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Abstract The paper presents two important approaches to solve numerically general

optimal control problems with state and mixed control-state constraints. They may

be attractive in the case, when the simple time discretization of the state equations

and expressing the optimal control problem as a nonlinear mathematical program-

ming problem is not sufficient. At the beginning an extension of the optimal control

theory to problems with constraints on current state and on current state and control

simultaneously is presented. Then, two approaches to solve numerically the emerg-

ing boundary value problems: indirect and direct shooting method are described and

applied to an example problem.
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1 Introduction

Shooting method is the basic numerical method used to solve ordinary differential

equations, when instead of initial conditions for the state trajectory, as in Cauchy

problem (aka initial value problem—IVP), we have terminal conditions. Such a

problem is called boundary value problem (BVP) [13]. This approach can be eas-

ily adapted to solve these optimal control problems, which need a higher precision
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of the solution, than obtained from the standard numerical approach, based on time

discretization. In the latter, state and control trajectories are represented by vectors

and from the differential state equations difference equations are obtained, which are

treated as a set of equality constraints in a static nonlinear programming problem.

There are two possible approaches to transform an optimal control problem to

BVP: direct and indirect.

In the direct approach the control interval is divided into a certain number of

subintervals, on which Cauchy problem is solved by an ordinary differential equation

(ODE) solver. The initial conditions are generated iteratively by an optimizer, the

constraints on state and mixed are checked in the discretization points of the time

interval.

In the indirect approach BVP concerns not only state equations, but also the

equations describing adjoint variables. It means, that for an optimal control prob-

lem, before using a solver we have to make a kind of preprocessing on the paper,

based on the appropriate theory. In particular, we have to determine the number of

switching points, where the state trajectory enters and leaves the constraint boundary.

Moreover, in this approach we have to provide the function connecting the optimal

control at a given time instant with current value of state and adjoint variables (i.e.,

the control law). Only general formulas should be given, their parameters: Lagrange

multipliers, initial values of adjoint variables and the concrete values of switching

points (i.e., times) will be the subject of optimization. Actually, in the fundamental

book of Pontryagin et al. [11] one may found a suitable version of the maximum prin-

ciple to formulate BVP for problems with the constraints function of order one (in

Chap. 6). The generalization to problems of higher orders was first given by Bryson

et al. [1, 2].

In the author’s opinion, the BVPs corresponding to necessary conditions of opti-

mality for quite a big class of optimal control problems with state and mixed control-

state constraints can be derived in a simpler way, using local optimality theory. We

adapt here the approach proposed by Wierzbicki [15], based on looking for stationary

points of Lagrange functionals in abstract spaces. A similar reasoning, using gener-

alized Kuhn-Tucker conditions in a Banach space, was presented by Jacobson et al.

[5], but the derivation presented here is more straightforward.

In this paper we consider a Mayer-type problem with one state constraint of the

order one with one boundary arc. The approach can be easily adapted to solve other

problems with state and mixed constraints. After the derivation of the necessary

conditions of optimality, a numerical approach where it can be used—the indirect

shooting method—and an alternative to it—the direct shooting method—are shortly

described and compared on a test problem taken from the literature.
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2 Necessary Optimality Conditions for a General Optimal
Control Problem with State and Mixed State-Control
Constraints

For simplicity of formulas our presentation concerns problems with scalar control

and constraint functions. The passage to the multidimensional case is obvious.

We want to determine a piecewise continuous control function u(t) ∈ ℝ, t0 ≤ t ≤
tf , which minimizes the Mayer functional

J(u) = g(x(tf )) (1)

subject to the constraints

ẋ(t) = f (x(t), u(t), t), t0 ≤ t ≤ tf (2)

x(t0) = x0 (3)

r(x(tf ), tf ) = 0 ∈ ℝm
(4)

S(x(t), t) ≤ 0, t0 ≤ t ≤ tf (5)

C(x(t), u(t), t) ≤ 0, t0 ≤ t ≤ tf (6)

Here, x(t) ∈ ℝn
denotes a vector of the state variables, the constraint (4) describes

boundary conditions, (5), (6) are nonstationary inequality constraints on current val-

ues of, respectively, state and state and control simultaneously. For simplicity, it

is assumed, that the functions S,C are sufficiently continuously differentiable. The

function f (x(t), u(t), t) is allowed to be merely piecewise continuously differentiable

with respect to time variable, for t ∈ [t0, tf ]. The final time tf is fixed. Problems with

free final time or problems with integral terms in the performance index (Bolza or

Lagrange) can be easily transformed into a problem of the type (1) by means of

additional state variables. The constraints on control of the type:

u(t) ∈ U ⊂ ℝ (7)

can be expressed as a specific case of the mixed functional constraints (6).

