
Evaluating Map-Based RGB-D SLAM
on an Autonomous Walking Robot

Dominik Belter, Michał Nowicki and Piotr Skrzypczyński

Abstract This paper demonstrates an application of a Simultaneous Localization

and Mapping algorithm to localize a six-legged robot using data from a compact

RGB-D sensor. The algorithm employs a new concept of combining fast Visual

Odometry to track the sensor motion, and a map of 3-D point features and robot

poses, which is then optimized. The focus of the paper is on evaluating the presented

approach on a real walking robot under supervision of a motion registration system

that provides ground truth trajectories. We evaluate the accuracy of the estimated

robot trajectories applying the well-established methodologies of Relative Pose Error

and Absolute Trajectory Error, and investigate the causes of accuracy degradation

when the RGB-D camera is carried by a walking robot. Moreover, we demonstrate

that the accuracy of robot poses is sufficient for dense environment mapping in 3-D.

Keywords RGB-D SLAM ⋅ Factor graph ⋅ OctoMap ⋅ Walking robot

1 Introduction

Autonomous walking robots need accurate self-localization with respect to six

degrees of freedom in order to plan and execute their complicated motion patterns

in previously unknown environments. Such robots start to be considered for Urban

Search And Rescue (USAR) missions, due to their high mobility, which includes the

ability to overcome rough terrain and man-made obstacles. In an USAR mission the

robot has to plan its motion, create a map of unknown environment, and self-localize
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with respect to this map. These functions need to be tightly integrated in order to

achieve full autonomy and to ensure reliable motion execution [6]. Our earlier experi-

ments demonstrated that it is necessary to achieve self-localization accuracy of about

the size of the robot’s foot to ensure robust registration of the range data into an ele-

vation map that enables foothold planning [1]. Moreover, an autonomous walking

robot requires a dense representation of the terrain for planning. While some state-

of-the-art 3-D self-localization systems build voxel-based maps, they usually rely

on massive parallel processing to handle the huge amount of range data [22]. Such

approach is not suitable for most legged robots, due to the power consumption of a

high-end GPU. Therefore, an autonomous legged robot needs a Simultaneous Local-

ization and Mapping (SLAM) algorithm that is accurate, runs in real-time without

hardware acceleration, and is coupled with a dense environment mapping.

In this paper we investigate a RGB-D SLAM system based on factor graph opti-

mization implemented on an autonomous six-legged robot. This system uses a com-

pact and affordable structured light RGB-D sensor. This class of sensors has been

positively evaluated in our previous works for self-localization of USAR robots [5],

and for legged robots in particular [13]. We consider a new architecture of the RGB-

D SLAM system, which differs from our recent developments [3, 5] and other similar

solutions [8, 9] by employing a map of 3-D point features that are included in the

factor graph optimization process. The flexible structure of the factor graph enables

real-time optimization of the map in a background process delegated to a separate

thread [4]. While there are other RGB-D SLAM systems that use a map of point fea-

tures [12, 15], they directly match the current perception to features in a large map,

whereas we use a fast Visual Odometry (VO) algorithm to obtain a first guess of the

camera pose, which improves matching robustness.

The evaluation focuses on the trajectory accuracy achieved in experiments on a

real walking robot. We demonstrate that the proposed approach to RGB-D SLAM

yields robot pose estimates that are accurate enough to build a dense, 3-D map of

the environment employing a voxel-based mapping algorithm. Moreover, we identify

the practical problems related to using a RGB-D camera mounted on a legged robot,

and show that tighter coupling between the SLAM system and the control strategy

of the robot is beneficial to the accuracy of the estimated trajectories.

2 Map-Based RGB-D SLAM

The Poznan University of Technology (PUT) RGB-D SLAM system is based on

the factor graph optimization approach and a persistent, scalable map of 3-D point

features. This system follows the non-linear optimization approach to state estima-

tion, which is currently considered to be the state-of-the-art method in SLAM. The

software
1

architecture of PUT RGB-D SLAM is presented in Fig. 1a. The front-end

1
Source code is available at https://github.com/LRMPUT/PUTSLAM/tree/release.

https://github.com/LRMPUT/PUTSLAM/tree/release
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Fig. 1 Block scheme of the PUT RGB-D SLAM with dense mapping system (a), structure of

the feature-based map (b), and the Messor II robot with the Asus Xtion (c) and the chessboard

marker (d)

and the back-end work asynchronously, and get synchronized only on specific events.

Owing to this architecture the system efficiently uses a multi-core CPU without addi-

tional hardware acceleration.

