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Preface

PQCrypto 2016, the 7th International Workshop on Post-Quantum Cryptography, was
held in Fukuoka, Japan, during February 24–26, 2016. It was organized in cooperation
with the International Association for Cryptologic Research.

The aim of PQCrypto is to serve as a forum for researchers to present results and
exchange ideas on the topic of cryptography in the era of large-scale quantum com-
puters. The workshop was preceded by a winter school during February 22–23, 2016.

PQCrypto 2016 has received 42 submissions from 21 countries all over the world.
The Program Committee selected 16 papers for publication in the workshop pro-
ceedings. The accepted papers deal with multivariate polynomial cryptography,
code-based cryptography, lattice-based cryptography, quantum algorithms,
post-quantum protocols, and implementations. The program featured four excellent
invited talks given by Daniel Bernstein (University of Illinois at Chicago), Ernie
Brickell (Intel), Steven Galbraith (University of Auckland), and Masahide Sasaki
(Quantum ICT Laboratory, NICT), as well as a hot topic session. The Program
Committee selected the work “An Efficient Attack on a Code-Based Signature
Scheme” by Aurélie Phesso and Jean-Pierre Tillich for the Best Paper Award of
PQCrypto 2016. During the workshop, the National Institute of Standards and Tech-
nology (NIST) announced a preliminary plan for the submission and evaluation of
quantum-resistant algorithms for potential standardization.

Many people contributed to the success of PQCrypto 2016. I am very grateful to all
of the Program Committee members as well as the external reviewers for their fruitful
comments and discussions on their areas of expertise. I am greatly indebted to the
general chair, Kouichi Sakurai, for his efforts and overall guidance. I would also like to
thank the general co-chairs, Takanori Yasuda and Kirill Morozov, and the local
Organizing Committee, Hiroaki Anada, Shinichi Matsumoto, Duong Hoang Dung,
Taku Jiromaru, and Emi Watanabe, for their continuous support.

Finally, I would like to express our gratitude to our partners and sponsors:
JST CREST, ISIT, ID Quantique, Fukuoka Convention & Vistors Bureau, The
Telecommunications Advancement Foundation, and Inoue Foundation for Science.
ISIT’s contribution to the organization of this workshop is supported by “Strategic
Information and Communications R&D Promotion Programme (SCOPE), no.
0159-0016,” Ministry of Internal Affairs and Communications, Japan.

February 2016 Tsuyoshi Takagi
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IND-CCA Secure Hybrid Encryption
from QC-MDPC Niederreiter

Ingo von Maurich1(B), Lukas Heberle1, and Tim Güneysu2,3

1 Horst Görtz Institute for IT-Security, Ruhr University Bochum, Bochum, Germany
{ingo.vonmaurich,lukas.heberle}@rub.de
2 University of Bremen, Bremen, Germany

tim.gueneysu@uni-bremen.de
3 DFKI, Bremen, Germany

Abstract. QC-MDPC McEliece attracted significant attention as
promising alternative public-key encryption scheme believed to be resis-
tant against quantum computing attacks. Compared to binary Goppa
codes, it achieves practical key sizes and was shown to perform well on
constrained platforms such as embedded microcontrollers and FPGAs.

However, so far none of the published QC-MDPC McEliece/
Niederreiter implementations provide indistinguishability under chosen
plaintext or chosen ciphertext attacks. Common ways for the McEliece
and Niederreiter encryption schemes to achieve IND-CPA/IND-CCA
security are surrounding constructions that convert them into secured
schemes. In this work we take a slightly different approach presenting (1)
an efficient implementation of QC-MDPC Niederreiter for ARM Cortex-
M4 microcontrollers and (2) the first implementation of Persichetti’s
IND-CCA hybrid encryption scheme from PQCrypto’13 instantiated
with QC-MDPC Niederreiter for key encapsulation and AES-CBC/AES-
CMAC for data encapsulation. Both implementations achieve practical
performance for embedded microcontrollers, at 80-bit security hybrid
encryption takes 16.5 ms, decryption 111 ms and key-generation 386.4 ms.

Keywords: Post-quantum cryptography · Code-based public key
encryption · Hybrid encryption · Software · Microcontroller

1 Introduction

Shor’s quantum algorithm [21] efficiently solves the underlying problem of RSA
(factoring) and can be adapted to break ECC and DH (discrete logarithms).
Although quantum computers can handle only few qubits so far, the proof-of-
concept of Shor’s algorithm was verified several times with 143 being the largest
number which was factored into its prime factors, yet [23]. In this context the
NSA Central Security Service recently announced preliminary plans to transition
its Suite B family of cryptographic algorithms to quantum-resistant algorithms
in the “not too distant future”1.
1 See NSA announcement published at https://www.nsa.gov/ia/programs/suiteb

cryptography/.

c© Springer International Publishing Switzerland 2016
T. Takagi (Ed.): PQCrypto 2016, LNCS 9606, pp. 1–17, 2016.
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The code-based public-key encryption schemes by McEliece [15] and Nieder-
reiter [17] are among the most promising alternatives to RSA and ECC. Their
security is based on variants of hard problems in coding theory. McEliece encryp-
tion instantiated with quasi-cyclic moderate density parity-check (QC-MDPC)
codes [7] was introduced in [16], followed by QC-MDPC Niederreiter encryption
in [3]. Compared to the original proposal of using McEliece and Niederreiter with
binary Goppa codes, QC-MDPC codes allow much smaller keys and were shown
to achieve good performance on a variety of platforms [9,12–14] combined with
improved decoding and implementation techniques.

However, none of the previous implementations took into account that
the plain McEliece and Niederreiter cryptosystems do not provide indistin-
guishability under adaptive chosen-ciphertext attacks (IND-CCA), using QC-
MDPC codes does not change this fact. McEliece/Niederreiter can be integrated
into existing frameworks which provide IND-CPA or IND-CCA security (e.g.,
[11,18]). Another approach is to plug Niederreiter into an IND-CCA secure
hybrid encryption scheme as recently proposed by Persichetti [20]. It is the
first hybrid encryption scheme with assumptions from coding theory and it was
proven to provide IND-CCA security and indistinguishability of keys under adap-
tive chosen-ciphertext attacks (IK-CCA) in the random oracle model in [20].
Being a hybrid encryption scheme, it furthermore allows efficient encryption of
large plaintexts without requiring to share a symmetric secret key beforehand.
Still it is not clear how efficient such a system is in practice, especially when
implemented for constrained processors of embedded devices.

Contribution. In this work we provide the first implementation of QC-MDPC
Niederreiter for ARM Cortex-M4 microcontrollers for which we also deploy Per-
sichetti’s recent hybrid encryption scheme. We base Persichetti’s hybrid encryp-
tion scheme on QC-MDPC Niederreiter and extend it to handle arbitrary plain-
text lengths.

Outline. We summarize the background on QC-MDPC Niederreiter in Sect. 2.
Hybrid encryption with Niederreiter based on [20] is presented in Sect. 3. Our
implementation of QC-MDPC Niederreiter for ARM Cortex-M4 microcontrollers
is detailed in Sect. 4 followed by our implementation of Persichetti’s hybrid
encryption scheme in Sect. 5. Results and comparisons are given in Sect. 6. We
conclude in Sect. 7.

2 QC-MDPC Codes in a Nutshell

In the following we introduce (QC-)MDPC codes, show how the code-based
public-key cryptosystem Niederreiter is instantiated with these codes, and
explain efficient decoding of (QC-)MDPC codes.

2.1 (QC-)MDPC Codes

A binary linear [n, k] error-correcting code C of length n is a subspace of F
n
2

of dimension k and co-dimension r = n − k. Code C is defined by generator
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matrix G ∈ F
k×n
2 such that C = {mG ∈ F

n
2 |m ∈ F

k
2}. Alternatively, the code is

defined by parity-check matrix H ∈ F
r×n
2 such that C = {c ∈ F

n
2 |HcT = 0r}.

The syndrome of any vector x ∈ F
n
2 is s = HxT ∈ F

r
2. By definition, s = 0 for

all codewords of C.
A code C is called quasi-cyclic (QC) if there exists an integer n0 such that

cyclic shifts of codewords c ∈ C by n0 positions yield codewords c′ ∈ C of
the same code. If n = n0 · p for some integer p, the generator and parity-check
matrices are composed of p × p circulant blocks. Hence, storing one row of each
circulant block fully describes the matrices.

A (n, r, w)-MDPC code is a binary linear [n, k] error-correcting code whose
parity-check matrix has constant row weight w. A (n, r, w)-QC-MDPC code is a
(n, r, w)-MDPC code which is quasi-cyclic with n = n0r.

2.2 The QC-MDPC Niederreiter Cryptosystem

Using QC-MDPC codes in code-based cryptography was proposed in [16] for
the McEliece cryptosystem, a corresponding description of QC-MDPC Nieder-
reiter was published in [3]. We introduce the Niederreiter cryptosystem’s key-
generation, encryption and decryption based on t-error correcting (n, r, w)-QC-
MDPC codes.

QC-MDPC Niederreiter Key-Generation. Key-generation requires to gen-
erate a (n, r, w)-QC-MDPC code C with n = n0r. The private key is a composed
parity-check matrix of the form H = [H0 | . . . |Hn0−1] which exposes a decoding
trapdoor. The public key is a systematic parity-check matrix H ′ = [H−1

n0−1 ·H] =
[H−1

n0−1 ·H0 | . . . |H−1
n0−1 ·Hn0−2 | I] which hides the trapdoor but allows to com-

pute syndromes of the public code.
In order to generate a (n, r, w)-QC-MDPC code with n = n0r, select the

first rows h0, . . . , hn0−1 of the n0 parity-check matrix blocks H0, . . . , Hn0−1 with
Hamming weight

∑n0−1
i=0 wt(hi) = w at random and check that Hn0−1 is invert-

ible (which is only possible if the row weight dv is odd). The parity-check matrix
blocks H0, . . . , Hn0−1 are generated by r − 1 quasi-cyclic shifts of the first rows
h0, . . . , hn0−1. Their concatenation yields the private parity-check matrix H.
The public systematic parity-check matrix H ′ is computed by multiplication of
H−1

n0−1 with all blocks Hi. Since the public and private parity-check matrices
H ′ and H are quasi-cyclic, it suffices to store their first rows instead of the full
matrices. The identity part I of the public key is usually not stored.

QC-MDPC Niederreiter Encryption. Given a public key H ′ and a message
m ∈ Z/

(
n
t

)
Z, encode m into an error vector e ∈ F

n
2 with wt(e) = t. The ciphertext

is the public syndrome s′ = Heᵀ ∈ F
r
2.

QC-MDPC Niederreiter Decryption. Given a public syndrome s′ ∈ F
r
2,

recover its error vector using a t-error correcting (QC-)MDPC decoder ΨH with
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private key H. If e = ΨH(s′) succeeds, return e and transform it back to message
m. On failure of ΨH(s′) return ⊥.

Parameters. The following parameters are proposed in [16] among others for
QC-MDPC McEliece to achieve a 80-bit security level: n0 = 2, n = 9602, r =
4801, w = 90, t = 84. For a 128-bit security level the parameters are n0 =
2, n = 19714, r = 9857, w = 142, t = 134. The same parameters achieve the same
security levels for QC-MDPC Niederreiter [3].

By dv = w/n0 we denote the Hamming weight of each row of the n0 pri-
vate parity-check matrix blocks2. With these parameters the private parity-check
matrix H consists of n0 = 2 circulant blocks, each with constant row weight dv.
The public parity-check matrix H ′ consists of n0−1 = 1 circulant block concate-
nated with the identity matrix. The public key has a size of r bit and the private
key has a size of n bit which can be compressed since it is sparse (w � n). Plain-
texts are encoded into vectors of length n and Hamming weight t, ciphertexts
have length r. For a detailed discussion of the security of QC-MDPC McEliece
and QC-MDPC Niederreiter we refer to [3,16].

2.3 Decoding (QC-)MDPC Codes

Compared to encryption, decryption is a more involved operation in both time
and memory. Several decoders were proposed for decoding (QC-)MDPC codes
[2,7,9,10,16]. Bit-flipping decoders as introduced by Gallager in [7] were, with
some modifications, found to be most suitable for constrained devices [9,13,14].
We transfer the decoder and several optimizations to the QC-MDPC Niederre-
iter setting and introduce the decoder in its basic form in Algorithm1 in the
Appendix.

The decoder receives a private parity-check matrix H and a public syndrome
s′ as input and computes the private syndrome s = Hn0−1s

′ᵀ. Decoding then
runs in several iterations which in general works as follows: the inner loop iterates
over all rows of a block of the private-parity check matrix and counts the number
of unsatisfied parity-checks #upc by counting the number of shared set bits of
each row Hi[j] and the private syndrome s. If #upc exceeds a certain threshold3,
the decoder likely has found an error position and inverts the corresponding bit in
a zero-initialized error candidate ecand ∈ F

n
2 , thus the name bit-flipping decoder.

In addition, we include the optimization of directly updating the syndrome s by
addition of Hi[j] in case of a bit-flip as proposed in [9]. It was shown in [9,14]
that this modification improves the decoding behavior to take less decoding
iterations and to reduce the chance of decoding failures. Furthermore, decoding
is accelerated because recomputing the syndrome after every decoding iteration
is avoided.
2 80-bit: dv = 45, 128-bit: dv = 71. Note that n0 = 2 and w is even for the parameters

used in this paper.
3 The bit-flipping thresholds used in Algorithm 1 are precomputed from the code para-

meters as proposed in [7].
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The inner loop is repeated for every block Hi of H until all blocks have been
processed. Afterwards the public syndrome of the error candidate is computed
and compared to the initial public syndrome s′. On a match, the correct error
vector was found and is returned. Otherwise the decoder continues with the
next iteration. After a fixed maximum of iterations, decoding is restarted with
incremented thresholds as proposed in [14] for QC-MDPC McEliece. The failure
symbol ⊥ is returned if even after δmax threshold adaptations the correct error
vector is not found.

3 Hybrid Encryption with Niederreiter

Hybrid encryption schemes were introduced in [5]. They are divided into two
independent components: (1) a key encapsulation mechanism (KEM) and (2)
a data encapsulation mechanism (DEM). The KEM is a public-key encryption
scheme that encrypts a randomly generated symmetric session key under the
public key of the intended receiver. The DEM then encrypts the plaintext under
the randomly generated session key using a symmetric encryption scheme.

Hybrid encryption is usually beneficial in practice because symmetric encryp-
tion is orders of magnitude more efficient than pure asymmetric encryption, espe-
cially for large plaintexts. On the other hand sole usage of symmetric schemes is
not practical due to the symmetric key distribution problem. Hybrid encryption
takes the best of two worlds, efficient symmetric data encryption combined with
asymmetric key distribution.

3.1 Constructing Hybrid Encryption from Niederreiter

We introduce the Niederreiter hybrid encryption scheme as proposed in [20].
The authors focus on the realization of an IND-CCA secure KEM and assume
an IND-CCA symmetric encryption scheme as DEM.

The Niederreiter KEM. Let F be the family of t-error correcting [n, k]-linear
codes over Fq and let n, k, q, t be fixed system parameters. The Niederreiter
KEM πNR KEM = (GenNR KEM,EncNR KEM,DecNR KEM) follows the definition
of a generic Niederreiter scheme.

– GenNR KEM. Pick a random code C ∈ F with parity-check matrix H ′ =
(M | In−k). Output H ′ (or M) as public-key and the private code description
Δ as private key.

– EncNR KEM. Given a public-key H ′, generate a random error e ∈R F
n
q of

weight wt(e) = t and compute its public syndrome s′ = H ′eT . The symmetric
key k of length lk is generated from e by a key-derivation function (KDF) as
k = (k1 || k2) = KDF(e, lk). The output is (k, s′).

– DecNR KEM. Decode ciphertext s′ to e = ΨΔ(s′) using the private code
description Δ and decoding algorithm Ψ . Derive symmetric key k =
KDF(e, lk) if decoding succeeds. Otherwise, k is set to a pseudorandom string
of length lk, [20] suggests to set k = KDF(s′, lk).
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The Standard DEM. Let EncSEk1
(·) and DecSEk1

(·) denote en-/decryption oper-
ations of a symmetric encryption scheme under key k1 and let Evk2(·) denote
the evaluation of a keyed message authentication code (MAC) under key k2
that returns a fixed length message authentication tag τ . The standard DEM
πDEM = (EncDEM,DecDEM) is the combination of a symmetric encryption
scheme with a message authentication code4.

– EncDEM. Given a plaintext m and key k = (k1 || k2), encrypt m to T =
EncSEk1

(m) and compute the message authentication tag τ = Evk2(T ) of cipher-
text T under k2. The output is c∗ = (T || τ).

– DecDEM. Given a ciphertext c∗ and key k, split c∗ into T, τ and k into k1, k2.
Then verify the correctness of the MAC by evaluating Evk2(T ) ?= τ . If the
MAC is correct, plaintext m = DecSEk1

(T ) is decrypted and returned. In case
of a MAC mismatch, ⊥ is returned.

The Niederreiter Hybrid Encryption Scheme. The Niederreiter hybrid
encryption scheme πHY = (GenHY,EncHY,DecHY) is a combination of the
Niederreiter KEM πNR KEM with the DEM πDEM.

– GenHY invokes GenNR KEM() and returns the generated key-pair.
– EncHY is given plaintext m and public key H ′ and first invokes

EncNR KEM(H ′). The returned symmetric keys k1 and k2 are used to encrypt
the message to T = EncSEk1

(m) and to compute the authentication tag
τ = Evk2(T ). The overall ciphertext is (s′ ||T || τ).

– DecHY receives ciphertext (s′ ||T || τ) and invokes DecNR KEM(s′) to decrypt
the symmetric key k = (k1 || k2). Then it verifies the correctness of the MAC
by evaluating Evk2(T ) ?= τ . If the MAC is correct, plaintext m = DecSEk1

(T ) is
decrypted and returned. In case of a MAC mismatch, ⊥ is returned.

3.2 QC-MDPC Niederreiter Hybrid Encryption

Our instantiation of the Niederreiter hybrid encryption scheme of [20] realizes
the KEM using QC-MDPC Niederreiter as defined in Sect. 2.2. We construct the
DEM based on AES so that it is capable of handling arbitrary plaintext lengths
compared to the impractical one-time pad DEM used in [20]. We target 80-bit
and 128-bit security levels in this work. Hence, our DEM uses AES-128 in CBC-
mode for message en-/decryption and AES-128 in CMAC-mode for MAC com-
putation following the encrypt-then-MAC paradigm. Furthermore, we employ
SHA-256 for key derivation of (k1 || k2) from s′.

For an overall 256-bit security level, appropriate parameters for QC-MDPC
Niederreiter should be used (cf. [16]) combined with AES-256-CBC, AES-256-
CMAC, and SHA-512.
4 In [20], the DEM is simply assumed to be a fixed length one-time pad of the size of m

combined with a standardized MAC. Hence, EncSEk1 (m) = m ⊕ k1 and DecSEk1 (T ) =
T ⊕ k1 with m,T, k1 having the same fixed length.
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Fig. 1. Alice encrypts plaintext m for Bob using QC-MDPC Niederreiter hybrid
encryption with public key H ′

Bob. Note that we split the transfer of s′ and c∗ into
two steps for illustrative purposes.

Hybrid Key-Generation is simply using QC-MDPC Niederreiter key-
generation (cf. Sect. 2.2).

Hybrid Encryption generates a random error vector e ∈R F
n
2 with Hamming

weight t, encrypts e using QC-MDPC Niederreiter encryption to s′ and derives
two 128-bit symmetric sessions keys k = (k1 || k2) = SHA-256(e). Message m
is encrypted under k1 by AES-128 in CBC-mode to T starting from a random
initialization vector IV . A MAC tag τ is computed over T under k2 using AES-
128 CMAC. The ciphertext is (s′ ||T || τ || IV ).

Hybrid Decryption extracts the symmetric session keys k1, k2 from the QC-
MDPC Niederreiter cryptogram, verifies the provided AES-128 CMAC under k2
and finally decrypts the symmetric ciphertext using k1 with AES-128 in CBC-
mode. The scheme is illustrated in Fig. 1.

Security. Proof for the IND-CCA security of the hybrid scheme is given in [20]
assuming IND-CCA secure symmetric encryption. Furthermore, it was shown
in [5] that it is possible to construct IND-CCA symmetric encryption from IND-
CPA symmetric encryption (AES-CBC with random IVs [1]) by combining it
with a standard MAC (AES-CMAC).

4 QC-MDPC Niederreiter on ARM Cortex-M4

The implementation of QC-MDPC Niederreiter presented in the following tar-
gets ARM Cortex-M4 microcontrollers as they are a common modern repre-
sentative of embedded computing platforms. Our implementation covers key-
generation, encryption, and decryption. Details on the implementations of the
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hybrid encryption scheme based on QC-MDPC Niederreiter are presented in
Sect. 5.

To allow fair comparison with previous work we focus on the same micro-
controller that was used to implement QC-MDPC McEliece in [13]. The
STM32F417VG microcontroller [22] features an ARM Cortex-M4 CPU with
a maximum clock frequency of 168 MHz, 1 MB of flash memory and 192 kB of
SRAM. The microcontroller is based on a 32-bit architecture and features built-
in co-processors for hardware acceleration of AES, Triple DES, MD5, SHA-1 as
well as true random number generation (TRNG). Our implementations are writ-
ten in Ansi-C with additional use of Thumb-2 assembly for critical functions.
The primary optimization goal is performance, the secondary goal is memory
consumption, e.g., we make limited use of unrolling only where it has high per-
formance impacts.

4.1 Polynomial Representation

Our implementations use three different ways for polynomial representation.
Each representation has advantages which we exploit in different parts of our
implementation.

– poly t: is the näıve way to store a polynomial. It simply stores each bit of the
polynomial after each other, its size depends on the polynomial’s length and
is independent of the polynomial’s weight.

– sparse t: stores the positions of set bits of the polynomial. This representation
needs less memory than poly t if few bits are set in a polynomial. Furthermore,
the sparse t representation allows fast iteration of set bits in the polynomial
without having to test all positions.

– sparse double t: stores the polynomial similarly to the sparse t representation
but allocates twice the size of the actually required memory. The yet unused
memory is prepended. In addition, it holds a pointer indicating the start of the
polynomial. This representation is beneficial when rotating sparse polynomials
compared to rotation in sparse t representation. Its benefits will be explained
in more detail when we talk about efficient decoding in Sect. 4.4.

4.2 QC-MDPC Niederreiter Key-Generation

Generating a random first row candidate hn0−1 for block Hn0−1 of length r
and Hamming weight dv is done using the microcontroller’s TRNG as source of
entropy. Its outputs are used as indexes at which we set bits in the polynomial.
Since r is prime and hence not a power of two, we use rejection sampling to
ensure a uniform distribution of the sampled indexes. The TRNG provides 32
random bits per call but only �log2(r)� random bits (13 bit at 80-bit security
level, 14 bit at 128-bit security level) are needed to determine an index in the
range of 0 ≤ i ≤ r − 1. Hence we derive two random indexes per TRNG call.

As already stated in Sect. 2.2, we have to ensure that Hn0−1 is invertible. We
therefor apply the extended Euclidean algorithm to newly generated first row
candidates until an invertible hn0−1 is found.
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We generate the remaining first rows hi, similar to hn0−1 but skip the inverse
checking as only Hn0−1 has to be invertible. After private key generation, we
compute the corresponding public key which is the systematic parity-check
matrix H ′ = H−1

n0−1 · H = [H−1
n0−1 · H0| . . . |I], so all we need to do is to compute

H−1
1 ·H0 and append the identity matrix since n0 = 2 in our selected parameter

sets. As the private key has few set bits (dv � r) we store it in sparse repre-
sentation. The public key is stored in polynomial representation due to its high
density. Since the code is quasi-cyclic, we only need to store the first rows of
both matrices. The different representations ease and accelerate later usage.

4.3 QC-MDPC Niederreiter Encryption

Given a public key H ′ and an error vector5 e ∈ F
n
2 of weight wt(e) = t, we

compute the public syndrome s′ = H ′eᵀ. Computing s′ is done by iterating over
set bits in the error vector and accumulating the corresponding rows of H ′. Since
the error vector is stored in sparse representation, the index of each bit in the
error vector specifies the number of cyclic shifts of the first row of public key H ′.
To avoid repeated shifting, we reuse the previous shifted row and shift it only
by the difference to the next bit index. Multiplication of eᵀ by the identity part
of H ′ is skipped. As the public syndrome has high density, we store it in poly t
representation.

4.4 QC-MDPC Niederreiter Decryption

For decryption we implement two decoder variants, referred to as DecA and
DecB . They differ in their implementation, the decoding behavior of both
remains as explained in Sect. 2.3. We start with DecA and subsequently look
at the improvements made in DecB to accelerate decryption. Furthermore, we
discuss general implementation optimizations.

DecA starts by computing the private syndrome s = Hn0−1s
′ᵀ from the public

syndrome s′ and the private key H. This is basically the same operation as
encryption, however we use the sparse t representation for the private key.

Recovery of the error vector e starts from a zero-initialized error candidate
ecand of length n. For each row of the private parity-check matrix blocks we
observe in how many positions they differ from the private syndrome s, i.e.,
counting unsatisfied parity-checks. We implement this step by computing the
binary AND of the current row of the private parity-check matrix block with
s followed by a Hamming weight computation of the result. If the Hamming
weight exceeds the decoding threshold biteration, we invert the corresponding bit
in ecand. The position is determined by the current row i and block j with
pos = j ∗r+ i. Additionally, we XOR the current row onto the private syndrome

5 We do not implement constant weight encoding since it is not needed in the hybrid
encryption scheme. Encrypting a message m ∈ Z/

(
n
t

)
Z requires to encode it into an

error-vector e ∈ F
n
2 of weight wt(e) = t and to reverse the encoding after decryption.
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for a direct update every time a bit is flipped in ecand. Updating the syndrome
while decoding was shown to drastically increase decoding performance in [9,14]
for QC-MDPC McEliece, the results similarly apply to QC-MDPC Niederreiter.

We iterate over the private key row by row from the first block to the last
by taking the first row of each block and performing successive cyclic shifts. The
sparse t representation allows efficient shifting as we only have to increment
dv indexes to effectively shift the polynomial. However, we have to check for
overflows of incremented indexes which translate to carry transfers in the regular
poly t representation. An overflow results in additional effort, as we have to
transfer every value in memory so that the position of the highest bit is always
stored in the highest counter.

After iterating over all rows of the private key, we compute the public syn-
drome of the current error candidate, i.e., we encrypt ecand to s′

cand = H ′eᵀ
cand,

and compare s′
cand to the initial public syndrome s′. On a match, the error vector

was found and decryption finishes by returning e. On a mismatch, we continue
with the next decoding iteration. After a fixed number of iterations6, we abort
and restart decoding with the original private syndrome and increased decoding
thresholds similar to the optimized decoder for QC-MDPC McEliece presented
in [14].

DecB. The decoding approach of DecA has two downsides. First, the public key
has to be known during decryption which diverges from standard crypto APIs.
Second, costly encryptions have to be performed after each decoding iteration
to check whether the current error candidate is the correct error vector. Our
decoder DecB solves these drawbacks as described in the following.

The first optimization is to transform the private key from sparse t to
sparse double t polynomial representation. This structure allows us to efficiently
handle overflows during row rotation. A cyclic shift without carry is equivalent
to the sparse t representation in which we increment every bit index of the poly-
nomial. If case of a carry, we pop the last value of the array (with value r), move
all array elements by one position, and insert a new value in the beginning (with
value 0). We illustrate this operation in Fig. 2.

Using sparse double t, we avoid direct manipulation of the array in case of a
carry which is the costly part of the sparse t representation. Instead, we decre-
ment the pointer by one and insert a zero at the first element. The last element
is ignored since the polynomial has known fixed weight dv and thereby known

Fig. 2. Carry handling during cyclic rotation in sparse t representation.

6 We found the number of iterations experimentally and set it to five, in line with
iteration counts reported in [13,14].
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Fig. 3. Carry handling during cyclic rotation in sparse double t representation. The
pointer position is indicated by the black arrow.

length. While the previous approach needs r operations, this approach breaks it
down to two operations, independent of the polynomial’s length. We illustrate
the carry handling in sparse double t representation in Fig. 3.

Our second optimization checks if the Hamming weight of the error candi-
date matches the expected Hamming weight wt(e) = t instead of encrypting
ecand after every decoding iteration. If the Hamming weights do not match, we
continue with the next decoding iteration immediately. Since Hamming weight
computation of a vector is a much cheaper operation than vector matrix multi-
plication, decryption performance improves.

Our third optimization eliminates the need to encrypt the error candidate
to determine whether the correct error vector was found. Instead we test the
private syndrome for zero at the end of each decoding iteration. Since the private
syndrome is updated every time a bit-flip occurs, it becomes zero once the correct
error vector was recovered.

Other general optimizations include writing hot code of the decryption rou-
tine in Thumb-2 assembly giving us full control of the executed instructions
and allowing us to pay close attention to the instruction execution order to
avoid pipeline stalls by interleaving instructions which decreases the number of
wasted clock cycles. Furthermore, we store two 16-bit indexes in one 32-bit field
of the sparse double t type7. As we indicate the start by a pointer, we do not
need to actually shift the values in memory in case of an overflow. A shift by
16 bit would be expensive on a 32-bit architecture. Furthermore, this allows us
to increment two values with one ADD instruction and we process twice the data
with each load and store instruction. To benefit from the burst mode of the
load and store instructions (LDMIA and STMIA), i.e., loading and storing multiple
words from/to SRAM, we have to ensure that the memory pointers are 32-bit
word aligned. This however is not the case every second overflow since we decre-
ment the sparse double t pointer in 16-bit steps. To deal with this issue a flag
variable is used and, if set, we temporarily decrease the pointer for alignment.

5 QC-MDPC Niederreiter Hybrid Encryption on ARM
Cortex-M4

In this section we detail our implementation of the IND-CCA secure QC-MDPC
Niederreiter hybrid encryption scheme for ARM Cortex-M4 microcontrollers as
7 16 bit are sufficient to store the position for both 80-bit and 128-bit security.
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introduced in Sect. 3.2. We describe hybrid key-generation, hybrid encryption,
as well as hybrid decryption based on our implementation of QC-MDPC Nieder-
reiter (cf. Sect. 4).

5.1 Hybrid Key-Generation

The hybrid encryption scheme requires an asymmetric key-pair for the KEM,
and two symmetric keys for the DEM. One symmetric key is used to ensure con-
fidentiality through encryption, the other key is used to ensure message authen-
tication. However, only the asymmetric key pair is permanent, the symmetric
keys are randomly generated during encryption. Thus, the implementation of
the hybrid key-generation is equal to QC-MDPC Niederreiter key-generation
(cf. Sect. 4.2).

5.2 Hybrid Encryption

On input of a plaintext m ∈ F
∗
2 and a QC-MDPC Niederreiter public key H ′,

we generate a random error vector e ∈R F
n
2 with wt(e) = t using the microcon-

troller’s TRNG and encrypt e under H ′ using QC-MDPC Niederreiter encryption
(cf. Sect. 4.3). Additionally, a hash is derived from e and is split into two 128-bit
keys k = (k1 || k2) = SHA-256(e).

After generation of k1 and k2 the key encapsulation is finished and we
continue with data encapsulation. We generate a random 16-byte IV using
the microcontroller’s TRNG and encrypt message m under k1 to T =
AES-128-CBCenc,k1(IV,m). Ciphertext T is then fed into AES-128-CMAC, gen-
erating a 16-byte tag τ under key k2. Finally, we concatenate the outputs to
x = (s′ ||T || τ || IV ).

To accelerate AES operations we make use of the AES crypto co-processor
featured by the STM32F417 microcontroller for encryption and MAC generation.
Unfortunately, the crypto co-processor only offers SHA-1 acceleration which we
refrain from to not lower the overall security level. Thus we created a software
implementation of SHA-256 for hashing.

5.3 Hybrid Decryption

Hybrid decryption receives ciphertext x = (s′ ||T || τ || IV ) and decrypts the
public syndrome s′ using QC-MDPC Niederreiter decryption with the KEM
private key to recover the error vector e (cf. Sect. 4.4). After successful decryption
of e, we derive sessions keys k1 and k2 by hashing the error vector with SHA-256.
We compute the AES-128-CMAC tag τ∗ of the symmetric ciphertext T under
k2. If τ∗ 	= τ we abort decryption, otherwise we AES-128-CBC decrypt T under
k1 to recover plaintext m.

Again we make use of the microcontroller’s AES crypto co-processor to accel-
erate decryption and MAC computation. For SHA-256 we use the same software
implementation as during encryption.
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6 Implementation Results

In the following we present our implementation results of QC-MDPC Niederre-
iter and of the hybrid encryption scheme from [20] instantiated with QC-MDPC
Niederreiter. Both implementations target ARM Cortex-M4 embedded micro-
controllers. We list code size as well as execution time, evaluate the impact of
our optimizations and compare the results with previous work. Our code was
built with GCC for embedded ARM (arm-eabi v.4.9.3) at optimization level -O2.

6.1 QC-MDPC Niederreiter Results

In order to measure the performance of QC-MDPC Niederreiter key-generation,
encryption and decryption, we use randomly chosen instances throughout the
measurements. We generate 500 random key-pairs and measure for each key-pair
500 en-/decryptions of randomly chosen plaintexts of n-bit length and Hamming
weight t, resulting in 250,000 executions over which we average the execution
time. Furthermore, we measure cyclic shifting in poly t compared to the sparse
polynomial representations to verify our optimizations in more detail. The exe-
cution times are listed for 80-bit security, results for 128-bit security are given
in parenthesis.

QC-MDPC Niederreiter key-generation takes 376.1 ms (1495.8 ms), encryp-
tion 15.6 ms (81.7 ms) and decryption 109.6 ms (477.7 ms) with decoder DecB on
average. With decoder DecA, decryption takes 697.9 ms (3830.2 ms) on average.
Both decoders require 2.35 (3.25) decoding iterations on average until decoding
succeeds. As embedded microcontrollers usually generate few key pairs in their
lifespan, key-generation performance is usually of less practical relevance.

Generating the full private parity-check matrix from its first row in the
straightforward poly t representation takes 83.4 ms (345.8 ms). Our sparse t rep-
resentation accelerates this to 11.6 ms (34.0 ms), even faster rotations with 7.9 ms
(21.2 ms) for the same task are achieved with the sparse double t representation.
By storing private keys in sparse representation with two 16-bit counters in one
32-bit word we reduce the required memory per private key by 85 % (88.5 %)
from 9602 bit (19714 bit) to 1440 bit (2272 bit) compared to simply storing the
polynomials in their full length.

The code size of 80-bit QC-MDPC Niederreiter including key-generation,
encryption and decryption with DecA requires 14 KiB flash memory (1.3 %) and
additional 4 KiB SRAM (2.0 %). For the 128-bit parameter set we need 19 KiB
flash memory (1.9 %) and 4 KiB SRAM (2.0 %). The same implementation with
decoder DecB requires 16 KiB flash (1.6 %) and 3 KiB SRAM (1.5 %). For 128-
bit security we measured 20 KiB flash memory (2.0 %) and 3 KiB SRAM (1.5 %)
with DecB . In Table 1 the code size of each function is listed separately. Note that
the sum of the separate code sizes is greater than the combined implementation
since we reuse code.
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6.2 QC-MDPC Niederreiter Hybrid Encryption Results

The overall execution time of hybrid encryption schemes is dominated by the
asymmetric component for key en-/decapsulation. Hence, we focus on QC-
MDPC decoder DecB for key decapsulation as it operates much faster compared
to DecA. We generate 500 random key pairs and en-/decrypt 500 randomly cho-
sen plaintexts with a length of 32 byte for each key pair with the hybrid encryp-
tion scheme. We measure short plaintexts to get worst-case performance in terms
of cycles/byte, longer plaintexts only marginally affect performance since they
are only processed by the symmetric components. We list our results for 80-bit
security, results for 128-bit security are given in parenthesis.

Key-generation of the hybrid encryption scheme requires 386.4 ms
(1511.8 ms), hybrid encryption takes 16.5 ms (83.2 ms), and hybrid decryption
111.0 ms (477.5 ms) on average. Compared to pure QC-MDPC Niederreiter, the
symmetric operations (en-/decryption, MACing, hashing) only add very little to
the overall execution time (< 5%) although the hybrid encryption scheme seems
more complex at first. The AES computations are hardware accelerated which
results in further speedup but even if a Cortex-M4 microcontroller without an
AES co-processor would be used we would only see a slight increase in the overall
execution time. The required code size of the complete hybrid encryption scheme
(QC-MDPC Niederreiter, AES-128-CBC, AES-128-CMAC, SHA-256) is 25 KiB
flash (2.4 %) and 4 KiB SRAM (2.0 %) at 80-bit security and 30 KiB flash (2.8 %)
and 4 KiB SRAM (2.0 %) at 128-bit security.

6.3 Comparison with Previous Work

Implementation results reported in other work are listed in Table 1 in the Appen-
dix. A direct comparison of QC-MDPC McEliece [13] with our hybrid QC-MDPC
Niederreiter implemented on similar ARM Cortex-M4 microcontrollers shows
that hybrid QC-MDPC Niederreiter is around 2.5 times faster at the same secu-
rity level. In addition it provides IND-CCA security and the possibility to effi-
ciently handle large plaintexts. However, one has to keep in mind that the QC-
MDPC McEliece implementation of [13] features constant runtime which adds
to its execution time.

Compared to QC-MDPC McEliece implemented on an ATxmega256 [9], our
encryption runs 50 times faster and decryption runs 25 times faster, in addition
we provide IND-CCA security through hybrid encryption. Comparing implemen-
tations on ATxmega256 with implementations on STM32F417 is by no means
a fair comparison, however both microcontrollers come at a similar price which
makes the comparisons relevant for practical applications.

We refrain from comparing our work to the cyclo-symmetric (CS) MDPC
Niederreiter implementation on a PIC24FJ32GA002 microcontroller as pre-
sented in [3] because it was shown in [19] that the proposed CS-MDPC parame-
ters do not reach the proclaimed security levels and need adaptation. McEliece
implementations based on binary Goppa codes targeting the ATxmega256 micro-
controller were presented in [6,8]. Again, our implementations outperform both
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by factors of 5–28. In addition, binary Goppa code public keys are much larger
(64 kByte vs. 4801 bit) up to the point of being impractical for embedded devices
with constraint memory. The CCA2-secure McEliece implementation based on
Srivastava codes presented in [4] also targets the ATxmega256 and is just 4–8
times slower than our hybrid QC-MDPC Niederreiter which seems to make it a
good competitor if it would be implemented on the same microcontroller as our
work.

7 Conclusion

In this work we presented first implementations of QC-MDPC Niederreiter and of
Persichetti’s IND-CCA secure hybrid encryption scheme for embedded microcon-
trollers. We extended the hybrid encryption scheme to handle arbitrary plaintext
lengths by choosing well-known symmetric components for data encapsulation
and we achieve reasonable performance by combination of new implementation
optimizations with transferred known techniques from QC-MDPC McEliece.
Furthermore, our implementations operate with practical key sizes which for
a long time was one of the major drawbacks of code-based cryptography.
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(PQCRYPTO). The authors would like to thank Rafael Misoczki for helpful feedback
and comments when starting this project.

Appendix

Algorithm 1: Syndrome decoder for QC-MDPC codes which returns error vector e or failure ⊥.

1 Input H, s′, iterationsmax, δmax, threshold ;
2 Output e ;

3 Compute the private syndrome s ← Hn0−1s′ᵀ;

4 δ ← 0;
5 ecand ← 0n;
6 while δ < δmax do
7 iterations ← 0;
8 while iterations < iterationsmax do
9 for i in n0 do

10 for j in r do
11 hw ← HammingWeight(Hi[j] & s);
12 if hw ≥ (threshold[iterations] + δ) then
13 ecand[i · r + j] ← ecand[i · r + j] ⊕ 1;
14 s ← Hi[j] ⊕ s;
15 end

16 end

17 end

18 s′
cand ← H′e

ᵀ
cand;

19 if s′ = s′
cand then

20 return ecand;
21 end
22 iterations++;
23 end
24 δ++;

25 s ← Hn0−1s′ᵀ;

26 end
27 return ⊥;
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Table 1. Performance and code size of our implementations of QC-MDPC Niederre-
iter using DecB compared to other implementations of similar public-key encryption
schemes on embedded microcontrollers. We abbreviate Niederreiter (NR) and McEliece
(McE). As code is reused in the combined implementation its size is smaller than the
sum of the three separate implementations.

Scheme Platform SRAM [byte] Flash [byte] Cycles/op Time/op [ms]

QC-MDPC NR 80-bit [enc] STM32F417 2,048 3,064 2,623,432 16

QC-MDPC NR 80-bit [dec] STM32F417 2,048 8,621 18,416,012 110

QC-MDPC NR 80-bit [keygen] STM32F417 3,136 8,784 63,185,108 376

QC-MDPC NR 80-bit [combined] STM32F417 3,136 16,124 - -

QC-MDPC NR 128-bit [enc] STM32F417 2,048 4,272 13,725,688 82

QC-MDPC NR 128-bit [dec] STM32F417 2,048 8,962 80,260,696 478

QC-MDPC NR 128-bit [keygen] STM32F417 3,136 12,096 251,288,544 1496

QC-MDPC NR 128-bit [combined] STM32F417 3,136 20,416 - -

QC-MDPC McE 80-bit [enc] [13] STM32F407 2,700a 5,700a 7,018,493 42

QC-MDPC McE 80-bit [dec] [13] STM32F407 2,700a 5,700a 42,129,589 251

QC-MDPC McE 80-bit [keygen] [13] STM32F407 2,700a 5,700a 148,576,008 884

QC-MDPC McE 80-bit [enc] [9] ATxmega256 606 5,500 26,767,463 836

QC-MDPC McE 80-bit [dec] [9] ATxmega256 198 2,200 86,874,388 2,710

Goppa McE [enc] [6] ATxmega256 512 438,000 14,406,080 450

Goppa McE [dec] [6] ATxmega256 12,000 130,400 19,751,094 617

Goppa McE [enc] [8] ATxmega256 3,500 11,000 6,358,400 199

Goppa McE [dec] [8] ATxmega256 8,600 156,000 33,536,000 1,100

Srivastava McE [enc] [4] ATxmega256 - - 4,171,734 130

Srivastava McE [dec] [4] ATxmega256 - - 14,497,587 453
aFlash and SRAM memory requirements are reported for a combined implementation of key generation,

encryption, and decryption
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Abstract. In this paper, we consider a pseudo-random generator based
on the difficulty of the syndrome decoding problem for rank metric codes.
We also study the resistance of this problem against a quantum com-
puter. Our results show that with rank metric it is possible to obtain
fast PRNG with small public data, without considering additional struc-
ture for public matrices like quasi-cyclicity for Hamming distance.

1 Introduction

Pseudo-random number generators (PRNG) are an essential tool in cryptogra-
phy. They can be used for one-time cryptography or to generate random keys for
cryptosystems. A long series of articles have demonstrated that the existence of
a PRNG is equivalent to the existence of one-way functions [19,22,29]. Basically,
a one-way function is a function which is easy to compute but hard to invert.

There are two types of PRNG in cryptography. The first one is based on
block cipher schemes, like AES for instance, used in OFB mode. This gives in
general very fast random generators. The second type includes PRNG proven to
be secure by reduction to a hard problem. The problems considered can be based
on classical problems from cryptography, like factorization or discrete logarithm,
[5,6] or they may be based on linear algebra, like coding theory [11] or lattices
[1] or multivariate quadratic systems [2].

Recent works [13,26] have proven that PRNG based on the syndrome decod-
ing (SD) problem could be almost as fast as PRNG based on AES. However the
PRNG based on the SD problem have to store huge matrices. This problem can
be solved with the use of quasi-cyclic codes but there is currently no proof of
the hardness of the SD problem for quasi-cyclic codes. Moreover recent quan-
tum attacks on special ideal lattices [10], clearly raise the issue of the security
of quasi-cyclic structures for lattices and codes, even if a straight generalization
of this quantum attack from cyclic structures to quasi-cyclic structures seems
currently out of reach.

Code-based cryptography has been studied for many years, since the pro-
posal of the McEliece cryptosystem [25]. This type of cryptography relies on the
difficulty of the SD problem for Hamming distance, which is proven NP-hard [3].
Besides this particular metric, other metrics may be interesting for cryptographic
purposes. For instance, the rank metric leads to SD problems whose complexity
grows very fast with the size of parameters. In particular, recent advances in
c© Springer International Publishing Switzerland 2016
T. Takagi (Ed.): PQCrypto 2016, LNCS 9606, pp. 18–28, 2016.
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this field have shown that the problem of decoding general codes in rank metric
is hard [15]. Moreover the best known attacks have an exponential complexity
with a quadratic term in the exponent. In practice it means that it is possible
to obtain cryptosystems with keysizes of only a few thousand bits and without
additional structure such as cyclicity (or quasi-cyclicity). This is particularly
interesting since it avoids relying on the hardness of structured problems whose
security is less known than the security of general instances.

In this paper we study the case of a PRNG based on general instances of
the Rank Syndrome Decoding problem. We build a PRNG based on the rank
metric which has both a reasonable data size (a few thousand bits), which is
reasonably fast and which is asymptotically better than PRNG based on the
Hamming metric without cyclic structure. It is possible to optimize separately
each of these aspects, like the size in constrained environments such as chip cards.
We prove that breaking our PRNG is not easier than breaking the Fischer-Stern
PRNG [11]. We also study how a quantum computer can be used to speed up
the best known combinatorial attacks on the rank syndrome decoding problem.
In the last section, we give parameters for our system, against classical and
quantum attacks.

2 Generalities on the Rank Metric

First, let us define the central notion of this paper, namely matrix codes

Definition 1 (matrix code). A matrix code C of length m × n over Fq is a
subspace of the vector space of matrices of size m × n with entries in Fq. If C
is of dimension K, we say that C is an [m × n,K]q matrix code, or simply an
[m × n,K] code if there is no ambiguity.

The difference between an [m × n,K] matrix code and a code of length mn

and dimension K is that it allows to define another metric given by d(A,B) def=
Rank(A − B). The weight of a word c is equal to wR(c) def= d(c, 0). Linear codes
over an extension field Fqm give in a natural way matrix codes, and they have
in this case a very compact representation which allows to decrease key sizes.

Definition 2 (matrix code associated to an Fqm-linear code). Let C be an
[n, k] linear code over Fqm . Each word c of C can be associated to an m×n matrix
over Fq by representing each coordinate ci by a column vector (ci1, . . . , cim)T

where ci =
∑m

j=1 cijβj with β1, . . . , βm being an arbitrary basis of Fqm viewed as
a vector space over Fq and cij ∈ Fq. In other words the cij’s are the coordinates
of ci in this basis. The matrix code associated to C is of type [m × n, km]q.

By definition, the weight of a word c ∈ C is the rank of its associated matrix.
It does not depend on the choice of the basis. Such matrix codes have a more
compact representation than generic matrix codes. Indeed an [n, k] Fqm-linear
code can be described by a systematic parity-check matrix over Fqm , which
requires k(n−k)m �log q� bits, whereas a representation of an [m×n, km]q matrix



20 P. Gaborit et al.

code requires in general km(mn−km) �log q� = k(n−k)m2 �log q� bits. In other
words we can reduce the size of the representation of such codes by a factor m
if we consider the subclass of matrix codes obtained from Fqm -linear codes.

There is also a notion of Gilbert-Varshamov distance for the rank metric.
For the Hamming metric, the Gilbert Varshamov distance for [n, k]q codes cor-
responds to the “typical” minimum distance of such codes. It is given by the
smallest t for which |BH

t | ≥ qn−k where BH is the ball of radius t centered around
0 for the Hamming metric. The Gilbert-Varshamov distance for [m × n, km]q
matrix codes in the rank metric is given by the smallest t for which

|BR
t | ≥ qm(n−k)

where BR is the ball of radius t centered around 0 for the rank metric (in other
words it is the set of m × n matrices over Fq of rank ≤ t). It is readily checked
that (see [24])

|BR
t | ≈ qt(m+n−t)

which gives dGV ≈ m+n−
√

(m+n)2−4m(n−k)

2 .

3 Cryptography Based on Rank Metric

3.1 A Difficult Problem

Similarly to the syndrome decoding problem for the Hamming metric we can
define the rank syndrome decoding (RSD) problem.

Problem 1 (Rank Syndrome Decoding). Let C be an [n, k] Fqm-linear code, w an
integer and s ∈ F

n−k
qm . Let H be a parity-check matrix of C. The problem is to

find a word e ∈ F
n
qm such that

{
HeT = s
wR(e) = w

Recently it was proven in [15] that this problem had a probabilistic reduction
to the Syndrome Decoding problem for the Hamming distance which is known
to be NP-complete. This substantiates claims on the hardness of this problem.

3.2 Complexity of Practical Attacks

The complexity of practical attacks grows quickly with the size of parameters,
there is a structural reason for this: for the Hamming distance a key notion in
the attacks is counting the number of words of length n and support size t,
which corresponds to the notion of Newton binomial coefficient

(
n
t

)
, whose value

is exponential in n for a fixed ratio t/n, since log2
(
n
t

)
= nh(t/n)(1+o(1)) where

h(x) def= −x log2 x − (1 − x) log2(1 − x). In the case of the rank metric, counting
the number of possible supports of size w for a matrix code associated to an
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Fqm-linear code of length n corresponds to counting the number of subspaces of
dimension w in Fqm . This is given by the Gaussian binomial coefficient [mr ]q. In
this case logq [mr ]q = w(m−w)(1+0(1)). Again this number behaves exponentially
but the exponent is quadratic. This is of course to be compared to the “real”
length of the matrix code which is also quadratic: m × n.

The approaches that have been tried to solve this problem fall into two
categories:

– Combinatorial Approach: This approach gives the best results for small
values of q (typically q = 2) and for large values of n and k. When q becomes
large, they become less efficient however. The first non-trivial combinatorial
algorithm for the RSD problem was proposed in 1996 (see [8]), then in 2002
Ourivski and Johannson [27] improved it. However for both of the algorithms
suggested in [27] the exponent of the complexity does not involve n. Recently
these two algorithms were generalized in [14] by Gaborit et al. with a complexity
in O(

(n − k)3m3q(w−1)� (k+1)m
n �). Notice that the exponent involves now n and

when n > m the exponent becomes better than the one in [27].
– Algebraic Approach: The particular nature of rank metric makes it a

natural field for algebraic system solving by Groebner bases. The complexity of
these algorithms is largely independent of the value of q and in some cases may
also be largely independent from m. These attacks are usually the most efficient
ones when q becomes large. There exist different types of algebraic modeling for
the rank metric decoding problem. The algebraic modeling proposed by Levy and
Perret [23] in 2006 considers a quadratic system over Fq by taking as unknowns
the support E of the error and the error coordinates regarding E. There are
also other ways of performing the algebraic modeling: the Kernel attack [9,17],
the Kipnis-Shamir modeling [21] or the minor approach (see [28] for the most
recent results on this topic). The last one uses the fact that the determinant
of minors of size greater than w is zero to derive algebraic equations of degree
w + 1. All of these proposed algorithms can be applied to the RSD problem but
they are based on an algebraic modeling in the base field Fq so that the number
of unknowns is always quadratic in n (for m = Θ(n) and w = Θ(n)), so that
the general complexity for solving these algebraic equations with Groebner basis
techniques is exponential in O(

n2
)
.

More recently, a new algebraic modeling based on a annulator approach was
proposed by Gaborit et al. in [14]. It yields multivariate sparse equations of
degree qr+1 but on the extension field Fqm rather than on the base field Fq

and results in a drastic reduction of the number of unknowns. The latter attack
is based on the notion of q-polynomial and is particularly efficient when w is
small. Moreover all these attacks can be declined in a hybrid approach where
some unknowns are guessed but asymptotically they are less efficient than other
approaches.

Overall, all the known attacks for solving the RSD problem in the case where

m = O(
n
)
, w = O(

n
)

have a complexity in 2O
(
n2

)

. Moreover because of the
behavior of the Gaussian binomial coefficient and because of the number of
unknowns for algebraic solving, it seems delicate to do better.
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4 One-Way Functions Based on Rank Metric

We use here the hardness of the RSD problem to build a family of one-way
functions based on this problem. Let us start by recalling the definition of a
strongly one-way function (see [12, Definition 1]):

Definition 3. A collection of functions {fn : En → F
kn
2 } is called strongly one

way if:

– there exists a polynomial-time algorithm which computes fn(x) for all x ∈ En

– for every probabilistic polynomial-time algorithm A, for all c > 0 and for

sufficiently large n, Prob
(
A(fn(x)) ∈ f−1

n (fn(x))
)

<
1
nc

We will consider the following family:
En,k = {(H,y) : H ∈ F

(n−k)×n
qn ,y ∈ F

n
qn , wR(y) = wn}

f : En,k → F
(n−k)×(n+1)
qn

(H,y) 
→ (H,HyT )

We take m = n so that the first algorithm of [14] does not improve the
complexity of [27]. These functions should be strongly one-way if we choose
wn ≈ dGV (n, k) which corresponds to the range where there is basically in
general a unique preimage.

5 A PRNG Based on Rank Metric Codes

5.1 Description of the Generator

Now that we have a family of one-way functions based on a hard problem, our
goal is to use them to build a PRNG which will inherit of that hardness. We
begin by letting k = Rn and w = ωn for some constant R and ω. The secu-
rity and the complexity of computing the pseudo-random sequence associated
to this generator will then be expressed as a function of n, with R and ω as
parameters.

First it is necessary to expand the size of the input, so that the number of
syndromes becomes larger than the number of words of weight wn. By definition,
these two numbers are equal when w = dGV so that we can choose ω < dGV

n .
The size of the input is n(n−k)n �log q� = n3(1−R) �log q� for H plus wn(2n−
wn) �log q� = n2(2ω − ω2) �log q� for y and the size of the output is n3(1 −
R) �log q� + n2(1 − R) �log q�. So the function fn expands the size of the input
by n2(1 − R − 2ω + ω2) �log q� = O(

n2
)

bits. To compute fn(H,y) one has
to perform a product matrix-vector in a field of degree n, which costs O(

n3
)

operations in Fq.
Secondly we need an algorithm which computes a word y ∈ F

n
qn of weight

ωn with n2(2ω − ω2) �log q� bits. This can be done very easily. According to
Definition 2, y can be seen as an n × n matrix M over Fq of rank ωn. Let



RankSynd a PRNG Based on Rank Metric 23

β = (β1, . . . , βωn) be a basis of the subspace generated by the rows of M . We
can represent β by a matrix B ∈ F

ωn×n
q . There exists a unique matrix A ∈ F

nn
q

such that M = AB. In order to ensure the unicity of this representation, we
need to take B in its echelon form Bech, then M = A′Bech for some matrix A′.
Unfortunately, it is not so easy to enumerate all the echelon matrices efficiently.
To avoid this problem, we only generate words with a certain form, as it is done
for SYND [13].

Definition 4 (Regular Rank Words). A word y ∈ F
n
qn of weight r is said

regular if its associated matrix M ∈ F
n×n
q is of the form

M = A

⎛

⎜
⎝

1
. . . C

1

⎞

⎟
⎠

with A ∈ F
n×r
q and C ∈ F

r×(n−r)
q .

The probability that a word of weight r is regular is equal to the probability
that a r × r matrix over Fq is invertible. This probability is greater than a
constant c > 0 for all r and q. Thus it is not harder to solve the RSD problem in
the general case than to solve the RSD problem by restraining it to the regular
words, since if a polynomial algorithm could solve the RSD problem in the case
of regular words then it would also give an algorithm solving the RSD problem
with a probability divided by a constant, hence the RSD problem with regular
words remains hard.

Algorithm 1. Expansion Algorithm
Input: n2(2ω − ω2) �log q� bits
Output: y ∈ F

n
qn , wR(y) = ωn

Data: A basis (β1, . . . , βn) of Fqn/Fq

begin

compute x ∈ F
n2(2ω−ω2)
q with the input bits;

compute A ∈ F
n×ωn
q with the first ωn2 coordinates of x;

compute B ∈ F
ωn×(n−ωn)
q with the last coordinates of x;

B ← (Iωn|B) /* this is the concatenation of two matrices
*/;
M ← AB;
y ← (β1, . . . , βn)M ;
return y;

The most expensive step of this algorithm is the matrix product which takes
ωn3 operations in Fq, so its overall complexity is O(

n3
)
.
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With these two functions, we can construct an iterative version of the gen-
erator which can compute as many bits as we want.

Algorithm 2. Our Pseudo-Random Generator
Input: a vector x ∈ F

K
q where K is the security parameter

Output: N pseudo-random bits
Data: a random matrix in systematic form H ∈ F

(1−R)n×n
qn , an

initialization vector v ∈ F
n2(2ω−ω2)−K
q

begin
y ← Expansion(x‖v);
repeat

s ← HyT ;
split s into two strings of bits s1 and s2, with s1 of length
n2(2ω − ω2) �log q�;
output s2;
y ← Expansion(s1);

until the number of bits generated > N ;

5.2 Security of the Generator

We recall that a distribution is pseudo-random if it is polynomial-time indistin-
guishable from a truly random distribution. If our generator were not pseudo-
random, then there would exist a distinguisher DR which distinguishes a
sequence produced by our generator from a truly random sequence with a non-
negligible advantage. We can use this distinguisher to build another distinguisher
for the Fischer-Stern generator [11]. That generator is proven pseudo-random if
syndrome decoding in the Hamming metric is hard [3]. It takes as input a parity-
check matrix M ∈ F

k×n
2 of a random code and a vector x ∈ F

n
2 of Hamming

weight d, with d smaller than the Gilbert-Varshamov bound (in the Hamming
metric) of the code and outputs (M,MxT ).

We need a method to embed an Fq-linear code into an Fqm-linear code. We
use the same technique as in [15].

Definition 5. Let m � n and α = (α1, . . . , αn) ∈ F
n
qm . We define the embedding

of Fn
q into F

n
qm by:

ψα : F
n
q → F

n
qm

(x1, . . . , xn) 
→ (α1x1, . . . , αnxn) (1)

For every Fq-linear code C, we denote by C(C,α) the Fqm-linear code generated
by the set ψα(C).

Our distinguisher works as follow:

– it takes as input M ∈ F
(n−k)×n
2 and s ∈ F

n−k
2 .
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– it chooses a vector α ∈ F
n
2m at random until the coordinates of α are F2-

linearly independent.
– it gives to DR the input (ψα(M), s).
– it returns the same value as DR.

If (M, s) is an output of the Fisher-Stern generator, then there exists an x such
that s = MxT and wH(x ) = d. Hence s = ψα(M)ψβ(x )T with β = α−1 =
(α−1

1 , . . . , α−1
n ).

Let C be the code of parity-check matrix M . Since C is a random code, its
Hamming minimum distance d is on the Gilbert-Varshamov bound, so d ≈ dGV .

Note that wH(ψβ(x )) = d. According to Theorem 8 of [15], if we choose
m > 8n, the probability that the rank minimum distance dR of C(C,α) is dif-
ferent from d decreases exponentially with n. According to Lemma 7 of [15], the
rank weight of ψβ(x ) satisfies wR(ψβ(x )) = wH(x ) = d. This implies that the
distinguisher DR accepts (M, s) with a non-negligible advantage.

If (M, s) is purely random, DR sees only a random distribution and accepts
the inputs with probability 1/2.

Thus the existence of a distinguisher for our generator implies the existence
of a distinguisher for the Fisher-Stern generator, which contradicts Theorem 2
of [12]. This implies that our generator is pseudo-random.

6 Quantum Attacks

In this section we evaluate the complexity of solving the rank (metric) syndrome
decoding problem with a quantum computer. We will use for that a slight gener-
alization of Grover’s quantum search algorithm [16,18] given in [7] what we will
use in the following form. We will use the NAND circuit model as in [4], which
consists in a directed acyclic graph where each node has two incoming edges and
computes the NAND of its predecessors.

Theorem 1. [7] Let f be a Boolean function f : {0, 1}b → {0, 1} that is com-
putable by a NAND circuit of size S. Let p be the proportion of roots of the
Boolean function

p
def
=

#{x ∈ {0, 1}b : f(x) = 0}
2b

.

Then there is a quantum algorithm based on iterating a quantum circuit O(
1√
p

)

many times that outputs with probability at least 1
2 one of the roots of the Boolean

function. The size of this circuit is O(
S

)
.

Basically this tool gives a quadratic speed-up when compared to a classical
algorithm. Contrarily to what happens for the Hamming metric [4], where using
this tool does not yield a quadratic speed-up over the best classical decoding
algorithms, the situation is here much clearer: we can divide the exponential
complexity of the best algorithms by two. The point is that the algorithms
of [14,20] can be viewed as looking for a linear subspace which has the right
property, where linear spaces with appropriate parameters are drawn uniformly
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at random and this property can be checked in polynomial time. The exponential
complexity of these algorithms is basically given by O(

1
p

)
where p is the fraction

of linear spaces that have this property. More precisley we have

1
p

= O(
q(w−1)(k+1)

)

for m > n, (see [20]) and

1
p

= O(
q(w−1)� (k+1)m

n �)

when m ≤ n, see [14]. Checking whether the linear space has the right property
can be done by
(i) solving a linear system with (n − k − 1)m equations and with about as many
unknowns over Fq,
(ii) checking whether a matrix over Fq of size r × r′ is of rank equal to w where
(r, r′) = (m − � (k+1)m

n �, n) in the case m ≤ n and (r, r′) = (n − k − 1,m) in the
case m > n.

If we view q as a fixed quantity, there is a classical NAND circuit of size
O(

(n−k)3m3
)

that realizes these operations. In other words, by using Theorem 1
we obtain

Proposition 1. For fixed q, there is a quantum circuit with O(
(n − k)3m3

)

gates that solves the rank metric syndrome decoding problem in time O(
(n −

k)3m3
)
q(w−1)(k+1)/2 when m > n and in time O(

(n − k)3m3q(w−1)� (k+1)m
n �/2

)

when m ≤ n.

7 Conclusion

In this paper we give the first PRNG based on rank metric. The security if system
relies on the hardness of solving general instances of the RSD problem, which
permits to obtain small size of keys without considering additional structure like
cyclicity or quasi-cyclicity. We give results and parameters which show that our
system is a good trade-off between speed and data size when compared to other
code-based PRNG in a context of PRNG provably as secure as known difficult
problems. We also study the improvement of the complexity of the best known
combinatorial attacks a quantum computer may bring. We give parameters both
resistant to the best known classical and quantum attacks.
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Abstract. We present quantum circuits to implement an exhaustive
key search for the Advanced Encryption Standard (AES) and analyze the
quantum resources required to carry out such an attack. We consider the
overall circuit size, the number of qubits, and the circuit depth as mea-
sures for the cost of the presented quantum algorithms. Throughout, we
focus on Clifford+T gates as the underlying fault-tolerant logical quan-
tum gate set. In particular, for all three variants of AES (key size 128,
192, and 256 bit) that are standardized in FIPS-PUB 197, we establish
precise bounds for the number of qubits and the number of elementary
logical quantum gates that are needed to implement Grover’s quantum
algorithm to extract the key from a small number of AES plaintext-
ciphertext pairs.

Keywords: Quantum cryptanalysis · Quantum circuits · Grover’s algo-
rithm · Advanced Encryption Standard

1 Introduction

Cryptanalysis is an important area where quantum algorithms have found appli-
cations. Shor’s seminal work invalidates some well-established computational
assumptions in asymmetric cryptography [27], including the hardness of factor-
ing and the computation of discrete logarithms in finite cyclic groups such as
the multiplicative group of a finite field. On the other hand, regarding symmet-
ric encryption, the impact of quantum algorithms seems less dramatic. While a
quantum version of related key attacks [26] would be a threat for block ciphers
provided that quantum access to the encryption function is given, as this requires
the ability to generate quantum superpositions of related keys, this attack model
is somewhat restrictive. In particular, the related key attack of [26] is not applica-
ble to, say, a context where a small number of plaintext-ciphertext pairs are given
and the goal is to identify the encryption key.
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It has been known for some time that in principle Grover’s search algorithm
[15] can be applied to the problem of finding the key: the square root speed-up
offered by Grover’s algorithm over a classical exhaustive key search seems to be
the most relevant quantum cryptanalytic impact for the study of block ciphers.
To actually implement such an attack, the Boolean predicate that is queried in
Grover’s algorithm needs to be realized as a circuit. Perhaps interestingly, even
for the most obvious target—the Advanced Encryption Standard [24], which in
its 256-bit version has recently been suggested to be quantum-safe [5]—to the
best of our knowledge no detailed logical level resource estimate for implement-
ing Grover’s algorithm is available. The seemingly simple task of implementing
the AES function actually requires some analysis as the circuit implementation
is required to be reversible, i.e., it must be possible to implement the opera-
tion via an embedding into a permutation. Once a reversible implementation is
known, in principle also a quantum implementation can be derived as the set of
permutations is a subset of all unitary operations.

Our contribution. We provide reversible circuits that implement the full
Advanced Encryption Standard AES-k for each standardized key size (i.e.,
k = 128, 192, 256). We establish resource estimates for the number of qubits
and the number of Toffoli gates, controlled NOT gates, and NOT gates. See
[23] for basic definitions of quantum and reversible logic gates. Furthermore, we
consider decompositions of the reversible circuits into a universal fault-tolerant
gate set that can then be implemented as the set of logical gates. As underlying
fault-tolerant gate set we consider the so-called set of Clifford+T gates.1 This
gate set is motivated, e.g., by the fact that this set of gates can be implemented
fault-tolerantly on a large set of codes, including the surface code family [13,14]
and concatenated CSS codes [25,28]. Clifford gates typically are much cheaper
than the T -gate which commonly is implemented using state distillation. When
breaking down the circuit to the level of T -gates we therefore pay attention to
reducing the overall T -count. See also [3,4] for techniques how to optimize the
T -count and [2] for techniques that allow to navigate the trade-space between T -
depth and the number of qubits used. For the particular case of the Toffoli gate
we use an implementation that requires 7 T -gates and several Clifford gates,
see [3,23]. There is a probabilistic circuit known that implements the Toffoli
gate with only 4 T -gates [16], however, as the architecture requirements will
be stronger in that measurement and feed-forward of classical information is
required, we focus on the purely unitary decomposition that requires 7 T -gates.
We remark however, that the only source of T -gates in this paper are Toffoli
gates, hence it is possible to use Jones’ Toffoli factorization mutatis mutandis
which leads to all given resource estimates for the T -count being multiplied by
4/7 and the requirement of 1 additional ancilla qubit. In our resource estimates
we do not to restrict interactions between qubits and leave the implementation,
e.g., on a 2D nearest neighbor array for further study, including an investigation

1 As is common, we do not distinguish between T =

(
1 0
0 exp(iπ/4)

)
and T †-gates.
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of the remaining quantum circuit placement problems [21] that will have to be
solved for the logical gate lists that are produced by our approach.

One of our main findings is that the number of logical qubits required to
implement a Grover attack on AES is relatively low, namely between around
3, 000 and 7, 000 logical qubits. However, due to the large circuit depth of
unrolling the entire Grover iteration, it seems challenging to implement this algo-
rithm on an actual physical quantum computer, even if the gates are not error
corrected. It is worth noting that much of the circuit cost within each Grover iter-
ation originates from the key expansion, i. e., from deriving the round keys and
that the overall depth is a direct result of the serial nature of Grover’s algorithm.

