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Abstract. Multivariate Public Key Cryptography (MPKC) is one of the
most attractive post-quantum options for digital signatures in a wide
array of applications. The history of multivariate signature schemes is
tumultuous, however, and solid security arguments are required to inspire
faith in the schemes and to verify their security against yet undiscov-
ered attacks. The effectiveness of “differential attacks” on various field-
based systems has prompted the investigation of the resistance of schemes
against differential adversaries. Due to its prominence in the area and the
recent optimization of its parameters, we prove the security of HFEv−

against differential adversaries. We investigate the newly suggested para-
meters and conclude that the proposed scheme is secure against all known
attacks and against any differential adversary.

Keywords: Multivariate cryptography · HFEv- · Discrete differential ·
MinRank · Q-rank

1 Introduction and Outline

In the mid 1990s, Peter Shor discovered a way to efficiently implement quantum
period finding algorithms on structures of exponential size and showed how the
modern world as we know it will change forever once the behemoth engineering
challenge of constructing a large scale quantum computing device is overcome.
His polynomial time quantum Fourier transforms for smooth integers can be
employed to factor integers, to compute discrete logarithms and is powerful
enough to efficiently solve hidden subgroup problems for well behaved (usually
Abelian) groups. Given the ubiquity of these problems in deployed technologies,
our e-society is confronted with the possibility that its public key infrastructure
is terminally ill.

It is not known how far this computational cancer may spread, how pervasive
exponential quantum speed-ups will prove to be nor how fundamentally wide
the gap between feasibility in the classical and quantum world are. Thus we
face the task in a rapidly maturing twenty-first century, with ever expanding
interconnectivity, of securing open channel communication between unknown
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future devices, against machines with unknown capabilities, with an unknown
date of inception.

Charged with this challenge is a growing international community of experts
in quantum-resistant cryptography. The world-wide effort has spawned inter-
national standardization efforts including the European Union Horizon 2020
Project, “Post-Quantum Cryptography for Long-Term Security” PQCRYPTO
ICT-645622 [1], ETSI’s Quantum Safe Cryptography Specification Group [2],
and NIST’s Post-Quantum Cryptography Workgroup [3]. The dedication of these
resources is evidence that the field of post-quantum cryptography is evolving into
a state in which we can identify practical technologies with confidence that they
will remain secure in a quantum computing world.

One of a few reasonable candidates for post-quantum security is multivariate
cryptography. We already rely heavily on the difficulty of inverting nonlinear sys-
tems of equations in symmetric cryptography, and we quite reasonably suspect
that security will remain in the quantum paradigm. Multivariate Public Key
Cryptography (MPKC) has the added challenge of resisting quantum attack in
the asymmetric setting.

While it is difficult to be assured of a cryptosystem’s post-quantum secu-
rity in light of the continual evolution of the relatively young field of quantum
algorithms, it is reasonable to start by developing schemes which resist classical
attack and for which there is no known significant weakness in the quantum
realm. Furthermore, the establishment of security metrics provides insight that
educates us about the possibilities for attacks and the correct strategies for the
development of cryptosystems.

In this vein, some classification metrics are introduced in [4–6] which can
be utilized to rule out certain classes of attacks. While not reduction theoretic
proof, reducing the task of breaking the scheme to a known (or often suspected)
hard problem, these metrics can be used to prove that certain classes of attacks
fail or to illustrate specific computational challenges which an adversary must
face to effect an attack.

Many attacks on multivariate public key cryptosystems can be viewed as dif-
ferential attacks, in that they utilize some symmetric relation or some invariant
property of the public polynomials. These attacks have proved effective in appli-
cation to several cryptosystems. For instance, the attack on SFLASH, see [7], is
an attack utilizing differential symmetry, the attack of Kipnis and Shamir [8] on
the oil-and-vinegar scheme is actually an attack exploiting a differential invari-
ant, the attack on the ABC matrix encryption scheme of [9] utilizes a subspace
differential invariant; even Patarin’s initial attack on C∗ [10] can be viewed as
an exploitation of a trivial differential symmetry, see [5].

As is demonstrated in [4,6,11], many general polynomial schemes can have
nontrivial linear differential symmetries. Specifically, in [6], systems of linear
equations are presented which can have solution spaces large enough to guarantee
the existence of nontrivial linear differential symmetries, while in both [4,11]
explicit constructions of maps with nontrivial symmetries are provided. The
existence of such symmetries in abundance is the basis of attacks removing the
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minus modifier as in [7], and depending on the structure of the maps inducing
the symmetry, may even provide a direct key recovery attack. Furthermore,
the attack of [9] on the ABC simple matrix scheme teaches us that differential
invariant techniques are a current concern as well. These facts along with the
ubiquity of differential attacks in the literature are evidence that the program
developed in [4–6] to verify security against differential adversaries is a necessary
component of any theory of security for practical and desirable multivariate
cryptosystems.

This challenge leads us to an investigation of the HFEv and HFEv− cryp-
tosystems, see [12], and a characterization of their differential properties. Results
similar to those of [4–6] will allow us to make conclusions about the differential
security of HFEv, and provide a platform for deriving such results for HFEv−.

