pair, making them useless for exact linear algebra.

This “minus” modifier, which consists of removing one or more polynomials
from the public key [23], is more than just a countermeasure against Patarin’s
attack. A pair of important results by Ding et al. [6,8] indicates that this mod-
ifier is much better thought of as a fundamental building block of multivariate
quadratic cryptosystems rather than a mere patch. Indeed, not only does the first
application of this modifier block Patarin’s linearization attack; every repeated
application increments by one the rank of the quadratic form associated with
the extension field polynomial, rendering the MinRank attack due to Kipnis and
Shamir [18] as well as its subsequent improvement by Courtois [4] that much
more infeasible. Furthermore, this rank increase in turn increases the degree of
regularity of the system, resulting in a similarly infeasible algebraic attack.

The use of this modifier does come at the cost of a performance penalty. In
particular, the decryption algorithm must first guess the values of the missing
polynomials before undoing the output transformation T . Under this guess, it
can proceed to the linear system in Eq. 2 and compute the potential matching
plaintext x. If indeed F(x) = (d1;d2), then the correct plaintext was found. If
not, then the guess was wrong and the algorithm must start all over again with
a new one.

Fortunately, as long as the number of dropped polynomials a is small enough,
the correct plaintext will still be found with overwhelming probability. In order
for the decryption algorithm to produce the wrong plaintext x upon decrypting
the ciphertext y, there must exist at least two guesses g1 ∈ F

a
q and g2 ∈ F

a
q such
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that both (y;g1) and (y;g2) are in the range of P. If P is to be modeled as a
random function F

n
q → F

2n−a
q , then its range is a uniform subset of F2n−a

q of size
qn, and then the probability of this event is approximately qn×q−2n+a = q−n+a.
Consequently, as long as a 	 n, the probability of decryption error remains
astronomically small.

Figure 2 offers empirical validation of this argument. It shows the probability
of decryption error for various even values for a as a function of n. Only when a
and n are on the same order of magnitude, is this probability noticeable; when
n rises to practical values, this probability does indeed drop to zero.
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Fig. 2. Observed decryption error rate.

In similar fashion to C∗− and HFE−, this modifier will be denoted by the
superscript “−”, i.e., EFC−. The number of dropped polynomials will be denoted
by a.

Projection. The differential symmetry attacks by Dubois et al. [10,11] on
SFLASH, a C∗ variant, show that the minus operator is not enough to secure it.
Dubois et al. identify a symmetry in the differential of the C∗ map F :

DF(Lx,y) + DF(x, Ly) = ΛF(x,y)

for some matrices L and Λ. The presence of this symmetry proved fatal.
Fortunately, Ding et al. [9] show experimentally that a small tweak by the

name of “projection” completely foils this line of attack. In particular, pSFLASH
projects the input vector x onto a lower-dimensional space before passing it
through the central map. Smith-Tone [26] has since offered a theoretical basis
for the efficacy of this modifier. At the core of Smith-Tone’s argument is the
following theorem:

Theorem 1 (Smith-Tone, [26]). A polynomial f : Fqn → Fqn with a bilinear
differential has the multiplicative symmetry if and only if it has one quadratic
monomial summand.
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While the components of EFC do have bilinear differentials, they do not
consist of a single quadratic monomial but of a sum of them. For example, the
first component is described by α(X )X =

∑n−1
i=0 AiX qi+1 where the coefficients

Ai are with overwhelming probability not all but one equal to zero. Therefore,
by Smith-Tone’s theorem, the differential multiplicative symmetry is absent with
overwhelming probability.

Nevertheless, in anticipation of more general attacks using a similar differ-
ential invariant, we follow a perspective offered at the conclusion Smith-Tone’s
paper: projection does not destroy the differential symmetry, but pushes it down
to a subfield. Since this modifier is cheap in terms of performance and cannot
degrade security, we choose to err on the side of safety and ensure that no such
subfield can exist. In particular, we guarantee that the matrices A and B have
rank n − 1, and that n is a prime number. Moreover, the kernels of A and B do
not intersect except at the origin. This modifier will be denoted by the subscript
p, e.g. EFCp.

Frobenius Tail in Characteristic Two (or Three). The trapdoor as
described so far can be implemented over any base field and unless the minus
operator is applied, the rank of the quadratic forms associated with the exten-
sion field is two. However, if we restrict to characteristic two, we can naturally
increase this rank by adding an extra “tail” term to both expressions. In turn, we
must drop fewer equations to ensure the same level of security, and this results
in a significant speedup of the decryption algorithm. We will use the subscript
t2 to denote the use of this technique, e.g. EFCt2 .

This trick exploits the following property of fields of characteristic two. Let
f(X ) be a linear function, then f(X )3 is a quadratic function and multiplication
by f(X ) gives f(X )4 which is once again a linear function.