2 Preliminaries: Grover’s Algorithm

Before going into technicalities of how to implement AES as a quantum circuit,
we briefly recall the interface that we need to provide to realize a key search,
namely Grover’s algorithm [15]. The Grover procedure takes as an input a quan-
tum circuit implementing a Boolean function f : {0, 1}k −→ {0, 1} in the usual
way, i.e., via a quantum circuit Uf that implements |x〉|y〉 �→ |x〉|y ⊕ f(x)〉,
where x ∈ {0, 1}n and y ∈ {0, 1}. The basic Grover algorithm finds an element
x0 such that f(x0) = 1. Denoting by H the 2 × 2 Hadamard transform, the
Grover algorithm consists of repeatedly applying the operation G to the initial
state |ψ〉 ⊗ |ϕ〉, where |ψ〉 = 1√

2k

∑
x∈{0,1}k |x〉, |ϕ〉 = 1√

2
(|0〉 − |1〉), and where

G is defined as

G = Uf

(
(H⊗k(2|0〉〈0| − 12k)H⊗k) ⊗ 12

)
, (1)

where |0〉 denotes the all zero basis state of the appropriate size. Overall, G has
to be applied a number of O(

√
N/M) times in order to measure an element x0

such that f(x0) = 1 with constant probability, where N is the total number of
candidates, i.e., N = 2k, and provided that there are precisely M solutions, i.e.,
M = |{x : f(x) = 1}|; see also [23, Sect. 6.1.2], [8] for an analysis. If we know that
there is only one solution, i.e., M = 1, this means that we can find a solution
by applying H⊗k+1 to the initial state |0〉⊗k ⊗ |1〉 and then applying G�, where
� = 	π

4

√
N�, followed by a measurement of the entire quantum register which

will yield a solution x0 with high probability [23, Sect. 6.1.4], [8].
As we will show in the following section, we can indeed define a function

f from the set of possible keys, i.e., k ∈ {128, 192, 256} for the case of AES,
such that there is (plausibly) precisely one solution to the problem of finding the
correct key K that was used to encrypt a small set of given plaintext-ciphertext
pairs, i.e., we can (plausibly) enforce the situation M = 1 by defining a suitable
function f . We remark, however, that it is possible to modify Grover’s algorithm
in various ways so that it can cope with a larger (but known) number M > 1 of
solutions or even with a completely unknown number of solutions: as mentioned
above, if the number M of solutions is known, O(

√
N/M) iterations are enough,

however, if the number is unknown, there is an issue that it is not possible to
pick the right number of iterations a priori. Nonetheless, there is a variant of



32 M. Grassl et al.

Fig. 1. (a) Quantum circuit to implement Grover’s algorithm. The algorithm consists
of creating the equal superposition

∑
x |x〉 in the upper register which for the case

of AES has k = 128, 192, 256 qubits and a single qubit state |−〉 = |0〉 − |1〉 in the
lower register. The operator G is the Grover iterate and is applied a total number
of �π

4

√
2k� many times. (b) One round of Grover’s algorithm. Shown is the operator

G = Uf

(
(H⊗k(2|0〉〈0| − 12k )H⊗k) ⊗ 12

)
and its circuit decomposition. Note that the

effect of the gates between the two layers of Hadamard gates is to invert the phase of
the basis state |0〉 on the upper k bits (up to a global phase).

the algorithm which finds a solution in expected running time O(
√

N/M) even
when the number M of solutions is unknown [8, Sect. 6].

There are several ways out of this dilemma which we mention briefly for
completeness but point out that we did not implement these alternatives: one
can first apply a quantum algorithm to count the number of solutions [8,10]
or one can do an exponential search on the number of iterations [8,9], or one
can employ an adaptive schedule in which the Grover operator is changed to an
operator that rotates by different angles depending on the index of the iteration
[30], thereby driving the oscillation of the quantum state into a bounded region
(the “fixed point”) which then yields a solution upon measurement.

Returning to the case of Grover’s algorithm with a unique solution, we now
study the number of gates and the space requirements needed in order to imple-
ment the algorithm. We consider the gates shown in Fig. 1, in particular we first
focus on the circuit shown in part (b) of the figure and analyze its complexity.
While H is a Clifford operation, besides the operation Uf which involves the
classical computation of (several) AES functions, we also have to determine the
cost κ for the operation (2|0〉〈0| − 1) in Eq. (1). This reduces to the implemen-
tation of a k-fold controlled NOT gate, where for us k ∈ {128, 192, 256}. The
resource estimates for this gates in terms of Toffoli gates can be obtained from
[6] to be (as n ≥ 5): 8k − 24 Toffoli gates which evaluates to 1, 000, 1, 512, and
2, 024 Toffoli gates per phase operation (2|0〉〈0|−12k), respectively. For the num-
ber of Clifford+T gates (counting only T s) one could directly apply an upper
bound by multiplying κ with 7, however, one can derive a slightly better bound:
as shown in [29] (see also [20]), one can employ phase cancellations and show
an upper bound of 32k − 84 for a k-fold controlled NOT gate, i.e., we obtain
4, 012, 6, 060, and 8, 108 for the T -count per phase operation for the three key
sizes k ∈ {128, 192, 256}.

We spend the rest of the paper to obtain estimates for f : {0, 1}k → {0, 1}
which proceeds by first mapping K �→ (AESK(m1), . . . ,AESK(mr)) and then
computing the equality function of the resulting vector with the given ciphertexts
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c1, . . . , cr, where ci ∈ {0, 1}128. In other words, we define the value of f on a
given input key K ∈ {0, 1}k (where k ∈ {128, 192, 256}) as follows:

f(K) := (AESK(m1) = c1) ∧ . . . ∧ (AESK(mr) = cr).

As argued below, it is plausible that r = 3, 4, 5 are sufficient for the three stan-
dardized AES key sizes. The equality function can be implemented by a multiply
controlled NOT gate that has 128r (many controls where r = 3, 4, 5) and a single
target. Using the above formulas this leads to Toffoli counts of 3, 048, 4, 072, and
5, 096, respectively, as well as T -counts of 12, 204, 16, 300, and 20, 396, respec-
tively. We return to the question of providing exact quantum resource estimates
for Grover’s algorithm in Sect. 3.4 after the implementation details of the “ora-
cle” function Uf have been derived in the subsequent sections.

3 Implementing the Boolean Predicate—Testing a Key

An essential component needed in Grover’s algorithm is a circuit which on input
a candidate key |K〉 indicates if this key is equal to the secret target key or not. To
do so, the idea is to simply encrypt some (fixed) plaintext under the candidate
key and compare the result with the (assumed to be known) corresponding
ciphertext under the secret target key.

3.1 Ensuring Uniqueness of the Solution

As AES always operates on 128-bit plaintexts, at least for 192-bit and 256-
bit keys we have to assume that fixing a single plaintext-ciphertext pair is not
sufficient to determine a secret key uniquely.

Arguing with the strict avalanche criterion [11,19] exactly in the same way as
in [26, Sect. 2.1], we can plausibly assume that for every pair of keys (K,K ′) ∈
{0, 1}k×k with K �= K ′ the condition

(AESK(m1), . . . ,AESK(mr)) �= (AESK′(m1), . . . ,AESK′(mr))

holds for some suitable collection of plaintexts m1, . . . , mr. The reason for this
is that, for a fixed plaintext, when flipping a bit in the secret key, then each bit
of the corresponding ciphertext should change with probability 1/2. Hence, for r
simultaneous plaintext-ciphertext pairs that are encrypted under two secret keys
K ′ �= K we expect to get different results with probability about 1 − 2−rn, if
the plaintexts are pairwise different, where n denotes the length of the message.
Hence out of a total of 22k − 2k key pairs (K,K ′) with K �= K ′, about (22k −
2k) · 2−rn ≤ 22k−rn keys K ′ �= K are expected to give the same encryptions.
Hence it seems plausible to estimate that

r > �2k/n� (2)

plaintexts suffice to ensure that for every K ′ �= K at least one separating plain-
text is available. As AES has 128-bit plaintexts we have that n = 128, i.e.,
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Eq. (2) implies that for key length k the adversary has r > �2k/128� plaintext-
ciphertexts pairs (m1, r1), . . . , (mr, cr) for the target key available. In other
words, to characterize the secret target key uniquely, we assume that r = 3
(AES-128), r = 4 (AES-192), and r = 5 (AES-256) suitable plaintext-ciphertext
pairs are known by the adversary.

3.2 Reversible and Quantum Circuits to Implement AES

We assume that the reader is familiar with the basic components of AES. For a
detailed specification of AES we refer to FIPS-PUB 197 [24]. To realize this round-
oriented block cipher as a reversible circuit over the Toffoli gate set, respectively
as a quantum circuit over the Clifford+T gate set, we need to take care of the key
expansion, which provides all needed 128-bit round keys, as well as the individual
rounds. While the number of rounds depends on the specific key length k, the
four main functions—AddRoundKey, MixColumns, ShiftRows, and SubBytes—
that are used to modify the 128-bit internal state of AES are independent of k.

First, we discuss the realization of these four functions, before going into
details of combining them with the key expansion into complete round functions
and a full AES. In our design choices, we tried to keep the number of qubits low,
even when this results in a somewhat larger gate complexity. For instance, to
implement the F256-multiplications within SubBytes, we opted for a multiplier
architecture requiring less qubits, but more Clifford and more T -gates.

3.2.1 Circuits for the Basic AES Operations
The internal AES state consists of 128 bits, organized into a rectangular array
of 4 × 4 bytes. We will devote 128 qubits to hold the current internal state.

AddRoundKey. In the implementation of the key expansion, we ensure that the
current round key is available on 128 dedicated wires. Implementing the bit-
wise XOR of the round key then reduces to 128 CNOT gates which can all be
executed in parallel.

MixColumns. Since MixColumns operates on an entire column of the state or
32 (qu)bits at a time, the matrix specified in [24] was used to generate a 32× 32
matrix. An LUP-type decomposition was used on this 32×32 matrix in order to
compute this operation in place with 277 CNOT gates and a total depth of 39.
Example 1 offers a similar but smaller version of an LUP-type decomposition as
we used.

ShiftRows. As ShiftRows amount to a particular permutation of the current
AES state, we do not have to add any gates to implement this operation as
it corresponds to a permutation of the qubits. Instead, we simply adjust the
position of subsequent gates to make sure that the correct input wire is used.

SubBytes. This operation replaces one byte of the current state with a new
value. For a classical implementation, a look-up table can be an attractive
implementation option, but for our purposes, explicitly calculating the result of
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this operation seems the more resource friendly option. Treating a state byte as
element α ∈ F2[x]/(1+x+x3+x4+x8), first the multiplicative inverse of α (leav-
ing 0 invariant) needs to be found. This is followed by an affine transformation.
To find α−1 we adopt the idea of [1] to build on a classical Itoh-Tsujii multiplier,
but we work with in-place matrix multiplications. Specifically, we compute

α−1 = α254 = ((α · α2) · (α · α2)4 · (α · α2)16 · α64)2, (3)

exploiting that all occurring exponentiations are F2-linear. Using again an LUP-
type decomposition, the corresponding matrix-multiplication can be realized in-
place, using CNOT gates only. And by adjusting the positions of subsequent
gates accordingly, realizing the permutation is for free, no gates need to be
introduced for this.

Example 1. Squaring in F2[x]/(1 + x + x3 + x4 + x8) can be expressed as multi-
plying the coefficient vector from the left with

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1
0 1 0 0 0 1 0 0
0 0 0 0 1 1 1 1
0 0 1 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 1
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From this, we see that in-place-squaring can be implemented with only twelve
CNOT gates. The resulting circuit is shown in Fig. 2.

To realize the six multiplications in Eq. (3), we use a general purpose multi-
plier in the underlying binary field. We opted for a design by Maslov et al. [22],
which requires less than 60 % of the number of qubits than a more recent design
in [18]. This comes at the cost of an increased gate complexity, however, and
a different design choice could be considered. For the specific polynomial basis
representation of F256 at hand, Maslov et al.’s design, requires 64 Toffoli plus
21 CNOT gates, which with Amy et al. [3] translates into 64 · 7 = 448 T - plus
64 · 8 + 21 = 533 Clifford gates.

Noticing that three of the multiplications in Eq. (3) are actually duplicates,
it turns out that four multiplications suffice in order to implement the inversion.
Trying to reduce the number of total qubits required at each step, the actual
calculation of computing α−1 fits into 40 qubits total, producing |α〉, |α〉−1,
and twenty-four reinitialized qubits as output. To do so, and reinitialize qubits,
we invest twelve linear transformations and eight F256-multiplications, totalling
3584 T -gates and 4539 Clifford gates.

Once α−1 is found, the affine transformation specified in [24] must be com-
puted, which can be done with an LUP-type decomposition; four uncontrolled
NOT gates take care of the vector addition after multiplication with a matrix.
In total one 8-bit S-box requires 3584 T -gates and 4569 Clifford gates.
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Fig. 2. Squaring in F2[x]/(1 + x + x3 + x4 + x8)

SubBytes—an alternative implementation minimizing qubits. The inversion α �→
α−1 (where 0 is mapped to 0) can be seen as a permutation on F256. This
permutation is odd, while quantum circuits with NOT, CNOT, and Toffoli gates
on n > 3 qubits generate the full alternating group A2n of even permutations.
Hence we have to use one ancilla qubit, i.e., nine qubits in total. The task is then
to express a permutation on 512 points in terms of the generators corresponding
to the NOT, CNOT, and Toffoli gates. While computer algebra systems like
Magma [7] have built-in functions for this, the resulting expressions will be
huge. In order to find a short factorization, we compute a stabilizer chain and
corresponding transversals using techniques similar to those described in [12].
We use a randomized search to find short elements in each transversal. As it is
only relevant to implement the exact function when the ancilla qubit is in the
state |0〉, we choose the first 256 points in the basis for the permutation group
as those with the ancilla in the state |0〉, and the remaining 256 points as those
with the ancilla in the state |1〉. This allows to compute a factorization modulo
permutations of the last 256 points. With this approach, we found a circuit with
no more than 9695 T -gates and 12631 Clifford gates, less than three times more
gates than the version above, but using only 9 instead of 40 qubits in total.

3.2.2 Key Expansion
Standard implementation of the key expansion for AES-k (k = 128, 192, 256)
separates the original k-bit key into 4, 6 or 8 words of length 32, respectively
and must expand the k-bit key into forty-four words for k = 128, fifty-two words
for k = 192 and sixty words for k = 256. Each AES key expansion uses the
same operations and there are only slight differences in the actual round key
construction. The operations are RotWord, a simple rotation, SubBytes, and
Rcon[i], which adds xi−1 ∈ F256 to the first byte of each word.

While the three different versions of AES employ up to 14 rounds of com-
putation, the key expansion is independent of the input. The words created by
the key expansion were divided into two categories: the words needing SubBytes
in their computation and those that do not. The words not involving SubBytes
can be recursively constructed from those that do by a combination of XORings
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Table 1. Quantum resource estimates for the key expansion phase of AES-k, where
k ∈ {128, 192, 256}.

#gates Depth #qubits

NOT CNOT Toffoli T Overall Storage Ancillae

128 176 21,448 20,480 5,760 12,636 320 96

192 136 17,568 16,384 4,608 10,107 256 96

256 215 27,492 26,624 7,488 16,408 416 96

making them simple to compute as needed, saving up to 75 % of the storage cost
of the key expansion. The most expensive of these is word 41 or w41 in AES-128
which is constructed by XORing 11 previous words costing 352 CNOT gates and
a total depth of 11.

Since SubBytes is costly, the remaining words are stored as they are con-
structed. In a classical AES implementation, these words (every fourth or sixth)
are produced by starting with the previous word, however in this construction
the previous word must be constructed, and removed, as needed. For exam-
ple, in AES-128, to construct w8, first w7 must be constructed as follows:
w7 = w4 ⊕ w3 ⊕ w2 ⊕ w1.

This can be done on the previously constructed word (here w4) saving qubits,
gates, and depth. Since the construction of w8 involves the use of w4 the above
process needs to be repeated to be removed before the end of construction of
w8. For the construction of these words, similar to ShiftRows, RotWord can be
eliminated if the position of the gates is shifted to use the correct wires. Since
SubWord applies SubBytes to each byte of the word independently, each of the
four SubBytes computations can be done concurrently.

Example 2. Below is the construction of w8. Notice that w7 is constructed on
top of w4.
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To allow each of the four SubBytes routines per round to perform simulta-
neously, 96 auxilary qubits would be needed, along with the 32 needed to store
the new word. With each word constructed requiring the previous word be con-
structed first, we did not reduce the depth further. Computation costs are listed
in Table 1 (the listed qubit costs do not include storing the original key).

3.2.3 AES Rounds
AES starts with a simple whitening step—XORing the input with the first four
words of the key. Since, in this case, the input is a fixed value, and adding a
fixed value can be done by simply flipping bits, approximately 64 uncontrolled
NOT gates are used on the first four key words to start round one. This can be
reversed later when needed, but saves 128 qubits. If this is not the case, then
128 qubits are needed to store the input and 128 CNOT gates can be used to
compute this step. While the 10, 12, or 14 rounds of AES all apply the same basic
functions, the circuit structure differs slightly per round to reduce qubits and
depth. SubBytes must be computed 16 times per round, requiring 384 auxiliary
qubits for all to be done simultaneously or an increase in depth is needed. Using
only the minimum 24 auxiliary qubits and the 128 qubits needed to store the
result, it was noticed that all 16 SubBytes calculations per round could be done
with a maximum depth of 8 SubBytes cycles.

Since SubBytes is not done in place, and AES-k requires 128 qubits per
round, the computation takes 128 qubits times the number of rounds per AES,
in addition to the number of qubits needed to store the original key. This number
can be reduced by reversing steps between computations to clear qubits for future
use. Once SubBytes has been applied, the input can be removed by reversing
enough steps (but the output could not be removed as its counterpart (inverse)
is gone). Since AES-128 employs 10 rounds, using 512 qubits for storage and
24 auxiliary qubits, allows the reverse process to be applied three times. For
AES-192 and AES-256, we used 640 qubits for storage since we did not manage
to have three rounds of reversing on 536 qubits.

Example 3. The reverse process representation for AES-128. Notice this method
leaves Round 4, Round 7 and Round 9 with no way to be removed unless the
entire process is reversed.
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For AES-192 and AES-256 the reversing process is done after rounds five, nine
and twelve, requiring only 128 qubits more than AES-128.

As stated, ShiftRows is for free and using an LUP-type decomposition for
MixedColumns allows this process to be done in place using 277 CNOT gates
with a maximum depth of 39. To compute all 10 rounds of AES-128, 536 qubits
were needed, 664 qubits were used to compute the 12 rounds of AES-192 and 14
rounds of AES-256.

The XORing of the round keys can be done directly on top of the input for
each round. If the round key needed is already constructed, 128 CNOT gates
with a depth of 1 are used to complete the round. If the round key is not already
constructed and thus a combination of constructed keys, then it only requires
this process to be done multiple times. AES-128 requires this to be done 11 times
(the most) in the case of w41, increasing the depth and CNOT gate count by at
most 11.

3.3 Resource Estimates: Reversible AES Implementation

The numbers listed in the three tables below show the costs in gates, depth and
qubits to achieve the output of each AES-k system.

3.4 Resource Estimates: Grover Algorithm

From the discussion in the previous sections we obtain a reversible circuit for
computing AESK(mi), i.e., a circuit C that implements the operation |K〉|0〉 �→
|K〉|AESK(mi)〉. The overall circuit to implement Uf is shown in Fig. 3. The
AES layer can be applied in parallel, however, as the used ancilla qubits have
to be returned clean after each round, we have to uncompute each AES box
within each round. Hence the depth (and T -depth) increases by a factor of 2
within each invocation of Uf . The total number of gates (and T -gates) on the
other hand increases by a factor of 2r as all boxes have now to be counted. The
number of qubits is given by r times the number of qubits within each AES box.

Once the AES boxes have been computed, the result is compared with the
given ciphertexts c1, . . . , cr. Note that as AES operates on plaintexts/ciphertexts
of length 128 we have that ci ∈ {0, 1}128 throughout. The comparison is done

Table 2. Quantum resource estimates for the implementation of AES-128.

#gates Depth #qubits

T Clifford T Overall

Initial 0 0 0 0 128

Key Gen 143,360 185,464 5,760 12,626 320

10 Rounds 917,504 1,194,956 44,928 98,173 536

Total 1,060,864 1,380,420 50,688 110,799 984
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Table 3. Quantum resource estimates for the implementation of AES-192. The lower
gate count in Key Gen and the lower depth, when compared to AES-128, arises from
using the additional available space to store intermediate results and to parallelize
parts of the circuit.

#gates Depth #qubits

T Clifford T Overall

Initial 0 0 0 0 192

Key Gen 114,688 148,776 4,608 10,107 256

12 Rounds 1,089,536 1,418,520 39,744 86,849 664

Total 1,204,224 1,567,296 44,352 96,956 1,112

Table 4. Quantum resource estimates for the implementation of AES-256.

#gates Depth #qubits

T Clifford T Overall

Initial 0 0 0 0 256

Key Gen 186,368 240,699 7,488 16,408 416

14 Rounds 1,318,912 1,715,400 52,416 114,521 664

Total 1,505,280 1,956,099 59,904 130,929 1,336

Fig. 3. The reversible implementation of the function Uf is shown in further detail. In
this case the key size k = 128 is considered for which r = 3 invocations of AES suffice
in order to make the target key unique. For the cases of k = 192 the number of parallel
AES boxes increases to r = 4 and for k = 256 to r = 5, however, the overall structure
of the circuit is common to all key sizes.

by a multiply controlled NOT gate and the controls are either 0 or 1 depending
on the bits of ci. This is denoted by the superscript ci on top of the controls
in Fig. 3. We can now put everything together to estimate the cost for Grover’s
algorithm based on the AES-k resource estimates given in the previous section:
denoting by sk the total number of qubits, tk the total number of T -gates, ck the
total number of Clifford gates, δk the overall T -depth and Δk the overall depth,
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Table 5. Quantum resource estimates for Grover’s algorithm to attack AES-k, where
k ∈ {128, 192, 256}.

k #gates Depth #qubits

T Clifford T Overall

128 1.19 · 286 1.55 · 286 1.06 · 280 1.16 · 281 2, 953

192 1.81 · 2118 1.17 · 2119 1.21 · 2112 1.33 · 2113 4, 449

256 1.41 · 2151 1.83 · 2151 1.44 · 2144 1.57 · 2145 6,681

where k = 128, 192, 256, then we obtain the following estimates for the overall
Grover algorithm. The space requirements are 3s128 + 1 qubits for AES-128,
4s192 + 1 qubits for AES-192, and 5s256 + 1 qubits for AES-256.

Regarding the time complexity, we obtain that per Grover iteration we need
6t128 many T -gates for AES-128 plus the number of T -gates needed for the 384-
fold controlled NOT inside Uf and the 128-fold controlled NOT to implement the
phase (2|0〉〈0|−1). We estimated the T -counts of these two operations earlier to
be 12,204 and 1,000 respectively. Overall, we have to perform 	π

4 2k/2� iterations,
i.e., we obtain for the overall T -gate count for Grover on AES-128 the estimate of

⌊π

4
264

⌋
· (

6t128 + 13, 204
)

= 9.24 · 1025 = 1.19 · 286

many T -gates. Similarly, we can estimate the number of Clifford gates which
for simplicity we just assume to be 6c128, ignoring some of the Clifford gates
used during the rounds. For AES-192 we have to perform 	π

4 296� iterations
and for AES-256 we have to perform 	π

4 2128� iterations. For the T -count of
the controlled operations we obtained 16, 300 + 1, 512 = 17, 812 and 20, 396 +
2024 = 22, 420 earlier. Overall, this gives for Grover on AES-192 the estimate of
3.75 ·1036 = 1.81 ·2114 many T -gates and for Grover on AES-256 the estimate of
4.03 ·1045 = 1.41 ·2151 many T -gates. For the overall circuit depth we obtain the
number of rounds times 2 times δk, respectively Δk, ignoring some of the gates
which do not contribute significantly to the bottom line. The overall quantum
resource estimates are given in Table 5.

4 Conclusion

When realizing AES, only SubBytes involves T -gates. Moreover, SubBytes is
called a minimum of 296 times as in AES-128 and up to 420 times in AES-256.
As shown above, for all three standardized key lengths, this results in quantum
circuits of quite moderate complexity. So it seems prudent to move away from
128-bit keys when expecting the availability of at least a moderate size quantum
computer.

As mentioned in the context of the discussion about Grover’s algorithm in
the presence of an unknown number of solutions, the implementation of the algo-
rithms in [10] for quantum counting, [9] for general amplitude amplifications, and
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[30] for fixed-point quantum search might lead to space-time tradeoff implemen-
tations of the function f . This might in particular be beneficial for the circuit
mentioned in [30] as this does not incur a space overhead and can deal with
an unknown number of solutions, provided an upper bound on the number of
solutions is known a priori. We leave the question of providing quantum resource
estimations for attacking AES and other block ciphers by means of such fixed-
point versions of Grover’s algorithm for future work. Also an interesting area
of future research is the resource cost estimation of recently proposed quantum
linear and differential cryptanalysis [17].
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Abstract. We examine the IND-qCPA security of the wide-spread block
cipher modes of operation CBC, CFB, OFB, CTR, and XTS (i.e., secu-
rity against quantum adversaries doing queries in superposition). We
show that OFB and CTR are secure assuming that the underlying block
cipher is a standard secure PRF (a pseudorandom function secure under
classical queries). We give counterexamples that show that CBC, CFB,
and XTS are not secure under the same assumption. And we give proofs
that CBC and CFB mode are secure if we assume a quantum secure PRF
(secure under queries in superposition).

Keywords: Post-quantum cryptography · Block ciphers · Modes of
operation · IND-qCPA security

1 Introduction

Block ciphers are one of the most fundamental primitives in cryptography. On
its own, however, a block cipher is almost useless because it can only encrypt
messages of a fixed (and usually very short) length. Therefore block ciphers are
usually used in so-called “modes of operation”: constructions whose goal it is to
extend the message space of the block cipher, and possibly add other features or
more security in the process. Since most encryption in practice uses at some level
a mode of operation, the security of those modes of operation is of paramount
importance for the security of many cryptographic systems.

In the light of the possible advent of quantum computers,1 we have to ask: is
existing classical cryptography also secure in the presence of attackers with quan-
tum computers? In particular, does the security of common modes of operation
break down?

1 There seem to be no clear predictions as to when quantum computers will be available
and strong enough to attack cryptography. But it seems daring to simply assume
that they will not be available in the mid-term future, just because we do not have
clear predictions.
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In this paper, we study a number of common modes of operation, namely
those listed in the 2013 ENISA2 report on recommended encryption algorithms
[9]: CBC, CFB, OFB, CTR, and XTS. We study whether those modes are secure
in the quantum setting under comparable assumptions as in the classical setting,
and if not, we construct counterexamples.

The aforementioned modes of operation (except ECB and XTS) are known
to be IND-CPA secure in the classical setting, under the assumption that the
underlying block cipher is a pseudo-random function (PRF).3 ECB is known not
to have reasonable security for most applications, while the security of XTS is
an open question.

In the quantum case, there are two variants of the IND-CPA notion: “stan-
dard IND-CPA” and “IND-qCPA”. While standard IND-CPA lets the quantum
adversary perform only classical encryption queries, IND-qCPA (as defined by
[6]) allows the adversary to perform quantum encryption queries (i.e., queries
which are a superposition of different messages, to get a superposition of different
ciphertexts). In other words, IND-qCPA additionally guarantees security when
the encryption key is used to encrypt messages in superposition. (See below for
a discussion on the relevance of this notion.)

Similarly, there are two variants of the notion of a classical PRF in the
quantum setting: standard secure PRF and quantum secure PRF. In the first
case, the function cannot be distinguished from a random function when making
arbitrary classical queries to that function. In the second case, the function
cannot be distinguished from random when making arbitrary quantum queries,
i.e., when querying the function on a superposition of many inputs.

We can now ask the question: which variant of quantum PRFs is needed for
which variant of IND-CPA. As it turns out, if we merely wish to get standard
IND-CPA security, the answer is trivial: CBC, CFB, OFB, and CTR are secure
assuming that the underlying block cipher is a standard PRF. In fact, the original
security proofs of these schemes can be reused unmodified.4 (We hence abstain
from reproducing the original proofs in this paper and refer to the classical proofs
instead.) And ECB is still trivially insecure, and for XTS we still do not know
which security we achieve.

On the other hand, if we ask for IND-qCPA security, the picture changes
drastically. OFB and CTR mode can be shown IND-qCPA secure based on a
standard secure PRF. (The proof is relatively straightforward.)

2 European Union Agency for Network and Information Security. We chose this list
as a basis in order to investigate a practically relevant and industrially deployed set
of modes of operations.

3 If we want to be able to decrypt, then the block cipher should, of course, be a
pseudo-random permutation. But for mere security, PRF is sufficient.

4 Except that the set of adversaries we consider is, of course, that of quantum
polynomial-time adversaries, instead of classical polynomial-time adversaries. Note
that it is not always the case that a classical security proof goes through unchanged
in the quantum case. (A typical example are zero-knowledge proof systems where
rewinding is used in the classical proof. Rewinding-based proofs cannot be directly
translated to the quantum setting [1,12,15]).
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In contrast, we prove that CBC and CFB are not IND-qCPA secure based
when based on a standard secure PRF. In fact, for CBC and CFB we show that
the adversary can even recover the secret key using quantum queries. For XTS,
we show that the adversary can recover the second half of a plaintext if he can
provide the first half of the plaintext (and the adversary can get half of the key).
Although this does not formally contradict IND-qCPA (because IND-qCPA does
not allow the challenge query to be performed in superposition), it show that
XTS does not satisfy the intuitive notion of CPA security under superposition
attacks.

If, however, the block cipher is a quantum secure PRF, then CBC and CFB
are IND-qCPA secure. The proof of this fact, however, is quite different from
the classical security proof: since the block cipher is invoked in superposition,
we are in a situation similar to the analysis of quantum random oracles, which
are notoriously difficult to handle in the quantum case. (Note: this refers only to
the difficulties encountered in our proof. Our results are in the standard model,
not in the random oracle model.)

We summarize the results in Table 1. Our counter-examples are in the quan-
tum random oracle model, but our positive results are in the standard model
(no random oracle).

Table 1. Summary of our results. The superscripts refer to the bibliography or to
theorem numbers. “No in spirit” means that there is an attack using superposition
queries that does not formally violate IND-qCPA.

Mode of Classical Standard (quantum) IND-qCPA?

operation IND-CPA? IND-CPA? (with PRF) (with qPRF)

ECB no no no no

CBC yes [16] yes no (Lemma 2) yes (Theorem3)

CFB yes [16] yes no (Lemma 3) yes (Theorem3)

OFB yes [16] yes yes (Lemma 2) yes (Theorem2)

CTR yes [16] yes yes (Lemma 2) yes (Theorem2)

XTS unknown [10] unknown “no in spirit” (Lemma 4) unknown

On the IND-qCPA Security Notion. The IND-qCPA security notion [6]
models passive security against adversaries that have access to the encryption of
(chosen) plaintexts in superposition. The obvious question is: do we need that?

– The most obvious reason is that in the future, we might want to encrypt
messages in superposition for some legitimate purpose. E.g., the encryption
scheme is used as part of a quantum protocol. (That is, a protocol that
actively uses quantum communication, not just a classical protocol secure
against quantum adversaries.)

– A second argument (made in [7]) is that with continuing miniaturization, sup-
posedly classical devices may enter the quantum scale, and thus “accidentally”
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encrypt messages in superposition. (Personally, we have doubts how realistic
this case is, but we mention it for completeness.)

– There is, however, a reason why insecurity under notions such as IND-qCPA
may affect the security of a purely classical system in the presence of a quan-
tum attacker. If a classical protocol is proven secure (with respect to a quan-
tum adversary), intermediate games in the security proof may actually contain
honest parties that run in superposition. This happens in particular if zero-
knowledge proof systems or similar are involved [12,15]. For example, in [13,
Sect. 5], the security proof of a classical protocol did not go through because
the signature scheme was not secure under quantum queries (they had to
change the protocol considerably instead). Encryption schemes that are not
just standard IND-CPA, but IND-qCPA might help in similar situations.

1.1 Our Techniques

We briefly summarize the techniques we use to prove or disprove the security of
the various modes of operation.

IND-qCPA Security of OFB and CTR Mode Using a Standard PRF.
Both OFB and CTR mode are stream ciphers. That is, in both cases, encryption
can be represented as Enck(M) = Gk(|M |; r)⊕M , where Gk is a pseudorandom
generator with key k for some randomness r. Thus, to encrypt a superposi-
tion

∑
i αi|Mi〉 of messages of length �, all we need to do is to compute c :=

Enck(0) = Gk(�; r), and then to compute
∑

i αi|Enck(Mi; r)〉 =
∑

i αi|Mi ⊕ c〉.
Since computing Enck(0) can be done using a classical encryption query, it follows
that superposition encryption queries can be simulated using classical encryp-
tion queries. Hence the IND-qCPA security of OFB and CTR can be directly
reduced to the standard IND-CPA security of the same schemes. And standard
IND-CPA security is shown exactly in the same way as in the classical setting.

IND-qCPA Security of CBC and CFB Mode Using a Quantum Secure
PRF. To show security of CBC and CFB mode, we cannot directly follow the
classical security proof since that one relies inherently on the fact that the block
cipher (the PRF) is queried only classically. Instead, we use the following tech-
niques to prove CBC security:

– Since the block cipher is a PRF, we can assume it to be a truly random
function H (to which the adversary has no access, since he does not know the
key). CBC encryption is thus performed as sketched in Fig. 1(a).

– We replace the challenge encryption (i.e., the encryption query where the
adversary should distinguish between Enc(m0) and Enc(m1)) step by step by
randomness. That is, we consider a sequence of hybrid games, and in the i-th
game, the first i blocks of the challenge ciphertext are replaced by uniformly
random bitstrings. Once all ciphertext blocks are replaced by randomness, the
probability of guessing whether m0 or m1 was encrypted is obviously 1

2 . Thus,
all we need to show is that replacing one block of the challenge ciphertext by
randomness leads to a negligible change in the advantage of the adversary.
The situation is depicted in Fig. 1(b).
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Fig. 1. (a) CBC mode (using a random function H instead of the block cipher).
(b) Modified challenge ciphertext computation (c1 replaced by randomness). We need
to prove that replacing c2 by a random value leads to an indistinguishable view.

– Say we want to show that c2 = H(m2 ⊕ c1) is indistinguishable from ran-
dom (the situation in Fig. 1(b). At a first glance, this seems simple: m2 ⊕ c1
is uniformly random, so the probability that it collides with other H-queries
is negligible, hence H(m2 ⊕ c1) is uniformly random. However, this argu-
ment does not hold in the quantum setting: since some encryption queries are
performed in superposition, it can be that H was queries on all inputs simul-
taneously, hence we cannot say that H was not queried at m2 ⊕ c1 before.
Fortunately, we can use the “One-way to Hiding (O2H) Lemma” from [14]
here. This lemma basically says: for a uniformly random x, to show that
H(x) is indistinguishable from random, we need to show: when running the
adversary, and aborting at a randomly chosen H-query, and measuring the
input to that query (disturbing the superposition), then the probability that
the outcome is x is negligible.
In the present setting this means: if we measure a random H-query during the
execution of the IND-qCPA game, the probability that the argument equals
m2 ⊕ c1 is negligible. For example, the probability that one of the h-queries
before the challenge encryption equals m2 ⊕ c1 is trivially negligible, because
c1 has not yet been chosen at that point.

– For the H-queries performed during the challenge query, we use the fact that
H is indistinguishable from a random permutation [18]. In that case, the
H-query inputs are uniformly random due to the fact that c2 is chosen uni-
formly at random (remember that we replaced c2 by a random value), hence
they collide with m2 ⊕ c1 only with negligible probability.

– For the H-queries performed after the challenge query, we cannot use the same
argument, because those queries can be performed in superposition. However:
if we only care whether the chosen H-query has input m2 ⊕ c1, then, instead
of just measuring the H-query input, we can measure in the computational
basis all registers involved in the encryption. Then we observe that measuring
all registers commutes with the operations performed during encryption, so
equivalently we can assume that that measurement happens at the beginning
of the encryption (and in particular measures the plaintext). And that means,
for the purposes of bounding the probability of measuring H-query input
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m2 ⊕ c1, we can assume that we encrypt a classical plaintext. From here, the
argument from the previous item applies.

– Altogether, the probability of measuring m2 ⊕ c1 in any H-query is negligible.
Then the O2H lemma implies that the H(m2 ⊕ c1) is indistinguishable from
random. And by iterating this indistinguishably, we can replace the whole
challenge ciphertext by randomness. And then the adversary has only proba-
bility 1

2 of guessing which challenge plaintext was encrypted.

This shows that CBC mode is IND-qCPA secure if the block cipher is a quantum
secure PRF. The security of CFB mode is shown very similarly.

Insecurity of CBC and CFB Mode Using a Standard Secure PRF. To
show that CBC and CFB mode are insecure using a standard secure PRF, we
first construct a specific block cipher BC as follows:

BCk(x) := EH(k)

(
droplastbit (x ⊕ (k‖1) · lastbit(x))

)

where E is a standard secure PRF and H refers to a random oracle. (This
construction is not really a block cipher because it is not infective and hence
not decrypt able. The definition of BCk can be refined to make it decryptable,
we omit this technicality in this proof overview, see Sect. 3.1.) This block cipher
has the special property of being k‖1-periodic: BCk(x) = BCk(x ⊕ (k‖1)). In
particular, this it cannot be a quantum secure PRF, even if E is. Namely, given
superposition access to BCk, Simon’s algorithm [11] allows us to recover k‖1 given
quantum oracle access to BCk.5 This idea also allows us to break CBC mode
when CBC mode uses BCk as its underlying blockcipher. If we encrypt a single
block message m using CBC, we get the ciphertext (c0,BCk(c0 ⊕ m)). Although
the message m is XORed with the random IV c0, the period remains the same,
namely k‖1. Thus, using what is basically Simon’s algorithm, using superposition
queries to CBC mode, we get k‖1 (more precisely, one bit of information about it
for each superposition query). This reveals the key k completely and in particular
shows that CBC is not IND-qCPA secure.

The question of course is whether BCk is indeed a standard secure PRF.
Even though the adversary has only classical access to BCk, the proof cannot
be purely classical: we use a random oracle H that the adversary can query
in superposition. Instead, we use again the O2H lemma [14] mentioned above.
This allows us to replace H(k) by a random key y in the definition of BCk. Now
the analysis of BCk becomes purely classical and basically amount to showing
that the adversary cannot guess two inputs to BCk that lead to the same input
for Ey. (Using the actual, decryptable construction of BCk, this proof becomes
technically a bit more complex, but still follows the same ideas.)

In the case of CFB mode, the attack is similar, except that here we need to
encrypt two-block messages in order to get a ciphertext that depends in a k‖1-
periodic way on the plaintext. (Since the first message block is not fed through
the block cipher in CFB mode.)
5 A similar idea was already used in [17] to show that there is a standard secure PRF

that is not quantum secure. However, their construction had a period with respect
to +, not to ⊕, which makes it unsuitable for showing the insecurity of CBC mode.
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Insecurity of XTS Mode Using a Standard Secure PRF. To attack XTS,
we use the same basic idea as for CBC and CFB. However, there are some
additional complications. In XTS, two keys k1, k2 are used. Each ciphertext
block is computed as ci := αi−1L ⊕ BCk2(α

i−1L ⊕ mi). Here L := BCk1(I) is a
secret value that is derived from a nonce I (thus L stays fixed throughout one
encryption operation, but changes from ciphertext to ciphertext). If we use the
block cipher constructed above (when breaking CBC), we can easily derive k2:
since BCk2 is k2-periodic, so is BCk2(α

i−1L ⊕ mi). Thus with one single block
encryption we would be able to retrieve one bit of k2 using Simon’s algorithm.
However, retrieving k2 does not help us in decrypting XTS mode, since we do
not know k1, and hence cannot compute the value L. Also, the fact that BCk1(I)
is k1-periodic does not help us to retrieve k1 since we do not have any control
over I. Instead, we use the following trick. We construct

BCk(x, y) := EH(k)(droplastbit (x ⊕ (k‖1) · lastbit(x)) ,

droplastbit (y ⊕ fk(x) · lastbit(x))

where fk is a suitable function depending on k (with the property that lastbit(
fk(·)) = 1). (We interpret message blocks are pairs x, y by splitting them in the
middle.) Again we ignore in this proof overview that BCk cannot be decrypted,
the more involved construction given in the full version [2] avoids this problem.

Now BCk is k-periodic in x, and fk(x)-periodic in y for fixed first input x.
Using this block cipher, we can first use the attack technique described for CBC
mode to recover k2 (by encrypting a number of one block messages). The main
difference is that now we create a plaintext that is a superposition in the first half
of the block (x), and fixes the second block (y := 0). Now, instead of recovering
k1 (which seems impossible), we can recover the message L used during a given
encryption query: We encrypt a message where the x-part of each block is 0,
and the y-part of each block is the superposition of all messages. Since BCk2

is invoked with αi−1L ⊕ mi when encrypting mi, we have that the first half of
the input to BCk2 is the first half of αi−1L. Thus BCk2 is fk2(firsthalf (αi−1L))-
periodic. Thus from message block i, using Simon’s algorithm, we get one bit of
fk2(firsthalf (αi−1L)). Since we know k2, this reveals one bit of information about
αi−1L. Thus we get a bit each about many different αi−1L (for different i), and
this allows us to compute L. If our ciphertext, in addition to the superposition-
message-blocks contains parts that are unknown, we can then decrypt those
using our knowledge of L and k2. (Note that we cannot use this knowledge to
decrypt another ciphertext, since each ciphertext uses a different L.) Thus, we
can decrypt ciphertexts whose plaintexts are partially under our control (and in
superposition), and partially unknown.

1.2 Related Work

Boneh et al. [4] have argued the requirement of quantum-accessible random ora-
cle model to prove post-quantum of BR encryption scheme introduced in [3].
They have proved the CCA security of hybrid encryption scheme introduced
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in [3] in the quantum random oracle model. Ebrahimi and Unruh in [8] prove
the CCA security of Fujisaki-Okamoto transform in the quantum random ora-
cle model. In [5] Boneh and Zhandry construct the first message authentication
codes (MACs) that are existentially unforgeable against a quantum chosen mes-
sage attack and show that quantum-secure PRF leads to quantum-secure MACs.
In [7], Damg̊ard et al. study secret sharing scheme and multiparty computation
where the adversary make ask superposition queries. They also examine the zero
knowledge protocols and use the secret sharing results to design zero knowledge
proofs for all of NP in the common reference string model.

1.3 Organisation

In Sect. 2 we provide the various security definitions and lemmas used through-
out the paper. Section 2.1 contains the definition of all the modes of operations
discussed. In Sect. 3.1, we provide the a standard-secure construction of a PRF
used in CBC the and CFB attack. Section 3 describes the attack on the CBC
mode of operation based on that standard-secure PRF. (The insecurity of CFB
and XTS are deferred to the full version [2].) Finally, in Sect. 4 we show how
to achieve the IND-qCPA security for OFB, CTR, CBC, and CFB modes of
operation.

2 Notation and Tools

Notation. By x ← A(y) we denote an algorithm A that takes an input y outputs
a value that is assigned to x. We write x ← AH(y) if A has access to an oracle H.

By (A ← B) we refer to the set of all functions from A to B. x
$←− A represents

an x which is uniformly randomly chosen from the set A. {0, 1}n represents the
bit-strings of length n and a‖b for strings a and b represents the concatenation
of two strings. For two vectors a and b, a � b denotes the dot product between
two vectors. We use η(t) to denote a function with a security parameter t. If we
say a quantity is negligible(denoted negl.) we mean that it is in o(ηc) or 1−o(ηc)
for all c > 0. We use the notation A ≈ B to say that quantity A has negl.
difference with quantity B. For an n−bit string a and binary variable b, a · b = a
if b = 1 otherwise a · b = 0n. For a string x = x1x2x3 · · · xn where xi is the
i − th bit we use functions lastbit and droplastbit such that lastbit(x) = xn and
droplastbit(x) = xix2 · · · xn−1.

Definition 1 (IND-CPA). A symmetric encryption scheme Π = (Gen,Enc,
Dec) is indistinguishable under chosen message attack (IND-CPA secure) if no
classical poly-time adversary A can win in the PrivKCPA

A,Π (t) game, except with
probability at most 1/2 + negl:

PrivKPrivKPrivKCPACPACPA
A,ΠA,ΠA,Π (t) game:

Key Gen: The challenger picks a random key k ← Gen and a random
bit b.
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Query: Adversary A chooses two messages m0,m1 and sends them to
the challenger. Challenger chooses r

$←− {0, 1}∗ and responds with c∗ =
Enck(mb; r).
Guess: Adversary A produces a bit b′, and wins if b = b′.

Definition 2 (IND-qCPA [6]). A symmetric encryption scheme Π =
(Gen,Enc, Dec) is indistinguishable under quantum chosen message attack (IND-
qCPA secure) if no efficient adversary A can win in the PrivKqCPA

A,Π (t) game,
except with probability at most 1/2 + negl:

PrivKPrivKPrivKqCPAqCPAqCPA
A,ΠA,ΠA,Π (t) game:

Key Gen: The challenger picks a random key k and a random bit b.
Queries

- Challenge Queries: A sends two messages m0,m1 to which the
challenger responds with c∗ = Enck(mb; r).
- Encryption Queries: For each such query, the challenger chooses
randomness r, and encrypts each message in the superposition using
r as randomness:

∑

m,c

ψm,c

∣
∣m, c

〉→
∑

m,c

ψm,c

∣
∣m, c ⊕ Enck(m; r)

〉

Guess: A produces a bit b
′
, and wins if b = b

′
.

Definition 3 (Standard-Security [17]). A function PRF is a standard-secure
PRF if no efficient quantum adversary A making classical queries can distinguish
between a truly random function and a function PRFk for a random k. That is,
for every such A, there exists a negligible function ε = ε(t) such that

∣
∣ Pr
k←K

[APRFk() = 1] − Pr
O←YX

[AO() = 1]
∣
∣< ε.

Definition 4 (Quantum-Security [17]). A function PRF is a quantum secure
PRF if no poly-time quantum adversary A making quantum queries can distin-
guish between truly random function and the function PRFk for a random k.

Lemma 1 (One Way to Hiding (O2H) [14]). Let H : {0, 1}t → {0, 1}t be
a random oracle. Consider an oracle algorithm AO2H that makes at most qo2h

queries to H. Let B be an oracle algorithm that on input x does the following:
pick i

$←− {1, . . . , qo2h} and y
$←− {0, 1}t, run AH

O2H(x, y) until (just before) the
i − th query, measure the argument of the query in the computational basis,
output the measurement outcome. (When AO2H makes less than i queries, B
outputs ⊥ /∈ {0, 1}t.) Let,

P 1
AO2H := Pr[b′ = 1 : H

$←− ({0, 1}t → {0, 1}t), x
$←− {0, 1}t, b′ ← AH

O2H(x, H(x))],
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P 2
AO2H

:= Pr[b′ = 1 : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, y

$←− {0, 1}t,

b′ ← AH
O2H(x, y)],

PB := Pr[x′ = x : H
$←− ({0, 1}t → {0, 1}t), x $←− {0, 1}t, x′ ← BH(x, i)].

Then,
∣
∣P 1

AO2H
− P 2

AO2H

∣
∣≤ 2qo2h

√
PB.

2.1 Modes of Operation

Definition 5 (ECB Scheme). For a given permutation E : K × {0, 1}t →
{0, 1}t we define the symmetric encryption scheme ΠECB = (Gen,Enc,Dec) as
follows:
Gen: Pick a random key k

$←− K.
Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c1 · · · cn, where ci = E(k,mi) for 0 < i ≤ n.
Dec: For a given cipher-text C = c1 · · · cn and key k; m̂i := E−1(k, ci) for
0 < i ≤ n.

Definition 6 (CBC Scheme). For a given permutation E : K × {0, 1}t →
{0, 1}t we define the symmetric encryption scheme ΠCBC = (Gen,Enc,Dec) as
follows:
Gen: Pick a random key k

$←− K.
Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where c0

$←− {0, 1}t and ci = E(k,mi ⊕ ci−1) for 0 <
i ≤ n.
Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E−1(k, ci) ⊕ ci−1

for 0 < i ≤ n.

Definition 7 (CFB Scheme). For a given function E : K × {0, 1}t → {0, 1}t

we define the symmetric encryption scheme ΠCFB = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K.

Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where c0

$←− {0, 1}t and ci = E(k, ci−1) ⊕ mi for 0 <
i ≤ n.
Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E(k, ci−1) ⊕ ci for
0 < i ≤ n.

Definition 8 (OFB Scheme). For a given function E : K × {0, 1}t → {0, 1}t

we define the symmetric encryption scheme ΠOFB = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K.

Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where c0 = r0

$←− {0, 1}t, ri = E(k, ri−1) and ci = ri⊕mi

for 0 < i ≤ n.
Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E(k, ci−1) ⊕ ci for
0 < i ≤ n.
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Definition 9 (CTR Scheme). For a given function E : K × {0, 1}t → {0, 1}t

we define the symmetric encryption scheme ΠCTR = (Gen,Enc,Dec) as follows:

Gen: Pick a random key k
$←− K.

Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where c0

$←− {0, 1}t and ci = E(k, c0 + i) ⊕ mi for
0 < i ≤ n.
Dec: For a given cipher-text C = c0c1 · · · cn and key k; m̂i := E(k, c0 + i) ⊕ ci

for 0 < i ≤ n.

Definition 10 (XTS Scheme). For a given permutation E : K × {0, 1}t →
{0, 1}t we define the symmetric encryption scheme ΠXTS = (Gen,Enc,Dec) as
follows:
Gen: Pick random keys k1 and k2 i.e., k1

$←− K and k2
$←− K.

Enc: For a given message M = m1m2 · · · mn, where n is a polynomial in t;
Enck(M) := c0c1 · · · cn, where ci = E(k1,mi ⊕ Δi) ⊕ Δi for 0 < i ≤ n, Δ =
αi−1L, L = E(k2, I) and α is the primitive element of the field F

n
2 . Here I is

a publicly known nonce that is agreed upon out of band (but that is different in
different ciphertexts).
Dec: For a given cipher-text C = c1 · · · cn; and key k; m̂i := E(k, ci ⊕ Δi) ⊕ Δi

for 0 < i ≤ n.

3 Quantum Attacks on CBC, CFB, and XTS
Based on Standard Secure PRF

We show that CBC and CFB mode are not IND-qCPA secure in general when
the underlying block cipher is only a standard secure PRF, and that XTS has a
chosen-plaintext attack using superposition queries. For this, in Sect. 3.1 we first
construct a block cipher that is a standard secure PRF (but are intentionally
not quantum secure). Then, in Sect. 3.2 we show how to break CBC and CFB,
respectively, when using that block cipher.

3.1 Construction of the Block Cipher for CBC

To show that a standard secure PRF is not sufficient for IND-qCPA security
of CBC and XTS modes of operation we need a block cipher that is standard
secure PRF but not quantum secure. Our first step is to construct such a block
cipher and prove it to be standard secure. In this section we provide two such
constructions of block cipher that would be later used to show insecurity of CBC
and XTS against a quantum adversary respectively.

Construction 1:

BCk(x) = EH(k)1

(
droplastbit(x ⊕ (k‖1) · lastbit(x))

)

∥
∥tH(k)2

(
x ⊕ (k‖1) · lastbit(x)

) ⊕ lastbit(x),
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where, E : {0, 1}n−1 × {0, 1}n−1 → {0, 1}n−1 is a standard secure PRF, t :
{0, 1}n × {0, 1}n → {0, 1} is a standard secure PRF, H : {0, 1}n → {0, 1}n ×
{0, 1}n is a random oracle and the key k

$←− {0, 1}n−1.

Theorem 1. Construction 1 is a standard secure PRF for any quantum adver-
sary D given classical access to BCk and quantum access to the random oracle H.

We give the proof in the full version [2].
Thus, we have proved that the given construction is pseudo-random and

hence a standard secure PRF.

3.2 Attack on CBC Mode of Operation

We choose a block cipher BC as in Construction 1 in Sect. 3.1 for the construction
of the ΠCBC scheme (Definition 6). As proved, this block cipher is a standard
secure PRF (i.e., if the quantum adversary has only classical access to it).

Lemma 2. There exists a standard secure pseudo-random function such that
ΠCBC is not IND-qCPA secure (in the quantum random oracle model).

Proof. Let the ΠCBC scheme use the block cipher BC, we use one block message
to attack the ΠCBC scheme. We know that the adversary has quantum access
to the ΠCBC scheme, hence a quantum adversary can query the superposition
of all messages of size equal to the block length of BC (i.e., n). The adversary
prepares the quantum registers M and C to store quantum messages and receive
quantum cipher-texts respectively. The adversary then stores the superposition
of all the messages in M (i.e.,

∑
m 2−n/2|m〉) of size equal to block size of BC

and string |02n−1〉|+〉 in C equal to twice the block size of BC respectively,
and makes an encryption query. The corresponding reply is then stored in the
quantum register C. The attack has been sketched in Fig. 2.

After application of encryption algorithm Enc of ΠCBC the message and
cipher-text registers contain the following data

∣
∣M,C

〉
=

∑

m

2−n/2
∣
∣m

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(m ⊕ c0))

〉∣
∣+

〉
.

The adversary now XORs c0 to the message register by using a CNOT gate.
Hence, the quantum bits of the system changes to6

∣
∣M,C

〉
=

∑

m

2−n/2
∣
∣m ⊕ c0

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(m ⊕ c0))

〉∣
∣+

〉
.

Using y = m ⊕ c0 we have,
∣
∣M,C

〉
=

∑

m

2−n/2
∣
∣y

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(y))

〉∣
∣+

〉
.

6 Here, k is the key for the block cipher BC.
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Fig. 2. Attack on 1 block CBC using Simon’s algorithm

Also, we have that
∣
∣M,C

〉
=

∑

m

2−n/2
∣
∣y

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(y ⊕ (k‖1)))

〉∣
∣+

〉
.

Hence,

∣
∣M,C

〉
=

∑

y

2−n+1
2

(|y〉 + |y ⊕ (k‖1)〉)√
2

∣
∣c0

〉 ∣
∣droplastbit(BCk(y))

〉∣
∣+

〉
,

We now apply n Hadamard gate (i.e.,H⊗n) giving us the state

∣∣M, C
〉
=
∑

y

∑

z

2− n+1
2

((−1)y�z + (−1)(y⊕(k‖1))�z)√
2

∣∣z
〉 ∣∣c0

〉 ∣∣droplastbit(BCk(y))
〉∣∣+
〉

As (−1)(y�z) = 1 or −1 and doesn’t affect the outcome of register (except in
phase) we can remove y. Therefore, we have

∣
∣M,C

〉
=

∑

z

2−n+1
2 (−1)y�z (1 + (−1)z�(k‖1))√

2

∣
∣z

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(y))

〉∣
∣+

〉
.

Hence, if z � (k‖1) = 0 we have (up to normalization)

2(−1)y�z
∑

z

∣
∣z

〉 ∣
∣c0

〉 ∣
∣droplastbit(BCk(y))

〉∣
∣+

〉

otherwise the superposition collapses to zero string. Now if the n−bits of message
register is measured one gets a vector z such that z�(k‖1) = 0. Hence, to retrieve
k we can repeat the same attack again and again until we get n− 1 independent
vectors vi’s (we know that the last bit of (k‖1) is 1). Now using the gaussian
elimination one can retrieve the n − 1 bits of k, thereby breaking the ΠCBC

scheme.

A very similar attack also breaks CBC mode:

Lemma 3. There exists a standard secure pseudo-random function such that
ΠCFB is not IND-qCPA secure (in the quantum random oracle model).

And for XTS mode we get (using a more complex attack):
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Lemma 4. There exists a standard-secure pseudo-random function (in the ran-
dom oracle model) such that ΠXTS admits an attack of the following form: The
adversary first performs a number of superposition encryption queries. Then the
adversary performs a superposition encryption query where the first half of the
plaintext is an adversary chosen superposition of messages, and the second half
is a bitstring m unknown to the adversary. Then the adversary can compute m.

Details and proofs are given in the full version [2].

4 IND-qCPA Security of OFB and CTR
Modes of Operation

In this section, we analyze the quantum security of OFB and CTR modes of oper-
ation. Our motive is to prove the security of these schemes against the quantum
adversary based on IND-qCPA definition (Definition 2) in Sect. 2. These two
modes of operation are similar in working thence similar proofs.

We provide a generic proof for any cryptographic-system with encryption
function which XOR’s the message with a random pad based on the length
of message and random key. This proof shows that IND-qCPA security of the
scheme reduces to the fact that it is IND-CPA secure.

Lemma 5. Let Π = (Gen,Enc,Dec) be an encryption scheme with encryption
algorithm as Enck(M) = Gk(|M |; r) ⊕ M , for randomness r, given message M
and key k ← Gen. If Π is IND-CPA secure then it is IND-qCPA secure.

Proof. Let Pr[PrivK qCPA
Aq,Π (t) = 1] = ε(t)+ 1

2 , for a poly-time quantum adversary
Aq. We construct an efficient quantum adversary A such that Pr[PrivKCPA

A,Π (t) =
1] = ε(t) + 1

2 . Adversary AEnck(1t) works as follows:

1. A prepares two quantum registers M and C being message and ciphertext
registers respectively.

2. Runs Aq, whenever Aq queries encryption oracle on superposition of messages
answer the queries in the following way:
– the quantum message and

∣
∣0|M |〉 are stored in M and C respectively,

– query s := Enck(0|M |) = Gk(|M |; r), where r is the randomness.
– apply unitary operator Uto quantum register M and C where U

∣
∣M,C

〉
:=∣

∣M,C ⊕ M ⊕ s
〉
.

– send the register
∣
∣M,C

〉
to the adversary Aq.

3. When Aq asks the challenge query send it to the challenger and send received
result back to Aq.

4. Continue to answer any encryption oracle query as in step 2.
5. Aq outputs the result b′, send b′ to the challenger.

It is clear that Pr[PrivKCPA
A,Π (t) = 1] = Pr[PrivK qCPA

Aq,Π (t) = 1] = 1
2 +ε(t) and

A is poly-time.
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Theorem 2. If E is a standard secure pseudo-random function then ΠOFB and
ΠCTR schemes are IND-qCPA secure.

Proof. ΠOFB and ΠCTR schemes are IND-CPA secure when E is standard secure
pseudo-random function. Thus, result follows from Lemma5.

5 IND-qCPA Security of CBC and CFB
Mode of Operation

IND-qCPA security of CBC and CFB modes of operation are conditional on the
existence of quantum secure primitives. We use the One-way to Hiding Lemma
[14] (Lemma 1) to prove the bound for any quantum adversary that attacks the
system.

We define Enci,H
CBC (M) := c0c1 · · · cn, where cj

$←− {0, 1}t for j ≤ i and
cj = H(mj ⊕ cj−1) for i < j ≤ n. Similarly we define, Enci,H

CFB (M) := c0c1 · · · cn,

where cj
$←− {0, 1}t for j ≤ i and cj = H(cj−1) ⊕ mj for i < j ≤ n.

In the next lemma we prove that probability of distinguishing the output of
CBC Enci,H

CBC from Enci+1,H
CBC by a quantum adversary having access to oracle

Enci,H
CBC is negligible in t, where t is the security parameter. As the proof for

Enci,H
CBC and Enci+1,H

CFB is similar we provide the instances for Enci,H
CFB in paren-

theses �� wherever there is a difference. Also, we use Enci,H to represent the
encryption functions of Enci,H

CBC and Enci,H
CFB to generalize the proof.

Lemma 6. For any i with i : 0 ≤ i ≤ p(t) − 1, and every quantum adversary A
that makes at most qA queries,

∣
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

b′ ← AEnci,H (Enci,H(Mb))] − Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H ; b′ ← AEnci,H (Enci+1,H(Mb))]
∣
∣
∣≤ O

(
p(t)2qA

2

2
t
2

)

,

where p(t) is the maximum number of blocks in the message M and t is the
length of each message block.

Proof.

ε(t) =
∣
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

b′ ← AEnci,H (Enci,H(Mb))] − Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H ; b′ ← AEnci,H (Enci+1,H(Mb))]
∣
∣
∣
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For a given message M = m0m1 · · · mn let Ẽnc
i

H(M, c0, · · · , ci) := ĉ1ĉ2 · · · ĉn

where

ĉj =
{

cj 0 ≤ j ≤ i
H(ĉj−1 ⊕ mj) �= H(ĉj−1) ⊕ mj� i < j ≤ n

Then we have,

ε(t) =
∣
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

c0, . . . , ci
$←− {0, 1}t; b′ ← AEnci,H (Ẽnc

i

H(Mb, c0, . . . , ci))]−
Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};M0,M1 ← AEnci,H ;

c0, . . . , ci+1
$←− {0, 1}t; b′ ← AEnci,H (Ẽnc

i+1

H (Mb, c0, . . . , ci+1))]
∣
∣
∣ (1)

We put ci := x ⊕ mi+1
b �= x� where mi+1

b is the (i + 1)th block of the message

Mb and x
$←− {0, 1}t. This means that ci is uniformly random as x is randomly

chosen. Therefore,

ε(t) =
∣
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b

$←− {0, 1}; M0, M1 ← AEnci,H ;

c0, . . . , ci−1
$←− {0, 1}t, x

$←− {0, 1}t, ci := x ⊕ mi+1
b �:= x�;

b′ ← AEnci,H (Ẽnc
i

H(Mb, c0, . . . , ci))] − Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b
$←− {0, 1};

M0, M1 ← AEnci,H ; c0, . . . , ci−1
$←− {0, 1}t, x

$←− {0, 1}t, ci := x ⊕ mi+1
b �ci := x�,

y
$←− {0, 1}t, ci+1 := y�:= y ⊕ mi+1

b �; b′ ← AEnci,H (Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣∣
∣ (2)

By definition of Ẽnc
i

H , we have Ẽnc
i

H(Mb, c0, · · · , ci) = Ẽnc
i+1

H (Mb, c0, · · · , ci+1)
with ci+1 := H(x) �:= H(x) ⊕ mi+1

b �. Hence,

ε(t) =
∣
∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b

$←− {0, 1}; M0, M1 ← AEnci,H ;

c0, . . . , ci−1
$←− {0, 1}t, x

$←− {0, 1}t, ci := x ⊕ mi
b�:= x�, ci+1 := H(x)�:= H(x) ⊕ mi+1

b �;

b′ ← AEnci,H (Ẽnc
i+1

H (Mb, c0, . . . , ci+1))] − Pr[b = b′ : H ← ({0, 1}t → {0, 1}t),

b
$←− {0, 1}; M0, M1 ← AEnci,H ; c0, . . . , ci−1

$←− {0, 1}t, x
$←− {0, 1}t, y

$←− {0, 1}t,

ci := x⊕mi
b�:= x�, ci+1 := y�:= y ⊕mi+1

b �; b′ ← AEnci,H (Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣
∣∣

We define an adversary AO2H that makes oracle queries to random function
H

$←− ({0, 1}t → {0, 1}t). AO2H with given inputs x and y does the following:
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Adversary AH
O2H(x, y):

M0,M1 ← AEnci,H

b
$←− {0, 1}

c0, . . . , ci−1
$←− {0, 1}t; ci = x ⊕ mi+1

b �= x�; ci+1 = y�= y ⊕ mi+1
b �;

compute C := Ẽnc
i

H(Mb, c0, c1, . . . , ci+1)

b′ ← AEnci,H (C)

return b′ = b

We note here that adversary AO2H can answer the adversary A’s query as it
has oracle access to H. Let qo2h be the number of H-queries made by AO2H , it
is clear that qo2h ≤ 3p(t)qA. Let q1, q2 and q3 denote the number of queries that
AO2H makes to H before the challenge query, during challenge query and after
challenge query respectively.7

It is clear that:

ε(t) =
∣
∣∣Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x

$←− {0, 1}t, b̃ ← AH
O2H(x, H(x))]

− Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x
$←− {0, 1}t, y

$←− {0, 1}t, b̃ ← AH
O2H(x, y)]

∣
∣
∣ (3)

Let B be an oracle algorithm described in the O2H lemma (Lemma 1). There-
fore, we have that ε(t) ≤ 2qo2h

√
PB, where we have the probability PB as

PB = Pr[x = x′ : j
$←− {1, . . . , qo2h}, x

$←− {0, 1}t,H
$←− ({0, 1}t → {0, 1}t),

x′ ← BH(x, j)]

=
1

qo2h
· Pr[x = x′ : x

$←− {0, 1}t,H
$←− ({0, 1}t → {0, 1}t), x′ ← BH(x, j)]

︸ ︷︷ ︸
:=P j

B

To evaluate P j
B we consider three cases depending whether the j-th H-query

is before, during, or after the challenge query.
Case I (j ≤ q1):

In this case, the j-th iteration query to the oracle H is computed before the
challenge query is done. So adversary A does not get access to x while queries are
done. Therefore, adversary A’s queries are independent of x, as it never executes
challenge query and beyond. As the adversary A never used the x for any query
we can therefore say that fixing x to be any string should not affect argument
of the query. Therefore, we fix input x as the null string 0n.

P j
B = Pr[x = x′ : x

$←− {0, 1}t,H
$←− ({0, 1}t → {0, 1}t), x′ ← BH(0, j)] ≤ 2−t.

7 We can assume without loss of generality that AO2H performs exactly q1, q2, q3
queries respectively. If it performs less, we simply add dummy queries.
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Case II (q1 ≤ j ≤ q1 + q2):
In this case the j-th iteration query to the oracle H is made during the

challenge query (i.e, q1 < j ≤ q1 + q2). Therefore, oracle algorithm B can stop
adversary A at any of the following queries:

H(mi+2
b ⊕y), H(mi+3

b ⊕H(mi+2
b ⊕y)), · · · , H(m

p(t)
b ⊕H(m

p(t)−1
b ⊕· · · H(mi+2

b ⊕y) · · · ))
�
H(y) ⊕ mi+2

b , H(H(y) ⊕ mi+2
b ) ⊕ mi+3

b , · · · , H(H(H(· · · H(y) ⊕ mi+2
b ) · · · )) ⊕ m

p(t)
b

�

By using result from Zhandry [18] on distinguishing a random function from a
random permutation we have,

P j
B ≤ Pr[x = x′ : H

$←− Perm(), x $←− {0, 1}t, x′ ← BH(x, j)] + O

(
j3

2t

)

Note that the argument of the j-th query is s := mi+j−q1+1
b ⊕ H(mi+j−q1

b ⊕
· · ·⊕H(mi+2

b ⊕y) · · · ) �s := H(· · · H(H(y)⊕mi+2
b ) · · ·⊕mi+j−q1

b )⊕mi+j−q1+1
b �.

From the definition of O2H lemma we know that y is chosen independently at
random from x and H. It is easy to see that for a fixed message Mb s would be
assigned an output by a permutation that is independent of x but dependent on
y since the input to first call to H is mi+2

b ⊕ y �y�. Therefore,

P j
B ≤ Pr[x = x′ : H

$←− Perm(), x
$←− {0, 1}t, x′ = s]+O(

j3

2t
) ≤ 1

2t
+O

(
j3

2t

)
≈ O

(
j3

2t

)

Case III (j ≥ q1 + q2):
In this case, the j-th iteration query to the oracle H is computed after the

challenge query is done. We have j > q1 + q2. Adversary A makes many encryp-
tion oracle queries and eventually measures the argument of one of the H oracle
query and stops. Say it measures in the kth H oracle query of j-th encryption
query.

P j
B := Pr[x = x′ : x

$←− {0, 1}t,H
$←− ({0, 1}t → {0, 1}t), x′ ← BH(x, j)]

The circuit diagram in Fig. 3 represents the working of adversary AO2H .
AO2H answers encryption queries using oracle access to H. Let the quantum
message (possibly entangled) to be stored in the quantum register M and the
corresponding ciphertext in the quantum register C. The encryption circuit is
composed of the quantum gates UIV , UH , CNOT and measurements. Where
UIV |M〉 = |M⊕IV 〉, UH |M,C〉 = |M,C⊕H(M)〉, CNOT |M,C〉 = |M,C⊕M〉,
and the measurements are in the computational basis of the message space. Thus,
in each case I,II,III we have P j

B ∈ O
(

q3
o2h
2−t

)
.8

The unitary gates used to compose the circuits are diagonal in the compu-
tational basis and hence commute with the measurements. Therefore, moving
8 Note that in Fig. 3 we measure all registers, not only the query register. This does

not change P j
B since the additional measurements are performed on registers that

are not used further.
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Fig. 3. Composition of Encryption Oracle using H oracle

the measurements prior to the unitary operations do not affect the probability
distribution of the output. Hence, we can measure the message register M before
performing the unitary operations. Thus, it is similar to the Case II where we
have a query on a classical message.

Therefore, we have P j
B = O( j3

2t ).

Hence by the definition of PB we have, PB ≤ O( q3
o2h
2t ). Therefore, we have

that ε(t) ≤ qo2h

√
PB ≤ qo2h

√
O( qo2h3

2t ) = O( qo2h
3

2t )

Theorem 3. If the function E is a quantum secure PRF then ΠCBC and ΠCFB

is IND-qCPA secure.

