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Abstract This paper introduces the first classification of digraph structures

corresponding to characteristic polynomials. It was found that digraph structures

created can be divided into three classes with different feasibility for different

polynomials—only structures of one class are found to be independent from wages

of polynomial’s terms. In this paper classification of structures is described, along

with method how to divide them and illustrated with examples.

Keywords Digraphs ⋅ Characteristic polynomial ⋅ Digraph structures ⋅ Digraph

classes

1 Introduction

In last 2 years there was presented parallel algorithm for finding the determina-

tion of characteristic polynomial realisations of dynamic systems based on multi-

dimensional digraphs theory [5]. It is an alternative to canonical forms of the system

[8], i.e. constant matrix forms, which satisfy the system described by the transfer

function. With the use of those forms, we are able to write only one realisation of

the system, while algorithm presented in [5] allows for finding all possible sets of

matrices which fit into the system transfer function [6, 7]. The digraph theory was

applied to the analysis of dynamical systems. The use of multi-dimensional digraph
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theory was proposed for the first time in the paper [4] to the analysis of positive

two-dimensional systems.

Still, multi-dimensional digraphs used for characteristic polynomial realisations

are not fully defined and determined—and there is space for further research about

properties of possible solutions obtained. It is known that some structures obtained

won’t satisfy the polynomial or there will be need for solving a system of polynomial

equations to determine the coefficients of state matrices from them. The scope of this

article is to examine structures that do not generate the solution instantly (i.e. just

by examination of the digraph) to find all possible proper digraph structures for the

characteristic polynomial.

Notion. In this paper the following notion will be used. The set n × m real matrices

will be denoted by ℝn×m
and ℝn = ℝn×1

. If 𝐆 = [gij] is a matrix, we write 𝐆 ⩾ 0
(matrix 𝐆 is called non-negative), if gij ⩾ 0 for all i, j; 𝐆 > 0 (matrix 𝐆 is called

positive), if 𝐆 ⩾ 0 and any gij > 0; 𝐆 ≫ 0 (matrix 𝐆 is called strictly positive), if

gij > 0 for all i, j. The set of n × m real matrices with non-negative entries will be

denoted by ℝn×m
+ and ℝn

+ = ℝn×1
+ . The n × n identity matrix will be denoted by 𝐈n.

1.1 Characteristic Polynomial

Let 𝔽 be a field e.g., of the real number ℝ. The function P(w1,w2,… ,wj) of the

variable w1,w2,… ,wj, where j = 1, 2,… ,∞

p(w1,w2,… ,wj) = wn1
1 w

n2
2 …wnj

j −
n1∑

i1=0

n2∑

i2=0
…

nj∑

ij=0
ai1,i2,…ijw

i1
1w

i2
2 …wij

j (1)

is called polynomial p(w1,w2,… ,wj) in the variable w1,w2,… ,wj, over the field 𝔽 ,

where ai1,i2,…,ij ∈ 𝔽 for i = 0, 1, 2,… , n and for j = 1, 2,… ,∞ are called the coeffi-

cients of the polynomial.

The set of polynomial (1) over the field 𝔽 will be denoted by 𝔽 [w1,w2,… ,wj]
where j = 1, 2,… ,∞.

If an1,n2,…,nj ≠ 0, then the non-negative integral n = n1 + n2 +⋯ + nj is called

the degree of a polynomial and is denoted deg p(w1,w2,… ,wj), i.e., n = deg p(w1,

w2,… ,wj). The polynomial is called monic, if an1,n2,…,nj = 1 and zero polynomial,

if ai1,i2,…,ij = 0 for i = 0, 1,… , n and for j = 1, 2,… ,∞.

Interested reader may find definition and properties of the characteristic polyno-

mial in books on linear algebra, for example in [2, Chap. 9].

