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    Chapter 17   
 Barriers to Glaucoma Drug Delivery 
and Resolving the Challenges Using 
Nanotechnology                     

     Morgan     V.     Fedorchak    

    Abstract     As with other diseases of the eye, glaucoma patients face a number of 
challenges to effi cient drug delivery such as low bioavailability due to transport 
barriers in the eye. It is important to note, however, that the pathophysiology of 
glaucoma, though not well understood, makes it a particularly challenging disease 
to address using traditional drug delivery techniques. Researchers have therefore 
begun to investigate approaches using nanotechnology, and in particular nanoscale 
biomaterials, to improve upon the delivery of approved and pipeline therapeutic 
agents. In addition to well-characterized vehicles like liposomes and polymer for-
mulations, a wide variety of other devices like drug-loaded contact lenses and intra-
ocular implants are in development. The primary goal of these drug delivery systems 
is to improve bioavailability, which may lead to increased adherence to treatment 
and decreased systemic side effects. Secondary goals like imaging and anti-scarring 
applications are also relevant to this widespread, vision-threatening disease.  

  Keywords     Glaucoma   •   Drug delivery   •   Bioavailability   •   Biomaterial   • 
  Mucoadhesion   •   Emulsion   •   Nanoparticle  

   Drug delivery to the eye presents a vast array of challenges that researchers are try-
ing to address with modern nanotechnology. Much interest has been generated 
recently in this area, particularly for the treatment of glaucoma [ 1 – 3 ]. Emerging 
drugs [ 4 – 6 ], new therapeutic targets [ 7 ,  8 ], and an evolving understanding of the 
progression of the disease [ 9 ] make glaucoma an attractive application for 

        M.  V.   Fedorchak      (*) 
  Departments of Ophthalmology and Chemical Engineering ,  University of Pittsburgh and 
the Louis J. Fox Center for Vision Restoration ,   Pittsburgh ,  PA ,  USA   
 e-mail: fedorchak@pitt.edu  

mailto:fedorchak@pitt.edu


390

translation of nanobiomaterials to the clinic. However, the eye is a complex organ, 
and each potential application possesses a unique set of issues to address. This chap-
ter will focus on the additional barriers to drug delivery presented by glaucoma. 

17.1     Drug Delivery Barriers Specifi c to Glaucoma 

 One must appreciate the complexities of  glaucoma   and its progression to under-
stand why treating it is different from other ocular conditions. First, there is still 
much to learn about the pathogenesis of glaucoma [ 10 ], which makes treatment a 
much more formidable task. Much of the burden is placed on the patient for self- 
administration of eyedrop medication to treat the associated increase in intraocular 
pressure (IOP) [ 11 ]. Doctors treating patients with glaucoma must determine which, 
if any, of the many drug formulations are suitable given a patient’s age, disease 
severity, contraindications, and other factors [ 12 ]. Often, patients must also undergo 
surgery, which can introduce even more barriers to successful drug delivery. These 
and other challenges are described in detail below. 

17.1.1      Patient Adherence   

 Perhaps the greatest barrier to effective glaucoma drug delivery is patient adherence 
to the prescribed treatment regimen. One study reports less than 30 % compliance 
with eyedrops for glaucoma [ 13 ], with another study determining that over a quarter 
of newly diagnosed patients discontinue use of their medication within 3 months 
[ 14 ]. Furthermore, even when patients do administer the drops, it is estimated that 
nearly 90 % do not instill drops correctly, leading to unintentional noncompliance 
[ 15 ]. The issue of patient adherence in glaucoma is of particular importance because 
of the implications of not treating the disease. As a progressive and chronic neuro-
logical disease, patients who are not properly treated are at a greatly increased risk 
of vision loss and blindness [ 16 ]. In fact, glaucoma accounts for up to 12 % of all 
cases of blindness in the US alone and is the second leading cause of blindness 
worldwide [ 17 ]. 

 Most  glaucoma medications   aim to lower IOP in order to slow or stop the pro-
gression of the disease [ 11 ]. While these modern medications, the most common of 
which is the prostaglandin analog latanoprost (with over two million prescriptions 
in Europe alone in 2012 [ 18 ]), are quite effective when used properly, many patients 
struggle with doing so. One of the primary reasons for this lack of compliance is the 
frequency with which the drops must be self-administered. Latanoprost is adminis-
tered once daily, which in itself can be challenging, while others such as brimoni-
dine and timolol are delivered two to three times as often [ 19 ,  20 ]. 