This follows now easily from Lemma 6 and the fact that Enci,H(Mb) is indepen-
dent of its argument Mb for i = p(t). We give the details in the full version [2].
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Abstract. We propose a security model for evaluating the security of
authenticated encryption schemes in the post-quantum setting. Our secu-
rity model is based on a combination of the classical Bellare-Namprempre
security model for authenticated encryption together with modifications
from Boneh and Zhandry to handle message authentication against quan-
tum adversaries. We give a generic construction based on the Bellare-
Namprempre model for producing an authenticated encryption protocol
from any quantum-resistant symmetric-key encryption scheme together
with any authentication scheme (digital signature scheme or MAC)
admitting a classical security reduction to a quantum-computationally
hard problem. We give examples of suitable authentication schemes
under the quantum random oracle model using the Boneh-Zhandry trans-
formation. We also provide tables of communication overhead calcula-
tions and comparisons for various choices of component primitives in
our construction.

Keywords: Authenticated encryption · Security models · Post-
quantum cryptography

1 Introduction

Authenticated encryption (AE) forms a critical component of our existing inter-
net infrastructure, with many widely used protocols such as TLS, SSH, and
IPsec depending on AE for their basic functionality. Despite this importance,
there is relatively little existing literature on the subject of combining post-
quantum authentication and encryption schemes in a provably secure way. A
few works [6,7,14] have dealt with the problem of post-quantum authenticated
key exchange, but do not provide any self-contained discussion of AE outside
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of the (much) more complicated context of key exchange; moreover, [6,14] sim-
ply use RSA and DH respectively for long-term authentication keys, on the
grounds that there is no immediate need for quantum-safe authenticity. In this
work, we adopt a different goal: we propose security definitions for post-quantum
AE with the goal of achieving authentication and confidentiality against fully
quantum adversaries, and give examples of such AE schemes constructed from
existing underlying symmetric-key and digital signature primitives, using the
quantum random oracle for the latter. Although our definitions are technically
new, they are largely based on combinations of existing ideas, allowing us to
reuse security proofs from other settings in the present context.

Note that our emphasis in this work is on constructing generic compositions
of confidentiality and authentication primitives, rather than specialized authenti-
cated encryption modes of operation as in the CAESAR competition [13]. While
specialized first-class primitives are certainly valuable, we feel that understand-
ing composed primitives represents a natural first step.

2 Security Definitions

Bellare and Namprempre [2] showed that an IND-CPA encryption scheme com-
bined with a SUF-CMA message authentication code under the Encrypt-then-
MAC paradigm yields an IND-CCA authenticated encryption scheme. We wish
to obtain a generalization of this construction which works against quantum
adversaries. As a starting point, we review the security definitions of Boneh and
Zhandry [5] for symmetric-key encryption schemes and digital signatures.

The most natural extension of IND-CPA security to the quantum setting con-
sists of allowing full unrestricted quantum queries to the encryption oracle. How-
ever, Boneh and Zhandry showed [5, Theorems 4.2 and 4.4] that this definition is
too powerful, in the sense that no encryption scheme satisfies this security defini-
tion. In place of full quantum queries, Boneh and Zhandry propose a definition in
which challenge messages can only be encrypted classically [5, Definition 4.5]:

Definition 1 (IND-qCPA). We say a symmetric-key encryption scheme E =
(Enc,Dec) is indistinguishable under a quantum chosen message attack (IND-
qCPA secure) if no efficient adversary A can win in the following game, except
with probability at most 1/2 + ε:

Key Generation: The challenger picks a random key k and a random bit b.
Queries: A is allowed to make two types of queries:

Challenge Queries: A sends two messages m0,m1, to which the challenger
responds with c∗ = Enc(k,mb).

Encryption Queries: For each such query, the challenger chooses ran-
domness r, and encrypts each message in the superposition using r as
randomness:

∑

m,c

ψm,c|m, c〉 �→
∑

m,c

ψm,c|m, c ⊕ Enc(k,m; r)〉

Guess: A produces a bit b′, and wins if b = b′.
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Similarly, Boneh and Zhandry define the notion of quantum chosen ciphertext
security [5, Definition 4.6]:

Definition 2 (IND-qCCA). We say a symmetric-key encryption scheme E =
(Enc,Dec) is indistinguishable under a quantum chosen ciphertext attack (IND-
qCCA secure) if no efficient adversary A can win in the following game, except
with probability at most 1/2 + ε:

Key Generation: The challenger picks a random key k and a random bit b. It
also creates a list C which will store challenger ciphertexts.

Queries: A is allowed to make three types of queries:
Challenge Queries: A sends two messages m0,m1, to which the challenger

responds with c∗ = Enc(k,mb).
Encryption Queries: For each such query, the challenger chooses ran-

domness r, and encrypts each message in the superposition using r as
randomness:

∑

m,c

ψm,c|m, c〉 �→
∑

m,c

ψm,c|m, c ⊕ Enc(k,m; r)〉

Decryption Queries: For each such query, the challenger decrypts all
ciphertexts in the superposition, except those that were the result of a
challenge query:

∑

c,m

ψc,m|c,m〉 �→
∑

c,m

ψc,m|c,m ⊕ f(c)〉

where

f(c) =

{
⊥ if c ∈ C
Dec(k, c) otherwise.

Guess: A produces a bit b′, and wins if b = b′.

We now discuss Boneh and Zhandry’s quantum security definition for signatures.
It is assumed that the adversary can query for signatures of superpositions of
messages. In this situation, the definition of existential unforgeability needs to be
modified, since a naive reading of the definition would allow the adversary simply
to measure a superposition and claim the resulting signature as an existential
forgery. To solve this problem we simply require the adversary to produce q + 1
signatures from q queries [5, Definition 3.2]:

Definition 3 (SUF-qCMA). A signature scheme S = (Gen,Sign,Ver) is
strongly unforgeable under a quantum chosen message attack (SUF-qCMA
secure) if, for any efficient quantum algorithm A and any polynomial q, the
algorithm A’s probability of success in the following game is negligible in λ:

Key Generation: The challenger runs (sk, pk) ← Gen(λ), and gives pk to A.
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Signing Queries: A makes a polynomial q chosen message queries. For each
query, the challenger chooses randomness r, and responds by signing each
message in the query using r as randomness:

∑

m,t

ψm,t|m, t〉 �→
∑

m,t

ψm,t|m, t ⊕ Sign(sk,m; r)〉

Forgeries: A is required to produce q + 1 message-signature pairs. The chal-
lenger then checks that all the signatures are valid, and that all message-
signature pairs are distinct. If so, the adversary wins.

Definition 4 (WUF-qCMA). A signature scheme S is weakly unforgeable
under a quantum chosen message attack (WUF-qCMA secure) if it satisfies the
same definition as SUF-qCMA, except that we require the q+1 message-signature
pairs to have distinct messages.

Note that our terminology differs slightly from Boneh and Zhandry [5], although
the content of the definitions is identical: Boneh and Zhandry use the terms
“strongly EUF-qCMA” and “weakly EUF-qCMA” instead of SUF-qCMA and
WUF-qCMA. In addition, Boneh and Zhandry have similar definitions for SUF-
qCMA and WUF-qCMA secure message authentication codes [4].

Finally, we give our definitions of INT-qCTXT and INT-qPTXT. We con-
structed these definitions by starting with the classical security definitions of
INT-CTXT and INT-PTXT from Bellare and Namprempre [2, Sect. 2], and mod-
ifying them in a manner similar to Boneh and Zhandry’s definition for digital
signatures (Definition 3).

Definition 5 (INT-qCTXT). An encryption scheme E = (Enc,Dec) satisfies
integrity of ciphertext under a quantum attack (INT-qCTXT security) if, for any
efficient quantum algorithm A and any polynomial q, the probability of success
of A in the following game is negligible in λ:

Key Generation: The challenger picks a random key k.
Encryption Queries: A makes a polynomial q such queries. For each such

query, the challenger chooses and randomness r, and encrypts each message
in the superposition using r as randomness:

∑

m,c

ψm,c|m, c〉 �→
∑

m,c

ψm,c|m, c ⊕ Enc(k,m; r)〉

Decryption Queries: For each such query, the challenger decrypts all cipher-
texts in the superposition, except those that were the result of a challenge
query: ∑

c,m

ψc,m|c,m〉 �→
∑

c,m

ψc,m|c,m ⊕ f(c)〉

where

f(c) =

{
⊥ if c ∈ C
Dec(k, c) otherwise.
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Forgeries: A is required to produce q + 1 message-ciphertext pairs. The chal-
lenger then checks that all the ciphertexts are valid, and that all message-
ciphertexts pairs are distinct. If so, the adversary wins.

Definition 6 (INT-qPTXT). An encryption scheme E = (Enc,Dec) satis-
fies the integrity of plaintext under a quantum attack (INT-qPTXT secure) if
it satifies the same definition as INT-qCTXT, except that we require the q + 1
message-ciphertext pairs to have distinct messages.

3 Main Theorem

In this section, we prove that an IND-qCPA encryption scheme together with
a SUF-qCMA signature or MAC scheme yields an authenticated encryption
scheme via the Encrypt-then-MAC method, satisfying the respective privacy
and integrity guarantees of IND-qCCA (Definition 2) and INT-qCTXT (Defin-
ition 5), the quantum analogues of the classical notions of IND-CCA and INT-
CTXT security used in Bellare and Namprempre [2]. We begin by showing a
WUF-qCMA MAC implies INT-qPTXT security:

Theorem 1. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄)
be the authenticated encryption scheme obtained from SE and MA via the
Encrypt-then-MAC method. Given any adversary I against SE, we can construct
an adversary F such that

AdvINT-qPTXT

SE (I) ≤ AdvWUF-qCMA
SE (F ).

Proof. (Based on [2, Theorem 4.1]) We construct the adversary F as follows:

1. Use the key Ke.
2. Run I.
3. On query Enc(M) (where M can be in superposition):

C ′ ← E(Ke,M); τ ← Tag(C ′); Return C ′ ‖ τ to I

4. On query Ver(C):

Parse C as C ′ ‖ τ ′; v ← Ver(C ′, τ ′); Return v to I

until I halts.

Let Ci = C ′
i ‖ τi for i ∈ {1, . . . , q + 1} be the Ver queries of I that lead to

winning game INT-qPTXTSE , after q queries to Enc. Let Mi = D(Ke, C
′
i). We

know that due to the property of INT-qPTXT of SE , at most q of them were
obtained from the q queries to Enc of I; hence C ′

is were the result of at most q
queries of F to Tag, but we obtained q + 1 valid tags. Hence, F wins whenever
WUF-qCMAMA I wins INT-qPTXTSE .
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Although our proof of Theorem1 is for MACs, the same proof works for
digital signatures (replacing the Tag oracle with the Sign oracle).

Next we show that a SUF-qCMA signature or MAC implies an INT-qCTXT
authenticated encryption scheme.

Theorem 2. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄)
be the authenticated encryption scheme obtained from SE and MA via encrypt-
then-MAC composition method. Given any adversary I against SE, we can con-
struct an adversary F such that

AdvINT-qCTXT

SE (I) ≤ AdvSUF-qCMA
SE (F ).

Proof. (Based on [2, Theorem 4.4]) Here we use the same adversary as in The-
orem 1. Let Ci = C ′

i ‖ τi for i ∈ {1, . . . , q + 1} be the Ver queries of I that lead
to winning game INT-qCTXTSE , after q queries to Enc. If only at most q of
the Ci’s were returned to I by Enc, then at most q were queried by F with Tag
(i.e., the corresponding C ′

is). Hence, F wins whenever SUF-qCMAMA I wins
INT-qCTXTSE .

Again, the proof of Theorem2 carries over to digital signatures as well, replacing
the Tag oracle with a Sign oracle.

We now show that the authenticated encryption scheme in Encrypt-then-
MAC inherits the IND-qCPA property from the underlying encryption scheme:

Theorem 3. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄)
be the authenticated encryption scheme obtained from SE and MA via the
Encrypt-then-MAC composition method. Given any adversary A against SE,
we can construct an adversary Ap such that

AdvIND-qCPA

SE (A) ≤ AdvIND-qCPA
SE (Ap).

Furthermore, Ap uses the same resources as A.

Proof. (Based on [2, Theorem 4.3]) We construct Ap as follows:

Km ← Km

Run A
On query to Enc

C ← Enc(M)
τ ← Tag(Km, C)
Return C ‖ τ to A
Until A halts and returns b

Return b.

We can see that if A wins, then so does Ap, since a winning output for A is a
winning output for Ap; the tag can be ignored.
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Finally, we prove that INT-qCTXT and IND-qCPA security imply IND-
qCCA security (Theorem 4). The proof relies on three games G0, G1, and G2

as defined in Fig. 1. These games are based on the corresponding three games
from Fig. 7 of [2], except that we modify the games mutadis mutandis to conform
to our quantum definitions (Definitions 1 and 2).

Fig. 1. Games G0, G1, and G2. Game G1 contains the code in the box while G0 does
not. The functions Enc∗ and Dec∗ refer to the encryption and decryption oracle func-
tions from Definition 2.

The proof of Theorem4 uses the identical until bad lemma [2, Lemma 2.1]:

Lemma 1. (Identical until bad lemma) Let Gi and Gj be identical until bad
games, and A an adversary. Then for any y: Pr[GA

i =⇒ y]−Pr[GA
j =⇒ y] ≤

Pr[Gj sets bad].

It is not immediately clear (to us, anyway) that the identical until bad lemma
holds for quantum adversaries. Fortunately, in Theorem4, we only need the
special case i = 0, j = 1, and y = true, and in this case we can prove the result
for quantum adversaries. We use the following lemma of Shoup [15, Lemma 1].

Lemma 2. Let E,E′, and F be events defined on a probability space such that
Pr[E ∧ ¬F ] = Pr[E′ ∧ ¬F ]. Then we have |Pr[E] − Pr[E′]| ≤ Pr[F ].

This lemma holds regardless of whether or not the adversary is classical or
quantum, as it is a mathematical statement. Define the event E to be [GA

0 =⇒
true] and E′ to be [GA

1 =⇒ true]. Define F to be [GA
1 sets bad]. Observe that in

this case E ∧ ¬F corresponds to the outcome M =⊥ in the game G0, meaning
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that A wins the game. Similarly, E′ ∧ ¬F corresponds to the outcome M =⊥
in G1, meaning that A wins the game. Note that for M =⊥, both G0 and G1

return the same responses, and hence have the same probability of winning.
Hence, Pr[E ∧¬F ] = Pr[E′ ∧¬F ], which means Lemma 1 of [15] can be applied
to obtain |Pr[E] − Pr[E′]| ≤ Pr[F ]. Finally, we need to remove the absolute
values, to obtain Pr[E′] ≤ Pr[E]. It is easy to see that we can do so, because for
G0 we sometimes return the message, while for G1, we always return M = ⊥,
so that the success probability of G0 is at least that of G1. Hence the identical
until bad lemma holds for quantum adversaries in the special case where i = 0,
j = 1, and y = true.

We recall Definition (1) in [2]:

AdvIND-CCA
SE (A) = 2 · Pr[IND-CCAA

SE =⇒ 1] − 1.

The quantum version of this definition is:

AdvIND-qCCA
SE (A) = 2 · Pr[IND-qCCAA

SE =⇒ 1] − 1.

Theorem 4. Let SE = (K, E ,D) be an encryption scheme. Let A be an IND-
qCCA adversary against SE running in time t and making qe Enc queries and
qd Dec queries. Then, we can construct an INT-qCTXT adversary Ac and IND-
qCPA adversary Ap such that

AdvIND-qCCA
SE (A) ≤ 2 · AdvINT-qCTXT

SE (Ac) + AdvIND-qCPA
SE (Ap).

Furthermore, Ac runs in time O(t) and makes qe Enc queries and qd Ver queries,
while Ap runs in time O(t) and makes qe queries of target messages Mi.

Proof. We have:

Pr[IND-qCCAA
SE =⇒ true] = Pr[GA

0 =⇒ true]

= Pr[GA
1 =⇒ true]+

(Pr[GA
0 =⇒ true] − Pr[GA

1 =⇒ true])

≤ Pr[GA
1 =⇒ true] + Pr[GA

1 sets bad] (1)

The last inequality follows from the identical until bad lemma in the special case
i = 0, j = 1, and y = true (which we proved above). Now, observe that for Dec,
G1 always returns ⊥, and hence

Pr[GA
1 =⇒ true] = Pr[GA

2 =⇒ true]. (2)

Let us now define the adversary Ap. It simply runs A, answering A’s chal-
lenge and encryption queries with its own queries, and answering A’s queries for
decryption with ⊥. It outputs whatever A outputs. Hence, we get:

Pr[GA
2 =⇒ true] ≤ Pr[IND-qCPAAp

SE =⇒ true]. (3)
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Next, we define the adversary Ac. The adversary Ac picks a random bit b, then
runs A and answers its queries as follows. For challenge and encryption queries,
Ac submits challenge and encryption queries and returns the results to A. For
the Dec query, Ac submits it to the Ver oracle, and, regardless of the response,
returns ⊥ to A. Hence, we get:

Pr[GA
1 sets bad] ≤ Pr[INT-qCTXTAc

SE =⇒ true]. (4)

Combining the definition

AdvIND-qCCA
SE (A) = 2 · Pr[IND-qCCAA

SE =⇒ 1] − 1

with Eqs. (1), (2), (3), and (4), we obtain

AdvIND-qCCA
SE (A) ≤ 2 · AdvINT-qCTXT

SE (Ac) + AdvIND-qCPA
SE (Ap).

Combining Theorems 2, 3, and 4, we obtain our main theorem:

Theorem 5. Let SE = (Ke, E ,D) be a symmetric-key encryption scheme, let
MA = (Km, T ,V) be a message authentication scheme, and let SE = (K̄, Ē , D̄)
be the authenticated encryption scheme obtained from SE and MA via the
Encrypt-then-MAC composition method. Given that SE is IND-qCPA and MA
is SUF-qCMA, then the resulting SE is IND-qCCA.

Proof. By Theorem 2, since MA is SUF-qCMA, we get that SE is INT-qCTXT.
Also, by Theorem 3, since SE is IND-qCPA, we get that SE is also IND-qCPA.
Finally, because SE is INT-qCTXT and IND-qCPA, by Theorem 4, we get that
it is IND-qCCA.

As with Theorems 1, 2 and 5 also holds with digital signature schemes used
in place of MACs.

4 Quantum-Resistant Strongly Unforgeable Signature
Schemes

In this section we examine some concrete choices of strongly unforgeable signa-
ture/MAC schemes which could be suitable for our AE construction. We limit
ourselves to only a few representative examples to illustrate the general idea. We
focus on signature schemes as in our view they are somewhat more interesting,
but similar ideas apply to MACs [4]. We begin with a review of the Boneh-
Zhandry transformation [5, Construction 3.12] for transforming any classically
strongly secure digital signature scheme into a SUF-qCMA scheme:

Construction 6. Let Sc = (Genc,Signc,Verc) be a be a signature scheme, H be
a hash function, and Q be a family of pairwise independent functions mapping
messages to the randomness used by Signc, and k some polynomial in λ. Define
S = (Gen,Sign,Ver) where:
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– Gen(λ) = Genc(λ)
– Sign(sk,m) :

• Select Q ∈ Q, r ∈ {0, 1}k at random.
• Set s = Q(m), h = H(m, r), σ = Signc(sk, h; s). Output (r, σ).

– Ver(pk,m, (r, σ)) :
• Set h = H(m, r). Output Verc(pk, h, σ).

If the original signature scheme Sc is SUF-CMA against a classical chosen mes-
sage attack performed by a quantum adversary, then by [5, Corollary 3.17] the
transformed scheme S is SUF-qCMA in the quantum random oracle model.

Furthermore, if the verification function in the signature scheme Sc involves
independently deriving the value of σ and checking whether or not the derived
value matches the value which was originally sent, a further optimization is
possible: one can hash σ to reduce its length to a minimum. We employ this
optimization in our examples.

4.1 Strong Designated Verifier Signatures from Isogenies

A strong designated verifier signature (SDVS) scheme [10] is a digital signature
scheme in which only a designated party (specified at the time of signing) can
verify signatures, and verification requires that party’s private key. Note that
an SDVS is enough for AE, since only the two parties participating in the AE
protocol need to be able to verify signatures.

Sun, Tian, and Wang in [17] present an isogeny-based SDVS scheme, and
give a classical security reduction to the SSDDH problem [11], which is believed
to be infeasible on quantum computers. This reduction qualifies as a straight-line
reduction in the sense of the security framework of Song [16], and hence remains
valid for quantum adversaries. However, the reduction only establishes SUF-
CMA security, not SUF-qCMA security. Applying the Boneh-Zhandry transfor-
mation (Construction 6), we obtain the following SDVS scheme, which is SUF-
qCMA:

Setup: Fix a prime p = �eAA �eBB · f ± 1, a supersingular base curve E over
Fp2 , generators {PA, QA} of E[�eAA ], and generators {PB , QB} of E[�eBB ].
Let H1,H2 : {0, 1}∗ → {0, 1}k be independent secure hash functions (with
parameter k), and Q a family of pairwise independent functions mapping
messages to the randomness used in signing.

Key Generation: A signer selects at random mS , nS ∈ Z/�eAA Z, not both
divisible by �A, and then computes an isogeny φS : E → ES = E/〈[mS ]PA +
[nS ]QA〉 and the values φS(PB) and φS(QB). The private key is (mS , nS)
and the public key is the curve ES and the points φS(PB) and φS(QB).
A designated verifier selects at random mV , nV ∈ Z/�eBB Z, not both divisible
by �B , and then computes an isogeny φV : E → EV = E/〈[mV ]PB+[nV ]QB〉
and the values φV (PA) and φV (QA). The private key is (mV , nV ) and the
public key is the curve EV and the points φV (PA) and φV (QA).
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Signing: Select at random Q ∈ Q, r ∈ {0, 1}k for use in the Boneh-Zhandry
transformation. Compute s = Q(m), h = H1(m, r), and φ′

S : EV → ESV =
EV /〈[mS ]φV (PA) + [nS ]φV (QA)〉. Set σ = H2(h||j(ESV )||s). The signature
is (r, σ).

Verification: Compute φ′
V : ES → ESV = ES/〈[mV ]φS(PB) + [nV ]φS(QB)〉

and h = H1(m, r). Set σ′ = H2(h||j(ESV )||Q(m)). Verify that σ′ ?= σ.

4.2 Ring-LWE Signatures

As another example, we combine the Ring-LWE signature scheme of Güneysu
et al. [8] with Construction 6 from [5] to obtain a SUF-qCMA signature scheme
based on Ring-LWE:

Setup: Set R = Fq/〈xn + 1〉 where n is a power of 2. Let H1 : {0, 1}∗ → {0, 1}k
and H3 : {0, 1}∗ → R be independent secure hash functions (with parameter
k) and Q a family of pairwise independent functions mapping messages to
the randomness used in the signing function. Choose a bound B on the
maximum coefficient size.

Key Generation: A signer generates two small polynomials s1(x), s2(x) ∈ R,
selects a(x) ∈ R at random, and computes the public key t(x) = as1(x) +
s2(x).

Signing: Select Q ∈ Q, r ∈ {0, 1}k at random for the Boneh-Zhandry transfor-
mation, and y1(x), y2(x) ∈ R at random for the signature scheme. Compute
s = Q(m), h = H1(m, r), and c(x) = H3(BitString(a(x)y1(x)+y2(x))||h||s).
Finally, compute z1(x) = s1(x)c(x) + y1(x) and z2(x) = s2(x)c(x) + y2(x).
Check that the coefficients of the polynomials z1(x), z2(x) are within the
bound B; if not, restart. The signature is (r, z1(x), z2(x), c(x))

Verification: Check that the coefficients of the polynomials z1(x), z2(x) are
within the bound B; if not, reject. Compute x h = H1(m, r), and check
whether c(x) ?= H3(a(x)z1(x) + z2(x) − t(x)c(x)||h||Q(m)). If so, accept;
otherwise reject.

5 Quantum-Resistant Authenticated Encryption Schemes

We give a generic construction of authenticated encryption schemes which are
provably quantum-resistant in the sense of IND-qCTXT and IND-qCCA. For
the underlying encryption scheme, we assume that a classical symmetric-key
block cipher E in a suitable block cipher mode of operation with random IVs
will suffice to provide quantum security, taking care to use 2� key sizes to obtain
� bits of security. We refer to [1] for a discussion of the choice of the mode of
operation. For the MAC/signature scheme we can employ the Boneh-Zhandry
transformation on any SUF-CMA scheme secure against quantum adversaries as
described in Sect. 4. Combining those two components, we obtain an IND-qCCA
and IND-qCTXT authenticated encryption scheme as follows:
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Setup:
1. Choose parameters for the underlying encryption and signature schemes.
2. Let H : {0, 1}∗ → {0, 1}k be a secure hash function (with security para-

meter k).
3. Let Q be a family of pairwise independent functions mapping messages

to the randomness used in the signature scheme.
Key generation:

1. Alice chooses her private parameters for the encryption and signature
schemes. If required, she produces and publishes the corresponding pub-
lic keys.

2. Bob chooses his private parameters for the encryption and signature
schemes. If required, he produces and published the corresponding public
keys.

Encryption: Suppose Bob wants to send a message m ∈ {0, 1}∗ to Alice.
1. Using the common encryption key e that he shares with Alice, encrypt

the message using the underlying symmetric-key encryption scheme to
obtain c = E(e,m).

2. Select Q ∈ Q, r ∈ {0, 1}k at random.
3. Compute t = Q(m).
4. Computes the value h = H(c, r).
5. Using h and his private signing key s, Bob computes the authentication

tag σ = Sign(s, h; t).
6. The ciphertext is {c, r, σ}.

Decryption: Suppose Alice receives ciphertext {c, r, σ} from Bob.
1. Compute the value h = H(c, r).
2. Using h and Bob’s public signing key p, compute the verification function

Ver(s, h, r, σ), if it returns true, continue; if not, stop.
2. Using the common encryption key e that she shares with Bob, decrypt

the message and obtain m = D(e, c).

Again, in the case where the verification function in the signature scheme
involves independently deriving the value of σ and checking that the derived
value matches the value which was originally sent, we can hash σ prior to trans-
mission to reduce its length to a minimum.

6 Overhead Calculations and Comparisons

In this section we study the communication costs of our AE scheme, from the
point of view of both per-message communication overhead and key transmission
overhead.

6.1 Communication Overhead

Recall that the ciphertext which Bob sends to Alice consists of the triplet (c, r, σ),
where c is the underlying ciphertext content, r is a k-bit nonce, and σ is the
signature tag. In the case where the verification function in the signature scheme
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involves independently deriving the value of σ, we can hash σ down to k bits as
well. For a security level of � bits, the minimum value of k required for collision
resistance is 2� bits in the quantum setting [3]. The per-message communication
overhead of the scheme is thus 4� bits in the case where the signature tag can be
hashed, and 2�+ |σ| bits otherwise. Note that in the former case the per-message
communications overhead is always the same, independent of which component
schemes are chosen.

6.2 Public Key Overhead

For the overhead involved in transmitting the public keys to be used for the
signature scheme, we use the table of Fujioka et al. [7], augmented with some
more recent results as described below. Although [7] deals with the case of post-
quantum authenticated key exchange, the same key sizes apply to the AE setting.

With the exception of Ring-LWE as explained below, we aim for 128-bit
quantum security. For Ring-LWE, we use the numbers from [8]. Since the scheme
in [8] is based on power-of-2 cyclotomic rings, there is a large jump in parameter
size between n = 29 and n = 210, with the former providing 80 bits of security
and the latter 256 bits of security. There is no intermediate power of 2 that
would provide 128 bits of security. For this reason, we list both 80-bit and 256-bit
security levels in our table. The numbers for NTRU are from Schanck et al. [14].
For isogeny-based SDVS schemes we use the recent results of [12]. Note that
SDVS schemes require two-way transmission of public keys even if the encrypted
communication is one-way, whereas standard signature schemes require two-way
transmission of public keys only for two-way communication (Table 1).

Table 1. Key transmission overhead

Signature scheme Bits

Ring-LWE (80-bit security) [8] 11600

Ring-LWE (256-bit security) [8] 25000

NTRU [14] 5544

Code-based [7] 52320

Multivariate polynomials [9] (via [7]) 7672000

Isogeny-based [12] 3073

7 Conclusion

We propose a security model for authenticated encryption against fully quan-
tum adversaries, based on the classical security model of Bellare and Namprem-
pre together with the Boneh and Zhandry framework for modeling quantum
adversaries. We provide concrete examples of authenticated encryption schemes
satisfying our security model along with estimates of overhead costs for such
schemes.
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Abstract. We study the quantum query complexity of finding a collision
for a function f whose outputs are chosen according to a distribution with
min-entropy k. We prove that Ω(2k/9) quantum queries are necessary to
find a collision for function f . This is needed in some security proofs in
the quantum random oracle model (e.g. Fujisaki-Okamoto transform).

Keywords: Quantum · Collision · Non-uniform distribution · Query
complexity

1 Introduction

Let D be a distribution with min-entropy k over set Y and f be a function
whose outputs are drawn according to the distribution D. In this paper, we
study the difficulty of finding a collision for unknown function f in the quantum
query model. Recall that a collision for function f consists of two distinct inputs
x1 and x2 such that f(x1) = f(x2). Classically, by application of the birthday
attack it is easy to observe that Θ(2k/2) queries are necessary and sufficient
to find a collision with constant probability. However, in quantum query model
this number of queries may be high for the reason that one quantum query may
contain the whole input-output values of the function.

Zhandry [Zha15] shows that Θ(2k/3) quantum queries are necessary and suf-
ficient to find a collision for the function f when D is a uniform distribution.
However, he leaves the non-uniform case as an open problem. One motivation
for studying the quantum collision problem for a non-uniform distribution is the
interest in proving the security of classical cryptographic schemes against quan-
tum adversaries. Hash functions are crucial cryptographic primitives that are
used to construct many encryption schemes and cryptographic schemes. They
are usually modeled as random functions and they are used inside other func-
tions. Therefore the output of combination of a function f and a random func-
tion H may not be distributed uniformly and finding a collision for this non-
uniformly distributed f ◦ H may break the security of the scheme. For example
the well-known Fujisaki-Okamoto construction [FO99] uses a random function
H to produce the randomness for an encryption scheme f . The security relies
on the fact that the adversary can not find two inputs of the random function
that lead to the same ciphertext. This is roughly equivalent to saying that f ◦H
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is collision-resistant. In fact, our result is a crucial ingredient for analyzing a
variant of Fujisaki-Okamoto construction in the quantum setting [ETU15].

We prove an Ω(2k/9) lower bound for the quantum query complexity of the
function f and leave as an open problem to verify whether or not Zhandry’s
bound applies to the function f . The proof procedure is as follows. We apply
the Leftover Hash Lemma [HILL93] to the function f to extract the number of
bits that are indistinguishable from uniformly random bits. After applying the
Leftover Hash Lemma, the output distribution of h ◦ f , where h is a universal
hash function, is indistinguishable from the uniform distribution over a set. Note
that a collision for function f is a collision for h◦f . Let A be a quantum adversary
that has quantum access to f and finds a collision for h◦f . Using the existence of
A, we show that there exists a quantum algorithm B that has quantum access to
h◦f and finds a collision for h◦f with the same probability and the same number
of queries as algorithm A. Theorem 1.1 by Zhandry [Zha12] shows that two
distribution are indistinguishable if and only if they are oracle-indistinguishable.
Therefore, h ◦ f is indistinguishable from a random function (recall that the
output of h ◦ f is indistinguishable from the uniform distribution by Leftover
Hash Lemma) and as a result any quantum algorithm B is unable to differentiate
between h ◦ f and a random function. By using an existing result for finding a
collision for a random function presented by Zhandry [Zha15, Theorem 7], we
obtain an upper bound for the probability of finding a collision for function h◦f .
Therefore, we get an upper bound for the probability of success for the quantum
collision problem applied to the function f .

The quantum collision problem has been studied in various previous works. In
the following, we mention the existing results on the number of queries that are
necessary to find a collision. An Ω(N1/3) lower bound for function f is given by
Aaronson and Shi [AS04] and Ambainis [Amb05] where f is a two-to-one function
with the same domain and co-domain and N is the domain size. Yuen [Yue14]
proves an Ω(N1/5/polylogN) lower bound for the quantum collision problem
for a random function f with same domain and co-domain. He reduces the
distinguishing between a random function and a random permutation problem to
the distinguishing between a function with r-to-one part and a function without
r-to-one part. His proof is a merger of using the r-to-one lower bound from [AS04]
and using the quantum adversary method [Amb00]. Zhandry [Zha15] improves
Yuen’s bound to the Ω(N1/3) and also removes the same size domain and co-
domain constraint. He uses the existing result from [Zha12] to prove his bound.

The sufficient number of quantum queries to find a collision is given in the
following works. A quantum algorithm that requires O(N1/3) quantum queries
and finds a collision for any two-to-one function f with overwhelming proba-
bility is given by Brassard, Hφyer and Tapp [BHT97]. Ambainis [Amb07] gives
a quantum algorithm that requires O(N2/3) queries to find two equal elements
among N given elements and therefore it is an algorithm for finding a collision in
an arbitrary function f given the promise that f has at least one collision. Yuen
[Yue14] shows that the collision-finding algorithm from [BHT97] is able to pro-
duce a collision for a random function with same domain and co-domain using
O(N1/3) queries. Zhandry shows that O(M1/3) queries are adequate to find a
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collision for a random function f : [N ] → [M ] where N = Ω(M1/2). He uses
Ambainis’s element distinctness algorithm [Amb07] as a black box in his proof.
Zhandry’s bound also implies that we can not expect a lower bound for the query
complexity of finding a collision for a non-uniform function better than O(2k/3).

2 Preliminaries

In this section, we present some definitions and existing results that are needed
in this paper. Notation x

$←− X shows that x is chosen uniformly at random
from set X. If D is a distribution over X, then notation x ← D shows that x is
chosen at random according to the distribution D. Pr[P : G] is the probability
that the predicate P holds true where free variables in P are assigned according
to the program in G. We say that the quantum algorithm A has quantum access
to the oracle O : {0, 1}n0 → {0, 1}n1 , denoted by AO, where A can submit
queries in superposition and the oracle O answers to the queries by a unitary
transformation that maps |x, y〉 to |x, y ⊕ O(x)〉.
Definition 1. Let D1 and D2 be distributions on a set X. The statistical dis-
tance between D1 and D2 is

SD(D1,D2) =
1
2

∑

x∈X

∣
∣ Pr[D1(x)] − Pr[D2(x)]

∣
∣.

Definition 2. Let D be a distribution on a set X. The min-entropy of this
distribution is defined as

H∞(D) = − log max
x∈X

Pr[D(x)].

Definition 3. We say that function f : {0, 1}n1 → {0, 1}n2 has min-entropy k if,

− log max
y∈{0,1}n2

Pr[y = f(x) : x
$←− {0, 1}n1 ] = k.

Definition 4 (Universal Hash Function [CW79]). A family of functions
H = {h : {0, 1}n → {0, 1}m} is called a universal family if for all distinct
x, y ∈ {0, 1}n:

Pr[h(x) = h(y) : h
$←− H] ≤ 1/2m.

Lemma 1 (Leftover Hash Lemma [HILL93]). Let D be a distribution with
min-entropy k and e be a positive integer. Let h : {0, 1}m ×{0, 1}n → {0, 1}k−2e

be a universal hash function. Then,

SD
((

h(y, x), y
)
,
(
z, y

)) ≤ 2−e−1

where x
D←− {0, 1}n, y

$←− {0, 1}m and z
$←− {0, 1}k−2e.
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Lemma 2 ([Zha12]). Let D1 and D2 be efficiently sampleable distributions over
some set Y, and let X be some other set. For i = 1, 2, let DX

i be the distributions
of functions Fi from X to Y where for each x ∈ X, Fi(x) is chosen at random
according to the distribution Di. Then if A be a quantum algorithm that makes
q queries and distinguish DX

1 from DX
2 with non-negligible probability ε, we can

construct a quantum algorithm B that distinguishes samples from D1 and D2

with probability at least 3ε2

64π2q3 .

Lemma 3 (Theorem 7 [Zha15]). Let h : {0, 1}n → {0, 1}m be a random func-
tion. Then any quantum algorithm making q number of queries to h outputs a
collision for h with probability at most C(q+2)3

2m where C is a universal constant.

3 Main Result

Let Pr[Coll(O;AO) : O ← D] be the probability of finding a collision in function
O that is drawn according to the distribution D using a quantum algorithm A
with quantum access to the function O.

Lemma 4. Let D be a distribution over {0, 1}n1 . Let f : {0, 1}n1 → {0, 1}n2

be a public function and X = {0, 1}n0 . If A is a quantum algorithm that makes
q queries to function O drawn from distribution DX and finds a collision for
f ◦O with some probability, then there exists a quantum algorithm B that makes
q queries to f ◦ O and outputs a collision for f ◦ O with the same probability.

Proof. Let Sy = f−1({y}) for y ∈ Im f . We define distribution Dy over Sy as

Pr[Dy(z)] :=
Pr[D(z)]

∑
z∈Sy

Pr[D(z)]
.

Let D′ be the distribution of functions F from {0, 1}n0 × Im f to {0, 1}n1 where
for each x ∈ {0, 1}n0 and y ∈ Im f , F (x, y) is chosen at random in Sy according
to the distribution Dy. Let (F 	 g)(x) := F

(
x, g(x)

)
. We show that output of O

and output of F 	(f ◦O) have the same distribution when F is chosen according
to distribution D′. For every x ∈ {0, 1}n0 and z ∈ {0, 1}n1 :

Pr[
(
F 	 (f ◦ O)

)
(x) = z : O ← DX , F ← D′]

= Pr[F
(
x, f

(
O(x)

))
= z : O ← DX , F ← D′]

= Pr[F
(
x, f(z′)

)
= z : z′ ← D, F ← D′]

= Pr[z′′ = z : z′ ← D, z′′ ← Df(z′)]
(∗)= Pr[z′′ = z ∧ z′ ∈ Sf(z) : z′ ← D, z′′ ← Df(z′)]
(∗∗)= Pr[z′ ∈ Sf(z) : z′ ← D] Pr[z′′ = z : z′′ ← Df(z)]

=
( ∑

z′∈Sf(z)

Pr[D(z′)]
)

· Pr[D(z)]
∑

z′∈Sf(z)
Pr[D(z′)]

= Pr[D(z)],



Quantum Collision-Resistance of Non-uniformly Distributed Functions 83

where (∗) holds for the reason that if z′′ = z be true, then z′ will be in the set
Sf(z) and (∗∗) uses the conditional probability. As a result:

Pr[Coll(f ◦ O;AO) : O ← DX ] = Pr[Coll(f ◦ O;AF�f◦O) : O ← DX , F ← D′].

Now, we construct quantum algorithm B. Algorithm B runs A and answers
to its query as follows: (i) query (f ◦ O)(x) := y, (ii) pick z ← Dy, and (iii) set
O(x) := z. That is, B runs AF�f◦O with F ← D′. Let O = f ◦ O. The way that
quantum algorithm B handles quantum queries is shown in the following circuit.

|x〉
UO

UF U†
F

U†
O

|x〉

|0〉 |0〉

|0〉 • |0〉

|0〉 ∣
∣F 	 O(x)

〉

Algorithm B returns the output of A after q queries. Therefore, we prove the
existence of quantum algorithm B stated in the lemma.

Theorem 1. Let D be a distribution with H∞(D) ≥ k over set {0, 1}n1 . Let
O be a function drawn from distribution DX . Then any quantum algorithm A

making q queries to O returns a collision for O with probability at most C′(q+2)9/5

2k/5

where C ′ is a universal constant. That is,

Pr[Coll(O;AO) : O ← DX ] ≤ C ′(q + 2)9/5

2k/5
.

Let h : {0, 1}m×{0, 1}n1 → {0, 1}k−2e be a universal hash function. Lemma 1
implies that:

SD(hy(x), z) ≤ 2−e−1 (1)

where hy(x) := h(y, x), x ← D, y
$←− {0, 1}m and z

$←− {0, 1}k−2e.
The upper bound can be concluded by following steps:

Pr[Coll(O;AO) : O ← DX ]
(i)

≤ Pr[Coll(hy ◦ O;AO) : O ← DX ]
(ii)
= Pr[Coll(hy ◦ O;Bhy◦O) : O ← DX ]
(iii)

≤ Pr[Coll(O∗;BO∗
) : O∗ $←− ({0, 1}n1 → {0, 1}k−2e)] +

√
64π2q32−e−1/3

(iv)

≤ C(q + 2)3

(2k−2e)
+

√
64π2q3

3(2e+1)
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where

(i) follows from the fact that collisions for O will also be collisions for hy ◦ O,
and that hy ◦ O can have other collisions;

(ii) follows from Lemma 4 that implies the existence of quantum algorithm B;
(iii) can be seen as follows: Let D1 be output distribution of hy ◦ O and D2

be uniform distribution over {0, 1}k−2e. Equation 1 implies that for every
adversary A,

|Pr [A(y) = 1 : y ← D1] − Pr [A(y) = 1 : y ← D2]| ≤ 2−e−1.

Using Lemma 2, we can conclude that
∣
∣
∣ Pr[Coll(hy ◦ O;Bhy◦O) : O ← DX ]−

Pr[Coll(O∗;BO∗
) : O∗ $←− ({0, 1}n1 → {0, 1}k−2e)]

∣
∣
∣ ≤

√
64π2q32−e−1/3;

and finally
(iv) follows from applying Lemma 3 to the random function O∗.

So far, we have the upper bound

ηe :=
22eμ

2k
+

ν

2e/2
, where μ := C(q + 2)3 and ν :=

8πq3/2

√
6

.

It is minimized by choosing

e =
2
5
k +

2
5

log
ν

4μ
.

Substituting this value of e gives us

Pr[Coll(O;AO) : O ← DX ] ≤ 22/5μ1/5ν4/5

2k/5
≤ C ′(q + 2)9/5

2k/5
.

Corollary 1. Let f : {0, 1}n1 → {0, 1}n2 be a function with min-entropy k.
Let O : {0, 1}∗ → {0, 1}n1 be a random function. Then any quantum algorithm
A making q queries to O returns a collision for f ◦ O with probability at most
O

(
q9/5

2k/5

)
.

We apply Lemma 4 to obtain the quantum algorithm B that has access to
f ◦O and finds a collision for f ◦O with the same number of queries and the same
probability as the quantum algorithm A. Then the result follows by Theorem 1
for the reason that the output distribution of f ◦ O has min-entropy k.
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Abstract. Baldi et al. have introduced in [BBC+13] a very novel code
based signature scheme. However we will prove here that some of the
bits of the signatures are correlated in this scheme and this allows an
attack that recovers enough of the underlying secret structure to forge
new signatures. This cryptanalysis was performed on the parameters
which were devised for 80 bits of security and broke them with 100, 000
signatures originating from the same secret key.

1 Introduction

It is a long standing open problem to build an efficient and secure signature
scheme based on the hardness of decoding a linear code which could compete
in all respects with DSA or RSA. Such schemes could indeed give a quantum
resistant signature for replacing in practice the aforementioned signature schemes
that are well known to be broken by quantum computers. The first answer to this
question was given in [CFS01]. They adapted the Niederreiter scheme [Nie86]
for this purpose. This requires a linear code for which there exists an efficient
complete decoding algorithm. This means that if H is a r×n parity-check matrix
of the code, there exists for any s ∈ {0, 1}r an efficient way to find a word e
of smallest Hamming weight such that HeT = sT . To sign a message m, a
hash function H is first applied to the message (say that the output of the hash
function is a binary string of length r). Then the complete decoding algorithm
of the code with parity-check matrix H is used to produce the signature of m
which is a word e of smallest weight such that

HeT = H(m)T .

The authors of [CFS01] noticed that very high rate Goppa codes are able to
fulfill this task, and their scheme can indeed be considered as the first practical
solution to the aforementioned problem. Moreover they gave a security proof
of their scheme relying only on the assumption that two problems were hard,
namely (i) decoding a generic linear code and (ii) distinguishing a Goppa code
from a random linear code with the same parameters. However, afterwards it was
c© Springer International Publishing Switzerland 2016
T. Takagi (Ed.): PQCrypto 2016, LNCS 9606, pp. 86–103, 2016.
DOI: 10.1007/978-3-319-29360-8 7
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realized that the parameters proposed in [CFS01] can be attacked by an unpub-
lished attack of Bleichenbacher, which despite its exponential complexity gives
an attack which is probably implementable in practice nowadays. Subsequently,
it was shown in [Fin10] that there is a slight variation called Parallel-CFS which
avoids the significant increase of parameters needed to thwart the Bleichenbacher
attack on the original system. However, even this modified scheme shares the
same nice features as the original scheme, that is very short signature sizes and
reasonably fast software implementation for 80 bits of security [LS12] it has also
some drawbacks, such as for instance:

(i) a lack of security proof in light of the distinguisher of high rate Goppa codes
found in [FGO+11] (see also [FGO+13] for more details) which shows that
the hypotheses used in [CFS01] to give a security proof of the signature
scheme were not met,

(ii) and poor scaling of the parameters when security has to be increased. This
comes from the following behavior. The [CFS01] scheme uses t-error correct-
ing Goppa codes of length 2m. The public key is of size K = tm2m whereas
decoding attacks take about λ = 2tm/2 operations whereas obtaining sig-
nature needs about t!t2m3 operations. If we want to stick to a reasonable
signature cost, this needs that we fix t to a small value (say smaller than 12).
In this case the security parameter λ is basically only a polynomial function
of the key size K: λ ≈ Kt/2.

Other signature schemes based on codes were also given in the literature
such as for instance the KKS scheme [KKS97,KKS05] or its variant [BMS11].
But they can be considered at best to be one-time signature schemes in light
of the attack given in [COV07] and great care has to be taken to choose the
parameters of this scheme as shown by [OT11] which broke all the parameters
proposed in [KKS97,KKS05,BMS11].

Recently, there has been some revival in the CFS strategy [CFS01], by choos-
ing other code families (or by replacing the Hamming metric by another metric).
The new code families that were used are LDGM codes in [BBC+13], i.e. codes
with a Low Density Generator Matrix, LRPC codes in [GRSZ14], or (essentially)
convolutional codes [GSJB14]. While there are still some doubts that there is a
way to choose the parameters of the scheme [GSJB14] in order to avoid the attack
[LT13] on the McEliece cryptosystem based on convolutional codes [LJ12], there
was no clear indication that the two other schemes are insecure. In particular, the
LRPC-based scheme comes with a security proof that obtaining a fairly large
amount of message-signature pairs does not simplify the work of an attacker
(and obtaining a feasable attack on the parameters proposed in [GRSZ14] is a
completely open question). Both schemes are based on two very original ideas for
decoding in the rank metric case for LRPC codes and decoding in the Hamming
metric for the [BBC+13] scheme.

The [BBC+13] scheme builds upon the following idea. It is namely easy to
find an error e of low weight which has some specific syndrome s (i.e. sT = HeT )
of low weight when the parity-check matrix H is systematic, i.e. it has the form
H =

(
P I

)
, where I is the identity matrix and P is arbitrary. Here is enough
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to take e = 0||s where || stands for concatenation and 0 is the all-zero vector
that has as many entries as there are columns in P . Basically the authors of
[BBC+13] choose a hash function H, such that the result of the hash function
is a word of low weight for which the aforementioned decoding procedure works.
Of course, an attacker can also perform the same task and it is the purpose
of the [BBC+13] scheme to hide the structure that allows this way of signing.
This is obtained by taking LDGM codes whose low weight codewords will be
used to hide the structure of the signature and by multiplying H by appropriate
matrices.

However, contrarily to [GRSZ14] the LDGM code based scheme does not
come with a security proof that message-signature pairs do not leak information.
It is the purpose of this paper to show that indeed there is an efficient attack for
breaking this scheme when the attacker has at her/his disposal enough signatures
obtained from the same secret key. It is based on the fact that in this scheme
some of the bits of the signature are correlated. These correlations can be used to
recover an equivalent secret key which can be used to forge new signatures. This
cryptanalysis was performed on the parameters which were devised for 80 bits
of security and broke them with 100, 000 signatures originating from the same
secret key in about one hour.

Notation: In the whole paper, the sum between bits is always performed
as the sum over F2 (that is always modulo 2) and the sum between binary
words x = (xi)i and y = (yi)i of the same length is performed componentwise
x + y = (xi + yi)i. We use bold letters for matrices and vectors, A, x and so on
and so forth. Vectors are understood as row vectors and we use the transpose
notation to denote column vectors, for instance when x is a (row)-vector, xT

denotes this vector written in column form.

2 Description of the LDGM Code Based Signature
Scheme Proposed in [BBC+13]

This scheme can be described as follows.

Private key

– a full rank k×n binary matrix G with rows of some small and constant weight
wG which is a generator matrix of a binary LDGM code C of length n and
dimension k. It is assumed that the square k × k submatrix formed by the k
first columns of G is invertible. In this case C admits an (n − k) × n parity-
check matrix H of the form H =

(
P I

)
where I is the identity matrix of size

(n − k) × (n − k).
– an n × n matrix S that is sparse and non-singular of average row and column

weight mS .
– an invertible (n−k)×(n−k) transformation matrix Q of the form Q = R+T

where R is of very low rank z (say 1 or 2) and T is sparse with row and column
weight mT . R can be written as R = aT b where a and b are two z × (n − k)
matrices.
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Public key
H ′ = Q−1HS−1.

Moreover this scheme also uses two fixed functions, a hash function H and
a map F mapping any hash to a binary string of length n − k and Hamming
weight w.

Signature Generation

1. To sign a message m, the signer computes s = F(H(m)) which is an element
of {0, 1}n−k of weight w. He checks whether bsT = 0. If this is the case,
he goes to the next step. If not, he appends a counter l to H(m) to obtain
H(m)||l 1 and computes F applied to H(m)||l until getting a syndrome s of
weight w that satisfies bsT = 0 (for more details see [BBC+13, §3.2]). This
requires O(2z) attempts on average.

2. The signer computes the private syndrome s′T = QsT . This syndrome has
weight ≤ mT w.

3. The signer appends k zeros in front of s′: e = 0k||s′ where 0k = 00 · · · 0︸ ︷︷ ︸
k

.

4. The signer selects mG rows of G at random where mG is some fixed and
small constant and adds these rows to obtain a codeword c of C of weight
≤ wc

def= mGwG.
5. The signature is then equal to

σ = (e + c)ST . (1)

Signature Verification

1. The verifier checks that the weight of the signature σ is less than (mT w +
wc)mS . If this is not the case the signature is discarded.

2. He computes s∗ def= F(H(m)) and checks whether H ′σT = s∗T . If this is
not the case he appends a counter l to H(m) and checks whether H ′σT =
F(H(m)||l)T . If after O(2z) verification attempts no such equality is found,
the signature is eventually discarded.

The point behind the verification process is the following chain of equalities

H ′σT = Q−1HS−1S(eT + cT )
= Q−1H(eT + cT )
= Q−1HeT

= Q−1s′T

= Q−1QsT

= sT .

Note that this is a general description of the scheme. Now in order to have
reasonable key sizes, quasi-cyclic LDGM codes and quasi-cyclic matrices Q and
1 Here || stands for the concatenation of strings.
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S are actually chosen in [BBC+13]. More precisely G is chosen as a k0p × n0p
matrix formed by sparse and circulant blocks Ci,j of size p (and such that all
the rows of G have weight wG)

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C0,0 C0,1 C0,2 · · · C0,n0−1

C1,0 C1,1 C1,2 · · · C1,n0−1

C2,0 C2,1 C2,2 · · · C2,n0−1

...
...

...
. . .

...
Ck0−1,0 Ck0−1,1 Ck0−1,2 . . . Ck0−1,n0−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Moreover in all the parameters suggested in [BBC+13], mT was chosen to be
equal to 1, that is T is a permutation matrix. Furthermore it is assumed in
[BBC+13] that T is also formed by circulant blocks of size p × p (that is T is a
quasi-cyclic permutation). R is also chosen to have a block circulant form. This
is obtained by choosing R as follows.

R = (aT
r0

br0) ⊗ 1p×p

where r0
def= n0 − k0, ar0 and br0 are two binary matrices of size z × r0, 1p×p is

the all-one p × p matrix and ⊗ stands for the Kronecker product. This implies
that Q is formed by circulant blocks of size p × p. S is also chosen in this way,
namely formed by circulant blocks of size p × p.

3 The Idea Underlying the Attack

3.1 Correlations Between Bits of the Signature

The creation of a signature can be summarized as follows. It is obtained by first
obtaining a binary word s of small weight from the message m that has to be
signed and then computing the product

((0k||sQT ) + c)ST

where c is a codeword of small weight ≤ wc of the LDGM code chosen for this
scheme. From the fact that Q = T + R and RsT = 0 where T is a permutation
matrix (this choice is made in all the parameters proposed in [BBC+13]), it
turns out that the signature σ can be written as

σ = ((0k||s′) + c)ST

where s′ is a word of (small) weight w. To simplify the discussion we will make
this assumption from now on, i.e. T is a permutation matrix. We wish to empha-
size that this assumption is just here to simplify the discussion a little bit, and
that our attack will also work in a more general setting where the weight of s′

stays sufficiently small. Let us bring in the quantities

x = (x1 . . . xn) def= (0k||s′) + c.



An Efficient Attack on a Code-Based Signature Scheme 91

Here we have
σ = xST .

Roughly speaking, the idea of the attack is to look for correlations between bits
of σ by using a bunch of signatures that will allow to compute such statistics.
These correlations will give a lot of useful information about S that allows to
recover a column permuted version Sp of S and later on from the knowledge of
Q−1HS−1 recover a possible matrix Qp that allows to forge signatures.

Before we explain where these correlations come from, let us first observe
that each bit σi of σ is a linear combination of a small number of bits xj :

σi =
∑

j:Sij=1

xj (2)

where Sij denotes the entry of S at row i and column j and the bits of x are
highly biased, as we have

prob(xi = 1) =
wc

n
for i ∈ {1, · · · , k}. (3)

prob(xi = 1) =
wc

n
+

w

n − k
− 2

wwc

n(n − k)
≈ wc

n
+

w

n − k
for i ∈ {k + 1, · · · , n}.

(4)

This already allows to find for a given position i the number of xj ’s for j in
{1, . . . , k} and the number of xj ’s for j ∈ {k+1, . . . , n} that appear in the linear
combination (2) defining σi. For this we assume that the xj ’s are independent
and that their distribution is given by (3) and (4). This can be obtained by
computing estimates of prob(σi = 1) and the piling up lemma [Mat93]

Proposition 1. Assume that the xj’s are independent Benoulli random vari-
ables and that their distribution is given by (3) and (4). Let

li
def
= # {j ∈ {1, . . . , k} : Sij = 1} .

ri
def
= # {j ∈ {k + 1, . . . , n} : Sij = 1} .

Then

prob(σi = 1) =
1 − (1 − 2wc/n)li+ri(1 − 2w/(n − k))ri

2
Computing an estimate for prob(σi = 1) by using a bunch of signatures allows
to recover for each position the numbers li and ri. This gives all of the row
weights of S, but we can go beyond this by taking advantage of the correlations
between the bits of σ.

If σi and σj do not share a common bit in the associated linear combination
(for instance σi = x1 + x3000 whereas σj = x1300 + x2780 + x4000) then we may
expect that σi and σj are independent and there is no significant statistical
correlation between them. On the other hand, when σi and σj share a same bit
xt in their associated linear combination (for instance σi = x1 + x3000 whereas
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σj = x1300 + x3000 + x4000) σi and σj are clearly correlated as explained by the
following proposition.

Proposition 2. Let X1,X2,X3 be independent Bernoulli variables such that
prob(Xi = 1) = pi, σ1

def
= X1 + X3 and σ2

def
= X2 + X3. Then if p3 /∈ {0, 1},

p1, p2 �= 1
2 , we have that σ1 and σ2 are correlated with

Cov(σ1, σ2)
def
= E(σ1σ2) − E(σ1)E(σ2) = p3(1 − p3)(1 − 2p1)(1 − 2p2).

This proposition is proved in Sect.A of the appendix. By computing estimates for
all Cov(σi, σj) we know if the associated linear combinations (2) corresponding
to σi and σj share a common xt. From this information we easily obtain S up to
a column permutation as shown in Sect. 4.

3.2 An Additional Source of Correlations

This method works as long as the low codewords of the LDGM code do not
introduce another source of correlations that competes with the aforementioned
correlations. These correlations are in essence a consequence of a rather subtle
interplay between these codewords and the rows of S. To explain this new source
of correlations let us introduce some notation.

Notation 1. Let (i, j) be a pair of signature positions. We denote by n(i, j) the
number of rows of G′ = GST whose support contains both i and j. We will also
use the notation ni for the number of rows of G′ whose support contains position
i. Finally, we denote by g′

i the i-th row of G′.

Roughly speaking, large values of n(i, j) explain the correlations between
positions i and j. To understand this link, let us first observe that from (1) we
know that a signature σ can be written as σ = (e + c)ST where c is a sum of
mG rows of the matrix G. This implies that

σ =
mG∑

s=1

g′
is + eST (5)

Here it should be noticed that the weight of the rows g′
i is rather small compared

to the length n of these rows (think of about 180 for the parameters proposed
for 80 bits of security in [BBC+13] whereas the length is 9600). Moreover the
weight of eST is approximately of the same order as the weight of the g′

i’s. This
means that if σi is equal to 1, this is generally due to the fact that one of these
rows g′

is
has a 1 in the i-th position. Moreover since the weight of the g′

i’s is
small compared to the length of these vectors, their intersection is in general
very small, meaning that if σi is equal to 1, this is generally due to the fact
that there is exactly one of the g′

ij
that has an i-th coordinate equal to 1. Here

(positive) correlations appear precisely when n(i, j) is unusually large, that is
larger than we would expect if the g′

i behaved at random. In such a case when
σi and σj are both equal to 1, this is rather often due to one of those n(i, j) rows
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g′
u that appears in both linear combinations (5) defining σi and σj (and whose

i-th and j-th coordinates are both equal to 1).
To put things on a more quantitive level, we would expect that

E(n(i, j)) = k

(
n−2

mSwG−2

)

(
n

mSwG

) ≈ km2
Sw2

G

n2
.

If n(i, j) is greater than this quantity, then positive correlations appear.
Large values of n(i, j) appear either because

(i) of the aforementioned phenomenon: the linear combinations (2) defining σi

and σj share a common xt. This happens when the support of the i-th row
of S and the support of the j-th row of S share a common position (i.e.
position t here). In such a case we denote by n1(i, j) the Hamming weight
of the t-th column of G.

(ii) or a certain interplay between the rows of G and the rows of S that occurs
when there are rows of G whose support contains an element of the support
of the i-th row of S and an element of the support of the j-th row of S. We
let n2(i, j) be the number of such rows.

We clearly have that the second case is more general than the first one and
a row of G′ is non zero in position i and position j is such that the row of the
same index in G has a support that has to intersect both the support of the i-th
row and the j-th row of S. In other words:

n2(i, j) ≥ n1(i, j) (6)
n(i, j) ≤ n2(i, j). (7)

Notice that we generally have n(i, j) = n2(i, j) and if n1(i, j) �= 0 then we
generally have n(i, j) = n1(i, j) = n2(i, j).

Correlations between σi and σj allow to detect large values of n(i, j). In case
(i) we obtain directly information on the rows of S, however the second case
does not seem to give direct information on S since it involves both G′ (that we
do not know) and S. There is however a way to distinguish between the cases
n1(i, j) �= 0 and n1(i, j) = 0. This comes from the following phenomenon in the
first case.

Fact 2. Consider a column of index t of S and denote by {i1, . . . , is} the set of
rows where this column has a 1 at that position. Then all possible pairs (ia, ib)
are correlated because σia and σib share a common xt.

Let us define a graph with vertex set the set of positions {1, . . . , n} and where
two positions are linked together with an edge if they are sufficiently correlated.
Of course this graph depends on the threshold we choose for deciding whether
two positions are sufficiently correlated or not. Correlations of the first kind
give rise to cliques associated to columns of S where the size of the clique is the
weight of the column. Recall that a clique of a graph is a subset of vertices which
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are linked together with edges of the graph (every two distinct vertices in the
clique are adjacent). The second source of correlations is unlikely to yield such
cliques and this phenomenon is used in the next section to distinguish between
both sources of correlations. It will be essential to recognize the first source of
correlation in order to recover S up to a column permutation.

3.3 Obtaining Low Weight Codewords of the Code
with Parity-Check Matrix H ′

Correlations also allow to obtain codewords of the code with parity-check matrix
H ′. Note that this code is known to an attacker since H ′ is public. It will be
handy to introduce the following notation

Definition 1 (public code Cpub). The code with parity-check matrix H ′ is
denoted by Cpub.

We can also observe that the matrix G′ = GST is a generator matrix of this code.
It can be used to “perturb” signatures (by changing their Hamming weight),
without changing the syndrome H ′σT of the signature. It is actually used exactly
in this way in the signature scheme. Note that this is also an LDGM code since
G′ has rows of weight ≤ mSwG. Such rows allow to add small perturbations to
the signature and they are used later on in our attack.

Some of these rows can be recovered in the following fashion. Assume that
we have obtained a set of valid signatures S and that i and j are two positions
that are correlated. Consider in this case the following subset of S:

Σ(i, j) def= {signatures σ ∈ S : σi = σj = 1}. (8)

When σi and σj are significantly correlated it turns out that a non negligible
fraction of elements of Σ(i, j) are of the form

∑mG

s=1 g′
is

+eSt where exactly one
of those g′

is
has a “1” in the i-th position and the j-th position. This means that

such a g′
is

is precisely one of the n(i, j) rows of G′ that have a 1 in the i-th and
the j-th positions.

Such a phenomenon implies that if we consider the intersection of the
supports of the pairs of elements σs and σt of Σ(i, j), a fraction of order

1
n(i,j) of these intersections has an unusually large size which is precisely
due to the pairs (σs, σt) that correspond to a pair of linear combinations
(
∑mG

a=1 g′
ia

+ esSt,
∑mG

b=1 g′
ib

+ etSt) that share a common g′
u that belongs to

one of the n(i, j) rows of G′ that have a 1 in position i and j.
This phenomenon clearly points to an algorithm arranging signatures of

Σ(i, j) in n(i, j) groups such that all the elements in a group have an unusual
large intersection with each other. Each group corresponds here to one of the
rows g′

l of G′ that has a “1” in position i and j and the signatures in this group
have an unusual large intersection precisely because they share this common g′

l

in the linear combination (5) which defines them.
Roughly speaking, the idea of considering this set Σ(i, j) is that it acts as

a filter that gives signatures for which an unusual number of them has a large
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intersection, and this because a non negligible fraction of them uses one of the
rows g′

l of G′ that has a “1” in position i and j in the linear combination (5)
that defines them.

To filter inside the set Σ(i, j) the signatures that are of this form, it suffices
to compute for each signature σ in this set the number N(σ) of signatures in
Σ(i, j) different from σ that have an unusually large intersection with σ and
to keep only those signatures for which N(σ) is large. Setting up the threshold
for deciding that two signatures have a large intersection is easily achieved by
plotting the histogram of those intersections as shown by Fig. 1. Choosing the
signatures σ of Σ(i, j) for which N(σ) is above this threshold yields a set that we
denote by Σ′(i, j). Then we form inside Σ′(i, j) groups consisting of signatures
which have all with each other a large intersection. This is done by considering
the graph with vertices the elements of Σ′(i, j) and putting an edge between
two signatures if their intersection is sufficiently large (say greater than some
threshold) and by looking for large cliques in this graph.

Once we have such groups we can recover from them some of the rows of G′.
Indeed, for each of those groups we can recover the common element g′

u in the
linear combination (5) corresponding to these signatures. The support of g′

u is
easily obtained by counting for each position i the number Ni of signatures of
the group that have a 1 in this position. The support of g′

u corresponds to the
positions i for which Ni is unusually large.

4 Recovering S up to a Column Permutation

Computing the correlations between bits of the signature reveals pairs (i, j) of
rows of S that have a “1” at the same position. Consider a function Θ whose
purpose is to give the threshold for deciding whether a pair of position (i, j) is
sufficiently correlated or not. It takes five inputs: x a real number that gives the
computed correlation of the pair and four nonnegative integers that represent
li, ri, lj and rj respectively:

Θ : R × N × N × N × N → {0, 1}
(x, li, ri, lj , rj) 	→ Θ(x, li, ri, lj , rj)

In practice, it has been enough to suggest a relevant function for the “degree”
li +ri of a position i, that is we chose a function Θ(x, li, ri, lj , rj) depending only
on x, li + ri and lj + rj . We associate to such a threshold function Θ a graph GΘ

defined as follows

Definition 2 (Threshold graph). The threshold graph GΘ associated to the
threshold function is the graph with

– vertex set the set of signature positions,
– there is an edge between i and j if and only if Θ(empCov(σi, σj), li, ri, lj , rj) =

1, where empCov(σi, σj) denotes the empirical covariance between σi and σj

that is computed from the available set of signatures.
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Fig. 1. Distribution of the weights of the intersections of every pair of signatures in
Σ(i, j). Here the threshold is set at a weight of about 250.

Let Gsec be the graph with the same set of vertices and there is an edge between
i and j if and only if the i-th row and j-th row of S have a “1” in common.
Our aim is to recover Gsec by using GΘ. Note that cliques in Gsec (that is subset
of vertices of Gsec that are all linked together by edges of Gsec) correspond to
columns of S, the clique correspond to all the rows of S where this column has
a “1” entry. Recovering S up to a column permutation amounts to recover the
cliques of Gsec.

This is easily achieved by considering two different threshold functions Θ1

and Θ2. The first one is chosen in a conservative manner. More precisely, we
choose Θ1 such that whenever Θ1(empCov(σi, σj), li, ri, lj , rj) = 1 there is an
edge between i and j in Gsec (i.e. this threshold is chosen in such a way, that if we
declare that there is a correlation between i and j it always corresponds to two
rows of S that have a “1” in common). To put it differently, GΘ1 is a subgraph
of Gsec. The second threshold is chosen in a much less conservative way so that
we never miss an edge of Gsec, i.e. when there is an edge between i and j in Gsec,
then Θ2(empCov(σi, σj), li, ri, lj , rj) = 1. In other words, Gsec is a subgraph of
GΘ2 this time. In our experiments, we have always been able to choose Θ1 and
Θ2 in this way.

Cliques of Gsec are found by adding edges to GΘ1 and finding cliques in
the “augmented” graph by closing triangles in GΘ1 whenever there was such a
triangle in GΘ2 . More precisely, we add an edge between i and k in GΘ1 when
there was a j for which there are edges between i and j and between j and k in
GΘ1 and {i, j, k} forms a triangle in GΘ2 meaning that there are edges between
i and j, between i and k and between j and k in GΘ2 . We have been able to
recover all cliques in Gsec by this simple algorithm in all cases when the columns
of S were of weight at least 3, meaning that all vertices of Gsec are involved in
at least one clique which contains a triangle. We ended up here with a matrix
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Sp that is equal to S up to a column permutation.

Sp = SΠ

where Π is a permutation matrix for which we can assume that it is formed by
circulant blocks of size p (by reordering Sp in such a way that it is formed only
by circulant blocks of size p).

5 Recovering Q up to a Column Permutation

The previous attack lead to find S up to a column permutation. This will lead
us to recover Q up to a permutation too. We will need for this the following
proposition.

Proposition 3. Let Mr0×r0 be the ring of r0p×r0p matrices formed by circulant
blocks of size p × p and let Ar0×r0 be the subset of matrices of Mr0×r0 which are
formed only by 0 blocks 0p×p or by all-ones blocks 1p×p. Ar0×r0 is a subring of
Mr0×r0 which is stable by multiplication

Ar0×r0Mr0×r0 = Mr0×r0Ar0×r0 = Ar0×r0 .

The inverse of Q is of the form T −1 + A where A belongs to Ar0×r0 .

The proof of this proposition is given in the appendix. Recall now that we
have a matrix Sp which up to a column permutation is equal to S, that is

Sp = SΠ (9)

Recall now the following relation between the public parity-check matrix H ′ and
the secret one H:

H ′ = Q−1HS−1.

