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Abstract Descriptor fractional discrete-time linear systems are addressed. Three
different methods for finding the solution to the state equation of the descriptor
fractional linear system are considered. The methods are based on: Shuffle algo-
rithm, Drazin inverse of the matrices and Weierstrass-Kronecker decomposition
theorem. Effectiveness of the methods is demonstrated on simple numerical
example.
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1 Introduction

Descriptor (singular) linear systems have been considered in many papers and
books [1–8]. First definition of the fractional derivative was introduced by Liouville
and Riemann at the end of the 19th century [9, 10], another on was proposed in 20th
century by Caputo [11] and next one in present times by Caputo-Fabrizio [12]. This
idea has been used by engineers for modeling different processes [13, 14]. Math-
ematical fundamentals of fractional calculus are given in the monographs [9–11,
15]. Solution of the state equations of descriptor fractional discrete-time linear
systems with regular pencils have been given in [7, 16] and for continuous-time in
[5, 6]. Reduction and decomposition of descriptor fractional discrete-time linear
systems has been considered in [17]. Application of the Drazin inverse method
to analysis of descriptor fractional discrete-time and continuous-time linear
systems have been given in [18, 19]. Solution of the state equation of descriptor
fractional continuous-time linear systems with two different fractional has been
introduced in [8].
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In this paper three different methods for finding the solution to descriptor
fractional discrete-time linear systems will be considered and illustrated on single
example.

The paper is organized as follows. In Sect. 2 the basic informations on the
descriptor fractional discrete-time linear systems are recalled. Shuffle algorithm
method is described in Sect. 3. Drazin inverse method is given in Sect. 4. Section 5
reccals Weierstrass-Kronecker decomposition method. In Sect. 6 single numerical
example, illustrating three methods is presented. Concluding remarks are given in
Sect. 7.

The following notation will be used: ℜ—the set of real numbers,ℜn×m
—the set

of n×m real matrices, Z+—the set of nonnegative integers, In—the n× n identity
matrix.

2 Preliminaries

Consider the descriptor fractional discrete-time linear system described by the state
equation

EΔαxi+1 =Axi +Bui, i∈Z+ = f0, 1, . . .g, ð2:1Þ

where, xi ∈ℜn, ui ∈ℜm are the state and input vectors,
A∈ℜn× n, E∈ℜn× n, B∈ℜn×m, and the fractional difference of the order α is
defined by

Δαxi = ∑
i

k=0
ckxi− k, 0 < α<1, ð2:2aÞ

where

ck = ð− 1Þk α
k

� �
= ð− 1Þk 1 for k=0

αðα− 1Þ...ðα− k+1Þ
k! for k=1, 2, . . .

�
ð2:2bÞ

It is assumed that detE=0 and the pencil of the system (2.1) is regular, that is
det½Ez−A�≠ 0 for some z∈C (the field of complex numbers). To find the solution
of the system (2.1) at least three different methods can be used. These methods are
the Shuffle algorithm method [17], the Drazin inverse method [18] and the
Weierstrass-Kronecker decomposition method [7]. These methods was previously
used to find the solution of the descriptor standard discrete-time linear systems and
was extended to fractional systems. The question arise, does the order α has
influence on the solution computed by the use of these methods?

In the next section, three different approaches to finding the solution to the state
Eq. (2.1) of the descriptor fractional discrete-time linear systems will be given.
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3 Shuffle Algorithm Method

First method is based on row and column elementary operations [20] and use the
Shuffle algorithm to determine the solution [17].

By substituting (2.2a) into (2.1) we can write the state equation in the form

∑
i+1

k=0
Eckxi− k +1 =Axi +Bui, i∈Z+ , ð3:1Þ

where ck is given by (2.2b). Applying the row elementary operations to (3.1) we
obtain

∑
i+1

k=0

E1

0

� �
ckxi− k+1 =

A1

A2

� �
xi +

B1

B2

� �
ui, i∈Z+ , ð3:2Þ

where E1 ∈ℜn1 × n is full row rank and A1 ∈ℜn1 × n, A2 ∈ℜðn− n1Þ× n, B1 ∈ℜn1 ×m,
B2 ∈ℜðn− n1Þ×m. The Eq. (3.2) can be rewritten as

∑
i+1

k =0
E1ckxi− k+1 =A1xi +B1ui ð3:3aÞ

and

0=A2xi +B2ui. ð3:3bÞ

Substituting in (3.3b) i by i + 1 we obtain

A2xi+1 = −B2ui+1. ð3:4Þ

The Eqs. (3.3a) and (3.4) can be written in the form

E1

A2

� �
xi+1 =

A1 − c1E1

0

� �
xi −

c2E1

0

� �
xi− 1 −⋯− ci+1E1

0

� �
x0 +

B1

0

� �
ui +

0
−B2

� �
ui+1.