2.1 Back-End

In PUT RGB-D SLAM the back-end holds a map (Fig. 1b), which contains 3-D point

features augmented by their local visual descriptors [16]. The map contains also the

sensor poses related to the keyframes, which were used to extract the map features.

The back-end is based on the g
2
o general graph optimization library [11]. The fac-

tor graph for optimization in the back-end is constructed from the map data. The

observed features and the sensor poses are related by measurement constraints in

ℝ3
. The initial locations of the sensor poses 𝐩ci (i = 1… n) are computed using the

VO pipeline. The sensor poses are represented by Cartesian positions (x, y, z) and

quaternions (qw, qx, qy, qz) parameterizing the sensor orientation. The factor graph

has two types of vertices: 𝐩f representing the point features, and 𝐩c representing the

sensor poses. The initial positions of features 𝐩fj (j = 1…m) in the sensor coordinate

system are determined from the RGB-D measurements. Sensor poses are expressed

in the global frame of the map, while the features are represented relatively to the

poses from which they have been detected. The edge 𝐭ij ∈ ℝ3
represents measure-

ment constraints between the ith pose and the jth feature, and the edge 𝐓ik ∈ SE(3) is

a rigid transformation constraint resulting from the estimated motion between poses

i and k. The pose-to-pose constraints are introduced to the factor graph whenever

the number of re-observed features in the map is below a threshold. The accuracy

of each constraint is represented by its information matrix 𝛀, which can be obtained

by inverting the covariance matrix of the measurement, or can be set to identity, if

we assume anisotropic spatial uncertainty in the measurements. The sequence of the
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sensor (robot) poses 𝐩c1,… ,𝐩cn and feature positions 𝐩f1,… ,𝐩fm that satisfies the set

of constraints is computed as:

argmin
𝐩

F =
n∑

i=1

m∑

j=1
𝐞Tf (i,j)𝛀ij𝐞f (i,j) +

n∑

i,k=1,i≠k
𝐞Tc(i,k)𝛀ik𝐞c(i,k) (1)

where 𝐞f (i,j) = e(𝐩ci ,𝐩
f
j , 𝐭ij) and 𝐞c(i,k) = e(𝐩ci ,𝐩

c
k,𝐓ik) are error functions for the

feature-to-pose and pose-to-pose constraints, respectively. These functions are com-

puted for the estimated pose of the vertex and measured pose of the vertex which

comes out from the measurement 𝐭 ∈ ℝ3
for feature-to-pose or 𝐓 ∈ SE(3) for pose-

to-pose constraints. We use the implementation of Preconditioned Conjugate Gra-

dient method from the g
2
o library [11] to solve (1). We buffer new sensor poses,

features, and measurements in a smaller temporary graph during the graph optimiza-

tion process. Thus, we can synchronize the optimized factor graph with the map of

features when the back-end finishes the on-going graph optimization session.

2.2 Front-End

The core part of the front-end is a fast VO pipeline that yields a sensor displacement

guess. The VO estimates the SE(3) transformation between two poses employing

sparse optical flow tracking with the Lucas-Kanade algorithm [19]. We use ORB

features [14] to initialize the keypoints for tracking, as due to the computing effi-

ciency considerations local descriptors of the features extracted in the VO pipeline

are then re-used for matching between the features from a new keyframe and the

map. Correct matching features in two keyframes are estimated from the initial set

of keypoints associated by optical flow tracking by using the preemptive RANSAC

framework. The RANSAC samples three pairs of keypoints from the initial set, and

using the Umeyama algorithm [21] estimates the candidate transformation, which

is then verified using the remaining pairs of keypoints. The implementation of the

tracking-based VO algorithm is described in more detail in our earlier work [3].

Once the current sensor pose is computed by VO, the front-end attempts to match

features detected in the current keyframe to features in the map. To robustly deter-

mine feature-to-map correspondences the guided matching approach is applied—the

feature matches are considered only in a small neighborhood of the predicted features

in the image plane, and then verified by typical matching based on the ORB descrip-

tors. With a set of possible matches, the inliers are determined again by RANSAC.

Thanks to the constraints established between the current keyframe and the features

already included in the map (from previous, possibly distant keyframes) our SLAM

algorithm handles local metric loops implicitly, without the need to identify already

visited places by their appearance. However, closing large loops by this method is

problematic, as the amount of drift in the predicted sensor pose may be too large for

the guided matching approach.