We also have H =
(
P | I)

. By putting all these equations together and by
multiplying H ′ on the right by Sp we obtain

H ′Sp = Q−1HS−1Sp

= Q−1
(
P | I

)
S−1SΠ

= Q−1
(
P | I

)
Π

=
(
Q−1P | Q−1

)
Π

By using Proposition 3, we obtain

H ′Sp =
(
(T −1 + A)P | (T −1 + A)

)
Π (10)

for some A that belongs to Ar0×r0 . We claim that we can find in H ′S′
p the

columns that correspond to T −1 + A. Indeed in the matrix A the columns that
belong to the same circulant block of size p are equal. Adding T −1 which is a
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permutation matrix just changes one entry per column. In other words columns
belonging to the same circulant block of T −1 + A are all at Hamming distance
2 from each other. Such groups of columns can easily be detected and we can
find a permutation matrix Π ′ in Mn0×n0 such that

H ′SpΠ
′ =

(
Q−1PΠ l | Q−1Πr

)
(11)

for some permutation matrices Π l and Πr in Mk0×k0 and Mr0×r0 respectively.
Then we set

S′
p = SpΠ

′

Qp = (Q−1Πr)−1 = Π−1
r Q

6 Forging New Signatures

We are ready now to put all the pieces together. Forging is performed by using
the pair of matrices (Qp,S

′
p) instead of the pair (Q,S). To sign a message m

we proceed as follows

1. The forger computes s = F(H(m)) which is an element of {0, 1}n−k of weight
w. He checks whether bsT = 0. If this is the case he goes to the next step.
If not, he appends a counter l to H(m) to obtain H(m)||l and computes
F applied to H(m)||l until getting a syndrome s of weight w that satisfies
bsT = 0

2. He computes s′T = Qps
T . This syndrome has weight ≤ mT w

3. The forger sets e = 00 · · · 0︸ ︷︷ ︸
k

||s′

4. The forged signature is then computed as σ = eS′
p
T .

It can be verified that σ is a valid signature since

(i) H ′σT = sT , because

H ′σT = H ′S′
pe

T

= H ′SpΠ
′eT

=
(
Q−1PΠ l | Q−1Πr

) (
0k s′)T (follows from (11))

=
(
Q−1PΠ l | Q−1

p

)
(

0T
k

Qps
T

)

= sT

(ii) It is readily verified that the signature σ has Hamming weight at most
mT mSw which is smaller than (mT w + wc)mS .

It could be argued that this weight is significantly smaller than the weight of a
genuine signature which should be typically slightly less than (mT w + wc)mS

and that this could be detected. This attack can be improved in order to achieve
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the “right” weight of (mT w + wc)mS as follows. During the recovery process of
S we have found rows of G′. These rows have weight of about wGmS . Since such
rows are in the public code Cpub which has parity-check matrix H ′ we can add
mG of them to σ without changing the syndrome H ′σT . However this adds a
Hamming weight of about mGwGmS = wcmS to the signature which is precisely
the weight we want to achieve.

7 Experimental Results

Running the whole attack was performed on the parameters suggested for 80 bits
of security of [BBC+13] namely (Table 1)

Table 1. Parameters for 80 bits of security.

n k p w wg wc z mT ms

9800 4900 50 18 20 160 2 1 9

We used 100, 000 signatures to perform the attack which was implemented in
Sage and took about one hour on a 6-core Intel� Xeon� running at 3.20 GHz.
It was performed on matrices S which were either regular (constant column and
row weight equal to wS) or irregular.

8 Conclusion

We have demonstrated here that correlations between some of the bits of the
signature that can be observed in the signature scheme proposed in [BBC+13]
can be used to recover enough of the secret information to be able to forge new
signatures. Our attack was performed on the parameters devised for 80 bits of
security, used 100, 000 signatures for this task and took about one hour. The
real reason why this attack was possible comes from these correlations and has
not to be attributed to other features of the parameters proposed in [BBC+13]
(for instance T was chosen as a permutation matrix, the way S is chosen is not
completely specified in [BBC+13] –we chose it to be either regular or irregular).
Arguably, there is one place where our attack used a particular feature of the
matrix S, namely that its columns were at least of weight 3 –see Fact 2 where
cliques in the threshold graph were used to detect correlations of type (i) (see
Subsect. 3.2). When S has columns of weight 1 or 2, the strategy outlined in
Sect. 4 does not work anymore and this might require more elaborate strategies
to break the scheme in such a case. It is unlikely that such a modification is
able to avoid attacks using these correlations. For all these reasons, it seems to
us that the scheme proposed in [BBC+13] could only be used in one-time (or
few-times) signature schemes.



100 A. Phesso and J.-P. Tillich

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions which were very helpful for improving the
quality of the paper.

A Proof of Proposition 2

Recall this proposition first.
Proposition. Let X1,X2,X3 be independent Bernoulli variables such that
prob(Xi = 1) = pi, σ1

def= X1 + X3 and σ2
def= X2 + X3. Then if p3 /∈ {0, 1},

p1, p2 �= 1
2 , we have that σ1 and σ2 are correlated with

Cov(σ1, σ2)
def= E(σ1σ2) − E(σ1)E(σ2) = p3(1 − p3)(1 − 2p1)(1 − 2p2).

Proof. Let us compute the probability that σ1 and σ2 are both equal to 1. We
have

prob(σ1 = 1, σ2 = 1) = prob(X3 = 1)prob(X1 = 0)prob(X2 = 0)
+prob(X3 = 0)prob(X1 = 1)prob(X2 = 1)

= p3(1 − p1)(1 − p2) + (1 − p3)p1p2

On the other hand by using Proposition 1 we have

prob(σ1 = 1) = p1 + p3 − 2p1p3

prob(σ2 = 1) = p2 + p3 − 2p2p3

A straighforward computation leads now to

Cov(σ1, σ2) = prob(σ1 = 1, σ2 = 1) − prob(σ1 = 1)prob(σ2 = 1)
= p3(1 − p1)(1 − p2) + (1 − p3)p1p2

−(p1 + p3 − 2p1p3)(p2 + p3 − 2p2p3)
= p3 [(1 − p1)(1 − p2) − p1p2 − (1 − 2p1)p2 − (1 − 2p2)p1

−(1 − 2p1)(1 − 2p2)p3] + p1p2 − p1p2

= p3 [1 − p1 − p2 + p1p2 − p1p2 − p2 + 2p1p2 − p1

+2p1p2 − (1 − 2p1)(1 − 2p2)p3]
= p3 [1 − 2p1 − 2p2 + 4p1p2 − (1 − 2p1)(1 − 2p2)p3]
= p3 [(1 − 2p1)(1 − 2p2) − (1 − 2p1)(1 − 2p2)p3]
= p3(1 − p3)(1 − 2p1)(1 − 2p2)

B Proof of Proposition 3

Before we prove this proposition it will be very convenient to recall the following
ring isomorphism Ψ between the ring of circulant binary matrices Mp of size



An Efficient Attack on a Code-Based Signature Scheme 101

p × p and F2[X]/(1 + Xp) which is given by

Ψ : Mp → F2[X]/(1 + Xp)
⎛

⎜
⎜
⎜
⎝

a0 a1 . . . ap−1

ap−1 a0 . . . ap−2

. . . . . .
. . . . . .

a1 a2 . . . a0

⎞

⎟
⎟
⎟
⎠

	→ a0 + a1X + · · · + ap−1X
p−1

With this isomorphism we can view a r0p×r0p binary matrix formed by circulant
blocks of size p × p as a r0 × r0 matrix over F2[X]/(1 + Xp) by replacing each of
these circulant blocks by its image by the isomorphism Ψ to them.

We will also use the following property of the set Cp
def= {0, 1+X+· · ·+Xp−1}

of F2[X]/(Xp − 1)

Lemma 1. Cp is an ideal of F2[X]/(Xp − 1).

Proof. This is just a straighforward use of the well known theory of cyclic codes:
1+X+· · ·+Xp−1 divides 1+Xp and Cp is nothing but the cyclic code generated
by 1+X+· · ·+Xp−1, see [MS86] (it is in fact a way of viewing the repetition code
as a cyclic code). From this theory it follows that Cp is an ideal of F2[X]/(Xp−1).

Proposition 3 can now be rephrased as

Proposition 4. Let Mψ
r0×r0

be the ring of r0 ×r0 matrices over F2[X]/(Xp −1)
and let Aψ

r0×r0
be the ring of r0 × r0 matrices over Cp. Aψ

r0×r0
is a subring of

Mψ
r0×r0

which is stable by multiplication

Aψ
r0×r0

Mψ
r0×r0

= Mψ
r0×r0

Aψ
r0×r0

= Aψ
r0×r0

.

The inverse of Qψ is of the form (T ψ)−1+Aψ where A belongs to Aψ
r0×r0

, where
we denote for a matrix M in Ar0×r0 by Mψ the matrix where we have replaced
every circulant block M ij by ψ(M ij).

Proof. The first part follows immediately from Lemma 1. Tψ is invertible and
therefore

(Qψ)−1 = (T ψ + Rψ)−1

= (T ψ)−1(I + (T ψ)−1Rψ)−1

We use now the first part of the proposition to deduce that AΨ def= (T ψ)−1Rψ

belongs to Aψ
r0×r0

. Now it easy to prove that (I + AΨ )−1 = I + BΨ for some
matrix BΨ in AΨ

r0×r0
. This follows immediately from the formula

(I + AΨ )−1 =
1

det(I + Aψ)
CT
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where C is the cofactor matrix of I + AΨ , namely the matrix where the entry
cij is equal to the (i, j)-minor, that is the determinant of the (r0 − 1) × (r0 − 1)
matrix that results from deleting row i and column j of I + AΨ . Here Lemma 1
is used to conclude that any product that contains an element of Cp yields an
element in Cp. We also use the fact that any product of the form (1 + a)(1 + b)
where a and b belong to Cp is of the form 1 + c where c belongs to Cp.
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Abstract. Recently, Gligoroski et al. proposed code-based encryption
and signature schemes using list decoding, blockwise triangular private
keys, and a nonuniform error pattern based on “generalized error sets.”
The general approach was referred to as McEliece in the World of Escher.
This paper demonstrates attacks which are significantly cheaper than
the claimed security level of the parameters given by Gligoroski et al.
We implemented an attack on the proposed 80-bit parameters which
was able to recover private keys for both encryption and signatures in
approximately 2 hours on a single laptop. We further find that increasing
the parameters to avoid our attack will require parameters to grow by (at
least) two orders of magnitude for encryption, and may not be achievable
at all for signatures.

Keywords: Information set decoding · Code-based cryptography ·
McEliece PKC · McEliece in the World of Escher

1 Introduction

The McEliece cryptosystem [McE78] is one of the oldest and most stud-
ied candidates for a postquantum cryptosystem. McEliece’s original scheme
used Goppa codes, but other families of codes have been proposed, such as
moderate density parity check codes [MTSB12] and low rank parity check
codes [GMRZ13,GRSZ14]. Recently, Gligoroski et al. [GSJB14,Gli] proposed
a new approach to designing a code-based cryptosystem. Their approach uses a
blockwise-triangular private key to enable decryption and signatures through a
list decoding algorithm. The error vector in both cases is characterized, not by
a maximum Hamming weight t, as is typical for code-based cryptosystems, but
by an alphabet of allowed �-bit substrings known as the generalized error set.
Claimed advantages of this approach include a straightforward signature scheme
and the ability to analyze security by using the tools of algebraic cryptanalysis.

The concept of information set decoding originates with Prange [Pra62].
Further optimizations were subsequently proposed by Lee and Brickell [LB88],
Leon [Leo88], Stern [Ste89], and several others [FS09,BLP11,MMT11,BJMM12].
Information set decoding techniques can be used to attack code-based cryptosys-
tems in several ways. They can be used to search for a low-weight error vector
c© Springer International Publishing Switzerland 2016
T. Takagi (Ed.): PQCrypto 2016, LNCS 9606, pp. 104–117, 2016.
DOI: 10.1007/978-3-319-29360-8 8
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directly, or they can be used to detect hidden structure in the public generator
or parity check matrices by finding low weight code words in the row space of the
generator matrix or parity check matrix. All of these applications of information
set decoding are relevant to the scheme of Gligoroski et al. We will refer to their
scheme as McEliece Escher, since it was introduced in their paper McEliece in
the World of Escher [GSJB14,Gli]. We demonstrate that information set decod-
ing techniques are much more effective against the McEliece Escher scheme than
suggested by the authors’ original security analysis.

Gligoroski et al. were aware of both categories of information set decoding
attacks on their scheme, but their analysis of these attacks was incomplete.
Most seriously, they believed that information set decoding only produced a
distinguisher on the private key, rather than a full key recovery, and they failed
to consider the application of information set decoding to find a valid error vector
in the signature setting. Landais and Tillich [LT13] applied similar techniques
to convolutional codes, which have similar structure to the private keys used by
McEliece Escher. We offer improvements to the existing approaches, including
showing how to take advantage of the structured permutation used by McEliece
Escher to disguise the private generator matrix.

Furthermore, we show our attacks are practical. Using the proposed parame-
ters for 80-bits of security, we were able to recover private keys for both encryp-
tion and signatures in less than 2 h on a single laptop. We find that increasing
the parameters to avoid our attack will require parameters to grow by (at least)
two orders of magnitude for encryption, and may not be practical at all for
signature.

2 Background: McEliece Schemes

2.1 Public and Private Keys

Gligoroski et al. construct their scheme along the lines of the original McEliece
cryptosystem. The public key is a k × n generator matrix Gpub for a linear code
over F2. To encrypt a message, the sender encodes a k-bit message m as an n bit
codeword and then intentionally introduces errors by adding an error vector e.
The ciphertext is then given by:

c = mGpub + e.

Gligoroski et al. also introduce a signature scheme by applying the decoding
algorithm to a hashed message. A signature σ is verified by checking

H(m) = σGpub + e,

for a suitably chosen hash function H.
Similar to the ordinary McEliece scheme, Gpub is constructed from a struc-

tured private generator matrix G, an arbitrary k × k invertible matrix S, and
an n × n permutation matrix P .

Gpub = SGP. (1)
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For encryption, Gpub must be chosen in such a way that the private key allows
unique decoding of a properly constructed ciphertext. For signatures, on the
other hand, Gpub must be constructed to allow some decoding (not necessarily
unique) of a randomly chosen message digest.

It will sometimes be helpful to characterize the public and private codes by
their parity check matrices. The private parity check matrix, H is a (n − k) × n
matrix, related to the private generator matrix G by the relation

GHT = 0.

Similarly, it is easy to construct a public parity check matrix Hpub from Gpub,
characterized by the relation GpubH

T
pub = 0. This will be related to the private

parity check matrix as
Hpub = S′HP,

where S′ is an (n−k)× (n−k) invertible matrix and P is the same permutation
matrix as in Eq. (1).

2.2 Private Generator and Parity Check Matrices

To construct the binary (n, k) code used in the McEliece Escher scheme, the
(private) generator matrix is of the form illustrated in Fig. 1. Each block Bi is a
random binary matrix of dimension (

∑i
j=1 kj)×ni, so that k = k1+k2+ · · ·+kw

and n = k+n1 +n2 + · · ·+nw. The corresponding private parity check matrix is
depicted in Fig. 2, and has a similar block-wise structure. For ease of notation,
we will let K = (k1, k2, .., kw) and N = (n1, n2, .., nw).

Fig. 1. The private generator matrix

2.3 Error Sets

In the McEliece Escher scheme, the error vector is broken up into n/� segments,
each �-bits. The value � is called the granularity of the scheme, and for all pro-
posed parameter sets, � is set to 2. While the original McEliece scheme restricted
the error vectors to having a low Hamming weight t, the McEliece Escher scheme
instead restricts the error space by choosing each �-bit subsegment from a limited
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Fig. 2. The private parity check matrix

alphabet, called an error set. Error sets may be analyzed in terms of a density
parameter ρ given by the formula

ρ = |E|1/�.

For the proposed parameters, the error set is always E = {00, 01, 10}. This
error set has granularity � = 2 and density ρ =

√
3.

Since public key operations require the encrypter or verifier to distinguish
between valid and invalid error vectors, the permutation P used to disguise the
private generator and parity check matrices must necessarily be of a special
form. The action of P needs to rearrange �-bit segments of the rows, but leave
the segments themselves intact. In other words, P must consist of � × � blocks
which are either 0 or the identity matrix I�.

3 Improving Information Set Decoding for the Error
Vector

Information set decoding may be used to recover m and e from the ciphertext
c = mGpub + e. The basic strategy involves guessing k bits of the error vector
and recovering the rest by linear algebra. One of the simplest information set
decoding algorithms is given in Algorithm1.

It should be clear that the number of iterations this algorithm requires is
inversely proportional to the probability that an attacker can guess k bits of
the error vector. As in the case of standard McEliece, the most probable guess
for these k bits is the all zero vector. However, since McEliece Escher uses a
nonuniform error pattern, the choice of the permutation P ′ has a significant
effect on the probability of success. In their security analysis, Gligoroski et al.
assumed that P ′ would be of similar form to the secret permutation matrix P
used to disguise the private key. This has the effect of forcing the adversary to
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Algorithm 1. Information set decoding for the error vector
Input: ciphertext c, and a parameter k
Output: message m, error e
1. Permute the bits of the ciphertext by a random permutation matrix P ′:

c′ = (mGpub + e)P ′

= mGpubP
′ + eP ′

= m(A|B) + (e′
1|e′

2)

= (mA + e′
1)|(mB + e′

2),

where A and e′
1 are the first k columns of the permuted generator matrix

GpubP
′ and permuted error vector eP ′, respectively.

2. If A is not invertible, go to step 1.
3. Guess e′

1. If correct the message can be reconstructed as

m = ((mA + e′
1) − e′

1)A
−1.

The error vector is then e = c − mGpub.
4. If the error vector is properly formed (i.e., the Hamming weight is less than

t for standard McEliece, or composed of �-bit substrings from the proper
generalized error set in McEliece Escher), return m and e. Otherwise go back
to step 1 and start over with a new permutation P ′.

guess all the bits in each �-bit block chosen from a generalized error set. Thus the
probability of each guess is ρ−k. However, an attacker can do better by choosing
a permutation that always separates the bits of an �-bit block. For example,
each bit is 0 two-thirds of the time when the error set is E = {00, 01, 10}, but
both bits are 0 only one-third of the time. By guessing one bit within each 2-bit
block, an attacker achieves a success probability of (2/3)k, which is a significant
improvement over the value (1/

√
3)k assumed by Gligoroski et al.’s security

analysis. Concretely, when used against Gligoroski et al.’s claimed 80-bit secure
code with parameters (n, k) = (1160, 160), the probability of a single guess of
k bits of the error vector improves from 2−127 to 2−94.

Similar improvements are available for more sophisticated decoding algo-
rithms. In Sect. 5.1 of their paper [GSJB14], Gligoroski et al. analyze modifica-
tions to several information set decoding algorithms [LB88,Ste89,FS09,BLP11,
MMT11,BJMM12], including several that use meet-in-the-middle strategies to
try several guesses at once, and apply them to the case where k = 256. For
our purposes these algorithms may be characterized by the number of bits k +λ
which are guessed, along with the Hamming weight p of those guesses. Whenever
p · log2(

√
3) < (k + λ) log2(

2√
3
), the modification described above decreases the

complexity of decoding by a factor of at least 2(k+λ) log2(
2√
3
)−p·log2(

√
3). This is

true for some of the algorithms analyzed by Gligoroski et al. For example, Stern’s
algorithm is quoted as having a complexity of 2197 when applied to k = 256,
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however, with our modification, Stern’s algorithm with p = 2 has a probability
of success per iteration of approximately 2−136 corresponding to a complexity
somewhere around 2150. It does not however appear that a direct application of
our modification improves the most efficient algorithm analyzed by Gligoroski
et al., since p is apparently too large. This algorithm, adapted from the BJMM
algorithm [BJMM12], is quoted as achieving a complexity of 2123. It is possible
that some sort of hybrid approach will provide an improvement. Nonetheless,
for the remainder of this paper, we will assume that Gligoroski et al.’s analysis
of the complexity of attacking the encryption algorithm, by direct search for a
unique patterned error vector, is correct.

Algorithm 1, modified so that as many �-bit blocks as possible of the error are
spit between e′

1 and e′
2, is however an extremely effective method for signature

forgery. For the error set E = {00, 01, 10}, when a 2-bit block is split between e′
1

and e′
2, the bit in e′

1 may be forced to 0, and the pair of bits will remain within
the error set, whether the corresponding bit in e′

2 is set to 0 or 1. If all the bits
of e′

1 are set to 0, then the probability for the resultant error vector e to be a
valid error vector is (

√
3
2 )n−2k. For the claimed 80-bit secure signature code with

parameters (n, k) = (650, 306), this probability is approximately 2−8.

4 Information Set Decoding for the Private Key

Information set decoding techniques can also be used to find low weight elements
in the row spaces of matrices. In our case, we are interested in the public genera-
tor and parity check matrices, Gpub and Hpub. Note that elements of these public
row spaces are related to the elements of the row spaces of the private generator
and parity check matrices by the permutation P used in the construction of the
public key:

vGpub = ((vS)G)P,

v′Hpub = ((v′S′)H)P,

where v and v′ are k and (n − k)-bit row vectors respectively. Consequently, the
result of an information set decoding attack on Gpub or Hpub will simply be the
image under P of a low weight element of the row space of G or H. We thus
examine the space of low weight vectors for encryption and signatures.

Recall the description of the private generator and parity check matrices given
in Sect. 2.2. For encryption, the private key operation requires maintaining a list
of at least ρk1 entries. This means that k1 must be small in order for the scheme
to be efficient. The first n1 rows of H are forced by construction to have nonzero
bits only in the (n1 +k1) columns Cj(H), with 1 ≤ j ≤ k1 or k +1 ≤ j ≤ k +n1.
Linear combinations of these rows will then produce approximately

(
n1+k1

t

)
2−k1

distinct row vectors of weight t. The general attack strategy will be to seek to
sample from the images under P of this space of low weight row vectors, which
are constrained to only contain nonzero bits in columns Cj , with the same bounds
on j as above. We thereby learn the images of those columns, and once learned
they can be removed from Hpub. The row space of the matrix formed by the
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remaining columns of H is the same as for the parity check matrix of a code of
the same structure with w′ = w−1, N ′ = (n2, .., nw), K ′ = (k2, .., kw). Applying
this strategy recursively will allow us to identify the underlying block structure
and construct a new private key of the same form.

For signatures, the private key operation requires maintaining a list of at
least (2/ρ)nw entries. In order for the scheme to be efficient, nw must be small.
The last kw rows of G have zero bits everywhere, except possibly in the (kw+nw)
columns Cj(G), indexed by (k−kw +1) ≤ j ≤ k and (n−nw +1) ≤ j ≤ n. Linear
combinations of the rows will produce approximately

(
kw+nw

t

)
2−nw distinct row

vectors of weight t. Similarly as done for encryption, the strategy for signatures
will be to seek to sample from the images under P of this space of low weight row
vectors, learning the images of the aforementioned columns. Once the columns
have been learned, they can be removed from Gpub and the process recursively
repeated since the row space of the matrix formed by the remaining columns of
G is that of a parity check matrix for a code of the same form with w′ = w − 1,
N ′ = (n1, .., nw−1), K ′ = (k1, .., kw−1). See Fig. 3 for an illustration of the
strategy for both encryption and signatures.

Fig. 3. Removing columns and row-reducing leaves a smaller code of the same form.

It should be noted that the space of short vectors with support on the tar-
get columns is not the only source of low weight vectors that can be obtained
by information set decoding algorithms. However, for realistic parameters, it is
generally advantageous to simply choose t to maximize the rate at which vectors
from the target space are produced. This is because there is an efficient way to
use a list of vectors, some of which are from the target space and some of which
are not, to produce a full list of the target columns. The algorithm that does this
uses a subroutine which is applied to a small subset of the list of vectors, and
which will usually produce the full list of target columns if the chosen vectors
are all from the target space. This subroutine will not only terminate quickly
on correct inputs, but also if one of the vectors is not from the target space.
In the latter case the algorithm will recognizably fail, by identifying too many
columns. The first obtained list of vectors, required to recover the full target
set of columns, will generally be small enough that trying the subroutine on all
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appropriately sized subsets of the list will be of insignificant cost compared to
the information set decoding steps.

The subroutine proceeds as follows (see Algorithm 2). The input is a list of
target columns, containing at least (k1 +1) of the target columns for encryption
(or at least (nw + 1) of the target columns for signatures). These columns may
generally be obtained by combining the nonzero positions of a small number (e.g.
two) of the target vectors produced by an information set decoding algorithm,
such as Stern’s algorithm.

Algorithm 2. Subroutine to complete the list of target columns
Input: A set S of columns
Output: A set of columns S’ ⊇ S, and a flag “Success” or “Failure”
1. Check whether removing the columns of S from the public matrix reduces the

rank.
– If all of the columns are from the target set, then removing the columns

in S will likely reduce the rank of the public matrix by |S| − k1 for
encryption (or |S| − nw for signatures).

2. For each column C not in S, check whether the rank of the public matrix is
decreased when C is removed in addition to those already in S.
(a) if the rank is decreased, add C to S and repeat step 2.
(b) if the rank stays the same for each C /∈ S, return S′ = S and go to the

last step to determine success.
3. The algorithm succeeds if the rank stops decreasing at n − k − n1 for

encryption (or k − kw for signatures). Otherwise output failure.

4.1 Using the Nonrandom P

The attack outlined in the previous section does not take into account the con-
straints on the permutation P used to disguise the private key G (or H). In
particular, the permutation leaves blocks of � consecutive columns intact. Thus,
there is additional information about the location of our target columns that
we did not use. In particular, if the column Cj is in our target set, we can be
confident that all the columns C� j−1

� �+1, ..., C� j−1
� �+� are also in the target set.

We modify Stern’s algorithm to take advantage of this by choosing our random
permutation P’ in such a way as to leave �-bit blocks of columns intact, just
as the private matrix P does. We will also count the number of nonzero �-bit
blocks within a row vector as a substitute for Hamming weight, wherever Ham-
ming weight is used by Stern’s algorithm. We will refer to this altered weight as
block-weight. Taking into account the special form of P also has other beneficial
effects for the attacker. In particular, Algorithm2 has a higher probability of
success when the rank effects of the inclusion of blocks of � columns (instead of
individual columns) are considered, since it is much less likely for these blocks
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to be totally linearly dependent on each other, for reasons other than the overall
block structure of the matrix.

The modified version of Stern’s algorithm proceeds as shown in Algorithm3.
Note the Stern’s algorithm window size will be denoted L, instead of the standard
l, to avoid confusion with the granularity.

Algorithm 3. Modified Stern’s Algorithm
Input: a matrix Gpub, parameters p, t, L, �
Output: a vector in the row space of Gpub which has block-weight t
1. Permute the columns of Gpub :

G′
pub = GpubP

′,

where P ′ is a permutation matrix consisting of � × � blocks which are either
zero or the identity, but otherwise chosen randomly.

2. Check that the first k columns of the new matrix G′
pub form an invertible

matrix A. If A is not invertible, go back to step 1.
3. Left-multiply by A−1, resulting in a matrix of the form

M = A−1G′
pub =

[
Ik | Q

]
.

4. Search for low-weight row-vectors among linear combinations involving small
subsets
of the rows of M :

(a) Divide the rows of M into two equal length lists, i.e.,
for 0 < i ≤ k

2�
, and for B = (b1, .., b�) ∈ F

�
2

xi,B =
�∑

r=1

brrowi�+r(M).

Similarly, for k
2�

< j ≤ k
�

yj,B =

�∑

r=1

brrowj�+r(M).

(b) Compute each possible sum of all subsets of size p of the xi,B , as well as
for all possible sums of p of the yj,B . Check for collisions on bits
(k + 1), . . . , (k + L):

bitsk+1,...,k+L�(xi1,B1 + . . . + xip,Bp ) = bitsk+1,...,k+L�(yj1,B1 + . . . + yjp,Bp ).

(c) When such a collision is found, compute the sum s of the 2p colliding row
vectors

s = xi1 + . . . + xip + yj1 + . . . + yjp .

If the block-weight of any such s is equal to t return sP ′. Otherwise, go
back to step 1.
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We now give an analysis of the complexity of obtaining the full list of target
columns using this modified Stern’s algorithm. Note that this analysis is only
approximate, a tighter analysis may be possible using techniques similar to those
outlined in Sect. 5 of [OT11]. For each block-weight t target vector g, the search
will succeed if and only if gP ′ has block-weight p on its first k

2 bits, block-weight
p on the next k

2 bits, and block-weight 0 on the next L bits. For a randomly
chosen P ′ this probability is

Prob(n, k, p, �, L, t) =
(

n/�

t

)−1(
k/(2�)

p

)2((n − k − L)/�

t − 2p

)

,

and the equivalent probability for an attack on Hpub is

Prob(n, n − k, p, �, L, t) =
(

n/�

t

)−1((n − k)/(2�)
p

)2((k − L)/�

t − 2p

)

.

The approximate number D of distinct target vectors of a given weight t is

Dsig ≈
(

(kw + nw)/�

t

)
(
2� − 1

)t · 2−nw ,

for signature, and for encryption

Denc ≈
(

(n1 + k1)/�

t

)
(
2� − 1

)t · 2−k1 .

The expected number E of target vectors required for a successful attack is

Esig ≈
⎡

⎢
⎢
⎢

log
(

kw

kw+nw

)

log
(

kw+nw−t�
kw+nw

)

⎤

⎥
⎥
⎥

,

for signature, and for encryption

Eenc ≈
⎡

⎢
⎢
⎢

log
(

n1
n1+k1

)

log
(

n1+k1−t�
n1+k1

)

⎤

⎥
⎥
⎥

.

The total number of iterations of the modified Stern’s algorithm is therefore

isig ≈
⌈

log( kw

kw+nw
)

log(kw+nw−t�
kw+nw

)

⌉

·
(

(kw + nw)/�

t

)−1 (
2� − 1

)−t
2nw

·
(

n/�

t

)(
k/(2�)

p

)−2((n − k − L)/�

t − 2p

)−1

,

and

ienc ≈
⌈

log( n1
n1+k1

)

log(n1+k1−t�
n1+k1

)

⌉

·
(

(n1 + k1)/�

t

)−1 (
2� − 1

)−t
2k1

·
(

n/�

t

)(
(n − k)/(2�)

p

)−2((k − L)/�

t − 2p

)−1

.
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5 Experimental Results

We implemented the attacks described in the previous section on a standard
laptop with a 2.2 GHZ Intel core i7 processor. We used the parameters suggested
by Gligoroski et al. for 80 bits of security. Concretely, for encryption n = 1160,
k = 160, � = 2, w = 17, with K = (32, 8, 8, ..., 8) and N = (32, 32, ..., 32, 488).
We used parameters (t, p, L) = (11, 1, 9) for the modified Stern’s algorithm,
which needed approximately 1000 iterations in our trials. The predicted value
from the analysis in the previous section was 2500. The total wall time for the
computation to recover a private key was on average less than 2 h.

For signatures, we have n = 650, k = 306, � = 2, w = 6, with K =
(84, 48, 48, 48, 48, 30) and N = (48, 48, 48, 48, 48, 104). The modified Stern para-
meters we used were (t, p, L) = (40, 1, 7). With such a high value for t, a higher
number of iterations were needed, usually less than 10000 (the predicted value
was around 4900). The total wall time was again less than 2 h on average.

6 Countermeasures

Attempts to increase the security of McEliece Escher by altering the parameters
are severely constrained by the requirement that ρk1 be small for encryption and
that (2/ρ)nw be small for signatures.

One possiblility would be to try to decrease ρ (or 2/ρ), as appropriate, to
allow k1 or nw to increase. This, however, turns out to be counterproductive.
Due to the attack in Sect. 4.1, we see what really matters for security is that
k1/� be large for encryption, or nw/� be large for signatures. Asymptotically,
there will be 2� vectors in the row space of Hpub of block-weight no more than
k1/� + 1 and 2� vectors in the row space of Gpub of block-weight no more than
nw/� + 1. The factor of 2� will make up for the increased cost per iteration of
the modified Stern’s algorithm with p = 1, but the probability of success per
iteration will remain at approximately ( k

n )k1/� for encryption and (n−k
n )nw/� for

signatures. Encryption requires (ρ�)k1/� to be small for efficiency and k1/� to be
large for security. Thus the ideal value for ρ and � would minimize ρ�. Likewise,
the signature scheme requires (( 2ρ )�)nw/� to be small for efficiency and nw/� to
be large for security. Hence, the ideal value for ρ and � would minimize ( 2ρ )�.

While it is possible to decrease ρ (or 2
ρ ) by increasing �, the consequence is

that ρ� and ( 2ρ )� both increase at least linearly in � for error sets of the proper
form (for security, the generalized error set cannot impose linear constraints on
the error vector, e.g. by forcing a bit of the error vector to always be 0). Thus,
fixing n

k and the security level, we find that the cost of decryption increases when
we increase �.

A better idea is to greatly increase nw for encryption and kw for signatures.
This works by making k

n very small for encryption and n−k
n very small for sig-

natures. In the context of an information set decoding attack, this has the effect
of decreasing the probability that a given nonzero bit (or �-bit block) of a target
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vector will be placed outside the information set by a randomly chosen (block)
permutation. This is a much better solution for signatures than for encryption.
For typical parameters, the modified Stern’s algorithm requires ∼ 30 nonzero
blocks to fall outside the information set when attacking a signature. Thus,
bringing the cost of the attack from ∼ 230 to ∼ 280 should only require n−k

n
to fall from about 0.5 to about 0.15. That is, the size of the 80-bit-secure code
increases from a 650 × 304 bit generator matrix to a 2000 × 1654 bit genera-
tor matrix. For attacking typical encryption parameters, the modified Stern’s
algorithm only requires ∼ 6 nonzero blocks to fall outside the information set.
This means k

n needs to fall from about 0.15 to 0.0005. The result is that for an
80-bit-secure code, the size would increase from 1160 × 160 to 300, 000 × 160.

There is however an additional complication created by the above counter-
measure for signatures. A code with error set E = {00, 01, 10} can be trivially
broken whenever n−k

n < 0.5 due to the attack described at the end of Sect. 3.
This attack may be generalized to apply to other error sets, whenever there is
a linear projection from F

�
2 → F

�′
2 with �′ ≤ k

n� such that an element of F�
2 with

a certain fixed projection onto F
�′
2 is a member of the error set with very high

probability. Thus in order to avoid attack, the error set must be chosen so that
there is no such projection. We have not found any way to do this that makes
the honest party’s signing operation (list decoding for signatures) asymptoti-
cally more efficient than both attacks (ISD for the error vector and ISD for the
private key.)

7 Conclusion

We demonstrate practical attacks on the proposed parameters of McEliece
Escher. The poor choice of parameters is a demonstration of the general principle
that code-based schemes should be designed in such a way as to avoid all prac-
tical distinguishers on the public key, since distinguishers can often be modified,
at little cost, to create private-key recovery attacks. Additionally, our crypt-
analysis demonstrates that information set decoding techniques can be modified
to take advantage of code-based schemes whose private keys are disguised by a
structured, rather than a completely random, permutation matrix. The recent
cryptanalysis of cyclosymmetric-MDPC McEliece by Perlner [Per14] is another
example of this general principle. This technique is especially effective in creating
signature forgeries.

For encryption, it appears the above pitfalls can be compensated for, by
simply making the parameters of McEliece Escher larger. However, this requires
making the keys at least two orders of magnitude larger. This is a major burden
on an already inefficient scheme. Asymptotically, these modifications can only
make the complexity of a key-recovery attack quasi-polynomially worse than the
complexity of decryption by the honest party.
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Abstract. Polar codes discovered by Arikan form a very powerful fam-
ily of codes attaining many information theoretic limits in the fields of
error correction and source coding. They have in particular much better
decoding capabilities than Goppa codes which places them as a serious
alternative in the design of both a public-key encryption scheme à la
McEliece and a very efficient signature scheme. Shrestha and Kim pro-
posed in 2014 to use them in order to come up with a new code-based
public key cryptosystem. We present a key-recovery attack that makes
it possible to recover a description of the permuted polar code providing
all the information required for decrypting any message.

1 Introduction

The concept of post-quantum cryptography appeared after Peter Shor showed
in [Sho97] that all cryptosystems which base their security on the hardness of
the factoring problem or the discrete logarithm problem can be attacked in
polynomial time with a quantum computer (see [BBD09] for an extensive report).
This threatens most if not all public-key cryptosystems deployed in practice,
such as RSA [RSA78] or DSA [Kra91]. Cryptography based on the difficulty of
decoding a linear code, on the other hand, is believed to resist quantum attacks
and is therefore considered as a viable replacement for those schemes in future
applications. Yet, independently of their so-called “post-quantum” nature, code-
based cryptosystems offer other benefits even for present-day applications due
to their excellent algorithmic efficiency.

The first code-based cryptosystem is the McEliece cryptosystem [McE78],
originally proposed using binary Goppa codes. Afterwards, several code fam-
ilies have been suggested to replace them: generalized Reed–Solomon codes
(GRS) [Nie86] or subcodes of them [BL05], Reed–Muller codes [Sid94], alge-
braic geometry codes [JM96], LDPC codes [BC07,BBC08], a certain kind of
non binary Goppa codes (called wild Goppa codes or wild Goppa codes incog-
nito) [BLP10,BLP11], MDPC codes [MTSB12], convolutional codes [LJ12], and
more recently polar codes [SK14] or subcodes of them [HSEA14]. Some of these
schemes allow to reduce the public key size compared to the original McEliece
c© Springer International Publishing Switzerland 2016
T. Takagi (Ed.): PQCrypto 2016, LNCS 9606, pp. 118–143, 2016.
DOI: 10.1007/978-3-319-29360-8 9
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cryptosystem while presumably keeping the same level of security against generic
decoding algorithms.

However, for many of the aforementioned schemes it has been shown that a
description of the underlying code suitable for decoding can be obtained which
breaks the corresponding scheme. This has been achieved for GRS codes in
[SS92], subcodes of GRS codes in [Wie10], Reed-Muller codes in [MS07]. Alge-
braic geometry codes based on (very) low genus hyperelliptic curves were broken
in [FM08], whereas the general case was broken in [CMCP14]. A first version
of the scheme based on LDPC codes proposed in [BC07] has been successfully
attacked in [OTD08] (but the new scheme proposed in [BBC08] seems to be
immune to this kind of attack). Some of the parameters that can be found in
[BLP10,BLP11] have been successfully cryptanalyzed with a polynomial time
attack in [COT14] or with an exponential time attack in [FPdP14], and finally
the convolutional scheme of [LJ12] was successfully cryptanalyzed in [LT13].

All of these attacks (with the exception of [LT13]) pinpoint algebraic proper-
ties of the codes which raises the issue of looking for alternative code families with
little or no algebraic structure. In this respect the proposals of [SK14,HSEA14]
might be very attractive. Moreover, polar codes enjoy another feature that only
few other codes have: they enjoy a decoding algorithm that can also be used
to produce for any binary word a codeword that is essentially as close as pos-
sible as announced by the information theoretic upper bounds [CT91, Theorem
13.2.1 and 13.3.1] (see [KU10] for a proof of this result). This would make such
codes perfect candidates in a signature scheme [OT12] based on the Niederreiter
scheme [Nie86]. In particular, this would give a much more efficient signature
than the CFS scheme [CFS01].

A McEliece scheme based on (binary) polar codes also raises some other
interesting issues. There is basically no large choice for such codes and there is
essentially only one polar code (up to permutation of the coordinates) of a given
rate. Generally it is advocated that one should take a large code family in the
McEliece cryptosystem, because if there is only one code up to permutation of
the coordinates, then attacking the scheme amounts to solve the code equivalence
problem [PR97]. For most codes, this is generally easy to do by using the support
splitting algorithm [Sen00]. However, this algorithm requires in a crucial way
that the code has a small hull (which is the intersection of the code with its
dual) and a small permutation group, both of them being precisely the opposite
for polar codes. Interestingly enough, polar codes are known to be related to
the Reed-Muller code family [Ari09]. These two code families behave exactly in
the same way with respect to these properties: they have very large hull and
permutation group and there is also only one (or zero) Reed-Muller code for a
given rate. Note that when a McEliece scheme based on Reed-Muller codes was
proposed in [Sid94], its security relied precisely on the assumption that it could
be possible in theory to use a single code (up to permutation of the coordinates)
by using codes with a large hull and a large permutation group that would defeat
attacks based on the support splitting algorithm. It took thirteen years [MS07]
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to break this McEliece scheme and the attack used many algebraic properties of
the Reed-Muller codes, that are presumably absent for polar codes.

However, we will show that despite the fact that polar codes seem to be
immune against a plain use of the support splitting algorithm, it can nevertheless
be cryptanalyzed successfully. We will show here how to recover from the public
generator matrix a description of the code that is suitable for decoding. Our
attack uses several ingredients:

(i) polar codes have rather low weight codewords which can be found by stan-
dard low weight codeword searching algorithms [Ste88,Dum91];

(ii) shortening the code with respect to these low weight codewords and taking
the dual also gives a code with low weight codewords which can be recovered
with the aforementioned algorithms;

(iii) by characterizing the permutation group of polar codes together with the
low-weight codewords found in Step (ii), it is possible to find among the
codewords found in Step (i) a subset of codewords which up to equivalence
by the permutation group can be considered as codewords whose support
are very specific affine spaces;

(iv) Puncturing the code with respect to the support of an element of minimum
weight in this last subset of codewords gives a code of small length (typi-
cally 16 or 32) whose structure is known up to code equivalence. The code
equivalence problem is then solved in this case and is used to recover step
by step the underlying polar codes.

Steps (i) and (ii) are directly inspired from the Minder-Shokrollahi attack
[MS07] on the McEliece cryptosystem based on Reed-Muller codes, however
Steps (iii) and (iv) are new and very specific to polar codes. Basically, the fact
that the whole affine group is the permutation group of Reed-Muller code sim-
plifies a great deal the attack of [MS07]. This is not the case anymore for polar
codes and the crux for being able to mount this attack is to understand which
subgroup of the affine group is part of the permutation group of a polar code and
then to use this structure in a relevant way. Amazingly enough, it turns out that
a rather large subgroup is the answer to this problem and that polar codes are
much more symmetric than could be guessed from their definition. This result is
of independent interest and might be used to improve the decoding algorithms
of polar codes.

In a general way, in order to understand the structure of polar codes for
breaking this cryptosystem we have introduced here new concepts. In particular
we suggest here a new code construction, that we call decreasing monomial codes
which contains both the Reed-Muller code family and the polar code family
and which has a large subgroup of the affine group as permutation group. This
construction explains why polar codes have such a large permutation group,
but again this new code construction could be of independent interest in coding
theory. We also introduce in Step (iv) a novel iterative way of solving the code
equivalence problem that could be interesting for solving the code equivalence
problem for codes obtained from the (u|u + v) construction.
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2 Basic Facts

In this section we recall a few facts about the McEliece cryptosystem, polar
codes, the code equivalence problem, and code operations like shortening or
puncturing.

Polar Codes. Polar codes were discovered by Arikan [Ari09] and form a very
powerful family of codes that gave a nice constructive way of attaining many
information theoretic limits in error correction and source coding. In particular,
they allow to attain the capacity of any symmetric memoryless channel with a
low complexity decoding algorithm (namely the successive cancellation decoder
of Arikan). Since they have much better decoding capabilities than Goppa codes,
it is reasonable to study whether they can be used in a McEliece scheme. Due to
their better correction capacity, this allows for instance to decrease the key sizes
of the scheme. Decoding such codes is also faster than decoding Goppa codes
and this can also be used to speed up the decryption process.

They can be described as codes of length n = 2m, where m is an arbitrary
integer. They may take any dimension between 0 and 2m. The polar code of
length n = 2m and dimension k is obtained through a generator matrix which
picks a specific subset of k rows of the 2m × 2m matrix:

Gm
def=

(
1 1
0 1

)

⊗ · · · ⊗
(

1 1
0 1

)

︸ ︷︷ ︸
m times

.

Note that we depart here slightly from the usual convention for polar codes

which is to use in the Kronecker product the matrix
(

1 0
1 1

)

. The two definitions

(ours and the standard one) are easily seen to be equivalent, they just amount
to order the code positions differently. Our convention presents the advantage of
simplifying the polynomial formalism that follows.

The specific choice of rows that are picked depends (a little bit) on the noisy
channel for which the code is devised. For a given noise model, there is a way
to compute the k rows which are used to define the generator matrix of the
code. Roughly speaking these rows are chosen in such a way that it gives good
performances for the successive cancellation decoder.

McEliece Cryptosystem. The (binary) McEliece public-key scheme [McE78]
can be described as follows. The key generation algorithm picks a random k × n
generator matrix G of a binary linear code C which is itself randomly picked in
a family of codes for which t errors can be efficiently corrected. The secret key is
the decoding algorithm D associated to C and the public key is G. To encrypt
u ∈ F

k
2 , the sender chooses a random vector e in F

n
2 of Hamming weight less

than or equal to t and computes the ciphertext c = uG + e . The receiver then
recovers the plaintext by applying D on c.

Code Equivalence Problem. In the McEliece scheme based on polar codes
[SK14], since there is in essence a single (binary) polar code of a given dimension
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and length, breaking the scheme amounts to find for a permuted version of the
polar code a permutation that gives the original polar code. In other words,
we face here as for the McEliece scheme based on Reed-Muller codes the code
equivalence problem. To give a formal definition of this problem we will use the
following notation and definition.

Notation 1 (Permutation of a Word and a Code). The symmetric group
of degree n is denoted by Sn. Let x = (xi)0�i<n ∈ F2n and π be a permutation
of {0, 1, . . . , n − 1}. We denote by xπ = (xπ(i))0�i<n the vector x permuted by π
and for a binary code C of length n, its permutation by π is defined by

C π def
=

{
cπ | c ∈ C

}
.

Definition 1 (Permutation Group of a Code). The permutation group of
a code C is the set of permutations π such that C π = C .

The code equivalence problem can be stated as follows:

Problem 1 (Code Equivalence Search Problem). Given C and C π where C is a
code of length n and π belongs to Sn, find π̂ in Sn such that C π̂ = C π.

Note that we do not necessarily have π̂ = π when the permutation group of
the code is non trivial. It is namely immediate to prove that:

Proposition 1. For any x = (xi)0�i<n in F
n
2 and all permutations π and π′ in

Sn we have
(xπ)π′

= xππ′
.

Let C be a code of length n with permutation group G and π be a permutation
of the same length as C (i.e. a permutation in Sn). We have

{
π̂ ∈ Sn | C π̂ = C π

}
= Gπ

If C has permutation group G, then C π has permutation group π−1Gπ.

Proof. The first part of the proposition can be proved by bringing in x ′ def= xπ

and observing that:

(i) for any i in {0, . . . , n−1} we have xi = x′
π−1(i) since x′

j = xπ(j) for j = π−1(i).
(ii) (xπ)π′

= x ′π′
= (x′

π′(i))0�i<n = (x′
π−1(π(π′(i))))0�i<n = (xπ(π′(i)))0�i<n =

xππ′
.

From this we deduce that for any σ in G, we have C σπ = (C σ)π = C π. Conversely
if C π̂ = C π, then (C π̂)π−1

= C and therefore π̂π−1 is in G, meaning that π̂ is
in Gπ.

To prove the last part we observe that if γ is a permutation that leaves
C invariant, then π−1γπ is a permutation that leaves C π invariant, since
(C π)π−1γπ = C γπ = (C γ)π = C π. Conversely if γ′ is a permutation of C π,
then the same kind of computation shows that γ

def= πγ′π−1 is a permutation
of C .
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What makes the equivalence problem difficult for polar codes is that the standard
algorithm for solving it, namely the support splitting algorithm of [Sen00] is too
complex to be used in this context due to the very large size of the hull of the
polar code. What makes the problem even more intricate is the fact that a polar
code turns out to have a very large permutation group which complicates the
task significantly.

Operations on Codes. One of the basic operations used in the support splitting
algorithm for solving the code equivalence problem is to consider shortened and
punctured codes. For a given code C and a subset J ⊆ {0, . . . , n − 1} the
punctured code PJ (C ) and shortened code SJ (C ) are defined as:

PJ (C ) def=
{

(ci)i/∈J | c ∈ C
}

;

SJ (C ) def=
{

(ci)i/∈J | ∃c = (ci)i ∈ C such that ∀i ∈ J , ci = 0
}

.

Instead of writing P{j} (C ) and S{j} (C ) when J = {j} we rather use the nota-
tion Pj (C ) and Sj (C ). These codes are used in the following way to solve the
code equivalence problem: C is punctured in a position i whereas C π is punc-
tured in some position j. If we have a quick way to check that two codes are
not equivalent, then we can use this tool to check whether the two punctured
codes may be equivalent or not (in the support splitting algorithm this is done
by computing the weight enumerator of the hull which is obviously invariant
by permutation). If the two punctured codes are not equivalent, then we know
for sure that i and j can not correspond to each other via the permutation of
position π. The same idea works also for the shortened code.

3 Decreasing Monomial Codes

The purpose of this section is to introduce a novel algebraic framework that
sheds some light about the structure of polar codes. We will in particular give
a new class of codes, that we call decreasing monomial codes that contains as
a particular case, polar codes and Reed-Muller codes. The dual of a decreasing
monomial code is a decreasing monomial code and under a very mild condition,
such codes turn out to be weakly self-dual (i.e. the hull of the code is the code
itself). We will then prove that this general construction has a very large per-
mutation group and both facts put together will explain why polar codes have
such a large permutation group and hull. We will use here the polynomial for-
malism that is generally used to describe Reed-Muller codes. It turns out that
this polynomial formalism is also very handy for describing polar codes.

Reed-Muller Codes. It is well known that Reed-Muller codes of length 2m

can be obtained as evaluation codes of polynomials in F2[x0, . . . , xm−1]. Polar
codes can also be described through this formalism. Since we are interested in
evaluations of such polynomials over entries in F

m
2 we will identify xi with x2

i

and work in the ring R2[x0, . . . , xm−1] = F2[x0, . . . , xm−1]/(x2
0 − x0, . . . , x

2
m−1 −
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xm−1). It will be convenient with this formalism to associate to a polynomial g ∈
R2[x0, . . . , xm−1] the binary vector denoted by ev(g) in F

n
2 with n = 2m which is

the evaluation of the polynomial in all the binary entries (u0, . . . , um−1) ∈ F
m
2 .

In other words
ev(g) =

(
g(u0, . . . , um−1)

)
(u0,...,um−1)∈F

m
2

With this notation, we will view the indices of a vector as elements of Fm
2 . This

notation does not specify the order we use for the elements of Fm
2 . We actually

use the natural order by viewing (u0, . . . , um) as the integer
∑m−1

i=0 ui2i. With
this notation at hand, the Reed-Muller code R(r,m) is defined as

R(r,m) def=
{
ev(P ) | deg P � r

}

Obviously this code is generated by the codewords ev(g) where g is a monomial
of degree less than or equal to r. Recall that a monomial is any product of
variables of the form xg0

0 · · · xgm−1
m−1 where g0, . . . , gm−1 are binary. The set of all

monomials is denoted by:

M def= {1, x0, . . . , xm−1, x0x1, . . . , x0 · · · xm−1}.

Reed-Muller codes have a very large permutation group which is isomorphic
to the affine group over F

m
2 . Indeed, it can be checked immediately that:

(i) any bijective affine transformation A over Fm
2 can be viewed as a permutation

of the code positions by mapping (u0, . . . , um−1) to A(u0, . . . , um−1);
(ii) this permutation leaves the code invariant since P (A(x0, . . . , xm−1)) is a

polynomial of degree at most the degree of P and therefore if ev(P ) ∈
R(r,m) then ev(P ◦ A) ∈ R(r,m).

Monomial Codes. It is straightforward to check that the rows of G are all
possible evaluations of monomials. This fact is easily proved by induction on m
by observing that (1, 1) is the evaluation of the constant monomial 1 and that
(0, 1) is the evaluation of the monomial x0. From this, we easily see that a polar
code is a monomial code, meaning codes generated by evaluations of monomials
(see the formal definition below).

It will also be very convenient to introduce the following partial order � on
monomials

Definition 2 (Monomial Order). The monomials of the same degree are
ordered as

xi1 . . . xis
� xj1 . . . xjs

if and only if for any � ∈ {1, . . . , s}, i� � j�

where we assume that i1 < · · · < is and j1 < · · · < js.

This order is extended to other monomials through divisibility, namely: f � g
if and only if there is a divisor g∗ of g such that f � g∗.
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Obviously for any monomial f of M the constant polynomial 1 satisfies the
inequality 1 � f . The interval [f ;h] where f and h are in M with f � h is the
set of monomials g ∈ M such that f � g � h. We will also need the following
definition

Definition 3 (Decreasing Set). A set I ⊆ M is decreasing if and only if
(f ∈ I and g � f) implies g ∈ I.

With these definitions, we define monomial and decreasing monomial codes
as follows.

Definition 4 (Monomial and Decreasing Monomial Codes). Let I be a

finite set of multivariate polynomials in m variables and set n
def
= 2m. The linear

code defined by I is the vector subspace C (I) ⊆ F
n
2 generated by {ev(f) | f ∈ I}.

It is called the polynomial code associated to I.

1. When I ⊆ M, C (I) is called a monomial code.
2. When I ⊆ M is a decreasing set, C (I) is called a decreasing monomial code.

The dimension of monomial codes is easily derived.

Lemma 1. For all I ⊆ M the dimension of the monomial code C (I) is equal
to |I|.
Proof. This comes from the linear independence of the monomials in
R2[x0, . . . , xm−1].

Example 1. The r-th order Reed-Muller code is the decreasing monomial code
defined by the interval [1;xm−r . . . xm−1] since:

R(r,m) = C ([1;xm−r . . . xm−1]) .

The dimension 1 + m + · · · +
(
m
r

)
comes directly from Lemma 1.

It turns out that it can be proved, but this is beyond the scope of this article,
that polar codes devised for the erasure channel are also decreasing monomial
codes. The point is that if we take a row of Gm to be a row of the generator
matrix (and view this row as a monomial - since as we have explained before -
all these rows correspond to an evaluation of a particular monomial) all the rows
that are “smaller” (in the sense of the monomial order defined before) will also
be chosen to be part of the generator matrix of the polar code. This fact can
be proved by studying the polarization process [Ari09] which is at the heart of
choosing the relevant rows of Gm. Simple heuristics can be invoked that this also
holds for other channel models and we have experimental evidence showing that
this seems to hold in particular for polar codes devised for the binary symmetric
channel (which are the polar codes used here). This fact can be simply checked
for the polar codes that we have attacked here.

Duality and Permutation Group of Decreasing Monomial Codes. Duals
of decreasing monomial codes have a very simple description and it will turn
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out that under certain very weak conditions, they are weakly self-dual. It is
readily seen that the dual of a monomial code is a polynomial code, but it is not
necessarily a monomial code. However the dual of a decreasing monomial code
turns out to be a decreasing monomial code. To describe this dual we will use
the following notion of (multiplicative) complement of a monomial g and denote
it by ǧ.

Definition 5 (Complement). For any g ∈ M we define the complement of
g as

ǧ =
x0 . . . xm−1

g
.

With this notion, we have the following proposition whose proof is in Sect.A of
the appendix.

Proposition 2. Let C (I) be a decreasing monomial code, then its dual is a
decreasing monomial code given by

C (I)⊥ = C (M \ Ǐ).

Notice that this proposition yields the well known result about the dual of a
Reed-Muller code RM(r,m) = C ([1;xm−r . . . xm−1]) where we have

RM(r,m)⊥ = C (M \ [x0 . . . xm−r−1;x0 . . . xm−1])
= C ([1;xr+1 . . . xm−1])
= R(m − r − 1,m).

A straightforward consequence of this is that under some conditions, any decreas-
ing monomial code is weakly self-dual.

Corollary 1. Let C (I) be a decreasing monomial code with |I| � 1
22m. Then

C (I) ⊆ C (I)⊥ if and only if for any f ∈ I, f̌ 	∈ I.

Polar codes of rate (sufficiently) smaller than 1/2 generally satisfy this
assumption and in the case of rate greater than 1

2 it is the dual of the polar
code that satisfies this assumption. This can be explained by looking at the
polarization process that is used to choose the monomials defining the polar
code, but explaining this point is beyond the scope of this article. We just wish
to add that this assumption is satisfied for the polar codes used in the McEliece
cryptosystem that we have attacked in this article. This corollary explains why
such codes are weakly self-dual and why the support splitting is of unreasonable
complexity in such a case for recovering the unknown permutation between a
known permuted polar code and a polar code.

Polynomial codes and monomial codes may have a trivial permutation group.
Applying an affine permutation to a monomial code yields a polynomial code,
but it is not necessarily a monomial code. To understand the action of a permu-
tation π which is also an affine transformation on F

m
2 we can notice that for any

monomial f in R2[x0, . . . , xm−1] we have

ev(f)π = ev(f ◦ π) (1)
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where on the lefthand side we view π as a permutation on the coordinates (viewed
as elements of Fm

2 ) whereas on the righthand side we view π as an affine permuta-
tion. This equation explains why a monomial code may not be a monomial code
after applying an affine permutation and it is rather straightforward to come up
with examples of monomial codes that have a trivial permutation group. How-
ever by considering the subclass of decreasing monomial codes we obtain codes
with a very large permutation group which is the lower triangular affine group,
that is:

Definition 6 (Lower Triangular Affine Group). The lower triangular affine
group LTAm on F

m
2 is defined as the set of affine transformations over F

m
2 of

the form x 
→ Ax+b where A is a lower triangular binary matrix with “1”’s on
the diagonal and b is arbitrary in F

m
2 .

Theorem 1. The permutation group of a decreasing monomial code in m vari-
ables contains LTAm.

This theorem is proved in Sect. A of the appendix. This theorem explains why
polar codes have a large subgroup of the permutation group of Reed-Muller
codes as permutation group. This fact is one of the keys for the cryptanalysis
which follows.

Minimum Distance of Decreasing Codes. We first recall some well known
facts about the minimum distance of Reed-Muller codes (see for instance [MS86,
Chap. 13, Sect. 4]):

Theorem 2. The minimum distance of the Reed-Muller code R(r,m) is 2m−r.
There is a one to one correspondance between the affine subspaces of F

m
2 of

dimension m−r and the minimum codeword of R(r,m): all minimum codewords
are obtained as ev(x′

0 . . . x′
r−1) where x′

0, . . . , x
′
r−1 are obtained from x0, . . . , xr−1

by a bijective affine change of coordinates.

In other words, “up to action of the permutation group there is only one code-
word of minimum weight”. All these facts have simplified significantly the attack
of the McEliece cryptosystem based on Reed-Muller codes in [MS07]. We will
see in what follows that polar codes behave differently with this respect.

To understand the minimum distance of a decreasing monomial code, and of
a polar code in particular, the following notion is very useful.

Definition 7. Let C (I) be a decreasing monomial code over m variables. We let

r−(C (I))
def
= max

{
r | R(r,m) ⊆ C (I)

}

r+(C (I))
def
= min

{
r | C (I) ⊆ R(r,m)

}

It is readily checked that another way of defining these quantities is that
r− is the largest r for which the monomial xm−r . . . xm−1 is in I. On the other
hand r+ is the largest integer r for which x0 . . . xr−1 is in I. These quantities
are related to the minimum distance of a decreasing monomial code and its dual
through the following result
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Proposition 3. Let C (I) be a decreasing monomial code over m variables. We
have the following properties:

(i) The minimum distance of C (I) is equal to 2m−r+(C (I)).
(ii) r−(C (I)⊥) and r+(C (I)⊥) satisfy the equalities:

r−(C (I)⊥) = m − 1 − r+(C (I))
r+(C (I)⊥) = m − 1 − r−(C (I))

(iii) The minimum distance of C (I)⊥ is equal to 2r−(C (I))+1

This proposition is proved in appendix Sect.A. A straightforward corollary
of these propositions is that the minimum distance of a polar code is always
smaller than or equal to the minimum distance of the Reed-Muller code of the
same dimension (if it exists) and this is already a strong indication that this
minimum distance is rather small (at most the square root of the length for
codes of rate greater than 1

2 for instance). For the polar codes we are interested
in this study, we will be able to find minimum weight codewords in the polar
code and its dual with standard algorithms for finding low weight codewords
[Ste88,Dum91], since both minimum distances turn out to be rather small.

For Reed-Muller codes there is only one orbit of the permutation group inside
the set of minimum codewords. The case of decreasing monomial codes is more
complicated. However, and this will be very helpful for classifying these code-
words, we have:

Theorem 3. Each orbit under the action of LTAm contained in the set of min-
imum codewords of the decreasing monomial code C (I) contains a monomial
of I.

This theorem is proved in Sect. A of the appendix.

4 Cryptanalysis

We will explain here how we solve the code equivalence problem for a decreasing
monomial code C (I). This can be applied to any polar code and yields an attack
that breaks the McEliece scheme based on polar codes proposed in [SK14]. In
this section, we use the simplified notation r− for r−(C (I)) and r+ for r+(C (I)).
We also use the notion of signature formalized as follows.

Definition 8 (Signature). Let C be a code of length n. Let G be a subgroup of
permutations of C and W be a subset of C globally invariant under G. We say
that a function Σ(c,C ) where c belongs to C is a signature for the action of G
on W if and only if:

(i) Σ(c,C ) = Σ(cπ,C π) for π from Sn (i.e. Σ is invariant by permutation),
(ii) Σ(c,C ) 	= Σ(c′,C ) if c and c′ both belong to W but are not in the same

orbit under G (i.e. Σ takes distinct values for each orbit).
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Notice here that a signature always takes the same value on an orbit under
G since if we take c in W and γ is an element of G, then Σ(c,C ) = Σ(cγ ,C γ) =
Σ(cγ ,C ) since γ belongs to the permutation group of the code.

The algorithm for performing the attack can now be summarized as follows:

Step 1. (Minimum weight codewords searching) Search the non-zero minimum
weight vectors of C (I) and C (I)π. We denote these two sets by Wmin and
Wπ

min respectively. Note that Wmin = {c ∈ C (I) : |c| = 2m−r+}, Wπ
min =

{c ∈ C (I)π : |c| = 2m−r+} and the codeword cmin
def= ev(x0 · · · xr+−1)

belongs to Wmin.
Step 2. (Signature of orbits in Wmin) Compute the orbits of Wmin under the lower

triangular subgroup LTAm of the affine group and find a signature for
these orbits. This signature is based on shortening the dual C (I)⊥ on the
support of c (where c belongs to Wmin) and computing the dimension
of this code and the number of codewords of minimum weight in it.

Step 3. (Computation of orbits in Wπ
min) Use this signature to decompose Wπ

min

into distinct orbits under the group π−1
LTAmπ and use it to find the

orbit of cπ
min.

Step 4. (Identification of affine spaces) Without loss of generality, we may take
any codeword in the orbit of cπ

min and declare that it is equal to cπ
min.

Let I be the support of cmin, and J be the complementary set (that
is the set of position for which cmin takes the value 0). Note that with
the way we identify positions as elements of F

m
2 , I can be viewed as

the affine space x0 = x1 = · · · = xr+−1 = 1. The structure of the
orbit of cmin is such that the supports of all the codewords in this orbit
are affine spaces of the form x0 = ε0, x1 = ε1, . . . , xr+−1 = εr+−1,
where the εi’s are arbitrary elements in F2. Denote this affine space
by A(ε0, . . . , εr+−1) and let cmin(ε0, . . . , εr+−1) be the corresponding
codeword. Up to a permutation of C π, we identify all the elements
cmin(ε0, . . . , εr+−1)π. This gives all the affine spaces permuted by π,

that is A(ε0, . . . , εr+−1)π def= {π−1(i) | i ∈ A(ε0, . . . , εr+−1)}.
Step 5. (Equivalence problem for a short code) Let J be the set of positions

where cmin takes zero values.Notice that the set of positions for which
cπ
min takes zero values is J π. Then we compute the codes D

def= PJ (C )
and Dπ def= PJ π (C π). We solve the code equivalence problem for D and
Dπ′

where π′ is the restriction of the permutation π to the affine space
I. Notice that this problem is solved for much shorter codes than the
original system.

Step 6. (Induction step) Let ci = ev(x0 . . . , xi−1) with c0 being ev(1), that is the
all-one codeword. Notice that cmin = cr+ , and let J i be the set of posi-
tions for which ci takes the value 0. Denote by D i = PJ i (C ). Solve for
i = r+ − 1, . . . , 0 the code equivalence problem for the pair (D i, (D i)πi

)
by using the solution to the code equivalence problem (D i+1, (D i+1)πi+1

)
where πi is the restriction of π to the set of positions of D i.
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The last code equivalence problem we solve here (namely for i = 0) is just a
solution to the original code equivalence problem.

4.1 Step 1 – Minimum Weight Codewords Searching

Finding the codewords of C (I)π can be performed by applying Dumer’s algo-
rithm [Dum91]. The complexity of this algorithm for finding a codeword of weight
w in a code of rate R can be estimated as O

(
e−w ln(1−R)(1+o(1))

)
when w is a

sublinear function of the length (see [CTS15] for more details) and the length
n of the code goes to infinity. For monomial codes it can be readily checked
that codes with rate greater than some constant ε > 0 have minimum distance
at most O(

√
n) (this comes from straightforward and well known results about

the minimum distance of Reed-Muller codes and Proposition 3). This is clearly
achievable for the polar codes we have considered in this article.

On the other hand, all the minimum codewords of C (I) are easily obtained
by using Theorem 3: Wmin decomposes into orbits under the action of LTAm

where each orbit contains one of the monomials of I of degree r+.

4.2 Step 2 – Signature of Orbits in Wmin

To distinguish between the codewords of Wmin we have first chosen a monomial
in each of the orbits under LTAm that decompose Wmin. For each of such mono-
mials g we have computed the dual of the shortened code D

def=
(SJ (C (I))

)⊥

with respect to the support J of ev(g). It has turned out that, for the polar
codes we have considered, the pair (number of codewords of weight 2r− in D ,
dimension of D) was discriminant enough to yield a signature of the orbit. This
critical quantity 2r− occurs because we have

Theorem 4. Let g = xi1 . . . xir+
be a monomial of degree r+ in I. Denote by

supp(g) the support of ev(g), then the minimum distance of
(Ssupp(g) (C (I))

)⊥ is
equal to 2r− if and only if there exists a monomial h in M \ Ǐ such that:

(i) the number of variables of h that are also variables of g is r+ − 1,
(ii) the number of variables of h that are also variables of ǧ is m − r− − r+.

This theorem is proved in Sect. B of the appendix.

4.3 Step 3 – Computation of orbits in Wπ
min

The signature Σ that has been found in the previous step is now applied to
Wπ

min. It gives the orbits of Wπ
min with respect to the conjugate group π−1Gπ.

Indeed, it can be verified that

Proposition 4. Wπ
min is invariant by the action of π−1

LTAmπ and if Σ is a
signature for Wmin under the action of LTAm, then it is also a signature for the
action of π−1

LTAmπ on Wπ
min.
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We use this signature for finding the orbit of cmin. This orbit has a particu-
larly nice structure:

Proposition 5. The orbit of cmin under LTAm consists of 2r+ codewords that
are of the form cmin(ε0, . . . , εr+−1) where the εi’s are arbitrary elements of F2.
The orbit of cπ

min under π−1
LTAmπ is given by 2r+ codewords of weight 2m−r+

that have disjoint supports which are the permuted versions A(ε0, . . . , εr+−1)π of
the affine spaces A(ε0, . . . , εr+−1).

In other words, finding this orbit in Wπ
min and looking at the support of the

codewords that we have found in this way allows us to find the support of the
permuted versions A(ε0, . . . , εr+−1)π of the affine spaces A(ε0, . . . , εr+−1).

