
Chapter 1
Illustration of Key Concepts
in Dimension d = 1

Abstract This introductory chapter presents and illustrates many of the key concepts
developed in this work on a simple example, namely the Su-Schriefer-Heeger model
[205] of a conducting polymer. This model has a chiral symmetry and non-trivial
topology, given by a non-commutative winding number which is remarkably stable
against perturbations like a random potential [139]. Hence this is a relatively simple
example of a topological insulator. Here the focus is on the bulk-boundary corre-
spondence in this model, which connects the winding number to the number of edge
states weighted by their chirality. This connection will be explained in a K-theoretic
manner. These arguments constitute a rather mathematical introduction to the bulk-
edge correspondence and the physical motivations and insights will be given in the
following chapters.

1.1 Periodic Hamiltonian and Its Topological Invariant

As a general rule, the topology in topological insulators is always inherited from
periodic models and this topology can be shown in many instances to be stable under
perturbations which also break the periodicity. It is therefore instructive to start out
with a detailed analysis of the periodic models and to identify their topological
invariants. The one-dimensional periodic Hamiltonian H considered here acts on the
Hilbert space C

2 ⊗ C
N ⊗ �2(Z) and is given by

H = 1
2 (σ1 + iσ2) ⊗ 1N ⊗ S + 1

2 (σ1 − iσ2) ⊗ 1N ⊗ S∗ + m σ2 ⊗ 1N ⊗ 1 , (1.1)

where 1N and 1 are the identity operators on C
N and �2(Z) and the 2 × 2 Pauli

matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and S is the right shift on �2(Z) while m ∈ R is the mass term. The component
C

2 ⊗ C
N of the Hilbert space will be referred to as the fiber. This Hamiltonian goes
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2 1 Illustration of Key Concepts in Dimension d = 1

back to Su et al. [205] and its physical origin will be discussed in Sect. 2.3.2. It has
a chiral symmetry w.r.t. the real unitary J = σ3 ⊗ 1N ⊗ 1 squaring to the identity

J∗ H J = − H . (1.2)

The Fermi level μ is always assumed positioned at 0 for chiral symmetric systems,
see Chap. 2. Note that a model with chiral symmetry can display a spectral gap at
μ = 0 only if the fiber has even dimension, which is obviously the case here.

The discrete Fourier transform F : �2(Z) → L2(S1) defined by

(Fφ)(k) = (2π)−
1
2

∑
x∈Z

φx e−i〈x|k〉 ,

partially diagonalizes the Hamiltonian to FHF∗ = ∫ ⊕
S1 dk Hk with

Hk = 1
2 (σ1 + iσ2) ⊗ 1N e−ik + 1

2 (σ1 − iσ2) ⊗ 1N eik + m σ2 ⊗ 1N

or

Hk =
(

0 e−ik − im
eik + im 0

)
⊗ 1N .

Also the chiral symmetry operator diagonalizesFJF∗ = ∫ ⊕
S1 dk Jk , even with constant

fibers Jk = σ3 ⊗ 1N . The two eigenvalues of Hk are

E±(k) = ±
√

m2 + 1 − 2m sin(k) ,

and both are N-fold degenerate. Their symmetry around 0 reflects the chiral sym-
metry JkHkJk = −Hk which, as for any Hamiltonian with chiral symmetry, implies
σ(Hk) = −σ(Hk). The central gap around 0 is Δ = [−Eg, Eg] with Eg = ∣∣|m| − 1

∣∣.
Hence it is open as long as m /∈ {−1, 1}. Let us also note that for m = 0, one has
E±(k) = ±1 for all k, namely the two bands are flat. In fact, one readily checks that
the eigenfunctions of H are supported on two neighboring sites each.

In the mean-field approximation, which will be assumed throughout, the electron
ground state is encoded in the Fermi projection PF = χ(H ≤ μ) and we recall that
in the chiral symmetric models one fixes μ = 0 to ensure the charge neutrality of
the system. Since we are in dimension one, this projection cannot be used to define
a topological invariant (other then the electron density), and we should rather look
for a unitary operator. Note that JPFJ = 1 − PF and therefore the so-called flat band
Hamiltonian

Q = 1 − 2PF = sgn(H)

satisfies again J∗QJ = −Q. It also satisfies Q2 = 1, hence its spectrum consists of
only two eigenvalues, 1 and −1, which are both infinitely degenerate. The chiral
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1.1 Periodic Hamiltonian and Its Topological Invariant 3

symmetry combined with Q2 = 1 implies the existence of a unitary UF on C
N ⊗

�2(Z) such that

Q =
(

0 U∗
F

UF 0

)
. (1.3)

In analogy with the Fermi projection, this unitary operator UF will be called the
Fermi unitary operator. The existence of the Fermi unitary operator is a generic
characteristic of chiral symmetric gapped Hamiltonians. Note that UF can be con-
structed entirely from the electron ground state and, reciprocally, the electron ground
state can be reconstructed entirely from UF . Also, note that in the physics literature
and in our previous work [171] UF and U∗

F are interchanged. The choice in (1.3) will
prove more convenient here, especially when computing the index map, see below.

For the Hamiltonian (2.24), one readily calculates FQF∗ = ∫ ⊕
S1 dk Qk , with

Qk =
(

0 e−ik+im
|e−ik+im|

eik+im
|eik+im| 0

)
⊗ 1N .

In general, every flat band Hamiltonian of a periodic chiral Hamiltonian with open
central gap is fibered as

Qk =
(

0 U∗
k

Uk 0

)
,

with some unitary matrix Uk ∈ MN (C) acting on C
N which is supposed to be dif-

ferentiable in k. It is now natural to consider the winding number associated to the
Fermi unitary operator, which for reasons explained further below will be called the
first odd Chern number:

Ch1(UF) = i
∫
S1

dk

2π
tr
(
U∗

k ∂kUk
)

. (1.4)

For the Hamiltonian (2.24) one finds

Ch1(UF) =
{− N , m ∈ (−1, 1) ,

0 , m /∈ [−1, 1] .

