
Chapter 7
Invariants as Measurable Quantities

Abstract This chapter presents various applications to solid state physics of the
mathematical results obtained in the earlier chapters. The topological invariants are
connected to linear and nonlinear transport coefficients and the expected physical
effects are discussed in depth for class A and class AIII of topological insulators,
in several space dimensions. Then we follow with an in depth analysis of orbital
polarization andmagneto-electric effects, and virtual topological insulators are taken
up as a more recent development. As a further novel implication, it is shown that
the surface states of approximately chiral systems may exhibit a quantum Hall effect
with a Hall conductance imposed by the bulk invariants.

7.1 Transport Coefficients of Homogeneous Solid
State Systems

The topological invariants are closely related to the transport coefficients. These are
briefly reviewed in this section within the operator algebra formalism developed so
far. Let us consider a bulk homogeneous solid state systemdefinedby theHamiltonian
h ∈ MN (C) ⊗ Ad . Following mainly [20, 195] (see also [168] for a computational
perspective), let us assume an effective time evolution etL on MN (C) ⊗ Ad in the
presence of a macroscopic electric field E and dissipation, generated by the densely
defined derivation

L(a) = i[a, h] + 〈E , ∂a〉 + Γ (a) ,

where Γ is the so called collision (super-) operator having adequate dissipation
properties [195]. Recall that 〈 , 〉 denotes the Euclidean scalar product. The temporal
evolution of a density matrix is ρt = etL∗

ρ0 for a given an initial density matrix ρ0.
Now one is interested in computing (or measuring) the time average charge current
density

J = lim
T→∞

1
T

∫ T

0
dt T

(
j ρt

)
, (7.1)

where j = ∂h = {∂jh}j=1,...,d is the observable representing the charge current.
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174 7 Invariants as Measurable Quantities

Proposition 7.1.1 ([20, 195, 196]) Assume the initial state of the system to be that
of thermal equilibrium, namely the initial density matrix is the Fermi-Dirac function

ρ0 = fβ,μ(h) = 1

1 + exp
(
β(h − μ)

) .

Then:

(i) The current density is given by Ji = ∑d
j=1 σi,jEj +o(E 2), i = 1, . . . , d, with the

linear conductivity tensor σ given by the Kubo formula

σi,j = T
(
(∂ih)L−1

(
∂jfβ,μ(h)

))
.

(ii) If BGH or MBGH holds, the off-diagonal components of the linear conductivity
tensor converge in the limit β → ∞ and Γ → 0 to

σi,j = 〈[ξ{i,j}], [pF]0
〉 = Ch{i,j}(pF) , (7.2)

for 1 ≤ i 
= j ≤ d, while the diagonal components vanish in this limit.

The above statement provides a direct link between the 2-cocycles and the lin-
ear conductivity tensor. By taking derivatives with respect to the magnetic field of
Eq. (7.2) and using the generalized Streda formulas from Corollary 5.6.4, we will
be able to establish direct links between higher cocycles and non-linear transport
coefficients. This will be quite relevant for the analysis in dimensions higher than
d = 2.

We now turn our attention to the charge transport parallel the boundary of a solid
state system defined by ĥ = (h, h̃) ∈ MN (C) ⊗ Âd . The observable representing the
charge current parallel to the boundary is given by ĵ = ∂̂ ĥ, which indeed provides
the expected expression when represented on the Hilbert space,

π̂ω(ĵ) = i[Ĥω, X̂] ,

with X̂ = (X1, . . . , Xd−1). Now, assume that BGH applies and let fExp : R → [0, 1]
be as in Proposition 4.3.1, that is, its derivative f ′

Exp is positive and supported in the
bulk gap and

∫
dE f ′

Exp(E) = 1, and

[ũΔ]1 = Exp[pF]0 = [exp(2π i fExp(ĥ))]1 .

The function f ′
Exp(ĥ) can be regarded as a density matrix, and since f ′

Exp is smooth
and with support inside the bulk gap, this function is an element from the boundary
algebra and in fact from the smooth sub-algebra Ed . Then

J̃ = T̃
(
f ′
Exp(ĥ) ∂̂ ĥ

)
(7.3)

http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_4


7.1 Transport Coefficients of Homogeneous Solid State Systems 175

is the well-defined charge current density, flowing along the boundary when the
quantum states are populated with a statistical weight given by f ′

Exp(E). We will refer

to J̃ as the boundary current.

Proposition 7.1.2 ([197, 107]) The following identity holds for j = 1, . . . , d − 1:

i T̃
((

exp(−2π ifExp(ĥ)) − 1
)
∂̂j exp(2π ifExp(ĥ))

)
= − 2π T̃

(
f ′
Exp(ĥ) ∂̂j ĥ

)
. (7.4)

Written differently,

C̃h{j}(ũΔ) = − 2π J̃j . (7.5)

Sketch of Proof Let Wind denote the quantity on the l.h.s. of (7.4). Expanding the
exponential under the derivation as a series and using the Leibniz rule

Wind = i
∞∑

m=1

(2π i)m

m!
m−1∑
l=0

T̂
(
(ũ∗

Δ − 1) fExp(ĥ)l ∂̂jfExp(ĥ) fExp(ĥ)m−l−1
)
,

where the trace and the infinite sum can be exchanged because ũΔ − 1 belongs to
the smooth sub-algebra Ed . Due to cyclicity and the fact that [ũΔ, fExp(ĥ)] = 0, each
summand is equal to T̃((ũ∗

Δ − 1) fExp(ĥ)m−1 ∂̂j fExp(ĥ)). Exchanging the sum and the
trace again and summing up the exponential,

Wind = i T̃((ũ∗
Δ − 1) ∂̂j ũΔ) = 2π T̃

(
(1 − ũΔ) ∂̂j fExp(ĥ)

)
.