4.4 Step 4 – Identification of Affine Spaces

There are several ways to identify the permuted versions of the affine spaces
we are interested in. One of the simplest way, which worked for the [2048, 614]
polar code that we studied, is by computing the dimensions of certain spaces.
First we take any codeword in the orbit of cmin. Such codeword is of the
form cγπ

min where γ is a permutation leaving C (I) invariant. In other words,
up to applying the permutation group, we can safely declare that this code-
word is cπ

min. Let I0 be the support of cmin = c(1, . . . , 1). We choose I ′
0 be

the support of the codeword c( 1, . . . , 1
︸ ︷︷ ︸

(r+−1) times

, 0). Notice that I def= I0 ∪ I ′
0 is the

support of the codeword ev(x0 . . . xr+−2). We compute the dimension of the
code PI (C (I)). Now, we let J0, . . . ,J2r+−1 be the supports of the codewords
that are in the orbit of cπ

min, with J0 being the support of the codeword cγπ
min

that has been chosen. We compute the dimensions of the codes PJ0∪Ji
(C (I)π)

for i = 1, . . . , 2r+ − 1. It turns out that there is generally a single space Ji

such that dim (PJ0∪Ji
(C (I)π)) = dim (PI (C (I))). We pair these two spaces

J0 and Ji together. This process can be used to pair together all the spaces
A(ε0, . . . , εr+−2, 0)γπ and A(ε0, . . . , εr+−2, 1)γπ by pairing together Ji and Jj

when Jj is the only space for a given i such that

dim
(PJi∪Jj

(C (I)π)
)

= dim (PI (C (I))) .

In such a case, Ji and Jj necessarily correspond to A(ε0, . . . , εr+−2, 0)γπ

and A(ε0, . . . , εr+−2, 1)γπ for a certain (ε0, . . . , εr+−2) ∈ F
r+−1
2 . In other

words, we know after this process all the spaces A(ε0, . . . , εr+−2)γπ =
A(ε0, . . . , εr+−2, 0)γπ ∪ A(ε0, . . . , εr+−2, 1)γπ. We can carry on this process with
the codeword c = ev(x0 . . . xr+−1) instead of cmin and recover all the per-
muted affines spaces A(1)γπ, A(1, 1)γπ, . . . , A(1, 1, . . . , 1

︸ ︷︷ ︸
r+ times

)γπ for some permutation

γ leaving C (I) invariant.
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4.5 Step 5 – Equivalence Problem for a Short Decreasing
Monomial Code

We now have to solve the code equivalence problem for D which is a code of
length 2m−r+ which is much shorter than the original code. It is also straightfor-
ward to check that it is a decreasing monomial code. We can for instance carry
out the process again that we saw before. For the [2048, 614] polar code that we
studied, we can even compute the whole permutation group of the code which is
much closer to the whole affine group. It is here a code of length 32 that contains
R(2, 5) and is contained in R(3, 5). We do not detail this point here, since there
are many ways to actually solve the problem.

4.6 Step 6 – Induction Step

The idea here is to reconstruct the permutation π̂ given that we already know
its action on the support of cmin. More precisely, the code equivalence problem
that we solve here is:

Problem 2 (Code Equivalence Search Problem with Side Information). Given (C ,
C π) and t pairs of code positions (i0, j0), (i1, j1), . . . , (it−1, jt−1), find π̂ such that
C π̂ = C π and π̂(is) = js for all s ∈ {0, 1, . . . , t − 1}

We use the following algorithm for solving this problem (we let here I def=
{i0, . . . , it−1} and J def= {j0, . . . , jt−1})

1. We pick a certain number � of codewords c(0), . . . , c(� − 1) of C .
2. Let C (j) the set of codewords of C which coincide with c(j) on the positions

belonging to J . We also define C (i)π as the set of codewords of C π that
coincide with c(i)π on I.

3. We compute for all i in 0, 1, . . . , � − 1 and all positions j which are not in J ,
the number Σ(i, j) which is the number of codewords of minimum weight in
Pj (C (i)), and similarly for all all positions j that are not in I, the number
Σπ(i, j) which is the number of codewords of minimum weight in Pj (C (i)π).

4. We declare for u which is not in I that π̂(u) = v if there exists a unique
v which does not belong to J such that Σ(i, v) = Σπ(i, u) for all i in
{0, 1, . . . , � − 1}.

It is straightforward to verify that this algorithm outputs the unique π̂ solving
the problem in this case. We have also encountered cases, where even with the
knowledge we have on π̂, we have different solutions. In such a case, we were
able to compute how many solutions we had and add to the set of pairs (is, js)
an additional pair (or additional pairs) which gives a unique solution.

5 Implementation of the Attack on a [2048, 614]-Polar
Code

We implemented the [2048, 614]-polar code as follows. The Shannon limit for the
noise on a binary symmetric channel of crossover probability p that a code of
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rate 614
2048 is able to sustain is about p = 0.19. We devised the polar code for a

slightly smaller error rate of p = 0.17 and chose the 614 best rows of G11 which
give the best performances for the successive cancellation decoder. Such a code
is able to correct more than 200 errors with a small error probability- this should
be compared to the 130 errors that a Goppa code of the same rate is able to
tolerate. In the case of a Goppa code we have about 70 bits of security against
message attacks based on generic linear codes decoding algorithms, whereas we
have more than 105 bits of security for the polar code.

We first checked that this code C and its dual C⊥ are both decreasing mono-
mial codes and computed all the minimum weight codewords by using Theorem 3.
The conditions of Corollary 1 were met and the code was weakly self-dual
C ⊂ C⊥. The minimum distance of C turned out to be equal to 32 and there
were 42176 codewords of this weight, whereas the minimum distance of C⊥ was
8 and there were 6912 codewords of this weight in the dual. The same number
of codewords were found by Dumer’s algorithm in C π and in (C π)⊥. It tooks 27
seconds to find these codewords in C π and 3 seconds to find these codewords in
(C π)⊥ on a 8-core XEON E3-1240 running at 3.40 GHz.

But the most time consuming part was Step 6 of the attack when we have
to compute the various Σ(i, j)’s that are needed. This is done again by using
Dumer’s algorithm. The difference with obtaining codewords of minimum weight
of the polar code is that in the polar case we know beforehand the number of
minimum weight codewords by using a counting procedure based on Theorem 3
and we can stop the search procedure once we have the right amount of different
codewords. However when we compute Σ(i, j) we do not know beforehand the
number of minimum weight codewords in Pj (C (i)) and we use a probabilistic
procedure based on the coupon collector problem : once we have found n different
minimal codewords, where on average we have found each codeword α ln n times
we stop the procedure for a certain value of α greater than 1. Here we have taken
α to be equal to 3. In this case, to speed up the computation we chose the c(i)’s
to be minimum weight codewords of C . More than 80 % of the total computation
is actually taken for the last step of induction where we recover a permutation
for the whole [2048, 614] code from the partial permutation acting on half its
positions. This takes about 227 hours and the total computation time is about
280 hours. This part of the attack is very likely to be improved significantly if
need be.

6 Conclusion

Despite the fact that the code equivalence problem for binary polar codes is
a hard instance for the Support Splitting Algorithm, we have shown in this
paper that it can nevertheless be solved rather efficiently by a more sophisticated
algorithm consisting in (i) looking for minimum weight codewords, (ii) classifying
them by using our knowledge of the automorphism group of the polar code to
find a particular minimum weight codeword, (iii) use this particular codeword to
partition the code positions into affine spaces, (iv) puncture the set of positions
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with respect to all these affine spaces but one, and solve the code equivalence
problem on this reduced problem. We use this to solve the code equivalence
problem by induction on increasing affine spaces.

This allows to break the McEliece cryptosystem for the parameters proposed
in [SK14]. It is likely that the only way to avoid this kind of attack (or possible
improvements on it) is to look for polar code parameters for which we are unable
to find minimum weight codewords either in the code or in its dual. This would
require to change significantly the parameters proposed in [SK14] that would
make such polar codes much less attractive for a use in a McEliece cryptosystem.

To obtain this attack we have proposed a new code family, that we call
decreasing monomial codes containing as a particular subcase Reed-Muller codes
and binary polar codes. These decreasing monomial codes have a very large per-
mutation group that gives some insight about the permutation group of polar
codes. This knowledge on the permutation group of polar codes we obtained
could also be used in other settings, for instance to improve the decoding per-
formances of polar codes.

This attack can be considered as a first step towards studying the polar
code based McEliece scheme proposed in [HSEA14]. Our attack does not apply
directly to this scheme since it is based on taking a particular kind of random
subcode of the polar code. In such a case, the system does not consist in solving
the code equivalence problem (or we have to solve as many instances as the
number of possible subcodes of this kind which becomes unfeasible in this case).
However it seems that some of the tools provided here, and a particular property
of polar codes, might also be used to attack such a scheme. Indeed, taking the
square of the polar code or the square of its dual (with the definition of a square
code given in [CGG+14]) gives a code which is not the full space in many cases. If
the subcode of a polar code was chosen uniformly at random among the spaces of
some prescribed codimension inside the code, then the square of such codes would
be almost always equal to the square of the polar code when the codimension is
large enough. This would give an attack since the square of a polar code which
is a decreasing monomial code is readily seen to be a decreasing monomial code
itself. From there we can solve the code equivalence problem on the square of this
code by using the tools given in this paper. This reveals the secret permutation
and breaks the system. With the way the subcodes are chosen in [HSEA14] this
does not happen, but still the square of the subcode is a very large subcode of
the square of the polar code itself and this looks highly suspicious.

A Proofs of the Results of Section 3

A.1 Proof of Proposition 2

In order to prove this result, we first prove a few lemmas about the partial order
we introduced.

Lemma 2. For all f and g in M, f � g if and only if f̌ � ǧ.
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Proof. Let f = xi1 . . . xis
and g = xj1 . . . xjt

with s � t and i1 < · · · < is,
j1 < · · · < jt. Then we have two cases:

– if deg f = deg g then by definition of the order we have i� � j� for all j =
1, . . . , s. Consider the �-th variable xi′

�
in the monomial f̌ and the �-th variable

xj′
�

in the monomial ǧ. Let us define

ϕ(u) def= � − 1 + #{ia : ia � u}
γ(u) def= � − 1 + #{ja : ja � u}

Observe now that
(i) since ϕ(u + 1) is either equal to ϕ(u) or to ϕ(u) + 1 and since ϕ(0) � 0,
ϕ(m − 1) � m − 1, there exists at least one u such that ϕ(u) = u,
(ii) when ϕ(u) = u this means that there exist exactly � variables xb for b in
{0, 1, . . . , u} that belong to the monomial f̌ .
All this implies that i′� is the smallest index u such that ϕ(u) = u (or what
amounts to the same it is the smallest index u such that ϕ(u) � u). A similar
property holds for j′

�. In other words

i′� = min{u : ϕ(u) � u} (2)
j′
� = min{u : γ(u) � u} (3)

From the fact that ja � ia for all a in {1, . . . , s} we have that for all indices u

ϕ(u) � γ(u) (4)

On the other hand, we know that i′� = ϕ(i′�), where the righthand term is
larger than or equal to γ(i′�) by using (4). Therefore γ(i′�) � i′�, and by using
(3) we deduce that j′

� � i′�.
– if deg f < deg g then by definition of the order: f � g ⇔ ∃ g1 ∈ M s.t.

g = g1g2 with deg g1 = deg f and f � g1. From the first case we deduce that
f̌ � ǧ1. On the other hand one checks immediately that ǧ1 � ǧ. From these
two inequalities we deduce f̌ � ǧ.

Corollary 2. Let I ⊆ M be a decreasing set then M \ Ǐ is a decreasing set.

Proof. Let h be a monomial that belongs to M\ Ǐ, and let g be a monomial such
that g � h. If g /∈ M \ Ǐ then it would mean that there exists f ∈ I such that
g = f̌ . This means that f̌ � h and by using Lemma 2 we would get ȟ � ˇ̌f = f .
Since I is a decreasing set, ȟ ∈ I, that is to say, ˇ̌h = h ∈ Ǐ which contradicts the
assumption. Therefore M \ Ǐ is a decreasing set.

These lemmas can now be used to prove Proposition 2 that we recall below.

Proposition. Let C (I) be a decreasing monomial code, then its dual is a decreas-
ing monomial code given by

C (I)⊥ = C (M \ Ǐ).
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Proof. As
∣
∣Ǐ

∣
∣ = |I|, we have dimC (M \ Ǐ) = |M| − |Ǐ| = |M| − |I| = 2m −

dimC (I) = dimC (I)⊥, so we need to prove only one inclusion.
Let f ∈ M \ Ǐ and consider g ∈ I. Notice that

< ev(f), ev(g) >=< ev(fg), ev(1) >

where < ., . > stands for the standard inner product in {0, 1}2m

: < x ,y >=∑
i xiyi. Observe now that fg is a monomial and that the only monomial whose

evaluation is not orthogonal (with respect to <,>) to the all 1 vector is the “full”
monomial x1 . . . xm. Assume now that we are in such a case: fg = x1 · · · xm. This
means that ǧ is a divisor of f . A divisor of a monomial is always smaller than
or equal to this monomial with our definition of order. Therefore ǧ � f . From
Corollary 2 we know that M \ Ǐ is a decreasing set and that this would imply
ǧ ∈ M \ Ǐ. This would imply that ˇ̌g = g would belong to M̌ \ ˇ̌I = M \ I. This
would contradict the assumption that g belongs to I. Therefore we proved by
contradiction that C (M \ Ǐ) ⊆ C (I)⊥.

A.2 Proof of Theorem 1

Let us recall this theorem:

Theorem. The permutation group of a decreasing monomial code in m variables
contains LTAm.

Proof. Let C (I) be a decreasing monomial code and let π be in LTAm. Consider
x in F

m
2 . Let x ′ def= π(x ). There exist binary numbers aij and εi such that for

any i in {0, . . . , m − 1} we have

x′
i = xi +

∑

j<i

aijxj + εi.

An affine permutation π acts also in a natural way on monomials, with its action
being defined by

π(xi1 . . . xis
) def= x′

i1 . . . x′
is

.

In other words the action of an affine permutation π on a monomial f is given
by f ◦ π. Observe that this action is such that

ev(f)π = ev(f ◦ π).

Choose now a monomial f in I and use the observation above. We can expand
f ◦ π and verify that it is a sum of monomials that are smaller than f with
respect to the order � that we introduced. Since I is a decreasing set, then
all these monomials belong to I as well and therefore we obviously have that
ev(f ◦ π) is also in C (I). C (I) is therefore invariant by π.
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A.3 Proof of Proposition 3

Let C (I) be a decreasing monomial code. Let us start by proving Point (i),
namely that the minimum distance of C (I) is equal to 2m−r+(C (I)). This follows
on the spot by noticing that r+ is also the largest degree of a monomial in I.
If we consider the evaluation of this monomial we obtain a codeword of weight
2m−r+(C (I)). This implies that the minimum distance of C (I) is smaller than
or equal to this quantity. On the other hand, the minimum distance of C (I)
is larger than or equal to the minimum distance of R(r+,m) which is equal to
2m−r+(C (I)) by using Theorem 2. This implies our claim.

Consider now the second point that we recall below

r−(C (I)⊥) = m − 1 − r+(C (I)) (5)
r+(C (I)⊥) = m − 1 − r−(C (I)) (6)

This follows immediately from Proposition 2: C (I)⊥ = C (M \ Ǐ) and the alter-
native definitions of r−(C (I)⊥) and of r+(C (I)⊥) which are respectively the
largest degree r such that all monomials of degree r are monomials in M\ Ǐ and
the largest degree of a monomial that belongs to M \ Ǐ.

The third point, namely that the minimum distance of C (I)⊥ is equal to
2r−(C (I))+1 is a straightforward of Point(i) applied to the monomial code C (I)⊥

and by using (6).

A.4 Proof of Proposition 3

Here we want to prove that any minimum weight codeword c in a decreasing
monomial code C (I) can be written as c = ev(f)π where f is a monomial in I
and π an element of LTAm.

Note that from Proposition 3 we know that a minimum weight codeword
of C (I) is also a minimum codeword of R(r+(C (I)),m). For simplicity we will
simply write r+ for r+(C (I)) from now on. By using Theorem 2, we know that
c can be written as the evaluation of the product of r+ independent affine forms
x′
0

def= ε0 +
∑

j a0jxj ,· · · , x′
r+−1

def= εr+−1 +
∑

j ar+−1,jxj where the εi’s are
elements of the binary field F2. We claim now that there are r+ independent
affine forms x′′

0 , . . . , x′′
r+−1 such that:

(i) ev(x′
0 . . . x′

r+−1) = ev(x′′
0 . . . x′′

r+−1),
(ii) for all i ∈ {0, . . . , r+ − 1} we have that the x”i’s can be written as ε′

i +∑
j<ϕ(i) a′

ϕ(i),jxj , where ϕ is some permutation of {0, 1, . . . ,m − 1} and the
ε′

i’s and a′
ϕ(i),j are binary.

This is easy to check by considering the affine form x′
i that involves the “largest”

variable xj (the one consisting of the largest index j). Let xj0 be this variable.
We may assume without loss of generality that this is x′

0. We can check now
that

ev(x′
0x

′
1 . . . x′

r+−1) = ev(x′
0x

′′′
1 . . . x′′′

r+−1),
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where x′′′
i = x′

i − x′
0 − 1 if x′

i involves the variable xj0 and x′′′
i = x′

i other-
wise. Observe now that the r+ − 1 affine forms x′′′

1 , . . . , x′′′
r+−1 involve only vari-

ables xj which are such that j < j0. We can carry on this process with these
r+ − 1 (independent) affine forms x””1, . . . , x′′′

r+−1 by considering the variable
xj which is the largest among the variables that are involved in these affine
forms and so on and so forth. We end up with r+ affine forms x′′

0 , . . . , x′′
r+−1

which have exactly the aforementioned properties (i) and (ii). Consider the
monomial xj0 . . . xjr+−1 which is the product of the “largest” variable xj in
each of these x”i’s. This monomial has to belong to I and we obviously have
ev(x”0 . . . x”r+−1) = ev(π(xj0 . . . xjr+−1)) for some π in LTAm. This proves our
theorem.

B Proof of the Results of Section 4

B.1 Proof of Theorem 4

We will first begin this proof by proving a general result about the dual of
shortened monomial codes.

Lemma 3. Let C (I) be a decreasing monomial code and g ∈ I. Let supp(g) be
the support of ev(g). We denote by E

(Ssupp(g) (C (I))
)⊥ the dual of the shortened

code in supp(g) that we have extended by zeros in the positions in which we have
shortened the code. Then

E
(Ssupp(g) (C (I))

)⊥ = {ev((1 + g)f) : f ∈ M \ Ǐ}
Proof. Recall that we have

(Ssupp(g) (C (I))
)⊥ = Psupp(g)

(
C (I)⊥)

We know that C (I)⊥ = C (M\ Ǐ). The lemma follows from this and the fact the
ev(1 + g) takes value 1 on the complementary of supp(g) and 0 on supp(g).

The following notation turns out to be convenient.

Notation 2. For a monomial g = xi1 . . . xis
, its set of indices Ind(g) is given

by {i1, . . . , is} and its intersection g ∧ h with a monomial h is given by

g ∧ h
def
= Πi∈Ind(g)∩Ind(h)xi.

We will also need the following result that is only a slight generalization of
[Mn07, Proposition 6, p. 69] (and our proof will follow closely the proof of this
proposition).

Lemma 4. Let g be some monomial of degree s � 1. Denote by supp(g) the
support of ev(g), then the minimum distance of

(Ssupp(g) (C (I))
)⊥ is greater

than or equal to 2r− . If the minimum distance is equal to 2r− then there exists
a monomial h in M \ Ǐ such that
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(i) the number of variables of h ∧ g is s − 1,
(ii) the number of variables of h ∧ ǧ is m − r− − s.

Proof. Let us take a nonzero codeword of C (I)⊥, say that is the evaluation
of some polynomial f , which is in this case of degree at most m − 1 − r−.
Write f =

∑
j mj as a sum of monomials. Then f̃

def=
∑

j:g�mj
mj is defined as

the polynomial where we have removed from the monomial expression of f all
monomials that are divisible by g. Since (Ssupp(g) (C (I)))⊥ = Psupp(g)

(
C (I)⊥)

,
we want to prove that the evaluation of f on {0, 1}m \ supp(g) is either zero or
of weight � 2r− . Notice that the evaluation on {0, 1}m \ supp(g) coincides with
the evaluation of f̃ .

Let us assume that g = x0 . . . xs−1. With this choice, let us pick a mono-
mial of f̃ that has maximum degree in xs, . . . , xm−1. Let d be this degree (in
xs, . . . , xm−1). f̃ can be written as

f̃ = mu(x0, . . . , xs−1) + v(x0, . . . , xm−1),

where m is a monomial of degree d in xs, . . . , xm−1. We take here in the mono-
mials whose sum is equal to f̃ all monomials that are divisible by m and u is
just the sum of these monomials divided by m. Let d′ be the degree of u which is
necessarily smaller than s since f̃ does not contain any monomial divisible by g.

Notice that u(x0 . . . xs−1) is non zero in at least 2s−d′ − 1 entries if we do
not count the (1, . . . , 1) entry, since its evaluation is a codeword of R(d′, s).

Call a “block” the set of points (x0, . . . , xm−1) which take a prescribed
value on x0, . . . , xs−1. The support supp(g) of g corresponds to the block
x0 = 1, . . . , xs−1 = 1. Notice that the weight of ev(f̃) restricted to a block (with
the exception of the block x0 = 1, . . . , xs−1 = 1) is at least 2m−s−d, since this
restriction is a codeword of R(d,m−s). In other words the weight of ev(f̃(1+g))
is lower-bounded by

|ev(f̃)(1 + g)| � 2m−s−d(2s−d′ − 1) � 2m−s−d2s−d′ 1
2

= 2m−d−d′−1.

Notice that we have d + d′ � m − r− − 1 and therefore we finally obtain

|ev(f̃)| � 2m−(m−r−−1)−1 = 2r− .

This proves the statement about the minimum distance in this case. A quick
inspection of this proof shows that the only fact we used on g was that is is
different from 1 (the particular form of g was only here to simplify notation),
and therefore it also holds for all monomials g different from 1.

Assume now that the minimum distance of
(Ssupp(g) (C (I))

)⊥ is equal to
2r− . By a quick inspection of this proof this means that deg u = s − 1 and
deg m = m − r− − 1 − (s − 1) = m − r− − s. Write u as a set of monomials
u =

∑
j m′

j and choose m′ as any monomial in this sum that is of degree s − 1.

Obviously h
def= mm′ is a monomial of degree s − 1 + m − r− − s = m − r− − 1

that appears as a monomial in the sum f =
∑

j mj . Therefore h is in M \ Ǐ.
Such an h has the aforementioned form.
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We will now use this to prove Theorem 4. We recall its statement below.

Theorem. Let g = xi1 . . . xir+
be a monomial of degree r+ in I. Denote by

supp(g) the support of ev(g), then the minimum distance of
(Ssupp(g) (C (I))

)⊥ is
equal to 2r− if and only if there exists a monomial h in M \ Ǐ such that:

(i) the number of variables of h that are also variables of g is r+ − 1,
(ii) the number of variables of h that are also variables of ǧ is m − r− − r+.

Proof. First of all let us notice that the minimum distance of E
(Ssupp(g) (C (I))

)⊥

is the same as the minimum distance of
(Ssupp(g) (C (I))

)⊥. From Lemma 3 we
know that any codeword in the first code can be written as ev((1 + g)f)) where
f is polynomial which is a linear combination of monomials in M \ Ǐ. Consider
now that there is a monomial h satisfying the conditions above. Let us prove
that the weight of ev((1 + g)h) is equal to 2r− . Let i0 be the only index that is
in Ind(g) but not in Ind(g ∧ h). Observe now that

(1 + g)h = (1 + xi1 . . . xir+
)

∏

i∈Indg∧h

xi

∏

i∈Ind(ǧ∧h)

xi

= (1 + xi0)
∏

i∈Indg∧h

xi

∏

i∈Ind(ǧ∧h)

xi

= (1 + xi0)h.

Thus
|ev((1 + g)h))| = |(ev((1 + xj0)h)| = 2m−(m−r−−1+1) = 2r− .

By using the lower-bound on the minimum distance coming from Lemma 4 we
obtain that the minimum distance of

(Ssupp(g) (C (I))
)⊥ is equal to 2r− .

Assume now that the minimum distance of
(Ssupp(g) (C (I))

)⊥ is equal to 2r− ,
then we can use Lemma 4 and obtain the aforementioned claim.

B.2 Proof of Proposition 4

Proposition. Wπ
min is invariant by the action of π−1

LTAmπ and if Σ is a
signature for Wmin under the action of LTAm, then it is also a signature for the
action of π−1

LTAmπ on Wπ
min.

Proof. The invariance of Wπ
min follows from the fact that (i) LTAm is a sub-

group of the permutation group of C (I) by Theorem 1 and (ii) this implies
that π−1

LTAmπ is a subgroup of the permutation group of C (I)π by Propo-
sition 1. For the second part, it suffices to prove that Σ takes different values
on the orbits of Wπ

min under the action of π−1
LTAmπ. Consider two elements

xπ and yπ that belong to two different orbits. They are the permuted ver-
sions of x and y which belong to different orbits of Wmin. If this were not the
case we would have x = yγ for γ in LTAm. However this would imply that
xπ = yγπ = yππ−1γπ = (yπ)π−1γπ and this would imply that xπ and yπ would
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be in the same orbit under the action of π−1
LTAmπ. We finish the proof by

observing that

Σ(xπ,C (I)π) = Σ(x ,C (I))
Σ(yπ,C (I)π) = Σ(y ,C (I))

Therefore Σ(xπ,C (I)π) and Σ(yπ,C (I)π) are different since Σ(x ,C (I)) and
Σ(y ,C (I)) are different.

B.3 Proof of Proposition 5

Proposition. The orbit of cmin under LTAm consists of 2r+ codewords that are
of the form cmin(ε0, . . . , εr+−1) where the εi’s are arbitrary element of F2. The
orbit of cπ

min under π−1
LTAmπ is given by 2r+ codewords of weight 2m−r+ that

have disjoint supports which are the permuted versions A(ε0, . . . , εr+−1)π of the
affine spaces A(ε0, . . . , εr+−1).

Proof. Let f be the monomial x0 . . . xr+−1 (i.e. cmin = ev(f)). Under the action
of π in LTAm this monomial is transformed into x′

0 . . . x′
r+−1 where x′

i = εi +
xi +

∑
j<i aijxj where the εi’s and the aij ’s are binary. The support of such a

monomial is given by the affine space x′
0 = 1, . . . , x′

r+−1 = 1, but this is readily
seen to be an affine space of the form x0 = ε′

0, . . . , xr+−1 = ε′
r+−1 where the ε′

i’s
are binary. This implies the first claim. The claim on the orbit of cπ

min follows
from the fact that for any γ ∈ LTAm we have

(cπ
min)

π−1γπ = (cγ
min)

π.
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Abstract. The security of code-based cryptography is strongly related
to the hardness of generic decoding of linear codes. The best known
generic decoding algorithms all derive from the Information Set Decoding
algorithm proposed by Prange in 1962. The ISD algorithm was later
improved by Stern in 1989 (and Dumer in 1991). Those last few years,
some significant improvements have occurred. First by May, Meurer, and
Thomae at Asiacrypt 2011, then by Becker, Joux, May, and Meurer at
Eurocrypt 2012, and finally by May and Ozerov at Eurocrypt 2015. With
those methods, correcting w errors in a binary linear code of length n
and dimension k has a cost 2cw(1+o(1)) when the length n grows, where c
is a constant, depending of the code rate k/n and of the error rate w/n.
The above ISD variants have all improved that constant c when they
appeared.

When the number of errors w is sub-linear, w = o(n), the cost of
all ISD variants still has the form 2cw(1+o(1)). We prove here that the
constant c only depends of the code rate k/n and is the same for all
the known ISD variants mentioned above, including the fifty years old
Prange algorithm. The most promising variants of McEliece encryption
scheme use either Goppa codes, with w = O(n/ log(n)), or MDPC codes,
with w = O(

√
n). Our result means that, in those cases, when we scale

up the system parameters, the improvement of the latest variants of ISD
become less and less significant. This fact has been observed already,
we give here a formal proof of it. Moreover, our proof seems to indicate
that any foreseeable variant of ISD should have the same asymptotic
behavior.

1 Introduction

Code-based cryptography is among the most promising solutions for designing
cryptosystems safe against a quantum computer. In particular the McEliece
public-key encryption scheme [1], based on binary Goppa codes, has so far suc-
cessfully resisted to all cryptanalysis effort. Let us also mention a recent compact
key variant [2] based on quasi-cyclic moderate density parity check codes. The
effective security of those schemes is based on the hardness of decoding in a
binary linear code. Thus, the improvement and the understanding of the best
generic decoding technique is of great interest to select secure parameters for
c© Springer International Publishing Switzerland 2016
T. Takagi (Ed.): PQCrypto 2016, LNCS 9606, pp. 144–161, 2016.
DOI: 10.1007/978-3-319-29360-8 10
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code-based cryptosystems. Typically, when the amount of error to correct w is
proportional to the code length n, the last variant of generic decoding, proposed
by May and Ozerov [3] improves the asymptotic exponent (i.e. decreases the
number of security bits) by about 20 % to 30 % compared with the elementary
Prange algorithm [4]. This gain decreases relatively for a smaller amount of
errors. Here we prove that when the error rate w/n tends to zero, the relative
gain collapses completely.

The (Computational) Syndrome Decoding Problem. CSDn,k,w consists
in correcting w errors (bit flips) that have occurred on a binary word belonging
to a binary linear [n, k] code (i.e. a k-dimensional subspace of Fn

2 ). This problem
is hard [5,6] and is central to assess the security of code-based cryptosystems.

Information Set Decoding. (ISD) was introduced by Prange in 1962 [4]. It is
a generic decoding algorithm: it solves CSD taking only as inputs a basis of the
code and a noisy codeword. We refer to this algorithm as Pra-ISD. There has
been numerous works improving and analyzing ISD [3,7–14]. The variants which
have improved the asymptotic behavior are chronologically due to: Stern [8] and
Dumer [9]1, referred to as SD-ISD; May, Meurer, and Thomae [13], referred to
as MMT-ISD; Becker, Joux, May, and Meurer [14], referred to as BJMM-ISD;
May and Ozerov [3], referred to as Nearest Neighbors or NN-ISD. If A is one of
the above algorithms, we denote WFA(n, k, w) its workfactor, that is its average
algorithmic cost, when addressing a (solvable) instance of CSDn,k,w.

Asymptotic Analysis of Information Set Decoding. The usual setting for
the asymptotic analysis of ISD variants is to consider, for growing n, a family of
problems CSDn,Rn,τn, with two positive constants: R, 0 < R < 1, the code rate
and τ , 0 < τ ≤ h−1(1 − R), the error rate2. Any known variant A of ISD solves
this family of problems for a cost

WFA(n,Rn,w = τn) = 2c′n(1+o(1)) = 2cw(1+o(1))

when n grows, where the constants c′ and c = c′/τ depend of R, τ , and of the
variant. The various improvements of ISD have gradually improved the constant
c. For instance, in Fig. 1 we give the value of c for R = 0.5 and τ varying from
0 to h−1(0.5) ≈ 0.11. We remark in the figure that the constant c does not vary
very much with the error rate τ , moreover, when this rate tends to zero, all
algorithms seem to have the same value for c.

1 The results have been obtained independently, Dumer’s variant is slightly better
than Stern’s, though by a very small amount.

2 h−1(1− R) is the asymptotic Gilbert-Varshamov bound, h(x) = −x log2 x − (1− x)
log2(1 − x) is the binary entropy.
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Fig. 1. Asymptotic exponent of ISD variants for binary codes of rate 1/2

Our Contribution. We prove that if we consider a family of problems
CSDn,Rn,w with limn→∞ w/n = 0, we still have

WFA(n,Rn,w) = 2cw(1+o(1))

when n grows, with a constant c = − log2(1 − R) regardless of the variant.
There are many situations where w = o(n). The two most promising variants of
McEliece encryption scheme for applications are based on binary Goppa codes
[1] and on binary MDPC (Moderate Density Parity Check) codes [2]. Those
codes correct respectively w = O(n/ log(n)) and w = O(

√
n) and thus they fall

into the category we are considering here.
The paper is organized as follows. We first present a framework in which the

known variants of ISD all fit. This framework allows us to give bounds on the
algorithmic complexity. In the next section, we use those bounds to prove that
asymptotically, when the error rate tends to zero, the complexity exponent is the
same for all those variants. Finally we confront this asymptotic result to what we
observe when computing the non asymptotic workfactors of decoding problems
corresponding to the main McEliece-like code-based encryption schemes.

2 Generic Decoding

The (computational) syndrome decoding problem is stated as follows

Problem 1 (Computational Syndrome Decoding - CSD).
input: H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , and an integer w > 0

problem: Find e ∈ Fn
2 of Hamming weight ≤ w such that eHT = s.
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It was proven NP-complete [5] and is conjectured hard on average [6,15]. It is
equivalent to the decoding of w errors in a binary [n, k] code of parity check
matrix H. Solving this problem is often the best known attack against code-
based cryptosystem, thus being able to accurately analyze the cost of the best
CSD solvers is of great importance to select secure parameters and to understand
how to scale up the security.

Our purpose is to solve CSD(H0, s0, w) for some H0 ∈ F(n−k)×n
2 and s0 ∈

Fn−k
2 . We will restrict the instance as follows.

Assumption 1 (on the instance (H0, s0, w) of CSD).

1. H0 is chosen uniformly at random in F(n−k)×n
2

2. s0 is chosen uniformly at random in {eHT
0 | wt(e) = w}

3. w is smaller than the Gilbert-Varshamov distance, i.e.
(

n
w

)
< 2n−k.

When this holds CSD(H0, s0, w) has exactly one solution with high probability.

2.1 Information Set Decoding and Some Variants

We give in Fig. 2 a framework for many variants of ISD (all but the last one
NN-ISD). This framework includes two additional integer parameters, p and �,
which will be chosen to minimize the cost of the algorithm. The optimal values
of p and � will depend on how instruction “1:” is implemented. The Prange
algorithm corresponds to the degenerate case p = � = 0.

Proposition 1. Within Assumption 1 on the input, we run the generic isd pro-
cedure until the success condition is met. The following holds on average up to
a small constant factor:

– the instruction “1:” is executed at least (n
w)

(n−k−�
w−p )(k+�

p ) times,

– the instruction “2:” is executed at least (n
w)

(n−k−�
w−p )2�

times.

Proof is given in appendix.

Short Description of ISD Variants. We do not mean to be exhaustive nor
self-contained here. We just give indications to estimate the cost of the algo-
rithms. We refer the reader to the corresponding papers for a more detailed
description. More specifically, we are interested in finding a lower bound on the
cost L of one execution of instruction “1:” in Fig. 2. We will use the notation of
that Figure.

The Stern-Dumer Variant: The instruction “1:” is performed by a birthday
paradox. In that case, two lists of size

(
(k+�)/2

p/2

)
are built then joined. We have

L ≥ (
(k+�)/2

p/2

)
.
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n − k − � k + �
1

. . . H ′′ s′′T

UH0P = H = 1 , sT = UsT
0 =

� 0 H ′ s′T

target weight w − p p
solution e′′ e′

(1)

procedure generic isd

input: H0 ∈ F
(n−k)×n
2 , s0 ∈ Fn−k

2

repeat (main loop)
P ← random n × n permutation matrix
(H ′, H ′′, s′, s′′) ← PartialGaussElim(H0P, s0) // as in (1) above

1: Somehow compute E ⊂ {e′ ∈ Fk+�
2 | wt(e′) = p, e′H ′T = s′}

for all e′ ∈ E
2: e′′ ← e′H ′′T + s′′ ; if wt(e′′) = w − p then success

Fig. 2. A generic framework for most ISD variants

The MMT Variant: Four lists are joined in a two level tree structure. Four initial
lists are joined pairwise to obtain two lists which are joined to produce E . The
four initial lists have size

(
(k+�)/2

p/4

)
, therefore L ≥ (

(k+�)/2
p/4

)
.

The BJMM Variant: The tree structure to join the lists has three levels and we
initially build 8 lists of size

(
(k+�)/2

p2/2

)
with p2 = p/8+ε1/4+ε2/2 where ε1 and ε2

are positive additional parameters. It follows that L ≥ (
(k+�)/2

p2/2

) ≥ (
(k+�)/2

p/8

)
. We

remark in addition that we should also have
(
(k+�)/2

p2/2

) ≤ (
k+�

p

)
else the algorithm

would not perform better than a mere enumeration, in particular not better
than SD-ISD, which cannot happen since SD-ISD is a particular case of BJMM-
ISD in which some optimization parameters are restricted. It follows that the
optimal value of p2 is proportional to p with a ratio somewherebetween 0.25 and
2. Because p2 = p/8+ ε1/4+ ε2/2, it also follows that ε1 = O(p) and ε2 = O(p).

The Nearest Neighbors Variant: This most recent variant does not fit exactly
into the framework of Fig. 2. Still, we have the two parameters p and � and
the same “main loop” starting with same partial Gaussian elimination. Next,
it starts as the BJMM variants by building 8 lists of size

(
(k+�)/2

p2/2

)
(with p2 =

p/8 + ε1/4 + ε2/2 as in BJMM-ISD). The tree structure to join the lists is the
same as BJMM except for the last join which is replaced by a “nearest neighbors”
search. We do not need the analyze further to find a lower bound.
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The algorithm has the same main loop which succeeds with probability at

most (n−k−�
w−p )(k+�

p )
(n

w) and because it starts as BJMM, the total cost of an execution

of the algorithm is at least

WFNN−ISD(n, k, w) ≥ min
p,�

(
n
w

)(
(k+�)/2

p/8

)

(
n−k−�
w−p

)(
k+�

p

) ≥ min
p,�

(
n
w

)

(
n−k−�
w−p

)(
k+�
7
8p

) (2)

for large enough n, k (see proof of Corollary 1 in appendix for a proof of the
rightmost inequality above). Moreover, from the algorithm description [3] the
optimal value of � verifies

2� =
(

p

p/2

)(
k + � − p

ε1

)

.

Finally note that, as in BJMM-ISD, we must have p2 proportional to p, else the
algorithm is outperformed by simpler variants. In particular, this means that
ε1 = O(p).

Lower Bound for ISD Variants. The cost L of one execution of instruction
“1:” depends of the variants, from above we easily obtain the following bounds:

– for the SD-ISD variant we have L ≥ (
(k+�)/2

p/2

)
,

– for the MMT-ISD variant we have L ≥ (
(k+�)/2

p/4

)
,

– for the BJMM-ISD variant we have L ≥ (
(k+�)/2

p/8

)
.

Except for SD-ISD, the above bounds are loose. Nevertheless they are sufficient
to serve our purpose, that is to prove the following statement.

Corollary 1. For sufficiently large values of n, k, we have

WFA(n, k, w) ≥ min
p,�

(
n
w

)

(
n−k−�
w−p

)

(
1

(
k+�
ap

) +
1
2�

)

where a equals to 1/2, 3/4, and 7/8 when A is respectively SD-ISD, MMT-ISD,
and BJMM-ISD.

Proof is given in appendix.

Lower Bound for the Nearest Neighbors Variant. A lower bound is given
above in Eq. (2). If we add to this bound that for an optimal choice of parameters
we have 2� =

(
p

p/2

)(
k+�−p

ε1

)
and ε1 = O(p), we have enough for our analysis in

the next section.
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3 Asymptotic Analysis

Our key result comes next and states that if the error weight w is negligible
compared with n, then if we write the workfactors in the form 2cw, then, when
n grows, c tends to a constant which only depends of the code rate k/n.

Proposition 2. Let k and w be two functions of n such that limn→∞ k/n = R,
0 < R < 1, and limn→∞ w/n = 0. For any algorithm A among Pra-ISD, SD-
ISD, MMT-ISD, BJMM-ISD, and NN-ISD, we have

WFA(n, k, w) = 2cw(1+o(1)), c = log2
1

1 − R

when n tends to infinity.

The rest of this section is devoted to a proof of the above statement.

3.1 Main Theorem

We will divide the proof of the last proposition into two of cases: when A is
among Pra-ISD, SD-ISD, MMT-ISD or BJMM-ISD and, finally, when A is NN-
ISD. The first case is solved by the next theorem. We will prove the second case
differently but with similar techniques. The proofs of the theorem and of the
lemmas can be found in Appendix B.

Theorem 1. Let k and w be two functions of n such that limn→∞ k/n = R,
0 < R < 1, and limn→∞ w/n = 0. For any real number a, 0 ≤ a < 1, we have

lim
n→∞ ca(n, k, w) = log2

1
1 − R

where

ca(n, k, w) = min
p,�

1
w

log2

( (
n
w

)

(
n−k−�
w−p

)

(
1

(
k+�
ap

) +
1
2�

))

(3)

We will first show a series of properties about the following expression, related
to the workfactors of the various algorithms,

Ba(�, p) =

(
n
w

)

(
n−k−�
w−p

)

(
1

(
k+�
ap

) +
1
2�

)

.

The next lemma describes useful properties of the optimal arguments of Ba.

Lemma 1. Let D the domain of definition of Ba and a ∈ ]0, 1[. If w < n−k
2 then

min
(�,p)∈D

Ba(�, p) = min
(�,p)∈V

Ba(�, p) where V =
{

(�, p) ∈ D , 2� =
(

k + �

ap

)}
.

Now, we will use this lemma to analyze the asymptotic behavior of parameter �
with respect n when we know asymptotic behavior of w and k with respect n.
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Lemma 2. If lim
n→∞

w

n
= 0, lim

n→∞
k

n
= R and 2� =

(
k+�
ap

)
, then lim

n→∞
�

n
= 0.

The above lemma will allow us to “remove” � from ours formulae as stated in
the following lemma.

Lemma 3. If lim
n→∞

w

n
= 0, lim

n→∞
k

n
= R and � = o(n), then

(
n
w

)

(
n−k−�
w−p

)(
k+�
ap

) ≥ 2o(w)ba(p) where ba(p) =

(
n
w

)

(
n−k
w−p

)(
k
ap

) .

Finally, this new bound allows us to predict the asymptotic behavior of p with
respect w.

Lemma 4. If w = o(n) and p̂ = argmin
p

ba(p) then we have p̂
w = O

((
w
n

)1−a
)
.

Those lemmas tell us that if w = o(n) then the optimal values of the parameters
� and p will be such that � = o(n) and p = o(w). This will allow us the prove
the main theorem (in Appendix) and the corollaries of the next section.

3.2 Asymptotic Behaviour of the Workfactors

Now, we have all the elements to show the first case of proposition 2.

Corollary 2. For all A among SD-ISD, MMT-ISD, and BJMM-ISD, and for
any code rate R, 0 < R < 1, if w is a function of n such that w(n) = o(n), then,
when n grows, we have

WFA(n,Rn,w) = 2cw(1+o(1)) where c = log2
1

1 − R

Proof. First recall that we have

WFPra−ISD(n,Rn,w) ≥ WFA(n,Rn,w),

for all A among SD-ISD, MMT-ISD, and BJMM-ISD. The workfactor of Prange
is equal to

(
n
w

)
/
(

n
w−k

)
= Ba(0, 0) (for any a ∈ ]0, 1 [ ). So, when w(n) = o(n), we

have WFA(n,Rn,w) ≤ 2cw(1+o(1)). The other inequality derives from Theorem1
and Corollary 1. ��

Now, we want to show the same result for the case of NN-ISD. For that
purpose it is enough to show that

WFNN−ISD ≥ 2o(w) min
p

ba(p),

for some a ∈ ]0, 1 [, and then proceed as in the proof of Theorem1 and its Corol-
lary 2. We use the inequality given in the previous section

WFNN−ISD(n, k, w) ≥ min
p,�

(
n
w

)

(
n−k−�
w−p

)(
k+�
7
8p

) ,
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where � verifies 2� =
(

p
p/2

)(
k+�−p

ε1

)
with ε1 = O(p). So, when w = o(n), ε1 is also

o(n) and

2� ≤ 2p

(
k + �

ε1

)

.

This is similar to Lemma 2 and we can also deduce � = o(n). So, we can apply
the Lemma 3 and obtain

WFNN−ISD ≥ 2o(w) min
p

b 7
8
(p),

which proves the following corollary.

Corollary 3. For any code rate R, 0 < R < 1, if w is a function of n such that
w(n) = o(n), then, when n grows, we have

WFNN−ISD(n,Rn,w) = 2cw(1+o(1)) where c = log2
1

1 − R
.

This resolves the last case of Proposition 2.

4 Comparing with Observations

We confront here our result to estimates of ISD complexity. First in an asymp-
totic context, then for specific code parameters arising from variants of the
McEliece encryption scheme.

4.1 Asymptotic Complexity of ISD Variants

Using ad-hoc optimization techniques, we have computed the asymptotic expo-
nent of all variants of ISD for a code rate R ∈ {0.5, 0.75, 0.875} and various
error rates from 0 to the Gilbert-Varshamov bound. We observe in Fig. 3 that
the hierarchy is respected throughout the range. This was known up to BJMM-
ISD, and expected for NN-ISD. We also observe that the asymptotic exponent
1

τnWF(n,Rn, τn) obviously tends to − log2(1 − R) when τ → 0.

4.2 Non Asymptotic Complexity of ISD Variants

We examine two case, the QC-MDPC-McEliece scheme [2], and the original
McEliece scheme using binary Goppa codes [1].

We compute estimates of the workfactor for various algorithms. Non asymp-
totic estimates for NN-ISD are not available at this moment, moreover there is
a huge polynomial overhead which probably makes the algorithm unpractical at
this moment for cryptographic sizes. All our numbers here are given in (log of)
number of “vector operations”.

In Figs. 4 and 5 we give security of some parameter sets respectively for QC-
MDPC-McEliece and Goppa-McEliece. For the same code rate, we give parame-
ters providing the same security with the same code rate when the amount of
error is close to the Gilbert-Varshamov bound.
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R = k/n = 0.5
(− log2(1 − R) = 1)

0

0.2

0.4
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0.8
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0 0.02 0.04 0.06 0.08 0.1

R = k/n = 0.75
(− log2(1 − R) = 2)

0

0.5

1

1.5

2

0 0.01 0.02 0.03 0.04

R = k/n = 0.875
(− log2(1 − R) = 3)

0

0.5

1

1.5

2

2.5

3

0 0.004 0.008 0.012 0.016

c = lim
n→∞

1

τn
log2 WFA(n, Rn, τn)

as a function of τ

From top to bottom A is Prange,
SD-ISD, MMT-ISD, BJMM-ISD,
and Nearest Neighbors algorithms

Fig. 3. Asymptotic exponents for variants of ISD and various code rates

security bits

(n, k, w) SD-ISD MMT-ISD BJMM-ISD

(9602, 4801, 84) 88.7 87.7 85.8
(19714, 9857, 134) 138.1 137.1 134.9
(65536, 32768, 264) 267.5 266.4 263.3

QC-MDPC codes parameters
security bits

(n, k, w) SD-ISD MMT-ISD BJMM-ISD
(780, 390, 86) 92.7 90.4 85.5

(1260, 630, 139) 148.3 143.8 134.8
(2520, 1260, 278) 293.9 283.3 263.2

Same code rates as above, error rate at Gilbert-Varshamov

Fig. 4. Estimates for ISD complexity exponent for QC-MDPC codes

It appears clearly in Fig. 4 that the security of QC-MDPC-McEliece is not
reduced by a big amount when using the most elaborate variants of ISD. In fact,
because the newest variants are slightly more difficult to implement and require
more memory, it is likely that the best attack in practice do not perform better
than SD-ISD. This was expected form our result, since for MDPC codes the
amount of error is w = O(

√
n) and is very small compared to the length.

The situation is different for Goppa code, here we have w = O(n/ log n) and
though w is eventually negligible compared to the code length, there is still a
huge advantage in using the newest variants for codes of cryptographic size.
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security bits

(n, k, w) SD-ISD MMT-ISD BJMM-ISD

(2048, 1608, 40) 89.5 87.3 81.1
(4096, 3424, 56) 144.3 139.5 127.6
(8192, 6528, 128) 290.0 280.2 256.2

Goppa codes parameters
security bits

(n, k, w) SD-ISD MMT-ISD BJMM-ISD
(1200, 942, 41) 92.2 88.5 81.2
(2400, 2006, 58) 149.2 141.8 127.6
(4150, 3307, 132) 300.1 284.2 255.4

Same code rates as above, error rate at Gilbert-Varshamov

Fig. 5. Estimates for ISD complexity exponent for Goppa codes

5 Conclusion

We have given in this paper a comprehensive way to measure the performance
of the various ISD variants by writing the workfactor in the form 2cw were w is
the amount errors to be corrected.

The constant c does not vary very much when for the different variants of ISD.
Moreover, we have proven that this constant is relatively close to − log2(1−k/n)
(where n is the code length and k the code dimension) with equality when w 
 n.

A Proof of Proposition 1

Proof (of Proposition 1). We consider the execution of generic isd (Fig. 2) and
use the corresponding notations. If the input (H0, s0, w) verify Assumption 1
then so does (H, s,w) inside any particular execution of the main loop.

1. From the assumption, as long as we wish to estimate the cost up to a constant
factor, we may assume that there is a unique solution to our problem. In one
particular loop, we can only find an error pattern (e′′, e′) such that its first
n−k− � bits have weight w−p and its last k+ � have weight p. This happens

with probability at most P = (n−k−�
w−p )(k+�

p )
(n

w) . Thus we expect to execute the

main loop, and thus instruction “1:”, at least 1/P times.
2. To estimate the number of times we have to compute instruction “2:”, we

need to estimate for any e′ ∈ Fk+�
2 of weight p the probability that e′ leads

to a success given that e′H ′T = s′.
If we fix H, the sample space in which we compute the probabilities is
ΩH = {eHT | wt(e) = w} equipped with a uniform distribution (because
of Assumption 1). We consider the two events
– SH(e′) = {s = (s′′, e′H ′T ) ∈ ΩH},
– SuccH(e′) = {eHT | e = (e′′, e′), e′′ ∈ Fn−k−�

2 ,wt(e′′) = w − p}.
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The probability we are interested in is PrΩH
(SuccH(e′) | SH(e′)). We have

PrΩH
(SH(e′)) ≈ 2−� because we expect the set ΩH to behave like a set of

random vector (true for almost all matrix H). And the set SuccH(e′) ⊂ ΩH

has cardinality
(
n−k−�
w−p

)
as it contains for a fixed e′, as many elements as we

have vectors e′′ ∈ Fn−k−�
2 of weight w − p. Finally

Pr
ΩH

(SuccH(e′) | SH(e′)) =
PrΩH

(SuccH(e′))
PrΩH

(SH(e′))
=

(
n−k−�
w−p

)
2�

(
n
w

)

The second part of the statement follows. ��

Proof (of Corollary 1). Using the fact that
(

n
w

)
is proportional to 2nh(w/n)√

w(1−w/n)
,

where h(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function, we
easily obtain that

log2

(
(k+�)/2
(1−a)p

)(
k+�
ap

)

(
k+�

p

) = (k + �)
(

h(2(1 − a)x)
2

+ h(ax) − h(x)
)

(1 + o(x))

where x = p/(k + �). An easy study of the above function proves that it is
positive for any a, 1 > a ≥ 0.5. Using Proposition 1, if L ≥ (

(k+�)/2
(1−a)p

)
then the

total contribution of instruction “1:” is at least
(

n
w

)
L

(
n−k−�
w−p

)(
k+�

p

) ≥
(

n
w

)(
(k+�)/2
(1−a)p

)

(
n−k−�
w−p

)(
k+�

p

) ≥
(

n
w

)

(
n−k−�
w−p

)(
k+�
ap

) .

Adding to that the contribution of “2:”, we obtain the lower bound of the state-
ment. ��

B Proofs of Main Theorem Section

Proof (of Lemma 1). We have

log
(
Ba(�, p)

) ≈ max

{

log
( (

n
k

)

(
n−k−�
w−p

)(
k+�
ap

)

)

, log
( (

n
k

)

(
n−k−�
w−p

)
2�

)}

.

We divide our function in two parts

f(�, p) = log
( (

n
k

)

(
n−k−�
w−p

)(
k+�
ap

)

)

and g(�, p) = log
( (

n
k

)

(
n−k−�
w−p

)
2�

)

.

The function Ba is defined on the domain shown in Fig. 6. Our goal is to show
that there is a point (�̂, p̂) ∈ D such that f(�̂, p̂) = g(�̂, p̂) who minimizes Ba.
We will start by studying the interior of D and we will verify that if Ba achieve
its minimum at (�∗, p∗) then there is a point (�̂, p̂) ∈ V which Ba has the same
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value. Secondly, we will search all possible minimum points in the boundary ∂D
and we will show that again the minimum is attained in a point of V; these two
cases will allow us to conclude this theorem.

We suppose (�∗, p∗) /∈ ∂D minimizes Ba and it holds that f(�∗, p∗) >
g(�∗, p∗). So, Ba(�, p) = max{f(�, p), g(�, p)} for all (�, p) in a neighborhood
U of (�∗, p∗) which does not intercept the boundary. Then,

min
(�,p)∈D

Ba(�, p) = min
(�,p)∈U

Ba(�, p) = min
(�,p)∈U

f(�, p),

and in particular ∇f(�∗, p∗) = (0, 0). Since a ∈ ]0, 1 [ , that equality has a unique
solution

w − p∗

n − k − �∗ = 0 or 1.

That means (�, p) ∈ ∂D, so this case is impossible.
In the case where g(�∗, p∗) > f(�∗, p∗), we deduce similarly ∇g = (0, 0). And,

we obtain

∂g

∂�
= − log

(
1 − w − p∗

n − k − �∗
)

− 1 = 0.

∂g

∂p
= h′

( w − p∗

n − k − �∗
)

= 0

Therefore,

L ∗ :
w − p∗

n − k − �∗ =
1
2
,

this equation defines a line in the plane where g(�, p) is constant. We use the
function p0 : [n − k − 2w, n − k ] → R defined by p0(�) = w − n−k−�

2 to describe
some points in L ∗. Now, our objective is to show there is a point belonging to
V in this line L ∗. By hypothesis �0 = n − k − 2w > 0, so (�0, p0(�0)) = (�0, 0) ∈
L ∗ ∩ D and

g(�0, p0(�0)) = nh
(w

n

)− (n−k − �0)− �0 < nh
(w

n

)− (n−k − �0) = f(�0, p0(�0)).

Since g(�∗, p0(�∗)) > f(�∗, p0(�∗)) and the segment of line between (�0, p0(�0))
and (�∗, p0(�∗)) belongs to D, there is a �̂ ∈ ]�0, �∗[ such that g(�̂, p0(�̂)) =
f(�̂, p0(�̂)). Because g(�̂, p0(�̂)) = g(�∗, p(�∗)), we conclude that (�̂, p0(�̂)) is a
minimum point for Ba and it belongs to V.

Now, we suppose that the minimum point (�∗, p∗) belongs to the boundary
∂D and we search all possibles candidates in the boundary. We can divide the
boundary into 5 segments of line and we analyze the monotony of f and g respect
to � or p. We will obtain that

min
∂D

f(�, p) = min{f(0, 0), g(0, 0), f(k/a, 0),max{f(n − k,w), g(n − k,w)}};

Since f(0, 0) = g(0, 0) ≤ g(k/a, 0) = f(k/a, 0), we focus our analysis on the
points (0, 0) and (n−k,w), so it is enough to study the case (�∗, p∗) = (n−k,w).
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Fig. 6. Definition domain of function Ba

We can analyze f over the line

Lm0 :
w − p

n − k − �
=

w

n − k
=

p

k + �
.

We can obtain a derivate function

∂f

∂�
= h
(w

n

)
−
(

− a
w

n
log
(
a

w

n

)
−
(
1− a

w

n

)
log
(
1− a

w

n

))
= h
(w

n

)
− h
(
a

w

n

)
> 0,

because w/n < 1/2. Therefore, B is increasing respect to � into this line, and B
does not achieve its local minimum at (n − k,w); for that reason that minimum
is not Ba(n − k,w) in the case f(n − k,w) > g(n − k,w).

In the case of Ba(�∗, p∗) = g(n − k,w) > f(n − k,w), we can take any point
(�∗∗, p∗∗) who belongs to the interior of D and the line L ∗ (which we used
before), and we obtain again another point (�̂, p̂) ∈ V as before. ��
Proof (of Lemma 2). We take binary logarithm over the third hypothesis and
we obtain

�

n
=

p

n

(

1 − log
( p

k + �

)
− O

( p

k + �

))

+
p

n

≤ w

n

(

2 + O
(w

k

))

− w

n
log

(w

k

)

=
w

n

(

2 − log
(n

k

)
+

n

k
O

(w

n

))

− w

n
log

(w

n

)

= o(1) − o(1).

So we conclude �
n = o(1). ��
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Proof (of Lemma 3). It is enough that we analyze the quotient of the respectives
terms in these expressions:

log

((
n−k−�
w−p

)

(
n−k
w−p

)

)

= (n − k − �)h
( w − p

n − k − �

)
− (n − k)h

(w − p

n − k

)

= −(w − p)
(

log
( w − p

n − k − �

)
+

(
1 + O

( w − p

n − k − �

))
)

+(w − p)
(

log
(w − p

n − k

)
+

(
1 + O

(w − p

n − k

))
)

≤ (w − p)
(

log
(
1 − �

n − k

)
+ O

( w − p

n − k − �

))

≤ w

(

log
(
1 − �

n

)
+

n

n − k − �
O

(w

n

))

= wo(1)

In the same way, we obtain

log

((
k+�
ap

)

(
k
ap

)

)

≤ ap

(

log
(
1 +

�

k

)
+

n

k + �
O

(w

n

))

≤ wo(1).

��
Proof (of Lemma 4).

We analyze the derivate of b:

b′
a(p) = a log

( ap

k − ap

)
− log

( w − p

n − k − (w − p)

)
.

We can see the function ba is decreasing in a neighborhood of p = 0 and increas-
ing in a neighborhood of p = w. Moreover, b′′

a(p) > 0, so ba(p) is a convex
function and the minimization problem has unique solution p̂. We analyze the
equation ba(p̂) = 0, we obtain

aap̂

w − p̂
=

(k − p̂)ap̂1−a

n − k − (w − p̂)

That implies

aa p̂

w
≤ kaw1−a

n − k − w
.

We deduce that p̂
w = O(w

n
1−a). ��

Now, we have all the asymptotic properties and reductions that we need to
prove our principal result. So, we will use the well known Stirling’s approximation
for binomial coefficient (

n

w

)

≈ 2nh(w/n)

√
w(1 − w/n)

,

and we will ignore polynomial factors.
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Proof (of Theorem 1). The first estimation of ca, when w = o(n), gives us

ca(n, k, w) ≤ 1
w

log
(
Ba(0, 0)

)

=
1
w

(
log

(
n

w

)

− log
(

n − k

w

))

=
n

w
h

(
w

n

)
− n − k

w
h
( w

n − k

)

=
(

1 − log
(w

n

)
+ O

(w

n

))

−
(

1 − log
( w

n − k

)
+ O

( w

n − k

))

= log
( n

n − k
+ O

(w

n

))
.

So, our objective will be show the another inequality. The Lemmas 1, 2 and 3
lets us simplify the equation to that inequality

ca(n, k, w) ≥ o(w) + min
p

log(ba(p)).

Finally, we analyze the binary logarithm of ba evaluated in the optimal argu-
ment p̂:

log(ba(p̂)) = nh
(w

n

)

︸ ︷︷ ︸
(1)

− (n − k)h
(w − p̂

n − k

)

︸ ︷︷ ︸
(2)

− kh
(ap̂

k

)

︸ ︷︷ ︸
(3)

.

So, we study these three parts

(1) : nh
(w

n

)
= w

(

1 − log
(w

n

)
+ O

(w

n

))

(2) : (n − k)h
(w − p̂

n − k

)
= (w − p̂)

(

1 − log
(w − p̂

n − k

)
+ O(

w − p̂

n − k
)
)

(3) : kh
(ap̂

k

)
= ap̂

(

1 − log
(ap̂

k

)
+ O

(ap̂

k

))

We group these terms in two sums: the sum of logarithms and the sum of negli-
gible addends:

(I) = −w log
(w

n

)
+ (w − p̂) log

(w − p̂

n − k

)
+ ap log

(ap̂

k

)

(II) = −w

(

1 + O
(w

n

))

+ (w − p̂)
(

1 + O
(w − p̂

n − k

))

+ ap

(

1 + O
(ap̂

k

))

We continue with the easy part

(II) = −wO
(w

n

)
+ (a − 1)p̂ + (w − p̂)O

(w − p̂

n − k

)
+ ap̂O

( p̂

k

)

= −wo(1) + (a − 1)o(w) + (w − p̂)o(1) + ao(w)
= o(w).
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Finally,

(I) = w

(
log
(w − p̂

n − k

)
− log

(w

n

))
+ p̂

(
a log

(ap

k

)
− log

(w − p̂

n − k

))

= w log
(w − p̂

w
/
n − k

n

)
+ p̂ log

(
aa p̂a

w − p̂

n − k

ka

)

= w log
(1 − p̂/w

1 − k/n

)
+ ap̂ log

(ap̂

w

)
+ p̂ log

( wa

(w − p̂)a

)
+ p̂ log

( n − k

ka(w − p̂)1−a

)

= w log
(1 − p̂/w

1 − k/n

)
+ w

(
o(1) + a

p̂

w
log
( w

w − p̂

)
+

p̂

w
log
( (n − k)1−a

(w − p̂)1−a

))

= w log
(1 − p̂/w

1 − k/n

)
+ w

(
o(1) + (1 − a)

p̂

w
log
(n − k

w − p̂

))

= w log
(1 − p̂/w

1 − k/n

)
+ w

(
o(1) − (1 − a)

p̂

w

(
O(1) + log

( n

w

))
)

= w log
(1 − p̂/w

1 − k/n

)
+ w

(
o(1) +

p̂

w
log
(w

n

1−a)
)

So, the Lemma 4 implies

(I) = w log
(1 − p̂/w

1 − k/n

)
+ w

(
o(1) + o(1)

)
.

Finally, we conclude

ca(n, k, w) ≥ (I) + (II) = w

(

log
( 1

1 − R

)
+ o(1)

)

. ��
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Abstract. Multivariate Public Key Cryptography (MPKC) is one of the
most attractive post-quantum options for digital signatures in a wide
array of applications. The history of multivariate signature schemes is
tumultuous, however, and solid security arguments are required to inspire
faith in the schemes and to verify their security against yet undiscov-
ered attacks. The effectiveness of “differential attacks” on various field-
based systems has prompted the investigation of the resistance of schemes
against differential adversaries. Due to its prominence in the area and the
recent optimization of its parameters, we prove the security of HFEv−

against differential adversaries. We investigate the newly suggested para-
meters and conclude that the proposed scheme is secure against all known
attacks and against any differential adversary.

Keywords: Multivariate cryptography · HFEv- · Discrete differential ·
MinRank · Q-rank

1 Introduction and Outline

In the mid 1990s, Peter Shor discovered a way to efficiently implement quantum
period finding algorithms on structures of exponential size and showed how the
modern world as we know it will change forever once the behemoth engineering
challenge of constructing a large scale quantum computing device is overcome.
His polynomial time quantum Fourier transforms for smooth integers can be
employed to factor integers, to compute discrete logarithms and is powerful
enough to efficiently solve hidden subgroup problems for well behaved (usually
Abelian) groups. Given the ubiquity of these problems in deployed technologies,
our e-society is confronted with the possibility that its public key infrastructure
is terminally ill.

It is not known how far this computational cancer may spread, how pervasive
exponential quantum speed-ups will prove to be nor how fundamentally wide
the gap between feasibility in the classical and quantum world are. Thus we
face the task in a rapidly maturing twenty-first century, with ever expanding
interconnectivity, of securing open channel communication between unknown
c© Springer International Publishing Switzerland 2016
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future devices, against machines with unknown capabilities, with an unknown
date of inception.

Charged with this challenge is a growing international community of experts
in quantum-resistant cryptography. The world-wide effort has spawned inter-
national standardization efforts including the European Union Horizon 2020
Project, “Post-Quantum Cryptography for Long-Term Security” PQCRYPTO
ICT-645622 [1], ETSI’s Quantum Safe Cryptography Specification Group [2],
and NIST’s Post-Quantum Cryptography Workgroup [3]. The dedication of these
resources is evidence that the field of post-quantum cryptography is evolving into
a state in which we can identify practical technologies with confidence that they
will remain secure in a quantum computing world.

One of a few reasonable candidates for post-quantum security is multivariate
cryptography. We already rely heavily on the difficulty of inverting nonlinear sys-
tems of equations in symmetric cryptography, and we quite reasonably suspect
that security will remain in the quantum paradigm. Multivariate Public Key
Cryptography (MPKC) has the added challenge of resisting quantum attack in
the asymmetric setting.

While it is difficult to be assured of a cryptosystem’s post-quantum secu-
rity in light of the continual evolution of the relatively young field of quantum
algorithms, it is reasonable to start by developing schemes which resist classical
attack and for which there is no known significant weakness in the quantum
realm. Furthermore, the establishment of security metrics provides insight that
educates us about the possibilities for attacks and the correct strategies for the
development of cryptosystems.

In this vein, some classification metrics are introduced in [4–6] which can
be utilized to rule out certain classes of attacks. While not reduction theoretic
proof, reducing the task of breaking the scheme to a known (or often suspected)
hard problem, these metrics can be used to prove that certain classes of attacks
fail or to illustrate specific computational challenges which an adversary must
face to effect an attack.

Many attacks on multivariate public key cryptosystems can be viewed as dif-
ferential attacks, in that they utilize some symmetric relation or some invariant
property of the public polynomials. These attacks have proved effective in appli-
cation to several cryptosystems. For instance, the attack on SFLASH, see [7], is
an attack utilizing differential symmetry, the attack of Kipnis and Shamir [8] on
the oil-and-vinegar scheme is actually an attack exploiting a differential invari-
ant, the attack on the ABC matrix encryption scheme of [9] utilizes a subspace
differential invariant; even Patarin’s initial attack on C∗ [10] can be viewed as
an exploitation of a trivial differential symmetry, see [5].

As is demonstrated in [4,6,11], many general polynomial schemes can have
nontrivial linear differential symmetries. Specifically, in [6], systems of linear
equations are presented which can have solution spaces large enough to guarantee
the existence of nontrivial linear differential symmetries, while in both [4,11]
explicit constructions of maps with nontrivial symmetries are provided. The
existence of such symmetries in abundance is the basis of attacks removing the
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minus modifier as in [7], and depending on the structure of the maps inducing
the symmetry, may even provide a direct key recovery attack. Furthermore,
the attack of [9] on the ABC simple matrix scheme teaches us that differential
invariant techniques are a current concern as well. These facts along with the
ubiquity of differential attacks in the literature are evidence that the program
developed in [4–6] to verify security against differential adversaries is a necessary
component of any theory of security for practical and desirable multivariate
cryptosystems.

This challenge leads us to an investigation of the HFEv and HFEv− cryp-
tosystems, see [12], and a characterization of their differential properties. Results
similar to those of [4–6] will allow us to make conclusions about the differential
security of HFEv, and provide a platform for deriving such results for HFEv−.

Specifically, we reduce the task of verifying trivial differential symmetric
structure for a polynomial f to the task of verifying that the solution space
of a large system of linear equations related to f has a special form. We eluci-
date the structure of these equations in the case of the central map of HFEv and
provide an algorithm for generating keys which provably have trivial differential
symmetric structure. In conjunction with our later results on differential invari-
ants, the proof of concept algorithm verifies that information theoretic security
against differential adversaries, as defined in [6], is possible with an instanta-
neous addition to key generation while maintaining sufficient entropy in the key
space to avoid “guess-then-IP” attacks. We then extend these methods to the
case of HFEv−, deriving the same conclusion.

Expanding on the methods of [6], we prove the following.

Theorem 1. Let k be a degree n extension of the finite field Fq. Let f be
an HFEv central maps. With high probability, f has no nontrivial differential
invariant structure.

With a minimal augmentation of this method we extend this result to the case
of HFEv−.

Theorem 2. Let f be an HFEv central map and let π be a linear projection.
With high probability, π ◦ f has no nontrivial differential invariant structure.

Thus, with proper parameter selection, HFEv− is provably secure against differ-
ential adversaries. Together with the existant literature on resistance to algebraic
and rank attacks, this security argument provides significant theoretical support
for the security of aggressive HFEv− parameters, such as those presented in [13].