Let α and β be defined as earlier. Then this enhancement adds the quadratic
terms α(X )3 and β(X )3 as follows:

F : F2n → F
2
2n : X �→

(
α(X )X + β(X )3

β(X )X + α(X )3

)
. (3)

In order to decrypt F(X ) = (D1;D2), the user solves the linear system

α(X )D2 − β(X )D1 = α(X )4 − β(X )4 . (4)

Afterwards, the set of solutions is pruned based on F(X ) = (D1;D2).
A similar trick is possible in fields of characteristic three. For linear functions

f(X ) the term f(X )2 is quadratic and multiplication by f(X ) gives f(X )3 which
is once again a linear function. Although this particular Frobenius tail does
destroy the common factor in the two polynomials, it merely increases the rank
of the quadratic form to three. The use of this trick will be denoted by the
subscript t3.
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4 Efficiency

4.1 Recommended Parameters

We predict that the most efficient attack on our system is the algebraic attack
using efficient Gröbner basis algorithms such as Faugére’s F4 or F5 [12,13].
Taking this attack into account, we propose parameters to ensure at least 80
bits of security.

We follow the argument due to Ding et al. [5,8], who develop an upper
bound for the degree of regularity of HFE− systems. In this line of reasoning,
the degree of regularity Dreg is intricately linked to the rank r of the quadratic
form associated with the extension field polynomial. Moreover, a applications of
the minus modifier effectively increases this rank by a. Especially for small base
fields, the degree of regularity is expected to lie near its upper bound:

Dreg ≤ (q − 1)(r + a)
2

+ 2 . (5)

This argument applies to a single quadratic form. However, the central map
of EFC consists of two quadratic forms. Nevertheless, we argue that the effect of
minus is replicated across both quadratic forms. The polynomials are dropped
after the output transformation T is applied, meaning that the effect of the
missing information passes through T−1 and is not isolated to one quadratic
form but spread across both. Although this reasoning underscores the following
parameter recommendations, we note it is not perfectly rigorous and warrants
further study.

Considering the two components of our central map separately, we see that
their rank is r = 2. If the Frobenius tail modifiers are applied, this is increased
to r = 4 and r = 3 for characteristics 2 and 3, respectively. For a security level
of 80 bits, we recommend to ensure this adjusted rank is at least 12 for F2 and
8 for F3.

a =

⎧⎪⎨
⎪⎩

10 q = 2, n = 83, EFC−
p

8 q = 2, n = 83, EFC−
pt2

6 q = 3, n = 59, EFC−
p

. (6)

Then we can estimate the degrees of regularity for these base fields:

Dreg ≤ (q − 1)(r + a)
2

+ 2 =
{

8 q = 2
10 q = 3 . (7)

The running time of efficient Gröbner basis algorithms is dominated by
Gaussian elimination in the matrix of coefficients associated with the mono-
mials of degree Dreg. We can use this bottleneck to estimate the algorithm’s
total complexity. In particular, the number of monomials of this degree is given
by T =

(
n

Dreg

) ≈ 235 both for n = 83, q = 2 as well as n = 59, q = 3. Moreover,
the number of nonzero monomials is on the order of τ =

(
n
2

) ≥ 210. Assuming a
Wiedemann-type algorithm [30] for sparse Gaussian elimination, this amounts
to τT 2 ≥ 280 in both cases.
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Figure 3 offers some experimental evidence in support of this argument. It
plots the running time of MAGMA’s F4 algorithm to recover the plaintext from
the ciphertext and the public key. The graph on the left starts out with q =
2, n = 35 and a = 1; from there on out, the parameter a increases. The graph
on the right lets n vary from 15 to 38 with q = 2, and keeps a constant at 10 for
the basic trapdoor EFC−

p (blue circles) and at 8 for the Frobenius tail equivalent
EFC−

pt2 (red crosses).
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Fig. 3. Running time of algebraic attack for various parameters (Color figure online).

The graphs indicate two things. First, the minus modifier enhances security
with (nearly) every application, occasionally lifting the system into the next
degree of regularity. Second, the Frobenius tail modifier enhances security, even
compensating for the rank drop associated with going from a = 10 to a = 8.

4.2 Complexity

The basic trapdoor, as well as all the modified variants, feature only quadratic
terms. Therefore, the transformations T and S should be linear and not affine,
and consequently also the public key will consist of only quadratic terms.

The public key consists of 2n − a polynomials of degree 2 in n variables.
Thus the number of coefficients from Fq in the public key is (2n− a)× n(n−1)

2 =
n3 − (a + 1)n2 + an = O(n3) because a 	 n. However, we note that there is a
considerable amount of redundancy in the public key which we expect can be
exploited to produce smaller keys.