 Another signifi cant obstacle is the diffi culty in self-administration that many 
patients experience. Approximately one in ten individuals over 75 are diagnosed 

M.V. Fedorchak



391

with glaucoma [ 21 ], which contributes to the high rates of patients who experience 
diffi culty properly instilling the topical drops [ 15 ]. Many elderly patients lack the 
dexterity to self-administer their daily drops. Mobile phone applications, such as 
“EyeDROPS” (HarPas International), and educational programs [ 22 ] have been 
developed to try to improve compliance with regular reminders, yet these still can-
not address the inherent challenges of drop self-administration. 

 One additional reason why patients may not adhere strictly to their topical drop 
regimen is the apparent lack of symptoms in those whose disease has not yet pro-
gressed [ 23 ]. Glaucoma is a largely painless disease and can go untreated for months 
or years before patients begin to see a decrease in vision [ 22 ]. The sometimes slow 
and often unnoticeable progression of glaucoma can result in patients placing less 
priority on their medication [ 15 ]. Doing so can have devastating effects, however, as 
vision loss due to glaucoma is irreversible [ 24 ].  

17.1.2      Side Effects   

 One 2010, study showed a signifi cant positive correlation between concerns about 
the side effects of eyedrop medication and intentional noncompliance with the 
prescribed treatment regimen [ 25 ]. Side effects such as blurred vision, burning or 
itching of the eyes, dry eye, foreign body sensation, and tearing are frequently 
reported with topical glaucoma medication use [ 26 ]. These inconvenient and 
sometimes painful side effects may prevent patients from appropriately adminis-
tering drops [ 23 ,  25 ]. Additionally, any reformulation of existing glaucoma medi-
cation must take into account the potential side effects associated with the drug. 
As will be described further below, controlled release of drugs may be able to 
circumvent this issue by administering lower doses of drug while maintaining 
effectiveness [ 3 ].  

17.1.3      Site of Action   

 When determining the best way to deliver glaucoma drugs, one must consider the 
site of action. Some drugs act on multiple sites [ 27 ], while for others, the primary 
site of action remains somewhat unclear, particularly for emerging neuroprotective 
agents [ 28 ,  29 ]. Brimonidine, for instance, is an alpha-adrenergic agonist used to 
lower IOP primarily through suppressing aqueous humor production and increasing 
uveoscleral outfl ow [ 30 ] that has also demonstrated potent systemic effects [ 31 ] and 
neuroprotective qualities [ 32 ,  33 ]. Successful drug delivery for glaucoma must fac-
tor in the targeted site of action and take steps to deliver the drug most effi ciently to 
that site. For example, drugs acting on the posterior of the eye, like neurotropic fac-
tors, would be ideally delivered as an intravitreal injection to bypass the diffusion 
hindrances of the anterior tissues [ 24 ].  
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17.1.4     Limited Uptake 

 Depending on the site of action, as described above, the medication delivered can 
have variable uptake to the affected tissue. Topical drops in particular are unable to 
reach intraocular tissues in appreciable amounts [ 24 ]. The amount of drug that 
reaches various parts of the eye is heavily infl uenced by the structure of the drug. 
For example, small,  lipophilic drugs   are more readily absorbed through the cornea 
to the aqueous humor [ 34 ], while the permeability of the conjunctiva to larger, 
hydrophilic molecules is higher than both the sclera and cornea [ 35 ,  36 ]. A portion 
of drug is also taken up systemically, which can result in unwanted adverse effects 
[ 37 ,  38 ]. These factors cause the overall uptake to the aqueous humor to remain low, 
at less than 10 % [ 24 ]. This amount is diffi cult to increase through drop volume 
alone, due to the constant tear fi lm turnover and size limitations of the conjunctival 
cul-de-sac [ 39 ].  