Evaluating Map-Based RGB-D SLAM on an Autonomous Walking Robot 473

2.3 Dense Environment Mapping

The PUT RGB-D SLAM system creates a sparse map of 3-D features, which is an

efficient environment representation for self-localization. However, for motion plan-

ning the autonomous walking robot needs a dense 3-D, or at least 2.5-D environ-

ment representation [6]. Therefore, we coupled our SLAM system with a 3-D occu-

pancy grid mapping algorithm. Having in the SLAM map the optimized robot/sensor

poses from which the measurements have been made, we project point clouds asso-

ciated to the keyframes into a global coordinate system. Although the point cloud

or surfel-based representation of the RGB-D data can provide a good visualiza-

tion of the scene, they are highly redundant and inefficient whenever the map has

to be queried by the motion planning algorithm for occupancy information at par-

ticular coordinates. Thus, we convert the point clouds to the efficient octree-based

OctoMap occupancy map representation proposed in [10]. In OctoMap the voxels

are stored in a tree structure that results in a compact memory representation and

allows the planning algorithms to query the occupancy map at various resolutions.

Moreover, OctoMap is a probabilistic framework, which efficiently handles noisy

measurements and uncertain sensor poses. We use the algorithm and open source

software from [10] added to our system to create OctoMaps from registered point

clouds. In the experiments presented in this paper we have used 10 mm voxel grid

resolution.

2.4 Implementation on the Walking Robot

The Messor II robot [2] uses the Asus Xtion Pro Live RGB-D sensor based on the

PrimeSense structured light camera—the same that is employed in the more popular

Kinect sensor, which is however bigger, heavier, and requires an additional power

source. The compact and lightweight Asus Xtion, which is powered by USB only is

much more suitable for a walking robot.

On the walking robot the Asus Xtion is mounted on a mast fabricated using the

3-D printing technology (Fig. 1c). The sensor is located at the elevation of 40 cm

above the ground, assuming the neutral posture of the robot. Since the RGB-D sensor

should also measure the ground area in front of the robot for terrain mapping [6], it is

slightly tilted down. This configuration allows the sensor to perceive the shape of the

terrain at some distance from the robot, and to observe objects located farther away.

Such objects are important for SLAM, as they provide more salient features than the

terrain surface. Although the robot has an Inertial Measurements Unit (IMU) that

can estimate the attitude of the robot’s trunk with respect to the gravity vector, in the

present implementation of our SLAM system these measurements are not used.

Currently the Messor II robot has only an embedded computer (PandaBoard) for

its control software, thus the SLAM system runs on a laptop PC. Although for the

experiments presented in this paper the robot was tethered to the laptop and an exter-

nal power source, it is possible to use a WiFi connection and on-board batteries for

full autonomy.
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3 Evaluation Procedure

There are publicly available data sets, such as the TUM RGB-D benchmark [20],

which facilitate benchmarking of RGB-D SLAM algorithms and enable comparison

to state-of-the-art approaches. The PUT RGB-D SLAM was evaluated on the TUM

RGB-D benchmark, demonstrating on some sequences the trajectory reconstruction

accuracy better than the best results published so far in the literature [4]. However,

the TUM RGB-D benchmark and other similar data sets, obtained either using a

handheld Kinect sensor or a sensor mounted on a wheeled robot, do not allow us

to evaluate robustness of our SLAM system to problems specific to walking robots:

legged locomotion is discrete, which often causes uncontrolled oscillations of the

attitude and vibratory motion of the platform, which makes it hard to keep the line of

sight of any on-board sensor horizontal. Moreover, the RGB-D sensor on a walking

robot is usually mounted at quite low height (a tall mast cannot be used due to the

robot stability issues), which limits the effective field of view.

Therefore, we decided to test the PUT RGB-D SLAM on a real six-legged robot.
2

Some results from tests on the same walking robot were already published for the

earlier, pose-based variant of our RGB-D SLAM [5], however, these results were

only qualitative due to the lack of ground truth trajectories. We demonstrate the

trajectory reconstruction accuracy achieved on the Messor II robot with quantita-

tive results, applying the Absolute Trajectory Error (ATE) and Relative Pose Error

(RPE) metrics proposed in [20]. The ATE error compares the distance between the

estimated and ground truth trajectories, and is computed from the Root Mean Square

Error (RMSE) for all nodes of the ground truth and the recovered trajectory. The

RPE error corresponds to the local drift of the trajectory. To compute RPE the rela-

tive transformation between the neighboring point of the ground truth trajectory 𝐓GT
i

and the recovered trajectory 𝐓i is computed, and the relative error for each point of

the trajectory is given by:

𝐄i =
(
𝐓GT
i
)−1 𝐓i. (2)

Taking the translational or rotational part of 𝐄i we obtain the translational or rota-

tional RPE, respectively.