The paper is organized as follows. First, we recall big field constructions in
multivariate public key cryptography. Next we review the HFE scheme from [14]
and the HFEv− scheme from [12]. In the following section, we provide criteria
for the nonexistence of a differential symmetric relation on the private key of
both HFEv and HFEv− and discuss an efficient addition to key generation
that allows provably secure keys to be generated automatically. We next review
the notion of a differential invariant and a method of classifying differential
invariants. We continue, analyzing the differential invariant structure of HFEv
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and HFEv−, deriving bounds on the probability of differential invariants in the
general case. Next, we review the Q-rank and degree of regularity of HFEv−,
and discuss resistance to attacks exploiting equivalent keys. Finally, we conclude,
discussing the impact of these results on the HFEv− pedigree.

2 Big Field Signature Schemes

At Eurocrypt’88, Matsumoto and Imai introduced the first massively multivari-
ate cryptosystem which we now call C∗, in [15]. This contribution was based on
a fundamentally new idea for developing a trapdoor one-way function. Specifi-
cally, they used finite extensions of Galois fields to obtain two representations of
the same function: one, a vector-valued function over the base field; the other,
an univariate function over the extension field.

One benefit of using this “big field” structure, is that Frobenius operations in
extensions of conveniently sized Galois fields can be modeled as permutations of
elements in the small field while computations in the small field can be cleverly
coded to utilize current architectures optimally. Thus, one can compute a variety
of exponential maps and products with great efficiency and obfuscate a simple
structure by perturbing the vector representation.

Typically, a big field scheme is built using what is sometimes called the
butterfly construction. Given a finite field Fq, a degree n extension K, and an Fq-
vector space isomorphism φ : Fn

q → K, one can find an Fq-vector representation
of the function f : K → K. To hide the choice of basis for the input and output
of f , we may compose two affine transformations T,U : Fn

q → F
n
q . The resulting

composition P = T ◦ φ−q ◦ f ◦ φ ◦ U is then the public key. The construction is
summarized in the figure below:

K
f

K

φ−1

F
n
q

U
F

n
q

F

φ

F
n
q

T
F

n
q

2.1 HFE

The Hidden Field Equations (HFE) scheme was first presented by Patarin in
[14] as a method of avoiding his linearization equations attack which broke the
C∗ scheme of Matsumoto and Imai, see [10,15]. The basic idea of the system is to
use the butterfly construction to hide the structure of a low degree polynomial
that can be inverted efficiently over K via the Berlekamp algorithm [16], for
example.

More specifically, we select an effectively invertible “quadratic” map f : K →
K, quadratic in the sense that every monomial of f is a product of a constant
and two Frobenius multiples of x. Explicitly any such “core” map f has the
form:

f(x) =
∑

i≤j
qi+qj≤D

αi,jx
qi+qj

+
∑

i
qi≤D

βix
qi

+ γ.
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The bound D on the degree of the polynomial is required to be quite low for
efficient inversion.

One generates a signature by setting y = h, a hash digest, and computing,
successively, v = T−1y, u = f−1(v) and x = U−1u. The vector x acts as the
signature.

For verification, one simply evaluates the public polynomials, P , at x. If
P (x) which is equal to T ◦ f ◦ U(x) is equal to y, the signature is authenticated.
Otherwise, the signature is rejected.

2.2 HFEv−

Taking the HFE construction one step further, we may apply the vinegar mod-
ifier, adding extra variables x̃1, . . . x̃v to be assigned random values upon inver-
sion. The effect of adding vinegar variables is that new quadratic terms, formed
from both products of vinegar variables and HFE variables and products among
vinegar variables, increase the rank of the public key. The central map of the
HFEv scheme has the form:

f(x) =
∑

i≤j
qi+qj≤D

αi,jx
qi+qj

+
∑

i
qi≤D

βi(x̃1, . . . , x̃v)xqi

+ γ(x̃1, . . . , x̃v),

where αi,j ∈ K, βi : Fv
q → K is linear, and γ : Fv

q → K is quadratic.
In contrast to HFE, f is a vector-valued function mapping F

n+v
q to F

n
q . The

work of [6,17,18] show that representations of such functions over K are quite
valuable. Thus it is beneficial to employ an augmentation of f , adding n − v
additional vinegar variables, and say ŷ = {x̃1, . . . , x̃v, . . . , x̃n}, where x̃v+1 =
x̃v+2 = . . . = x̃n = 0. Thus, our core map becomes

f(x) = f̂

(
x̂
ŷ

)

.

which algebraically identifies f as a bivariate function over K. We may now
write f in the following form:

f(x, y) =
∑

0≤i≤j<n
qi+qj≤D

αijx
qi+qj

+
∑

0≤i,j<n
qi≤D

βijx
qi

yqj

+
∑

0≤i≤j<n

γijy
qi+qj

. (1)

Here we see an obvious distinction among the types of monomials. We will
label the monomials with α coefficients the “HFE monomials,” those with β
coefficients the “mixing monomials” and the monomials with γ coefficients the
“vinegar monomials.”

The HFEv− scheme uses the HFEv primitive f above and augments the
public key with the minus modifier. The minus modifier removes r of the public
equations. This alteration is designed to destroy some of the information of the
big field operations latent in the public key.
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3 Differential Symmetry

The discrete differential of a field map f : K → K is given by:

Df(a, x) = f(a + x) − f(a) − f(x) + f(0).

It is simply a normalized difference operator with variable interval. In [7], the
SFLASH signature scheme was broken by exploiting a symmetric relation of the
differential of the public key. This relation was inherited from the core map of
the scheme.

Definition 1. A general linear differential symmetry is a relation of the form

Df(Mx, a) + Df(x,Ma) = ΛMDf(a, x),

where M,ΛM : K → K are Fq-linear maps.

A differential symmetry exists when linear maps may be applied to the discrete
differential inputs in such a way that the effect can be factored out of the dif-
ferential. Furthermore, we say that the symmetry is linear when the relation is
linear in the unknown coefficients of the linear maps. It can be shown that any
such linear symmetric relation implies the existence of a symmetry of the above
form, hence the term “general.”

While attacks similar to that of [7,19] exploited some multiplicative relation
on central maps of schemes with some algebraic structure over the base field, it
was shown in [4] that general linear differential symmetries based on more com-
plex relations exist, in general. Therefore, when analyzing the potential threat of
a differential adversary, as defined in [6], it becomes necessary to classify the pos-
sible linear differential symmetries. If we succeed in characterizing parameters
which provably eliminate nontrivial differential symmetric relations, we prove
security against the entire class of differential symmetric attacks, even those
utilizing relations not yet discovered.

To this end, we evaluate the security of HFEv against such adversaries. We
explicitly consider parameter restrictions which necessarily preclude the exis-
tence of any nontrivial differential symmetry.

3.1 Linear Symmetry for HFEv

In our analysis, we will begin by considering the differential of our core map.
From the perspective of our adversary, the discrete differential would be

Df̂

([
â

b̂

]

,

[
x̂
ŷ

])

= Df(a, b, x, y).

By the bilinearity of Df̂ we see that Df is multi-affine; Df is affine in each of
its inputs when the remaining inputs are fixed. Evaluating this differential we
obtain
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Df(a, b, x, y) =
∑

0≤i≤j<n
qi+qj≤D

αi,j(xqi

aqj

+ xqj

aqi

)

+
∑

0≤i,j<n
qi≤D

βi,j(xqi

bqj

+ aqi

yqj

) (2)

+
∑

0≤i≤j<n

γi,j(yqi

bqj

+ yqj

bqi

),

noting that Df is a K-bilinear form in [a b]T and [x y]T . For ease of computation,
we will choose the following representation for K:

x �→ [x xq xq2
... xqn−1

]T .

Similarly, we may map our oil-vinegar vector as

[x y] �→ [x xq xq2
... xqn−1

y yq yq2
... yqn−1

]T ,

and Df is thus represented by the 2n × 2n matrix where the (i, j)th and (j, i)th
entries in the upper left n × n block are the coefficients αi,j , and the (i, j)th
entries in the upper right block and the (j, i)th entries in the lower left block are
the coefficients βi,j , while the (i, j)th and the (j, i)th entries in the lower right
block are the coefficients γi,j .
Note, that any Fq-linear map M : K → K can be represented by Mx =
∑n−1

i=0 mix. Thus, as demonstrated in [6], under our representation,

M =

⎛

⎜
⎜
⎜
⎝

m0 m1 · · · mn−1

mq
n−1 mq

0 · · · mq
n−2

...
...

. . .
...

mqn−1

1 mqn−1

2 · · · mqn−1

0

⎞

⎟
⎟
⎟
⎠

.

However, when viewing an Fq-linear map over our vector
[

x̂
ŷ

]

, we may consider

the 2n × 2n matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m00,0 m00,1 · · · m00,n−1 m01,0 m01,1 · · · m01,n−1

mq
00,n−1 mq

00,0 · · · mq
00,n−2 mq

01,n−1 mq
01,0 · · · mq

01,n−2
...

...
. . .

...
...

...
. . .

...
mqn−1

00,1 mqn−1

00,2 · · · mqn−1

00,0 mqn−1

01,1 mqn−1

01,2 · · · mqn−1

01,0

m10,0 m10,1 · · · m10,n−1 m11,0 m11,1 · · · m11,n−1

mq
10,n−1 mq

10,0 · · · mq
10,n−2 mq

11,n−1 mq
11,0 · · · mq

11,n−2
...

...
. . .

...
...

...
. . .

...
mqn−1

10,1 mqn−1

10,2 · · · mqn−1

10,0 mqn−1

11,1 mqn−1

11,2 · · · mqn−1

11,0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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For computational reference, we will label each row and column modulo(n),
i.e., each coordinate of the entry (i, j), will be represented by a residue class
modulo n.

If we assume that f is vulnerable to a differential attack, then there exists a
non-trivial linear mapping M such that the differential symmetry in (1) is sat-
isfied. To compute such a symmetry inducing map requires the solution of 4n2

highly dependent but random equations in the 8n unknown coefficients of M and
ΛM over K. Since trivial symmetries (such as multiplication by scalars) are exhib-
ited by every map, we know that there exist nontrivial solutions. Even assuming
unit time for K-arithmetic operations, for realistic parameters this process is very
inefficient; with the more realistic assumption of costly K-arithmetic operations,
this task is unsatisfactory in key generation.

To make the solution of such systems of equations more efficient, we derive
the structure of the equations and develop a two step process for verifying trivial
differential symmetric structure. The first step involves finding equations which
only involve a subset of the variables. The existence of such equations is guar-
anteed by the degree bound of the HFE monomials. This information is then
bootstrapped to eliminate many unknown coefficients of M resulting in a very
small system of equations which can be solved explicitly.

We remark here that this methodology also suggests a method for estimat-
ing the probability of the existence of a differential symmetry for the HFEv
primitive. The existence of a nontrivial symmetry corresponds to systems for
which the rank of the system of equations is less than 8n. Under the heuristic
that under row reduction these systems of equations behave like random 8n×8n
matrices, we obtain a probability of roughly 1−q−1 that the scheme has no non-
trivial differential symmetry. We note that this heuristic is almost certainly false
since trivial symmetries do exist. This quantity does represent a lower bound,
however, and thus may offer support for larger base fields.

We begin by considering the entries of the matrix M
T
Df + DfM . The

contribution of any monomial αi,jx
qi+qj

to the ith row of DfM is given by
(
αi,jm

j
00,−j αi,jm

j
00,1−j · · · αi,jm

j
00,−1−j αi,jm

j
01,−j αi,jm

j
01,1−j · · · αi,jm

j
01,−1−j

)

while the contribution to the jth row is
(
αi,jm

i
00,−i αi,jm

i
00,1−i · · · αi,jm

i
00,−1−i αi,jm

i
01,−i αi,jm

i
01,1−i · · · αi,jm

i
01,−1−i

)
.

By symmetry, the ith and jth columns of M
T
Df are the same as their respective

rows.
It is clear that the rows and columns associated with coefficients of vinegar

monomials as well as terms associated with mixing monomials may be repre-
sented similarly. However, it should be noted that those terms associated with
mixing monomials will be multiplied by linear coefficients m00,·, m01,·, m10,·, and
m11,·, while coefficients associated with vinegar variables are multiplied only by
linear coefficients m10,· and m11,·.

The above patterns can be extended to characterize the contribution to the
ith row and jth row of monomials of the form βi,jx

qi

yqj

and γi,jy
qi+qj

, as well.
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We note, however, that γ coefficients interact with entries from the lower block
matrices while β coefficients interact with coefficients from all block matrices.

Now that we have characterized the left side of (1), we will consider the
entries of ΛMDf . For every monomial of f , say αi′,j′xqi+qj

, βr,sx
qr

yqs

, or

γu,vyqs+qv

, we have under the mapping of ΛM terms of the form: l�α
q�

i,jx
qi+�+qj+�

,

l�β
qr+�

r,s xqs+�

yqj

, and l�γ
q�

u,vyqu+�+qv+�

. Clearly, this results in every nonzero entry,
say (r, s), of our Df matrix being raised to the power of q� and shifted along a
forty-five degree angle to entry (r + �, s+ �). Thus, for each monomial in f there
are two possible nonzero entries in the ith row, with possible overlap.

This discrete geometrical interpretation of the action of M and D on the
coefficients of f is central to this analysis. A graphical representation of these
relations is provided in Fig. 1.

Fig. 1. Graphical representation of the equation MTDf + DfM = ΛMDf for the

HFEv (actually, vC∗) polynomial f(x) = αi,jx
qi+qj

+ βr,sx
qr

yqs

+ γu,vy
qu+qv

. Hor-
izontal and vertical lines represent nonzero entries in MTDf + DfM while diagonal
lines represent nonzero entries in ΛMDf . We may consider this diagram as a genus 4
surface containing straight lines.

As in [6], the possibility of a differential symmetry can be determined by
setting the matrix representation of MT Df +DfM equal to the matrix ΛMDf .
We will demonstrate an algorithm, given some specific constraints, that will help
provide secure keys to be generated automatically.

Due to the structure of our M matrix, we need to work within each mi,j

matrix independently. The following algorithm for m0,0 extends very naturally
to the other 3 matrices. For clarity, all m terms in description below are m0,0

terms.
Let αi,j , βr,s, γu,v represent the coefficients of our monomials in our core map.

Consider the ith row of MT Df + DfM . For all w not occurring as a power of
q of our HFE or mixing monomials in f , or difference of powers of q in an
exponent of a monomial in f plus i, the (i, w) entry is αi,jm

qj

w−j = 0 (resp.
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βi,jm
qj

w−j). Consider the rth row. For all w not occuring as an exponent of q in a
vinegar monomial or as a difference of powers of q in an exponent of a monomial
in f plus s, the (r, w)th entry is βr,sm

qs

k−s = 0. Hence, we can use those relations
to look for non-zero entries of m0,0.

After putting those relations into Algorithm 1, see Fig. 3a, you can generate
a set for every i and r, exponents that occur in your core map. Each set provides
a list of indices of all possible non-zero m’s. For each index not occuring in any
such set, the corresponding coefficient m must equal zero due to the fact that
there must be a coordinate in the equation MT Df + DfM = ΛMDf setting
a constant multiple of m to zero. Thus, the intersection off all sets generated
produces a list of all possible non-zero entries for the sub-matrix m0,0.

Once this list is obtained, the variables shown to have value zero are elimi-
nated from the system of equations. After repeating a similar algorithm for each
of the remaining three submatrices a significantly diminished system of equations
is produced which is then solved explicitly.

After running this algorithm with realistic values satisfying the above con-
straints and matching the parameter sizes of [13] along with using mild restric-
tions on the powers of the mixing and vinegar monomials, the only non-zero
value obtained is m0.

We note that it is possible that these restrictions, especially the restriction
for these experiments on the number of monomials, place a lower bound on the
number of vinegar variables required to achieve such a structure. On the other
hand, with numerous small-scale experiments without parameter restrictions and
using the full number of monomials we found that structurally the only nonzero
value for the matrix m0,0 is the m0 term.

Since we have only a single non-zero term, our m0,0 matrix is a diagonal
matrix. A similar analysis for each of the remaining submatrices reveals the
same structure. Thus we find that the only possible structure for M under these
constraints satisfying a differential symmetry for HFEv is

M =
[
cI dI
dI cI

]

.

Furthermore, we can prove by way of Theorem 2 from [20], that the coefficients
c, d ∈ Fq.

We note that this map induces a trivial differential symmetry. To see this,
note that the (nonpartial) differential of any bivariate function is bilinear in its
vector inputs. Thus

Dg(M [a b]T , [x y]T ) = Dg([ca + db da + cb]T , [x y]T )

= Dg([ca + db cb + da]T , [x y]T )

= Dg(c[a b]T , [x y]T ) + Dg(d[b a]T , [x y]T ) (3)
= cDg(a, b, x, y) + dDg(b, a, x, y)
= (c + d)Dg(a, b, x, y).
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Consequently, for the parameters provided by Algorithm 1, HFEv provably has
no nontrivial differential symmetric structure.

It should be noted that the restrictions provided on the powers of q of the
monomials of our f does lower the entropy of our key space and likely raise the
number of required vinegar variables to a level which is either unsafe or unde-
sirable. However, there is still plenty of entropy with these restrictions and we
obtain provable security against the differential symmetric attack. The restric-
tions provided are just a base line for this technique and our experiments with
small scale examples indicate that even when we insist that every possible mono-
mial satisfying the HFE degree bound is required to have a nonzero coefficient,
the generalized algorithm still outputs only the trivial solution. Thus we can
achieve provable security with minimal loss of entropy.

3.2 HFEv−

Now, the algorithm extends naturally to HFEv−. Every non-zero entry from
the system generated by HFEv is also in that generated by HFEv−, but with
a few more, see Fig. 2. We choose a basis in which an example minus projection
is a polynomial of degree q2. For every ith row, we also have for any w not a
power of α+n or β +n where n < 2, the (i, w)th entry is αi,jm

qj

w−j = 0. For the
sth row, for all w not being a power of β + n or r + n where n < 2, the (s, w)th
entry is βr,sm

qr

w−r = 0. A visualization is provided in Fig. 2.
Again, we can use these relations, along with the relations described in the

HFEv system, to create a list of sets of all non-zero areas on m0,0 using Algo-
rithm 2, see Fig. 3b. Each of these sets contains indices which are possibly non-
zero, thus entries not in that set are definitively equal to zero.

By taking the intersection of all the sets, you can find the final locations of
non-zero entries for our sub matrix m0,0. In doing so, with realistic values from
[13], the only non-zero value obtained is m0. This again gives us security against
symmetrical attacks by having M being a block matrix consisting of diagonal
matrices with an argument similar to [6].

4 Differential Invariants

Definition 2. Let f : Fn
q → F

m
q be a function. A differential invariant of f is

a subspace V ⊆ K with the property that there is a subspace W ⊆ K such that
dim(W ) ≤ dim(V ) and ∀A ∈ SpanFq

(Dfi), AV ⊆ W .

Informally speaking, a function has a differential invariant if the image of a sub-
space under all differential coordinate forms lies in a fixed subspace of dimension
no larger. This definition captures the notion of simultaneous invariants, sub-
spaces which are simultaneously invariant subspaces of Dfi for all i, and detects
when large subspaces are acted upon linearly.

If we assume the existence of a differential invariant V , we can define a
corresponding subspace V ⊥ as the set of all elements x ∈ K such that the
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Fig. 2. Graphical representation of the equation MTDf + DfM = ΛMDf for the

HFEv− with the minus modifier given by the projection π(x) = xq2 + ρxq + τx.
Horizontal and vertical lines represent nonzero entries in MTDf +DfM while diagonal
lines represent nonzero entries in ΛMDf . We note that each triple of lines corresponds
to a single monomial in the central map.

dot product 〈x,Av〉 = 0 ∀v ∈ V,∀A ∈ Span(Dfi). We note that this is not the
standard definition of an orthogonal complement. V ⊥ is not the set of everything
orthogonal to V , but rather everything orthogonal to AV , which may or may
not be in V . By definition, it is clear that V and V ⊥ satisfy the relation

dim(V ) + dim(V ⊥) ≥ n.

Assume there is a differential invariant V ⊆ F
n
q , and choose linear maps

M : Fn
q → V and M⊥ : Fn

q → V ⊥. For any differential-coordinate-form, we have

[Df(M⊥y,Mx)]i = (M⊥y)T (Dfi(Mx)) (4)

Since M⊥y is in V ⊥, and DfiMx ∈ AV , we must then have that

[Df(M⊥y,Mx)]i = (M⊥a)T (Dfi(Mx)) = 0 (5)

Thus, as derived in [5],

∀y, x ∈ F
n
q ,Df(M⊥y,Mx) = 0 or equivalently, Df(M⊥

F
n
q ,MF

n
q ) = 0 (6)

This relation restricts the structure of M and M⊥, and provides a direct means
of classifying the differential invariant structure of f .

We follow an analogous strategy to that of [6], adapted to the structure of
the central HFEv− map f . First, we recall a result of [6].
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HFEvKeyCheck
Input: An HFEv central map f , a flag flg
Output: Set of indices of coefficients mi of submatrix m00 which are possibly nonzero in a
linear map inducing differential symmetry for f .

01. for monomial αi,jx
qi+qj in f

02. Si = {};
03 Sj = {};
04. for monomial with powers r and s in f
05. Si = Si ∪ {r − j, s − j, i − j + r − s, i − j + s − r};
06. Sj = Sj ∪ {r − i, s − i, j − i + r − s, j − i + s − r};
07. end for;
08. end for;
09. if flg
10. then
11. return all Si;
12. else
13. return

⋂
Si;

14. end if;

(a) Algorithm 1: HFEv

HFEv-KeyCheck

Input: An HFEv− central map π(f), the corank of π, r
Output: Set of indices of coefficients mi of submatrix m00 which are possibly nonzero in a
linear map inducing differential symmetry for π(f).
01. Call: HFEvKeyCheck(f,1);
02. for all Si

03 Ti = {};
04. for j from 0 to r − 1
05. Ti = Ti ∪ (j + Si);
06. end for;
07. end for;
08. return

⋂
Ti;

(b) Algorithm 2: HFEv−

Fig. 3. Algorithms 1 and 2

Proposition 1. ([6]) If A,B are two m×n matrices, then rank(A) = rank(B)
if and only if there exist nonsingular matrices C,D, such that A = CBD.

Without loss of generality we assume that rank(M⊥) ≤ rank(M). If the
ranks are equal, then we may apply the proposition and write M⊥ = SMT ,
with S and T nonsingular. If rank(M⊥) < rank(M), compose M with a singular
matrix X so that rank(XM) = rank(M⊥), and then apply the above result so
that M⊥ = S(XM)T . Then we can express M⊥ = S′MT , where S′ is singular.
Restating our differential result (6) in this manner, we have that if M⊥ = SMT ,
and M : Fn+v

q → V , then

∀x, y ∈ F
n
q ,Df(SMTy,MTx) = 0. (7)
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4.1 Minimal Generators over Intermediate Subfield

For lack of a good reference, we prove the following statement about the structure
of the coordinate ring of a subspace of an extension field over an intermediate
extension.

Lemma 1. Let L/K/Fq be a tower of finite extensions with |L : K| = m and
|K : Fq| = n. Let V be an Fq-subspace of L. Then I(V ) has m multivariate
generators over K of the form

M(k)
V (x0, . . . , xm−1) =

∑

0≤i<n
0≤j<m

aijkxqi

j .

Proof. Choose a basis {e0 = 1, e1, . . . , em−1} for L over K. Since V is an Fq-

subspace of L, the minimal polynomial of V over L, MV (X) =
∑mn−1

i=0 αiX
qi

,
is Fq-linear. Note that the operations of addition and left multiplication by
elements in L are K-linear, whereas the Frobenius maps are merely F-linear.

Now, since MV (X) is linear it is additive, hence

MV (X) = MV

⎛

⎜
⎝

⎡

⎢
⎣

x0

...
xm−1

⎤

⎥
⎦

⎞

⎟
⎠ =

m−1∑

i=0

MV (xiei).

In each summand of MV (xjej), we have

(xjej)qi

= xqi

j ej
qi

= xqi

j

m−1∑

i=0

riei

for some r0, . . . , rm−1 ∈ K. As a vector over K this quantity is
⎡

⎢
⎢
⎣

r0x
qi

j
...

rm−1x
qi

j

⎤

⎥
⎥
⎦ .

Thus MV (xjej) is an m-dimensional vector of K-linear combinations of xj ,

xq
j , . . . , x

qn−1

j . Thus MV (X) is of the form

MV (X) =

⎡

⎢
⎣

MV
(0)(x0, . . . , xm−1)

...
MV

(m−1)(0, . . . , xm−1)

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

∑
0≤i≤n
0≤j≤m

aij0x
qi

j

...
∑

0≤i≤n
0≤j≤m

aij(m−1)x
qi

j

⎤

⎥
⎥
⎥
⎥
⎦

,

as required.

We note that the minimal polynomials studied in [6] correspond to the special
case of the above lemma in which m = 1. Given our characterization from
Sect. 2.2 of the central map of HFEv− as a bivariate polynomial over K, we are
primarily interested in the m = 2 case of Lemma 1.
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4.2 Invariant Analysis of HFEv

As in [6], we consider Df(SMTa,MTx), where T is nonsingular, S is a possibly
singular map which sends V into V ⊥ and M : k → k is a projection onto V .
Without loss of generality we’ll assume that M projects onto V . Then MT
is another projection onto V . SMT is a projection onto V ⊥. An important
distinction is that for this case, the a and x above are actually two dimensional
vectors over k. Thus dim(V ) + dim(V ⊥) ≥ n.

Proof (of Theorem 1). Let us denote by [x̂ ŷ]T the quantity MT [x y]T .
Suppose we have

f(x, y) =
∑

0≤i≤j<n
qi+qj≤D

αijx
qi+qj

+
∑

0≤i,j<n
qi≤D

βijx
qi

yqj

+
∑

0≤i≤j<n

γijy
qi+qj

.

Applying the differential (w.r.t. the vector [x y]T ) as described in Sect. 3.1,
we obtain:

Df(a, b, x, y) =
∑

0≤i≤j<n
qi+qj≤D

αij

(
aqi

xqj

+ aqj

xqi
)

+
∑

0≤i,j<n
qi≤D

βij

(
aqi

yqj

+ xqi

bqj
)

+
∑

0≤i≤j<n

γij

(
bqi

yqj

+ bqj

yqi
)

.

(8)

Substituting SMT [a b]T and MT [x y]T , we derive

Df(S[â b̂]T , x̂, ŷ) = Df(S11â + S12b̂, S21â + S22b̂, x̂, ŷ).

For notational convenience let ˆ̂a= S11â + S12b̂ and ˆ̂b= S21â + S22b̂. Plugging in
these values in the previous equation we get

Df(ˆ̂a, ˆ̂b, x̂, ŷ) =
∑

0≤i≤j<n
qi+qj≤D

αij

(
(ˆ̂a)qi

x̂qj

+ (ˆ̂a)qj

x̂qi
)

+
∑

0≤i,j<n
qi≤D

βij

(
(ˆ̂a)qi

ŷqj

+ x̂qi

(ˆ̂b)qj
)

+
∑

0≤i≤j<n

γij

(
(ˆ̂b)qi

ŷqj

+ (ˆ̂b)qj

ŷqi
)

.

(9)

In contrast to the situation with HFE, these monomials are not necessarily
independent. By Lemma1, the generators of I(V ) have the form

∑

0≤i<n

rijx
qi

+
∑

0≤i<n

sijy
qi

for j ∈ {1, 2},
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where rij , sij ∈ K. Clearly, these expressions evaluate to zero on (x̂, ŷ). Evaluat-
ing (9) modulo I(V ) (only on the variables x̂ and ŷ), we obtain:

Df(ˆ̂a, ˆ̂b, x̂, ŷ) =
∑

0≤i<n
0≤j<dx

[
α′

ij(ˆ̂a)qi

+ β′
ij(

ˆ̂b)qi
]
x̂qj

+
∑

0≤i<n
0≤j<dy

[
γ′

ij(ˆ̂a)qi

+ δ′
ij(

ˆ̂b)qi
]
ŷqj

,
(10)

where dx and dy are the largest powers of x̂ (resp. ŷ) occuring. After the reduction
modulo I(V ), the remaining monomials x̂, . . . , x̂qdx and ŷ, . . . , ŷqdy are indepen-
dent. Thus, for Df(ˆ̂a, ˆ̂b, x̂, ŷ) = 0, each polynomial expression multiplied by a
single x̂qj

or ŷqj

must be identically zero, that is to say that for all 0 ≤ j ≤ dx

∑

0≤i<n

[
α′

ij(ˆ̂a)qi

+ β′
ij(

ˆ̂b)qi
]

= 0 (11)

and for all 0 ≤ j ≤ dy

∑

0≤i<n

[
γ′

ij(ˆ̂a)qi

+ δ′
ij(

ˆ̂b)qi
]

= 0. (12)

The left hand sides of (11) and (12) are F-linear functions in S[â b̂]T . Thus
we can express each such equality over F as

LS
[
â0 · · · ân−1 b̂0 · · · b̂n−1

]T

= 0,

where L is an n × 2n matrix with entries in F. We note specifically that the
coefficients of L depend on V and the choices of coefficients in the central map
f . For randomly chosen coefficients retaining the HFEv structure, we expect an
L derived from an equation of the form (11) or (12) to have high rank with very
high probability, more than 1 − q−n. Thus the dimension of the intersections of
the nullspaces of each L is zero with probability at least 1 − 2q−n.

Clearly, the condition for these equations to be satisfied is that S sends
V to the intersection of the nullspaces of each such L. Thus S is with high
probability the zero map on V and so V ⊥ = {0}. This generates a contradiction,
however, since 2n ≤ dim(V ) + dim(V ⊥) < 2n. Thus, with probability greater
than 1 − 2q−n, f has no nontrivial differential invariant structure.

4.3 HFEv−

The situation for HFEv− is quite similar, but the probabilities are slightly dif-
ferent. Specifically one must note that since the condition of being a differential
invariant is a condition on the span of the public differential forms, under pro-
jection this condition is weaker and easier to satisfy. For specificity, we consider
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the removal of a single public equation, though, critically, a very similar though
notationally messy analysis is easy to derive in the general case.

We may model the removal of a single equation as a projection of the form
π(x) = xq + x applied after the central map.

Proof (of Theorem 2). Consider

π(f(x, y)) =
∑

0≤i≤j<n

qi+qj≤D

αijx
qi+qj

+
∑

0≤i,j<n

qi≤D

βijx
qi

yqj

+
∑

0≤i≤j<n

γijy
qi+qj

+
∑

0≤i≤j<n

qi+qj≤D

αq
ijx

qi+1+qj+1
+
∑

0≤i,j<n

qi≤D

βq
ijx

qi+1
yqj+1

+
∑

0≤i≤j<n

γq
ijy

qi+1+qj+1
.

(13)

Taking the differential, we obtain

D(π ◦ f)(ˆ̂a, ˆ̂b, x̂, ŷ) =
∑

0≤i≤j<n
qi+qj≤D

αij

(
(ˆ̂a)qi

x̂qj

+ (ˆ̂a)qj

x̂qi
)

+
∑

0≤i,j<n
qi≤D

βij

(
(ˆ̂a)qi

ŷqj

+ x̂qi

(ˆ̂b)qj
)

+
∑

0≤i≤j<n

γij

(
(ˆ̂b)qi

ŷqj

+ (ˆ̂b)qj

ŷqi
)

+
∑

0≤i≤j<n
qi+qj≤D

αq
ij

(
(ˆ̂a)qi+1

x̂qj+1
+ (ˆ̂a)qj+1

x̂qi+1
)

+
∑

0≤i,j<n
qi≤D

βq
ij

(
(ˆ̂a)qi+1

ŷqj+1
+ x̂qi+1

(ˆ̂b)qj+1
)

+
∑

0≤i≤j<n

γq
ij

(
(ˆ̂b)qi+1

ŷqj+1
+ (ˆ̂b)qj+1

ŷqi+1
)

.

(14)

Again, we may evaluate modulo I(V ) and collect the terms for the distinct
powers of x̂ and ŷ. By the independence of these monomials we obtain the
relations

∑

0≤i<n

[
α′′

ij(ˆ̂a)qi

+ β′
ij(

ˆ̂b)qi
]

= 0

∑

0≤i<n

[
γ′′

ij(ˆ̂a)qi

+ δ′
ij(

ˆ̂b)qi
]

= 0.
(15)

At this point, the analysis proceeds exactly as in the case of HFEv. We once
again arrive at the conclusion that with high probability S is the zero map on
V , contradicting the existence of a differential invariant. We note here that this
analysis works for any projection, though the exact values of the α′′

ij and γ′′
ij

depend on the specific projection and the structure of f .
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5 Degree of Regularity, Q-Rank and Parameters

Further considerations for the security of HFEv− are the degree of regularity,
a quantity closely connected to the complexity of algebraic attacks, and the
Q-rank of the public key. A careful analysis of each of these quantities reveals
that they support the security of HFEv− against an algebraic attack such as [21]
and against the Kipnis-Shamir methodology and its improvements, see [17,18].

In [22], it is shown that an upper bound for the Q-rank of an HFEv− system
is given by the sum of the Q-rank of the HFE component, the number of removed
equations, and the Q-rank of the vinegar component. For Gui-96(96, 5, 6, 6), here
q = 2, n = 96, D = 5, v = 6 and r = 6, this quantity is roughly 15. Furthermore,
in [13], experimental evidence in the form of analysis of toy variants is provided
indicating that this estimate is tight. Thus the complexity of a Kipnis-Shamir
style attack is roughly O(n3q15n).

Also in [22], a formula for an upper bound on the degree of regularity for
HFEv− systems is derived. Given the parameters of Gui-96(96,5,6,6), the degree
of regularity is expected to be 9. Further, experiments are provided in [13] sup-
porting the tightness of this approximation formula for toy schemes with n as
large as 38. With this degree of regularity the expected complexity of inverting
the system via Gröbner basis techniques is given by

(
96 − 6 + 9

9

)2.3766

≈ 293.

We note that an error in the approximation of the degree of regularity can easily
change this estimate by a factor of a few thousand. Still, it seems clear that each
of these avenues of attack is unviable.

Still another attack vector is to put the entropy of the key space to the test
with techniques such as those mentioned in [23] for deriving equivalence classes
of keys. With our most restrictive instance of the key verification algorithm in
Sect. 3.2, we have a key space consisting of roughly q13n central maps, roughly
q6n of which can be seen as equivalent keys as in [23]. Thus provable security
against the differential adversary can be achieved with a key space of size far
beyond the reach of the “guess-then-IP” strategy.

6 Conclusion

HFEv− is rapidly approaching twenty years of age and stands as one of the
oldest post-quantum signature schemes remaining secure. With the new para-
meters suggested in [13], HFEv− has metamorphosed from the very slow form
of QUARTZ into a perfectly reasonable option for practical and secure quantum-
resistant signatures.

Our analysis contributes to the confidence and optimism which HFEv−

inspires. By elucidating the differential structure of the central map of HFEv−,
we have verified that a class of attacks which has proven very powerful against
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multivariate schemes in the past cannot be employed against HFEv−. In con-
junction with the careful analysis of the degree of regularity and Q-rank of the
scheme already present in the literature, we have succeeded in showing that
HFEv− is secure against every type of attack known. If the future holds a
successful attack against HFEv− it must be by way of a fundamentally new
advance.
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Abstract. This paper introduces a new central trapdoor for multivari-
ate quadratic (MQ) public-key cryptosystems that allows for encryption,
in contrast to time-tested MQ primitives such as Unbalanced Oil and
Vinegar or Hidden Field Equations which only allow for signatures. Our
construction is a mixed-field scheme that exploits the commutativity of
the extension field to dramatically reduce the complexity of the exten-
sion field polynomial implicitly present in the public key. However, this
reduction can only be performed by the user who knows concise descrip-
tions of two simple polynomials, which constitute the private key. After
applying this transformation, the plaintext can be recovered by solving a
linear system. We use the minus and projection modifiers to inoculate our
scheme against known attacks. A straightforward C++ implementation
confirms the efficient operation of the public key algorithms.

Keywords: MQ · Multivariate · Quadratic · Public-key · Post-
quantum · Encryption · Mixed-field · Trapdoor

1 Introduction

Since the inception of public-key cryptography, cryptographers have made a
huge effort to find new and better computational problems that feature the
elusive trapdoor — a small piece of information that can turn an otherwise hard
to invert function into one that can easily be inverted. This on-going search
effort has lead to a tremendous diversification of the computational problems
that underpin public-key cryptography. This diversification is a good thing: by
keeping all the eggs in separate baskets, a breakthrough in one area is unlikely
to spill over to other areas, thus limiting the catastrophic potential of scientific
advances.

Of particular interest to this paper is the class of problems known as multi-
variate quadratic (MQ) systems of equations. Not only do cryptosystems based
on this primitive offer performance advantages over well-established ones such as
RSA or systems based on elliptic curves, MQ cryptography is also conjectured
to be post-quantum — that is to say, it holds promise of resisting attacks on
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quantum computers. From this point of view, MQ cryptography is certainly a
promising line of research.

The key challenge in the design of MQ cryptosystems is to find a suitable
central mapping F : Fn

q → F
m
q which should be easily invertible in addition to

being expressible in terms of multivariate quadratic polynomials. The trapdoor
information cannot be recovered efficiently from the public key as it is hidden by
two affine transformations. Many central mappings have been proposed, most of
which fall in two main categories [32]: single field schemes, such as UOV [17],
Rainbow [7] and the triangular variants [31], where the central polynomial system
is chosen to have a particular structure that enables efficient inversion; and mixed
field schemes, such as C* [19], HFE [22] and Multi-HFE [3], where arithmetic in
the base field is mixed with arithmetic in an extension field. However, despite
the abundance of proposals, MQ cryptography has an awful track record as most
of these proposals have been broken [2,14,18,28,29,32].

Consequently, much research in the area of MQ cryptography has been
devoted to patchwork — finding small modifications to existing systems that
render specific attacks infeasible. A few examples among many that fall into
this category are the minus modifier (“−”) [25], which inoculates HFE-type sys-
tems against Gröbner basis attacks and linearization attacks; vinegar variables
(“v”) [17], which combines elements from different trapdoors and like “minus”
is capable of making a Gröbner basis attack prohibitively expensive; and projec-
tion (“p”) [9] which appears to successfully thwart the Dubois et al. differential
attack [10,11] on SFLASH.

However, the search for modifications to fix broken systems has an equally
bad track record. Many of the MQ systems that were supposedly inoculated
against some attack by the introduction of a modification, were broken by minor
variants of that same attack. For example, both the multivariate generalization
and the odd field characteristic variant of HFE were introduced and designed
specifically to thwart the algebraic attack on HFE [14]; however, neither variant
has managed to withstand cryptanalysis [2]. Another example is given by the
fate of SFLASH, one of the three recommended signature schemes of the NESSIE
project [1]. The addition of the minus modifier to the basic C∗ construction did
not save the scheme from a new type of differential attack [10,11]. The rapid
spawn of attacks that break the inoculated systems seems to suggest the need
for a more prudent design strategy: searching for fundamentally different basic
principles for MQ trapdoors, rather than tinkering on the edges of existing ones.

Related work. Encryption schemes have been the bane of multivariate quadratic
cryptography. No MQ encryption scheme has withstood the test of time, while
several MQ signature schemes have. However, some very recent results and pro-
posals in this area pose new and interesting challenges for cryptanalysts.

Porras et al. proposed a new central trapdoor which they call ZHFE [24].
Up until this point, the extension field polynomial in HFE-based cryptosystem
required the number of nonzero coefficients to be small and its degree to be
relatively low, so as to allow efficient root calculation. The idea of Porras et al.
exchanges this single low-degree polynomial for a pair of high-degree polynomials
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that make up the central map. Additionally, these polynomials are chosen such
that there exists a third polynomial, Ψ(X ), which is a function of the first two
and yet has low degree. In order to invert a given image, it suffices to factorize
this third polynomial. As the degree of the polynomials increases, so does the
degree of regularity of the system. This increase in the degree of regularity, in
turn, renders a direct algebraic attack infeasible, even though the very same
attack broke the regular HFE cryptosystem.

Tao et al. proposed a multivariate quadratic encryption scheme called Simple
Matrix Encryption, or simply ABC Encryption [27]. Their construction is based
on a fundamentally new idea: embedding polynomial matrix arithmetic inside the
central trapdoor function. The trapdoor can be inverted with high probability
because the matrix, albeit evaluated in a single point, can be reconstructed from
the output. With high probability this matrix can be inverted, giving rise to a
system of linear equations which describe the input.

Our contributions. We introduce a new central trapdoor for multivariate
quadratic encryption schemes. Our proposal is a mixed-field scheme — similar
to the C∗ and HFE string of proposals because we use an embedding function
to pretend as though a vector of variables in the base field were actually a single
variable in the extension field. However, our proposal is notably different from its
predecessors, where the restriction on the degree of this embedded polynomial
was key both to their efficiency and to their demise; our proposal allows for a
high-degree embedded polynomial and undoes this complexity by exploiting the
commutative property of the extension field. Our proposal allows for encryption,
in stark contrast to most other members of the HFE family.

Like the ABC Encryption Scheme, decryption of a ciphertext consists of
essentially solving linear systems. This linear system is parameterized by the
particular ciphertext or message: every possible ciphertext or message implicitly
defines a unique linear system. Knowledge of the private key allows the user to
obtain the linear system efficiently, while the adversary who attacks the system
without this crucial information has no advantage to solve the quadratic system.

Like ZHFE, the central map consists of two high-degree extension field poly-
nomials that satisfy a special relation which is obviously hidden from the adver-
sary. The decryption algorithm exploits this relation to turn the otherwise hard
inversion problem into an easy one.

Another important similarity between our map and both ABC and ZHFE
is that all three are expanding maps, i.e., Fn

q → F
m
q where m = 2n. This com-

monality is no accident, because in order allow unique decryption, the map must
be injective. However, if m ≈ n, the differential of this nearly-bijective map is
readily differentiable from that of a random one — not a desirable property for
multivariate quadratic maps to have.

Despite these similarities, the main advantage of our scheme is that its con-
struction is notably different from ABC and ZHFE. Consequently, as-yet undis-
covered weaknesses or even attacks that affect ABC or ZHFE may leave our
scheme intact. Furthermore, this diversification opens the door for a combina-
tion of strategies whose end result reaps the benefits of both worlds. Certainly
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the case of HFEv proves that such a combination may indeed increase both
security and performance.

In line with a common theme throughout MQ cryptography, we are unable to
prove the security of our scheme or even to reduce it to a plausible computational
assumption. An exhaustive list of all known attacks on MQ systems and why
they fail against our system is beyond the scope of this paper. Nevertheless, we
identify several pertinent attacks that may be launched against a näıve imple-
mentation of our scheme, and we propose strategies to thwart them. Patarin’s
linearization attack [21] is foiled by the minus modifier and repeated applica-
tions of the same modifier make the extended MinRank attack [4,18] as well as
the direct algebraic attack [14] prohibitively inefficient. The scheme seems nat-
urally resistant to Dubois et al.’s differential attack [10,11], but we nevertheless
recommend to use the projection modifier, which is the proper countermeasure
against this attack.

Outline. We introduce notation and recall basic properties of MQ systems as
well as of extension field embeddings in Sect. 2. Next, Sect. 3 defines the trapdoor
proposed in this paper as well as several necessary modifiers. We recommend
parameters for 80 bits of security in the first part of Sect. 4 and afterwards
discuss the efficiency of our scheme, both from a theoretical point of view and by
referencing timing results from a software implementation. Section 5 concludes
the text.

2 Preliminaries

2.1 Notation and Definitions

We use small case letters (s) to denote scalars in the base field; extension field
elements are denoted by calligraphic capital letters (C); small case bold letters
(v) denote column vectors; and regular capital letters are used for matrices (M).

Let Fq denote the finite field with q elements, which we call the base field.
With any combination of a finite field Fq with a polynomial f(x) ∈ Fq[x] one can
associate a finite ring E = Fq[x]/〈f(x)〉 of residue classes after division by f(x).
If f is irreducible over Fq and has degree n, then E = Fqn is a finite field we call
the extension field. There exists a natural homomorphism ϕ : (Fq)n → Fqn that
maps a vector v = (v1, . . . , vn)T ∈ F

n
q onto an element V ∈ Fqn of the extension

field. We can apply this embedding function to the vector of indeterminates x
in order to get the extension field indeterminate X = ϕ(x).

2.2 Multivariate Quadratic Systems

The public key of an MQ cryptosystem is a system of quadratic polynomials
mapping n input variables to m output variables: P : F

n
q → F

m
q ; the public

operation consists of evaluating this system of polynomials in a point. The secret
key consists of a pair of invertible affine mappings on the input and output
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variables, S and T , and an alternate quadratic system of polynomials, F : Fn
q →

F
m
q , such that P = T ◦ F ◦ S. The affine transformations are trivially inverted;

the central system F is constructed in such a way that it is also easy to invert.
However, the attacker cannot efficiently recover F from P and calculate the
inverse as F is hidden by the affine transformations. A schematic overview is
given in Fig. 1.

S F T

P
public knowledge

private knowledge

encryption or signature verification

decryption or signature generation

Fig. 1. Schematic representation of multivariate quadratic cryptosystems.

Given a central trapdoor F it is easy to construct a multivariate quadratic
cryptosystem by composing it with two affine transformations. This process is
out of the scope of the present paper. Rather, we restrict our attention to the
construction of the central trapdoors.

3 Central Map

3.1 The Basic Construction

Let A ∈ F
n×n
q be a random matrix over the base field. Then Ax ∈ (Fq[x])n

represents a vector where each element is a linear polynomial in x. And then
α(x) = ϕ(Ax) is an extension field element. The square matrix that represents
multiplication by α(x) is denoted by αm(x) ∈ F

n×n
q . We use α(X ) to stress

the fact that α may also be considered as a univariate polynomial in X over
the extension field, regardless of its representation, although the degree of this
polynomial is larger than one.

Similarly, let β(x) = ϕ(Bx) for a random n × n matrix B ∈ F
n×n
q . With

these polynomials α and β, we define the central trapdoor as follows:

F : Fn
q → F

2n
q : x �→

(
αm(x)x
βm(x)x

)

. (1)

To see how we are able to invert F(x) =
(
d1

d2

)

, consider first the equality

α(x)β(x) = β(x)α(x) which holds due to the commutativity of the extension
field. We can proceed to construct a system of linear equations in x:

βm(x)d1 − αm(x)d2 = 0 . (2)
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While Gaussian elimination is in this case guaranteed to find a solution, this
solution need not be unique. Nevertheless, this set of solutions is expected to
be small, in accordance with the number of solutions to random linear systems.
Moreover, this set can be pruned by iteratively plugging the potential solution
into the function F and verifying that the correct output image (d1;d2) is pro-
duced.

3.2 Modifiers

The trapdoor as described above is insecure. In particular, it is broken by the
bilinear attack, the MinRank attack, as well as an algebraic attack using fast
Gröbner basis algorithms. We apply the “minus” to inoculate basic EFC against
these attacks. While not strictly necessary, “projection” may guard against new
differential attacks at very little cost whereas “Frobenius tail” drastically drops
the cost of decryption.

Minus. Although Patarin’s linearization attack [21] was originally conceived to
attack C∗, it also applies to unprotected EFC. Indeed, Eq. 2 describes a bilinear
polynomial in the plaintext and ciphertext, whose coefficients can be calculated
using linear algebra after obtaining enough plaintext-ciphertext pairs. Once these
coefficients are known, obtaining a plaintext that matches a given ciphertext is
easy. However, dropping just one polynomial from the public key is enough to
foil this attack. In this case, the attacker must guess the missing information for
every plaintext-ciphertext pair, making them useless for exact linear algebra.

This “minus” modifier, which consists of removing one or more polynomials
from the public key [23], is more than just a countermeasure against Patarin’s
attack. A pair of important results by Ding et al. [6,8] indicates that this mod-
ifier is much better thought of as a fundamental building block of multivariate
quadratic cryptosystems rather than a mere patch. Indeed, not only does the first
application of this modifier block Patarin’s linearization attack; every repeated
application increments by one the rank of the quadratic form associated with
the extension field polynomial, rendering the MinRank attack due to Kipnis and
Shamir [18] as well as its subsequent improvement by Courtois [4] that much
more infeasible. Furthermore, this rank increase in turn increases the degree of
regularity of the system, resulting in a similarly infeasible algebraic attack.

The use of this modifier does come at the cost of a performance penalty. In
particular, the decryption algorithm must first guess the values of the missing
polynomials before undoing the output transformation T . Under this guess, it
can proceed to the linear system in Eq. 2 and compute the potential matching
plaintext x. If indeed F(x) = (d1;d2), then the correct plaintext was found. If
not, then the guess was wrong and the algorithm must start all over again with
a new one.

Fortunately, as long as the number of dropped polynomials a is small enough,
the correct plaintext will still be found with overwhelming probability. In order
for the decryption algorithm to produce the wrong plaintext x upon decrypting
the ciphertext y, there must exist at least two guesses g1 ∈ F

a
q and g2 ∈ F

a
q such
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that both (y;g1) and (y;g2) are in the range of P. If P is to be modeled as a
random function F

n
q → F

2n−a
q , then its range is a uniform subset of F2n−a

q of size
qn, and then the probability of this event is approximately qn×q−2n+a = q−n+a.
Consequently, as long as a 	 n, the probability of decryption error remains
astronomically small.

Figure 2 offers empirical validation of this argument. It shows the probability
of decryption error for various even values for a as a function of n. Only when a
and n are on the same order of magnitude, is this probability noticeable; when
n rises to practical values, this probability does indeed drop to zero.
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Fig. 2. Observed decryption error rate.

In similar fashion to C∗− and HFE−, this modifier will be denoted by the
superscript “−”, i.e., EFC−. The number of dropped polynomials will be denoted
by a.

Projection. The differential symmetry attacks by Dubois et al. [10,11] on
SFLASH, a C∗ variant, show that the minus operator is not enough to secure it.
Dubois et al. identify a symmetry in the differential of the C∗ map F :

DF(Lx,y) + DF(x, Ly) = ΛF(x,y)

for some matrices L and Λ. The presence of this symmetry proved fatal.
Fortunately, Ding et al. [9] show experimentally that a small tweak by the

name of “projection” completely foils this line of attack. In particular, pSFLASH
projects the input vector x onto a lower-dimensional space before passing it
through the central map. Smith-Tone [26] has since offered a theoretical basis
for the efficacy of this modifier. At the core of Smith-Tone’s argument is the
following theorem:

Theorem 1 (Smith-Tone, [26]). A polynomial f : Fqn → Fqn with a bilinear
differential has the multiplicative symmetry if and only if it has one quadratic
monomial summand.
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While the components of EFC do have bilinear differentials, they do not
consist of a single quadratic monomial but of a sum of them. For example, the
first component is described by α(X )X =

∑n−1
i=0 AiX qi+1 where the coefficients

Ai are with overwhelming probability not all but one equal to zero. Therefore,
by Smith-Tone’s theorem, the differential multiplicative symmetry is absent with
overwhelming probability.

Nevertheless, in anticipation of more general attacks using a similar differ-
ential invariant, we follow a perspective offered at the conclusion Smith-Tone’s
paper: projection does not destroy the differential symmetry, but pushes it down
to a subfield. Since this modifier is cheap in terms of performance and cannot
degrade security, we choose to err on the side of safety and ensure that no such
subfield can exist. In particular, we guarantee that the matrices A and B have
rank n − 1, and that n is a prime number. Moreover, the kernels of A and B do
not intersect except at the origin. This modifier will be denoted by the subscript
p, e.g. EFCp.

Frobenius Tail in Characteristic Two (or Three). The trapdoor as
described so far can be implemented over any base field and unless the minus
operator is applied, the rank of the quadratic forms associated with the exten-
sion field is two. However, if we restrict to characteristic two, we can naturally
increase this rank by adding an extra “tail” term to both expressions. In turn, we
must drop fewer equations to ensure the same level of security, and this results
in a significant speedup of the decryption algorithm. We will use the subscript
t2 to denote the use of this technique, e.g. EFCt2 .

This trick exploits the following property of fields of characteristic two. Let
f(X ) be a linear function, then f(X )3 is a quadratic function and multiplication
by f(X ) gives f(X )4 which is once again a linear function.

Let α and β be defined as earlier. Then this enhancement adds the quadratic
terms α(X )3 and β(X )3 as follows:

F : F2n → F
2
2n : X �→

(
α(X )X + β(X )3

β(X )X + α(X )3

)

. (3)

In order to decrypt F(X ) = (D1;D2), the user solves the linear system

α(X )D2 − β(X )D1 = α(X )4 − β(X )4 . (4)

Afterwards, the set of solutions is pruned based on F(X ) = (D1;D2).
A similar trick is possible in fields of characteristic three. For linear functions

f(X ) the term f(X )2 is quadratic and multiplication by f(X ) gives f(X )3 which
is once again a linear function. Although this particular Frobenius tail does
destroy the common factor in the two polynomials, it merely increases the rank
of the quadratic form to three. The use of this trick will be denoted by the
subscript t3.
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4 Efficiency

4.1 Recommended Parameters

We predict that the most efficient attack on our system is the algebraic attack
using efficient Gröbner basis algorithms such as Faugére’s F4 or F5 [12,13].
Taking this attack into account, we propose parameters to ensure at least 80
bits of security.

We follow the argument due to Ding et al. [5,8], who develop an upper
bound for the degree of regularity of HFE− systems. In this line of reasoning,
the degree of regularity Dreg is intricately linked to the rank r of the quadratic
form associated with the extension field polynomial. Moreover, a applications of
the minus modifier effectively increases this rank by a. Especially for small base
fields, the degree of regularity is expected to lie near its upper bound:

Dreg ≤ (q − 1)(r + a)
2

+ 2 . (5)

This argument applies to a single quadratic form. However, the central map
of EFC consists of two quadratic forms. Nevertheless, we argue that the effect of
minus is replicated across both quadratic forms. The polynomials are dropped
after the output transformation T is applied, meaning that the effect of the
missing information passes through T−1 and is not isolated to one quadratic
form but spread across both. Although this reasoning underscores the following
parameter recommendations, we note it is not perfectly rigorous and warrants
further study.

Considering the two components of our central map separately, we see that
their rank is r = 2. If the Frobenius tail modifiers are applied, this is increased
to r = 4 and r = 3 for characteristics 2 and 3, respectively. For a security level
of 80 bits, we recommend to ensure this adjusted rank is at least 12 for F2 and
8 for F3.

a =

⎧
⎪⎨

⎪⎩

10 q = 2, n = 83, EFC−
p

8 q = 2, n = 83, EFC−
pt2

6 q = 3, n = 59, EFC−
p

. (6)

Then we can estimate the degrees of regularity for these base fields:

Dreg ≤ (q − 1)(r + a)
2

+ 2 =
{

8 q = 2
10 q = 3 . (7)

The running time of efficient Gröbner basis algorithms is dominated by
Gaussian elimination in the matrix of coefficients associated with the mono-
mials of degree Dreg. We can use this bottleneck to estimate the algorithm’s
total complexity. In particular, the number of monomials of this degree is given
by T =

(
n

Dreg

) ≈ 235 both for n = 83, q = 2 as well as n = 59, q = 3. Moreover,
the number of nonzero monomials is on the order of τ =

(
n
2

) ≥ 210. Assuming a
Wiedemann-type algorithm [30] for sparse Gaussian elimination, this amounts
to τT 2 ≥ 280 in both cases.
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Figure 3 offers some experimental evidence in support of this argument. It
plots the running time of MAGMA’s F4 algorithm to recover the plaintext from
the ciphertext and the public key. The graph on the left starts out with q =
2, n = 35 and a = 1; from there on out, the parameter a increases. The graph
on the right lets n vary from 15 to 38 with q = 2, and keeps a constant at 10 for
the basic trapdoor EFC−

p (blue circles) and at 8 for the Frobenius tail equivalent
EFC−

pt2 (red crosses).
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Fig. 3. Running time of algebraic attack for various parameters (Color figure online).

The graphs indicate two things. First, the minus modifier enhances security
with (nearly) every application, occasionally lifting the system into the next
degree of regularity. Second, the Frobenius tail modifier enhances security, even
compensating for the rank drop associated with going from a = 10 to a = 8.

4.2 Complexity

The basic trapdoor, as well as all the modified variants, feature only quadratic
terms. Therefore, the transformations T and S should be linear and not affine,
and consequently also the public key will consist of only quadratic terms.

The public key consists of 2n − a polynomials of degree 2 in n variables.
Thus the number of coefficients from Fq in the public key is (2n− a)× n(n−1)

2 =
n3 − (a + 1)n2 + an = O(n3) because a 	 n. However, we note that there is a
considerable amount of redundancy in the public key which we expect can be
exploited to produce smaller keys.

The private key consists of two linear transformations S and T , along with a
degree-n irreducible polynomial ψ(z), and matrices A and B. This amounts to
n2 + (2n)2 + 2(n2) + n = 7n2 + n = O(n2) coefficients in Fq.

The most computationally intensive part of the key generation algorithm
is the symbolic matrix-vector multiplication — once in ϕ(Ax)x and once in
ϕ(Bx)x. Both procedures require n2 polynomial-multiplications, each of which
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consists of n multiplications in Fq. Since the other steps in the key generation
algorithm are less complex, the asymptotic time complexity of this entire algo-
rithm is O(n3). For the Frobenius tail modifier, this complexity is worse because
the additional extension field products ϕ(Ax)(QAx) and ϕ(Bx)(QBx) (where Q
is the matrix associated with the Frobenius map x �→ x2) have dense right-side
multiplicands. Consequently, the cost of polynomial multiplication rises to n2

multiplications and the total time complexity of the key generation to O(n4).
Encryption consists of evaluating 2n − a quadratic polynomials in n vari-

ables. This comes down to two time steps with unlimited parallelism. Without
parallelism, however, each of the (2n−a)× (n(n− 1)+2n) base field operations
must be executed sequentially and the time complexity is therefore O(n3).

Decryption consists of the following steps for qa different guesses, which may
be executed in parallel if the resources are available: (1) inversion of T , which
requires (2n)2 operations; (2) computation of ϕ(d1) and ϕ(d2), which requires n
vectorized additions for a total of n2 operations; (3) two matrix multiplications of
n3 operations each, followed by a matrix subtraction; (4) a Gaussian elimination
of some 2n3/3 operations; (5) inversion of S requiring some n2 operations; and
finally (6) pruning, which has an almost constant expected running time. Thus,
decryption has an expected running time of O(qan3). While this expression does
involve an exponential factor, the exponent is rather small — on the order of
a ≈ log n, so that decryption is still practically speaking a polynomial-time
algorithm.

Figure 4 emphasizes this exponential behavior by logarithmically plotting the
decryption time as a function of a. Even a moderate increase in the number of
dropped parameters can make decryption impractically slow.
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Fig. 4. Decryption time as a function of a for n = 83 and q = 2.

4.3 Speed

Table 1 shows some timing results obtained from a straightforward C++ imple-
mentation on a 64-bit 3.3 GHz Intel CPU. Despite the scheme’s obvious capacity
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Table 1. Implementation results — timings of key generation, encryption and decryp-
tion algorithms along with public key, secret key and ciphertext size.

Construction Sec. key Pub. key Ctxt Key gen Enc Dec

EFC−
p , q = 2, n = 83, a = 10 48.3 KB 509 KB 20 B 2.45 s 0.004 s 9.074 s

EFC−
pt2

, q = 2, n = 83, a = 8 48.3 KB 523 KB 20 B 3.982 s 0.004 s 2.481 s

EFC−
p , q = 3, n = 59, a = 6 48.8 KB 375 KB 28 B 2.938 s 0.004 s 12.359 s

for parallelism, it is not exploited beyond bit packing and vectorized addition
(byte-wise xor) for F2. The only other optimization that was used was the com-
piler’s optimization flag. For q = 3, the sizes are computed by representing
elements of F3 by two bits.

5 Conclusion

Extension Field Cancellation (EFC) is a new construction for central trapdoors
in MQ cryptosystems which exploits the commutativity of the extension field in
order to cancel the complexity of the extension field polynomials. After cancel-
lation, the plaintext can be obtained by solving a linear system. We anticipate
several known attacks and use the projection and minus modifiers to inoculate
EFC against these attacks.

We estimate parameters associated with 80 bits of security from the running
time of an algebraic attack and offer some experimental validation of its complex-
ity. Our implementation confirms the correctness of our schemes as well as their
practical efficiency. Encryption can be done in only a few milliseconds, on par
with other post-quantum cryptosystems such as NTRU [16] and McEliece [20].
However, due to the missing information from the minus modifier, decryption
takes several seconds.

This minus modifier is an obvious candidate for improvement. While it is
necessary for security, any significant number of dropped polynomials consti-
tutes an onerous cost on the decryption function because its running time is
exponential in this number. In fact, the minus modifier is ideally suited for
MQ signature schemes, but ill-suited for MQ encryption schemes. The reason is
that for signatures, any assignment to the missing variables will do; in contrast,
the decryption algorithm must iterate over all possible assignments in order to
find the correct plaintext. Any alternative modifier that has the same effect on
security but obviates the need for exhaustive search can drastically accelerate
decryption.

Another question is to determine to which extent the public keys can be
shrunk. While it is difficult to shrink the secret keys without throwing away
entropy, the public keys contain a large amount of redundancy. Even a relatively
moderate reduction in the public key size can make the cryptosystem a feasible
option for applications where the public key size is critical and currently too
large.
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Abstract. ZHFE, designed by Porras et al., is one of the few promis-
ing candidates for a multivariate public-key encryption algorithm. In
this article we extend and expound upon the existing security analy-
sis on this scheme. We prove security against differential adversaries,
complementing a more accurate and robust discussion of resistance to
rank and algebraic attacks. We further suggest a modification, ZHFE−,
a multivariate encryption scheme which retains the security and perfor-
mance properties of ZHFE while optimizing key size in this theoretical
framework.
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1 Introduction

Since the late 1990s, a large international community has emerged to face the
challenge of developing cryptographic constructions which resist attacks from
quantum computers. The birth of this new discipline is due primarily to the
discovery by Peter Shor in the mid 90s, see [1], of algorithms for factoring and
computing discrete logarithms in polynomial time on a quantum computing
device. The term post-quantum cryptography was coined to refer to this devel-
oping field and to emphasize the fact that information security in a quantum
computing world is a fundamentally new science.

Today, we face mounting evidence that quantum computing is not a physical
impossibility but merely a colossal engineering challenge. With the specter of the
death of classical asymmetric cryptography looming on the horizon, it is more
important than ever that we develop systems for authentication, confidentiality
and key exchange which are secure in the quantum paradigm. We thus are forced
to turn to problems of greater difficulty than the classical number theoretic
constructs.

Systems of polynomial equations have been studied for thousands of years and
have fueled the development of several branches of mathematics from classical
to modern times. Multivariate Public Key Cryptography(MPKC) has emerged
c© Springer International Publishing Switzerland 2016
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from the serious investigation of computational algebraic geometry that reached
maturity in the latter half of the last century. Today, we see MPKC as one of a
few serious candidates for security in the post-quantum world.

A fundamental problem on which the security of any multivariate cryptosys-
tem rests is the problem of solving systems of quadratic equations over finite
fields. This problem is known to be NP-hard, and copious empirical evidence
indicates that the problem is hard even in the average case. There is no known
significant reduction of the complexity of this problem in the quantum model
of computing, and, indeed, if this problem is discovered to be solvable in the
quantum model, we can solve all NP problems and the task of securing infor-
mation might be hopeless in principle. We thus reasonably suspect that MPKC
will survive the transition into the quantum world.

Though multivariate cryptosystems almost always suffer from rather large
key sizes, the key sizes are rarely so large that they are impractical and these
systems can often be quite attractive in certain other aspects of performance.
Some systems are very fast, having speeds orders of magnitude faster than RSA,
[2–4]. Some schemes combine speed with power efficiency and small signature
sizes, [5,6]. Perhaps most importantly, it is generally simple to parameterize
multivariate systems in such a way that vastly different properties are derived
foiling various attack methodologies.

One great difficulty historically for MPKC is encryption. Though there are
several viable options for digital signatures, see [5–8], there is a general absence
of long-lived encryption systems. In the last couple of years, a couple of new
encryption techniques have been proposed, see [9–11]. These systems are based
on the simple idea, proposed by Ding, that the structure of a system of equations
can retain injectivity without an extremely restrictive structure if the codomain
is of much larger dimension than the domain.

In [12], however, a new and unexpected attack was presented on the ABC
simple matrix encryption scheme of [9]. This attack is notable in that the com-
plexity is far less asymptotically than predicted by the analysis in [9], though
it does not break the scheme outright. This begs the question of the tightness
of the security analyses in [10,11] and the extent to which we can trust in the
security of such young schemes in a field which has no significant success history
in encryption.

Furthermore, one might ask whether there is some middleground on the ratio
of the dimension of the codomain to that of the domain for these multivariate
encryption schemes. Even if one concurs that relaxing the relationship between
the dimensions of the domain and codomain enhance the security of injective
maps, it remains unclear that the disparity should be so large as in the proposed
schemes in which there are at least twice as many equations as variables.

In this article we extend and expound upon the security analysis in [11],
incorporating some of the theoretical models of assurance presented in [13–15].
We prove security against differential adversaries complementing the discussion
of resistance to algebraic attacks provided in [11]. We further elucidate the rank
structure of ZHFE and specifically note some necessary, but trivial, key restric-
tions for security which were apparently overlooked in [11]. We further suggest
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a modification, ZHFE−, a multivariate encryption scheme which retains the
security and performance properties of ZHFE while optimizing key size in this
theoretical framework.

The paper is organized as follows. The next section introduces the notion
of big field schemes and presents the prototypical such cryptosystem, HFE. In
the following section, we define the Q-rank of a multivariate system of equa-
tions and discuss the central nature of this concept in the field. The subse-
quent section presents the ZHFE encryption scheme and calculates some of its
inherent parameters. Next we present a thorough security analysis of ZHFE,
complementing and expanding the analysis provided in [11] and offering secu-
rity assurance against a differential adversary as well as discussing parameters
securing ZHFE against rank and algebraic attacks. Subsequently, we present
and analyze ZHFE−, a new multivariate encryption scheme based on ZHFE
and the minus modifier. Finally, we note parameter choices for ZHFE− and
discuss the role that the new methodology for multivariate encryption fills in
the literature.

2 HFE

Several multivariate cryptosystems belong to a family collectively known as “big
field” schemes. Such schemes are constructed using two ideas. The first is an
equivalence between functions on a degree n extension k of a finite field Fq and
functions on an n-dimensional Fq-vector space. The second is an isomorphism of
polynomials which allows one to hide structure in a function.

To see the equivalence, notice that a vector space isomorphism between k
and an n-dimensional vector space over Fq extends to a vector space isomor-
phism between the space of univariate functions from k to itself and the space of
multivariate n-dimensional vector-valued polynomial functions from F

n
q to itself.

(Specifically, given an isomorphism φ : F
n
q → k and a function f : k → k,

the function φ−1 ◦ f ◦ φ is such a function from F
n
q to itself; furthermore, this

identification is a 1-1 correspondence.)
The second idea, the isomorphism of polynomials, is defined in the following

manner.

Definition 1. Two vector valued multivariate polynomials f and g are said to
be isomorpic if there exist two affine maps T,U such that g = T ◦ f ◦ U .

Together these ideas allow us to build an isomorphic copy of a structured
univariate map with domain k while hiding the structure. The construction is
sometimes called the butterfly construction because of the shape of its defining
commutative diagram. Specifically, P = T ◦φ−1 ◦f ◦φ◦U produces a perturbed
vector-valued version of the structured univariate polynomial f .

The Hidden Field Equations (HFE) scheme was first presented by Patarin
in [16] as a method of avoiding his linearization equations attack which broke
the C∗ scheme of Matsumoto and Imai, see [17] and [18]. The basic idea of the
system is to use the butterfly construction to hide the structure of a low degree
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polynomial that can be inverted efficiently over k via the Berlekamp algorithm
[19], for example.

More specifically, we select an effectively invertible “quadratic” map f : k →
k, quadratic in the sense that every monomial of f is a product of a constant and
two Frobenius multiples of x. Explicitly any such “core” map f has the form:

f(x) =
∑

i≤j
qi+qj≤D

αi,jx
qi+qj

+
∑

i
qi≤D

βix
qi

+ γ.

The bound D on the degree of the polynomial is required to be quite low for
efficient inversion.