Now let us use the homomorphism property of the pairing and repeat the same
argument for ũk

Δ = exp(2π i k fExp(ĥ)) with k 
= 0,

Wind = i

k
T̃
(
(ũk

Δ − 1)∗∂̂j û
k
) = 2π T̃

(
(1 − ũk

Δ) ∂̂jfExp(ĥ)
)

.

Writing fExp(E) = ∫ ∞
−∞ dt f̃Exp(t) e−E(1+it) as a Laplace transform with an adequate

function f̃Exp, the last expression can be further processed using Duhamel’s formula

Wind = 2π
∫ ∞

−∞
dt f̃Exp(t) (1 + it)

∫ 1

0
dq T̃

(
(ûk − 1) e−(1−q)(1+it)ĥ (̂∂j ĥ)e−q(1+it)ĥ

)
.

Using the cyclic property of the trace and f ′
Exp(E) = − ∫

dt (1 + it) f̃Exp(t) e−E(1+it),
one therefore finds for k 
= 0,

Wind = 2π T̃
(
(ûk − 1) f ′

Exp(ĥ) ∂̂j ĥ
)

.

For k = 0, the r.h.s. vanishes, a fact which will be used below.



176 7 Invariants as Measurable Quantities

To conclude, let us choose a differentiable function φ : [0, 1] → R vanishing
at the boundary points 0 and 1. Its Fourier coefficients will be denoted by ak =∫ 1
0 dx e−2π ikxφ(x). Then

∑
k ake2π ikx = φ(x) and thus

∑
k ak = 0. Hence

a0 Wind = −
∑
k 
=0

ak Wind

= −2π
∑

k

ak T̃
(
(1 − ûk) f ′

Exp(ĥ) ∂̂j ĥ
)

= −2π T̃
(
φ(fExp(ĥ)) f ′

Exp(ĥ) ∂̂j ĥ
)
.

Finally, we let φ converge to the indicator function of [0, 1]. Then a0 → 1, while
on the other hand φ(fExp(ĥ))f ′

Exp(ĥ) → f ′
Exp(ĥ) (the Gibbs phenomenon is damped).

This concludes the proof. �
The above statement establishes a direct link between the boundary 1-cocycles

and the charge current density flowing along the boundary. By taking derivatives
with respect to the magnetic field of Eq. (7.2) and using the generalized Streda
formulas from Corollary 5.6.4, we will be able to establish direct links between
higher cocycles and measurable physical quantities. This will again be quite relevant
for the analysis in dimensions higher than d = 2. Furthermore, let us point out that the
calculation of the above proof combined with a homotopy argument can be used to
deal with quantized currents at interfaces of two materials with different topological
invariants [124].

7.2 Topological Insulators from Class A in d = 2, 3 and 4

In dimensiond = 2, the topological phases from the unitary class include the classical
integer quantum Hall phases and there are many excellent accounts on the physics
and mathematics of the integer quantum Hall effect in dimension d = 2, and we
refrain from giving an incomplete list here. The papers of Bellissard [17, 18] present
the bulk theory for tight-bindingmodels and build up the algebraic formalism used in
this work. A detailed account of this and an extension to the regime of a MBGH can
be found in [20]. The bulk-boundary principle was first demonstrated by Hatsugai in
[87] for the rational magnetic flux case, then [107, 197] used the Pimsner-Voiculescu
sequence to extend this result to amore general context (see (iii) ofCorollary 7.2.1). In
particular, [197] also contains a detailed description of the physical interpretation and
importance of this result as well as many citations to the physics literature. Later on,
other rigorous proofs of bulk-boundary correspondence for tight-binding quantum
Hall systems were found [58, 59] and the techniques were extended to models in
continuous physical space [45, 108, 109]. An application of themachinery developed
in [107, 197] to Chern insulators can be found in [166].

http://dx.doi.org/10.1007/978-3-319-29351-6_5
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Below we summarize the main statements available for the topological phases
from class A in dimension d = 2. They follow directly from [20, 107, 197] and
they were also known in the physics literature [82], but here we view them as direct
corollaries of the theory developed in the previous chapters. Of course, the input
from the previous section is absolutely necessary.

Corollary 7.2.1 Let ĥ = (h, h̃) ∈ MN (C) ⊗ Âd with d = 2.

(i) If BGH holds, then the integrated density of states can take only the discrete
values

T(pF) = Ch∅(pF) ∈ Z + B1,2

2π
Z .

(ii) If MBGH holds, then the off-diagonal element of the bulk conductivity tensor
is quantized by the strong bulk invariant

σ1,2 = Ch2(pF) ∈ Z .

Furthermore, as long as MBGH holds, σ1,2 remains quantized and invariant to
the deformations of h defined by Definition 2.4.5.

(iii) If BGH holds, then the boundary current is quantized by the bulk and boundary
invariants

2π J̃1 = − C̃h1(ũΔ) = −Ch2(pF) = σ1,2 ∈ Z .

Furthermore, if Ch2(pF) 
= 0, the entire boundary spectrum is delocalized.

Let us point out that (ii) assures us that the topological phases corresponding to the
different values of Ch2(pF) are separated by a localization-delocalization phase tran-
sitions, which can be sharply identified experimentally via transport measurements,
as demonstrated in [42].

In dimension d = 3 there are only weak topological phases. Among them are
the quantum Hall phases in 3-dimensions. The available results for the latter [83,
119, 120, 122, 123, 142] are restricted to the cases where the entries in the B matrix
(divided by 2π ) are rational numbers. The following statements, which are again
direct corollaries of the theory of the previous chapters, generalize them to arbitrary
B and also include the disorder.

Corollary 7.2.2 Let ĥ = (h, h̃) ∈ MN (C) ⊗ Âd with d = 3 and assume that BGH
holds. Then:

(i) The integrated density of states can take only the discrete values

T(pF) = Ch∅(pF) ∈ Z +
∑

1≤i<j≤3

Bi,j

2π
Z .

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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(ii) The off-diagonal elements of the bulk conductivity tensor are quantized

σi,j = Ch{i,j}(pF) ∈ Z , 1 ≤ i < j ≤ 3 .