ð3:5Þ

If the matrix

½ET
1 AT

2 �T ð3:6Þ

is singular then applying the row operations to (3.5) we obtain

E2

0

� �
xi+1 =

A20

A2̄0

� �
xi +

A21

A2̄1

� �
xi− 1 +⋯+

A2, i

A2̄, i

� �
x0 +

B20

B̄20

� �
ui +

B21

B2̄1

� �
ui+1, ð3:7Þ
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where E2 ∈ℜn2 × n is full row rank with n2 ≥ n1 and A2, j ∈ℜn2 × n, A ̄2, j ∈ℜðn− n2Þ× n,
j=0, 1, . . . , i B2, k ∈ℜn2 ×m, B ̄2, k ∈ℜðn− n2Þ×m, k=0, 1. From (3.7) we have

0= Ā20xi +A2̄1xi− 1 +⋯+ Ā2, ix0 + B̄20ui + B̄21ui+1. ð3:8Þ

Substituting in (3.8) i by i + 1 (in state vector x and in input u) we obtain

A2̄0xi+1 = −A ̄21xi −⋯− Ā2, ix1 − B̄20ui+1 − B̄21ui+2. ð3:9Þ

From (3.7) and (3.9) we have

E2

A ̄20

� �
xi+1 =

A20

−A2̄1

� �
xi +

A21

−A2̄2

� �
xi− 1 +⋯+

A2, i

0

� �
x0 +

B20

0

� �
ui +

B21

−B ̄20

� �
ui+1 +

0
−B2̄1

� �
ui+2

ð3:10Þ

If the matrix

½ET
2 AT̄

20 �
T ð3:11Þ

is singular then we repeat the procedure.
Continuing this procedure after finite number of steps p we obtain

Ep

Āp, 0

� �
xi+1 =

Ap, 0

− Āp, 1

� �
xi +

Ap, 1

−Ap̄, 2

� �
xi− 1 +⋯+

Api

0

� �
x0 +

Bp, 0

0

� �
ui +

Bp, 1

−Bp̄, 0

� �
ui+1 +⋯+

0
−Bp̄, p− 1

� �
ui+ p− 1

ð3:12Þ

where Ep ∈ℜnp × n is full row rank, Apj ∈ℜnp × n, Ap̄j ∈ℜðn− npÞ× n, j=0, 1, . . . , p
and Bpk ∈ℜnp ×m, B̄pk ∈ℜðn− npÞ×m, k=0, 1, . . . , p− 1 with nonsingular matrix

½ET
p AT̄

p.0 �T ∈ℜn× n. ð3:13Þ

In this, case premultiplying Eq. (3.12) by
Ep

Ap̄, 0

� �− 1

, we obtain the standard
system

xi+1 = Â0xi +A1̂xi− 1 +⋯+Aîx0 + B̂0ui + B̂1ui+1 +⋯+ B̂p− 1ui+ p− 1 ð3:14Þ

with the matrices

Â0 =
Ep

Āp, 0

� �− 1 Ap, 0

−Ap̄, 1

� �
, A1̂ =

Ep

A ̄p, 0

� �− 1 Ap, 1

− Āp, 2

� �
, . . . , Âi =

Ep

Ap̄, 0

� �− 1 Api

0

� �
,

B̂0 =
Ep

Āp, 0

� �− 1 Bp, 0

0

� �
, B̂1 =

Ep

A ̄p, 0

� �− 1 Bp, 1

−Bp̄, 0

� �
, . . . , B ̂p− 1 =

Ep

Āp, 0

� �− 1 0

− B̄p, p− 1

� �
.

ð3:15Þ
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Eventually, we reduce the descriptor system to standard system with delays. To
compute the solution xi of (3.14), now we can use methods given for standard
discrete-time linear systems with delays, e.g. iterative approach (initial conditions
are needed).