Remark 1 If we consider one-dimensional discrete-time system described by the

equations: xi+1 = 𝐀xi + 𝐁ui; yi = 𝐂xi + 𝐃ui for i ∈ ℤ+ then, characteristic polyno-

mial (1) consist from one variable z and have the form: d(z) = zn −
∑n

i=0 diz
i = zn −

dn−1zn−1 −⋯ − d1z − d0. Similarly, characteristic polynomial consist from variable

s, if we consider one-dimensional continuous-time system.
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Remark 2 If we consider two-dimensional discrete-time system described by the

equations: xi+1,j+1 = 𝐀1xi+1,j + 𝐀2xi,j+1 + 𝐁1ui+1,j + 𝐁2ui,j+1; yij = 𝐂xij + 𝐃uij for i ∈
ℤ+ and j ∈ ℤ+ then, characteristic polynomial (1) consist from two variables z1 and

z2 and have the form: d(z1, z2) = zn1z
n
2 −

∑n
i=0

∑n
j=0 dijz

i
1z

j
2 = zn1z

n
2 − dn−1,nzn−11 zn2 −

dn,n−1zn1z
n−1
2 −⋯ − d10z1 − d01z2 − d00. Similarly, characteristic polynomial consist

from variables: s1 and s2 if we consider two-dimensional continuous-time system;

s and z if we consider hybrid system. In an analogous way we proceed with higher

dimensions systems.

1.2 Digraphs

A directed graph (called also digraph) 𝔇 consists of a non-empty finite set 𝕍 (𝔇) of

elements called vertices and a finite set 𝔸(𝔇) of ordered pairs of distinct vertices

called arcs. We call 𝕍 (𝔇) the vertex set and 𝔸(𝔇) the arc set of 𝔇. We will often

write 𝔇 = (𝕍 ,𝔸) which means that 𝕍 and 𝔸 are the vertex set and arc set of 𝔇,

respectively. The order of 𝔇 is the number of vertices in 𝔇. The size of 𝔇 is the

number of arc in 𝔇. For an arc (v1, v2), the first vertex v1 is its tail and the second

vertex v2 is its head. More information about digraph theory is given in [1, 9]. A two-

dimensional digraphs 𝔇(2)
is a directed graph with two types of arcs and input flows.

For the first time, this type of digraph was presented in [3, 4]. When we generalise

this approach, we can define n-dimensional digraphs 𝔇n
in the following form.

Definition 1 An n-dimensional digraphs 𝔇(n)
is a directed graph with q types of

arcs and input flows. In detail, it is (𝕊,𝕍 ,𝔄1,𝔄2,… ,𝔄q,𝔅1,𝔅2,… ,𝔅q), where

𝕊 = {s1, s2,… , sm} is the set of sources, 𝕍 = {v1, v2,… , vn} is the set of vertices,

𝔄1, 𝔄2, …, 𝔄q are the subsets of 𝕍 × 𝕍 which elements are called 𝔄1-arcs, 𝔄2-arcs,

…, 𝔄q-arcs respectively, 𝔅1, 𝔅2, …, 𝔅q are the subsets of 𝕊 × 𝕍 which elements

are called 𝔅1-arcs, 𝔅2-arcs, …, 𝔅q-arcs respectively.

There exists 𝔄1-arc (𝔄2-arc, …, 𝔄q-arc) from vertex vj to vertex vi if and only

if the (i, j)-th entry of the matrix 𝐀1 (𝐀2, …, 𝐀q) is non-zero. There exists 𝔅1-arc

(𝔅2-arc, …, 𝔅q-arc) from source sl to vertex vj if and only if the l-th entry of the

matrix 𝐁1 (𝐁2, …, 𝐁q) is non-zero.

Remark 3 𝔄q-arcs and 𝔅q-arcs, are drawn by the other colour or line style.