This integer Ch1(UF) is the bulk invariant associated to the ground state of Hamil-
tonian (1.1). The term invariant reflects the fact that Ch1(UF) does not change for suf-
ficiently small perturbations of the Hamiltonian, even though UF itself does change.
In particular, the following perturbations are of interest:

(i) Next nearest hopping terms.
(ii) A random potential or random hopping elements.

(iii) Terms breaking the chiral symmetry (1.2).

The perturbations (i) and (iii) can be dealt with in the framework of periodic operators
where a Bloch Floquet transform is applicable. If the chiral symmetry is broken, then

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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4 1 Illustration of Key Concepts in Dimension d = 1

the flat-band Hamiltonian is not described as in (1.3) by a unitary anymore, but it may
still have invertible off-diagonal entries of which a winding number is well-defined
as well. For the random perturbations in (ii) one is forced out of the realm of Bloch
theory. One of the main points to be developed further down is to show how this
can be accomplished. Of course, another question addressed is to find the adequate
replacement for Ch1(UF) for higher dimensions.

1.2 Edge States and Bulk-Boundary Correspondence

In this section, an edge or boundary for the one-dimensional periodic Hamiltonian
(1.1) is introduced. This can be achieved by simply restricting (1.1) to the half-space
Hilbert space C

2 ⊗ C
N ⊗ �2(N), e.g. by imposing the Dirichlet boundary condition

Ĥ = 1
2 (σ1 + iσ2) ⊗ 1N ⊗ Ŝ + 1

2 (σ1 − iσ2) ⊗ 1N ⊗ Ŝ∗ + m σ2 ⊗ 1N ⊗ 1 .

All half-space operators will carry a hat from now on. For example, Ŝ above is
the unilateral right shift on �2(N) and there is the half-space chirality operator Ĵ =
σ3 ⊗ 1N ⊗ 1. The half-space Hamiltonian still has the chiral symmetry Ĵ Ĥ Ĵ =
−Ĥ. Again the chiral symmetry implies that the spectrum satisfies σ(Ĥ) = −σ(Ĥ).
Furthermore, the direct sum of two copies of Ĥ is a finite dimensional perturbation of
H. Hence the essential spectra coincide σess(H) = σess(Ĥ), but Ĥ may have additional
point spectrum, corresponding to the edge states which are also called bound or
boundary states.

Example 1.2.1 Let us consider the Hamiltonian Ĥ for m = 0. It takes the form

Ĥ =
(

0 1N ⊗ Ŝ
1N ⊗ Ŝ∗ 0

)
.

The spectrum is now σ(Ĥ) = {−1, 0, 1} with infinitely degenerate eigenvalues ±1
having compactly supported eigenstates on two neighboring sites, and a kernel of
multiplicity N containing vectors supported in the upper entry over the boundary site
0. They result from the fact that |0〉 ∈ �2(N) lies in the kernel of the unilateral left shift
Ŝ∗. For N = 1, this zero mode is simple and perturbations of the Hamiltonian Ĥ within
the class of half-sided chiral Hamiltonians cannot remove it since the symmetry of
the spectrum has to be conserved and a simple eigenvalue cannot split into two by
perturbation theory. The same stability actually holds for N > 1 because the signature
of Ĵ on the kernel is N and also this signature is conserved during a homotopy of
chiral Hamiltonians. Note also that the signature is equal to N = −Ch1(UF). Due to
the stability of both quantities, the equality Ch1(UF) = −Sig(̂J|Ker(Ĥ)) holds also in
a neighborhood of the Hamiltonian Ĥ with m = 0. 
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Now let us go on with a more structural analysis of the edge states which is
not as tightly linked to the special model under consideration. Suppose that ψ ∈
C

2 ⊗ C
N ⊗ �2(N) is such a normalized bound state with energy E, namely Ĥψ =

Eψ . Then Ĥ Ĵ ψ = −E Ĵ ψ , which implies that the span E of all eigenvectors with
eigenvalues in [−δ, δ] ⊂ Δ is invariant under J . Therefore Ĵ can be diagonalized onE
leading to a splittingE = E+ ⊗ E− such that Ĵ is ±1 onE±. Accordingly, the spectral
projection P̃(δ) = χ(|Ĥ| ≤ δ) can be decomposed into an orthogonal sum P̃(δ) =
P̃+(δ) + P̃−(δ) and Ĵ P̃(δ) = P̃+(δ) − P̃−(δ). The difference of the dimensions of
E± spaces is the boundary invariant of the system

Tr(̂J P̃(δ)) = N+ − N− , N± = dim(E±) .

This invariant is also equal to the signature of Ĵ|E and such signatures are again
well-known to be homotopy invariants, as already pointed out in the example above.
The invariant is independent of the choice of δ > 0 as long as δ lies in the gap of
H, hence its value must be determined entirely by the spectral subspace of the zero
eigenvalue, known also as the space of the zero modes. Zero modes in E+ and E− are
said to have positive and negative chirality, respectively. The following result now
connects the bulk invariant Ch1(UF) to the boundary invariant Tr(̂J P̃(δ)).

Theorem 1.2.2 Consider the Hamiltonian H on C
2 ⊗ C

N ⊗ �2(Z) given by (1.1)
and let Ĥ be its half-space restriction. If UF is the Fermi unitary operator defined via
(1.3) and if its winding number is defined by (1.4), then the bulk-edge correspondence
in the following form holds

Ch1(UF) = − Tr(̂J P̃(δ)) . (1.5)

This result can be proved by various means (see the above example and [64,
65], but likely there are other references). However, in the following, a detailed K-
theoretic proof will be provided. Such a structural argument stresses the robust nature
of the above equality. In particular, stability under the perturbations listed at the end
of Sect. 1.1 will be covered. Furthermore, it will be possible to extend the structural
argument to higher dimensional systems.

