
Chapter 1
Heat Transport in Low Dimensions:
Introduction and Phenomenology

Stefano Lepri, Roberto Livi, and Antonio Politi

Abstract In this chapter we introduce some of the basic models and concepts
that will be discussed throughout the volume. In particular we describe systems
of nonlinear oscillators arranged on low-dimensional lattices and summarize the
phenomenology of their transport properties.

1.1 Introduction

In this first chapter we review the main properties of low-dimensional lattices
of coupled classical oscillators. We will describe how reduced dimensionality
and conservation laws conspire in giving rise to unusual relaxation and transport
properties. The aim is to provide both a general introduction to the general
phenomenology and to guide the reader in the volume reading (where appropriate
we indeed point to the more detailed analyses developed in the subsequent chapters).

For the sake of concreteness, one may think of quasi-1D objects, like long
molecular chains or nanowires, suspended between two contacts which play the role
of thermal reservoirs. These experimental setups, repeatedly discussed throughout
the volume, are schematically depicted in Fig. 1.1.

We start Sect. 1.2 by introducing the main models without technicalities and
providing the relevant definitions. Section 1.3 contains a summary of the different
properties that is worth testing to characterize heat transport in a physical system.
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Fig. 1.1 Sketch of two experimental setups illustrating the physical setting. Left: a nanotube or
nanowire suspended between two contacts acting as heaters and probes, see [14] and Chap. 8.
Right: a scanning thermal microscopy setup whereby an assembly of molecular chains with one
end attached on a substrate is heated through a cantilever tip [74]

The natural starting point is the effective conductivity in finite systems, which
diverges with the system-size in the case of anomalous transport. The existence
of long-time tails in the equilibrium correlation functions is another way of probing
the system dynamics, together with the diffusion of localized perturbations and the
relaxation of spontaneous fluctuations. Another, not much explored property, is the
shape of the temperature profile that is strictly nonlinear even in the limit of small
temperature differences, when heat transport is anomalous.

In Sect. 1.4, we present the overall scenario, making reference to the universality
classes unveiled by the various theoretical approaches. More specifically, we
emphasize the relationship with the evolution of rough interfaces and thereby the
Kardar-Parisi-Zhang equation. Coupled rotors represent an important subclass of
1D systems where heat conduction is normal in spite of momentum conservation:
their behavior is reviewed in Sect. 1.5.

The expected scenario in two-dimensions (namely the logarithmic divergence of
heat conductivity) is discussed in Sect. 1.6, while the peculiar behavior of integrable
systems is briefly reviewed in Sect. 1.7. In Sect. 1.8, we discuss the more general
physical setup, where another quantity is being transported besides energy. This is
the problem of coupled transport, where the interaction between the two processes
may give rise to unexpected phenomena even when the transport is altogether
normal. In particular, we consider a chain of coupled rotors in the presence of an
additional torque, where the second quantity is angular momentum and the discrete
nonlinear Schrödinger equation, where the second quantity is the norm (or mass).
Finally, the still open problems are recalled in Sect. 1.9.
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1.2 Models

The simplest microscopic dynamical model for the characterization of heat conduc-
tion consists of a chain of N classical point-like particles with mass mn and position
qn, described by the Hamiltonian

H D
NX

nD1

�
p2n
2mn

C U.qn/C V.qnC1 � qn/

�
: (1.1)

The potential V.x/ accounts for the nearest-neighbour interactions between con-
secutive particles, while the on-site potential U.qn/ takes into account the pos-
sible interaction with an external environment (either a substrate, or some three-
dimensional matrix). The corresponding evolution equations are

mn Rqn D �U0.qn/� F.rn/C F.rn�1/ ; n D 1; : : : ;N ; (1.2)

where rn D qnC1 � qn, F.x/ D �V 0.x/, and the prime denotes a derivative with
respect to the argument. Usually qn denotes the longitudinal position along the
chain, so that

L D
NX

nD1
rn ; (1.3)

represents the total length of the chain (which, in the case of fixed b.c., is a constant
of motion). Different kinds of boundary conditions may and will be indeed used in
the various cases. For instance, if the particles are confined in a simulation “box” of
length L with periodic boundary conditions,

qnCN D qn C L : (1.4)

Alternatively one can adopt a lattice interpretation, in which case, the (discrete)
position is zn D an (where a is lattice spacing), while qn is a transversal
displacement. Thus, the chain length is obviously equal to Na.

The Hamiltonian (1.1) is generally a constant of motion. In the absence of an
on-site potential (U D 0), the total momentum is conserved, as well,

P D
NX

nD1
pn �

NX

nD1
mn Pqn : (1.5)

Since we are interested in heat transport, one can set P D 0 (i.e., we assume to work
in the center-of-mass reference frame) without loss of generality. As a result, the
relevant state variables of microcanonical equilibrium are the specific energy (i.e.,
the energy per particle) e D H=N and the elongation ` D L=N (i.e., the inverse of
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the particle density). On a microscopic level, one can introduce three local densities,
namely rn, pn and

en D p2n
2mn

C 1

2

�
V.rn/C V.rn�1/

�
; (1.6)

which, in turn, define a set of currents through three (discrete) continuity equations.
For instance, the energy current is defined as

Pen D jn�1 � jn (1.7)

jn D 1

2
a.PqnC1 C Pqn/F.rn/ : (1.8)