17.1.5     Contraindications 

 While understanding the site of action and desired drug uptake are critical to design-
ing a successful drug delivery system for glaucoma, some patients are contraindi-
cated for certain methods. One such method is in intraocular injection, which can 
cause a temporary spike in IOP as well as a risk of retinal detachment, infl amma-
tion, and hemorrhage [ 40 ]. Patients with a history of acute infl ammation in reaction 
to previous injections, active external ocular infection, or a recent history of throm-
boembolic events are not recommended for such treatments [ 41 ]. The design of 
intraocular implants or injections for glaucoma patients who are able to receive 
them would still need to ensure that there was no prolonged increase in IOP due to 
the implant. For example, one study demonstrates an increase over time in IOP for 
blank particles injected in the subconjunctival space [ 42 ], suggesting that the safety 
of this potential nanomaterial delivery route should be investigated further.  

17.1.6     Pharmacokinetic Considerations 

 Current approved glaucoma medications have the intended effect of IOP reduc-
tion as a method of treating glaucoma. The  hypotensive effect      of these drugs can 
be achieved with discrete doses throughout the day, but as with many drugs, the 
pharmacokinetic profi le is not ideal. More specifi cally, IOP can fl uctuate greatly 
throughout the day based on a number of factors including activity level, posture, 
and time of day [ 43 – 45 ]. These fl uctuations can lead to high IOP levels in certain 
patients and have been identifi ed as a risk factor for progression of the disease 
[ 46 ,  47 ]. Peak IOP in patients has been shown to reach dangerous levels (greater 
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than 21 mmHg) due to the peak/trough concentration dynamics of drug 
throughout the day as drops are administered, which may contribute to the per-
centage of patients whose disease progresses despite proper treatment [ 48 ]. An 
ideal drug release profi le for many glaucoma drugs may be constant, linear (“zero 
order”) release kinetics, which can be diffi cult to achieve with common con-
trolled-release  biomaterial  s [ 49 ].  

17.1.7     Other Challenges 

 Glaucoma presents a number of other challenges that could potentially be addressed 
using nanotechnology. One such challenge is that of  IOP monitoring  , which is of 
primary importance because of the aforementioned fl uctuations. These fl uctuations 
vary widely from patient to patient and can be unpredictable [ 50 ]. Clinicians should 
monitor IOP closely in high-risk patients; however, the current standard of care 
provides only discrete measurements during offi ce visits. One retrospective analysis 
determined that 24-h IOP monitoring led to increased early detection of glaucoma 
and changes in treatment for 79 % of patients in the studies included [ 51 ]. 

 Uncontrolled IOP or other complications in glaucoma patients can require that 
surgery be performed to provide fi ltration of the aqueous humor. Trabeculectomy or 
shunting surgeries, as with any ocular procedure, introduce a risk of infection or 
infl ammation. Patients are prescribed drops to decrease this risk, which can often 
lead to further complications. Drug delivery in these situations for glaucoma is 
made even more challenging by the need to incorporate postoperative care. 

 Another signifi cant challenge to glaucoma drug delivery is the lack of informa-
tion about the pathogenesis of the disease. Researchers are working to elucidate the 
mechanisms of the disease using imaging techniques that explore the outfl ow path-
ways and pathology associated with the disease [ 52 – 54 ]. Though not drug delivery 
in the traditional sense, nanotechnology could also aid in these studies to further 
improve the treatment options available to glaucoma patients.   

17.2     Potential Advantages of Nanotechnology 

 Recently, there has been rapid progress in the fi eld of nanoscale materials and 
devices for a number of drug delivery applications. In particular, this fi eld has 
produced promising advances for a number of diseases that, similar to glaucoma, 
have unique challenges to successful drug delivery. One obvious example is can-
cer, where chemotherapeutic agents are being reformulated with nanocarriers for 
targeted delivery and diagnostics [ 55 ].  Nanomedicine   has also been used to 
develop tuberculosis treatments aimed at increasing patient compliance rates, 
which are thought to be low due to the daily dosing requirements and signifi cant 
side effects [ 56 ]. 
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 These examples highlight the versatility of nanotechnology for drug delivery. 
Such nanoscale systems can theoretically be used to deliver any ocular therapeutic, 
from small molecule drugs to viruses [ 2 ]. They can be administered through a vari-
ety of methods, including but not limited to drops, injections, and implants [ 57 ]. 
This adaptability is a prime advantage for a disease like glaucoma, where the indi-
vidual needs of the patient must be considered when designing a drug delivery sys-
tem. For instance, an elderly patient may not have the ability to instill topical drops, 
while a younger patient may prefer the freedom of self-administration. 