Furthermore, as long as BGH holds, σi,j’s remains quantized and invariant to
the deformations of h defined by Definition 2.4.5.

(iii) The boundary currents are quantized too

2π J̃j = − C̃hj(ũΔ) = Ch{j,3}(pF) = − σj,3 ∈ Z , j = 1, 2 .

Since the weak Chern numbers do not accept an index formula, we cannot replace
BGH with MBGH at point (i). In other words, with the methods developed here we
cannot conclude that weak topological phases defined by the quantized values of
σi,j’s are separated by phase boundaries where the localization length diverges, as
it happens in d = 2. Also, at point (ii), we cannot say anything about the local-
ized/delocalized character of the boundary spectrum, though we can say that is never
gapped if any of σ{j,3} happens to be non-zero. Note that [15] predicted a certain delo-
calization of the boundary states, hence it will be important to further investigate the
weak topological insulators.

Although purely fictitious, the quantum Hall effect in dimension d = 4 was
conceptually very important in condensed matter theory [172, 228]. Below we sum-
marize our predictions for the hypothetical topological insulators from class A in
d = 4.

Corollary 7.2.3 Let ĥ = (h, h̃) ∈ MN (C) ⊗ Âd with d = 4.

(i) If BGH holds, the integrated density of states can take only the discrete values

T(pF) = Ch∅(pF) ∈ Z +
∑
{i,j}

Bi,j

2π
Z + Pf(B)

(2π)2
Z ,

where all indices are assumed as being ordered.
(ii) If BGH holds, the off-diagonal elements of the bulk conductivity tensor take

only the discrete values

σi,j = Ch{i,j}(pF) ∈ Z + Bk,l

2π
Z ,

where k < l and such that {i, j} ∩ {k, l} = ∅. Furthermore, as long as BGH
holds, σi,j’s remains quantized and invariant to the deformations of h defined
by Definition 2.4.5.

(iii) If MBGH holds, the derivatives of the Hall conductivities w.r.t. to the magnetic
field are quantized by the strong invariant

2π ∂Bi,j σk,l = (−1)ρ Ch4(pF) ∈ Z , {i, j} ∩ {k, l} = ∅ ,

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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where ρ is the permutation which brings {i, j, k, l} into {1, 2, 3, 4}. Further-
more, as long as MBGH holds, ∂Bi,j σk,l’s remain quantized and invariant to the
deformations of h defined by Definition 2.4.5.

(iv) If BGH holds, then the boundary currents can take only the discrete values

2π J̃j = − C̃hj(ũΔ) = −Ch{j,4}(pF) ∈ Z + Bk,l

2π
Z , j = 1, 2, 3, (7.6)

where {k, l} are the unique set of indices such that {k, l} ∩ {j, 4} = ∅.
(v) If BGH holds, then the derivatives of the boundary currents w.r.t. the magnetic

field are quantized

(2π)2 ∂Bi,j J̃k = − (−1)ρ C̃h3(ũΔ) = − (−1)ρ Ch4(pF) ∈ Z, (7.7)

where i 
= j 
= k and ρ is the permutation which brings {i, j, k} into {1, 2, 3}.
Furthermore, if the above invariants are not zero, then the entire boundary
spectrum is necessarily delocalized.

Note that ∂Bi,j σk,l represents the second-order response function ∂2Jk/∂El∂Bi,j,
hence point (iii) predicts the quantization of this physically measurable quantity, in
agreement with the original finding in [228].

7.3 Topological Insulators from Class AIII in d = 1, 2 and 3

The experimentally measurable bulk properties relevant to the class of chiral sym-
metric solid state systems are the chiral (orbital) polarization PC and the variations
of PC w.r.t. the magnetic field. For a chiral Hamiltonian H = {Hω}ω∈� of a solid state
system with sub-lattice symmetry, the chiral polarization is defined as the difference
between the electric dipole moments per unit cell of the two sub-lattices, which can
be written as:

PC =
∫

�

P(dω) tr 〈0|Pω J X Pω|0〉 , Pω = χ(Hω ≤ 0). (7.8)

Using X|0〉 = 0, one can rewrite PC with the non-commutative analysis tools as

PC = i T(pFJ∂pF) .

Let up point out that, without the chirality operator J , the r.h.s. would vanish iden-
tically. Hence, it is impossible to define the total dipole polarization in this manner.
The real reason for this is that definition (7.8) will be ill behaved without J . Now,
the following result show that PC is actually of topological nature, namely given by
a pairing of a K1-group element with a 1-cocycle.

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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Proposition 7.3.1 Let h ∈ M2N (C) ⊗ Ad and assume CH and BGH hold. Then

PC,j = − 1

2

〈[ξ{j}], [uF]1
〉 = − 1

2
Ch{j}(uF) , j = 1, . . . , d .

Proof Recall from (2.34) that

pF = 1

2

(
1 −u∗

F−uF 1

)
, J =

(
1 0
0 −1

)
.

Thus

PC = i

4
T

((
1 u∗

F−uF −1

)(
0 −∂u∗

F−∂uF 0

))
= i

4
T(−u∗

F∂uF + uF∂u∗
F) .

Now by Proposition 3.3.2(iv), uF(∂u∗
F) = −(∂uF)u∗

F , so that by cyclicity

PC = − i

2
T(u∗

F∂uF) ,

which is the precisely the claim. �

We now have all the tools to characterize the physics of the chiral symmetric solid
state systems. The following statements were discussed extensively in Chap. 1, but
we state them for completeness. In the published literature, one can find them in
[139, 200].

Corollary 7.3.2 Let ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd with d = 1. Assume that CH holds
and recall that, for d = 1, the spectrum of ĥ inside Δ is discrete whenever a bulk
spectral gap exists.