The HFE scheme was designed to be used as an encryption or a signature
scheme. To generate a signature (or to decrypt), one computes, successively, v =
T−1y, u = f−1(v) and x = U−1u. The vector x is the signature (or the plaintext).
For verification (or encryption), one simply evaluates the public polynomials, P ,
at x. If P (x) which is equal to T ◦ f ◦ U(x) is equal to y, the signature is
authenticated (or the ciphertext is y).

3 Q-Rank

The defining characteristic of HFE, the degree bound, which is necessary for
the effective inversion of the central map, ensures that the scheme has low rank
as a quadratic form over k, as described below. This property assures that the
central map of HFE is vulnerable to Kipnis-Shamir modeling, see [20,21].

Recall that any quadratic map f : k → k can be written

f(x) =
∑

0≤i,j<n

αijx
qi+qj

.

We can equivalently express f as a vector function over the 1-dimensional
k-algebra ψ : k → kn where

α
ψ�→

[
α αq . . . αqn−1

]T

,

in the form f(X) = XT [αij ]X where X = [x xq . . . xqn−1
]T .

Any quadratic form over k can be expressed as a symmetric matrix, and over
characteristic p �= 2 a change of basis can be performed which transforms this
matrix into an equivalent diagonal form. The rank of this matrix is the rank of
the quadratic form. We call this rank the Q-rank of f , that is the rank of f as
a quadratic function.

We note here that Q-rank is invariant under polynomial isomorphism, thus
the Q-rank of a central map of a cryptosystem is the same as the Q-rank of the
public key, unless, of course, the minus or projection modifiers are utilized. We
also note that the Q-rank is explicitly exploited in the attacks of [20,21] and
plays a central role in the derivation of degree of regularity bounds for several



Security Analysis and Key Modification for ZHFE 201

prominent cryptosystems, see [22–24]. Further, there seems to be a complicated
relationship between the Q-rank of a field map and the presence of differential
symmetric or invariant relations, see, for example [15]. Consequently, Q-rank
seems to be emerging as a central concept in multivariate cryptography and in
computational algebra.

4 ZHFE

ZHFE was introduced in [11]. The idea is to construct an encryption scheme
with a high Q-rank central map preventing attacks such as [21] exploiting this
weakness. The scheme is notable among “big field” schemes which typically
require some low Q-rank map for efficient inversion. Low Q-rank is in fact
required for inversion in this setting as well, however, the system attempts to
hide the low Q-rank structure in the public key.

The construction concatenates two high degree quadratic maps (with special
structure) to form the central map. Specifically, the two general form quadratic
maps f0 and f1 are derived by constructing a low degree (maximum degree D)
cubic map

Ψ(x) = x [L00f0(x) + L01f1] + xq [L10f0 + L11f1] , (1)

where Lij is a linear map and the square brackets indicate multiplication over k.
To solve for f0 and f1 it suffices to set coefficients for the linear maps and

for Ψ to recover a system of linear equations in the unknown coefficients of f0
and f1. In the homogeneous case, there are collectively n2 + n coefficients of f0
and f1 in k. Due to its low degree and the requirement that it satisfy (1), Ψ is
constrained to be of the form

Ψ(x) =
1∑

i=0

∑

i≤j≤k

qi+qj+qk≤D

αi,j,kxqi+qj+qk

+
1∑

i=0

∑

i≤j
qi+qj≤D

βi,jx
qi+qj

+
1∑

i=0

γix
qi

. (2)

A cubic of the form (2) has n2 coefficients over k, and thus for any fixed choice of
Ψ and Lij there are n2 constraints on a linear system of dimension n2 +n. Thus
with probability roughly 1 − q−n, there is an n-dimensional space of coefficients
for the maps f0 and f1.

Once, constructed, the central map (y0, y1) = (f0(x), f1(x)) can be inverted
by using Berlekamp’s algorithm to solve the low degree polynomial equation:

Ψ(x) − x [L00y0 + L01y1] − xq [L10y0 + L11y1] = 0.

5 Analysis of ZHFE

A few avenues of attack have evolved along with the development of multivariate
cryptosystems relying on a hidden large algebra structure. These attacks can be
characterized as differential, see [12,25], as minrank, see [20,21], or as algebraic,
see [26]. We analyze the security of ZHFE against each of these attack models.
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5.1 Algebraic

Algebraic attacks attempt to decrypt a given ciphertext y by solving the system
of equations P (x) = y directly. The term “algebraic” refers to the fact that these
are generic algorithms for solving arbitrary systems of polynomial equations.

While these attacks are not structural, in the sense of being defined based on
the structure of the system of equations, the algorithms employed can naturally
take advantage of certain properties of the systems. In practice, the complexity
of algorithms for solving these systems of equations is closely connected to the
degree of regularity of the system.

The degree of regularity of a system of equations is the degree at which
the first nontrivial degree fall occurs. Specifically, consider a generating set of
an ideal I = 〈g1, . . . , gm〉 ∈ Fq[x1, . . . , xn]. We may generate elements of I by
selecting polynomials pi ∈ Fq[x1, . . . , xn] and computing

m∑

i=1

pigi.

A degree fall occurs when the degree of this sum is less than the maximum degree
of pigi. Clearly some degree falls are due to trivial syzygies such as −gjgi+gigj =
0 and (gq−1

i − 1)gi = 0. The smallest degree, maxipigi such that the above sum
has a nontrivial degree fall is the degree of regularity.

A great deal of literature is devoted to finding bounds for the degree of
regularity of quadratic systems, see [22–24,27]. In practice one can find a lower
bound for the degree of regularity by studying toy examples of schemes and
seeing how the degree of regularity changes as the parameters change.

Such an analysis for ZHFE is quite straight forward. As mentioned in [11]
the degree of regularity for toy ZHFE systems matches exactly the degree of
regularity for random systems of equations of the same size, at least for relatively
small instances. Considering the connection between Q-rank and the degree of
regularity as derived in [22–24,27], we conclude that a thorough Q-rank analysis
of ZHFE will verify the security of the scheme against algebraic attacks. We
perform this analysis in Sect. 5.4.

5.2 Differential Symmetric

As shown in [25], symmetric relations involving the discrete differential of a cen-
tral map can induce a symmetry in the public key of a multivariate cryptosystem.
In certain circumstances, these relations can reveal properties of the extension
field structure, and weaken the public key. Indeed one can easily turn the attack
on SFLASH of [25], which converts an instance of C∗− into a compatible instance
of C∗, into a direct key-recovery attack utilizing the derived representation of
elements of the extension field.

As shown in [13] the maps inducing a linear differential symmetry for C∗

schemes are precisely those corresponding to multiplication by an element of
the extension field. Thus one may rightfully expect that nontrivial symmetric
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relations on the differential of a central map are uncommon. It is shown, however,
in [13] and [15] that nontrivial symmetries can and often do exist even for cases
as general as HFE.

As a specific example of the phenomenon of differential symmetries for gen-
eral polynomials, consider the map f(x) = xq3+q2

+xq2+1 over a degree 6 exten-
sion of the characteristic 2 field Fq. One can easily verify that the general linear
symmetry structure, defined as

Df(La, x) + Df(a, Lx) = ΛLDf(a, x),

is satisfied by the selection

Lx = αxq4
+ αxq + βx and ΛLx = 0,

where αq3
= α and βq = β. Thus there is a 4-dimensional Fq-subspace of linear

maps L satisfying the above differential symmetric relation for some choice of
ΛL, while the space of all Fq-linear maps from the extension to itself is only
of dimension 36. Consequently, a hypothetical cryptosystem based on this map
would be vulnerable to an attack removing the minus modifier, similar to [25],
among other weaknesses. Quite specifically, the distillation procedure described
in [25] is effective in this instance. We note that this scenario is by no means
limited to toy examples such as this one or even instances with Q-rank one; thus,
the verification of the absence of differential symmetries is an important task for
any multivariate cryptosystem, particularly those including the minus modifier.

In analyzing the differential symmetric properties of ZHFE, we may directly
analyze the public key or we may study the differential of the Ψ map. We consider
both interlinked cases explicitly.

The public key P consists of 2n polynomials. The defining characteristic of
these polynomials is that P = T (f0||f1)U . Thus P does not behave like a random
system. There exists a low degree cubic map Ψ such that

Ψ(Ux) =(Ux)(L00(T−1)1P (x) + L01(T−1)2P (x))

+ (Ux)q(L10(T−1)1P (x) + L11(T−1)2P (x)).
(3)

We note that (T−1)iP (x) = fi(Ux). We may now implicitly differentiate this
equation obtaining

DΨ(Ua,Ux) =(Ua)(L00f0(Ux) + L01f1(Ux))
+ (Ua)q(L10f0(Ux) + L11f1(Ux))
+ (Ux)(L00Df0(Ua,Ux) + L01Df1(Ua,Ux))
+ (Ux)q(L10Df0(Ua,Ux) + L11Df1(Ua,Ux)).

(4)

The above is a biquadratic relation in a and x, and as such doesn’t immediately
reveal a computational way to recover information about the hidden structure
of P . To convert this relation into a form in which we can apply linear algebra
techniques we require a second differential. For more information on a more
general theory of discrete differential equations, see [28].
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Since the differential is symmetric, we get the same answer whether we dif-
ferentiate with respect to a or to x.

D2Ψ(Ua,Ub, Ux) =(Ua)(L00Df0(Ub, Ux) + L01Df1(Ub, Ux))
+ (Ua)q(L10Df0(Ub, Ux) + L11Df1(Ub, Ux))
+ (Ub)(L00Df0(Ua,Ux) + L01Df1(Ua,Ux))
+ (Ub)q(L10Df0(Ua,Ux) + L11Df1(Ua,Ux))
+ (Ux)(L00Df0(Ua,Ub) + L01Df1(Ua,Ub))
+ (Ux)q(L10Df0(Ua,Ub) + L11Df1(Ua,Ub)).

(5)

Now, due to the fact that Ψ is cubic with a small degree bound, D2Ψ is a
cubic form of low rank. In fact, the existence of linear maps U and Lij(T−1)j

such that Eqs. (3) and (5) hold while D2Ψ has low cubic rank is the defining
characteristic of ZHFE.

In spite of the existence of this structure, it is unclear how to proceed. One
might consider a cubic version of the rank attack from [29], however, the selection
of the maps Lij(T−1)j corresponds to solving a minrank problem on a 3-tensor,
D2Ψ . Though there is a possibility that the instances of the 3-tensor rank prob-
lem arising from this differential equation may lie in a class which are easy to
solve, the general 3-tensor rank problem is known to be NP -hard and there does
not seem to be any evidence that these instances are any more structured than
arbitrary instances of the same rank.

5.3 Differential Invariant

As exemplified in [12] and [30], invariant relations on the differential of a public
key can be exploited in key recovery. Although we may analyze the differential
invariant structure of the public key of ZHFE directly, there is not in general
any nontrivial invariant due to the fact that the structure of ZHFE is hidden
in the cubic Ψ map. A couple of generalizations of differential invariants of
quadratic functions are derived for higher q-degree functions in [28]. The most
relaxed generalization for cubics is given in the following definition.

Definition 2. A differential invariant of a cubic function f is a pair of subspaces
V1, V2 ⊆ k for which there exists a subspace W with dim(W ) ≤ mindim(Vi) such
that for all A ∈ spanD2fi, we have D2f(a, b, x) = 0 for all a ∈ V1, b ∈ V2 and
x ∈ W⊥.

In the quadratic case, a differential invariant could be seen as a subspace
of k on which Df simultaneously acts in every coordinate the same way, that
is, always sending that subspace to the same space of linear forms of no larger
dimension. In the cubic case we can realize a differential invariant as a subspace
V1 of k and a subspace (defined by V2) of induced bilinear forms from D2f
each element of which maps V1 to the same space of linear forms, W , of no
larger dimension. The minimum condition on the dimension of W is due to the
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symmetry of D2f ; we could equivalently consider the subspace V2 of k and the
subspace of bilinear forms from D2f induced from V1.

It is straightforward to show that the Ψ map of ZHFE has no differential
invariant structure. Following the technique of [15], without loss of generality,
due to the symmetry, we let â ∈ V1, b̂, x̂ ∈ V2, and let S be a surjective linear
map from V2 to W . The existence of a differential invariant implies the equation

0 = D2Ψ(â, b̂, Sx̂)

=
∑

0≤i,j,l<n

qi+qj+ql≤D

αijlâ
qi

b̂qj

(Sx̂)ql

. (6)

Since by symmetry D is much smaller than dim(V1) or dim(V2), (6) is already
reduced modulo the minimal polynomial MV1(a) of V1 as an element in k[a] and
modulo the minimal polynomial MV2(b) of V2 as an element in k[b]. Thus the col-
lection {â, âq, . . . , âqd1

, b̂, . . . , b̂qd2 } is independent in k[a, b]/〈MV1(a),MV2(b)〉.
Therefore, we obtain the equations

0≤l<n∑

0≤i,j<n

qi+qj+ql≤D

αijl(Sx̂)ql

= 0.

We then obtain the analogous result of [15]; statistically, S must be the
zero map on V2, contradicting the nontriviallity of the differential invariant.
Furthermore, we also obtain the result that if any power of q is unique there is
no nontrivial differential invariant.

5.4 Q-Rank

A further attack vector for ZHFE is to perform a minrank attack using the
Kipnis-Shamir methodology of [20] and the improved version in [21]. The attack
searches for a low rank k-linear combination of the differentials of the public
key. The general minrank problem is known to be NP-complete, see [31] but in
practice the complexity depends on the lowest rank map in the space.

It was shown in [21] that the smallest such rank is equal to the smallest
Q-rank of the image of the public key under any full rank Fq-linear map. Notice
that for (1) to hold we must have that the xqi+qj

term in L00f0 + L01f1 to have
coefficient 0 for qi + qj + 1 > D and i, j �= 1. This restriction induces a relation
on the quadratic representations of L00f0 and L01f1. Specifically, if

L00f0(x) + L01f1(x) =

⎡

⎢
⎢
⎢
⎣

x
xq

...
xqn−1

⎤

⎥
⎥
⎥
⎦

T ⎡

⎢
⎢
⎢
⎣

α00
α01
2 · · · α0(n−1)

2
α01
2 α11 · · · α1(n−1)

2
...

...
. . .

...
α0(n−1)

2

α1(n−1)

2 · · · α(n−1)(n−1)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x
xq

...
xqn−1

⎤

⎥
⎥
⎥
⎦

,
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then αij = 0 for qi + qj > D and i, j �= 1. Thus L00f0 + L01f1 has the form
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α00
α01
2

α02
2 · · · α0D

2 0 · · · 0
α01
2 α11

α12
2 · · · α1D

2

α1(D+1)

2 · · · α1(n−1)

2
α02

α12
2 α22 · · · α2D

2 0 · · · 0
...

...
...

. . .
...

...
. . .

...
α0,D
2

α1D
2

α2D
2 · · · αDD 0 · · · 0

0 α1(D+1)

2 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
0 α1(n−1)

2 0 · · · 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and has rank no more than �logq(D)� + 2. Hence, if Lij are nonsingular, the
Q − rank of f0||f1 is bounded by �logq(D)� + 2.

In spite of the alarming relation derived above, Q-rank does not appear
to be a weakness for ZHFE when one selects Lij to have reasonable corank.
One can check that for small r, insisting that Lij have corank r increases the
possible Q-rank of f0||f1 by 2r. Also, having Lij with even moderately large
corank doesn’t produce a non-negligible probability of decryption ambiguity due
to the zero expectation of the dimension of the intersection of the kernels of
Lij . Furthermore, recall that we have at least n degrees of freedom over k in
selecting f0 and f1 for any choice of Lij . Thus the Kipnis-Shamir attack, which
is exponential in the Q-rank of the scheme, is trivially thwarted with simple
parameter restrictions, though we note that the lack of such restriction on the
rank of Lij in [11] is apparently an oversight.

5.5 Equivalent Keys

In [32], the question of the number of equivalent keys for multivariate cryptosys-
tems is explored. This question is quite relevant for ZHFE, as well, since there
can clearly be multiple private keys allowing one to decrypt a public key. The
danger in this vein would be if there is insufficient entropy in public keys due to
massive redundancy in private keys.

To analyze the number of equivalent keys, we first determine the number of
possible pairs f0, f1 satisfying (1) for a fixed Ψ and Lij . As mentioned in Sect. 4,
a map of the form Ψ has n2 coefficients over k, and due to the degree bound
only s of these can be nonzero. Thus with Lij fixed, we have n2 + n unknown
coefficients for f0 and f1 over k, and so we have n2 +n− (n2 −s) = n+s degrees
of freedom in choosing the pair f0, f1 for a fixed private key.

Next we consider the same relation with f0, f1 fixed. For specificity, let fi(x) =∑
0≤v≤w<n αivwxqv+qw

. Given the existence of Lij and Ψ , we have the relation

Ψ(x) =
1∑

t=0

n−1∑

i=0

∑

0≤v≤w<n

l0tiα
qi

tvwxqv+i+qw+i+1

+
1∑

t=0

n−1∑

i=0

∑

0≤v≤w<n

l1tiα
qi

tvwxqv+i+qw+i+q,

(7)
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where lijl are the unknown coefficients of the linearized polynomial form of Lij .
There are implicitly n2 − s linear relations on the 4n unknown coefficients of
Lij , as well as the rank restrictions on these maps; thus, for n > 4 we expect an
unique solution, and thus an unique Ψ as well.

Given a public key, there is a fixed relationship P = T (f0||f1)U . We note
that different choices of T can be accommodated by different choices of Lij by
(3). In contrast, statistically there is only one selection of U which maintains
the structure of the key. Thus M(f0||f1), Lij(M−1)i, Ψ form distinct equivalent
private keys for all invertible M . One can see this result as indicating that the
security of ZHFE is more closely related to the IP1S problem than the IP
problem.

We therefore have roughly q4n2
equivalent private keys for any given public

key. Since there are q5n2+sn possible choices of private keys, there are on the order
of qn2+sn nonequivalent public keys. Consequently, there is sufficient entropy in
public keys.

6 ZHFE Key Modification, ZHFE−

6.1 Design

As mentioned in the previous section, there are many degrees of freedom in
selecting f0 and f1, even when Ψ and Lij for (i, j) ∈ {0, 1}2 are fixed. These
facts naturally lead to the question of whether it is possible to develop a “minus”
modification of ZHFE preserving the essential injectivity of the original scheme.

Analogous to the analysis in the last section, we compute the degrees of
freedom in selecting f0 and f1 when the Lij for (i, j) ∈ {0, 1}2 are fixed and
when the degree bound for Ψ is fixed. Because we are decreasing the dimension
of f0 or f1 or both, we compute over Fq.

Recall from Sect. 5 that there are n2 possible nonzero coefficients of a cubic
polynomial of the form of Ψ over k, and that with only the degree bound restric-
tion, n2 − s of these must be zero. Expressing this fact over Fq, we see that
there are n3 − sn linear constraints. Considering the maps Li,j to be of corank
c, we require an additional 2cn − 2n relations to be satisfied, for a total of
n3 − sn + 2cn − 2n linear constraints. Allow the total combined output dimen-
sion of f0 and f1 over Fq to be n+t. Since there are

(
n
2

)
+n =

(
n+1
2

)
homogeneous

quadratic monomials in each coordinate, there are (n + t)
(
n+1
2

)
coefficients in

our linear system.

(n + t)
(

n + 1
2

)

≥ n3 − sn + 2cn − 2n

(n + 1)t ≥ n2 − n − 2s + 4c − 4.

For realistic values of s, it is possible to get t as low as n−2, and n−1 is always
possible. Thus we consider removing two public equations. For symmetry and
simplicity, we choose to remove one coordinate from each of f0 and f1, making
them both maps from F

n
q to F

n−1
q .
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Remark 1. This technique makes ZHFE− much more similar to small field
schemes. The central map is no longer defined as a pair of maps over the exten-
sion field.

Generation of the central map proceeds exactly as in ZHFE, with the excep-
tion that the linear maps Lij are now representable as n× (n− 1) matrices with
entries in Fq. As with ZHFE we identify the image of Lij with k to obtain
relation (1).

Inversion of the central map proceeds exactly as with ZHFE. Now since
both f0 and f1 map into a smaller space, there is a possibility of decryp-
tion failure beyond that of ZHFE. Under the heuristic that f0 and f1 are
random quadratic maps from F

n
q to F

n−1
q , one computes the probability that

f0(y)||f1(y) = f0(x)||f1(y) for a fixed x to be q2−2n. While f0 and f1 are not
random, we expect this quantity to be correct, and therefore the probability of
decryption failure is increased by q2−2n. Assuming parameters similar to ZFHE,
this probability is roughly 2−300, which is well within reason.

6.2 Analysis

The differential analysis from the previous section carries over nearly verbatim
to the case of ZHFE−. In particular, the 3-tensor structure of the differen-
tial remains essentially the same, though over a slightly diminished space. We
therefore conclude that ZHFE− is as secure as ZHFE against a differential
symmetric or invariant attack.

Further, the degree of regularity of a subset of a system of relations is bounded
below, as noted in [22], by the degree of regularity of the entire system. Thus, in
comparison with any full rank ZHFE scheme of the same Q-rank, the degree
of regularity is at least as high, and so once again the resistance to algebraic
attacks and attacks in the Kipnis-Shamir model is reduced to Q-rank analysis.

Unlike the differential security criteria, Q-rank is not monotone with respect
to the composition of projections, a fact which can be seen by observing that
g(x) ∈ k[x], where k is an even degree n extension of Fq, defined by g(x) =
x2qn/2

+ x2 clearly has Q-rank 2, whereas the composition with the projection
π(x) = xqn/2 − x produces

π(g(x)) = (x2qn/2
+ x2)qn/2 − (x2qn/2

+ x2)

= x2qn

+ x2qn/2 − x2qn/2 − x2 = 0.

This strange result is due to the fact that g(x) maps into a subfield L of k of
degree n/2 over Fq, and π is the minimal polynomial of L. To verify that this
phenomenon does not preclude the use of the minus modifier, we find a bound
on the reduction of Q-rank for ZFHE−.

First, we note that all options for removing two equations are equivalent
with respect to Q-rank. Therefore our specification that the dimension of each
fi for i ∈ {0, 1} is reduced by one suffices for Q-rank analysis. In this case, the
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minus modifier projects fi onto a hyperplane. There is a basis in which this
codimension one projection is given by π(x) = xq − x. Since Q-rank is invariant
under isomorphism, we may take f̃i isomorphic to fi with respect to this basis.

Relative to this basis we may view the operation of projection on the associ-
ated matrices to be raising each element to the power q, shifting one unit down
and to the right, and subtracting the original, thusly:

π

⎡

⎢
⎣

α11 α12 · · · α1,n

...
...

. . .
...

αn,1 αn,2 · · · αn,n

⎤

⎥
⎦ =

⎡

⎢
⎣

αq
n,n − α11 αq

n,1 − α12 · · · αq
n,n−1 − α1,n

...
...

. . .
...

αq
n−1,n − αn,1 αq

n−1,1 − αn,2 · · · αq
n−1,n−1 − αn,n

⎤

⎥
⎦ .

We are assured that this operation does not reduce the rank by more than one
and thus the Q-rank of the public key is reduced by at most two. Since we
can control the Q-rank via selection of Lij , we conclude that ZHFE− is secure
against the Kipnis-Shamir minrank attack.

6.3 Suggested Parameters

In this section we propose practical parameters for a realistic implementation of
ZHFE−. Since the most costly operations, encryption and decryption, utilize
algorithms identical to those of ZHFE, and due to the tightness between the
security analyses of the two schemes, we recommend parameters similar to those
of the original scheme.

In an earlier version of this manuscript, we suggested as a parameter set
(q, n,D, r, c) = (7, 55, 105, 2, 6), where q is the size of the base field, n is the degree
of the extension k over Fq, D is the degree bound for Ψ (in this case 105 = 2∗72+
7), r is the number of equations removed, and c is the corank of the parameters
Lij , having non-intersecting kernels. In discussions with the authors of [33], it
became apparent that we overlooked the added restrictions from insisting on
corank 6 matrices Lij . Furthermore, we may have been overcautious about the
risk of the Q-rank property of ZHFE. Any linear system derived from the Q-
rank property is inherently overdefined, and so we dare to be more aggressive.
Based in part on their analysis, we propose new parameters for our scheme:

108 − ZHFE− : (q, n,D, r, c) = (7, 55, 393, 2, 3).

The experiments of the authors of [33] support the viability of these parameters
while retaining the significant advance in key generation efficiency even in the
minus case.

These parameters correspond to a public key Q-rank of approximately 6,
and a degree of regularity of 9 (est.). Given the overdefined nature of the Q-rank
attacks and the above analysis verifying resistance to all other known attacks, we
conclude that these parameters achieve a security level greater than 80 bits. The
performance and security data are essentially the same as the original scheme
with Lij of the same moderate corank, 3.

The main differences between ZHFE− and its progenitor with the same
parameters is key size and encryption time. Since a plaintext is in F

55
7 , its length
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is 165 bits. The ciphertext lies in F
2∗55−2
7 and is thus 324 bits in length. Thus the

public key size is determined by the storage requirements of 108 equations in 55
variables over F7. This quantity is roughly 63.1K. In comparison, the public key
size of 110 − ZHFE(7, 55, 105, 6) is 64.3K, which is about 2% larger. Finally,
since ZHFE− has about 2% fewer public equations than ZHFE, encryption is
about 2% faster.

7 Conclusion

For many years, multivariate cryptography has had effective tools for building
secure and efficient post-quantum signature schemes, but has had much less
success for encryption. New schemes such as ZHFE and ABC are promising
candidates to fill that gap. Nonetheless, being trapdoor constructions, these
schemes can only be trusted after a detailed security analysis.

This work provides much of the security analysis needed to establish trust
in the ZHFE construction. In addition to the existing analysis of the difficulty
of applying direct algebraic attack to ZHFE, we analyze the scheme’s security
against differential attacks, specify parameters precluding rank attacks, and ver-
ify resistance to IP-based equivalent-key attacks. This analysis serves to elucidate
the structure of the ZHFE public key, but does not break the cryptosystem,
reinforcing the likelihood that the scheme is indeed secure.

The elucidation of the structure of ZHFE also allows us to propose the mod-
ified scheme ZHFE−. ZHFE− modifies the core map of ZHFE and thereby
reduces its key size, while still remaining secure with respect to the attacks ana-
lyzed above. While the reduction in key size is relatively small, it opens up the
possibility of using Ding’s idea of constructing an injective multivariate encryp-
tion map whose codomain is much larger than its domain, without requring the
dimension of the codomain to exceed that of the domain by a factor of two or
more, as do all existing schemes that use this approach.
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Abstract. In this paper we present a new algorithm to construct the
keys of the multivariate public key encryption scheme ZHFE. Construct-
ing ZHFE’s trapdoor involves finding a low degree polynomial of q-
Hamming-weight-three, as an aid to invert a pair of q-Hamming-weight-
two polynomials of high degree and high rank. This is done by solving
a large sparse linear system of equations. We unveil the combinatorial
structure of the system in order to reveal the hidden structure of the
matrix associated with it. When the system’s variables and equations
are organized accordingly, an almost block diagonal shape emerges. We
then exploit this shape to solve the system much faster than when ZHFE
was first proposed. The paper presents the theoretical details explaining
the structure of the matrix. We also present experimental data that con-
firms the notable improvement of the key generation complexity, which
makes ZHFE more suitable for practical implementations.

Keywords: Multivariate public key cryptography ·Encryption schemes ·
ZHFE · Block diagonal matrix

1 Introduction

The eventual construction of large quantum computers has triggered the creation
and development of research in Post-Quantum Cryptography (PQC) [1]. PQC
is the branch of cryptography that is dedicated to the study of cryptosystems
that have the potential to resist quantum computer attacks. If such comput-
ers were built, Shor’s algorithm could be used to factorize integers and solve
the Discrete Logarithm Problem (DLP) in polynomial time [14]. This scenario
would annihilate most of our current security protocols, causing a worldwide
catastrophe.

Multivariate Public Key Cryptography (MPKC) [4] is an appealing Post-
Quantum alternative. The public key in an MPKC is usually a set of multivariate
quadratic polynomials over a finite field. A direct attack is to solve a system of
multivariate quadratic equations. Solving a random such system is an NP-hard
problem [8], and at the moment there is no known quantum algorithm that can
solve this problem efficiently. On the other hand, the computations on MPKC’s
are usually very efficient.
c© Springer International Publishing Switzerland 2016
T. Takagi (Ed.): PQCrypto 2016, LNCS 9606, pp. 213–232, 2016.
DOI: 10.1007/978-3-319-29360-8 14
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Although efficient and secure MPK signature schemes do exist (cf. [5]), no
MPK encryption scheme has prevailed. One of the most researched alternative
for PKC encryption is the HFE cryptosystem, proposed in 1996 by Patarin
[10]. The idea behind HFE is to hide a core low degree polynomial over a large
field by means of two invertible affine transformations over a small field. The
composition of these maps, via a vector space isomorphism, yields the public
key polynomials. The restriction on the core polynomial degree is necessary to
make decryption possible. However, this restriction introduces a weakness in
HFE exploited by Faugère and Joux [7] to break HFE over the binary field
through a direct algebraic attack. The case of odd characteristic remained open
until Faugère et al. [2] improved the Kipnis-Shamir attack [9] and broke some
related HFE schemes.

Porras et al. [13] recently proposed an alternative to avoid both the direct
algebraic attack [6] and the Kipnis-Shamir attack [2]. They proposed a reduction
method to construct and invert pairs of q-Hamming-weight-two polynomials of
high degree and high rank. Using these polynomials they introduced a new family
of multivariate trapdoor functions. The trapdoor information includes a low
degree polynomial Ψ of q-Hamming weight three, used to invert the multivariate
trapdoor function consisting of two polynomials F and F̃ of q-Hamming weight
two. The polynomial Ψ is a linear combination of Frobenius powers of F and F̃
lifted to q-Hamming weight three by multiplying by X and Xq. Ψ can be found
by solving a large sparse linear system of equations resulting from vanishing the
high degree terms.

Based on the new trapdoor function, they proposed an HFE-type encryption
scheme named ZHFE [12]. They presented theoretical and practical evidence
that supports their claim that ZHFE resists the main attacks against this kind
of schemes, namely, the direct algebraic attack [6] and the Kipnis-Shamir attack
[2]. They also showed that encryption and decryption speed are comparable with
their counterparts in the HFE challenge 1 [10]. The main drawback of ZHFE is
that the vanishing equation system is very large. Solving it directly requires a
lot of time and memory. This situation represents an obstacle to consider ZHFE
for practical security protocols.

Our Contribution

In this paper we propose a new method for generating the ZHFE private key
efficiently. The main idea of this method is to conveniently sort the variables and
equations of the vanishing equation system coming from the reduction method
introduced in [12,13], in order to unveil its hidden structure. With this suitable
order, the matrix associated with this system presents a shape close to a block
diagonal matrix, as shown in Fig. 1.

The math required to expose the matrices’ hidden structure is important
in its own right. We carefully explain the combinatorial structure of Frobenius
powers of q-Hamming-weight-two univariate polynomials. We explain how they
match and mismatch when raised to q-Hamming weight three through multipli-
cation by q-Hamming-weight-one monomials.
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Fig. 1. Hidden structure of the matrix associated with the system S.

Understanding the vanishing equation system leads in the first place to a
direct and fast algorithm to construct its matrix. Moreover, we propose an algo-
rithm to solve the vanishing equation system very efficiently. More precisely, the
algorithm finds an element in the null space of an almost block diagonal matrix
over a finite field. We improved the asymptotic complexity from O(n3ω) in a
naive approach to O(n2ω+1), where n is the number of variables of the public
ZHFE polynomials and 2 ≤ ω ≤ 3 is a constant that depends on the specific
Gaussian elimination algorithm used. Moreover, for practical parameters, our
experiments show that the proposed key generation algorithm is much faster
than the one proposed in [12,13]. We reduced key generation time from a couple
of days to only a few minutes.

Another important contribution of this paper is that the new method for
solving the vanishing equation system does not require as much memory as the
method used in [12,13]. This is because we do not need to work with the com-
plete matrix of Theorem 2, but instead we now work with each block separately.
Moreover, once a block is used, it can be deleted, thus in total we are significantly
reducing the memory usage.

All these improvements turn ZHFE into an interesting alternative as a Post-
Quantum public key encryption scheme.

The paper is organized as follows. In Sect. 2, we review the main features of
the ZHFE encryption scheme. In Sect. 3, we present the new method for solving
the vanishing equation system, and in Sect. 4, we discuss the complexity of the
new method and present experimental data that confirms the efficiency of the
new algorithm. In Sect. 5 we discuss some remarks about security, and we finalize
giving some conclusions in Sect. 6.



216 J.B. Baena et al.

2 The ZHFE Encryption Scheme

The authors in [13] introduced a special reduction method to construct new can-
didates for multivariate trapdoor functions using q-Hamming-weight-two poly-
nomials of high degree and high rank. The idea of their construction is as follows.
Let n be a positive integer, F a finite field of size q, and g(y) ∈ F[y] a degree
n irreducible polynomial. Consider the field extension K = F[y]/ (g(y)) and the
vector space isomorphism ϕ : K → F

n defined by ϕ
(
u1 + u2y + . . . + unyn−1

)
=

(u1, u2, . . . , un). Take two HFE polynomials over K of the form

F (X) =
∑

aijX
qi+qj

+
∑

biX
qi

+ c, and

F̃ (X) =
∑

ãijX
qi+qj

+
∑

b̃iX
qi

+ c̃.

Denote by F0, F1, · · · , Fn−1 the Frobenius powers of F , and by F̃0, F̃1, · · · , F̃n−1

the Frobenius powers of F̃ . Let Ψ0 and Ψ1 be the q-Hamming-weight-three poly-
nomials defined by

Ψ0 = X
(
α1F0 + · · · + αnFn−1 + β1F̃0 + · · · + βnF̃n−1

)
, and

Ψ1 = Xq
(
αn+1F0 + · · · + α2nFn−1 + βn+1F̃0 + · · · + β2nF̃n−1

)
.

Fix a positive integer D such that every univariate polynomial equation
over K of degree less than D is solved efficiently using Berlekamp’s algorithm.
Choose the scalars αi, βi ∈ K uniformly at random. Then, determine coeffi-
cients aij , bi, c, ãij , b̃i, c̃ ∈ K, such that the q-Hamming-weight-three polynomial
Ψ = Ψ0 + Ψ1 has degree less than D. This leads to a sparse linear equation
system over the small field F with more variables than equations and thus with
nontrivial solutions. This vanishing equation system has about n3 variables, so
finding its solution via the Gaussian elimination process has complexity O(n3ω),
where 2 ≤ ω ≤ 3 is a constant that depends on the specific Gaussian elimination
algorithm used.

The multivariate trapdoor function is built in a similar way as the HFE
public key is constructed. Choose G = (F, F̃ ) as the core map, and then select
two invertible affine transformations S : F

n → F
n and T : F

2n → F
2n. The

multivariate trapdoor function is the map P : Fn → F
2n given by

P (x1, · · · , xn) =
(
T ◦ (ϕ × ϕ) ◦ G ◦ ϕ−1 ◦ S

)
(x1, · · · , xn).

Porras et al. used this multivariate trapdoor function to introduce a new
encryption scheme named ZHFE [12]. The ZHFE public key includes the field
F and its structure, and the trapdoor function P (x1, · · · , xn). The private key
includes the low degree polynomial Ψ , the two invertible affine transformations
S and T , and the scalars α1, · · · , α2n, β1, · · · , β2n. The inversion of the core
map G is accomplished by means of the low degree polynomial Ψ , the scalars
α1, · · · , α2n, β1, · · · , β2n, and Berlekamp’s algorithm.
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3 New Method

In this section we describe a new method to build the function Ψ necessary to
create the private key in ZHFE. First, we enumerate adequately the coefficients
of the polynomial F and F̃ in order to show the hidden structure of the matrix
associated with the vanishing equation system. Next, we propose a method to
solve efficiently the structured vanishing equation system.

3.1 Structure of the Matrix

The vanishing equation system arises from equating to zero the coefficients of
terms in Ψ = Ψ0 + Ψ1 of degree greater than or equal to D. We carefully explain
the combinatorial structure of the Frobenius powers of F and F̃ . We explain
how they match and mismatch when raised to q-Hamming-weight-three through
multiplication by q-Hamming-weight-one monomials.

We will consider the case when n is even. The case when n is odd is similar
and even easier. Our analysis focuses on the q-Hamming-weight-three terms of
Ψ , because q-Hamming-weight-two terms lead to and independent and much
simpler system. For k ∈ {0, . . . , n

2 } let Ak be the subset of Zn × Zn

Ak :=

{
{(i, (k + i) mod n)| 0 ≤ i < n} if 0 ≤ k < n

2 ,

[5pt]
{
(i, k + i)| 0 ≤ i < n

2

}
if k = n

2 .

Let A be the union of the A′
is. Each element (i, j) from A represents the

q-Hamming-weight-two term Xqi+qj

of an HFE polynomial. Note that each pos-
sible q-Hamming-weight-two term Xqi+qj

appears on a single Ai. Moreover, if
(i, j) ∈ A then (j, i) /∈ A.

Consider two HFE polynomials F and F̃ . We denote by Zh the coefficient of
Xqi+qj

in F or F̃ , where h ∈ Z
+ depends on (i, j) and on which polynomial the

term ZhXqi+qj

belongs to. We aim to sort these terms according to the partition
{Ak}n

2
k=0 of A. For (i, j) ∈ Ak, the coefficient of Xqi+qj

in F will be indexed
by 2nk + i so that they range from 2nk to 2nk + n − 1, and we will index the
coefficient of Xqi+qj

in F̃ by 2nk + n + i so that they range from 2nk + n to
2nk + 2n − 1.

Similarly, we index the coefficients of the q-Hamming-weight-one monomials
by setting Zn(n+1)+i and Zn(n+1)+n+i to be the coefficients of Xqi

in F and F̃ ,
respectively. With the terms indexed in this fashion, F and F̃ are as follows

F (X) =

n
2∑

k=0

⎛

⎝
∑

(i,j)∈Ak

Z2nk+iX
qi+qj

⎞

⎠ +
n−1∑

i=1

Zn(n+1)+iX
qi

+ C,

F̃ (X) =

n
2∑

k=0

⎛

⎝
∑

(i,j)∈Ak

Z2nk+n+iX
qi+qj

⎞

⎠ +
n−1∑

i=1

Zn(n+1)+n+iX
qi

+ C̃.
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For 0 ≤ k ≤ n
2 , we define the k−th part of F as

kF (X) :=
∑

(i,j)∈Ak

Z2nk+iX
qi+qj

.

For (i, j) ∈ Ak, the Frobenius powers of Xqi+qj

mod
(
Xqn − X

)
fall within a

set indexed by Ak, moreover, the k−th part of F q�

is equal to the k−th part
of F , raised to the power q�. In order to prove this, we introduce the following
definition.

Definition 1. For (i, j) ∈ Ak, and � ∈ Zn we define

i � � :=
{

i − � mod n if k �= n
2

i − � mod n
2 if k = n

2 .

Proposition 1. For 0 ≤ � ≤ n − 1, k

[
F (X)q�

]
= [kF (X)]q

�

.

Proof.

[kF (X)]q =

⎛

⎝
∑

(i,j)∈Ak

Z2nk+iX
qi+qj

⎞

⎠

q

mod (Xqn − X)

=

⎛

⎝
∑

(i,j)∈Ak

Zq
2nk+iX

qi+1+qj+1

⎞

⎠ mod (Xqn − X)

=
∑

(i,j)∈Ak

Zq
2nk+(i�1)X

qi+qj

.

So, by iterating this � times, we obtain

k

[
F (X)q�

]
=

∑

(i,j)∈Ak

Zq�

2nk+(i��)X
qi+qj

= [kF (X)]q
�

.

Using the notation for the �−th Frobenius power of F as F�, we have k[F�] =
[kF ]�. Since the Ak

′s are mutually disjoint, if 2 < q and (i, j) ∈ Ak, the only
term in F� that has the monomial Xqi+qj

is Zq�

2nk+(i��)X
qi+qj

. We thus get the
following result.

Corollary 1. If (i, j) ∈ Ak and s ∈ {0, 1}, then the coefficient of Xqs+qi+qj

in
Ψs is

n−1∑

�=0

αns+�+1Z
q�

2nk+(i��) +
n−1∑

�=0

βns+�+1Z
q�

2nk+n+(i��).

This corollary determines the coefficients of the q-Hamming-weight-three
monomials in Ψ0 and Ψ1. Since Ψ = Ψ0 + Ψ1, in order to determine the coef-
ficients of the q-Hamming-weight-three monomials of Ψ , we only need to find
the q-Hamming-weight-three monomials that Ψ0 and Ψ1 share. The following
lemma gives the conditions under which this holds
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Lemma 1. Assume 2 < q, (i, j) ∈ Ak and (s, t) ∈ A.

1. For 0 ≤ k < n
2 , q0 + qi + qj = q1 + qs + qt if and only if

(a) i = 1, s = 0 and j = t, or
(b) j = 1, t = 0 and i = s.

2. For k = n
2 , q0 + qi + qj = q1 + qs + qt if and only if i = 1, s = j = n

2 + 1 and
t = 0.

Proof. Throughout this proof we will use the uniqueness of the q-ary expansion
of integers. Suppose q0+qi+qj = q1+qs+qt. If i = j, then q0+2qi = q1+qs+qt,
but this is absurd since q > 2 and q1 does not appear in the q-ary expansion
of q0 + 2qi. Now, if i �= j, the uniqueness of the q-ary expansion of q0 + qi + qj

shows us that one of the following cases must hold:

1. i = 1, s = 0 and j = t
2. j = 1, t = 0 and i = s
3. i = 1, t = 0 and j = s
4. j = 1, s = 0 and i = t.

Suppose 0 ≤ k < n
2 . We now show that cases 3 and 4 are not possible.

Suppose i = 1, t = 0 and j = s, then (s, 0) ∈ A and therefore s > n
2 , but j = s,

then (1, j) ∈ Ak with 0 ≤ k < n
2 and j > n

2 , but this is a contradiction since in
this case n

2 > k = j − 1 > n
2 − 1, so case 3 is not possible. Now, if case 4 holds,

i.e., if j = 1, s = 0 and i = t, proceeding as before we see that (0, t) ∈ A and so
t ≤ n

2 , but then (i, 1) ∈ Ak with 0 ≤ k ≤ n
2 and i = t ≤ n

2 , which is absurd since
(1, i) ∈ Ak (note this also shows that case 4 is not possible when k = n

2 ). It is
straightforward to see that cases 1 and 2 are actually achievable.

Now suppose k = n
2 . We claim that only case 3 is possible. Indeed, case 4 is

not possible as we pointed out in the previous paragraph. Suppose case 1 holds,
then i = 1, s = 0 and j = t and therefore (1, j) ∈ An

2
, then j = n

2 + 1 = t so
(
0, n

2 + 1
) ∈ A, which is absurd since

(
n
2 + 1, 0

) ∈ An
2 −1 ⊆ A. If case 2 holds,

i.e., j = 1, t = 0 and i = s, we would then have (i, 1) ∈ An
2
, but this is absurd

since there is no element of this form in An
2
. Finally, the only possibility left is

case 3, which is only achievable by taking i = 1, s = j = n
2 + 1 and t = 0.

We can now precisely describe the coefficients of the q-Hamming-weight-three
monomials in Ψ .

Proposition 2. If 2 < q and (i, j) ∈ Ak, then the coefficient of Xq0+qi+qj

in Ψ
is one of the following:

(i)
1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k+p)+((i−p)��) + βpn+�+1Z
q�

2n(k+p)+n+((i−p)��)

)
]

(ii)
1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k−p)+((n
2 p+1)��) + βpn+�+1Z

q�

2n(k−p)+n+((n
2 p+1)��)

)
]
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(iii)
1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k−p)+(i��) + βpn+�+1Z
q�

2n(k−p)+n+(i��)

)
]

(iv)
n−1∑

�=0

α�+1Z
q�

2nk+(i��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(i��)

Moreover, (i) holds if i = 1 and k �= n
2 , (ii) holds if i = 1 and k = n

2 , (iii) holds
if j = 1 and (iv) holds otherwise.

Proof. Let (i, j) ∈ Ak. Suppose at first that i = 1 and k �= n
2 . Note that in this

case (0, j) ∈ Ak+1. By Corollary 1, the coefficient of Xq0+q1+qj

in Ψ0 is

n−1∑

�=0

α�+1Z
q�

2nk+(1��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(1��).

By Lemma 1, the only monomial in Ψ1 equal to Xq0+q1+qj

is Xq1+q0+qj

,
whose coefficient by Corollary 1 is

n−1∑

�=0

αn+�+1Z
q�

2n(k+1)+(0��) +
n−1∑

�=0

βn+�+1Z
q�

2n(k+1)+n+(0��).

Since Ψ = Ψ0 + Ψ1, the coefficient of Xq0+q1+qj

in Ψ is

n−1∑

�=0

α�+1Z
q�

2nk+(1��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(1��)

+
n−1∑

�=0

αn+�+1Z
q�

2n(k+1)+(0��) +
n−1∑

�=0

βn+�+1Z
q�

2n(k+1)+n+(0��),

i.e.,

1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k+p)+((1−p)��) + βpn+�+1Z
q�

2n(k+p)+n+((1−p)��)

)
]

.

Now suppose i = 1 and k = n
2 , i.e. i = 1 and (i, j) ∈ Ak. Clearly j = n

2 + 1.

By Corollary 1, the coefficient of Xq0+q1+q
n
2 +1

in Ψ0 is

n−1∑

�=0

α�+1Z
q�

2nk+(1��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(1��).

By Lemma 1, the only monomial in Ψ1 equal to Xq0+q1+q
n
2 +1

is Xq1+q
n
2 +1+q0

,
and by Corollary 1, its coefficient is
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n−1∑

�=0

αn+�+1Z
q�

2n(k−1)+((n
2 +1)��) +

n−1∑

�=0

βn+�+1Z
q�

2n(k−1)+n+((n
2 +1)��).

Then, the coefficient of Xq1+q
n
2 +1+q0

in Ψ is

n−1∑

�=0

α�+1Z
q�

2nk+(1��) +
n−1∑

�=0

β�+1Z
q�

2nk+n+(1��)

+
n−1∑

�=0

αn+�+1Z
q�

2n(k−1)+((n
2 +1)��) +

n−1∑

�=0

βn+�+1Z
q�

2n(k−1)+n+((n
2 +1)��),

i.e.,

1∑

p=0

[
n−1∑

�=0

(
αpn+�+1Z

q�

2n(k−p)+((n
2 p+1)��) + βpn+�+1Z

q�

2n(k−p)+n+((n
2 p+1)��)

)
]

.

The other cases are obtained in a similar fashion.

Recall that the polynomial Ψ is constructed so that its degree is smaller than
an adequate parameter D. Therefore, we get a system S of vanishing equations,
where the variables are the coefficients of the polynomials F and F̃ , and each
equation corresponds to the coefficient of every term in Ψ of degree higher than D

equated to zero. From now on, we refer to the variables of the form Zq�

2nk+pn+(i��),
with p ∈ {0, 1}, as the variables associated with the group Ak; and to the
coefficient of Xqs+qi+qj

in Ψ equated to zero as the (s, i, j) equation. The matrix
associated with this system has a very distinct structure as stated in the following
theorem.

Theorem 1. Let n, q, and D be positive integers such that 2 < q, 1 < r =
	logq D
 < n

2 , and q + 2qr−1 < D ≤ qr. Then, we can reorganize adequately the
rows of the matrix associated with S so that it has the form shown in Fig. 1, and
for 0 ≤ k ≤ n

2 , the size of the submatrix Mk is a × b, with

a =

⎧
⎨

⎩

2(n − r + k) if k < r
2n if r ≤ i < n

2
n if k = n

2

and b =
{

2n2 if k �= n
2

n2 if k = n
2

.

Proof. Note first that the condition q+2qr−1 < D ≤ qr guarantees that for each
(i, j) ∈ A, D ≤ q + qi + qj if and only if D ≤ q0 + qi + qj , and they are both
true only if i ≥ r or j ≥ r. So given 0 ≤ k ≤ n

2 , the number of (s, i, j) equations
such that D ≤ qs + qi + qj , where s ∈ {0, 1} and (i, j) ∈ Ak, is equal to twice
the number of elements (i, j) ∈ Ak such that i ≥ r or j ≥ r, i.e.

⎧
⎨

⎩

2(n − r + k) if k < r
2n if r ≤ k < n

2
2n
2 if k = n

2 .
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For 0 < k ≤ n
2 , we have (0, k) ∈ Ak and (1, k) ∈ Ak−1, so by Proposition 2

the (0, 1, k) equation only contains variables associated with the groups Ak−1

and Ak. On the other hand, for 0 ≤ k < n
2 −1 and (i, 0) ∈ Ak, (i, 1) ∈ Ak+1 and

by the Proposition 2 the (0, i, 1) equation only contains variables associated with
Ak and Ak+1. Furthermore, note that (n

2 + 1, 0) ∈ An
2 −1 and (1, n

2 + 1) ∈ An
2
,

so the (0, 1, n
2 + 1) equation contain only variables associated with An

1 −1 and
An

2 −1.
According to Lemma 1 and Corollary 1, if (i, j) ∈ Ak and i, j /∈ {0, 1}, then

the (0, i, j), (1, i, j) equations only contain variables associated with Ak. Then,
for each k the elements of the form (0, j), (1, j + 1), (i, 0) and (i + 1, 0) are
the only ones that have elements associated with a group different to Ak. So,
given 0 < k < n

2 , the number of equations in S that contain variables associated
with Ak and Ak+1 is equal to the number of elements (i, j) ∈ Ak such that
i = 1 and j ≥ r; or j = 0 and i ≥ r. Similarly, the number of equations in S
that contain variables associated with Ak and Ak−1 is equal to the number of
elements (i, j) ∈ Ak such that i = 0 and j ≥ r; or j = 1 and i ≥ r. Finally,
the number of equations in S that only contain variables associated with Ak is
equal to the number of elements (i, j) ∈ Ak, such that i, j /∈ {0, 1}.

Clearly, for each (i, i) ∈ A0 with i ≥ r, the (0, i, i) and (1, i, i) equations
appear in the system S and only have variables associated with A0. So, for any
equation of the system S there are two possibilities, either it does not contain
variables associated with A0 or it only contains variables associated with A0.

Suppose 1 < k ≤ r − 2. Even though by Proposition 2 the (1, 0, k) equation
contains variables associated with Ak−1 and Ak, that equation does not appear in
the system because k ≤ r. Analogously, we conclude that the (0, 1, k+1) equation
does not appear in the system. On the other hand, (n−k, 0), (n−k+1, 1) ∈ Ak,
and since 1 < k ≤ r−2 and r < n

2 , then r < n−k < n−1 and so the (1, n−k, 0)
equation appears in the system; and by Proposition 2 it has variables associated
with Ak and Ak+1. Also, since r < n − k + 1 ≤ n − 1, the (0, n − k + 1, 1)
equation appears in the system and contains variables associated with Ak−1 and
Ak. Consequently, for 1 < k ≤ r − 2 the system S only has one equation that
contains variables associated with Ak and Ak−1, and S only has one equation
that contains variables associated with Ak and Ak+1. For every other equation
in S, either it only contains variables associated with Ak or it does not contain
variables associated with Ak at all.

Now, if k = r − 1, then (0, r − 1), (1, r) ∈ Ar−1. The (1, 0, r − 1) equation
has variables associated with Ar−1 and Ar−2, but it does not appear in the
system. Clearly, the (0, 1, r) equation is the only one in S that contains variables
associated with Ar−1 and Ar. If in particular 2 < r < n

2 , then r < n
2 + 1 <

n − (r − 1) < n − 1. Thus, r < n − (r − 1) + 1 ≤ n − 1 and finally we have that

(n − (r − 1), 0) = (0 + (n − (r − 1)), (r − 1) + (n − (r − 1)) mod n) , and

(n − (r − 1) + 1, 1) = (0 + (n − (r − 1)) + 1, (r − 1) + (n − (r − 1) + 1) mod n) .

Therefore, (n − (r − 1), 0), (n − (r − 1) + 1, 1) ∈ Ar−1 and, by Proposition 2,
the (1, n − (r − 1), 0) equation appears in the system and contains variables
associated with Ar and Ar−1. Likewise, the (0, n − (r − 1) + 1, 1) equation
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appears in the system and has variables associated with Ar−1 and Ar−2. Notice
that, if r = 2, then Ar−1 = A1, and (0, 1) is the unique element of the form
(i, 1) in A1. Consequently, and since 0, 1 < r, no equation contains variables
associated with Ar−1 and Ar−2 in the system; in contrast, if r > 2, there is
only one equation in S that contains variables associated with Ar−1 and Ar−2,
namely, the (0, n − (r − 1) + 1, 1) equation.

If r ≤ k < n
2 , then n

2 ≤ n − k < n − k + 1 ≤ n − 1. By similar reasons as
above, the (1, 0, k) and (0, n − k + 1, 1) equations are the only ones in S that
have variables associated with Ak and Ak−1. Furthermore, the (0, 1, k + 1) and
(1, n− k, 0) equations are the only ones in S that have variables associated with
Ak and Ak−1. All equations of the form (s, i, j) with (i, j) ∈ Ak are in S, and
they only contain variables associated with Ak.

For k = n
2 , the (1, 0, n

2 ) and (0, 1, n
2 + 1) equations are the only ones that

contain variables associated with An
2 −1 and An

2
. Moreover, the (s, i, j) equations

with s ∈ {0, 1} and (i, j) ∈ An
2

are the only ones in S that contain variables
associated with An

2
.

Therefore, we can reorganize the rows of the matrix associated with the
vanishing equation system S so that it has the desired structure.

Remark 1. The conditions 1 < r < n
2 and q + 2qr−1 < D ≤ qr in Theorem 1 are

merely technical. If we omit these conditions, the matrix is still quite structured
but it is a bit harder to describe. Moreover, these conditions do not restrict much
the values D can take. For example, if we choose the parameters suggested in
[12] for a practical implementation of ZHFE, q = 7 and n = 56, then r could be
in the interval [1, 28] and the possible values for D are as shown in Table 1.

Table 1. Possible values of D for q = 7 and n = 56.

r Without the restriction With the restriction

2 7 < D ≤ 49 21 < D ≤ 49

3 49 < D ≤ 343 105 < D ≤ 343

4 343 < D ≤ 2401 693 < D ≤ 2401

3.2 The Matrix over the Small Field

Recall that we aim at determining the coefficients Zk such that the polynomial
Ψ has degree less than D. Initially, each coefficient Zk is seen as a variable. In
that way, every term of the form αns+�+1Z

q�

k in Ψ can be seen as an F-linear
transformation from K to K. Since the big field K is a vector space over the
small field F, any F-linear transformation K → K can be seen as an F-linear
transformation F

n → F
n. Let Ans+� be the matrix over F that represents the

F-linear transformation Z �→ αns+�+1Z
q�

with respect to the canonical basis.
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Let (i, j) be an element in Ak for some k �= n
2 . We know that the coefficient

of Xqs+qi+qj

in Ψs is

n−1∑

�=0

αns+�+1Z
q�

2nk+(i��) +
n−1∑

�=0

βns+�+1Z
q�

2nk+n+(i��). (1)

We can see the expression in (1) as an F-linear transformation T k
s,i : K2n → K,

such that its (ns+i)-th variable is Z2nk+ns+i, where s ∈ {0, 1} and i = 0, . . . n−1.
In that way, the matrix that represents T k

s,i is [A|B] with

A =
[
Ans+i Ans+i−1 · · · Ans Ans+n−1 · · · Ans+(i+1)

]
,

B =
[
Bns+i Bns+i−1 · · · Bns Bns+n−1 · · · Bns+(i+1)

]
,

where Ans+� and Bns+� are the matrices that represent the F-linear transforma-
tions αns+�+1Z

q�

and βns+�+1Z
q�

, respectively. Furthermore, the matrix that
represents the F-linear transformation Tk from K

2n to K
2n, defined by

Tk = (T k
0,0, · · · , T k

0,n−1, T
k
1,0, · · · T k

1,n−1),

is as shown in Fig. 2.

Fig. 2. Matrix representation of Tk : K2n → K
2n.

Similarly, for (i, j) ∈ An
2
, we can define the F-linear transformation T

n
2

s,i from

K
n to K, so that the matrix that represents T

n
2

s,i is [A|B] with

A =
[

Ans+i + Ans+ n
2 +i · · · Ans + Ans+ n

2
Ans+n−1 + Ans+ n

2 −1 · · · Ans+(i+1) + Ans+ n
2 +(i+1)

]
,

B =
[

Bns+i + Bns+ n
2 +i · · · Bns + Bns+ n

2
Bns+n−1 + Bns+ n

2 −1 · · · Bns+(i+1) + Bns+ n
2 +(i+1)

]
.
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The matrix that represents the F-linear transformation

Tn
2

= (T
n
2
0,1, . . . , T

n
2
0, n

2 −1, T
n
2
1,0, . . . , T

n
2
1, n

2 −1)

is presented in Fig. 3.

Fig. 3. Matrix representation of Tn
2

: Kn → K
n.

Recall that the homogeneous system S contains all (s, i, j) equations such
that qs + qi + qj ≥ D, where s ∈ {0, 1} and (i, j) ∈ A. Theorem 1 explains
the hidden structure of the matrix associated with S. We now consider S with
the order given in Theorem 1, so that the i−th equation in S can be seen as
Li(Z0, . . . , ZN ) = 0, where Li is an F-linear transformation from K

N to K and
N is two times the number of variables of the polynomial F . In that way, S can
be seen as L(Z1, . . . , ZN ) = 0, where L = (L1, . . . , Lt) and t is the number of
equations in the system S.

Theorem 2. Let n, q, and D be positive integers such that q > 2, 1 < r =
	logq D
 < n

2 and q+2qr−1 < D ≤ qr−1. Then, the matrix M̃ that represents the
F-linear transformation L is formed by n

2 +1 submatrices M̃0, . . . , M̃n
2

arranged
in the same way as in the matrix in Fig. 1. For 0 ≤ i ≤ n

2 , the size of the
submatrix M̃i is a × b, where
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a =

⎧
⎪⎨

⎪⎩

2n(n − r − i) if i < r

2n2 if r ≤ i < n
2

n2 if i = n
2

, b =

{
2n2 if i �= r

n2 if i = n
2 .

Remark 2. The blocks M̃i and M̃i+1 overlap in a block of pn rows if and only if
the blocks Mi and Mi+1 overlap in p rows.

Remark 3. The submatrices M̃0, . . . , M̃n
2

are small modifications of the matrix
in Fig. 2. More precisely, for r ≤ k < n

2 , M̃k can be obtained simply by permuting
the rows of the matrix in Fig. 2, placing in the upper part the rows that come
from equations in S with variables associated with both Ak and Ak−1. Also, for
0 ≤ k ≤ r−1, M̃k can be obtained by removing the blocks of rows that represent
expressions with (i, j) ∈ Ak, i < r and j < r, and adequately permuting rows as
above.

Note that Theorem 2, together with the description of the submatrices above,
provide a direct and fast algorithm to construct the matrix M̃ . Given αi’s and
βi’s we construct Ans+� and Bns+� as the matrices that represent the F-linear
transformations Z �→ αns+�+1Z

q�

and Z �→ βns+�+1Z
q�

, respectively. Then, we
assemble the matrices in Figs. 2 and 3 for all k’s, and sort their rows according
to Remark 3. Finally, we put them together as described in Theorem 2. However,
as we will see in the next subsection, we never really have to construct the whole
matrix M̃ . Since we just aim at finding a non-trivial element in its null space,
we can exploit its structure to do so more efficiently.

3.3 An Algorithm to Solve the System

In this section, we will first describe an algorithm for finding random elements in
the null space of the matrix M̃ . The algorithm is based on the hidden structure
of the matrix unveiled in Theorem2. Then, we will discuss the probability that
this algorithm terminates.

As seen in Sect. 3.2, the matrix M̃ is almost block diagonal, with blocks
M̃1, . . . , M̃n

2
overlapping in a few rows. In order to illustrate the method, suppose

we have only two blocks M̃1, M̃2. We first split each block in two blocks Ui and
Li so that the matrix has the form

M̃ =

⎡

⎣
U1 0
L1 U2

0 L2

⎤

⎦ .

Next we find an element y2 in the null space of L2. Then, we compute r = U2y2.

Then we find an element y1 such that
[
U1

L1

]

y1 =
[

0
−r

]

. It is easy to see that

M̃

[
y1

y2

]

= 0. This process can be iterated through the whole matrix regardless

of the number of blocks.
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To formally describe the algorithm, we introduce the following notation. For
r ≤ i ≤ n

2 , let Li be the matrix that results from removing the first 2n rows from
M̃i, and let Li be the matrix that results from removing the first n rows from

M̃i, for 2 ≤ i < r. For each 2 ≤ i ≤ n
2 , Ui is the matrix such that M̃i =

[
Ui

Li

]

(for i = 1, we define U1 = M̃1). The expression y $←− W denotes that y is an
element chosen uniformly at random from the set W . Algorithm 1 describes an
algorithm to find a solution of the equation M̃y = 0.

Algorithm 1. Finds an element in the null space of M̃

Input: M̃0, M̃1, . . . , M̃n
2
, blocks of M̃ as described in Theorem 2

1: W :=
{
z | Ln

2
z = 0

}

2: for i = n
2
, . . . , 1 do

3: yi
$←− W

4: ri := Uiyi

5: W :=

{
z | Liz =

[
0

−ri

]}

6: if W = ∅ then
7: stop algorithm

8: W :=
{
z | M̃0z = 0

}

9: y0
$←− W

10: return y = [y0,y1, . . . ,yn
2
]T

It is easy to see that if this algorithm terminates, the output y is an element
in the null space of M̃ . Moreover, the converse is also true.

Proposition 3. If x is a vector in the null space of the matrix M̃ , then x can
be the output of Algorithm1.

Proof. Let x be an element in the null space of M̃ , say x = [x1, x2, . . . , xt]T ,
with t = n2(n + 1). For 0 < i ≤ n

2 , we define xi = [xti−1+1, xti−1+2, . . . , xti
]T ,

where ti := 2in2, for 0 < i < n
2 , t0 := 0 and tn

2
:= t. Since x is an element in

the null space of M̃ and M̃i =
[
Ui

Li

]

, then

Ln
2
xn

2
= 0.

Let us define the vector rn
2

as

rn
2

= Un
2
xn

2
.

Since x is a element in the null space of M̃ , we must have that

Ln
2 −1xn

2 −1 =
[

0
−rn

2

]

.
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So, xn
2 −1 belongs to the solution set of the equation

Ln
2 −1z =

[
0

−rn
2
.

]

In general, for 0 ≤ i < n
2 , xi−1 belongs to the solution set of the equation

Liz =
[

0
−ri+1,

]

where ri = Uixi.

This proposition shows that every element of the null space of M̃ can be
output by Algorithm1. Moreover, the element in the null space is still chosen
with uniform distribution. This is because Algorithm1 obtains each element x
by finding its projections xi, and this is performed uniformly.

Algorithm 1 does not always terminate. In case it fails, we would have to run
it again. However, we claim that the probability of failure is very small. Note that
the termination of the Algorithm1 depends on W not being empty for each i =
n
2 , . . . , 1. So, a sufficient condition to guarantee that the Algorithm1 terminates
is that each matrix Li be of full rank. Therefore, for a uniformly random instance
of ZHFE, the probability that the Algorithm1 terminates is greater than the
probability that for each i the rank of Li is equal to its number of rows. In
order to give an estimate for this probability, we ran extensive experiments for
different values of n and computed the rank of Li for i = r, . . . , n

2 (see Table 2).
For every single instance and for each i = r, . . . , n

2 , the matrix Li was full rank.

Table 2. Computation of the rank of the Li’s with q = 7 and D = 106. For every
generated instance, the matrices are full rank.

n Number of instances

8 80000000

16 4000000

32 100000

56 5000

4 Complexity of the New Method

The new method introduced in this paper to solve the vanishing equation sys-
tem finds an element in the null space of an almost-block diagonal matrix with
n
2 + 1 blocks, as depicted in Fig. 1. The size of each block is at most 2n2 × 2n2,
so reducing each block to its echelon form has complexity O ((

n2
)ω), where the

parameter 2 ≤ ω ≤ 3 is a constant that depends on the specific Gaussian elimi-
nation algorithm used (e.g., ω = 3 for a classical Gaussian elimination algorithm
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and ω < 2.376 for an asymptotically improved algorithm). Therefore, the com-
plexity of the new method is O (

n
(
n2

)ω) = O (
n2ω+1

)
. This improves the naive

approach used in [12], which costs O ((
n3

)ω) = O (
n3ω

)
, if a dense Gaussian

elimination algorithm is used. Since the matrix of the vanishing equation system
is sparse, even the old method could take advantage of its sparsity. Although
the complexity of sparse algorithms is harder to compare with, our experiments
confirm a significant improvement against sparse methods too.

We performed experiments in order to compare the new method with the
one used in [12] for solving the vanishing equation system. We built different
ZHFE private keys using both methods. In Table 3 we present these results for
different sets of parameters. All the experiments were performed using Magma
v2.21-1 [3] on a server with a processor Intel(R) Xeon(R) CPU E5-2609 0 @
2.40GHz, running Linux CentOS release 6.6. It is important to notice that the
experiments for the old method where performed on Magma using the Nullspace
command. Magma’s Nullspace implementation exploits the matrix sparsity using
the Markowitz Pivot Strategy. Hence, in practice, we are comparing our new
method with an sparse matrix solving algorithm.

Table 3. Private key generation: comparison between the new and old methods.

Method New method Old method

q D n CPU time [s] Memory [MB] n CPU time [s] Memory [MB]

7 106 8 0.07 ≤32 8 0.43 ≤32

7 106 16 1.46 ≤32 16 25.41 131

7 106 32 67.29 64 32 2285.44 3452

7 106 56 1111.26 235 55a 216076.27 53619

17 106 8 0.08 ≤32 8 0.45 ≤32

17 106 16 2.02 68 16 26.63 160

17 106 32 122.86 93 32 2095.94 3785

17 595 56 2712.63 353 55a 226384.28 59658
aExperiments run on a different machine: Magma V2.20-2 on a Sun X4440 server,
with four Quad-Core AMD OpteronTM Processor 8356 CPUs running at 2.3 GHz.

Note the significant reduction in the time needed to construct the keys for
ZHFE. It is also evident that, for the new method, the memory needed to build
the ZHFE keys is considerably less than the memory needed in [12].

5 Remarks About Security

Although a more rigorous study of the security of ZHFE is out of the scope of
this paper, this aspect is not affected by the proposed key generation improve-
ment. The matrix M̃ is simply a rearrangement of the sparse matrix used in the
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original approach to construct the ZHFE private key. Moreover, Proposition 3
guarantees that the new algorithm would not miss any solution of the system
and as remarked in Sect. 3, the solution is chosen under the same uniform distri-
bution. This matrix M̃ has about n2 free variables, so the size of its null space is
about qn2

. This number is huge for practical values of the parameters. Thus, in
principle, the unveiled structure of the matrix M̃ does not represent an obvious
threat to the security of ZHFE. Nevertheless, this aspect should be considered
more deeply and will be part of future research.

The security of ZHFE was studied in detail in [12], and we base the pertinence
of this paper on those arguments. Nevertheless, it recently came to our attention
new works exposing a rank weakness on the original ZHFE [11,15]. Perlner and
Smith-Tone prove that if we write Ψ(X) = X(L11F +L12F̃ )+Xq(L21F +L22F̃ ),
and the Lij maps have full rank, then the rank of ZHFE is no larger than⌈
logq D

⌉
+2 [11]. They also argue that if we select the Lij maps to have reasonable

corank c, then the Q-rank does not appear to be a weakness for ZHFE. They
further propose a “minus” modification of ZHFE, called ZHFE−, which adds a
projection to the original ZHFE, by removing r polynomials from the public key.
They recommend the following parameters for this new proposal:

ZHFE− : (q, n,D, r, c) = (7, 55, 105, 2, 6).

They claim that with these parameters the public key Q-rank is about 12, and
the degree of regularity is estimated to be 9, which implies a security level of at
least 80 bits.