 The incredibly small size afforded by nanotechnology also offers the advantage 
of high payloads in a small dose [ 58 ], which is important in parts of the eye with 
limited volume like the anterior chamber. Additionally, the relatively small size of 
most nanocarriers and nanoscale excipients is ideal when conjugated with larger 
molecules like proteins and antibodies because they less likely affect their function 
in vivo [ 57 ]. Many of the materials that can be used in these drug delivery systems 
are already being used in FDA-approved formulations or devices, such as poly(lactic- 
co- glycolic acid) (PLGA). The proven track record of FDA approval for such nano-
materials can facilitate a faster and easier translation to the clinic [ 59 ].  

17.3      Nanomaterials   for Glaucoma Treatment 

 Perhaps the greatest research effort to use nanotechnology in treating glaucoma has 
been the fi eld of nanoscale biomaterials for drug delivery. These materials aim to 
improve upon current drug formulations in a number of ways, which include lower-
ing dosages, localized delivery, sustained release, and improved retention time. Yet 
other classes of nanomaterials for glaucoma are investigating experimental treat-
ments for glaucoma, often taking advantage of the protection and targeted adminis-
tration that is offered by some nanocarriers. Here we review various therapeutic 
 biomaterial  s that aim to address the aforementioned challenges in treating glaucoma. 
As with current drug formulations, these materials primarily seek to treat glaucoma 
through IOP reduction. Often, these materials involve a combination of approaches, 
such as sustained-release formulations incorporating a mucoadhesive carrier. 

17.3.1      Vehicle Additives   

 Although topical drops for glaucoma are associated with low patient adherence 
rates, they are still a convenient and familiar method for administering antiglau-
coma medication. Thus, many researchers have persisted with this route of admin-
istration using vehicle additives to improve the retention time of the drug in the 
precorneal surface and thereby increase the bioavailability of drug. The estimated 
retention time in the tear fi lm for drugs is approximately 5–7 min due to the constant 
turnover of tear fi lm, at a rate of about 13–20 % per minute [ 60 ]. 
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 One method to increase bioavailability is to add hydrogels to the eyedrop formulation. 
Some examples include hydroxypropyl methylcellulose (HPMC), carboxymethylcel-
lulose (CMC), and propylene glycol [ 61 ,  62 ]. These additives and their polymeric varia-
tions act to absorb water and expand the tear fi lm (which also makes them ideal for 
lubricants in dry eye therapy), thereby increasing retention time [ 63 ]. Increased reten-
tion time can result in fewer daily doses, leading to fewer systemic side effects and a 
reduced burden on the patient. Such was the case in a clinical investigation of 0.5 % 
aqueous timolol maleate (TM) drops versus 0.1 % hydrogel TM drops [ 64 ]. The hydro-
gel TM drops were administered once daily, resulting in a peak drug concentration of 
1/6 that of the twice-daily aqueous drops and fewer cardiovascular side effects. These 
excipients can also serve to stabilize suspensions of nanocrystalline preparations of 
poorly soluble drugs, such as brinzolamide [ 65 ], to increase absorption [ 66 ]. 

 Other additives focus on increasing  mucoadhesion  , the adhesion of two surfaces 
including a mucosal layer. Chitosan, a biodegradable polysaccharide, and hyal-
uronic acid (HA), a glycosaminoglycan abundantly found in extracellular matrix, 
are frequently added to aqueous eyedrop suspensions to increase bioavailability via 
 mucoadhesion   [ 67 ]. One study demonstrated signifi cantly decreased IOP and 
improved mucoadhesion using a HA-modifi ed chitosan carrier for the glaucoma 
drugs timolol and dorzolamide [ 68 ]. Surface modifi cation of drug-loaded micellar 
structures demonstrated similarly positive results in vitro and in vivo [ 69 ]. 