The ground truth trajectories were obtained using an overhead system of cam-

eras [17]. Although this multi-camera vision system consists of five high-resolution

Basler acA1600 cameras equipped with low-distortion, aspherical 3.5 mm lenses,

for the presented experiments we have used only the central camera, which was

possible because of the small area of the terrain mockup traversed by the walking

robot (Fig. 2a). Employing only one camera simplified the registration procedure, as

mutual calibration of the overhead cameras was not necessary [18]. The central cam-

era was calibrated using a chessboard pattern according to the rational lens model

[7]. We synchronized the acquisition of RGB-D frames by the Asus Xtion on the

robot with the frame rate of the overhead camera (they both work at 15 Hz, due to

2
Data set is publicly available at http://lrm.put.poznan.pl/putslam/.

http://lrm.put.poznan.pl/putslam/
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Fig. 2 Evaluation experiment: experimental set up with a flat terrain mockup and the Messor II

robot (a), system calibration concept (b), and an exemplary view from the overhead camera of the

PUT Ground Truth system (c)

limitations of the camera) to avoid errors due to trajectory interpolation, which arise

in other RGB-D data sets [20].

The Messor II robot used in the experiments was equipped with the Asus Xtion

sensor and a rigidly attached chessboard marker facing up (Fig. 1d). The rigid trans-

formation between the Asus Xtion coordinate system, and the coordinates of the

chessboard marker was estimated applying the calibration algorithm from [18],

which uses images of an external calibration marker observed by the on-board sen-

sor and images registered by an external camera observing both the external marker,

and the marker attached to the robot (Fig. 2b). During the experiments overhead cam-

era images (Fig. 2c) were registered synchronously with the Asus Xtion frames. The

chessboard pattern of known size was extracted from these images and its pose with

respect to the overhead camera was determined. Then, this pose was transformed to

the pose of the sensor using the transformations obtained by calibration. All artificial

markers were used only by the PUT Ground Truth system, and the operation of PUT

RGB-D SLAM didn’t depend on them.

4 Results

All experiments with the Messor II robot have been conducted on a flat terrain

mockup of the size 2 × 2 m. Some common objects (furniture, lab equipment) have

been located outside the mockup to make the environment richer in salient features,

which are needed by our SLAM to operate reliably. All test trajectories resembled

rectangles of the lap size similar to the width of the mockup, but executed at different

translational speeds of the robot, making also more or less sharp turns at the corners

of the trajectory. The layout of objects around the mockup area was different for each

experiment.

In the first experiment the Messor II robot used the default tripod gait. This is

the fastest statically stable gait for a six-legged machine, thus the robot moved at

95 % of its maximal speed. As the robot was teleoperated using a joystick, the step

length was variable and the effective velocity of the robot’s trunk with the sensor
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Fig. 3 Results for the robot walking at 95 % of its maximal speed (messor2_1): ground truth

trajectory (a), estimated trajectory with ATE (b), transitional RPE (c), and the number of matched

map features (d)

varied as well, but the average velocity was about 0.15 m/s. The resulting ground

truth trajectory is shown in Fig. 3a. The estimated trajectory and the ATE values are

visualized in Fig. 3b. The ATE RMSE in this experiment was about 9.5 cm, which

is a value bigger than expected for reliable dense mapping and motion planning.

Plot of the translational RPE (Fig. 3c) reveals that at some frames (e.g. frame 280,

pointed by the arrow) the relative error peaked to more than 0.25 m. The moments of

increased relative error coincide with sudden drops of the number of measurements

between the new frame and the map (i.e. the number of established feature-to-pose

constraints, Fig. 3d), which usually means that the VO-based guess of the camera

pose was very poor. This leads to sensor poses that are weakly connected to the map

features, and to an increased error in the optimized trajectory, as seen at the ATE

plot (Fig. 3a, pointed by the arrow).

Careful inspection of the recorded RGB frames revealed that the moments of

much degraded performance directly coincide with the frames containing an exces-

sive amount of motion blur. An example of such corrupted RGB-D data from this

experiment is shown in Fig. 4. While frames (a) and (e) are sharp enough, the frame

(c) between them is blurred to the extent that makes it impossible to track the key-

points with the Lucas-Kanade algorithm. The motion blur is apparently caused by
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Fig. 4 RGB (a, c, e) and depth (b, d, f) frames from the Asus Xtion mounted on the Messor II

robot acquired during the experiment at 95 % of maximal speed

quite large amplitude vibrations of the robot’s trunk observed when it is supported by

three legs in the swing phase of the fast tripod gait. What is interesting, the motion

blur degrades also the depth images, as seen in Fig. 4d—some details seen on the

neighboring depth frames, like the wheeled robot (denoted ‘1’) or legs of the chair

(denoted ‘2’) are completely blurred or missing entirely. This effect makes extraction

of the 3-D point features from the blurred frames extremely unreliable.