The private key consists of two linear transformations S and T , along with a
degree-n irreducible polynomial ψ(z), and matrices A and B. This amounts to
n2 + (2n)2 + 2(n2) + n = 7n2 + n = O(n2) coefficients in Fq.

The most computationally intensive part of the key generation algorithm
is the symbolic matrix-vector multiplication — once in ϕ(Ax)x and once in
ϕ(Bx)x. Both procedures require n2 polynomial-multiplications, each of which



192 A. Szepieniec et al.

consists of n multiplications in Fq. Since the other steps in the key generation
algorithm are less complex, the asymptotic time complexity of this entire algo-
rithm is O(n3). For the Frobenius tail modifier, this complexity is worse because
the additional extension field products ϕ(Ax)(QAx) and ϕ(Bx)(QBx) (where Q
is the matrix associated with the Frobenius map x �→ x2) have dense right-side
multiplicands. Consequently, the cost of polynomial multiplication rises to n2

multiplications and the total time complexity of the key generation to O(n4).
Encryption consists of evaluating 2n − a quadratic polynomials in n vari-

ables. This comes down to two time steps with unlimited parallelism. Without
parallelism, however, each of the (2n−a)× (n(n− 1)+2n) base field operations
must be executed sequentially and the time complexity is therefore O(n3).

Decryption consists of the following steps for qa different guesses, which may
be executed in parallel if the resources are available: (1) inversion of T , which
requires (2n)2 operations; (2) computation of ϕ(d1) and ϕ(d2), which requires n
vectorized additions for a total of n2 operations; (3) two matrix multiplications of
n3 operations each, followed by a matrix subtraction; (4) a Gaussian elimination
of some 2n3/3 operations; (5) inversion of S requiring some n2 operations; and
finally (6) pruning, which has an almost constant expected running time. Thus,
decryption has an expected running time of O(qan3). While this expression does
involve an exponential factor, the exponent is rather small — on the order of
a ≈ log n, so that decryption is still practically speaking a polynomial-time
algorithm.

Figure 4 emphasizes this exponential behavior by logarithmically plotting the
decryption time as a function of a. Even a moderate increase in the number of
dropped parameters can make decryption impractically slow.
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Fig. 4. Decryption time as a function of a for n = 83 and q = 2.

4.3 Speed

Table 1 shows some timing results obtained from a straightforward C++ imple-
mentation on a 64-bit 3.3 GHz Intel CPU. Despite the scheme’s obvious capacity
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Table 1. Implementation results — timings of key generation, encryption and decryp-
tion algorithms along with public key, secret key and ciphertext size.

Construction Sec. key Pub. key Ctxt Key gen Enc Dec

EFC−
p , q = 2, n = 83, a = 10 48.3 KB 509 KB 20 B 2.45 s 0.004 s 9.074 s

EFC−
pt2

, q = 2, n = 83, a = 8 48.3 KB 523 KB 20 B 3.982 s 0.004 s 2.481 s

EFC−
p , q = 3, n = 59, a = 6 48.8 KB 375 KB 28 B 2.938 s 0.004 s 12.359 s

for parallelism, it is not exploited beyond bit packing and vectorized addition
(byte-wise xor) for F2. The only other optimization that was used was the com-
piler’s optimization flag. For q = 3, the sizes are computed by representing
elements of F3 by two bits.

5 Conclusion

Extension Field Cancellation (EFC) is a new construction for central trapdoors
in MQ cryptosystems which exploits the commutativity of the extension field in
order to cancel the complexity of the extension field polynomials. After cancel-
lation, the plaintext can be obtained by solving a linear system. We anticipate
several known attacks and use the projection and minus modifiers to inoculate
EFC against these attacks.

We estimate parameters associated with 80 bits of security from the running
time of an algebraic attack and offer some experimental validation of its complex-
ity. Our implementation confirms the correctness of our schemes as well as their
practical efficiency. Encryption can be done in only a few milliseconds, on par
with other post-quantum cryptosystems such as NTRU [16] and McEliece [20].
However, due to the missing information from the minus modifier, decryption
takes several seconds.

This minus modifier is an obvious candidate for improvement. While it is
necessary for security, any significant number of dropped polynomials consti-
tutes an onerous cost on the decryption function because its running time is
exponential in this number. In fact, the minus modifier is ideally suited for
MQ signature schemes, but ill-suited for MQ encryption schemes. The reason is
that for signatures, any assignment to the missing variables will do; in contrast,
the decryption algorithm must iterate over all possible assignments in order to
find the correct plaintext. Any alternative modifier that has the same effect on
security but obviates the need for exhaustive search can drastically accelerate
decryption.

Another question is to determine to which extent the public keys can be
shrunk. While it is difficult to shrink the secret keys without throwing away
entropy, the public keys contain a large amount of redundancy. Even a relatively
moderate reduction in the public key size can make the cryptosystem a feasible
option for applications where the public key size is critical and currently too
large.
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