Specifically, we reduce the task of verifying trivial differential symmetric
structure for a polynomial f to the task of verifying that the solution space
of a large system of linear equations related to f has a special form. We eluci-
date the structure of these equations in the case of the central map of HFEv and
provide an algorithm for generating keys which provably have trivial differential
symmetric structure. In conjunction with our later results on differential invari-
ants, the proof of concept algorithm verifies that information theoretic security
against differential adversaries, as defined in [6], is possible with an instanta-
neous addition to key generation while maintaining sufficient entropy in the key
space to avoid “guess-then-IP” attacks. We then extend these methods to the
case of HFEv−, deriving the same conclusion.

Expanding on the methods of [6], we prove the following.

Theorem 1. Let k be a degree n extension of the finite field Fq. Let f be
an HFEv central maps. With high probability, f has no nontrivial differential
invariant structure.

With a minimal augmentation of this method we extend this result to the case
of HFEv−.

Theorem 2. Let f be an HFEv central map and let π be a linear projection.
With high probability, π ◦ f has no nontrivial differential invariant structure.

Thus, with proper parameter selection, HFEv− is provably secure against differ-
ential adversaries. Together with the existant literature on resistance to algebraic
and rank attacks, this security argument provides significant theoretical support
for the security of aggressive HFEv− parameters, such as those presented in [13].

The paper is organized as follows. First, we recall big field constructions in
multivariate public key cryptography. Next we review the HFE scheme from [14]
and the HFEv− scheme from [12]. In the following section, we provide criteria
for the nonexistence of a differential symmetric relation on the private key of
both HFEv and HFEv− and discuss an efficient addition to key generation
that allows provably secure keys to be generated automatically. We next review
the notion of a differential invariant and a method of classifying differential
invariants. We continue, analyzing the differential invariant structure of HFEv
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and HFEv−, deriving bounds on the probability of differential invariants in the
general case. Next, we review the Q-rank and degree of regularity of HFEv−,
and discuss resistance to attacks exploiting equivalent keys. Finally, we conclude,
discussing the impact of these results on the HFEv− pedigree.

2 Big Field Signature Schemes

At Eurocrypt’88, Matsumoto and Imai introduced the first massively multivari-
ate cryptosystem which we now call C∗, in [15]. This contribution was based on
a fundamentally new idea for developing a trapdoor one-way function. Specifi-
cally, they used finite extensions of Galois fields to obtain two representations of
the same function: one, a vector-valued function over the base field; the other,
an univariate function over the extension field.

One benefit of using this “big field” structure, is that Frobenius operations in
extensions of conveniently sized Galois fields can be modeled as permutations of
elements in the small field while computations in the small field can be cleverly
coded to utilize current architectures optimally. Thus, one can compute a variety
of exponential maps and products with great efficiency and obfuscate a simple
structure by perturbing the vector representation.

Typically, a big field scheme is built using what is sometimes called the
butterfly construction. Given a finite field Fq, a degree n extension K, and an Fq-
vector space isomorphism φ : Fn

q → K, one can find an Fq-vector representation
of the function f : K → K. To hide the choice of basis for the input and output
of f , we may compose two affine transformations T,U : Fn

q → F
n
q . The resulting

composition P = T ◦ φ−q ◦ f ◦ φ ◦ U is then the public key. The construction is
summarized in the figure below:
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2.1 HFE

The Hidden Field Equations (HFE) scheme was first presented by Patarin in
[14] as a method of avoiding his linearization equations attack which broke the
C∗ scheme of Matsumoto and Imai, see [10,15]. The basic idea of the system is to
use the butterfly construction to hide the structure of a low degree polynomial
that can be inverted efficiently over K via the Berlekamp algorithm [16], for
example.

More specifically, we select an effectively invertible “quadratic” map f : K →
K, quadratic in the sense that every monomial of f is a product of a constant
and two Frobenius multiples of x. Explicitly any such “core” map f has the
form:

f(x) =
∑

i≤j
qi+qj≤D

αi,jx
qi+qj

+
∑

i
qi≤D

βix
qi

+ γ.
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The bound D on the degree of the polynomial is required to be quite low for
efficient inversion.

One generates a signature by setting y = h, a hash digest, and computing,
successively, v = T−1y, u = f−1(v) and x = U−1u. The vector x acts as the
signature.

For verification, one simply evaluates the public polynomials, P , at x. If
P (x) which is equal to T ◦ f ◦ U(x) is equal to y, the signature is authenticated.
Otherwise, the signature is rejected.

2.2 HFEv−

Taking the HFE construction one step further, we may apply the vinegar mod-
ifier, adding extra variables x̃1, . . . x̃v to be assigned random values upon inver-
sion. The effect of adding vinegar variables is that new quadratic terms, formed
from both products of vinegar variables and HFE variables and products among
vinegar variables, increase the rank of the public key. The central map of the
HFEv scheme has the form:

f(x) =
∑

i≤j
qi+qj≤D

αi,jx
qi+qj

+
∑

i
qi≤D

βi(x̃1, . . . , x̃v)xqi

+ γ(x̃1, . . . , x̃v),

where αi,j ∈ K, βi : Fv
q → K is linear, and γ : Fv

q → K is quadratic.
In contrast to HFE, f is a vector-valued function mapping F

n+v
q to F

n
q . The

work of [6,17,18] show that representations of such functions over K are quite
valuable. Thus it is beneficial to employ an augmentation of f , adding n − v
additional vinegar variables, and say ŷ = {x̃1, . . . , x̃v, . . . , x̃n}, where x̃v+1 =
x̃v+2 = . . . = x̃n = 0. Thus, our core map becomes

f(x) = f̂

(
x̂
ŷ

)
.

which algebraically identifies f as a bivariate function over K. We may now
write f in the following form:

f(x, y) =
∑

0≤i≤j<n
qi+qj≤D

αijx
qi+qj

+
∑

0≤i,j<n
qi≤D

βijx
qi

yqj

+
∑

0≤i≤j<n

γijy
qi+qj

. (1)

Here we see an obvious distinction among the types of monomials. We will
label the monomials with α coefficients the “HFE monomials,” those with β
coefficients the “mixing monomials” and the monomials with γ coefficients the
“vinegar monomials.”