Example 1 For the system described by the matrices

𝐀1 =
⎡
⎢
⎢⎣

0 0 1
1 0 0
0 1 0

⎤
⎥
⎥⎦
, 𝐀2 =

⎡
⎢
⎢⎣

1 0 0
0 0 1
1 0 0

⎤
⎥
⎥⎦
, 𝐀3 =

⎡
⎢
⎢⎣

0 0 0
1 0 1
0 0 1

⎤
⎥
⎥⎦
, 𝐁1 =

⎡
⎢
⎢⎣

1
0
0

⎤
⎥
⎥⎦

(2)

we can draw digraphs 𝔇(3)
consisting from vertices v1, v2, v3 and source s1. Digraph

corresponding to system (2) is presented on Fig. 1.
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Fig. 1 Three-dimensional

digraphs 𝔇(3)
corresponding

to matrices (2) v1 v2 v3s1

1.3 Digraph Creation

The digraph creation algorithm introduced in [5] starts with creating digraphs for all

monomials in the characteristic polynomial, then joins them by the use of disjoint

union to create all possible variants of digraphs representing the polynomial reali-

sation. When multiplying the characteristic polynomial (1) by w−n1
1 w−n2

2 …w−nj
j for

j = 1, 2,…∞, we obtain

p
(
w1,w2,… ,wj

)
= 1 −

n1∑

i1=0

n2∑

i2=1
…

nj∑

ij=0
ai1i2…ijw

i1−n1
1 wi2−n2

2 …wij−nj
j (3)

The method finds state matrices 𝐀k, k = 1, 2,… ,∞ using decomposing characteris-

tic polynomial (3). In the first step, we decompose polynomial (3) into a set of simple

monomials M1, . . . , Mj. The factor of 1 is a special case, as it is used in the topology

to represent digraph vertices, so polynomial (3) can be represented as

p
(
w1,w2,… ,wj

)
= 1 −M1 −⋯ −Mj. (4)

For each of monomials M1, . . . , Mj we create digraph representation that consists of

n vertices and one n-arc cycle, where n is a sum of powers of all variables of the

monomial. Each monomial digraph in fact represents a simple polynomial digraph

1 −Mi, i = 1,… , j. After creation of all digraph representations of monomials in

the polynomial, we can determine all possible characteristic polynomial realisations

using all combinations of the digraph monomial representations. Finally, we com-

bine received digraphs into one digraph which is corresponding to the characteristic

polynomial (3) by disjoint union of monomial digraphs.

Example 2 Lets take polynomial p1(z1, z2) = 1 − z−21 z−12 − z−11 z−12 . To create digraph

representation for it we need first to create digraph representation for two monomials.

Representation for the first monomial is presented on Fig. 2a and for the second on

Fig. 2b. For simple polynomial p2(z1, z2) = 1 − z−21 z−12 digraph representation would

be the same as for monomial (and presented on Fig. 2a). To achieve digraph repre-

sentation for our polynomial p1 we need to add digraph representations of monomi-

als by means of disjoint union (without creation of multiarcs of the same colour).

On Fig. 2c presented is one of possible digraph representations for polynomial p1.
Another, presented on Fig. 2d, can be obtained by adding second monomial to ver-

tices 2 and 3 instead of vertices 1 and 2. As can be seen those aren’t all the possible

representations of polynomial p1.
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v1 v2 v3

(a)

v1 v2

(b)

v1 v2 v3

(c)

v1 v2 v3

(d)

Fig. 2 a Digraph 𝔇(2)
1 corresponding to polynomial 1 − z−21 z−12 ; b Digraph 𝔇(2)

2 corresponding to

polynomial 1 − z−11 z−12 ; Sample polynomial digraph: corresponding to union of digraphs c 𝔇(2)
3 =

𝔇(2)
1 +𝔇(2)

2 ; d 𝔇(2)
4 = 𝔇(2)

1 +𝔇(2)
2

2 Problem Formulation

The algorithm presented in [5, 7] is based on the multi-dimensional digraph the-

ory to allow the creation of a complete set of solutions of characteristic polynomial

realisations—this is what differs the method from other state-of-the-art solutions like

canonical forms, as they are capable of finding only a few of existing realisations. As

algorithm is able to find all the possible structures there is the need of checking the

validity of them, as not all digraph structures created from monomial sub-graphs,

according to the principles presented in Sect. 1.3, are a valid digraph representation

of the characteristic polynomial. From some of them it is impossible to obtain state

matrices that will satisfy the polynomial, while others generate solutions for which

it is needed to get the coefficients of state matrices by solving a system of polyno-

mial equations that in some cases can be under-determined. Those structures were in

previous articles marked as invalid for reasons of different method of solving, slow-

ing down the algorithm or removing the advantage of checking the matrix structure

directly from digraph, but need to be examined in more detail to find all possible

proper digraph structures for the characteristic polynomial and that is the scope of

this article.