1.3 Why Use K-Theory?

There have been numerous works that use K-theory for topological condensed matter
systems. Pioneering were the papers by Bellissard on the integer quantum Hall effect
[17, 18], which were reviewed and extended to the regime of dynamical Anderson
localization in [20]. K-theory can be used to obtain gap labelling [17]. Starting with
the Kitaev’s paper [115], K-theory and KR-theory (which is K-theory in presence of
symmetries) were more recently used as a tool to classify topological insulators [54,
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68, 111, 143, 203, 207] or define topological invariants in the absence of periodicity
[85, 134]. Here the main objective is a different one:

• Use the connecting maps of K-theory to relate different invariants.

This was first achieved in [107, 109, 197] for integer quantum Hall systems, where
the equality of bulk and edge Hall conductivity was proved using the exponential
map of K-theory. There are other connecting maps in K-theory though, in particular
the index map, the suspension map and the Bott periodicity map. In this work it will
be shown how they can be put to work as well and produce interesting identities.
In this introductory section on the one-dimensional Su-Schrieffer-Heeger model,
the K-theoretic index map of the so-called Toeplitz extension will be used to prove
Theorem 1.2.2. Along the lines, quite a few things about K-theory will said and used
without proof. These are all standard facts that are well-known in the mathematics
community and can be found in the introductory books on K-theory [187, 222] or
the more advanced textbook [28], but for the convenience of the reader they will be
briefly reviewed in Sect. 4.1 of Chap. 4.

The Toeplitz extension is at the very heart of K-theory. The reader familiar with
all this can jump directly to Proposition 1.3.1. The Toeplitz extension is the following
short exact sequence of C∗-algebras:

0 � K
i� T

(
C(S1)

) ∼= C∗(̂S )
ev� C(S1) ∼= C∗(S) � 0 (1.6)

Here K denotes the algebra of compact operators on �2(N), C(S1) is the algebra of
continuous functions over the unit circle which, by the discrete Fourier transform, is
isomorphic with the algebra generated by the shift operator S on �2(Z), and T(C(S1))

is the algebra of Toeplitz operators. The latter can be presented as the C∗-algebra of
operators on �2(N) which can be approximated in operator norm by polynomials in
Ŝ and Ŝ∗, that is, by finite sums

∑
n,m≥0

an,m (̂S)n(̂S∗)m .

Since
Ŝ∗ Ŝ = 1 and Ŝ Ŝ∗ = 1 − P̃ , (1.7)

where P̃ = |0〉〈0| is the one-dimensional projection on the state |0〉 ∈ �2(N) at the
boundary, the operators from T(C(S1)) can be uniquely expressed as:

∑
n≥0

an(̂S)n +
∑
n<0

an(̂S
∗)−n +

∑
n,m≥0

cn,m (̂S)nP̃(̂S∗)m . (1.8)

One can now see explicitly the connection between the Toeplitz operators and the
half-line observables. Indeed, the first two terms in (1.8) represent the restriction of
the bulk operator

∑
n∈Z anSn to the half-line via the Dirichlet boundary condition,

http://dx.doi.org/10.1007/978-3-319-29351-6_4


1.3 Why Use K-Theory? 7

while the third term redefines the boundary condition. The latter is just a compact
operator on �2(N), hence K is a sub-algebra of T(C(S1)) and i in (1.6) denotes the
associated inclusion map. The second morphism in (1.6) is defined by ev(̂S) = e−ik

and ev(̂S∗) = eik , or equivalently ev(̂S) = S and ev(̂S∗) = S∗. Since P̃ = Ŝ∗Ŝ − ŜŜ∗,
one has ev(P̃) = 0 which means that the compact operators are sent to zero by the
second morphism. As a consequence, the sequence (1.6) is exact, namely the image
of each of the three maps is equal to the kernel of the following map.

All the operators appearing above lie in matrix algebras over one of the algebras in
the Toeplitz extension (1.6). Indeed, the Hamiltonian H as well as PF and Q belong to
the algebra M2N (C(S1)) ∼= C

2N×2N ⊗ C(S1) of 2N × 2N matrices with coefficients
in C(S1), and the half-line Hamiltonian Ĥ is an element of M2N (T(C(S1))). Actually,
Ĥ is a so-called lift of H, namely, one has ev(Ĥ) = H. The Fourier transform of
the Fermi unitary operator UF lies in MN (C(S1)). Finally, the finite dimensional
projections P̃(δ) and P̃±(δ) are projections in M2N (K).

Warning: From here on, K-theoretic concepts will be used and only explained on
an intuitive level. Details are found in Chap. 4.

The proof of Theorem 1.2.2 will show how the equality (1.5) results from a
K-theoretic index theorem associated to the Toeplitz extension. The definitions of
K-groups and of the index map are recalled in Sect. 4.1. Roughly stated, for each
C∗-algebra A there exist two groups K0(A) and K1(A) given by homotopy classes
of projections and unitaries, respectively, in the matrix algebras over A. The group
operation in K0(A) is given by the direct sum of projections, while in K1(A) by the
multiplication of unitaries. The K-groups of all algebras in the Toeplitz extension
(1.6) are well-known: K0(K) ∼= Z generated by the rank one projection P̃ = |0〉〈0|,
K0(T(C(S1))) ∼= Z and K0(C(S1)) ∼= Z both generated by the identity, K1(K) = 0
and K1(T(C(S1))) = 0, and finally K1(C(S1)) ∼= Z generated by e−ik (or S) which
is a function with unit winding number. The elements K1(C(S1)) can be uniquely
labeled by their winding number, namely the first odd Chern number. It is also worth
pointing out that the class [̃P]0 in K0(T(C(S1))) is trivial because the isometry Ŝ
satisfies Ŝ∗ Ŝ = 1 and Ŝ Ŝ∗ = 1 − P̃. Hence 1 and 1 − P̃ are Murray-von Neumann
equivalent and are therefore in the same K0-class, to that [̃P]0 = [1]0 − [1 − P̃]0 = 0.
On the other hand, in K0(K) the projection P̃ defines a non-trivial class which is
actually the generator of K0(K).