If the speed of the robot is reduced to 45 % of the maximal value (average velocity

of about 0.09 m/s) the trajectory is recovered with slightly better accuracy, as shown

in Fig. 5. The robot still takes some frames when it is supported by three legs only, but

due to the reduced speed, the trunk vibrations have smaller amplitude. As the result,

the number of measurements between the current keyframe and the map never drops

to zero (Fig. 5d).

Better accuracy and a much smoother recovered trajectory can be obtained if we

couple the acquisition of RGB-D frames for SLAM with the gait of the robot. This

can be fully implemented only if we let the motion execution algorithm to control the

RGB-D sensor, which was impossible in the presented experiments. However, when

we have changed the default tripod gait to a slower crawl gait, which moves only one

leg of the robot at once, we were able to avoid excessive motion blur. In this case

the average velocity of the robot was only 0.05 m/s, but we were able to achieve the

ATE RMSE of about 5 cm, which seems to be enough for terrain mapping (almost

the size of the robot’s foot). Results of this experiment are depicted in Fig. 6. Table 1

summarizes the quantitative results for all the three experiments presented in this

paper.

In order to demonstrate that the self-localization accuracy achieved by PUT RGB-

D SLAM on the real walking robot is sufficient for dense environment mapping

we produced an voxel-based occupancy grid from the points measured in the third

experiment (messor2_3 trajectory). In Fig. 7a and b we show screenshots from a

dynamic visualization of the point cloud registered with the recovered trajectory.
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(a)

(b)

(c)

(d)

Fig. 5 Results for the robot walking at 45 % of its maximal speed (messor2_2): ground truth

trajectory (a), estimated trajectory with ATE (b), transitional RPE (c), and the number of matched

map features (d)

This visualization can run on-line along with PUT RGB-D SLAM, and is presented

in a movie clip available at http://lrm.cie.put.poznan.pl/aut2016.mp4. The registered

point clouds are transformed into the more compact OctoMap representation pre-

sented in Fig. 7c and d using the OctoMap viewer [10].

5 Conclusions

A new approach to the RGB-D SLAM problem, which employs the factor graph

optimization and builds a persistent map of 3-D features has been presented and

evaluated for the use on a real autonomous walking robot. The SLAM algorithm

uses visual odometry to compute the sensor motion guess, instead of direct tracking

of the sensor against the map. The VO pipeline implemented using fast optical flow

tracker results in a very accurate RGB-D SLAM running at the RGB-D camera frame

rate without GPU acceleration, which makes it suitable for on-board implementation

in various robots that require accurate self-localization in 3-D, such as autonomous

walking robots in USAR missions.

http://lrm.cie.put.poznan.pl/aut2016.mp4
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(a)

(b)

(c)

(d)

Fig. 6 Results for the robot acquiring RGB-D frames when it was in the support phase of crawl

gait (messor2_3): ground truth trajectory (a), estimated trajectory with ATE (b), transitional RPE

(c), and the number of matched map features (d)

Table 1 ATE and RPE for the PUT RGB-D SLAM measured on three sequences

Messor II

experiment

RGB-D data

sequence

ATE RMSE (m) ATE std dev. (m) Translat. RPE

RMSE (m)

Rotat. RPE

RMSE (deg)

messor2_1 0.095 0.052 0.054 4.96

messor2_2 0.069 0.033 0.041 5.66

messor2_3 0.053 0.025 0.012 5.42

Our experiments revealed that the most pronounced problems specific to the

multi-legged platform are the unstable motion and excessive vibrations, which cor-

rupt the RGB-D data acquired in-motion. One solution to these problems, that was

to some extent implemented in our experiments is to couple the frame acquisition

process with the gait control of the robot. Another one, which we plan to research in

the near future is to compensate the motion of the platform by using data from the

on-board IMU. Obviously, both approaches may be then combined for even better

results.
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(a) (b)

(c) (d)

Fig. 7 Visualization of RGB-colored point clouds registered with the estimated robot trajectory

messor2_3 (a, b), and the RGB-colored voxel-based map created from these data with the

OctoMapping algorithm (c, d)

We have also demonstrated experimentally, that the accuracy of PUT RGB-D

SLAM is good enough for dense mapping of the environment from a real walking

robot. In further research we will demonstrate that the obtained occupancy map can

be used for efficient motion planning with the algorithms that have been already

tested on simpler elevation grid maps [6].
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