3 Classes of Digraph Structures

Extensive study and experimentation shoved that obtained digraph structures can

be grouped into three classes. Some structures are valid for all possible coefficients

of characteristic polynomial (given in symbolic form) and have minimal number of

arcs needed. Those structures were examined in detail in [7] and here are denoted as

class 1. Some structures give proper solution for given coefficients of characteristic

polynomial—their structure can contain some additional arcs and there is need to

solve a set of linear equations to get wages of digraph arcs. Those are denoted as

class 3. And there are structures that cannot guarantee proper solution for given

characteristic polynomial (or in some specific cases we are unable to determine if
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characteristic
polynomial

digraphs
creation

S1 S2 S3

K1 K2

K3
no no

yes yes

yes

no

Fig. 3 Classes structure

the solution is possible) that are denoted as class 2. Figure 3 illustrates how we

determine to which class given digraph structure belongs. Conditions S1, S2 and S3
presented on the Fig. 3 are stated below.

Condition S1: There exist positive state matrices of the discrete time linear sys-

tem corresponding to the characteristic polynomial (3) if for digraph 𝔇(n)
= 𝔇(n)

1 +
𝔇(n)

2 +⋯ +𝔇(n)
M all of the following conditions are met:

(S1a): 𝕍1 ∩ 𝕍2 ∩⋯ ∩ 𝕍M ≠ {∅},

(S1b): the number of cycles in digraph 𝔇(n)
equals M;

where M is a number of monomials in characteristic polynomial and 𝕍k is a set of

vertices of digraph 𝔇(n)
k of k-th monomial.

Condition S2: Every digraph structure belongs to class 2 and cannot satisfy the

given characteristic polynomial (3) if there exists a single cycle that is representing

any of terms that is not existing in that polynomial (i.e. has its ain wage equal to zero).

Condition S3: If for every term not existing in characteristic polynomial (3) (i.e.

with ain wage equal to zero) there exist none or at least two cycles corresponding

to that term and the resultant system of equations is not under-determined (i.e. the

number of unknowns does not outnumber the number of equations) we can deter-

mine the wages for all arcs that satisfy given characteristic polynomial and digraph

structure belongs to class 3.

Class 1: Digraph structures belonging to class 1 satisfy all characteristic

polynomials of given type (with the same number and power of terms) for any

ai1,i2,…,ij ! = 0wages. Those are digraph structures that are the most thoroughly exam-

ined in previous papers and that can be computed quickly using digraph-based

GPGPU (General-Purpose Computation on Graphics Processing Units) methods as

there is no need of solving a system of polynomial equations.

Class 2: Digraph structures belonging to class 2 cannot satisfy the given char-

acteristic polynomial (or we are unable to determine the solution due to problem

with solving a system of under-determined equations) and are considered invalid for

given characteristic polynomial. It is worth noting that in case of fulfilling S2 con-

dition such structures will be improper solutions for all characteristic polynomials
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with the same terms, no matter the ai1,i2,…,ij ! = 0 wages and in case of not fulfill-

ing S3 condition such structures are only improper for given wages of characteristic

polynomial and possibly can be made proper with change of wages of characteristic

polynomial’s terms.

Class 3: Digraph structures belonging to class 3 satisfy given characteristic

polynomial with specific ai1,i2,…,ij wages, but unlike class 1 structures cannot be

computed directly using digraph-based method and solving a set of equations is also

needed, which significantly slows down the algorithm of finding them.

4 Example

4.1 Class 𝟏

Example 3 Let as consider the following example. For the given characteristic poly-

nomial

d(z) = 1 − z−1 − z−2 − z−3 (5)

determine entries of the state matrix 𝐀 using digraph theory.