The central result of K-theory used for the bulk-boundary correspondence is that,
for every exact sequence of C∗-algebras, there is a 6-term exact sequence of the 6
associated K-groups. For the Toeplitz extension, this sequence is

K0(K) = Z
i∗� K0(T(C(S1))) = Z

ev∗� K0(C(S1)) = Z

K1(C(S1)) = Z

Ind
�

�ev∗ K1(T(C(S1))) = 0 �i∗ K1(K) = 0

Exp
�

(1.9)

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Here the maps i∗ and ev∗ are push-forward maps naturally induced by the maps in
(1.6). Interesting are the so-called boundary maps Exp and Ind. The exponential map
Exp has to be trivial for the Toeplitz extension as K1(K) = 0. Focus will therefore
be on the index map Ind, which has to be an isomorphism. First of all, note that it
maps classes of unitaries from the bulk algebra C(S1) to projections in the boundary
algebra K. Hence it establishes a link between the topology of the bulk and the
boundary, which is precisely what we are looking for. Let us first recall the general
definition of the index map (as already pointed out, more details and a more stringent
formulation using utilizations are given in Sect. 4.1) and then evaluate it explicitly.
Given a class [U]1 ∈ K1(C(S1)) associated to a unitary U ∈ MN (C(S1)), one first
constructs a unitary lift

Ŵ = Lift

(
U 0
0 U∗

)
∈ M2N (T(C(S1))) ,

which is by definition a unitary satisfying ev(Ŵ ) = diag(U, U∗), and then defines

Ind([U]1) =
[

Ŵ

(
1N 0
0 0

)
Ŵ ∗

]
0

−
[(

1N 0
0 0

)]
0

. (1.10)

In general, it can be shown that the lift exists and that the r.h.s. of (1.10) really
specifies an element in K0(K) and not in K0(T(C(S1))), as one may think at first
sight.

Let us first calculate Ind([Sn]1) for the bilateral left shift Sn by n sites. These
unitaries generate K1(C(S1)) = {[Sn]1 | n ∈ Z}. A unitary lift for n ≥ 0 is

Lift

(
Sn 0
0 (Sn)∗

)
=

(
Ŝn P̃n

0 (Ŝn)∗

)
,

where as above Ŝ is the unilateral right shift and P̃n = ∑n
k=1 |k〉〈k| is the projection

on the n states localized at the boundary of �2(N). Hence Ŝn(̂S∗)n = 1 − P̃n and
P̃nŜn = 0. Evaluating (1.10) now shows

Ind([Sn]1) =
[(

Ŝn (̂S∗)n 0
0 0

)]
0

−
[ (

1 0
0 0

)]
0

= − [̃Pn]0 , (1.11)

which is the explicit form of the isomorphism between K1(C(S1)) and K0(K). This
concludes our description of the K-theory associated to the Toeplitz extension (1.6).

Now let us come to the application to the model (2.24). First of all, the Fermi
unitary UF in (1.3) defines a class in K1(C(S1)), and the finite dimensional projections
P̃(δ) and P̃±(δ) specify classes in K0(K). Hence they lie in the l.h.s. of the six term
exact sequence (1.9) for the Toeplitz extension (1.6) and they are connected via the
index map. In fact, the following holds.

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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Proposition 1.3.1 Let UF ∈ MN (C(S1)) be given by (1.3). Further let us choose an
odd and non-decreasing smooth function fInd : R → [−1, 1] such that fInd(E) = −1
for E ≤ −Eg and fInd(E) = 1 for E ≥ Eg. Then

Ind([UF]1) =
[

e−i π
2 fInd(Ĥ)

(
1N 0
0 0

)
ei π

2 fInd(Ĥ)

]
0

−
[(

1N 0
0 0

)]
0

. (1.12)

Proof For the evaluation of the index map (1.10) one needs the lift

Ŵ = Lift

(
UF 0
0 U∗

F

)
= Lift

( (
0 1N

1N 0

) (
0 U∗

F
UF 0

) )
=

(
0 1N

1N 0

)
Lift(Q) .

Now recall that Q = sgn(H) is a self-adjoint unitary that will now be expressed as a
smooth function of H with values on the unit circle. Actually, with the function fInd

defined in the proposition, one has Q = ie−i π
2 fInd(H). Hence a lift is given by

Lift(Q) = i e−i π
2 fInd(Ĥ) .

As it is obtained by smooth functional calculus from Ĥ, it follows that Lift(Q) ∈
M2N (T(C(S1))) as required. We arrived at

Ŵ = i

(
0 1N

1N 0

)
e−i π

2 fInd(Ĥ) .

Plugging into the definition (1.10) of the index map

Ind([UF]1) =
[(

0 1N

1N 0

)
e−i π

2 fInd(Ĥ)

(
1N 0
0 0

)
ei π

2 fInd(Ĥ)

(
0 1N

1N 0

)]
0

−
[(

1N 0
0 0

)]
0

,

and the projection appearing in the first term is homotopic to the projection appearing
in the statement. �

The previous argument did not require the presence of any spectral gaps in the
spectrum of Ĥ and will therefore also apply to higher dimensional models, see
Proposition 4.3.2. In presence of spectral gaps, however, one can further refine the
argument.

Proposition 1.3.2 Let UF ∈ MN (C(S1)) be given by (1.3). Then for 0 < δ < Eg

Ind([UF]0) = [̃P+(δ)]0 − [̃P−(δ)]0 . (1.13)

Proof Let fInd be as in Proposition 1.3.1 and, moreover, let it be such that fInd(E) ∈
{−1, 0, 1} for any E ∈ σ(Ĥ). For sake of concreteness, suppose fInd(E) = 0 only for
E = 0 and no other E ∈ σ(Ĥ). Recall that, in dimension d = 1, the spectrum of Ĥ

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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is discrete inside [−Eg, Eg]. Now,

e−i π
2 fInd(Ĥ) diag(1N , 0N ) ei π

2 fInd(Ĥ) = e−i π
2 fInd(Ĥ) 1

2 (̂J + 12N ) ei π
2 fInd(Ĥ) .

The chiral symmetry of Ĥ combined with fInd(−E) = −fInd(E), for E ∈ σ(Ĥ),
implies

e−i π
2 fInd(Ĥ) Ĵ = Ĵ ei π

2 fInd(Ĥ) ,

so that

e−i π
2 fInd(Ĥ) 1

2 (̂J + 12N ) ei π
2 fInd(Ĥ) = 1

2 Ĵ(eiπ fInd(Ĥ) + 12N ) + diag(0N , 1N ).