The HFEv− scheme uses the HFEv primitive f above and augments the
public key with the minus modifier. The minus modifier removes r of the public
equations. This alteration is designed to destroy some of the information of the
big field operations latent in the public key.
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3 Differential Symmetry

The discrete differential of a field map f : K → K is given by:

Df(a, x) = f(a + x) − f(a) − f(x) + f(0).

It is simply a normalized difference operator with variable interval. In [7], the
SFLASH signature scheme was broken by exploiting a symmetric relation of the
differential of the public key. This relation was inherited from the core map of
the scheme.

Definition 1. A general linear differential symmetry is a relation of the form

Df(Mx, a) + Df(x,Ma) = ΛMDf(a, x),

where M,ΛM : K → K are Fq-linear maps.

A differential symmetry exists when linear maps may be applied to the discrete
differential inputs in such a way that the effect can be factored out of the dif-
ferential. Furthermore, we say that the symmetry is linear when the relation is
linear in the unknown coefficients of the linear maps. It can be shown that any
such linear symmetric relation implies the existence of a symmetry of the above
form, hence the term “general.”

While attacks similar to that of [7,19] exploited some multiplicative relation
on central maps of schemes with some algebraic structure over the base field, it
was shown in [4] that general linear differential symmetries based on more com-
plex relations exist, in general. Therefore, when analyzing the potential threat of
a differential adversary, as defined in [6], it becomes necessary to classify the pos-
sible linear differential symmetries. If we succeed in characterizing parameters
which provably eliminate nontrivial differential symmetric relations, we prove
security against the entire class of differential symmetric attacks, even those
utilizing relations not yet discovered.

To this end, we evaluate the security of HFEv against such adversaries. We
explicitly consider parameter restrictions which necessarily preclude the exis-
tence of any nontrivial differential symmetry.

3.1 Linear Symmetry for HFEv

In our analysis, we will begin by considering the differential of our core map.
From the perspective of our adversary, the discrete differential would be

Df̂

([
â

b̂

]
,

[
x̂
ŷ

])
= Df(a, b, x, y).

By the bilinearity of Df̂ we see that Df is multi-affine; Df is affine in each of
its inputs when the remaining inputs are fixed. Evaluating this differential we
obtain
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Df(a, b, x, y) =
∑

0≤i≤j<n
qi+qj≤D

αi,j(xqi

aqj

+ xqj

aqi

)

+
∑

0≤i,j<n
qi≤D

βi,j(xqi

bqj

+ aqi

yqj

) (2)

+
∑

0≤i≤j<n

γi,j(yqi

bqj

+ yqj

bqi

),

noting that Df is a K-bilinear form in [a b]T and [x y]T . For ease of computation,
we will choose the following representation for K:

x �→ [x xq xq2
... xqn−1

]T .

Similarly, we may map our oil-vinegar vector as

[x y] �→ [x xq xq2
... xqn−1

y yq yq2
... yqn−1

]T ,

and Df is thus represented by the 2n × 2n matrix where the (i, j)th and (j, i)th
entries in the upper left n × n block are the coefficients αi,j , and the (i, j)th
entries in the upper right block and the (j, i)th entries in the lower left block are
the coefficients βi,j , while the (i, j)th and the (j, i)th entries in the lower right
block are the coefficients γi,j .
Note, that any Fq-linear map M : K → K can be represented by Mx =∑n−1

i=0 mix. Thus, as demonstrated in [6], under our representation,

M =

⎛

⎜⎜⎜⎝

m0 m1 · · · mn−1

mq
n−1 mq

0 · · · mq
n−2

...
...

. . .
...

mqn−1

1 mqn−1

2 · · · mqn−1

0

⎞

⎟⎟⎟⎠ .

However, when viewing an Fq-linear map over our vector
[

x̂
ŷ

]
, we may consider

the 2n × 2n matrix

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m00,0 m00,1 · · · m00,n−1 m01,0 m01,1 · · · m01,n−1

mq
00,n−1 mq

00,0 · · · mq
00,n−2 mq

01,n−1 mq
01,0 · · · mq

01,n−2
...

...
. . .

...
...

...
. . .

...
mqn−1

00,1 mqn−1

00,2 · · · mqn−1

00,0 mqn−1

01,1 mqn−1

01,2 · · · mqn−1

01,0

m10,0 m10,1 · · · m10,n−1 m11,0 m11,1 · · · m11,n−1

mq
10,n−1 mq

10,0 · · · mq
10,n−2 mq

11,n−1 mq
11,0 · · · mq

11,n−2
...

...
. . .

...
...

...
. . .

...
mqn−1

10,1 mqn−1

10,2 · · · mqn−1

10,0 mqn−1

11,1 mqn−1

11,2 · · · mqn−1

11,0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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For computational reference, we will label each row and column modulo(n),
i.e., each coordinate of the entry (i, j), will be represented by a residue class
modulo n.