We performed extensive experiments to see how our new key generation
method behaves for the parameters proposed in [11]. We found that for the
parameters (q, n,D, r, c) = (7, 55, 105, 2, 6), both the new and old methods pro-
duce only the trivial solution Ψ(X) = 0, even though the kernel is not triv-
ial. We also found that for those parameters, c must be chosen in {1, 2} for
a nontrivial Ψ(X) to exist. Using a different value for q, we realised that for
(q, n,D, r) = (3, 55, 105, 2), the corank c must be chosen in {1, 2, 3} for a non-
trivial Ψ(X) to exist. We also found that if we want to obtain a nontrivial Ψ(X)
for (q, n,D, r) = (3, 55, 170, 2), the corank c must be chosen in {1, 2, 3, 4}. Again,
in all these cases both the new and old methods work fine. In order to construct
a ZHFE key using Lij maps with corank c = 6, the parameter D must be
increased. We discovered for instance that the new and old methods work for
(q, n,D, r, c) = (3, 56, 1462, 2, 6). Table 4 shows the results of the experiments
run for some choices of the parameters.

According to our extensive experiments, we can say that our new algorithm
works flawlessly, when we use Lij maps with positive corank, including the case
c = 6. Moreover, we can say that for any fixed set of parameters, the origi-
nal method finds a nontrivial Ψ(X) if and only if the new algorithm finds a
nontrivial Ψ(X).
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Table 4. Computation of ZHFE keys for (q,D, c) = (3, 1462, 6), (q,D, c) = (3, 490, 5)
and (q,D, c) = (3, 170, 4). For every generated instance, the algorithm terminated
successfully

n Number of instances

16 400000

32 5000

56 400

6 Conclusions

We have proposed a novel way to solve the vanishing equation system necessary
to construct keys in ZHFE. By exposing its almost-block diagonal structure,
we unleashed a series of improvements in ZHFE key generation. We can now
construct the matrix associated with the system faster, and store it more effi-
ciently. Moreover, we can find solutions to the system asymptotically faster.
These improvements turn ZHFE from an only theoretical proposal, into a viable
Post-Quantum public key encryption scheme.

In order to achieve these, we had to understand the combinatorial structure of
Frobenius powers of q-Hamming-weight-two univariate polynomials. We expect
this understanding will serve as a tool to explore a bigger family of encryption
schemes, i.e., generalizations of ZHFE in which the polynomial Ψ is obtained
multiplying by more than two powers of the form Xqi

.
We also found that, in terms of success, our new algorithm works just as

good as the original method, when considering Lij maps with positive corank,
as proposed in [11].

We foresee further improvements in ZHFE derived from this work. Since the
vanishing equation system has several free variables, we can fix some variables
for all instances of the trapdoor function. Knowing the structure of the matrix
allows us to do so in a way that further speeds up key generation, and reduces
secret key size.

We must not discard the theoretical results of this paper as a useful tool to
get a better understanding of the security of ZHFE.
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Abstract. In this paper, we present a new masking scheme for ring-
LWE decryption. Our scheme exploits the additively-homomorphic prop-
erty of the existing ring-LWE encryption schemes and computes an
additive-mask as an encryption of a random message. Our solution differs
in several aspects from the recent masked ring-LWE implementation by
Reparaz et al. presented at CHES 2015; most notably we do not require
a masked decoder but work with a conventional, unmasked decoder. As
such, we can secure a ring-LWE implementation using additive masking
with minimal changes. Our masking scheme is also very generic in the
sense that it can be applied to other additively-homomorphic encryption
schemes.

1 Introduction

Most public-key cryptography deployed today will not withstand attacks by
a quantum computer. Shor’s algorithm [Sho99] can break RSA, discrete log-
arithms and elliptic-curve cryptography in polynomial time using a quantum
computer. The National Security Agency (NSA) has recently announced that
quantum computing is a threat to the existing public key infrastructure, and has
recommended a transition to quantum resistant public key algorithms [nsa15].
In recent years significant progress was made to improve public-key cryptosys-
tems based on computational problems that will remain secure even in the
presence of powerful quantum computers. Regev’s learning with errors (LWE)
problem [Reg05] and its ring variant, known as the ring-LWE problem have
become very popular in designing public key encryption, key exchange, digi-
tal signature and homomorphic encryption schemes. Several recent publications
such as [PG14,PDG14,RVM+14,GOPS13,RVV14,dCRVV15,APS13,LSR+15,
BSJ15,POG15] show that ring-LWE based encryption and digital signature
schemes are faster and relatively easier to implement compared to elliptic curve
cryptography (ECC) algorithms.

Though secure against quantum computing, ring-LWE based cryptography
offers no inherent protection against side-channel attacks [Koc96]. It is well-
known that a vanilla, unprotected implementation of a cryptographic algorithm
running on an embedded device can be broken if the adversary can observe a
side-channel, such as the instantaneous power consumption, the EM radiation
c© Springer International Publishing Switzerland 2016
T. Takagi (Ed.): PQCrypto 2016, LNCS 9606, pp. 233–244, 2016.
DOI: 10.1007/978-3-319-29360-8 15
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or some timing information. A particularly effective method to extract secrets,
such as cryptographic keys or passwords, from embedded devices is Differential
Power Analysis (DPA) [KJJ99].

Masking [CJRR99,GP99] is a provable sound countermeasure against DPA.
First-order masking works by probabilistically splitting every intermediate into
two shares such that each share is statistically independent from the intermedi-
ate. This property ought to preserve through the entire computation. A mask-
ing scheme defines how the computation on masked data should be performed.
Masking, of course, comes at a cost. Masked implementations incur area, time
and energy overheads. In public-key cryptosystems, the decryption operation
is normally the prime target for DPA protections, as it is the component that
manipulates long-term secrets.

Post-quantum cryptosystems are not yet as mature as RSA, Diffie-Hellman
or ECC. There is ongoing research to determine the exact security offered by
a concrete parameter choice, to determine which padding schemes should be
used, to design fast and memory-efficient implementations that can compete
with classical public-key cryptography and to write protected implementations
against side-channel analysis.

A first step in a masked ring-LWE implementation is the work [RRVV15],
hereafter referred to as the CHES 2015 approach. This approach takes an
unmasked ring-LWE processor and adds masking with a bespoke, customized
masked decoder. The overhead is roughly 2.6 times more cycles and the impact
in area is very small.

Our contribution. In this paper we propose a new masking scheme to protect
the secret key during decryption operations in ring-LWE cryptosystems. Our
masking scheme is based on the additively homomorphic nature of the existing
ring-LWE encryption. A mask is computed by encrypting a random message
and then the mask is added to the ciphertext. This operation randomizes the
ciphertext and mitigates the side-channel leakage problem.

Our solution has the advantage compared to the CHES 2015 approach that
we do not require additional hardware (nor software) to compute the final decod-
ing operation. The masking scheme is applicable to both hardware and software
implementations. A caveat of our approach is that we need to place additional
assumptions on the underlying arithmetic hardware compared to the CHES 2015
approach.

2 Background

For a complete view of the system, we describe the entire ring-LWE cryptosys-
tem. In this paper we focus on the DPA security of the ring-LWE decryption
operation.

Notation. We denote by R = Fq[x]/(f(x)),+, ∗ a modular polynomial ring over
base field Fq. When we want to access a specific coefficient of a polynomial s we
write s[i]. The operation ⊕ is the xor operation on bits or strings of bits.
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Review of ring-LWE based encryption scheme. In the literature there are
several encryption schemes based on the ring-LWE problem, for exam-
ple [LPR10,FV12,BLLN13] etc. The major algorithms in these encryp-
tion schemes are: key-generation, encryption and decryption. These algo-
rithms perform message-encoding, discrete Gaussian sampling, polynomial addi-
tion/subtraction/multiplication, and decoding as the primitive operations.

In this paper, we use the scheme proposed by Lyubashevsky, Peikert, and
Regev (LPR) [LPR10]. Though our masking scheme is generic and works with
the other ring-LWE encryption schemes, we choose the LPR scheme for the
analysis mainly due to the availability of several efficient implementations [PG14,
RVM+14,GOPS13,dCRVV15,LSR+15,POG15] and due to the existence of a
DPA resistant masked implementation [RRVV15].

The three main operations in the LPR encryption scheme are described
below. The parameters are (n, q, σ) where n is the dimension of polynomial
ring, q is the modulus and σ is the standard deviation of the discrete Gaussian
distribution.

– Key generation. Two polynomials r and s are generated by sampling the
coefficients from the discrete Gaussian distribution. Next a new polynomial
p = r − g ∗ s is computed where g is a globally known base polynomial. The
key generation outputs s as the secret key and p as the public key.

– Encryption. The n-bit input plaintext is encoded as a ring element m̄ ∈ R by
multiplying the bits by q/2. The encryption operation generates three error
polynomials e1, e2 and e3 using the discrete Gaussian sampler. These error
polynomials are used as noise. The ciphertext is a pair of polynomials (c1, c2)
where c1 = g ∗ e1 + e2 and c2 = p ∗ e1 + e3 + m̄.

– Decryption. In the decryption phase s is used to compute the intermediate
message m̃ = c1 ∗ s + c2. This intermediate plaintext contains noise. Next,
a decoding is performed to recover the original plaintext bits: mrecovered =
decode(m̃). The simplest decoder just compares each coefficient of m̃ with
q/2: if the distance is small (i.e. < q/4) it returns 1 otherwise it returns 0.

Among all the computations, polynomial multiplication is the costliest. Most
of the reported implementations use the Number Theoretic Transform (NTT) to
accelerate the polynomial multiplications. In the implementation in [RVM+14]
the ciphertext is kept in the NTT domain to reduce the number of NTTs and
inverse NTTs (INTTs). When c1, c2 and s are in the NTT domain, the plain-
text bits are computed as mrecovered = decode

(
INTT(c1 · s + c2)

)
. Here · is the

coefficient-wise multiplication operator.

Review of CHES2015 approach. The paper [RRVV15] proposes to mask the ring-
LWE decryption by additively splitting the secret s into two shares s′, s′′ such
that s = s′ + s′′. The masked decryption proceeds as follows: it first computes
one branch

a′ = INTT(c1 · s′ + c2), (1)

then proceeds with the computation of the second branch:

a′′ = INTT(c1 · s′′) (2)
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and finally outputs the pair of the mask bit and the masked message bit
(m′,m′′) = masked-decoder(a′, a′′).

The random splitting of s into two shares s′ and s′′ works as a countermeasure
against DPA during the coefficient-wise multiplications. The main difficulty is
the masked-decoder block. This block performs the threshold th computation
in the masked domain, yielding Boolean masked results m′ and m′′. Inside the
decoder block, the two input shares a′ and a′′ are compared with a lookup table
to check if a set of rules is satisfied or not. When the rules are not satisfied,
the shares are refreshed by adding and subtracting a small refreshment-value
Δ with the two shares, and then checking the rules again. The masked decoder
implementation in [RRVV15] performs the refreshing operation 16 times in order
to achieve constant time decoding with high success probability.

3 Additively Homomorphic Ring-LWE Masking

Core idea. The central idea is that the LPR encryption scheme presented in
Sect. 2 is additively homomorphic. This means that for any two ciphertexts
(c1, c2) and (c′

1, c
′
2) corresponding to the respective encryptions of m and m′

under the same public key, (c1 + c′
1, c2 + c′

2) will be an encryption of (m ⊕ m′).
Hence we can write the following equation:

decryption(c1, c2) ⊕ decryption(c′
1, c

′
2) = decryption(c1 + c′

1, c2 + c′
2) (3)

This additive homomorphism can be exploited to randomize the computation of
the decryption operation. The randomization technique is explained below.

The proposed randomized decryption. To perform the decryption of (c1, c2) in a
randomized way, the implementation follows the following steps:

1. Internally generate a random message m′ unknown to the adversary
2. Encrypt m′ to (c′

1, c
′
2)

3. Perform decryption(c1 + c′
1, c2 + c′

2) to recover m ⊕ m′.

The masked recovered message is the tuple (m′,m ⊕ m′).
This approach has the nice property of not requiring a masked decoder. One

can use an unprotected decoder function. The obvious disadvantage is that extra
circuitry or code is required to perform the encryption. Another disadvantage
is the increased decryption failure rate. When two ciphertexts are added, the
amount of noise increases. The added noise increases the decryption failure rate
as we will see in Sect. 4.3.

4 Discussion

4.1 Analysis

First-order DPA. Our countermeasure can be thought of as ciphertext blinding.
Note that there is no attacker-known, nor attacker-controlled inputs that are
mixed with the secret key s. Thus, straightforward first-order DPA attack does
not immediately apply. Nevertheless, more refined first-order DPA attacks do
apply.
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First-order attacks. Note that the key is not masked. Thus, we do not claim the-
oretic first-order security. Our randomization makes it harder for the attacker
to model the power consumption (and thus harder to DPA). In AppendixA
we describe a strategy to detect whether s[i] = 0 or s[i] �= 0, which leads to
an entropy loss. This seems not to significantly affect security for the following
reason. First, remember that s is handled in the NTT domain, so that the proba-
bility of the event s[i] = 0 is 1/q. If there are w coefficients for which s[i] = 0, the
dimension is effectively reduced by w. Since q > n, we expect w to be very small
and thus not to lose much in the dimension of the system. The same effect can
occur at a smaller scale, exploiting intermediates from within the multiplication.
In this situation, the consequences are more serious. Therefore, the underlying
hardware must ensure that intermediates from inside the multiplication are noisy
enough to be hard to exploit in this way.

4.2 Comparison with Previous Work

In this section we compare our solution with the CHES 2015 approach.

Offline precomputations. Our solution allows to precompute the encryption of
m′ into (c′

1, c
′
2). This follows since m′ is independent from the message m to be

decrypted. In contrast, the CHES 2015 approach does not allow to precompute
any of the values from Eq. 1 nor Eq. 2. This potential precomputation minimizes
the impact of the countermeasure on the running time, as detailed in the next
section.

Simplicity. The implementation complexity of our solution is remarkably low,
both in software or hardware. In comparison, the CHES 2015 approach would
need a careful implementation of the masked decoder block. This block is deli-
cate to implement. In particular, the practitioner should pay careful attention to
leaking distances if implemented in software, since during the masked decoding
both shares are handled in contiguous temporal locations. In hardware compa-
rable observations apply during the implementation of the masked tables.

In contrast, our approach is very easy to implement. The implementation
handles both shares of all intermediates far from each other, minimizing the pos-
sibility of unintended interferences between shares (and thus first-order leaks).

Is the masked decoder needed? In this paragraph we would like to point out an
important difference between the CHES 2015 approach and the one presented
in Sect. 3. Namely, in this paper we do not require a masked decoder, while
the CHES 2015 solution does. One can wonder if the masked decoder of the
CHES 2015 approach is really needed: after all, Eq. 3 may seem to imply that
the decoding function is linear. However, this is clearly not the case.

The difference is that, in our additively-homomorphic masking scheme the
inputs to the decoder are coefficients resulting from the proper decryption with
respect to the secret key s, and hence the input coefficients are distributed around
0 or q/2. Whereas in the CHES 2015 approach, the shared coefficients a′ and a′′
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in (Eqs. 1 and 2) are not individually proper decryptions of a valid message; and
hence are uniformly distributed in (Fq,Fq). This is why the CHES 2015 requires
a custom decoder, whereas our masking scheme does not.

4.3 Error Rates

The LPR encryption scheme is probabilistic in nature, i.e. the decryption of
a valid ciphertext may produce an incorrect plaintext with a small probabil-
ity. A decryption failure occurs when the noise in the coefficient-to-be-decoded
exceeds the threshold value of the decoder. In our additive masking scheme
the addition of two ciphertexts also adds the noises present in the two cipher-
texts: the error coefficients in the new ciphertext could be at most one bit larger
than the error coefficients in the two ciphertexts. This larger noise increases
the decryption failure rate. To know the exact decryption failure rate we per-
formed experiments for the parameter set (n, q, σ) = (256, 7681, 4.51) [GFS+12]
corresponding to a medium-level security. The parameter set was used in
[PG14,RVM+14,dCRVV15,LSR+15,POG15] to implement encryption schemes.
When the masking is turned off, the decryption failure rate is 3.6×10−5 per bit.
The failure rate increases to 3.3 × 10−3 per bit when the masking turned on.

The increase in the decryption failure rate can be compensated at the cost
of a minor deterioration in the security by using the techniques as follows.

– The modulus q can be increased by one bit. This increment in the size of q
(from 13 bits to 14 bits) does not slow down our software implementation
since the underlying processor architecture is 32 bit, and hence the processing
times for both 13 and 14 bit coefficients are the same.

– As suggested by one of the anonymous reviewers, decreasing the standard
deviation σ of the discrete Gaussian distribution may be more effective than
increasing the size of q as the final noise is in the order of σ2.

5 Implementation Results

The presented masking scheme is suitable for implementation both in hardware
and software. We wrote a reference version of the proposed countermeasure in
C99. The implementation follows the same lines as de Clercq et al. [dCRVV15].

Overheads. The overhead of our solution with respect to an unprotected decryp-
tion is one random message generation, one extra encryption and one coefficient
addition. This incurs a negligible code size increase if the encryption operation
is available. In terms of speed, the costliest process is the encryption. It is 2.8
times slower than the decryption. However, this computation can be performed
in advance before even knowing the ciphertext to be decrypted.

6 Experimental Results

In this section we describe the key-recovery DPA attacks on an ARM Cortex-M4
processor that we performed to assess the security of our solution.
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Experimental setup. We compiled the reference implementation with arm-none-
eabi-gcc version 4.8.4 20140526 without any special optimization flags (note
that we do not aim at maximum speed or code efficiency). We flashed an
STM32F407VGT6 microcontroller featuring an ARM Cortex-M4 core running at
168 MHz (full speed) and an RNG that “delivers 32-bit random numbers generated
by an integrated analog circuit”1. We collected contactless power measurements
by placing a Langer LF-R 400 magnetic field probe in the vicinity of the chip power
supply circuitry as indicated in Fig. 6. Traces are synchronized by a GPIO pin.

Methodology. We follow a standard methodology to assess the security of our
countermeasure. We first attack our implementation when the source of ran-
domness is switched off—that is, the whole computation is deterministic. This is
equivalent to switching off the countermeasure. Therefore, attacks are expected
to work against this mode of operation. Nevertheless, successful attacks in this
scenario serve to confirm that the experimental setup is indeed sound. In the
second part of our analysis we switch on the randomness to observe security
gained exclusively by the countermeasure.

We assume that when the adversary places hypotheses on certain key coef-
ficients, he knows all other key coefficients. This allows the adversary to easily
predict intermediates deep into the computation. This adversarial model may
seem quite strong; however, due to the mathematical structure of the scheme it
is possible to predict deep intermediates with low effort.

An overview EM trace is depicted in Fig. 1. The trace spans the entire pro-
tected computation as described in Sect. 3. Features of this EM trace are more
visually recognisable in the cross-correlation picture of Fig. 2. We can recognize

0 1 2 3 4 5 6 7

x 10
5time

E
M

Fig. 1. An exemplary EM trace covering the whole protected decryption. Data series
with large number of samples are difficult to plot; patterns are more visible with other
plotting techniques cf. Fig. 2.

1 http://www.st.com/web/en/resource/technical/document/datasheet/
DM00037051.pdf.

http://www.st.com/web/en/resource/technical/document/datasheet/DM00037051.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/DM00037051.pdf
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the two most time-consuming blocks: the encryption of m′ and the subsequent
computation of decryption(c1 + c′

1, c2 + c′
2).

Masks off. We modeled the power consumption of a 32-bit register holding the
result of a MUL instruction as the Hamming distance between two consecutive val-
ues, and applied standard CPA [BCO04]. When the randomization is switched off
the CPA attack is successful. In this scenario the adversary learns the “random”

Fig. 2. Cross-correlation of a single trace.
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Fig. 3. Top: EM trace in the region where the modular multiplication is performed.
The time axis spans around 10 instructions, including MUL.W. Bottom: CPA results.
Correct key coefficient hypothesis in black; incorrect hypotheses in grey. Masks off.
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values, he can predict any intermediate, and thus the attack is expected to work.
Nevertheless, this confirms that the setup is sound.

Figure 3 shows the result of correlating 5000 traces against predictions of
an intermediate that appears towards the end of the INTT computation. Note
that there are plenty of time samples that allow key-recovery; this is because
this intermediate is handled at many other times during the execution of the
decryption block.

The evolution of the Pearson’s correlation coefficient as the number of traces
increases is plotted in Fig. 4. We can see that starting from 1000 measurements
the attack is successful.

Masks on. We repeated the same procedure when the randomness is switched on.
This is equivalent to activating the countermeasure. At the time of this writing,
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Fig. 4. Evolution of CPA results masks off.
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Fig. 5. Evolution of CPA results masks on.

Fig. 6. Setup photography showing the orientation of the H-field pick-up probe.
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we had available 5000 traces. as Fig. 5 shows. The countermeasure makes harder
the DPA attack: the correlation for the correct key hypothesis does not stand
out among other key hypothesis. We acknowledge that it is suspiciously high.
A more detailed study is planned for the extended version of this paper.

7 Conclusion

In this paper we proposed a new masking scheme for protecting ring-LWE
decryption against differential power analysis based attacks. The proposed mask-
ing technique is more generic than the state of the art and can be applied to all
ring-LWE encryption schemes that are additively homomorphic. Moreover we
showed that the masking scheme is easy to implement and does not require any
masked decoder circuit or software.

A An Attack on the Multiplication

An adversary could mount the following attack with a zero-value power model
to recover only whether s[i] = 0 or not. Note that the distribution of (c1 + c′

1) · s
when s = 0 and c1 + c′

1 is uniform random is different from the distribution
of (c1 + c′

1) · s when s �= 0. This effect resembles [GT02], with the important
difference that here the attacker has no control over (c1 + c′

1) and that the
outcome of the attack is recovering only whether s[i] = 0 or not.

1. locate time samples where (c1 + c′
1)[i] · s[i] is handled i ∈ {0, . . . , 255}.

2. cluster (c1+c′
1)[i] ·s[i] into two groups according to mean power consumption

(or variance).
3. tag the two groups as s[i] = 0 or s[i] �= 0.
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Abstract. In this paper we present a new post-quantum electronic-
voting protocol. Our construction is based on LWE fully homomorphic
encryption and the protocol is inspired by existing e-voting schemes,
in particular Helios. The strengths of our scheme are its simplicity and
transparency, since it relies on public homomorphic operations. Further-
more, the use of lattice-based primitives greatly simplifies the proofs
of correctness, privacy and verifiability, as no zero-knowledge proof are
needed to prove the validity of individual ballots or the correctness of
the final election result. The security of our scheme is based on classi-
cal SIS/LWE assumptions, which are asymptotically as hard as worst-
case lattice problems and relies on the random oracle heuristic. We also
propose a new procedure to distribute the decryption task, where each
trustee provides an independent proof of correct decryption in the form
of a publicly verifiable ciphertext trapdoor. In particular, our protocol
requires only two trustees, unlike classical proposals using threshold
decryption via Shamir’s secret sharing.

Keywords: E-vote · Post quantum · Fully homomorphic encryption ·
Lattice based protocol · LWE

1 Introduction

Electronic-voting aims at providing several elaborated properties. Basically, an
e-voting protocol should ensure privacy and verifiability. The first one prevents
anyone from retrieving the vote of a particular user, and the second one allows
each voter to verify that his vote appears in the bulletin board (individual ver-
ifiability) and ensures that the final count of votes corresponds to the votes
of legitimate voters (universal verifiability). Also, the scheme is correct when
the outcome of the election counts the votes of the honestly generated votes.
Among other desirable properties for e-voting schemes, there are strong forms
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of privacy such as receipt-freeness, coercion-resistance and ballot independence.
Defining security properties for electronic based systems has long been debated
and the design of secure e-voting protocols achieving all these properties happens
to be more intricate than for traditional paper-based systems. Several proposal
appeared over the last years and could be categorized in different ways, depend-
ing on how the privacy is guaranteed or the tally function is implemented. How-
ever, until now, the security of all provably secure protocols still rely on classical
assumptions. This means that these proposed schemes could all be compromised
if efficient quantum computers arise. Therefore, designing a quantum resistant
e-voting scheme is very challenging, and it is a promising approach to comfort
people in using e-voting protocols. This paper is a first step towards this goal.

In this paper we present a new e-voting protocol build on post quantum cryp-
tographic primitives: unforgeable lattice-based signatures, LWE-based homo-
morphic encryption and trapdoors for lattices. The scheme is inspired by exist-
ing e-voting protocols, in particular Helios [2], which has already been used for
medium-scale elections (and its variant Belenios). However, our scheme differs in
two principal ways. The underlying primitive is different: Helios [1] is a remote e-
voting protocol based on the additive property of ElGamal (which is broken by
Shor’s quantum algorithm). Since additive homomorphism lacks some expres-
siveness, each voter must ensure that the plaintext encrypted in their ballot
has a specific shape, suitable for homomorphic additions. For example, if the
voter gives one ciphertext per candidate, he must prove that all these cipher-
texts encrypt 0, except the one corresponding to the chosen candidate, which
encrypts 1. Proving such semantic properties on the plaintext without revealing
its content was usually achieved using zero-knowledge proofs. In our protocol, the
fully homomorphic encryption based on Ducas and Micciancio [13] bootstrap-
ping allows to efficiently transform full-domain ciphertexts into such ciphertexts
with specific semantic. This effectively removes the need of a ZK proof.

Helios uses another zero-knowledge proof in the final phase of the voting
protocol, when the trustees decrypt the final result of the votes and must prove
that this result is correct without revealing their own secret. In our protocol, this
proof is replaced by publicly verifiable ciphertext trapdoors, which are produced
using techniques borrowed from trapdoor-based lattice signatures, GPV [15],
or [21], based on Ajtai’s SIS problem.

Interestingly, combining these publicly verifiable ciphertext trapdoors with
the inherent randomness of LWE-samples simplifies a lot the proof of a variant of
the strongest game-based ballot privacy recently introduced by [5, Definition 7],
since all the proposed oracles (except one) essentially follow the protocol, and
the simulator, which is usually the most complex part of the game, is simply the
identity function.

Our protocol also satisfies correctness and verifiability in the sense of [17].
In order to deter the bulletin board from stuffing itself, we add an additional
authority in charge of providing each user with a private and public credential
which allows him to sign his vote. This solution was already used in the vari-
ant of Helios proposed in [10]. And to compute his vote, the user encrypts his
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vote expressed as a sequence of 0/1, and signs the ciphertext along its public
credential and sends it to the bulletin board. Cortier and Smyth [11,24] shows
that homomorphic based e-voting protocols and in particular Helios could be
vulnerable to replay attacks that allow a user to cast a vote related to a previ-
ously cast ballot. This type of attacks could possibly incur a bias on the vote of
other users and break privacy. Although this attack has a small impact in prac-
tice, the model for privacy should capture such attacks. Until now, this attack
is prevented by removing ballots which contains a ciphertext that does already
appear in a previously cast ballot. This operation is called cipherext weeding.
This strategy would not work with fully homomorphic schemes, as bootstrapping
operations would allow an attacker to re-randomize duplicated ballots beyond
anything one can detect.

In this paper, we use the one-wayness of the bootstrapping to create some
“plaintext-awareness” auxiliary information. This auxiliary information is not
needed to prove the verifiability of the scheme. This information could be viewed
as another encryption of the same ballot, hence it does not leak information on
the plaintext vote. The only purpose of this auxiliary information is to guarantee
that the ballot has not been copied or crafted from other ballots in the bulletin
board as publicly viewed by other users. Thus, the voter sends this info with his
ballot, which remains encrypted in the bulletin board until the end of the voting
phase. At this point, for the sake of transparency, it could be safely revealed
to everyone. In practice, we model this temporarily private channel by giving a
public key to the bulletin board, and letting him reveal the private key at the
end of the voting phase.

Finally, in order to guarantee privacy even when some of the authorities
keys are corrupted, we show that our encryption scheme can be distributed
among t trustees. Instead of using a threshold decryption based on Shamir’s
secret sharing, we rely on a simple concatenated LWE scheme. Each of the
trustees carries its own decryption part, and any attempt to cheat is publicly
detected. On one hand, we lose the optional ability to reconstruct the result if
some trustees attempt a denial of service (which can be prevented anyway by
taking the appropriate legal measures). On the other hand, once the public key
has been set, we detect any attempt to cheat even if all the trustees collude.
And as a bonus, our protocol can be instantiated with only two trustees which
operate independently. In comparison, at least three trustees are needed for
Shamir’s interpolation, and if they all collude, they could produce a valid proof
for a false result.

Open Problems: Our definition of an e-voting scheme differs from previous ones
in that the bulletin board is carried with an additional secret to decide whether a
ballot should be cast or not, but this secret key could be publicly disclosed after
the voting phase. We define correctness and verifiability as in [17] and propose
an adaptation of the recent definition of privacy [5] to our setting. Due to the
constraint on the validation of a ballot before it is cast, the definition of the strong
consistency property [5, Definition 8] does not adapt properly to our setting,
and thus, we leave the definition of proper extensions to strong correctness and
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strong consistency and privacy models against a malicious bulletin board and/or
corrupted registration authority for a future work.

Finally, our proof of privacy relies on an arguably strong assumption, where a
properly randomized bootstrapping function is modeled as a random oracle. We
require this assumption in order to successfully simulate the Tally in the privacy
game, and to a lesser extent, when we use Micciancio and Peikert’s trapdoors
to sample small solutions for SIS without revealing information on the trapdoor
or on the keys. Proving the same result in the standard model is still an open
problem.

2 Preliminaries

In the following, we specify the definition and the properties we consider for our
e-voting protocol.

2.1 Definition of Single Pass E-voting Schemes

In a single pass e-voting scheme, each user publishes only one message to cast
his vote in the bulletin board. A voting scheme is specified by a family of result
functions denoted as ρ : (I × V)∗ → R where V is the set of all possible vote, I
is the set of voter’s identifiers, R specifies the space of possible result. A voting
scheme is also associated to a re-vote policy. In our case, we will assume that
the last vote is taken into account. The entities are:

– A1: the authority that handles the registration of users and updates the public
list of legitimate voters.

– BB, the bulletin board; The bulletin board checks the well-formedness of
received ballots before they are cast. In our model, we assume that BB uses
a secret key to perform a part of this task but the secret could be revealed
after the voting phase.

– T : a set of trustee(s) in charge of setting up their own decryption keys, and
computing the final tally function.

Let λ denote the security parameter. We denote as � the number of candidates, L
an upper bound on the number of voters and t the number of trustees. We denote
as LU a public list of users set at empty at the beginning. To simplify, we assume
an authenticated private channel between the trustees. For our description, we
will be given S = (KeyGenS,Sign,VerifyS) an existentially unforgeable scheme
and E = (KeyGenEBB,EncBB,DecBB) a non-malleable encryption scheme both
assumed quantum resistant. The algorithms associated to a single pass e-voting
scheme could be defined as follows:

– (sk = (sk1, . . . , skt), params) ← Setup(1λ, t, �, L): Each trustee chooses its
secret key ski and publishes a public information pki and proves that it knows
the corresponding secret w.r.t the published public key.
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The bulletin board runs (pkBB, skBB) ← KeyGenEBB(1λ), it publishes pkBB
and keeps skBB private. This step implicitly defines the public pk of the e-
voting scheme that includes pkBB. The parameters params includes the public
key pk, the numbers t, �, L, the list LU and the set of valid votes V. All these
parameters are taken as input to all the following algorithms.

– (usk, upk) ← Register(1λ, id): on input a security parameter and a user identity,
it provides the secret part of the user credential usk and its public part upk.
It updates the public list LU with upk.

– b ← Vote(pk, usk, upk, v): It takes as input a secret credential and public cre-
dential that possibly inclides id and a vote v ∈ V. It outputs a ballot b which
consists in a content message that includes upk, an encryption c of v, an auxil-
iary information aux encrypted using the key pkBB and a version number num
plus a signature of this content message under the secret usk.

– ProcessBB(BB, b, skBB) As long as the bulletin board is open, when the bulletin
board manager receives a ballot b: its parses it as (aux, upk, c, num, σ), verifies
that upk ∈ LU and uses upk to verify the signature of the ballot. Then he
decrypts aux using skBB. And it performs a validity check on b and upk and
finally verifies the revote policy with the version number. If b passes all these
checks, it is added in BB, otherwise BB remains unchanged.

– (Π1, . . . , Πt) ← Tally(BB, sk1, . . . , skt): Once the voting phase is closed and
the public bulletin board is published together with skBB, each trustee T ∈ T
takes as input the public bulletin board BB, and its own secret key to produce
a partial proof Πi, which is publicly disclosed.

– VerifyTally(BB, (Π1, . . . , Πt)): (public) takes as input t partial proofs associ-
ated to a given bulletin board BB and verifies that each individual proof Πi

is correct, and uses all of them to decrypt. It outputs a final result r and ⊥
in case of failure.

Correctness. In this paper, we only address correctness in the case where the
bulletin board is supposed to be honest. In particular, it is not allowed to stuff
itself or suppress valid ballots cast by honest users. Correctness for an e-voting
scheme states that, if users follow the protocol, then the tally leads to the result of
the election on the submitted votes. Considering an honest execution as follows:
Assume (sk, params = (pk, . . . )) ← Setup(1λ, t, �, L) and p = #V = #I, where V
is the set of valid votes whose users’ identifiers lie in I = {id1, . . . , idp}. Denote
as BBi the set of the first i valid ballots cast corresponding to valid votes in V.
Then ProcessBB(BBi−1, bi, skBB) adds bi ← Vote(pk, usk, upk, vi) in BBi−1 for all
i ≤ p and some id ∈ I s.t. (usk, upk) ← Register(1λ, id). Also (Π1, . . . , Πt) ←
Tally(BBp, sk) where VerifyTally(BBp, (Π1, . . . , Πt)) = r and r = ρ(v1, . . . , vp).

2.2 Security Model

Privacy. Several models for privacy have been introduced over the last years. In
this paper, we will use a simulation-based definition inspired from the definition
recently proposed in [5]. The challenger maintains two bulletin boards BB0 and
BB1. It randomly chooses β ∈ {0, 1} and the adversary will be given access to
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BBβ . The adversary can corrupt a subset of the trustees and the adversary can
vote for candidate of his choice and cast ballots. The tally is computed on the
real board in both worlds. At the end, it should not be able to tell the difference.
The procedures and oracles given as access to the adversary in the definitional
game are defined as follows:

– Init(1λ, t, �, L): This procedure is run at the beginning interactively by the
challenger and the adversary. The lists LU (published), L′

U (kept by the chal-
lenger) of registered users and LCU of corrupted users are initialized at empty.
The adversary might corrupt a subset (< t) of trustees when running the
Setup algorithm and deviate from the algorithm specification. At the end, the
non-corrupted secret keys are derived as well as the BB’s secret key skBB and
the public parameters (t, �, L,LU ,V, pk) are published.

– ORegister(id): it checks whether an entry (id, ∗) appears in L′
U . If yes, it aborts,

otherwise it runs the algorithm Register(1λ, id). It updates LU and L′
U with

upkid and (id, upkid) respectively. It outputs upkid.
– OCorruptU(id): it checks whether (id, ∗) appears in LCU . If yes, it returns the

corresponding uskid. Otherwise it checks whether id has been registered using
L′

U . If not, it calls ORegister on input id. It outputs (upkid, uskid) and updates
LCU with (id, upkid, uskid).

– OVote(id, v0, v1): if some entry (id, upkid, uskid) does not exist in L′
U or v0, v1 /∈

V, it halts. Else, it updates BBi ← BBi ∪ {Vote(pk, upkid, uskid, vi)} for i =
0, 1. Here the adversary has access to the public view of BB and thus to the
associated ballot b.

– OCast(id, b): if upkid /∈ LU , it halts. Otherwise it parses b and checks its validity
w.r.t upkid and the auxiliary information inside the submitted ballot using
skBB. If b passes the checks, it adds b to BBi for i = 0, 1.

– OTally(): This procedure is run only once when the voting phase is closed. It runs
(Π1, . . . , Πt) ← Tally(BB0, sk1, . . . , skt) s.t. r = VerifyTally(BB0, (Π1, . . . , Πt)).
For β = 0, it returns (Π1, . . . , Πt). For β = 1, it returns (Π ′

1, . . . , Π
′
t) ←

SimTally(Π1, . . . , Πt, info) s.t. r′ = VerifyTally(BB1, (Π ′
1, . . . , Π

′
t)), where info

includes auxiliary information known by the simulator SimTally, and thus not
the trustee’s private keys. If r 	= r′, it halts.

And we define the experiment Expbpriv,βA,Vote(λ) in Fig. 1.

Definition 2.1. We say that a voting protocol Vote has the ballot privacy prop-
erty if there exists an efficient simulator SimTally such that, for any PPT1 adver-
sary A, it holds that

∣
∣
∣ Pr

[
Expbpriv,βA,Vote(λ) = β

]
− 1

2

∣
∣
∣ is negligible in λ.

Verifiability. We say that a voting protocol Vote is verifiable if it ensures that
the tally verification algorithm does not accept two different results for the same
view of the public bulletin board. This condition has to be verified even if in the

1 Probabilistic Polynomial Timing.
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Fig. 1. The experiments Expbpriv,βA,Vote(λ) and ExpverA,Vote(λ)

presence of malicious adversary corrupting all users except A1. The adversary
still have access to the ORegister,OCorrupt oracles.

We define the experiment ExpverA,Vote(λ) in Fig. 1.

Definition 2.2. We say that a voting protocol Vote is verifiable if for any PPT
adversary A, it holds that Succver(A) = Pr

[
ExpverA,Vote(λ) = 1

]
is negligible in λ.

3 (Cryptographic) Building Blocks

Our scheme is built on the following post-quantum building blocks: Existentially
unforgeable Signatures, Non-malleable Encryption, LWE-based Homomorphic
Encryption, Trapdoors for lattices.

3.1 Signatures

The signature is used by the voter to sign the ballot. The security of the signature
scheme in our protocol should be based on post-quantum assumptions. In our
scheme, we rely on the hardness of finding short vectors in a lattice. One exam-
ple of lattice-based signature was proposed in [12] inspired by Lyubashevsky’s
scheme [19].

3.2 Scale-Invariant LWE Encryption

Our protocol strongly relies on the Learning With Errors problem, first intro-
duced by Regev in [23], and improved to obtain ring variants [20] and homomor-
phic encryption [4,7,8,13,16].

To ease the presentation, we use a normal form notation for LWE which cap-
tures its inherent scale-invariant property by working directly in the unit torus
T = R/Z, not only for the right member like in Regev’s original description [23],
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but also for the left member (i.e. no modulus q or other technical rounding). The
LWE secret is decomposed as bits. This separates the main hardness parame-
ters (i.e. entropy of secret and error rate) from implementation or optimization
technicalities (which takes the form of some unspecified, and not so important
discretization group). Furthermore, this representation is easy to obtain from
any classical representation, and will allow us to study homomorphic protocols
by reasoning directly on the (hidden) plaintext and the continuous noise.

Definition 3.1 (LWE Scale-Invariant Normal Form). Let α ∈ R
+ be a

noise parameter, (s1, ..., sn) be a uniformly distributed binary secret in B
n, and

G ⊆ T
n be a sufficiently dense2 finite discretization group. We note LWE(s, α,G)

the following scale-invariant Learning with errors instance. A random LWE Sam-
ple from LWE(s, α,G) of a message μ ∈ T is mathematically defined as an
element (a , b) ∈ G × T where: the left term a = (a1, ..., an) ∈ G ⊂ T

n is
(indistinguishable from) a uniform sample of G and the right term b is equal
to

∑n
i=1 siai + μ + e ∈ T where e is statistically close from a zero-centered

continuous Gaussian sample of T of parameter α.

Definition 3.2 (Phase). We define the phase of a LWE sample (a , b) ∈ T
n ×T

as ϕs((a , b)) = b − ∑n
i=1 siai ∈ T.

As a straightforward example, a classical sample (a , b) ∈ Z
n
q of integer LWE

with binary secret and binary noise, denoted as binLWE(n,q,1.4) in [6] or [13]
corresponds to the normal form sample (aq , b

q ) ∈ T
n+1. In this case, the left mem-

ber is uniformly distributed over the discretized group G = (1qZ/Z)n, and the
error rate α is ≈ 1/q. If the secret is not binary, classical binary-decomposition
methods (see for instance the BitDecomp and PowersOfTwo methods from [7,
Sect. 3.2]) can quickly put the sample into normal form.

Security. The security of LWE therefore relies on the two other parameters:
the number n of bits or entropy in the secret, and the Gaussian error parameter
α. Figure 3 in the appendix summarizes the practical secure choices for (n, α),
according to standard lattice reduction estimates (see [9]). In particular, for
α equal to 2−10, 2−30 or 2−50, LWE is 128-bit secure as soon as n ≥ 300,
800 and 1500 respectively, if no better attack than the lattice embedding exists.
Furthermore, for any α and n = Ω(log(1/α)), LWE asymptotically benefits from
the worst-case to average case reduction (see [3,15,22,23] or [14] depending on
the shape of G).

The choice of the discretization group G controls the efficiency, but not the
security of LWE. Indeed, as a simple reformulation of the Modulus-dimension
reduction from [6, Corollaries 3.2 and 3.3, Theorem 4.1] or the Group switching
from [14, Lemma 6.3, Corollary 6.4], groups G ⊂ T

n can be swapped as long as

2 Technically speaking, the smoothing parameter of the real lattice G + Z
n must be

smaller than α/
√

2n, as implied by [14] or [6].
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they are sufficiently dense to not interfere with the result of the phase (i.e.
decryption) function from Definition 3.1. Since this function is 1/

√
n-lipschitzian

from T
n → T, and has a precision α, it means that #G can always be chosen

as small as log2(#G) = Õ(n log2(α)), which will be assumed in the remaining
of the paper.

3.3 LWE Symmetric Encryption

In Definition 3.1, we define LWE samples with continuous messages μ ∈ T. The
meaning of this message is natural for freshly generated LWE samples, but is
less obvious when a sample is obtained as a combination of other samples. In
all cases, the message μ and resp. the noise parameter α of a LWE sample c can
mathematically (and not computationally) be defined as the center and resp.
the Gaussian parameter of the distribution of its phase ϕs(c). Here, the prob-
ability space consists in re-sampling all Gaussian error terms of all fresh LWE
samples, and in resampling all random choices that were made in decomposition
or bootstrapping algorithms.

Given a security parameter λ, the noise amplitude ᾱ is the smallest distance
such that |μ − ϕs(c)| ≤ ᾱ with probability ≥1 − 2−λ. It typically means ᾱ =
α · √

λ/π. For a fixed security parameter, amplitude and parameters are just
proportional one to each other. Bootstrapping and decryption operations are in
general easier to present in terms of amplitude rather than parameter, because
it better depicts the actual noise that we get.

To algorithmically extract the message from a LWE sample c like in usual
decryption algorithms, we need an external information on the message: usually,
μ belongs to a discrete message space M of packing radius ≥ᾱ. In this case,
the message of c is computed by rounding its phase ϕs(c) to the closest point
in M. We note this LWEDecryptM,s(c). And in this context, we will also write
LWESymEncrypts,α,G(μ) the operation which consists in generating a random
LWE(s, α,G) sample of μ ∈ M.

3.4 Homomorphism

LWE samples satisfy a straightforward linear homomorphism property, which
follows from continuous Gaussian convolution:

Proposition 3.3 (Linear Homomorphism). Let c1, . . . , cp be p independent
LWE samples of messages μ1, . . . , μp ∈ T and noise parameters α1, . . . , αp, and
let x1, . . . , xp ∈ Z be p integer coefficients. Then the sample c =

∑p
i=1 xici is

a valid encryption of the message μ =
∑p

i=1 xiμi with square noise parameter
α2 ≤ ∑p

i=1 x2
i α

2
i .

If non-linear operations are needed, one may use the following theorem, which
can be viewed as an abstracted (and slightly generalized) version of the Boot-
strapping theorem of Ducas and Micciancio [13].
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Theorem 3.4 (General Bootstrapping Theorem). Let λ denote a security
parameter. Let E = LWE(s, β,G) and E ′ = LWE(s’, α,G′) be two instances of
LWE with respective n and n′-bit secrets s ∈ B

n and s’ ∈ B
n′

. We note ᾱ
and β̄ their respective noise amplitudes. Let M ⊆ T be an input message space
at distance d from {− 1

4 , 1
4}, and N be a power of two at least of the order of

√
(λn)/(d2 − β̄2). If (n, β) and (n′, α/λ

√
n(N + n log(β))) are both λ-bit secure

LWE parameters, then, there exists a bootstrapping key BK[(s,β̄)→(s’,ᾱ)] and a
polynomial bootstrapping algorithm which takes as input the bootstrapping key,
a sample from E and two points (μ′

0, μ
′
1) ∈ T

2 of our choice, and simulates the
following algorithm without knowing the secrets:

BootstrapBK(c, μ′
1, μ

′
0) =

{
LWESymEncrypts’,α,G′(μ′

1) if d(ϕs(c), 1
2 ) < d(ϕs(c), 0)

LWESymEncrypts’,α,G′(μ′
0) otherwise.

Historically, the first bootstrapping notions were just designed to suppress
the input noise of a ciphertext, and optionally to switch its encryption key. But
from a plaintext point of view, bootstrapping was just the identity function. In
contrast, the bootstrapping function from Theorem3.4, and which is implicitly
used by [13], evaluates the comparator operator (or mux) between its three
arguments.

[13] provides a concrete example of BK[(s, 14−ε)→(s, 1
16 )]

bootstrapping key for
any 500-bit key s, which has 128-bit security and whose bootstrapping algo-
rithm runs in about 700 sequential ms, and which we intend to reuse. They
use this key to fully-homomorphically simulate NAND gates between LWE sam-
ples of noise amplitude ᾱ = 1

16 and message space M = {0, 1
4}, just by doing

HomNAND(c1, c2) = BootstrapBK

(
(0, 5

8 )-c1-c2, 1
4 , 0

)
. However, for the final

step of our protocol, we will also need to bootstrap to a much lower noise ampli-
tude, which is not covered in [13], although their construction works with minor
adjustments.

Theorem 3.4 implies that the output of the bootstrapping function is indistin-
guishable from a fresh LWE sample of μ′

0 or μ′
1. In fact, it even seems to behave

like a good collision-resistant one-way function, especially if we re-randomize the
input sample by adding a random combination of the public key. However, for
verifiability purposes, one may also wish to control the randomness to reproduce
some computations. To simplify the analysis, we will therefore model bootstrap-
ping as a random oracle:

Assumption 3.5 (Bootstrapping as a Random Oracle). In the conditions
of Theorem 3.4, the Bootstrap function is assimilated to a random oracle which
returns a fresh LWE sample of μ′

b where b = 1 iff. dist(ϕs(c), 1
2 ) < dist(ϕs(c), 0).

In particular, the left term a’ is always indistinguishable from uniform over G′.

3.5 Publicly Verifiable Decryption for LWE

In the previous section, the LWE normal form with secret s ∈ B
n has been

presented in a symmetric key manner. To allow public encryption, one usually
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publishes a polynomial number m = Ω(n log(1/α)) of random LWE samples of
the message 0 with noise parameter α. This is the public key pk ∈ (G×T)m. The
public key can equivalently be written as a m × (n+1) matrix pk = [M |y ] of T
where y = Mst + error. Public encryption of a message μ ∈ T can then achieved
by summing a random subset (of rows) of the public key, and adding the trivial
ciphertext (0, μ) to the result. We call this operation LWEPubEncryptpk(μ).

In the protocol we will present, this allows a voter to encrypt his vote. Then
the BB can publicly use the bootstrapping theorem to homomorphically evaluate
whatever circuits produces the (encrypted) final result. And in the end, some
trustee must decrypt this result using the secret key. If decrypting a LWE cipher-
text on a discrete message space is easy, proving to everyone that the decryption
is correct without revealing anything on the LWE secret key requires some more
work.

To do so, we adopt a strategy which is borrowed from Lattice-based signa-
tures like GPV [15]. To allow a public decryption of c ∈ G × T, we reveal a
small integer combination (x1, . . . , xm) of the public key pk which could have
been used to encrypt c, as in the following definition:

Definition 3.6 (Publicly Verifiable Ciphertext Trapdoor). Let LWE(s, α,
G) be a LWE instance, and pk = [M |y ] ∈ (G × T)m a public key, and M a
discrete message space of packing radius ≥d. Let c = (a , b) be a sample with
noise amplitude ≤δ̄ and β =

√
(d2 − δ̄2)/ᾱ2, we say that x = (x1, . . . , xm) ∈ Z

m

is a ciphertext trapdoor of c if ‖x‖ ≤ β and if x · M = a in G.

Anyone who knows the public key can verify the correctness of the ciphertext
trapdoor. Furthermore, since the difference c−x ·pk is a trivial ciphertext (0, b′)
of phase b′ of the same message μ ∈ M with noise amplitude <d, this reveals
the message in the same time.

Of course, finding a small combination of random group elements which is
close to some target is related to the subset sum, or the SIS family of problems,
which are hard in average. Luckily, the framework proposed in [21], and which
we briefly summarize in the next paragraph, introduces an efficient trapdoor
solution.

Definition 3.7 (Master Trapdoor as in Definition 5.2 of [21]). Let
LWE(s, α,G) be a λ-bit secure instance of LWE. A Gadget Gad ∈ Gm′

is some
publicly known superincreasing generating family of G, such that any element
a ∈ G can be decomposed as a small (or binary) linear combination of Gad. Let A
be a uniformly distributed family in Gm−m′

, and let R be a m′ × (m-m′) integer

matrix with (small) subGaussian entries. We define the matrix M =
[

A
A′

]

∈ Gm

where A′ = Gad − R · A. We call R a master trapdoor, and its corresponding
public key is pk ∈ (G × T)m, whose i-th row is pki = (Mi|Mi · s + ei) for some
Gaussian noise ei of parameter α. The master trapdoor verifies the condition
Gad = [R| Idm−m′ ] · M and the parameters m,m′,m − m′ = O(log2(#G)).
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Theorem 3.8 (Adapted from Theorem5.1 of [21]). Let c ∈ G × T be a
LWE(s, δ,G) sample on a message space of packing radius >2δ̄, R a master trap-
door of parameter γ and pk an associated public key with noise <δ̄/γ̄ log(#G)1.5.
Given c and R, one may efficiently compute a ciphertext trapdoor x for c of
norm O(β log(#G)1.5). This trapdoor can decrypt c, as in Definition 3.6. Fur-
thermore, the distribution of the ciphertext trapdoors of c is statistically close to
some discrete Gaussian distribution on Z

m, of parameter O(β log(#G)0.5), and
thus, does not reveal any information about R.

Like square roots oracles for RSA moduli, ciphertext trapdoors are trivially
vulnerable to chosen ciphertext attacks, so they should only be invoked on the
output of some good hash function, or some random oracle. It is the case for
all provable instantiations of trapdoor-based lattice signatures like GPV [15] or
[21], and in this paper, we will use the output of the bootstrapping algorithm,
which can also be viewed as a random oracle by Assumption 3.5.

3.6 Concatenated LWE, with Distributed Decryption

To prevent a single authority from decrypting individual ballots, or to guaranty
privacy in the long term, even if all but one trustee leak their private key, we
need to split the LWE secret key among multiple trustees. We do not propose a
threshold decryption like Shamir’s secret sharing scheme, but instead, a simple
concatenation of LWE systems where all the trustees must do their part of the
decryption, and any cheater is publicly detected. This requirement seems suffi-
cient for an e-voting scheme, and has the additional benefit of being achievable
with only two trustees.

Let LWE(si , α,Gi) for i ∈ [1, t] be λ-bit secure instances of LWE, and pki =
[Mi|yi ] ∈ (G × T)m be the corresponding public keys with associated master
trapdoors Ri. We call concatenated LWE the LWE instance whose private key
is s = (s1| . . . |st ), discretization group is G = G1 × · · · × Gt, and public key is

pk =

⎡

⎢
⎣

M1 0 0 y1

0
. . . 0

...
0 0 Mt yt

⎤

⎥
⎦ (1)

To decrypt such LWE ciphertext (with publicly verifiable decryption) c =
(a1| . . . |at , b) ∈ G × T, each of the t trustee independently use his master trap-
door Ri to provide a ciphertext trapdoor Πi of (ai , 0), and like in the previous
section, the concatenated ciphertext trapdoor Π = (Π1| · · · |Πt) is a ciphertext-
trapdoor for c.

Finally, note that even if all trustees leak their private keys except s1,R1

(we take 1 for simplicity), then decrypting c rewrites in decrypting the
LWE(s1, α′, G1) ciphertext (a1, b′) where b′ = b − ∑t

i=2 ai · si . This is by
definition still λ-bit secure. In other words, even in case of collusions between
the trustees, the whole scheme remains secure as long as one trustee is honest.
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4 Detailed Description of Our E-voting Protocol

4.1 Setup Phase

The bulletin board manager generates a pair of keys (pkBB, skBB)=KeyGenEBB(1λ)
and publishes pkBB.

The trustees setup the concatenated LWE scheme presented in Sect. 3.6: each
trustee generates its own separate LWE secret key si ∈ B

n, its own master
trapdoor Ri, and a corresponding public key pki ∈ (G × T)m.

Thus, the secret key ski of each trustee consists in Ri and si . Without reveal-
ing any information on si, they must provide a proof that the public key pki is
indeed composed of LWE(si , α) samples of 0, because it is a requirement for the
correctness of the decryption with ciphertext trapdoors. To do so, the trustees
may for instance use the NIZK proof defined in [18, Sect. 2.2]. Once the existence
of si is established, the trustees do not necessarily need to prove that they know
the secrets si or Ri, although, the simple fact that they can output valid cipher-
text trapdoors prove it anyways, by standard LWE-to-SIS or decision-to-search
reduction arguments.

The main public key pk is the tensor product defined in Eq. (1).
The main secret key s = (s1, . . . , st ) must be secure for low noise rates, like

O(1/L1.5), which means that the number of secret bits is larger than usual. To
perform homomorphic operations efficiently, the trustees define two other secret
keys s(f) and s(m) for a noise rate 1/16 and their corresponding public key pk(f)

and pk(m) (they may still use a concatenated scheme, although this time, they
don’t need a master trapdoor for that).

Finally, they provide three bootstrapping keys: BK1 := BK[(s(f), 14 )→(s(m), 14 )]
,

BK2 := BK[(s(m), 14 )→(s(m), 1
16 )]

, and a larger one for low noise amplitude BK3 :=
BK[(s(m), 14 )→(s, 1

L3/2 )]. Since a bootstrapping key essentially consists in a public
LWE encryption of each individual bit of the private key, each trustee can inde-
pendently provide their part of the bootstrapping keys. Bootstrapping with BK1

or BK2 can be done in less than 700ms using the implementation of [13]. BK3 uses
secrets which are typically twice as large, and since the bootstrapping is essentially
quartic in n, one should expect a slowdown by some constant factor ≈ 16.

4.2 Voter Registration

Register(1λ, id): The authority A1 runs (upkid, uskid) ← KeyGenS(1λ). Its adds
upkid in LU and outputs (upkid, uskid).

4.3 Voting Phase

In our scheme, we suppose that the number of candidates � = 2k is a power of
two. If it is not the case, we can always add null candidates. Then, if we choose a
random value for the vote, no candidate will be favorite over the others. A valid
vote v is thus assimilated to an integer between 0 and � − 1.
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Vote(pk, usk, upk, v): each user computes the binary decomposition
(v0, . . . , vk−1) ∈ {0, 1}k s.t v =

∑k−1
j=0 vj2j . Let v̂j denote 1

2vj ∈ T, he encrypts
each bit as cj = LWEPubEncryptpk(f)(v̂j) with noise amplitude <1

4 . It boot-
straps the c′

js as follow: c′
j = BootstrapBK1

(cj ,
1
2 , 0). It computes aux =

EncBB(pkBB, (c0, . . . , ck−1)||upk). It returns the final ballot b = (content, σ),
where content = (aux, upk, (c′

0, . . . , c’ k−1), num) and σ = Sign(usk, content) and
where num is the version number of the ballot for the revote policy3.

4.4 Processing a Ballot in BB

All the procedures performed by the BB and described in this section are sum-
marized in Fig. 2.

Validity Checks on a Ballot. ProcessBB(BB, b, skBB): upon reception of a bal-
lot b, it parses it as (content, σ), with content = (aux, upk, (c′

0, . . . , c’ k−1), num).
BB verifies that upk ∈ LU and checks whether VerifyS(upkid, content).
It verifies that each cj ∈ G × T. It computes (c0, . . . , ck−1)||upk′ =

DecBB(skBB, aux). It checks whether upk′ == upk and whether c′
j =

BootstrapBK1
(cj ,

1
2 , 0) for all j = 0, . . . , k − 1. Then, it checks the revote pol-

icy with the version number num and adds the ballot if all the validity checks
passed. Note that a syntaxical check on the cj ’s is enough. Note also that unlike
classical e-voting protocol, no semantic check or zero-knowledge proof is needed
at this step, since all binary message are valid choices.

BB Homomorphic Operation. Then, BB applies a sequence of public homo-
morphic operations on the encrypted vote (c′

1, . . . , c′
k ). These homomorphic

operations do not require the presence of the voter, and can therefore be per-
formed offline by the cloud. To simplify, we will just describe what happens on
the cleartext.

1. Pre-Bootstrapping. BootstrapBK2
(c′

j ,
1
4 , 0) is applied on each c′

j to cancel its
uncontrolled input noise and reduce it to 1

16 , and also to reexpress its content on
the {0, 1

4} message space, which is suitable for boolean homomorphic operations.

2. Homomorphic binary expansion. In order to compute the sum of the votes
(homomorphically), BB transforms the vector v̂ = (v̂0, . . . , v̂k−1) ∈ {0, 1

4}k into
its characteristic vector ŵ = 1

4 (w0, . . . , w�−1) = (0, . . . , 0, 1
4 , 0, . . . , 0) of length �

(number of the possible choices of votes) with a 1
4 at position v. This transfor-

mation is very easy and, for every h of binary decomposition h =
∑k−1

i=0 hi2i, wh

corresponds to this boolean term:

3 The revote policy consists in accepting the last vote sent for upk: BB accepts to
overwrite a ballot for upk iff the new version number is strictly larger than the
previous one.
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Fig. 2. Schematic of the protocol In red and green an example: red means
encrypted, green means decrypted (Color figure online)

wh(v) =
( ∧

i∈[0,k−1]
hi=0

vi

)
∧

( ∧

i∈[0,k−1]
hi=1

vi

)

The formula seems complicated, but it is just a conjunction of k variables vi or
their negation (k = log2 � is in general smaller than 5 in typical elections).

These conjunctions can be easily evaluated on ciphertexts using these homo-
morphic gates, keeping in mind that BootstrapBK2

runs in less than 700 ms, as
in [13]:

HomAND(c1, c2) = BootstrapBK2
((0,− 1

8 ) + c1 + c2, 1
4 , 0)

HomANDNot(c1, c2) = BootstrapBK2
((0, 1

8 ) + c1 − c2, 1
4 , 0)
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3. Generalized Bootstrapping. BB then uses the main bootstrapping key BK3 to
convert these � ciphertexts into a new ciphertext of (0, . . . , 0, 1

L , 0, . . . , 0) with
noise O(L−3/2).

This consists in applying BootstrapBK3
((0, 1

8 )+c, 1
L , 0) to each of the � cipher-

texts.

4. Homomorphic addition. At the end of the voting phase, BB sums (homomor-
phically) all ciphertexts, which yields to the final LWE ciphertexts (C0, . . . , C�−1)
of (n0

L , ..., n�−1
L ), with noise O(L−1). No bootstrapping is needed for this step, it

just uses the standard addition on ciphertexts.

4.5 Tallying and Verification

Denote as (C0, . . . , C�−1) the final ciphertext processed by BB. Each LWE sam-
ple Cj encodes the message nj

L with noise amplitude O(1/L), where nj is the
number of votes for candidate j.

Tally(BB, sk = (sk1, . . . , skt)): for each Cj , the trustees independently perform
the distributed decryption described in Sect. 3.6, and publish a ciphertext trap-
door Πi,j ∈ Z

m (for i = 1, . . . , t and j = 0, . . . , � − 1) as in Definition 3.6, which
is revealed to everyone.

VerifyTally(BB, (Π1, . . . , Πt)): given the main public key pk, anyone is able to
check the validity of the ciphertext trapdoors. If a trapdoor Πi,j is invalid, it pub-
licly proves that the i-th trustee is not honest and in this case VerifyTally returns
⊥. If all the trapdoors are valid, anyone can use (Π1,j , . . . , Πt,j) to decrypt Cj ,
and thus, recover nj for all j, which gives the number of votes for the candi-
date j. This gives the result of the election. And VerifyTally returns the result
(n0, . . . , n�−1).

5 Correctness and Security Analysis

5.1 Correctness and Verifiability

In order to prove verifiability and correctness, we show that our scheme verifies
this more general theorem.

Theorem 5.1 (Intermediate theorem for proving Verifiability and Cor-
rectness). Let pk be a valid e-voting public key (this includes also pk(f),
pk(m), and the bootstrapping keys BK1, BK2, BK3 with the parameters defined
in Sect. 4.1, together with their respective NIZK proofs of validity). Let S be
an existentially unforgeable scheme and E a non-malleable encryption scheme
both quantum resistant. Let BB be a sequence of bits that can syntaxically be
interpreted as the public view of a bulletin board after the end of the voting
phase: i.e. a BB key pair (skBB, pkBB), a list [b1, . . . , bp] of ballots where each
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bi = (aux, upk, c’,num, σ) passed the verification check from ProcessBB and the
whole sequence of public homomorphic operations from Sect. 4.4 until the final
ciphertexts. Then, the following facts holds with overwhelming probability

1. For each bi ∈ BB, let (upk, usk) be the credential pair associated to this ballot,
there exists a unique vi ∈ V = [0, � − 1] such that bi can be expressed as
Vote(pk, upk, usk, vi)4.

2. If BB was produced in less than 2λ elementary operations, then each ballot bi

has been generated with the knowledge of its associated usk.
3. The final � ciphertexts after all the homomorphic operations in BB are

LWE(sk, 1/L1.5, G) samples of the plaintext result r = ρ(v1, . . . , vp).
4. For all integer matrix (Π1, . . . , Πt) ∈ Z

�tm, VerifyTally(BB,Π1, . . . , Πt) is
equal to either r or ⊥.

The theorem holds even if one does not perform the check on the auxiliary infor-
mation, and thus, providing (skBB, pkBB) is optional.

Proof (Sketch). Suppose that the hypothesis of the theorem are satisfied.

1. Let bi ∈ BB be a ballot. By construction it can be parsed as
bi = (aux, upk, c’ , num, σ), and since bi passes the tests from ProcessBB,
Dec(skBB, aux) = (upk, c) where c’ = BootstrapBK1

(c, 1
2 , 0). Let c” =

Bootstrap(BK2, c’ ,
1
4 , 0) be the result of the pre-bootstrapping of c′. Then vi

is the integer whose binary decomposition is m = 4·LWEDecryptsk(m),0, 14 (( c′)).
Then by Theorem 3.4 on the bootstrapping, c encodes necessarily 1

2m with
noise amplitude 1

4 , and thus, bi can be expressed as Vote(pk, upk, usk, vi).
Reciprocally, if bi is expressed as Vote(pk, upk, usk, x), then we get back the
same vi = x since we are just encrypting, bootstrapping twice and decrypting.
This proves unicity.

2. Each ballot bi contains a signature σ, which cannot be forged in less than 2λ

elementary operations without the private key usk assuming S is secure.
3. From the plaintext point of view, computing the binary expansion to trans-

form the vote into its characteristic vector and summing these characteristic
vectors (over L) yields the correct result. By Theorem 3.4, the same opera-
tions are correct on the ciphertexts, which proves that the ciphertexts that are
decrypted by the Tally encrypt the correct election result r = ρ(v1, . . . , vp).

4. Let (Π1, . . . , Πt) ∈ Z
�tm be an integer matrix. If VerifyTally(BB,Π1, . . . , Πt)

is not ⊥, then Π1, . . . , Πt form ciphertexts trapdoors for the final
ciphertexts, which satisfy the conditions of Definition 3.6. Therefore,
VerifyTally(BB,Π1, . . . , Πt) is the decryption of the final ciphertexts, which
are the election result r = ρ(v1, . . . , vp) by point 3.

Corollary 1 (Correctness). Assuming that the signature scheme S is exis-
tentially unforgeable and E is a non-malleable encryption scheme and that the
public homomorphic operations performed by the BB are correct, then our pro-
tocol is Correct.
4 the vi exists and is unique, but bi might have been generated without its knowledge,

or more generally, without calling the Vote procedure.
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Fig. 3. 128-bit secure LWE parameters, as a function of (n, α)

Proof. The Correctness is a direct consequence of Theorem 5.1, in the particular
case where the public view of BB is generated by honest voters which follow the
protocol, and Π1, . . . , Πt are generated by the Tally function.

Corollary 2 (Verifiability). Assuming that BB accepts only valid ballots and
that all other operations performed by the BB are public, then our protocol is
verifiable in the sense of Definition 2.2.

Proof. The Verifiability is a direct consequence of point 4 of Theorem5.1. In
fact, it states that the sole possible results of VerifyTally can be r = ρ(v1, . . . , vp)
or ⊥. This implies that the result of the game defined in Fig. 1 is equal to 0 with
overwhelming probability.

5.2 Privacy

Theorem 5.2. Assuming Assumption 3.5 holds, our protocol verifies Privacy in
the sense of Definition 2.1.

Proof (Sketch). The challenger sets two empty bulletin boards BB0 and BB1

picks a random bit β. The adversary may choose at most k ≤ t − 1 LWE secrets
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s1, . . . , sk−1 ∈ B
n and the challenger chooses the remaining t − k secrets ran-

domly and independently (even from the ones chosen by the adversary). As long
as one trustee’s secret key part is uniformly generated and unknown from the
adversary, the three LWE instances generated in the Setup are λ-bit secure.
All the oracles ORegister, OCorrupt, OCast, Tally and VerifyTally follow the nor-
mal protocol described in Sect. 4. The OVote oracle follows the protocol to vote
v0 on BB0 and v1 on BB1, but it chooses the output of the random oracle5

BootstrapBK3
function on BB1 so that it uses exactly the same left-hand term

for corresponding samples in BB0 and BB1. Since the left term of a LWE sam-
ple is uniform in G, this is consistent with the expected output distribution of
BootstrapBK3

. Finally, SimTally is simply the identity function, since all LWE
samples in BB0 and BB1 have the same left term, and the ciphertext trapdoors
only depends on it. The only oracle which depends on a secret that is unknown
to the adversary is Tally. We already know from Theorem3.8 that the ciphertext
trapdoors of the tally do not leak any information on the master trapdoors, nor
on the LWE secret. It remains to show that the result of the election does not
bring any new information to the adversary. Obviously, the attacker does not get
any information from OVote, since he knows the ballot plaintexts. And finally,
our auxiliary information prevents the adversary from using public data in BBβ

to craft a valid ballot for OCast. ��

6 Discussion and Conclusion

In this paper, we presented a new post quantum e-voting protocol. Our new
scheme is simple and the procedures are transparent. The construction exploits
the versality of LWE-based homomorphic encryption to build a scheme reaching
all the security properties, without relying on zero knowledge proofs for proving
the validity of a vote, nor correct decryption. Instead, we make use of ciphertext
trapdoors and rely on a new way to distribute LWE decryption which is not
based on Shamir secret sharing to ensure the public verifiability of the decryp-
tion of the final result. We also introduce a new approach for preventing replay
attacks, by using the one-wayness of the bootstrapping letting the user send some
encrypted auxiliary information. We leave as a possible direction for future work
the extension of our model to a possibly dishonest bulletin board. Lastly, our
scheme is a first instantiation of an LWE-based e-voting protocol and we leave as
an open problem the improvement of our scheme that would make lattice-based
e-voting scheme close to practice.

Acknowledgments. This work has been supported in part Fonds Unique Inter-
ministériel (FUI)through the CRYPTOCOMP project and the EIT Digital project
HC@WORKS.

5 This works well in the random oracle model as in Assumption 3.5. Getting it in the
standard model remains open.
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Appendix

Assuming a medium-scale election with L ≈ 2000 voters, the main partial keys
should allow a 1/L1.5 ≈ 2−17 noise parameter. Taking into account the overhead
for publicly verifiable ciphertext trapdoors and bootstrapping key, the overall
scheme can easily be instantiated with at most 2000-bit secrets.
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