In the first step we write the following initial conditions: number of colours in

digraph: colour ∶= 1; monomials: M1 = z−1; M2 = z−2; M3 = z−3. For every simple

monomial M1, M2 and M3 we determine all possible realisations using digraph the-

ory. On the Fig. 4a is presented digraph structure realisation of the monomial M1; on

Fig. 4b is presented digraph structure realisation of the monomial M2 and on Fig. 4c

is presented digraph structure realisation of the monomial M3. In the next step using

all combinations of the digraph monomial representations we determine all possible

digraph structure, which satisfy characteristic polynomial (5). One of the possible

digraph structures, which satisfies Condition S1, is presented on Fig. 5.

Fig. 4 Monomials

v1

(a)

v1 v2

(b)

v1 v2 v3

(c)
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Fig. 5 One-dimensional

digraph corresponding to

characteristic polynomial (5)
v1 v2 v3

w(v1, v2) w(v2, v3)

w(v3, v1)

w(v2, v1)w(v1, v1)

Finally, we write state matrices in the following form:

𝐀 =
⎡
⎢
⎢⎣

w(v1, v1)𝔄 w(v2, v1)𝔄 w(v3, v1)𝔄
w(v1, v2)𝔄 0 0

0 w(v2, v3)𝔄 0

⎤
⎥
⎥⎦

(6)

4.2 Class 𝟐

Example 4 Let as consider the following example. For the given characteristic poly-

nomial

d(z1, z2) = 1 − z−21 z−12 − z−21 − z−11 z−12 (7)

determine entries of the state matrices 𝐀1 and 𝐀2 using digraph theory.

Solution. On Fig. 6 is presented digraph structure corresponding to the character-

istic polynomial (7). Considered digraph consist from three digraphs (presented

on Fig. 7), corresponding to monomials: M1 = z−21 z−12 (see Fig. 7a); M2 = z−21 (see

Fig. 7b); M3 = z−11 z−12 (see Fig. 7c).

Therefore investigated digraph does not belong to the class S1 (as the condi-

tion (S1a ) is not met). In digraph structure presented on Fig. 6 appears additional

cycle presented on Fig. 8 and digraph structure belong to the class S2 (as it has

exactly one redundant cycle in the digraph). Additional cycle in digraph makes

that in the characteristic polynomial appears additional monomial that should not

be represented. The characteristic polynomial will have the following structure:

d̃(z1, z2) = d(z1, z2) + z−11 z−22 . In this class of digraph we can not determine arcs

weights fulfilling the characteristic polynomial (7).

Fig. 6 A two-dimensional

digraph 𝔇(2)
structure

corresponding to (7)

v1 v2 v3

w(v1, v2) 2z
−1
1

w(v2, v1) 2z
−1
1

w(v2, v3) 2z
−1
1

w(v1, v2) 1z
−1
2

w(v2, v1) 1z
−1
2
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v1 v2 v3

(a)
v1 v2

(b)
v1 v2

(c)

Fig. 7 Monomials

Fig. 8 Additional cycle in

two-dimensional digraph

structure

v1 v2 v3

4.3 Class 𝟑

Example 5 Let as consider the following example. For the given characteristic poly-

nomial

d(z1, z2) = 1 − a1z−21 − a2z−22 (8)

determine entries of the state matrices 𝐀1 and 𝐀2 using digraph theory.

Solution. On Fig. 9 is presented digraph structure corresponding to the character-

istic polynomial (8). Considered digraph consist from four digraphs: two digraphs

corresponding to the monomials M1 (see Fig. 10a) and M2 (see Fig. 10b) and two

additional digraphs (see Fig. 10c, d) which generate additional monomials M3 and

M4 that are not occurring in the characteristic polynomial (8). Therefore investigated

digraph does not belong to the class S1 (as the conditions (S1a ) and (S1b ) are not met)

and does not belong to the class S2 (as it has more than one redundant cycle in the

graph).