With the choice made for fInd one has eiπ fInd(Ĥ) + 12N = 2P̃(δ), so that

1
2 Ĵ (eiπ fInd(Ĥ) + 12N ) = Ĵ P̃(δ) = P̃+(δ) − P̃−(δ).

Then, by noticing that P̃+(δ) and diag(0N , 1N ) − P̃−(δ) are orthogonal projections
and that diag(1N , 0N ) and diag(0N , 1N ) are homotopic,

Ind([UF]1] = [̃P+(δ) + diag(0N , 1N ) − P̃−(δ)]0 − [diag(1N , 0N )]0

= [̃P+(δ)] + [diag(0N , 1N ) − P̃−(δ)]0 − [diag(0N , 1N )]0 .

The statement now follows from the rule 3. of the standard characterization of the
K0 group, listed in Sect. 4.1.1. �

1.4 Why Use Non-commutative Geometry?

Theorem 1.2.2 results by extracting a numerical identity from the K-theoretic identity
(1.13). This is done via a pairing of the K-groups with adequate cohomology theory,
which is the cyclic cohomology developed by Connes since the early 1980s [46,
47]. This was at the heart of the early developments of non-commutative geometry.
Actually, it could also be referred to as non-commutative differential topology as
topological invariants are calculated by tools of non-commutative differential and
integral calculus. In the simple framework of periodic models, the relevant pairings
of K-theory with cyclic cohomology are established by the two maps

C̃h0 : K0(K) → Z , C̃h0([̃P]0 − [̃P′]0) = Tr(P̃) − Tr(P̃′) , (1.14)

Ch1 : K1(C(S1)) → Z , Ch1([U]1) = i
∫
S1

dk

2π
tr
(
U(k)∗∂kU(k)

)
,

(1.15)

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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where in the second line it is supposed that k �→ U(k) is differentiable. Any contin-
uous path k �→ U(k) can be approximated by a differentiable one, which means that
any K-theory class in K1(C(S1)) has differentiable representatives simply because
the smooth functions C∞(S1) are dense in C(S1). Such arguments are always needed
in differential topology, and also in non-commutative differential topology, where it
is necessary to work with dense subalgebras (of smooth elements) of C∗-algebras.
This issue will be discussed in detail in Sect. 3.3.3. The term pairing expresses the
fact that C̃h0([̃P]0) and Ch1([U]1) do not depend on the choice of the representative
of the two classes. The following result now connects the two pairings.

Proposition 1.4.1 The maps C̃h0 and Ch1 are well-defined group homomorphisms
into the additive group Z, and

Ch1([U]1) = − C̃h0(Ind([U]1)) . (1.16)

Proof Neither of the pairings depends on the representatives, namely, norm con-
tinuous paths of projections and unitaries, respectively, have constant pairings.
Furthermore, C̃h0([̃P]0 + [̃P′]0) = C̃h0([̃P]0) + C̃h0([̃P′]0) holds by definition and
elementary properties of the winding number imply Ch1([UU ′]1) = Ch1([U]1) +
Ch1([U ′]1). Finally the equality (1.16) follows once it is verified for every class. But

Ch1([Sn]1) = n = Tr(P̃n) = C̃h0([̃Pn]) = − C̃h0(Ind([Sn]1)) ,

where in the last equality (1.11) was used. Actually, it would have been sufficient to
check the above equality for the (sole) generator n = 1. �

Proof of Theorem 1.2.2. This follows by combining Propositions 1.3.1 and
1.4.1. �

1.5 Disordered Hamiltonian

The next step is to add a random perturbation to the Hamiltonian (2.24), just as
in [139]. Let ω′

x, ω
′′
x ∈ [− 1

2 , 1
2 ] be independent and uniformly distributed random

variables and define a disorder configuration in the Tychonov space Ω = ([− 1
2 , 1

2 ] ×
[− 1

2 , 1
2 ])Z by ω = (ω′

x, ω
′′
x )x∈Z. The probability measure on Ω is just the product

measure. The associated Hamiltonian Hω for two coupling constants λ′, λ′′ ≥ 0 is
still acting on �2(Z, C

2 ⊗ C
N ) and is given by

Hω =
∑
x∈Z

1
2 (1 + λ′ω′

x)
(
(σ1 + iσ2) |x〉〈x + 1| + (σ1 − iσ2) |x + 1〉〈x|)

+ m(1 + λ′′ω′′
x ) σ2 |x〉〈x| . (1.17)

http://dx.doi.org/10.1007/978-3-319-29351-6_3
http://dx.doi.org/10.1007/978-3-319-29351-6_2
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For ω = 0 or λ′ = λ′′ = 0, the Hamiltionian Hω is exactly the same as (2.24). From
now on, the letter H will be used for the full family H = {Hω}ω∈Ω of random Hamil-
tonians. The spectra σ(Hω) of these operators are known to be almost surely and
given by σ(Hω) = σ(Hω=0) + [−λ′, λ′] + [−λ′′, λ′′].

As we have already seen, the periodic model exhibits a non-trivial topological
phase and, according to [3, 4, 139, 171, 202], this phase is stable against disorder. This
means that the trivial and topological phases continue, in the presence of disorder, to
be separated by a sharp phase boundary where a localization-delocalization transition
must occur. This phase boundary is characterized by a divergence of the Anderson
localization length and it can be mapped using transport experiments. The existence
of such sharp phase boundary can be established by an analytical calculation, which
we reproduce below from [139]. To simplify notations, let us use tx = (1 + λ′ω′

x)

and mx = m(1 + λ′′ω′′
x ), in which case the Schrödinger equation at the Fermi level

E = 0 for (1.17) reads

(
0 tx
0 0

)(
ψx+1,+1

ψx+1,−1

)
+

(
0 0
tx 0

)(
ψx−1,+1

ψx−1,−1

)
+ i

(
0 −mx

mx 0

) (
ψx,+1

ψx,−1

)
= 0 .