(i) If the MBGH holds, then the chiral polarization is quantized by the strong bulk
invariant

PC = − 1

2
Ch1(uF) ∈ 1

2
Z .

Furthermore, as long as the MBGH holds, PC remains quantized and invariant
to the deformations of h defined by Definition 2.4.5.

(ii) If the BGH holds and PC 
= 0, then by Corollary 4.3.4 there will necessarily be
edge states exactly at E = 0, which are the zero modes discussed in Sect.2.3.
Furthermore

N+ − N− = C̃h∅(p̃Δ) = −Ch1(uF) = 2PC ,

where N± is the number of zero modes of ± chirality.

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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Let us stress that, as for the IQHE, topological phases corresponding to different
values of PC are separated by a localization-delocalization phase transition which
can be determined experimentally via transport measurements. Next, in dimension
d = 2, there are only weak chiral systems. Nevertheless, there are some interesting
predictions for these systems.

Corollary 7.3.3 Let ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd with d = 2 and assume that BGH
and CH hold. Then everything said in Corollary 7.2.1 holds and, additionally:

(i) The components of the chiral polarization are quantized as

PC,j = − 1
2 Ch{j}(uF) ∈ 1

2 Z , j = 1, 2 .

Furthermore, as long as BGH and CH hold, the components PC,j remain quan-
tized and invariant under the deformations of h defined by Definition 2.4.5.

(ii) The bulk-boundary principle gives

T̃(p̃Δ) = C̃h∅(p̃Δ) = −Ch{2}(uF) = 2PC,2 .

As a consequence, if PC,2 
= 0, ĥ will have essential spectrum at E = 0.

Proof We only need to show point (ii). If the spectrum at the origin is discrete, then
we can choose an interval [−δ, δ] as in Proposition 4.3.3, and [−δ, δ] contains only
discrete spectrum of ĥ. With the notations from Proposition 4.3.3, the bulk-boundary
principle gives

T̃
(
p̃+(δ)

) − T̃
(
p̃−(δ)

) = 2PC,2 .

Hence for p̃(δ) = p̃+(δ) + p̃−(δ)

T̃
(
p̃(δ)

) ≥
∣∣∣̃T(

p̃+(δ)
) − T̃

(
p̃−(δ)

)∣∣∣ = ∣∣2PC,2

∣∣ .

But for a spectral projector p̃(δ) onto discrete spectrum one has T̃
(
p̃(δ)

) = 0, and
this is a contradiction. �

The bulk invariants appearing in (i) of Corollary 7.3.3 are weak odd Chern num-
bers, hence we cannot replace the BGH by theMBGH. Consequently, with the meth-
ods developed so far, we cannot conclude that weak topological phases defined by the
quantized values of PC,j’s are separated by phase boundaries where the localization
length diverges, as it happens in d = 1. Also, in item (ii), we cannot say anything
about the localized or delocalized character of the boundary spectrum appearing at
E = 0.

Corollary 7.3.4 Let ĥ = (h, h̃) ∈ M2N (C) ⊗ Âd with d = 3 and assume that the
CH holds. Then:

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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(i) If the BGH holds, the components of the chiral polarization take discrete values

PC,i = − 1
2

〈[ξ{i}], [uF ]1
〉 = − 1

2Ch{i}(uF) ∈ 1
2 Z + Bj,k

4π
Z , i 
= j 
= k 
= i .

Furthermore, as long as BGH holds, the components PC,i remain quantized and
invariant to the deformations of h defined by Definition 2.4.5.

(ii) If the MBGH holds, then the chiral magneto-electric response coefficients are
quantized by a strong invariant

∂Bi,j PC,k = 1

4π

〈[ξ{i,j,k}], [uF]1
〉 = η

4π
Ch3(uF) ∈ 1

4π
Z ,

with η the sign of the permutation which brings i, j, k to the natural order.
Furthermore, as long as the MBGH holds, ∂Bi,j PC,k remains quantized and
invariant to the deformations of h defined by Definition 2.4.5.

(iii) If the BGH holds, then the bulk-boundary principle gives

T̃(p̃Δ) = C̃h∅(p̃Δ) = −Ch{3}(uF) = 2PC,3 ∈ Z + B1,2

2π
Z ,

and
C̃h2(p̃Δ) = −Ch3(uF) = 4π ∂B1,2PC,3 ∈ Z .

As a consequence, if PC,3 
= 0, then ĥ will necessarily display essential spectrum
at E = 0. If instead of or additionally to PC,3 
= 0 we have ∂B1,2 PC,3 
= 0, then
the boundary spectrum at E = 0 is necessarily delocalized.

(iv) Assume the existence of an interval [−δ, δ] ⊂ Δ such that the ends ±δ lie in
a region of Anderson localized surface spectrum. Let p̃(δ) = χ(−δ ≤ ĥ ≤ δ)

be the associated spectral projection and decompose it as in Proposition 4.3.3
into chiral sectors p̃(δ) = p̃+(δ) + p̃−(δ) with Jp̃±(δ) = ±p̃±(δ). Then

C̃h2
(
p̃+(δ)

) − C̃h2
(
p̃−(δ)

) = −Ch3(uF) = 4π ∂B1,2PC,3 ∈ Z .

Among other things, this implies that, if the bulk invariant is odd, then neces-
sarily

Z � C̃h2
(
p̃(δ)

) 
= 0 ,

so that the surface will display the IQHE with the Hall conductance jumping
at least by one unit in the interval [−δ, δ].