 The addition of bioadhesive polymers like CMC or HA can also help protect the 
ocular surface and reduce toxicity effects. In vitro tolerance of human corneal- limbal 
epithelial and conjunctival cells to bioadhesive formulations of TM was shown to be 
signifi cantly higher in one study [ 70 ]. Similar results were seen in a separate in vivo 
study of the melatonin receptor agonist 5-methoxy-carbonylamino- N-acetyltryptamine, 
with the added benefi t of over 30 % decrease in IOP for up to 7 h [ 71 ].  

17.3.2      Nanoemulsions and Liposomes   

 Submicron emulsions offer a potential solution for delivering poorly water-soluble 
drugs. Also called nanoemulsions, these systems comprise a surfactant molecule 
surrounding a core of the hydrophobic drug [ 72 ]. The drug is dissolved in an oil 
phase which is then encapsulated in a surfactant usually labeled “generally recog-
nized as safe” (GRAS) by the Food and Drug Administration (FDA), forming drop-
lets tens to hundreds of nanometers in diameter. These droplets can be formed 
acoustically [ 73 ] or mechanically [ 74 ]. While simpler autoemulsifi cation processes 
are possible, the high concentration of surfactant required generally makes these 
formulations unsafe for use in the eye [ 72 ]. 

 Often, these formulations will also contain a mucoadhesive additive to further 
improve bioavailability, as with the formulation described by Ying et al. [ 75 ]. A 
nanoscale lipid emulsion of fl uorescently labeled drug-containing poloxamer and 
chitosan surface modifi ers was administered as a topical drop and resulted in signifi -
cantly greater uptake to the posterior segment versus relevant control groups [ 75 ]. 
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 The glaucoma drug dorzolamide was also tested as a nanoemulsion using a 
number of different surfactants [ 76 ]. The emulsifi ed forms of the drug showed no 
signs of irritation in a rabbit model and demonstrated signifi cantly prolonged drug 
release behavior in vitro. These and similar results have the potential to reduce tox-
icity effects and dosing frequency for common hydrophobic glaucoma medications, 
notably prostaglandin analogs [ 77 ]. 

  Liposomes   are similar to nanoemulsions in that the drug material is contained 
within an outer layer, in this case made up of a lipid bilayer [ 78 ]. The advantages 
offered by liposomes are the ability to functionalize the surface for targeted deliv-
ery, increased solubility (as with submicron emulsions), enhanced biocompatibility, 
and protection of the drug from degradation [ 79 ,  80 ]. One such study demonstrated 
that liposomal acetazolamide (ACZ) resulted in less irritation (as determined by 
increased tear production), increased stability, and an extended hypotensive effect 
compared to ACZ solution [ 81 ]. 

 One of the main drawbacks of both nanoemulsions and liposomes is the rapid 
release of drug from the core due to membrane diffusion across a very short path 
length (5–10 nm), which typically results in drug delivery times that cannot be sus-
tained beyond several hours. The recent publication by Natarajan et al. [ 82 ], how-
ever, describes a liposomal nanocarrier with the latanoprost embedded in the 
bilayers that can sustain IOP-lowering effect for 120 days [ 82 ]. The authors hypoth-
esize that drug release is sustained because transport is controlled by partitioning 
rather than by diffusion, as with traditional nanovesicles. The liposomes are admin-
istered as a subconjunctival injection, which has been reported in separate studies to 
be a preferred treatment method for glaucoma patients when the frequency of injec-
tions is low enough [ 83 ].  

17.3.3      Polymeric Nanoparticles   

 Any particle with a diameter on the order of one to hundreds of nanometers can techni-
cally be considered a nanoparticle, which would include several of the aforementioned 
formulations such as nanocrystals, nanoemulsions, and liposomes. Also included 
within this defi nition are nanostructures consisting of degradable polymer or dendrimer 
matrices or combinations of materials. These nanoparticles are distinct because drug is 
embedded within a solid polymer matrix. The primary advantage offered by these solid 
nanospheres is the ability to sustain drug release for long periods of time while protect-
ing the unreleased drug from the surrounding environment [ 78 ]. 