v1 v2

w(v1, v2) 2z
−1
1

w(v2, v1) 2z
−1
1

w(v1, v2) 1z
−1
2

w(v2, v1) 1z
−1
2

Fig. 9 A two-dimensional digraph 𝔇(2)

v1 v2

(a)
v1 v2

(b)
v1 v2

(c)
v1 v2

(d)

Fig. 10 Monomials
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Using digraph structure we have the following characteristic polynomial:

d(z1, z2) = 1 −

a1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

w(v1, v2)𝔄2
w(v2, v1)𝔄2

z−21
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

M1

−

a2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

w(v1, v2)𝔄1
w(v2, v1)𝔄1

z−22
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

M2

− (9)

w(v1, v2)𝔄2
w(v2, v1)𝔄1

z−11 z−12
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

M3

−w(v1, v2)𝔄1
w(v2, v1)𝔄2

z−11 z−12
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

M4

In this situation we have four possible variants:

V1 ∶ In the first variant the following relations must be satisfied:

± w(v1, v2)𝔄2
⋅ w(v2, v1)𝔄1

∓ w(v1, v2)𝔄1
⋅ w(v2, v1)𝔄2

= 0, (10)

(a) The cycles cancel each other. In this case the following relations must be

satisfied:

4 ⋅ w(v1, v2)𝔄2
⋅ w(v2, v1)𝔄2

⋅ w(v1, v2)𝔄1
⋅ w(v2, v1)𝔄1

⩽ 0. (11)

If the conditions: (10) and (11) are met, then there exist a solution in the

class 3.

(b) The cycles do not cancel each other. In this case the following relations

must be satisfied:

4 ⋅ w(v1, v2)𝔄2
⋅ w(v2, v1)𝔄2

⋅ w(v1, v2)𝔄1
⋅ w(v2, v1)𝔄1

⩾ 0. (12)

If the conditions: (10) and (12) are met, then there exist a solution in the

class 2.

V2 ∶ In the second variant the following relations must be satisfied:

± w(v1, v2)𝔄2
⋅ w(v2, v1)𝔄1

⋅ w(v1, v2)𝔄1
⋅ w(v2, v1)𝔄2

≠ 0 (13)

(a) The cycles cancel each other. In this case the following relations must be

satisfied:

4 ⋅ w(v1, v2)𝔄2
⋅ w(v2, v1)𝔄2

⋅ w(v1, v2)𝔄1
⋅ w(v2, v1)𝔄1

⩽ (14)

(
w(v1, v2)𝔄2

⋅ w(v2, v1)𝔄1
⋅ w(v1, v2)𝔄1

⋅ w(v2, v1)𝔄2

) 2

If the conditions: (13) and (14) are met, then there exist a solution in the

class 3.

(b) The cycles do not cancel each other. In this case the following relations

must be satisfied:
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4 ⋅ w(v1, v2)𝔄2
⋅ w(v2, v1)𝔄2

⋅ w(v1, v2)𝔄1
⋅ w(v2, v1)𝔄1

⩾ (15)

(
w(v1, v2)𝔄2

⋅ w(v2, v1)𝔄1
⋅ w(v1, v2)𝔄1

⋅ w(v2, v1)𝔄2

) 2

If the conditions: (13) and (15) are met, then there exist a solution in the

class 2.

5 Concluding Remarks

In this paper there is introduced the first classification of digraph structures that are

used to solve characteristic polynomials. Three classes of such structures are deter-

mined along with conditions how to classify digraph solutions obtained with parallel

algorithm into each of classes. This allows to fully check the validity of solutions for

given characteristic polynomial and determine if we want only solutions that can be

obtained in fast and easier way using the algorithm (the ones in 1 class) or if we

want to check all solutions, despite the need to solve a system of polynomial equa-

tions (adding solutions from 3 class). We can also determine that given digraph

structure is invalid solution for given characteristic polynomial. Such basic classifi-

cation is the first step for determination of properties of different digraph structures

(like how can be check reachability and availability from digraph only, without need

of system matrices) and introducing methods for finding best solutions fast.
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