If we assume that f is vulnerable to a differential attack, then there exists a
non-trivial linear mapping M such that the differential symmetry in (1) is sat-
isfied. To compute such a symmetry inducing map requires the solution of 4n2

highly dependent but random equations in the 8n unknown coefficients of M and
ΛM over K. Since trivial symmetries (such as multiplication by scalars) are exhib-
ited by every map, we know that there exist nontrivial solutions. Even assuming
unit time for K-arithmetic operations, for realistic parameters this process is very
inefficient; with the more realistic assumption of costly K-arithmetic operations,
this task is unsatisfactory in key generation.

To make the solution of such systems of equations more efficient, we derive
the structure of the equations and develop a two step process for verifying trivial
differential symmetric structure. The first step involves finding equations which
only involve a subset of the variables. The existence of such equations is guar-
anteed by the degree bound of the HFE monomials. This information is then
bootstrapped to eliminate many unknown coefficients of M resulting in a very
small system of equations which can be solved explicitly.

We remark here that this methodology also suggests a method for estimat-
ing the probability of the existence of a differential symmetry for the HFEv
primitive. The existence of a nontrivial symmetry corresponds to systems for
which the rank of the system of equations is less than 8n. Under the heuristic
that under row reduction these systems of equations behave like random 8n×8n
matrices, we obtain a probability of roughly 1−q−1 that the scheme has no non-
trivial differential symmetry. We note that this heuristic is almost certainly false
since trivial symmetries do exist. This quantity does represent a lower bound,
however, and thus may offer support for larger base fields.

We begin by considering the entries of the matrix M
T
Df + DfM . The

contribution of any monomial αi,jx
qi+qj

to the ith row of DfM is given by
(
αi,jm

j
00,−j αi,jm

j
00,1−j · · · αi,jm

j
00,−1−j αi,jm

j
01,−j αi,jm

j
01,1−j · · · αi,jm

j
01,−1−j

)

while the contribution to the jth row is
(
αi,jm

i
00,−i αi,jm

i
00,1−i · · · αi,jm

i
00,−1−i αi,jm

i
01,−i αi,jm

i
01,1−i · · · αi,jm

i
01,−1−i

)
.

By symmetry, the ith and jth columns of M
T
Df are the same as their respective

rows.
It is clear that the rows and columns associated with coefficients of vinegar

monomials as well as terms associated with mixing monomials may be repre-
sented similarly. However, it should be noted that those terms associated with
mixing monomials will be multiplied by linear coefficients m00,·, m01,·, m10,·, and
m11,·, while coefficients associated with vinegar variables are multiplied only by
linear coefficients m10,· and m11,·.

The above patterns can be extended to characterize the contribution to the
ith row and jth row of monomials of the form βi,jx

qi

yqj

and γi,jy
qi+qj

, as well.
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We note, however, that γ coefficients interact with entries from the lower block
matrices while β coefficients interact with coefficients from all block matrices.

Now that we have characterized the left side of (1), we will consider the
entries of ΛMDf . For every monomial of f , say αi′,j′xqi+qj

, βr,sx
qr

yqs

, or

γu,vyqs+qv

, we have under the mapping of ΛM terms of the form: l�α
q�

i,jx
qi+�+qj+�

,

l�β
qr+�

r,s xqs+�

yqj

, and l�γ
q�

u,vyqu+�+qv+�

. Clearly, this results in every nonzero entry,
say (r, s), of our Df matrix being raised to the power of q� and shifted along a
forty-five degree angle to entry (r + �, s+ �). Thus, for each monomial in f there
are two possible nonzero entries in the ith row, with possible overlap.

This discrete geometrical interpretation of the action of M and D on the
coefficients of f is central to this analysis. A graphical representation of these
relations is provided in Fig. 1.

Fig. 1. Graphical representation of the equation MTDf + DfM = ΛMDf for the

HFEv (actually, vC∗) polynomial f(x) = αi,jx
qi+qj

+ βr,sx
qr

yqs

+ γu,vy
qu+qv

. Hor-
izontal and vertical lines represent nonzero entries in MTDf + DfM while diagonal
lines represent nonzero entries in ΛMDf . We may consider this diagram as a genus 4
surface containing straight lines.

As in [6], the possibility of a differential symmetry can be determined by
setting the matrix representation of MT Df +DfM equal to the matrix ΛMDf .
We will demonstrate an algorithm, given some specific constraints, that will help
provide secure keys to be generated automatically.

Due to the structure of our M matrix, we need to work within each mi,j

matrix independently. The following algorithm for m0,0 extends very naturally
to the other 3 matrices. For clarity, all m terms in description below are m0,0

terms.
Let αi,j , βr,s, γu,v represent the coefficients of our monomials in our core map.

Consider the ith row of MT Df + DfM . For all w not occurring as a power of
q of our HFE or mixing monomials in f , or difference of powers of q in an
exponent of a monomial in f plus i, the (i, w) entry is αi,jm

qj

w−j = 0 (resp.
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βi,jm
qj

w−j). Consider the rth row. For all w not occuring as an exponent of q in a
vinegar monomial or as a difference of powers of q in an exponent of a monomial
in f plus s, the (r, w)th entry is βr,sm

qs

k−s = 0. Hence, we can use those relations
to look for non-zero entries of m0,0.