4 Drazin Inverse Method

Second method use the Drazin inverses of the matrices E ̄ and F ̄ [18].

Definition 4.1 [18] A matrix E ̄D is called the Drazin inverse of E ̄∈ℜn× n if it
satisfies the conditions

E ̄ED̄ =E ̄DE ̄,E ̄DE ̄E ̄D =ED̄,E ̄DE ̄q+1 =Eq̄, ð4:1Þ

where q is the smallest nonnegative integer, satisfying condition

rank Eq̄ = rank E ̄q+1 and it is called the index of E ̄.

The Drazin inverse ED̄ of a square matrix E ̄ always exist and is unique [1]. If

detE ̄≠ 0 then E ̄D =E ̄− 1. Some methods for computation of the Drazin inverse are
given in [20].

Lemma 4.1 [18] The matrices E ̄ and F ̄ satisfy the following equalities:

1: F ̄E ̄=E ̄F ̄ andFD̄E ̄=E ̄F ̄D,ED̄F ̄=F ̄E ̄D,F ̄DED̄ =E ̄DF ̄D, ð4:2aÞ

2: ker F1̄ ∩ ker E ̄= f0g, ð4:2bÞ

3: E ̄= T
J 0
0 N

� �
T − 1,F ̄= T

A1 0
0 A2

� �
T − 1,E ̄D =T J − 1 0

0 0

� �
T − 1, det T ≠ 0,

ð4:2cÞ

J ∈ℜn1 × n1 , is nonsingular, N ∈ℜn2 × n2 is nilpotent, A1 ∈ℜn1 × n1 ,
A2 ∈ℜn2 × n2 , n1 + n2 = n,

4: ðIn −E ̄E ̄DÞF ̄F ̄D = In −E ̄E ̄D and ðIn −E ̄ED̄ÞðE ̄FD̄Þq =0. ð4:2dÞ

Similar as in previous case, substitution of (2.2a) into (2.1) yields

Exi+1 =Fxi − ∑
i

k=1
Eck+1xi− k +Bui, i∈ Z+ , ð4:3aÞ
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where

F =A−Ec1 and det½Ec−F�≠ 0 for some c∈C. ð4:3bÞ

Premultiplying (4.3a) by ½Ec−F�− 1 we obtain

E ̄xi+1 =F ̄xi − ∑
i

k=1
E ̄ck+1xi− k + B̄ui, ð4:4aÞ

where

E ̄= ½Ec−F�− 1E,F ̄= ½Ec−F�− 1F,B ̄= ½Ec−F�− 1B. ð4:4bÞ

Theorem 4.1 The solution to the Eq. (4.4a) with an admissible initial condition x0,
is given by

xi = ðE ̄DF ̄ÞiE ̄DE ̄x0 + ∑
i− 1

k=0
ED̄ðED̄F ̄Þi− k− 1½B ̄uk − ∑

k

j=1
E ̄cj+1xk − j�+ ðE ̄ED̄ − InÞ ∑

q− 1

k =0
ðE ̄FD̄ÞkFD̄B̄ui+ k

ð4:5Þ

where q is the index of E ̄. Proof is given in [18].
From (4.5) for i = 0 we have

x0 =E ̄DE ̄x0 + ðE ̄E ̄D − InÞ ∑
q− 1

k=0
ðE ̄F ̄DÞkF ̄DB̄uk. ð4:6Þ

In practical case, for ui = 0, i∈ Z+ we have x0 =E ̄DE ̄x0. Thus, the equation

E ̄xi+1 =Axi has a unique solution if and only if x0 ∈ ImE ̄ED̄, where Im denotes the
image.

Fig. 1 Solution for α = 0.1
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5 Weierstrass-Kronecker Decomposition Method

Third method use the following Lemma, upon which the solution to the state
equation will be derived.