The Lagrangian for the problem (1)–(6) will contain the standard components:

∙ from the objective function

g(x(tf )) (8)

∙ from the initial conditions

⟨𝜌, x(t0) − x0⟩ (9)
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∙ from the state equation

∫

tf

t0
⟨𝜂(t), ẋ(t) − f (x(t), u(t), t)⟩ dt, (10)

where 𝜌 ∈ ℝn
, 𝜂 is the adjoint function with values in ℝn

and ⟨., .⟩ denotes the scalar

product, and some additional terms coming from the terminal, state and mixed con-

straints. These will be:

∙ the product

𝜈

Tr(x(tf ), tf ), 𝜈 ∈ ℝm
(11)

from the terminal constraint (4)

∙ the integral

∫

tf

t0
𝜇C(t)C(x(t), u(t), t) dt (12)

where

𝜇C(t) =
{

= 0, C(x(t), u(t), t) < 0
≥ 0, C(x(t), u(t), t) = 0, (13)

from mixed control-state constraint (6).

The situation with the state constraint (5) is more complicated. When this con-

straint is active, that is S(x(t), t) = 0, e.g. on some interval [t1, t2] ⊆ [t0, tf ], its time

derivative along the path must vanish. That is, we must have
1

[1, 2]

dS
dt

= 𝜕S
𝜕t

+
(
𝜕S
𝜕x

)T
ẋ = 𝜕S

𝜕t
+
(
𝜕S
𝜕x

)T
f (x, u, t) = 0 (14)

The expression (14) may or may not have explicit dependence on u. If it does, the

expression (14) for
dS
dt

plays on the boundary arc the same role as the function C
defining mixed state-control variable constraint of the type (6). If it does not, we

may take the next time derivative. We may repeat this procedure until, finally, some

explicit dependence on u does occur [1, 2].

If this occurs on the qth time derivative, we will tell, that we have a qth-order state

variable inequality constraint. In this case, the qth total time derivative of S(x(t), t)
will be the component representing state inequality constraint (5) in the Lagrangian.

More precisely, let S(k) denotes the kth total time derivative of the state constraint

function S, i.e.,

S(0)(x(t), u(t), t) ∶= S(x(t), t), (15)

1
In our convention a gradient of a scalar function is a column vector.



Shooting Methods to Solve Optimal Control Problems. . . 193

S(k+1)(x(t), u(t), t) = dk+1S
dtk+1

(x(t), u(t), t)

= 𝜕S(k)
𝜕t

(x(t), u(t), t) +
[
𝜕S(k)
𝜕x

(x(t), u(t), t)
]T

f (x(t), u(t), t), k ≥ 0 (16)

The order q is the lowest order of derivative such, that S(q) contains the control explic-

itly:

𝜕S(k)(x, u, t)
𝜕u

≡ 0, k = 0,… , q − 1, 𝜕S(q)
𝜕u

≠ 0 (17)

Hence, we may write in the following:

S(k+1)(x(t), u(t), t) ≡ S(k+1)(x(t), t), k = 0,… , q − 1 (18)

and the actual constraint will be:

S(q)(x(t), u(t), t) = 0, for t ∈ [t1, t2] (19)

The corresponding component of the Lagrangian will have the form

∫

tf

t0
𝜇S(t) S(q)(x(t), u(t), t) dt (20)

where

𝜇S(t) = 0, for t ∉ [t1, t2] (21)

Since control of S(x(t), t) is obtained only by changing its qth time derivative,

to keep the system on the constraint boundary, the path entering onto the constraint

boundary has to meet the following “tangency” constraints at time t1 (or, equivalently

at t2) [1, 2]:

N(x(t1), t1) =
⎡
⎢
⎢
⎢
⎣

S(x(t1), t1)
S(1)(x(t1), t1)

⋮
S(q−1)(x(t1), t1)

⎤
⎥
⎥
⎥
⎦

= 0 (22)

The corresponding component of the Lagrangian will be the scalar product:

𝛾

TN(x(t1), t1) (23)

As an example we will consider the optimal control problem (1)–(5) (i.e. without

mixed state-control constraint (6)) with the state constraint active on the interval

[t1, t2]:
J(u) = g(x(tf )) (24)
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subject to the constraints

ẋ(t) = f (x(t), u(t), t), t0 ≤ t ≤ tf (25)

x(t0) = x0 (26)

r(x(tf ), tf ) = 0 ∈ ℝ (27)

S(x(t), t) ≤ 0, t0 ≤ t ≤ tf (28)

We assume, that the state-constraint (28) is of order one, that is q = 1, 𝛾 ∈ ℝ.

The Lagrangian for this problem will be as follows:

L(x, u, 𝜂, 𝜌, 𝜇S, 𝛾, 𝜈) = g(x(tf )) + ⟨𝜌, x(t0) − x0⟩ +
∫

tf

t0
⟨𝜂(t), ẋ(t) − f (x(t), u(t), t)⟩ dt+

+
∫

tf

t0
𝜇S(t)S(1)(x(t), u(t), t) dt + 𝛾S(x(t1), t1) + 𝜈r(x(tf ), tf ) (29)

Because of the possible discontinuity of the adjoint function 𝜂(t) at time t1, we

will partition the integral stemming from the state equation, that is ∫
tf
t0
⟨𝜂(t), ẋ(t) −

f (x(t), u(t), t)⟩ dt into two components concerning two subintervals: [t0, t1) and (t1, tf ].
It is not necessary to partition the second integral stemming from the state constraint,

that is ∫
tf
t0
𝜇S(t)S(1)(x(t), u(t), t) dt, although its Lagrange multiplier function 𝜇S(t) can

be discontinuous at t1 too, because this discontinuity has no possibility to transform

itself further into independent, different components of the Lagrangian, including

those being functions of the state vector at time t1, that is x(t1). The reason is, that to

the first integral the integration by parts can be applied, while to the second it cannot.

After the mentioned partition, the Lagrangian (29) will take the form:

L(x, u, 𝜂, 𝜌, 𝜇S, 𝛾, 𝜈) = g(x(tf )) + ⟨𝜌, x(t0) − x0⟩ +
∫

t−1

t0
⟨𝜂(t), ẋ(t) − f (x(t), u(t), t)⟩ dt+

+
∫

tf

t+1

⟨𝜂(t), ẋ(t) − f (x(t), u(t), t)⟩ dt +
∫

tf

t0
𝜇S(t)S(1)(x(t), u(t), t) dt+

+𝛾(S(x(t1), t1) + 𝜈r(x(tf ), tf ) = g(x(tf )) + ⟨𝜌, x(t0) − x0⟩+

+
∫

t−1

t0
⟨𝜂(t), ẋ(t)⟩ dt −

∫

t−1

t0
⟨𝜂(t), f (x(t), u(t), t)⟩ dt+

+
∫

tf

t+1

⟨𝜂(t), ẋ(t)⟩ dt −
∫

tf

t+1

⟨𝜂(t), f (x(t), u(t), t)⟩ dt+
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+
∫

tf

t0
𝜇S(t)S(1)(x(t), u(t), t) dt + 𝛾S(x(t1), t1) + 𝜈r(x(tf ), tf ) (30)

Applying integration by parts to components with state velocity ẋ(t) we will get:

L(x, u, 𝜂, 𝜌, 𝜇S, 𝛾, 𝜈) = g(x(tf )) + ⟨𝜌, x(t0) − x0⟩ + ⟨𝜂(t−1 ), x(t
−
1 )⟩ − ⟨𝜂(t0), x(t0)⟩+