After putting those relations into Algorithm 1, see Fig. 3a, you can generate
a set for every i and r, exponents that occur in your core map. Each set provides
a list of indices of all possible non-zero m’s. For each index not occuring in any
such set, the corresponding coefficient m must equal zero due to the fact that
there must be a coordinate in the equation MT Df + DfM = ΛMDf setting
a constant multiple of m to zero. Thus, the intersection off all sets generated
produces a list of all possible non-zero entries for the sub-matrix m0,0.

Once this list is obtained, the variables shown to have value zero are elimi-
nated from the system of equations. After repeating a similar algorithm for each
of the remaining three submatrices a significantly diminished system of equations
is produced which is then solved explicitly.

After running this algorithm with realistic values satisfying the above con-
straints and matching the parameter sizes of [13] along with using mild restric-
tions on the powers of the mixing and vinegar monomials, the only non-zero
value obtained is m0.

We note that it is possible that these restrictions, especially the restriction
for these experiments on the number of monomials, place a lower bound on the
number of vinegar variables required to achieve such a structure. On the other
hand, with numerous small-scale experiments without parameter restrictions and
using the full number of monomials we found that structurally the only nonzero
value for the matrix m0,0 is the m0 term.

Since we have only a single non-zero term, our m0,0 matrix is a diagonal
matrix. A similar analysis for each of the remaining submatrices reveals the
same structure. Thus we find that the only possible structure for M under these
constraints satisfying a differential symmetry for HFEv is

M =
[
cI dI
dI cI

]
.

Furthermore, we can prove by way of Theorem 2 from [20], that the coefficients
c, d ∈ Fq.

We note that this map induces a trivial differential symmetry. To see this,
note that the (nonpartial) differential of any bivariate function is bilinear in its
vector inputs. Thus

Dg(M [a b]T , [x y]T ) = Dg([ca + db da + cb]T , [x y]T )

= Dg([ca + db cb + da]T , [x y]T )

= Dg(c[a b]T , [x y]T ) + Dg(d[b a]T , [x y]T ) (3)
= cDg(a, b, x, y) + dDg(b, a, x, y)
= (c + d)Dg(a, b, x, y).
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Consequently, for the parameters provided by Algorithm 1, HFEv provably has
no nontrivial differential symmetric structure.

It should be noted that the restrictions provided on the powers of q of the
monomials of our f does lower the entropy of our key space and likely raise the
number of required vinegar variables to a level which is either unsafe or unde-
sirable. However, there is still plenty of entropy with these restrictions and we
obtain provable security against the differential symmetric attack. The restric-
tions provided are just a base line for this technique and our experiments with
small scale examples indicate that even when we insist that every possible mono-
mial satisfying the HFE degree bound is required to have a nonzero coefficient,
the generalized algorithm still outputs only the trivial solution. Thus we can
achieve provable security with minimal loss of entropy.

3.2 HFEv−

Now, the algorithm extends naturally to HFEv−. Every non-zero entry from
the system generated by HFEv is also in that generated by HFEv−, but with
a few more, see Fig. 2. We choose a basis in which an example minus projection
is a polynomial of degree q2. For every ith row, we also have for any w not a
power of α+n or β +n where n < 2, the (i, w)th entry is αi,jm

qj

w−j = 0. For the
sth row, for all w not being a power of β + n or r + n where n < 2, the (s, w)th
entry is βr,sm

qr

w−r = 0. A visualization is provided in Fig. 2.
Again, we can use these relations, along with the relations described in the

HFEv system, to create a list of sets of all non-zero areas on m0,0 using Algo-
rithm 2, see Fig. 3b. Each of these sets contains indices which are possibly non-
zero, thus entries not in that set are definitively equal to zero.

By taking the intersection of all the sets, you can find the final locations of
non-zero entries for our sub matrix m0,0. In doing so, with realistic values from
[13], the only non-zero value obtained is m0. This again gives us security against
symmetrical attacks by having M being a block matrix consisting of diagonal
matrices with an argument similar to [6].

4 Differential Invariants

Definition 2. Let f : Fn
q → F

m
q be a function. A differential invariant of f is

a subspace V ⊆ K with the property that there is a subspace W ⊆ K such that
dim(W ) ≤ dim(V ) and ∀A ∈ SpanFq

(Dfi), AV ⊆ W .

Informally speaking, a function has a differential invariant if the image of a sub-
space under all differential coordinate forms lies in a fixed subspace of dimension
no larger. This definition captures the notion of simultaneous invariants, sub-
spaces which are simultaneously invariant subspaces of Dfi for all i, and detects
when large subspaces are acted upon linearly.

If we assume the existence of a differential invariant V , we can define a
corresponding subspace V ⊥ as the set of all elements x ∈ K such that the
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Fig. 2. Graphical representation of the equation MTDf + DfM = ΛMDf for the

HFEv− with the minus modifier given by the projection π(x) = xq2 + ρxq + τx.
Horizontal and vertical lines represent nonzero entries in MTDf +DfM while diagonal
lines represent nonzero entries in ΛMDf . We note that each triple of lines corresponds
to a single monomial in the central map.

dot product 〈x,Av〉 = 0 ∀v ∈ V,∀A ∈ Span(Dfi). We note that this is not the
standard definition of an orthogonal complement. V ⊥ is not the set of everything
orthogonal to V , but rather everything orthogonal to AV , which may or may
not be in V . By definition, it is clear that V and V ⊥ satisfy the relation

dim(V ) + dim(V ⊥) ≥ n.