Lemma 5.1 [7, 20, 21] If (2.3) holds, then there exist nonsingular matrices
P,Q∈ℜn× n such that

PEQ=diagðIn1 ,NÞ, PAQ=diagðA1, In2Þ, ð5:1Þ

where N ∈ℜn2 × n2 is nilpotent matrix with the index µ (i.e. Nμ =0 and Nμ− 1 ≠ 0),
A1 ∈ℜn1 × n1 and n1 is equal to degree of the polynomial

det½Es−A�= an1z
n1 +⋯+ a1z+ a0, n1 + n2 = n. ð5:2Þ

A method for computation of the matrices P and Q has been given in [22].
Premultiplying the Eq. (2.1) by the matrix P∈ℜn× n and introducing new state

vector

xī =
xð̄1Þi

xð̄2Þi

" #
=Q− 1xi, x

ð̄1Þ
i ∈ℜn1 , xð̄2Þi ∈ℜn2 , i∈ Z+ , ð5:3Þ

we obtain

PEQQ− 1Δαxi+1 =PEQΔαQ− 1xi+1 =PAQQ− 1xi +PBui. ð5:4Þ

Applying (5.1) and (5.3) to (5.4) we have

In1 0
0 N

� �
Δα xð̄1Þi+1

xð̄2Þi+1

" #
=

A1 0
0 In2

� �
x ̄ð1Þi

xð̄2Þi

" #
+

B1

B2

� �
ui, i∈Z+ , ð5:5Þ

where

B1

B2

� �
=PB,B1 ∈ℜn1 ×m,B2 ∈ℜn2 ×m. ð5:6Þ

Taking into account (2.2a), from (5.5) we obtain

x ̄ð1Þi+1 = − ∑
i+1

k=1
ð− 1Þk α

k

� �
x ̄ð1Þi− k+1 +A1x ̄

ð1Þ
i +B1ui =A1αx ̄

ð1Þ
i + ∑

i+1

k=2
ð− 1Þk− 1 α

k

� �
x ̄ð1Þi− k+1 +B1ui

ð5:7Þ

Descriptor Fractional Discrete-Time Linear System … 43



and

N x ̄ð2Þi+1 + ∑
i+1

k=1
ð− 1Þk α

k

� �
xð̄2Þi− k+1

� �
= xð̄2Þi +B2ui,A1α =A1 + In1α. ð5:8Þ

The solution xð̄1Þi to the Eq. (5.7) is well-known [20] and it is given by the
following theorem.

Theorem 5.1 [7, 20] The solution x ̄ð1Þi of the Eq. (5.7) is given by the formula

xð̄1Þi =Φix
ð̄1Þ
0 + ∑

i− 1

k =0
Φi− k− 1B1uk , i∈ Z+ , ð5:9Þ

where the matrices Φi are determined by the equation

Φi+1 =ΦiA1α + ∑
i+1

k=2
ð− 1Þk− 1 α

k

� �
Φi− k+1 Φ0 = In1 . ð5:10Þ

To find the solution xð̄2Þi of the Eq. (5.8) for N ≠ 0 nilpotent (e.g. for N =
0 1
0 0

� �
we have two equations with two unknown elements) we simple start with solving
the equation related to zero row and then continue solving the rest of the equations,
see e.g. [7, 20].

If N =0 then from (5.8) we have

xð̄2Þi = −B2ui, i∈ Z+ . ð5:11Þ

From (5.3), for known xð̄1Þi and xð̄2Þi , we can find the desired solution of the
Eq. (2.1).

6 Example

Main goal of this chapter as well as whole paper, is to show, how to use presented
methods, for computation of the solution of the fractional discrete-time linear
system described by the Eq. (2.1). The following example will be used to describe
the procedure for computation of the solution.

Find the solution xi of the descriptor fractional discrete-time linear system (2.1)
with the matrices

E=
1 0 0
0 1 0
0 0 0

2
4

3
5, A=

1 0 1
0 1 0
− 1 0 − 1

2
4

3
5, B=

1
0
− 1

2
4

3
5 ð6:1Þ
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for α = 0.5, ui = u = 1, i∈ Z+ and x0 = ½ 1 2 − 2 �T (T denotes the transpose).
In this case, detE=0 and the pencil of the system (2.1) witch (6.1) is regular

since

det½Ez−A�=
z− 1 0 − 1
0 z− 1 0
1 0 1

������
������= zðz− 1Þ. ð6:2Þ

6.1 Case of Shuffle Algorithm Method

Following Chap. 3, we compute

½E A B �=
1 0 0 1 0 1 1
0 1 0 0 1 0 0
0 0 0 − 1 0 − 1 − 1

2
4

3
5=

E1 A1 B1

0 A2 B2

� �
ð6:3Þ

and the Eqs. (3.3a) and (3.3b) has the form

∑
i+1

k =0
ck

1 0 0
0 1 0

� �
xi− k+1 =

1 0 1
0 1 0

� �
xi +

1
0

� �
ui, ð6:4aÞ

0= ½− 1 0 − 1 �xi − ui. ð6:4bÞ

Using (2.2b) we obtain c1 = − 0.5, c2 = 1 8̸, …, ci+1 = ð− 1Þi+1 αðα− 1Þ...ðα− iÞ
ði+1Þ!