Proof Item (ii) follows from Proposition 5.6.2 and (iv) by choosing the lift as in
Proposition 4.3.3. �

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Let us stress that (ii) assures that the topological phases corresponding to the
different values of ∂Bi,j PC,k are separated by a localization-delocalization phase tran-
sitions which is again visible in transport experiments. This has been confirmed
numerically in [201]. The statement (iii) on the delocalized character of the surface
states at E = 0 is in full agreement with the conclusions drawn in Ref. [65]. As
already pointed out there, no such statement can be formulated about the states at
other energies. For the IQHE predicted in (iv), the methods developed so far give no
further information about the values of C̃h2

(
p̃(δ)

)
. Hence we have no general pre-

diction about the value of the Hall conductance of the surface states, though we will
make a conjecture on these values in the next section. Nevertheless, let us note that
the spectrum away from the origin is expected to be localized (see the discussion in
[65]) and that (iv) can occur in the absence of a magnetic field. In the latter situation,
item (iv) hence predicts an anomalous quantum Hall effect. Lastly, let us mention
that the IQHE at the surface may be absent altogether for an even bulk invariant, as
for example would happen if Ch3(uF) = 2 and C̃h2

(
p̃±(δ)

) = ∓1. However, there
are other interesting particular scenarios which are worth discussing and this is done
in the next seciton.

7.4 Surface IQHE for Exact and Approximately
Chiral Systems

Let us start by formulating a conjecture on the values of C̃h2
(
p̃(δ)

)
which is compat-

ible with the bulk-boundary principle. For this, we introduce the concept of stable
configuration which is best explained for d = 1. In this case, the bulk-boundary
principle states that N+ − N− = −Ch1(uF), from where one can conclude that the
number of edge zero modes N = N+ + N− is necessarily larger than or equal to the
absolute value of the bulk invariant, but one cannot say what exactly this number is,
just from the bulk topology. However, under small perturbations or disorder, pairs of
zero modes of opposite chirality can and usually will exit the zero-mode subspace,
and this phenomenon will repeat itself until one of the chiral sectors is completely
depleted of zero modes. The process cannot continue and the system reached what
we call the stable configuration. In d = 3 and in the absence of disorder, something
similar will happen because pairs of zero-energy Dirac points of opposite chirality
in the boundary spectrum can annihilate each other or leave the zero-energy level,
and a stable configuration can be reached only when one chiral sector is completely
depleted of zero-energy Dirac points . For a general chiral system in dimension
d, we define a stable configuration to be reached if there is a δ such that one of
C̃hd−1

(
p̃±(δ)

)
is zero. We are now ready to formulate our conjectures. The notations

from Corollary 7.3.4 will be used throughout.

Conjecture ((Anomalous) Surface IQHE) Let ĥ = (h, h̃) ∈ M2N (C)×Âd in dimen-
sion d = 3 be such that BGH and CH apply, and assume Ch3(uF) 
= 0. Then
Corollary 7.3.4 assures us that the boundary spectrum is delocalized at E = 0. The
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first conjecture is that, in presence of disorder, the boundary spectrum is everywhere
localized except at E = 0 for B = 0, and for B 
= 0 furthermore at a discrete set
of Landau bands symmetrically located around E = 0. The second conjecture is
that, in presence of disorder, the system is always in a stable configuration for all
values of the magnetic field. In these conditions, the Hall conductance of the surface
will display a plateau-plateau transition exactly at E = 0, with a jump equal pre-
cisely to

∣∣Ch3(uF)
∣∣. For B = 0 this is hence an anomalous surface IQHE with Hall

conductance dictated by the bulk invariant.

This conjecture can be probed numerically. For vanishing magnetic fields, our ini-
tial efforts in this direction unfortunately could not shed any light on these important
issues. During these attempts, it became clear that resolving the localized/delocalized
character of the surface states will be a large scale computational endeavor. We hope
that this will be of interest to the experts in the field. We also hope that the possi-
bility of observing the anomalous IQHE at the surface of a non-magnetic material
will renew the experimental and theoretical efforts on identifying a topological solid
state system from the AIII class in d = 3.

If an external magnetic field perpendicular to the surface is present, then the situ-
ation is more traceable because gaps in the surface spectrum open at weak disorder.
Indeed, as it usually happens for two-dimensional electron systems, Landau bands
are forming. If the bulk invariant is nowodd, then based on item (iv) ofCorollary 7.3.4
we know that a Landau band will be pinned at the origin and that the Hall conduc-
tance of the surface will jump by at least one unit as the Fermi level crosses this
band. In this situation, we have verified the conjecture numerically for all topolog-
ical phases of the model presented in Sect. 2.3.3 in d = 3, under relatively small
magnetic fields. Note that there is one phase with even bulk invariant which hence
also had a non-vanishing surface Hall conductance.

Let us further elaborate on the importance of the parity of the bulk invariant in
the case of a non-vanishing magnetic field, hence supplementing statement (iv) of
Corollary 7.3.4. Suppose that there is a Landau band atE 
= 0. Then, due to the chiral
symmetry, there will be another Landau band at −E and the Chern numbers of the
two bands are equal. Under small perturbations, these paired Landau bands can, in
principle, migrate towards E = 0 and then join the central Landau band, but note that
such process will change the Chern number of the central band by an even number.
If C̃h2

(
p̃(δ)

)
was odd in the first place, then the Chern number of the central Landau

band cannot be canceled by the processes just described and it indeed remains odd.
The physics described in the above conjecture might remind one of the observa-

tions made on graphene at relatively small magnetic fields [147, 229] where the Hall
conductance jumps by four units as the Fermi level crosses the Landau band pinned
at the origin. However, this feature of graphene is not stable and at larger magnetic
fields where the central Landau band splits into four Landau sub-bands and only
jumps by one unit occur for the Hall conductance [226, 231].