On the components, txψx−α,α + iαmxψx,α = 0, α = ±1, hence the solution is

ψξα+x,α = ix
x∏

j=1

(
tj
mj

)α

ψξα,α ,

where ξα = 0, 1 for α = ±1, respectively. The inverse of Anderson localization
length is given by

Λ−1 = max
α=±1

[ − lim
x→∞

1

x
log |ψξα+x,α|] =

∣∣∣∣∣∣ lim
x→∞

1

x

x∑
j=1

(ln |tj| − ln |mj|)
∣∣∣∣∣∣ .

Using Birkhoff’s ergodic theorem [27] on the last expression,

Λ−1 =
∣∣∣∣
∫ 1/2

−1/2
dω′

∫ 1/2

−1/2
dω′′ (ln |1 + λ′ω′| − ln |m + λ′′ω′′|)

∣∣∣∣ .

The integrations can be performed explicitly and, in the regime of large λ’s where
the arguments of the logarithms (inside the absolute values) take negative to positive
values as ω’s are varied, the result is

Λ−1 =
∣∣∣∣∣ln

[
|2 + λ′| 1

λ′ + 1
2

|2 − λ′| 1
λ′ − 1

2

|2m − λ′′| m
λ′′ − 1

2

|2m + λ′′| m
λ′′ + 1

2

]∣∣∣∣∣ . (1.18)

One can now check that, indeed, the Anderson localization length diverges for certain
values of λ′ and λ′′. A plot of the manifold where this occurs can be found in [139]

http://dx.doi.org/10.1007/978-3-319-29351-6_2
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and there one can see that the topological phase is indeed fully enclosed by this
manifold. In other words, the only way to cross from the topological to the trivial
phase is to go through a localization-delocalization quantum transition. As we shall
see, it is exactly this divergence of the localization length which triggers an abrupt
change in the quantized values of the bulk topological invariant.

While the bulk analysis, just by itself, can be carried in the regime of strong
disorder, the bulk-boundary correspondence will be established under the following
assumption:

Bulk Gap Hypothesis Eg = inf σ(Hω) ∩ R≥0 is positive, namely 0 /∈ σ(Hω).

Each Hω still has the chiral symmetry (1.2), that is JHωJ = − Hω, and therefore
also the flat band Hamiltonian Qω = 1 − 2Pω = sgn(Hω) satisfies JQωJ = −Qω and
Q2

ω = 1. This implies as in (1.3)

Qω =
(

0 U∗
ω

Uω 0

)
, (1.19)

with a unitary operator Uω on �2(Z, C
N ). The aim in the following is to show that

Theorem 1.2.2 remains valid provided that the disorder does not close the gap and
the invariant Ch1(U) is adequately defined.

Neither of the operators Hω, Uω and Qω is periodic anymore, but this lack is
replaced by the so-called covariance relation, explained next. First of all, on Ω one
has an Z-action τ : Z × Ω → Ω given by

ω = (ω′
x, ω

′′
x )x∈Z �→ τω = (ω′

x−1, ω
′′
x−1)x∈Z ,

and with this action one has
S Hω S∗ = Hτω . (1.20)

Similar covariance relation applies to any function of the Hamiltonian (such as Qω)
or to operators extracted from such functions (such as Uω).

1.6 Why Use Operator Algebras?

A fruitful point of view [17] is to consider the whole C∗-algebra A1 of one-
dimensional covariant operator families on �2(Z), which is constructed as follows.
One starts with the set A1,0 of families a = {Aω}ω∈Ω of operators on �2(Z) sat-
isfying the covariance relation SAωS∗ = Aτω as well as the finite range condition
〈x|Aω|y〉 = 0 for all |x − y| > C for some C < ∞. Then A1,0 is a ∗-algebra because
the product and adjoint of finite range covariant operator families is again such a
family. A C∗-norm on A1,0 is defined by

‖a‖ = sup
ω∈Ω

‖Aω‖ ,
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where on the right we have the standard operator norm. Then A1 is the C∗-algebra
given by the closure of A1,0 under this norm. Elements in A1 are covariant families
of bounded operators having decaying off-diagonal matrix elements and will still be
denoted by a = {Aω}ω∈Ω . Note the lower case notation, which will be use throughout
for elements of the algebras, while the upper case letters will be reserved for operators
on the physical Hilbert space. While A1 was defined as algebra of covariant operator
families with certain decay conditions, it is isomorphic to the C∗-algebraic (reduced)
crossed product algebra C(Ω) �α Z of C(Ω) w.r.t. the Z-action α(f )(ω) = f (τ−1ω)

on C(Ω). The isomorphism is

{Aω}ω∈Ω �→ a ∈ C(Ω × Z) , a(ω, x) = 〈0|Aω|x〉 ,

which associates a continuous function over Ω × Z to every covariant operator
family. This identification of A1 with the crossed product algebra will tacitly be
used below, and further stressed and explored in the higher dimensional cases. The
Hamiltonian h = {Hω}ω∈Ω , the flat band Hamiltonian q = {Qω}ω∈Ω and the Fermi
unitary uF = {Uω}ω∈Ω are all elements of matrix algebras overA1. One crucial fact is
that the 1-periodic (or translation invariant) operators are also covariant, and actually
identified with those covariant operator families which do not depend on ω. Hence
the algebra of periodic operators C(S1) (in its Fourier transformed representation)
is a (closed) subalgebra of A1. This implies that the generators of the K-groups of
C(S1) also specify elements of the K-groups of A1. In fact, even more holds, namely
the K-groups coincide.

Proposition 1.6.1 The K-groups of A1 are

K0(A1) = Z , K1(A1) = Z ,

and the generators are the same as those of C(S1), namely 1 and S respectively.