−
∫

t−1

t0
⟨�̇�(t), x(t)⟩ dt −

∫

t−1

t0
⟨𝜂(t), f (x(t), u(t), t)⟩ dt + ⟨𝜂(tf ), x(tf )⟩ − ⟨𝜂(t+1 ), x(t

+
1 )⟩+

−
∫

tf

t+1

⟨�̇�(t), x(t)⟩ dt −
∫

tf

t+1

⟨𝜂(t), f (x(t), u(t), t)⟩ dt +
∫

tf

t0
𝜇S(t)S(1)(x(t), u(t), t) dt+

+ 𝛾(S(x(t1), t1)) + 𝜈r(x(tf ), tf ) (31)

Grouping together similar terms, taking into account the continuity of the state vari-

ables, we will get:

L(x, u, 𝜂, 𝜌, 𝜇S, 𝛾, 𝜈) = ⟨𝜌, x(t0) − x0⟩ − ⟨𝜂(t0), x(t0)⟩+

+ ⟨𝜂(t−1 ), x(t1)⟩ + 𝛾(S(x(t1), t1)) − ⟨𝜂(t+1 ), x(t1)⟩+

−
∫

t−1

t0

[
⟨�̇�(t), x(t)⟩ + ⟨𝜂(t), f (x(t), u(t), t)⟩

]
dt+

−
∫

tf

t+1

[
⟨�̇�(t), x(t)⟩ + ⟨𝜂(t), f (x(t), u(t), t)⟩

]
dt +

∫

tf

t0
𝜇S(t)S(1)(x(t), u(t), t) dt+

+ g(x(tf )) + ⟨𝜂(tf ), x(tf )⟩ + 𝜈r(x(tf ), tf ) =
[
⟨𝜌, x(t0) − x0⟩ − ⟨𝜂(t0), x(t0)⟩

]
+

+
[
⟨𝜂(t−1 ), x(t1)⟩ + 𝛾(S(x(t1), t1)) − ⟨𝜂(t+1 ), x(t1)⟩

]
+

−
∫

tf

t0

[
⟨�̇�(t), x(t)⟩ + ⟨𝜂(t), f (x(t), u(t), t)⟩ − 𝜇S(t)S(1)(x(t), u(t), t)

]
dt+

+
[
g(x(tf )) + ⟨𝜂(tf ), x(tf )⟩ + 𝜈r(x(tf ), tf )

]
(32)

It will be convenient now to define the Hamiltonian function for a part of the inte-

grand expression:

H(x, u, 𝜂, 𝜇S, t) = ⟨𝜂, f (x, u, t)⟩ − 𝜇SS(1)(x, u, t) (33)
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According to the theory presented in [15], the optimal solution is a stationary point

of the Lagrangian. Owing to that, we will get the following conditions of optimality:

State equation:

ẋ(t) = f (x(t), u(t), t), t ∈ [t0, tf ], x(t0) = x0 (34)

Adjoint differential equation:

�̇� = −Hx(x, u, 𝜂, 𝜇S, t), t ∈ [t0, tf ], 𝜂(t0) = 𝜂0 (35)

Initial point multipliers vector:

𝜌 = 𝜂(t0) (36)

Natural boundary conditions:

𝜂(tf ) = −
𝜕(g + 𝜈r)
𝜕x(tf )

(37)

Switching (tangency) condition:

S(x(t1), t1) = 0 (38)

Boundary arc condition:

S(1)(x, u, t) = 0, t ∈ [t1, t2] (39)

Complementarity (sign) conditions:

𝜇S(t) =
{

= 0, S(x(t), t) < 0
≥ 0, S(x(t), t) = 0 (40)

Junction conditions:

𝜂(t+1 ) = 𝜂(t−1 ) + 𝛾Sx(x(t1), t1) (41)

Optimality condition: Assuming, that ∀t ∈ [t0, tf ] the Hamiltonian H(x, u,
𝜂, 𝜇S, t) is strictly convex with respect to u

𝜕H
𝜕u

(x, u, 𝜂, 𝜇S, t) = 0, ∀t ∈ [t0, tf ] (42)
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Otherwise (e.g., when the Hamiltonian is linear with respect to u), the modifica-

tions proposed by Maurer and Gillessen [7, 8] can be applied.