We now turn our attention to the solid state systems with approximate chiral
symmetry in dimension d = 3, that is, the ACH defined in Sect. 2.4 is supposed

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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to hold. By Proposition 2.4.9, such a system is homotopically connected to a solid
state system exhibiting an exact chiral symmetry and thus displaying the physics
discussed above on its surface. Since the IQHE is robust against homotopies, we
can automatically conclude that this interesting physics will also be observed under
weak breaking of the chiral symmetry. More precisely:

Proposition 7.4.1 ((Anomalous) Surface IQHE under ACH) Let ĥ = (h, h̃) ∈
M2N (C) × Âd in dimension d = 3 be such that BGH and CH apply, and assume
that the above Conjecture applies. Let t ∈ [0, 1] �→ ĥ(t) be a continuous deforma-
tion of ĥ (as defined in Definition 2.4.5) which breaks the chiral symmetry. Further
assume that the interval [−δ, δ] can be chosen such that its ends resides in a region
of localized boundary spectrum for all t ∈ [0, 1] (which is always possible for small
deformations). Then the spectral projections p̃(δ, t) = χ(−δ ≤ ĥ(t) ≤ δ) lead
to a constant value C̃h2

(
p̃(δ, t)

)
during the deformations. As such, the system with

weakly broken chiral symmetry will continue to display the surface IQHE, which is
anomalous if the magnetic field vanishes. However, the divergence of the localization
length is not necessarily at E = 0 any more.

Proof From Proposition 2.4.11, it follows that p̃(δ, t) varies continuously in the non-
commutative Sobolev space MN (C) ⊗ Wd−1,1(Ed, T̃). Then the statement follows
from Theorem 6.6.2. �

When the chiral symmetry is broken, the Hall conductance of the surface should
continue to display a net jump of |Ch3(uF)| over the interval [−δ, δ]. This net jump,
however, will very likely not happen suddenly at a single energy, but instead will be
a sum of elementary jumps by one unit. As we already pointed out several times, the
chiral symmetry is expected to hold only approximately in real solid state systems,
hence the established stability of the physical effects also against weak symmetry
breaking should facilitate the experimental observability of the surface IQHE in
adequate materials.

7.5 Virtual Topological Insulators

The topological systems in d = 4 or higher dimensions are not entirely fictitious since
additional dimensions can occur in a parameter space. A special place among such
systems is held by the virtual topological insulators, introduced and characterized in
[127]. Their defining characteristic is a strong topological invariant which is defined
in d+d′ space dimensions, where d counts the physical dimensions and d′ the virtual
ones, with an invariant that is yet computable and experimentally measurable inside
the d physical dimensions.

Let us briefly describe the virtual topological insulators from class A in 3 + 1
dimensions, introduced in [167]. For sake of simplicity, the disorderwill be neglected.
Then the virtual systems are generated by the algebra A4 = C∗(u1, . . . , u4) from

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_6
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Definition 3.1.1 via the following faithful representation on �2(Z3) invoking only
three magnetic translations U1, U2, U3:

πθ(uj) = Uj , for j = 1, 2, 3 , πθ (u4) = ei(〈B4,X〉+θ) ,

where B4 = (B1,4, B2,4, B3,4) now plays the role of frequencies of the perturbation
and θ ∈ R the phase of the representation. As a non-trivial example, let us take

h = 1
2i

4∑
j=1

γj ⊗ (uj − u∗
j ) + γ0 ⊗

(
m + 1

2

4∑
j=1

(uj + u∗
j )

)
∈ M4(C) ⊗ A4 ,

which generates the model already analyzed in Sect. 2.2.4. There it was also shown
to posses a strong topological invariant Ch4(pF) 
= 0. Here focus is on the represen-
tations Hθ = πθ(h) on C

4 ⊗ �2(Z3) rather than C
4 ⊗ �2(Z4):

Hθ = 1
2i

3∑
j=1

γj ⊗ (Uj − U∗
j ) + γ0 ⊗

(
m + 1

2

3∑
j=1

(uj + u∗
j

)

+ γ4 ⊗ sin(〈B4, X〉 + θ) + γ0 ⊗ cos(〈B4, X〉 + θ) ,

which describes a periodic crystal subjected to a magnetic field and an additional
incommensurate periodic potential, namely we require 1

2π Bj,4 to be irrational. As Hθ

acts on a Hilbert space over the three-dimensional lattice and and it depends on an
additional parameter θ ∈ S

1 we refer to it as a model in 3 + 1 dimensions. Let us
now show that the topological invariant can be computed at fixed θ . First of all,

T(a) =
∫
S1

dθ

2π
Tr 〈0|πθ(a)|0〉 = lim|V |→∞

1

|V |
∑
x∈V

Tr 〈0|πθ+〈B4,x〉(a)|0〉

= lim|V |→∞
1

|V |
∑
x∈V

Tr 〈x|πθ(a)|x〉 ,

where Birkhoff’s theorem was used combined with Ujπθ(a)U∗
j = πθ+Bj,4(a) and

the irrationality of Bj,4. Hence the topological invariant can be indeed computed at
fixed θ :

Ch4(pF) = Λ4

∑
ρ∈S4

(−1)ρ T
(

Pθ

4∏
j=1

∂jPθ

)
,

where Pθ = χ(Hθ ≤ μ), ∂4Pθ = ∂θPθ and ∂jPθ = i[Pθ , Xj] for j = 1, 2, 3. This bulk
topological invariant was related in [167] to the magneto-electric response function,
discussed in the following sections. Another interesting link can be established via
the generalized Streda formulas. For example,

Ch4(pF) = 2π ∂B3,4σ1,2 ,

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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which implies the quantization of the variation of the bulk Hall conductance in the
(1, 2) plane (i.e. the non-linear Hall conductivity) w.r.t. the modulation of the incom-
mensurate potential (or of the original lattice) in the third direction. This is a piezo-
magneto-electric effect and the prediction could be tested with cold atom physics.
Furthermore, assume now a boundary, say at x1 = 0. Then we can consider the
topological invariant C̃h3(ũΔ) and by applying the statement (v) of Proposition 7.2.3
we obtain

(2π)2 ∂B3,4 J̃2 = (2π)2 ∂B2,4 J̃3 = − C̃h3(ũΔ) = −Ch4(pF) ∈ Z .

This implies the existence of boundary currents in the second (third) direction whose
variation w.r.t. the modulation of the incommensurate potential in the third (second)
direction is quantized in units of 1

(2π)2
.