Proof We will check that C(S1) is a deformation retract of A1 = C(Ω) � Z and this
implies that Kj(A1) = Kj(C(S1)) [222, Sect. 6.4]. The key for this is the contractibil-
ity of Ω to one point which we choose to be 0 = (0, 0)x∈Z. Indeed, γλ : A1 → A1

defined by

(γλa)(ω, x) = a(λω, x) , λ ∈ [0, 1] , (1.21)

is a continuous family (in λ) of continuous morphisms which connects γ1 = idA1 to a
right inverse γ0 : A1 → C(S1) of the inclusion map i : C(S1) → A1 by a continuous
path. �

The algebra A1 (and matrix algebras over it) contains covariant operator families
on �2(Z). The edge algebra is now E1 = C(Ω) ⊗ K and the half-space algebra is
Â1 = A1 ⊕ E1 as a direct sum of vector spaces, but not algebras. Operators in Â1

are concretely given by the sum of a half-space restriction of a covariant operator in
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A1 and a compact operator in E1, namely

â = (a, k̃) = {�Aω�∗ + Kω}ω∈Ω ,

if a = {Aω}ω∈Ω ∈ A1 and k̃ = {Kω}ω∈Ω ∈ E1, and where � : �2(Z) → �2(N)

denotes the partial isometry with ��∗ = 1�2(N) and projection �∗� in �2(Z) onto
�2(N) ⊂ �2(Z). The product and adjoint in Â1 and E1 are naturally inherited from
the operator product on �2(N). Exactly as in (1.6), one has an exact sequence of
C∗-algebras

0 � E1
i � Â1

ev� A1
� 0 (1.22)

The detailed construction of these algebras will be given in Chap. 3. Again, various
operators constructed from the disordered Hamiltonian h = {Hω}ω∈Ω ∈ A1 are in this
sequence. The half-space restriction ĥ = {Ĥω}ω∈Ω is an element of a matrix algebra
over the Toeplitz extension Â1 as is the lift of q = {Qω}ω∈Ω ∈ A1. Furthermore, the
projections p̃±(δ) = {P̃±,ω(δ)}ω∈Ω on bound states, constructed for every ω just as in
Sect. 1.1 by splitting P̃ω(δ) = χ(Hω ∈ [−δ, δ]) with δ < Eg into ±1 eigenspaces of
Ĵ , lie in E1 = C(Ω) ⊗ K, and they define a class in the K0-group of this C∗-algebra.
It is worth pointing out that both projections P̃±,ω(δ) are indeed continuous and,
in particular, do not change dimension. On the other hand, the covariant family of
Fermi unitaries uF = {Uω}ω∈Ω defined in (1.19) specify a class in K1(A1). Now the
index map of the K-theoretic exact sequence associated with (1.22) connects these
two classes, namely by exactly the same proof as given for (1.13), one shows the
following.

Proposition 1.6.2 Let uF = {Uω}ω∈Ω ∈ MN (A1) be given by (1.19) and p̃±(δ) =
{P̃±,ω(δ)}ω∈Ω the projections on the zero energy bound states of positive and negative
chirality, respectively. Then, with the K-theoretic index map associated to the exact
sequence (1.22),

Ind([uF]1) = [p̃+(δ)]0 − [p̃−(δ)]0 . (1.23)

1.7 Why Use Non-commutative Analysis Tools?

The equivalent of Theorem 1.2.2, namely Theorem 1.8.2 below, will again follow by
extracting numbers from the K-theoretic identity (1.23). For this purpose, one has
to extend the definitions (1.14) and (1.15) of the cyclic cocycles C̃h0 and Ch1 to the
operator algebra A1 describing disordered systems. The generalization of Ch0 is

C̃h0([p̃]0 − [p̃′]0) =
∫

P(dω)
(
Tr(P̃ω) − Tr(P̃′

ω)
)

. (1.24)

Actually, by continuity, the map ω �→ Tr(P̃ω) ∈ Z is constant and therefore the aver-
age P over the disorder is not necessary. As to Ch1, the definition (1.15) involves

http://dx.doi.org/10.1007/978-3-319-29351-6_3
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differentiation in Fourier space and this now has to be replaced by non-commutative
differentiation. For any finite range operator a = {Aω}ω∈Ω ∈ A1,0, one defines its
derivative ∂a ∈ A1,0 by

∂a(ω, x) = − i x a(ω, x) .

This definition can be extended to so-called differentiable operators a ∈ A1 as long
as the r.h.s. defines an element in A1. The set of differentiable operators is denoted
by C1(A1). By iteration one defines Cn(A1), and then C∞(A1) = ⋂

n≥1 Cn(A1). The
latter is a Fréchet algebra, clearly dense in A1, that is invariant under holomorphic
functional calculus. It follows [75] that the algebraic K-groups Kj(C∞(A1)) are
equal to the topological K-groups Kj(A1) for j = 0, 1. Operators in this sub-algebra
are sufficiently regular for differential topology. Apart from differentiation, a non-
commutative integration tool is needed. A state T on A1 is defined by

T(a) =
∫

P(dω) 〈0|Aω|0〉 =
∫

P(dω) a(ω, 0) , a = {Aω}ω∈Ω .

In fact, it is a trace that is invariant under ∂ , as shows the following lemma.

Lemma 1.7.1 The following holds.

(i) For a, b ∈ A1, one has T(ab) = T(ba).
(ii) For a ∈ C1(A1), one has T(∂a) = 0.

(iii) For a, b ∈ C1(A1), one has T(∂a b) = −T(a ∂b).
(iv) For a translation invariant a ∈ A1 with Fourier transform k ∈ S

1 �→ a(k), one
has T(a) = ∫

S1
dk
2π

a(k).
(v) For a translation invariant a ∈ C1(A1), one has (∂a)(k) = ∂ka(k) where k ∈

S
1 �→ a(k) and k ∈ S

1 �→ (∂a)(k) are the Fourier transforms.

The straightforward proof is left to the reader. Finally, one can introduce

Ch1(u) = i T(u−1 ∂u) , u ∈ C1(A) . (1.25)

Let us point out that, for translation invariant u, this reduces precisely to (1.4).

Proposition 1.7.2 Ch1 is a homotopy invariant, namely for any continuous path
λ ∈ [0, 1] �→ u(λ) ∈ C1(A) the number Ch1(u(λ)) is constant.