 Drug release from solid  nanospheres   is controlled primarily by degradation of the 
polymer matrix, allowing for diffusion of the drug. One common material is 
poly(lactic-co-glycolic) acid (PLGA), which is commonly used to make slightly 
larger microparticles for glaucoma drug delivery lasting up to 1 month [ 42 ,  84 ]. 
Smaller, nano-sized particles typically cannot sustain drug release for as long and may 
undergo faster clearance when injected transsclerally, making them better suited for 
topical delivery to the anterior chamber [ 85 ]. The incorporation of drug- loaded PLGA 
nanoparticles in a polyamidoamine (PAMAM) dendrimer hydrogel has been shown to 
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sustain drug release for 1 week in vivo, with ocular hypotensive effects lasting nearly 
as long [ 86 ]. These particles have the added advantage of low cytotoxicity and high 
versatility, with single and dual drug-releasing systems in development [ 87 ]. 

  Polymer and dendrimer   particles are also particularly well suited for delivery 
of biological therapeutic agents because they are protected from denaturation for 
the duration of drug release, which can last up to 1 month or more. One such 
formulation seeks to deliver matrix metalloproteinase-3 (MMP-3) to the trabecu-
lar meshwork to prevent buildup of extracellular matrix materials and subse-
quent IOP increase [ 88 ]. Biodegradable nano- or microspheres are also commonly 
used to deliver neurotrophic agents to the retina for neuroprotection in glaucoma 
models [ 89 – 91 ].  

17.3.4     Hydrogels 

 A simple defi nition of a hydrogel is a water-soluble polymer whose properties allow 
it to be formed into particles, fi lms, coatings, or formed solids [ 92 ]. These materials 
are attractive for drug delivery applications because their physical properties are 
highly tunable, like porosity, swelling ratio, and degradability. They are also highly 
biocompatible, primarily because of their high water content and mechanical prop-
erties resembling that of extracellular matrix (ECM) [ 93 ]. 

 Drug release from the gel matrix is typically controlled by diffusion through the 
cross-linked polymer network, which often results in faster drug release than from 
water-insoluble polymer formulations [ 92 ,  94 ]. The highly porous structure also 
leads to low tensile strength and instability upon injection [ 92 ]. Many hydrogel 
formulations take advantage of copolymer additives to increase the cross-linking 
density and therefore alter the physical properties. Some examples include hydro-
gels that triggerably form a solid matrix after a change in temperature, pH, ionic 
strength, shear stress, and more [ 95 ,  96 ]. 

  Hydrogel-based formulations   have been widely investigated for ocular drug 
delivery via subconjunctival injection [ 97 ], nanogel eyedrops [ 98 ], and combination 
systems such as hydrogel-embedded liposomes. One system containing colloidal 
nanocarriers in a chitosan-based gel was able to sustain IOP reduction for 40 days 
in a rabbit glaucoma model [ 99 ]. Hydrogel-based intravitreal injections are also 
used for administering anti-VEGF (bevacizumab) in neovascular age-related 
 macular degeneration [ 100 ,  101 ] and may also be used as a carrier for sustained 
delivery of a neuroprotective payload to the retina.  

17.3.5     Contact Lenses 

 Since the widespread adoption of soft, gas permeable contact lenses in the 1980s, 
contact lenses have become a familiar and convenient option for vision correction, 
with a 2010 FDA report estimating 30 million users in the USA. The same materials 
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used to make vision-correcting lenses are now being investigated for their potential 
as a drug delivery system. One major consideration for contact lens-based drug 
delivery is maintaining oxygen permeability and optical transparency. 

 Adsorption of drug onto traditional contact lenses is a simple method for increas-
ing residence time of the drug on the cornea and offers a potential replacement for 
eyedrop administration [ 102 ]. However, these systems cannot sustain drug release 
beyond 1 day and require high levels of drug to ensure adequate loading, which can 
lead to an unwanted burst release [ 103 ]. To remedy this, other groups have investi-
gated novel materials for contact lens-based drug delivery [ 104 ,  105 ]. One such sys-
tem uses timolol-loaded nanoparticles within a silicone hydrogel contact lens [ 106 ]. 
Another system uses lenses molecularly imprinted by timolol at the nanoscale that can 
sustain drug delivery for up to twice as long as lenses without pre- imprinting [ 107 ]. 

 The largest drawback to  contact lenses   for drug delivery is the potential for low 
patient compliance rates, estimated to be as low as 53 % for replacement of lenses 
and 45 % for proper handling [ 108 ]. This tendency could be problematic for drug 
delivery applications, as lenses would need to be changed at the appropriate inter-
vals to ensure that therapeutic drug levels are being delivered. Additionally, improper 
handling and poor compliance could lead to additional complications such as con-
tact lens-related dry eye and ocular surface infections.  