���
α=0.5and the Eq. (3.5) has the form

Fig. 2 Solution for α = 0.5
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1 0 0

0 1 0

− 1 0 − 1

2
64

3
75xi+1 =

1.5 0 1

0 1.5 0

0 0 0

2
64

3
75xi − 1

8

1 0 1

0 1 0

0 0 0

2
64

3
75xi− 1

−⋯− ci+1

1 0 1

0 1 0

0 0 0

2
64

3
75x0 +

1

0

0

2
64

3
75ui +

0

0

1

2
64

3
75ui+1.

ð6:5Þ

The matrix
E1

Ā10

� �
=

1 0 0
0 1 0
− 1 0 − 1

2
4

3
5=

E1

A1̄0

� �− 1

is nonsingular and the

solution to the state Eq. (2.1) has the form

xi+1 = Â0xi +A1̂xi− 1 +⋯+A ̂ix0 +B0̂ui + B̂1ui+1, ð6:6Þ

where

A0̂ =
E1

A ̄10

� �− 1 1.5 0 1

0 1.5 0

0 0 0

2
64

3
75, A1̂ =

1
8

E1

A ̄10

� �− 1 1 0 1

0 1 0

0 0 0

2
64

3
75, . . . ,

A ̂i = ð− 1Þi− 1 0.5ð− 0.5Þ . . . ð0.5− iÞ
ði+1Þ!

E1

0

� �− 1 1 0 1

0 1 0

0 0 0

2
64

3
75, B̂0 =

E1

A1̄0

� �− 1 1

0

0

2
64

3
75, B ̂1 =

E1

A1̄0

� �− 1 0

0

1

2
64

3
75.

ð6:7Þ

The desired solution of the descriptor fractional system (2.1) with (6.1) has the
form

xi = ∑
i− 1

k=0
Âkxi− k− 1 + ∑

p

k=0
Bk̂ui− k− 1. ð6:8Þ

6.2 Case of Drazin Inverse Method

Following this chapter, we compute

F =A−Ec1 =A+Eα=
1+ α 0 1
0 1+ α 0
− 1 0 − 1

2
4

3
5 and q=1. ð6:9Þ

46 Ł. Sajewski



For c = 1 the matrices (4.4b) have the form

E ̄=
− 2 0 0
0 − 0.667 0
2 0 0

2
4

3
5, F ̄=

− 1 0 0
0 − 1 0
0 0 − 1

2
4

3
5, B̄=

0
0
− 1

2
4

3
5. ð6:10Þ

Using e.g. formula E ̄D =V ½WE ̄V �− 1W where E ̄=VW =
− 2 0
0 − 0.667
2 0

2
4

3
5 1 0 0

0 1 0

� �
, we compute

E ̄D =
− 0.5 0 0
0 − 1.5 0
0.5 0 0

2
4

3
5 andF ̄D =F ̄− 1 =

− 1 0 0
0 − 1 0
0 0 − 1

2
4

3
5, ð6:11Þ

since detF ̄=0.187≠ 0. Taking into account that

ED̄F ̄=
0.5 0 0
0 1.5 0

− 0.5 0 0

2
4

3
5, E ̄E ̄D =

1 0 0
0 1 0
− 1 0 0

2
4

3
5, ð6:12Þ

the desired solution for the descriptor fractional system (2.1) with (6.1) has the form

xi = ðE ̄DF ̄ÞiE ̄DE ̄x0 + ∑
i− 1

k=0
ED̄ðED̄F ̄Þi− k− 1½B ̄uk − ∑

k

j=1
E ̄cj+1xk − j�+ ðE ̄ED̄ − InÞ ∑

q− 1

k =0
ðE ̄FD̄ÞkFD̄B̄ui+ k

ð6:13Þ

where the coefficients cj are defined by (2.2b). From (6.13) for i = 0 we have

x0 =E ̄DE ̄x0 + ðE ̄ED̄ − I3ÞFD̄B̄u0 =
1 0 0
0 1 0
− 1 0 0

2
4

3
5x0 + 0

0
− 1

2
4

3
5u0. ð6:14Þ

Hence, for given u0 = u = 1, the initial condition x0 = ½ 1 2 − 2 �T satisfy
(6.14) and their are admissible.