The (unknown) parameters in this problem are: 𝜂0, t1, t2, 𝜈, 𝛾 .

3 Indirect Multiple Shooting Technique

This short presentation is adapted from the Oberle article [9].

In the previous section we saw, that the necessary conditions for the general opti-

mal control problems lead to BVP with switching conditions for the state x(t) and

adjoint 𝜂(t) trajectory. The basic idea of the numerical treatment of such problems

by multiple shooting technique is to consider the switching conditions as boundary

conditions to be satisfied at some interior multiple shooting nodes [9]. Thus, the

problem is transformed into a classical multipoint BVP [9, 13]:

Determine a piecewise smooth vector function y(t) = [x(t), 𝜂(t)], which satisfies

ẏ(t) = f (y, u, t), t0 ≤ t ≤ tf , (43)

u = uk(t, y), 𝜏k ≤ t ≤ 𝜏k+1, k = 0,… , p, (44)

y(t0) =
[
x0
𝜂0

]

(45)

y(𝜏+k ) = hk(y(𝜏−k ), 𝛾k), k = 1,… , p, (46)

ri(y(tf ), 𝜈) = 0, i = 1,… , n1, (47)

r̃k(𝜏k, y(𝜏−k )) = 0, k = 1,… , p. (48)

In this formulation, 𝜂0, 𝛾, 𝜈, 𝜏k, k = 1,… , p are unknown parameters of the problem,

where the latter satisfy

t0 =∶ 𝜏0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏p < 𝜏p+1 ∶= tf (49)

The trajectory may possess jumps of size given by Eq. (46). If a coordinate of y(t)
is continuous, then its hk is identity. The boundary conditions and the switching

conditions are described by Eqs. (47) and (48), respectively.

In every time stage k the numerical integration over the interval [𝜏k, 𝜏k+1] is done

by any conventional IVP solver with stepsize control. The resulting system of non-

linear equations (47)–(48) can be solved numerically by a quasinewton method, e.g.

from the Broyden family.

The approach presented in this section, where the solution is sought basing on the

necessary optimality conditions, is called the indirect method.
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4 Direct Multiple Shooting Technique

As it was shown in Sect. 2, the necessary conditions of optimality for general opti-

mal control problems lead to BVP for the set of ODEs describing the evolution of the

state x(t) and adjoint variables 𝜂(t) trajectories. Unfortunately, while the state vari-

ables are continuous, the adjoint variables may have jumps in points, where there are

changes in the activity of constraints. Due to these jumps in 𝜂(t) trajectory, the only

possible method to solve this problem is the multiple shooting algorithm presented

in Sect. 3. The problem is, that rather a good initial approximation of the optimal

trajectory is needed and rather a large amount of work has to be done by the user

to derive the necessary conditions of optimality, in particular the adjoint differential

equations [14]. Moreover, the user has to know a priori the switching structure of

the constraints (the number and the sequence of the switching points), that is, he/she

must have a deep insight into the physical and mathematical nature of the optimiza-

tion problem [10, 14]. When the structure of the optimal control is more complicated

and the solution consists of several arcs, it may lead to a very coarse approximation

of the optimal control trajectory. Another drawback of the indirect approach is its

sensitivity to parameters of the model, e.g., even small change of them, or an addi-

tional constraint, may lead to complete change of the switching structure [12].

In direct approaches, at the beginning the optimal control problem is transformed

into a nonlinear programming problem [3, 6, 14]. In direct shooting method this is

done through a parameterization of the controls u(t) on the subintervals of the control

interval. That is, we take:

t0 < t1 < t2 < ⋯ tp < tp+1 = tf (50)

u(t) = uj(t, 𝛼j), t ∈ Ij = [tj, tj+1], for j = 0, 1,… , p (51)

where 𝛼 ∈ ℝn
𝛼 is a vector of parameters. For example, u(t) may be: piecewise con-

stant, piecewise linear or higher order polynomials, linear combination of some basis

functions, e.g. B-splines. The basic idea is to simultaneously integrate numerically

the state equations (2) on the subintervals Ij for guess initial points

zj = x(tj) (52)