Proof First of all, u �→ Ch1(u) is continuous and therefore the path λ ∈ [0, 1] �→
u(λ) can be approximated by a differentiable one. For such a differentiable path,

−i ∂λ Ch1(u(λ)) = T(∂λu−1 ∂u) + T(u−1 ∂∂λu)

= −T(u−1∂λu u−1 ∂u) − T(∂u−1 ∂λu) ,

where in the second equality Lemma 1.7.1(iii) was used. As ∂u−1 = −u−1∂u u−1

one concludes that ∂λ Ch1(u(λ)) = 0 and this completes the proof. �
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The physical model is defined over C
2N ⊗ �2(Z) rather than just �2(Z) and Uω

is actually defined over C
N ⊗ �2(Z). As one can see, most of the time we will be

dealing with the matrix algebras over A1. The non-commutative calculus can be
trivially extended to cover these cases, by replacing T by T ⊗ tr, where tr is the
trace over the fiber. We now can finally define the bulk invariant for the disordered
chiral system, as Ch1(uF). Based on the above result, we can state at once that, if
h(λ) is a smooth deformation of h such that its central spectral gap remains open,
then uF(λ) varies smoothly in MN (C) ⊗ C1(A1) and, consequently, Ch1(uF) remains
unchanged.

1.8 Why Prove an Index Theorem?

Proposition 1.7.2 implies that Ch1 only depends on the K1-class of its argument so that
one may write Ch1(u) = Ch1([u]1). The homotopy invariance can, in particular, be
applied to the homotopy uλ = γλ(u) with γλ defined in (1.21). This implies Ch1(u) =
Ch1(u0) for u ∈ C1(A1). Now u0 ∈ C1(A1) is translation invariant and therefore
Ch1(u0) can be calculated by (1.4) as a winding number. In particular, this shows
that Ch1(u) ∈ Z. An alternative way to verify the integrality of Ch1(u) is to prove
an index theorem. This has the advantage that one can also prove that the pairing
is well-defined and integral in the regime of a mobility bulk gap, namely, when the
Fermi level lies in a region of the essential spectrum which is dynamically Anderson
localized. This type of extension is crucial for the understanding of the quantum Hall
effect [20] and will be discussed further in Chap. 6, which also applies to the present
one-dimensional example.

Theorem 1.8.1 Let � : �2(Z) → �2(N) be the surjective partial isometry as above.
For a unitary u = {Uω}ω∈Ω ∈ C1(A1), the operators �Uω�∗ are Fredholm opera-
tors with an almost sure index given by

Ch1(u) = − Ind(�Uω�∗) .

This is an extension of the Noether-Gohberg-Krein index theorem to covariant
operators and its proof can be found in [107] as well as [171]. It assures us that the
bulk invariant Ch1(uF) remains stable and quantized in the regime where the spectral
gap of h is replaced by a mobility gap. After all these preparations, the disordered
version of Theorem 1.2.2 can finally be stated and proved.

Theorem 1.8.2 Consider the element h = {Hω}ω∈Ω ∈ A1 associated to the Hamil-
tonian (1.17) and let ĥ = {Ĥω}ω∈Ω ∈ Â1 be a restriction to the half-space given by an
arbitrary chiral symmetric boundary condition. Assume h to have a central spectral
gap and let uF be the Fermi unitary element as well as Nω,± = Tr(P̂±,ω(δ)). Then,
for all ω,

Ch1(uF) = − Nω,+ + Nω,− . (1.26)

http://dx.doi.org/10.1007/978-3-319-29351-6_6
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Proof Set h(λ) = γλ(h) with the homotopy γλ given in (1.21), which induces a
smooth deformation uF(λ). By homotopy invariance, Ch1(uF(λ)) is constant, in
particular, Ch1(uF) = Ch1(uF(0)). Furthermore, the projections supplied by the
index map define a homotopy of projections and, since the pairing C̃h0([p]0) =∫

P(dω) Tr(Pω) = Tr(Pω) is homotopy invariant, it and can be can be computed at
λ = 0. Consequently, the equality (1.26) follows from the equality at λ = 0, which
was already proved in Theorem 1.2.2. �
Second Proof of Theorem 1.8.2, based merely on Theorem 1.8.1. First of all, the
chiral symmetry JHωJ = −Hω implies that there exists an invertible operator Aω

such that, in the grading of J ,

Hω =
(

0 A∗
ω

Aω 0

)
. (1.27)

By homotopy invariance of the index,

Ind(�Uω�∗) = Ind(�Aω�∗) = dim(Ker(�Aω�∗)) − dim(Ker(�A∗
ω�∗)) .

But Ker(�Hω�∗) = (
Ker(�A∗

ω�∗) ⊕ 0
) ⊕ (

0 ⊕ Ker(�Aω�∗)
)
, and Ĵ is positive

definite on the first and negative definite on the second summand. Therefore

Ind(�Uω�∗) = Sig
(̂
J|Ker(�Hω�∗)

)
,

where the signature is calculated of the (finite dimensional non-degenerate) quadratic
form obtained by restriction of Ĵ to Ker(�Hω�∗). But this signature is up to a sign
precisely the r.h.s. of (1.26). �

Another thing that becomes apparent in the above proof is how to address the
stability of the invariants under terms which break chiral symmetry, see Sect. 1.1.
Indeed, such terms lead to non-vanishing diagonal entries in the Hamiltonian in the
form (1.27). If, however, the off-diagonal entry Aω remains invertible, then one can
still define its winding number via the pairing with Ch1. Such systems are called
approximately chiral and are further described in Sect. 2.4.2

1.9 Can the Invariants be Measured?

Of course, it is interesting to link the invariants to quantities that can potentially be
measured. The best know example is the quantum Hall effect in which an invariant
is linked to the Hall conductance. For the present one-dimensional chiral models the
so-called chiral polarization is connected to the bulk invariant Ch1(uF) as is discussed
in Sect. 7.3. One of the things that is always true is that the bulk invariant determines
the boundary invariant, which is here the chirality of the bound states. This boundary
invariant can in principle be measured.

http://dx.doi.org/10.1007/978-3-319-29351-6_2
http://dx.doi.org/10.1007/978-3-319-29351-6_7
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