6.3 Case of Weierstrass-Kronecker Decomposition Method

In this case the for (6.1) matrices P and Q have the form

P=
0 1 0
1 0 1
0 0 − 1

2
4

3
5, Q=

0 1 0
1 0 0
0 − 1 1

2
4

3
5 ð6:15Þ
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and

PEQ=
1 0 0
0 1 0
0 0 0

2
4

3
5, PAQ=

1 0 0
0 0 0
0 0 1

2
4

3
5, PB=

0
0
1

2
4

3
5, A1α =

1.5 0
0 0.5

� �
,

ðn1 = 2, n2 = 1Þ.
ð6:16Þ

The Eqs. (3.5) and (3.6) have the form

xð̄1Þi+1 =
1.5 0
0 0.5

� �
xð̄1Þi + ∑

i+1

k=2
ð− 1Þk− 1 0.5

k

� �
x ̄ð1Þi− k+1, i∈Z+ , ð6:17aÞ

xð̄2Þi = −B2ui = − ui, i∈ Z+ . ð6:17bÞ

The solution xð̄1Þi of the Eq. (6.17a) has the form

xð̄1Þi =Φix
ð̄1Þ
0 + ∑

i− 1

k =0
Φi− k− 1B1uk , i∈ Z+ , ð6:18Þ

where

Φ0 =
1 0
0 1

� �
, Φ1 =

1.5 0
0 0.5

� �
, Φ2 =

2.125 0
0 0.125

� �
, . . . . ð6:19Þ

From (5.3) for i = 0 we have

x0̄ =Q− 1x0 =
0 1 0
1 0 0
1 0 1

2
4

3
5 1

2
− 1

2
4

3
5=

2
1
0

2
4

3
5, x ̄ð1Þ0 =

2
1

� �
, x ̄ð2Þ0 = 0. ð6:20Þ

The desired solution of the descriptor fractional system (2.1) with (6.1) is given by

xi =Qxī =
0 1 0
1 0 0
0 − 1 1

2
4

3
5 x ̄ð1Þi

xð̄2Þi

" #
, ð6:21Þ

where xð̄1Þi and xð̄2Þi are determined by (6.18) and (6.17b), respectively.

6.4 Comparison of the Results

Using Matlab/Simulink computing environment, the solution for 10 first steps have
been calculated and shown on the Figs. 1, 2 and 3, where Fig. 1 represent solution
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for order α = 0.1, Fig. 2 represent solution for order α = 0.5 and Fig. 3 represent
solution for order α = 0.9. Additionally solid line (blue) represent solution obtained
by Drazin inverse method, dash-dot line (green) represent solution obtained by
Shuffle algorithm method and dash-dash line (red) represent solution obtained by
Weierstrass-Kronecker decomposition method.

All three methods gives coherent result. Smaller order α, results in faster
response stabilization (see state variable x1, x3). The greatest disadvantage of the
Weierstrass-Kronecker decomposition method is its first step, that is decomposition,
which is difficult for numeric implementation. Similar problem occurs in Shuffle
algorithm method, where elementary row and column operation need to be applied.
Finally, the Drazin inverse method, where most difficult part is computation of the
Drazin inverse of the matrix E. In author opinion, this method suits best for
numerical implementation, since computation of the Drazin inverse is easy for
numerical implementation.

7 Concluding Remarks

The descriptor fractional discrete-time linear systems have been recalled. Three
different methods for finding the solution to the state equation of the descriptor
fractional discrete-time linear system have been considered. Comparison of com-
putation efforts of the methods has been demonstrated on single numerical example.
Iterative approach have been used to compute the desired solution of the systems.