Assume there is a differential invariant V ⊆ F
n
q , and choose linear maps

M : Fn
q → V and M⊥ : Fn

q → V ⊥. For any differential-coordinate-form, we have

[Df(M⊥y,Mx)]i = (M⊥y)T (Dfi(Mx)) (4)

Since M⊥y is in V ⊥, and DfiMx ∈ AV , we must then have that

[Df(M⊥y,Mx)]i = (M⊥a)T (Dfi(Mx)) = 0 (5)

Thus, as derived in [5],

∀y, x ∈ F
n
q ,Df(M⊥y,Mx) = 0 or equivalently, Df(M⊥

F
n
q ,MF

n
q ) = 0 (6)

This relation restricts the structure of M and M⊥, and provides a direct means
of classifying the differential invariant structure of f .

We follow an analogous strategy to that of [6], adapted to the structure of
the central HFEv− map f . First, we recall a result of [6].
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HFEvKeyCheck
Input: An HFEv central map f , a flag flg
Output: Set of indices of coefficients mi of submatrix m00 which are possibly nonzero in a
linear map inducing differential symmetry for f .

01. for monomial αi,jx
qi+qj in f

02. Si = {};
03 Sj = {};
04. for monomial with powers r and s in f
05. Si = Si ∪ {r − j, s − j, i − j + r − s, i − j + s − r};
06. Sj = Sj ∪ {r − i, s − i, j − i + r − s, j − i + s − r};
07. end for;
08. end for;
09. if flg
10. then
11. return all Si;
12. else
13. return

⋂
Si;

14. end if;

(a) Algorithm 1: HFEv

HFEv-KeyCheck

Input: An HFEv− central map π(f), the corank of π, r
Output: Set of indices of coefficients mi of submatrix m00 which are possibly nonzero in a
linear map inducing differential symmetry for π(f).
01. Call: HFEvKeyCheck(f,1);
02. for all Si

03 Ti = {};
04. for j from 0 to r − 1
05. Ti = Ti ∪ (j + Si);
06. end for;
07. end for;
08. return

⋂
Ti;

(b) Algorithm 2: HFEv−

Fig. 3. Algorithms 1 and 2

Proposition 1. ([6]) If A,B are two m×n matrices, then rank(A) = rank(B)
if and only if there exist nonsingular matrices C,D, such that A = CBD.

Without loss of generality we assume that rank(M⊥) ≤ rank(M). If the
ranks are equal, then we may apply the proposition and write M⊥ = SMT ,
with S and T nonsingular. If rank(M⊥) < rank(M), compose M with a singular
matrix X so that rank(XM) = rank(M⊥), and then apply the above result so
that M⊥ = S(XM)T . Then we can express M⊥ = S′MT , where S′ is singular.
Restating our differential result (6) in this manner, we have that if M⊥ = SMT ,
and M : Fn+v

q → V , then

∀x, y ∈ F
n
q ,Df(SMTy,MTx) = 0. (7)
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4.1 Minimal Generators over Intermediate Subfield

For lack of a good reference, we prove the following statement about the structure
of the coordinate ring of a subspace of an extension field over an intermediate
extension.

Lemma 1. Let L/K/Fq be a tower of finite extensions with |L : K| = m and
|K : Fq| = n. Let V be an Fq-subspace of L. Then I(V ) has m multivariate
generators over K of the form

M(k)
V (x0, . . . , xm−1) =

∑

0≤i<n
0≤j<m

aijkxqi

j .

Proof. Choose a basis {e0 = 1, e1, . . . , em−1} for L over K. Since V is an Fq-

subspace of L, the minimal polynomial of V over L, MV (X) =
∑mn−1

i=0 αiX
qi

,
is Fq-linear. Note that the operations of addition and left multiplication by
elements in L are K-linear, whereas the Frobenius maps are merely F-linear.

Now, since MV (X) is linear it is additive, hence

MV (X) = MV

⎛

⎜⎝

⎡

⎢⎣
x0

...
xm−1

⎤

⎥⎦

⎞

⎟⎠ =
m−1∑

i=0

MV (xiei).

In each summand of MV (xjej), we have

(xjej)qi

= xqi

j ej
qi

= xqi

j

m−1∑

i=0

riei

for some r0, . . . , rm−1 ∈ K. As a vector over K this quantity is
⎡

⎢⎢⎣

r0x
qi

j
...

rm−1x
qi

j

⎤

⎥⎥⎦ .

Thus MV (xjej) is an m-dimensional vector of K-linear combinations of xj ,

xq
j , . . . , x

qn−1

j . Thus MV (X) is of the form

MV (X) =

⎡

⎢⎣
MV

(0)(x0, . . . , xm−1)
...

MV
(m−1)(0, . . . , xm−1)

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎣

∑
0≤i≤n
0≤j≤m

aij0x
qi

j

...
∑

0≤i≤n
0≤j≤m

aij(m−1)x
qi

j

⎤

⎥⎥⎥⎥⎦
,

as required.