Then the values obtained at the ends of subintervals—we will denote them by

x(tj+1; zj, 𝛼j)—are compared with the guesses zj+1.
The differential equations, initial and end points conditions and path constraints

define the constraints of the nonlinear programming problem, that is the problem

(1)–(6) is replaced with:

min
𝛼,z

g(zp+1) (53)

zj+1 − x(tj+1; zj, 𝛼j) = 0, j = 0,… , p (54)
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r(zp+1) = 0 (55)

S(zj, tj) ≤ 0, j = 0,… , p + 1 (56)

C(zj, 𝛼j, tj) ≤ 0, j = 0,… , p + 1 (57)

where x(tj+1; zj, 𝛼j) for j = 0,… , p is the solution of ODE:

ẋ(t) = f (x(t), uj(t, 𝛼j), t), tj ≤ t ≤ tj+1 (58)

x(tj) = zj (59)

at t = tj+1.
This nonlinear programming problem can be solved by any constrained, contin-

uous optimization solver.

5 A Case Study

Let us consider the following optimal control problem taken from Jacobson and Lele

paper [4]:

min
u∈ℝ ∫

1

0
(x21 + x22 + 0.005u2)dt (60)

where

ẋ1 = x2, x1(0) = 0 (61)

ẋ2 = −x2 + u, x2(0) = −1 (62)

x2(t) ≤ 8(t − 0.5)2 − 0.5 (63)

To transform this problem into a Mayer problem form (1)–(6) we have to introduce

an additional state variable x3 governed by the state equation:

ẋ3 = x21 + x22 + 0.005u2, x3(0) = 0 (64)

and replace the objective function (60) with

g(x(tf )) = x3(1) (65)

which will be also minimized.

Now we may rewrite the optimization problem over the time interval [t0, tf ] =
[0, 1], introducing the vector notation from the Sect. 2, as the Mayer problem:
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min
u∈ℝ

g(x(tf )) = x3(1) (66)

ẋ = f (x, u) =
⎡
⎢
⎢
⎣

x2
−x2 + u

x21 + x22 + 0.005u2

⎤
⎥
⎥
⎦

(67)

x(t0) =
⎡
⎢
⎢
⎣

0
−1
0

⎤
⎥
⎥
⎦

(68)

S(x, t) = x2 − 8(t − 0.5)2 + 0.5 ≤ 0 (69)

First, the problem (66)–(69) was solved by direct shooting method, described

in Sect. 4, for p = 20 time subintervals of equal length with the help of two Mat-

lab functions: ode45 (ODE solver; medium order method), fmincon (constrained

nonlinear multivariable optimization solver).

After 254.3 s we obtained the performance index value equal 0.2796. The result-

ing trajectories of the state variables x1 and x2 are presented in Fig. 1. Analyzing the

resulting x2 state variable trajectory we may see, that it contains one boundary arc.

To find its precise course the indirect shooting method described in Sect. 3, based on

the theory presented in Sect. 2, was used.
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Fig. 1 Optimal state trajectories, obtained from the direct shooting method
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To derive optimality conditions for our problem we will start from the determi-

nation of the order q of the state constraint (69).

We have from Eqs. (15), (16):

S1(x, u, t) = 𝜕S
𝜕t

+ 𝜕ST
𝜕x

⋅ f (x, u) = −16(t − 0.5) + [0 1 0]
⎡
⎢
⎢
⎣

x2
−x2 + u

x21 + x22 + 0.005u2

⎤
⎥
⎥
⎦

=

= −16(t − 0.5) − x2 + u (70)

It means, that q = 1. Hence, according to Eq. (33) the Hamiltonian function will be

as follows:

H(x, u, 𝜂, 𝜇S, t) = ⟨𝜂, f (x, u)⟩ − 𝜇SS(1)(x, u, t) = 𝜂1x2 + 𝜂2(−x2 + u)+

+ 𝜂3(x21 + x22 + 0.005u2) − 𝜇S
[
−16(t − 0.5) − x2 + u

]
(71)

Applying the optimality condition (42) we will get:

𝜕H
𝜕u

= 𝜂2 + 0.01𝜂3 ⋅ u − 𝜇S = 0 (72)

Taking into account the complementary condition (40), it means, that:

�̂�S(t) =
{

𝜂2 + 0.01𝜂3 ⋅ u, t ∈ [t1, t2]
0, t ∉ [t1, t2]

(73)

From Eq. (35) the adjoint equation will be:

�̇�1 = − 𝜕H
𝜕x1

= −2𝜂3x1 (74)

𝜂2 = − 𝜕H
𝜕x2

= −𝜂1 + 𝜂2 − 2𝜂3x2 − 𝜇S (75)

𝜂3 = − 𝜕H
𝜕x3

= 0 (76)

Let us notice, that the Eq. (76) indicates, that

𝜂3(t) = const. (77)

We may find its value from the natural boundary conditions (37). Using it, we will

get:

𝜂(1) = −
𝜕g

𝜕x(1)
=
⎡
⎢
⎢
⎣

0
0
−1

⎤
⎥
⎥
⎦

(78)
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Hence,

𝜂3(t) ≡ −1, t ∈ [0, 1] (79)

From (70) and (72), applying (39) and (79), the optimal control will be expressed as:

û(t) =
{

16(t − 0.5) + x2(t), t ∈ [t1, t2]
100𝜂2(t), t ∉ [t1, t2]

(80)

Finally, the junction conditions (41) will give us the equation:

𝜂(t+1 ) = 𝜂(t−1 ) + 𝛾

⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝜂1(t−1 )
𝜂2(t−1 ) + 𝛾

𝜂3(t−1 )

⎤
⎥
⎥
⎦

(81)

Now we may put all these things together and express them in the format required by

the indirect shooting method, described in Sect. 3, that is a system of nonlinear equa-

tions, with unknowns: 𝜂10, 𝜂20, t1, t2, 𝛾 , to be satisfied at final and switching points,

resulting from solution of ODEs with time functions: x1(t), x2(t), x3(t), 𝜂1(t), 𝜂2(t),
defined on three intervals: [0, t1], [t1, t2], [t2, 1], where starting points are defined by

initial and junction conditions. Such a problem was solved under Matlab with the

help of two Matlab functions: ode45 (mentioned above) and fsolve (a solver of
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Fig. 2 Optimal trajectories of the state variables x1 and x2, obtained from the indirect shooting

method
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Fig. 3 Optimal trajectory of the state variable x3, obtained from the indirect shooting method
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Fig. 4 Optimal trajectories of the adjoint variables 𝜂1, 𝜂2 and the Lagrange multiplier for state

constraint 𝜇S, obtained from the indirect shooting method
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Fig. 5 Optimal control trajectory obtained from the indirect shooting method

systems of nonlinear equations of several variables). The calculations took 4.1 s, the

obtained optimal value of the performance index was 0.1698. The results are pre-

sented in Figs. 2, 3, 4 and 5. One may see, that indeed, the solution is much more

precise than that of the direct method, despite that the number of unknowns in the

indirect method was much smaller than the dimension of the decision vector in the

direct method (5 vs. 83) and the time of calculations was much shorter (4.1 s vs.

254.3 s on PC with Intel Core i7-2600K CPU@3.40 GHz processor).

6 Conclusions

The advantage of the direct shooting approach is, that the user does not have to be

concerned with adjoint variables or switching structures. The main disadvantage of it

is the lower accuracy of the obtained solution, than that of the indirect method, where

the infinite-dimensional problem is solved. In particular, in the indirect method, in

contrast to direct methods, no approximations of the controls have been undertaken

[3, 6, 14]. However, as the number of states is large compared to the number of

controls, direct methods may be more efficient.

Nowadays, indirect methods are most often applied, when high accuracy of the

solution is crucial [12], e.g., in the aerospace, chemical and nuclear reactors, robot

manipulators, medical apparatus domain. Typically, initial guesses of the optimal

state and control trajectories are generated by applying direct methods.
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In the paper this methodology was applied to a case study concerning a Lagrange

problem with a single state constraint and fully confirmed its usefulness.
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