7.6 Quantized Electric Polarization

The electric polarization has two contributions, one from the displacements of the
nuclei and one from the electrons. Here we will be dealing only with the latter con-
tribution, which is often called the orbital polarization P = (P1, . . . , Pd). It has been
realized in the 1990s that P itself is not a gauge-invariant and measurable quantity,
but that the variation ΔP of the orbital polarization during adiabatic deformations
of crystals is gauge-invariant and measurable which is directly related to the flow
of charges induced by such deformations (see [179, 180] for a historical account).
If the deformation is periodic in time, it turns out that the orbital polarization is of
topological nature and is actually the same quantity considered in charge pumps
[209]. This well known effect can now be placed in a broader context and several
predictions can be made using the tools developed so far.

Let be given a closed differentiable path t ∈ [0, T ] �→ h(t) ∈ Ad , h(T) =
h(0), of Hamiltonians satisfying the BGH at a fixed Fermi lelve μ, and set pA(t) =
χ(h(t) ≤ μ) to be the instantaneous Fermi projection. Then it is shown in [198] that,
up to arbitrarily small corrections in the adiabatic limit, the change in the electric
polarization during one adiabatic cycle is

ΔPj = i
∫ T

0
dt T

(
pA(t)

[
∂tpA(t), ∂jpA(t)

])
. (7.9)

This is the disordered version of the King-Smith-Vanderbilt formula for the orbital
polarization [114]. Note that Eq. (7.9) is invariant to the scaling of the time, hence
t can be seen as taking values on the unit circle S

1 ∼= [0, 2π). The r.h.s. is, up to
a constant, the pairing of the projection pA = {

pA(t)
}

t∈S1 with a 2-cocyle over the
algebra C(S1,Ad), which is isomorphic to Ad+1 if the periodic time dependence is
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interpreted as an extra space direction. To avoid confusion, we choose the time to be
in the 0th direction. Then, from (7.9),

ΔPj = 2π
〈[ξ{0,j}], [pA]0

〉 = 2π Ch{0,j}(pA) . (7.10)

Based on (7.10), Theorem 5.7.1 and Corollary 5.7.2 gives the following prediction.

Corollary 7.6.1 The change in the components of the bulk electric polarization,
after and adiabatic periodic cycle, depends only on the class [pA]0 ∈ K0(Ad+1) of
the Fermi projection, and is equal to:

ΔPj =
∑

{0,j}⊆J⊆{0,...,d}
βJ (2π)1−

|J|
2 Pf

(
BJ\{0,j}

)
,

with |J| even and βJ the integer numbers appearing in the decomposition of [pA]0
into the generators of the K0(Ad+1) group,

[pA]0 =
∑

J⊂{0,...,d}
βJ [eJ ]0 ,

as elaborated in Sect.4.2.3. Above, it is assumed that Pf(B∅) = 1.

According to the above statement, ΔPj can take only discrete values but these
values are not necessarily integer. For example, for d = 1 and d = 2 the set J can
only be {0, j}, hence ΔPj = β{0,j} is always an integer, while for d = 3 we have in
general

ΔPj = β{0,j} + β{1,2,3}\{j}B{1,2,3}\{j} , j = 1, 2, 3 .

Note, however, that the variation of the magneto-electric response coefficient

∂B{1,2,3}\{j}ΔPj = β{1,2,3}\{j} , j = 1, 2, 3 ,

is an integer, a fact which will be addressed in more detail in Sect. 7.8. Let us mention
that, for d = 1, the above quantization already appeared in the work of Thouless
[209], while, for d = 2, a non-trivial example manifesting this quantization is con-
structed in [55], where an adequate loop of next-nearest hopping Hamiltonians on
the hexagonal lattice is constructed. It will definitely be very interesting to test the
prediction of Corollary 7.6.1 in dimension d = 3.

Next let us show how theK-theoretic result of Sect. 4.3.4 can be applied to obtain a
further formula for the polarization. Invoking (5.19) in Theorem 5.4.1 on the duality
of pairings under the suspension map combined with Proposition 4.3.7, on obtains:

〈[ξ {0,j}], [pA]0
〉 = 〈[ξ {0,j}], [pA]0 − [pF]0

〉
= 〈[ξ{j}], [pFvA,2π pF + 1N − pF]1

〉
,

http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_4
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_4
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where vA,2π is the Poincaré map of the adiabatic time evolution over one cycle,
see Sect. 4.3.4. Now the r.h.s. can be written out more explicitly (using the identity
vA,2π pF = pFvA,2π pF):

ΔPj = 2π iT
(
pFv∗

A,2π pF ∂j
(
pFvA,2π pF

))
.

This is the stroboscopic interpretation of the polarization, expressing it in terms of
the winding number of the adiabatic evolution over one cycle restricted to the range
of the Fermi projection. Yet another formula for the polarization will be given in the
next section.

Next let us come to periodic loops of chiral systems. The following shows that
their polarization vanishes.

Proposition 7.6.2 Suppose that t ∈ S
1 ∼= [0, 2π) �→ h(t) ∈ Ad is a loop of

Hamiltonian satisfying the CH. Then ΔP given by (7.9) vanishes.

Proof Inserting J2 = 1 and using JpAJ = 1 − pA on the r.h.s. of (7.9) shows
−ΔPj = 2π Ch{0,j}(1 − pA). But the homomorphism property of the pairing
implies Ch{0,j}(pA) + Ch{0,j}(1 − pA) = Ch{0,j}(1) = 0 so that ΔPj = −Δ

Pj = 0. �

Nevertheless, it is possible to associate a topological quantity to a loop of chiral
systems, namely the chiral time polarization defined by

PCT = i
∫ 2π

0
dt T(pF(t) J ∂tpF(t)) .

The chiral polarization PC defined for a given chiral Hamiltonian (and not a loop
of them) in Sect. 7.3 is quite similar. Following the calculation in the proof of
Proposition 7.3.1 shows

PCT = 1
2i

∫ 2π

0
dt T(uF(t)∗∂tuF(t)) = − 1

2

〈[ξ s
∅], [uF(t)t∈[0,2π)]1

〉
.