We note that the minimal polynomials studied in [6] correspond to the special
case of the above lemma in which m = 1. Given our characterization from
Sect. 2.2 of the central map of HFEv− as a bivariate polynomial over K, we are
primarily interested in the m = 2 case of Lemma 1.
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4.2 Invariant Analysis of HFEv

As in [6], we consider Df(SMTa,MTx), where T is nonsingular, S is a possibly
singular map which sends V into V ⊥ and M : k → k is a projection onto V .
Without loss of generality we’ll assume that M projects onto V . Then MT
is another projection onto V . SMT is a projection onto V ⊥. An important
distinction is that for this case, the a and x above are actually two dimensional
vectors over k. Thus dim(V ) + dim(V ⊥) ≥ n.

Proof (of Theorem 1). Let us denote by [x̂ ŷ]T the quantity MT [x y]T .
Suppose we have

f(x, y) =
∑

0≤i≤j<n
qi+qj≤D

αijx
qi+qj

+
∑

0≤i,j<n
qi≤D

βijx
qi

yqj

+
∑

0≤i≤j<n

γijy
qi+qj

.

Applying the differential (w.r.t. the vector [x y]T ) as described in Sect. 3.1,
we obtain:

Df(a, b, x, y) =
∑

0≤i≤j<n
qi+qj≤D

αij

(
aqi

xqj

+ aqj

xqi
)

+
∑

0≤i,j<n
qi≤D

βij

(
aqi

yqj

+ xqi

bqj
)

+
∑

0≤i≤j<n

γij

(
bqi

yqj

+ bqj

yqi
)

.

(8)

Substituting SMT [a b]T and MT [x y]T , we derive

Df(S[â b̂]T , x̂, ŷ) = Df(S11â + S12b̂, S21â + S22b̂, x̂, ŷ).

For notational convenience let ˆ̂a= S11â + S12b̂ and ˆ̂b= S21â + S22b̂. Plugging in
these values in the previous equation we get

Df(ˆ̂a, ˆ̂b, x̂, ŷ) =
∑

0≤i≤j<n
qi+qj≤D

αij

(
(ˆ̂a)qi

x̂qj

+ (ˆ̂a)qj

x̂qi
)

+
∑

0≤i,j<n
qi≤D

βij

(
(ˆ̂a)qi

ŷqj

+ x̂qi

(ˆ̂b)qj
)

+
∑

0≤i≤j<n

γij

(
(ˆ̂b)qi

ŷqj

+ (ˆ̂b)qj

ŷqi
)

.

(9)

In contrast to the situation with HFE, these monomials are not necessarily
independent. By Lemma1, the generators of I(V ) have the form

∑

0≤i<n

rijx
qi

+
∑

0≤i<n

sijy
qi

for j ∈ {1, 2},
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where rij , sij ∈ K. Clearly, these expressions evaluate to zero on (x̂, ŷ). Evaluat-
ing (9) modulo I(V ) (only on the variables x̂ and ŷ), we obtain:

Df(ˆ̂a, ˆ̂b, x̂, ŷ) =
∑

0≤i<n
0≤j<dx

[
α′

ij(ˆ̂a)qi

+ β′
ij(

ˆ̂b)qi
]
x̂qj

+
∑

0≤i<n
0≤j<dy

[
γ′

ij(ˆ̂a)qi

+ δ′
ij(

ˆ̂b)qi
]
ŷqj

,
(10)

where dx and dy are the largest powers of x̂ (resp. ŷ) occuring. After the reduction
modulo I(V ), the remaining monomials x̂, . . . , x̂qdx and ŷ, . . . , ŷqdy are indepen-
dent. Thus, for Df(ˆ̂a, ˆ̂b, x̂, ŷ) = 0, each polynomial expression multiplied by a
single x̂qj

or ŷqj

must be identically zero, that is to say that for all 0 ≤ j ≤ dx

∑

0≤i<n

[
α′

ij(ˆ̂a)qi

+ β′
ij(

ˆ̂b)qi
]

= 0 (11)

and for all 0 ≤ j ≤ dy

∑

0≤i<n

[
γ′

ij(ˆ̂a)qi

+ δ′
ij(

ˆ̂b)qi
]

= 0. (12)

The left hand sides of (11) and (12) are F-linear functions in S[â b̂]T . Thus
we can express each such equality over F as

LS
[
â0 · · · ân−1 b̂0 · · · b̂n−1

]T

= 0,

where L is an n × 2n matrix with entries in F. We note specifically that the
coefficients of L depend on V and the choices of coefficients in the central map
f . For randomly chosen coefficients retaining the HFEv structure, we expect an
L derived from an equation of the form (11) or (12) to have high rank with very
high probability, more than 1 − q−n. Thus the dimension of the intersections of
the nullspaces of each L is zero with probability at least 1 − 2q−n.

Clearly, the condition for these equations to be satisfied is that S sends
V to the intersection of the nullspaces of each such L. Thus S is with high
probability the zero map on V and so V ⊥ = {0}. This generates a contradiction,
however, since 2n ≤ dim(V ) + dim(V ⊥) < 2n. Thus, with probability greater
than 1 − 2q−n, f has no nontrivial differential invariant structure.

4.3 HFEv−

The situation for HFEv− is quite similar, but the probabilities are slightly dif-
ferent. Specifically one must note that since the condition of being a differential
invariant is a condition on the span of the public differential forms, under pro-
jection this condition is weaker and easier to satisfy. For specificity, we consider
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the removal of a single public equation, though, critically, a very similar though
notationally messy analysis is easy to derive in the general case.