In Drazin inverse method admissible initial conditions should be applied. In
Shuffle algorithm method admissible initial conditions as well as future inputs
should be known. The weak point of Weierstrass-Kronecker decomposition
approach is computation of the P and Q matrices, where elementary row and
column operations method is recommended. The same method is used for Shuffle
algorithm. In summary, the Drazin inverse method seems to be most suitable for
numerical implementation. An open problem is extension of these considerations to
the system with different fractional orders.

Fig. 3 Solution for α = 0.9

Descriptor Fractional Discrete-Time Linear System … 49



Acknowledgment This work was supported by National Science Centre in Poland under work
No. 2014/13/B/ST7/03467.

References

1. Campbell, S.L., Meyer, C.D., Rose, N.J.: Applications of the Drazin inverse to linear systems
of differential equations with singular constant coefficients. SIAMJ Appl. Math. 31(3),
411–425 (1976)

2. Dai, L.: Singular Control Systems, Lectures Notes in Control and Information Sciences.
Springer, Berlin (1989)

3. Dodig, M., Stosic, M.: Singular systems state feedbacks problems. Linear Algebra Appl. 431
(8), 1267–1292 (2009)

4. Guang-Ren, D.: Analysis and Design of Descriptor Linear Systems. Springer, New York
(2010)

5. Kaczorek, T.: Descriptor fractional linear systems with regular pencils. Int. J. Appl. Math.
Comput. Sci. 23(2), 309–315 (2013)

6. Kaczorek, T.: Singular fractional continuous-time and discrete-time linear systems. Acta
Mechanica et Automatica 7(1), 26–33 (2013)

7. Kaczorek, T.: Singular fractional discrete-time linear systems. Control Cybern. 40(3), 1–8
(2011)

8. Sajewski, Ł.: Solution of the state equation of descriptor fractional continuous-time linear
systems with two different fractional. Adv. Intell. Syst. Comput. 350, 233–242 (2015)

9. Nishimoto, K.: Fractional Calculus. Decartess Press, Koriama (1984)
10. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academmic Press, New York (1974)
11. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
12. Losada, J., Nieto, J.: Properties of a new fractional derivative without singular kernel. Prog.

Fract. Differ. Appl. 1(2), 87–92 (2015)
13. Dzieliński, A., Sierociuk, D., Sarwas, G.: Ultracapacitor parameters identification based on

fractional order model. Proc. ECC, Budapest (2009)
14. Ferreira, N.M.F., Machado, J.A.T.: Fractional-order hybrid control of robotic manipulators. In:

Proceedings of the 11th International Conference on Advanced Robotics, ICAR, pp. 393–398.
Coimbra, Portugal (2003)

15. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differenctial
Equations. Willey, New York (1993)

16. Kaczorek, T.: Solution of the state equations of descriptor fractional discrete-time linear
systems with regular pencils. Tech. Transp. Szyn. 10, 415–422 (2013)

17. Kaczorek, T.: Reduction and decomposition of singular fractional discrete-time linear systems.
Acta Mechanica et Automatica 5(4), 1–5 (2011)

18. Kaczorek, T.: Application of Drazin inverse to analysis of descriptor fractional discrete-time
linear systems with regular pencils. Int. J. Appl. Math. Comput. Sci. 23(1), 29–33 (2013)

19. Kaczorek, T.: Drazin inverse matrix method for fractional descriptor continuous-time linear
systems. Bull. Pol. Ac.: Tech. 62(3), 409–412 (2014)

20. Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, Berlin (2011)
21. Kaczorek, T.: Vectors and Matrices in Automation and Electrotechnics. WNT, Warszawa

(1998)
22. Van Dooren, P.: The computation of Kronecker’s canonical form of a singular pencil. Linear

Algebra Appl. 27, 103–140 (1979)

50 Ł. Sajewski


	4 Descriptor Fractional Discrete-Time Linear System and Its Solution---Comparison of Three Different Methods
	Abstract
	1 Introduction
	2 Preliminaries
	3 Shuffle Algorithm Method
	4 Drazin Inverse Method
	5 Weierstrass-Kronecker Decomposition Method
	6 Example
	6.1 Case of Shuffle Algorithm Method
	6.2 Case of Drazin Inverse Method
	6.3 Case of Weierstrass-Kronecker Decomposition Method
	6.4 Comparison of the Results

	7 Concluding Remarks
	Acknowledgment
	References