The r.h.s. is, up to a factor, the winding number of the time-varying Fermi unitary
operator, hence it is a stable topological number. Using the Streda formula, one
deduces for 1 ≤ i, j ≤ d

∂Bi,j PCT = − 1
4π

〈[ξ s
{i,j}], [uF(t)t∈[0,2π)]1

〉
. (7.11)

In d = 2, the r.h.s. is integer valued by the odd index theorem. For d = 3 it is an
integer valued weak invariant under the BGH.

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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7.7 Boundary Phenomena for Periodically Driven Systems

In this section investigates the implications of the bulk-boundary correspondence for
the periodically driven systems used for the definition of the orbital polarization in
Sect. 7.6. Thus let us consider a time-periodic family of half-space Hamiltonians

t ∈ S
1 ∼= [0, 2π) �→ ĥ(t) = (

h(t), h̃(t)
) ∈ Âd .

This family is a lift of t ∈ S
1 �→ h(t) in the exact sequence of time period systems

0 � C(S1,Ed)
i� C(S1, Âd)

ev� C(S1,Ad) � 0 , (7.12)

which is just a reformulation of (3.36). In fact, if we see the time as another space
direction, then (7.12) is exactly (3.36).Now thebulk-boundary correspondence (5.27)
implies

ΔPd = 2π Ch{0,d}(pA) = 2π C̃h{0}(ũΔ) ,

where the 0th component is still time and [ũΔ]1 = Exp[pA]0. Our goal here is to
give a physical interpretation of the 1-cocycle appearing on the r.h.s.. According to
Proposition 7.1.2

C̃h{0}(ũΔ) = − 2π
∫ 2π

0
dt T̃

(
f ′
Exp

(
ĥ(t)

)
∂t ĥ(t)

)
. (7.13)

Following an argument from [56] (see Proposition 4 there), in the cased = 1, the r.h.s.
of (7.13) is just 2π times the classical spectral flow [158] of boundary eigenvalues
of the path t ∈ S

1 �→ ĥ(t) through the bulk gap at μ,

ΔP1 = − 2π Sf
(
t ∈ S

1 �→ ĥ(t) byμ
)
.

The spectral flow counts the number of eigenvalues crossing the Fermi level from
below minus the number of eigenvalues crossing from above during the adiabatic
cycle. As one can immediately see, this is precisely the amount of charge pumped
from the valence to the conduction states. For d > 1, the spectral flow in the above
bulk-boundary correspondence has to be understood in a generalized sense of Breuer-
Fredholm operators (see [22]), but its physical interpretation remains the same, as the
charge per the unit area pumped during the adiabatic cycle. We will use the symbol
Sf also for the spectral flow in this generalized sense.

Let us briefly comment on the bulk-boundary correspondence for the chiral time
polarizationPCT for paths of chiral Hamiltonians. AsPCT itself is given by the pairing
with a 0-cocycle, there is no bulk-boundary correspondence for it. On the other hand,
for its derivatives w.r.t. a magnetic field perpendicular to the surface one has due to
(7.11):

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_5


7.7 Boundary Phenomena for Periodically Driven Systems 191

∂Bi,d PCT = − 1
4π

〈[ξ s
{i}], [p̃Δ(t)t∈[0,2π)]0

〉
= − 1

4π

(〈[ξ s
{i}], [p̃+(δ, t)t∈[0,2π)]0

〉 − 〈[ξ s
{i}], [p̃−(δ, t)t∈[0,2π)]0

〉)
,

where in the second identity it was supposed that ±δ lie in gaps of the surface
spectrum (e.g. opened by the magnetic field).

7.8 The Magneto-Electric Response in d = 3

The magneto-electic effect in an insulating material consists in the change of its
electric polarization under a variation of the external magnetic field or, alternatively,
the change of the magnetization under a variation of an electro-static potential. As
in the previous section, we will be dealing only with the electron contributions to the
effect.Now, let us consider a periodically driven system in dimensiond = 3 forwhich
the orbital polarization is given by (7.9). Then the change in the magneto-electric
response coefficients per cycle is

Δ αi,j,k = ∂Bi,j ΔPk , {i, j, k} = {1, 2, 3} .

By using the connection given in (7.10) and applying the generalized Streda formula
from Theorem 5.6.3, we obtain

Δαi,j,k = (−1)ρ
〈[ξ{0,1,2,3}], [pF]0

〉 = (−1)ρ Ch4(pF) ∈ Z ,

where ρ is the permutations which sends {i, j, 0, k} into {0, 1, 2, 3}. The r.h.s. is the
strong even pairing over the algebra A3+1 and hence integer-valued. A formula of
this type already appeared in [169], but there an average over the space direction k
was taken and used. The above statement shows that all 3 terms are in fact equal
to the same invariant. In dimension d = 4, which will be relevant for the virtual
topological insulator discussed above, a similar statement holds, but the even pairing
is only a weak invariant in this case.

For a crystal with surface in d = 3, we can use the bulk-boundary principle of
(5.27) in the following way

Δα1,2,3 = ∂B1,2ΔP3 = ∂B1,2 C̃h{0}(ũΔ) = − 2π ∂B1,2Sf
(
t ∈ S

1 �→ ĥ(t) byμ
)

.

Hence, the spectral flow is not quantized but its variation with respect to the compo-
nent of the magnetic field perpendicular to the surface is quantized:

− 2π ∂B1,2 Sf
(
t ∈ S

1 �→ ĥ(t) byμ
) = Ch4(pF) .

This relations tells that, if Ch4(pF) 
= 0, there is a spectral flow no matter where we
place the Fermi level in the bulk gap. This implies that essential spectrum moves
across the bulk gap as the time evolves, connecting the upper and lower parts of the
bulk spectrum.

http://dx.doi.org/10.1007/978-3-319-29351-6_5
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