We may model the removal of a single equation as a projection of the form
π(x) = xq + x applied after the central map.

Proof (of Theorem 2). Consider

π(f(x, y)) =
∑

0≤i≤j<n

qi+qj≤D

αijx
qi+qj

+
∑

0≤i,j<n

qi≤D

βijx
qi

yqj

+
∑

0≤i≤j<n

γijy
qi+qj

+
∑

0≤i≤j<n

qi+qj≤D

αq
ijx

qi+1+qj+1
+
∑

0≤i,j<n

qi≤D

βq
ijx

qi+1
yqj+1

+
∑

0≤i≤j<n

γq
ijy

qi+1+qj+1
.

(13)

Taking the differential, we obtain

D(π ◦ f)(ˆ̂a, ˆ̂b, x̂, ŷ) =
∑

0≤i≤j<n
qi+qj≤D

αij

(
(ˆ̂a)qi

x̂qj

+ (ˆ̂a)qj

x̂qi
)

+
∑

0≤i,j<n
qi≤D

βij

(
(ˆ̂a)qi

ŷqj

+ x̂qi

(ˆ̂b)qj
)

+
∑

0≤i≤j<n

γij

(
(ˆ̂b)qi

ŷqj

+ (ˆ̂b)qj

ŷqi
)

+
∑

0≤i≤j<n
qi+qj≤D

αq
ij

(
(ˆ̂a)qi+1

x̂qj+1
+ (ˆ̂a)qj+1

x̂qi+1
)

+
∑

0≤i,j<n
qi≤D

βq
ij

(
(ˆ̂a)qi+1

ŷqj+1
+ x̂qi+1

(ˆ̂b)qj+1
)

+
∑

0≤i≤j<n

γq
ij

(
(ˆ̂b)qi+1

ŷqj+1
+ (ˆ̂b)qj+1

ŷqi+1
)

.

(14)

Again, we may evaluate modulo I(V ) and collect the terms for the distinct
powers of x̂ and ŷ. By the independence of these monomials we obtain the
relations

∑

0≤i<n

[
α′′

ij(ˆ̂a)qi

+ β′
ij(

ˆ̂b)qi
]

= 0

∑

0≤i<n

[
γ′′

ij(ˆ̂a)qi

+ δ′
ij(

ˆ̂b)qi
]

= 0.
(15)

At this point, the analysis proceeds exactly as in the case of HFEv. We once
again arrive at the conclusion that with high probability S is the zero map on
V , contradicting the existence of a differential invariant. We note here that this
analysis works for any projection, though the exact values of the α′′

ij and γ′′
ij

depend on the specific projection and the structure of f .
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5 Degree of Regularity, Q-Rank and Parameters

Further considerations for the security of HFEv− are the degree of regularity,
a quantity closely connected to the complexity of algebraic attacks, and the
Q-rank of the public key. A careful analysis of each of these quantities reveals
that they support the security of HFEv− against an algebraic attack such as [21]
and against the Kipnis-Shamir methodology and its improvements, see [17,18].

In [22], it is shown that an upper bound for the Q-rank of an HFEv− system
is given by the sum of the Q-rank of the HFE component, the number of removed
equations, and the Q-rank of the vinegar component. For Gui-96(96, 5, 6, 6), here
q = 2, n = 96, D = 5, v = 6 and r = 6, this quantity is roughly 15. Furthermore,
in [13], experimental evidence in the form of analysis of toy variants is provided
indicating that this estimate is tight. Thus the complexity of a Kipnis-Shamir
style attack is roughly O(n3q15n).

Also in [22], a formula for an upper bound on the degree of regularity for
HFEv− systems is derived. Given the parameters of Gui-96(96,5,6,6), the degree
of regularity is expected to be 9. Further, experiments are provided in [13] sup-
porting the tightness of this approximation formula for toy schemes with n as
large as 38. With this degree of regularity the expected complexity of inverting
the system via Gröbner basis techniques is given by

(
96 − 6 + 9

9

)2.3766

≈ 293.

We note that an error in the approximation of the degree of regularity can easily
change this estimate by a factor of a few thousand. Still, it seems clear that each
of these avenues of attack is unviable.

Still another attack vector is to put the entropy of the key space to the test
with techniques such as those mentioned in [23] for deriving equivalence classes
of keys. With our most restrictive instance of the key verification algorithm in
Sect. 3.2, we have a key space consisting of roughly q13n central maps, roughly
q6n of which can be seen as equivalent keys as in [23]. Thus provable security
against the differential adversary can be achieved with a key space of size far
beyond the reach of the “guess-then-IP” strategy.

6 Conclusion

HFEv− is rapidly approaching twenty years of age and stands as one of the
oldest post-quantum signature schemes remaining secure. With the new para-
meters suggested in [13], HFEv− has metamorphosed from the very slow form
of QUARTZ into a perfectly reasonable option for practical and secure quantum-
resistant signatures.

Our analysis contributes to the confidence and optimism which HFEv−

inspires. By elucidating the differential structure of the central map of HFEv−,
we have verified that a class of attacks which has proven very powerful against
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multivariate schemes in the past cannot be employed against HFEv−. In con-
junction with the careful analysis of the degree of regularity and Q-rank of the
scheme already present in the literature, we have succeeded in showing that
HFEv− is secure against every type of attack known. If the future holds a
successful attack against HFEv− it must be by way of a fundamentally new
advance.
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