17.3.6     Implants or Inserts 

 Although eyedrops may be more practical for some patients, such as those in devel-
oping nations, inserts, implants, and refi llable devices have been explored for other 
patient populations that may benefi t from a clinician-controlled drug delivery sys-
tem. These systems are more frequently investigated for their use in treating poste-
rior segment diseases, as with dexamethasone (Ozurdex®, Allergan) and 
fl uocinolone acetonide (Retisert®, Bausch + Lomb) intravitreal implants for treat-
ing macular edema and uveitis, respectively [ 109 ]. This type of treatment would 
especially hold potential for treatment of neovascular glaucoma, using anti-VEGF 
[ 110 ], or neurotrophic factors for neuroprotection of retinal ganglion cells [ 111 ]. 
Care must be taken, however, as secondary glaucoma is a potential side effect for 
intravitreal implants and injection [ 40 ]. Similar rod-shaped implants have been 
tested for use in the subconjunctival space, providing months of release [ 112 ] from 
an administration method that one study suggests over 62 % of patients would prefer 
as a replacement for frequent eyedrops [ 113 ]. 

  Nanoporous   ocular inserts have also been described for use in treating glaucoma 
by releasing antiglaucoma drugs from within the conjunctival cul-de-sac for up to 
28 days [ 114 ]. This device uses modern controlled-release polymer technology to 
improve upon passive diffusion-based systems that are no longer used [ 115 ,  116 ]. 
Building on the ocular insert concept is the latanoprost-loaded nanosheet, which 
can be applied directly to the cornea and provides up to 9 days of IOP reduction 
[ 117 ]. Similar results were also seen using an electrospun nanofi ber patch placed in 
the conjunctival cul-de-sac [ 118 ]. 
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 Another unique device utilizes a microelectromechanical drug pump implanted 
similarly to a glaucoma drainage device [ 119 ]. This electrolysis-based pump is 
designed to provide 4–6 weeks of drug delivery with each transconjunctival drug 
refi ll. One distinct advantage of this type of nanodevice is that it could theoretically 
be loaded with any drug without having to redesign the device.   

17.4     Other Uses of  Nanotechnology   for Glaucoma 

 Beyond  antiglaucoma drug delivery  , nanotechnology can serve other roles in the 
treatment of glaucoma patients. In patients receiving glaucoma fi ltration surgery, 
concomitant placement of drug-loaded nanoparticles can modulate the wound- 
healing response, thereby reducing scarring and improving the function of the bleb 
[ 120 – 122 ]. Nanocarriers loaded with corticosteroids that would traditionally be 
administered topically following trabeculectomy can also be used to provide auton-
omous postoperative care [ 123 ,  124 ]. 

  Nanotechnology   has also led to recent advances in the overall understanding of 
outfl ow pathways in the eye. Nano-sized tracers are injected into the anterior cham-
ber and monitored over time [ 125 ] and can even be used in conjunction with anti-
glaucoma medication to determine the effect on drainage [ 54 ]. These techniques 
may aid in elucidating the pathophysiology of glaucoma and help identify potential 
new treatment methods for the disease. 

 As more is understood about glaucoma, the need for more reliable frequent IOP 
monitoring arises [ 126 ]. However, most patients only have IOP measured during 
visits to the clinic, which may miss peak IOP levels occurring at other times through-
out the day [ 127 ]. Thus, some groups are using nanoscale devices, either implanted 
[ 128 ,  129 ] or embedded in a soft contact lens [ 130 ,  131 ], as a way of tracking IOP 
continuously and wirelessly reporting measurements back to the clinician. One 
recent publication describes a sensitive and precise microfl uidic device whose output 
can be read using a smart phone camera, enabling at-home monitoring of IOP [ 132 ]. 

 These and other applications of nanotechnology for glaucoma could potentially 
be combined with sustained-release drug delivery systems described above. Despite 
the challenges inherent to glaucoma drug delivery, nanoscale materials and devices 
offer myriad solutions that may one day improve the diagnosis, treatment, and out-
comes for patients with glaucoma.     
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