The definition (1.8) is related to the general expression, originally derived by Irving
and Kirkwood that is valid for every state of matter (see e.g. [53]) that, in one
dimension, reads

jn D 1

2
.qnC1 � qn/.PqnC1 C Pqn/F.rn/C Pqnen : (1.9)

In the case of lattice systems, where we assume the limit of small oscillations
(compared to the lattice spacing) or in the lattice field interpretation, one can recover
formula (1.8) setting qnC1 � qn D a in the first term and neglecting the second
one [64]. The expression (1.9) is useful in the opposite limit of freely colliding
particles, where the only relevant interaction is the repulsive part of the potential,
that is responsible for elastic collisions. There, the only contribution to the flux
arises from the kinetic term of en, i.e.

jn � 1

2
mn Pq3n : (1.10)

Having set the basic definitions, let us now introduce some specific models. A
first relevant example is the harmonic chain, where the potential V is quadratic
(and U D 0). From the point of view of transport properties, we expect this
system to behave like a ballistic conductor. The heat flux decomposes into the
sum of independent contributions associated to the various eigenmodes. This
notwithstanding, this model proves useful, as it allows addressing general questions
about the nature of stationary nonequilibrium states. This includes the role of
disorder (either in the masses or the spring constants), of boundary conditions, and
quantum effects. Since the linear case (classical and quantum) will be treated in
detail in Chap. 2, here we focus on the anharmonic problem. In this context, the
most paradigmatic example is the Fermi–Pasta–Ulam (FPU) model [50, 76, 79]

V.rn/ D k2
2
.rn � a/2 C k3

3
.rn � a/3 C k4

4
.rn � a/4 : (1.11)
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Following the notation of the original work [32], the couplings k3 and k4 are denoted
by ˛ and ˇ respectively: historically this model is sometimes referred to as the
“FPU-˛ˇ” model. Also, the quadratic plus quartic (k3 D 0) potential is termed the
“FPU-ˇ” model. Notice that upon introducing the displacement un D qn � na from
the equilibrium position, rn can be rewritten as unC1 � un C a, so that the lattice
spacing a disappears from the equations.

Another interesting model is the Hard Point Gas (HPG), where the interaction
potential is [9, 40, 41]

V.y/ D
(

1 y D 0

0 otherwise
:

The dynamics consist of successive collisions between neighbouring particles,

v0

n D mn � mnC1

mn C mnC1

vnC 2mnC1

mn C mnC1

vnC1 ; v0

nC1 D 2mn

mn C mnC1

vn� mn � mnC1

mn C mnC1

vnC1 ;

(1.12)

where mn is the mass of the nth particle, vn D Pqn and the primed variables denote
the values after the collision. For equal masses the model is completely integrable,
as the set of initial velocities is conserved during the evolution. In order to avoid
this peculiar situation, it is customary to choose alternating values, such as mn D m
(rm) for even (odd) n. This type of dynamical systems are particularly appropriate
for numerical computation as they do not require the numerical integration of
nonlinear differential equations. In fact, it is sufficient to determine the successive
collision times and update the velocities according to Eq. (1.12). The only errors
are those due to machine round-off. Moreover, the simulation can be made very
efficient by resorting to fast updating algorithms. In fact, since the collision times
depend only on the position and velocities of neighbouring particles, they can be
arranged in a heap structure and thereby simulate the dynamics with an event driven
algorithm [40].

Another much studied model involves the Lennard–Jones potential, that in our
units reads [66, 71]

V.y/ D 1

12

�
1

y12
� 2

y6
C 1

�
: (1.13)

For computational purposes, the coupling parameters have been fixed in such a way
as to yield the simplest form for the force. With this choice, V has a minimum
in y D 1 and the resulting dissociation energy is V0 D 1=12. For the sake of
convenience, the zero of the potential energy is set in y D 1. In one-dimension,
the repulsive term ensures that the ordering is preserved (the particles do not cross
each other).

In the presence of a substrate potential U, the invariance ql ! ql C const: is
broken and the total momentum P is no longer a constant of motion. Accordingly,
all branches of the dispersion relation have a gap at zero wavenumber. We therefore
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refer to them as optical modes. An important subclass is the one in which V is
quadratic, which can be regarded as a discretization of the Klein-Gordon field:
relevant examples are the Frenkel-Kontorova [39, 44] and “�4” models [1] which,
in suitable units, correspond to U.y/ D 1 � cos.y/ and U.y/ D y2=2 C y4=4,
respectively. Another toy model that has been studied in some detail is the ding-
a-ling system [11], where U is quadratic and the nearest-neighbor interactions are
replaced by elastic collisions.

We will always deal with genuine nonintegrable dynamics. For the FPU model
this means working with high enough energies/temperatures to avoid all the
difficulties induced by quasi-integrability and the associated slow relaxation to
equilibrium. For the diatomic HPG this requires fixing a mass-ratio r not too close
to unity.

1.3 Signatures of Anomalous Transport

The results emerged from a long series of works can be summarized as follows.
Models of the form (1.2) with U.q/ D 0 typically display anomalous transport and
relaxation features, this meaning that (at least) one of the following phenomena has
been reported:

• The finite-size heat conductivity �.L/ diverges in the limit of a large system size
L ! 1 [62] as1

�.L/ / L˛

This means that this transport coefficient is ill-defined in the thermodynamic
limit;

• The equilibrium correlator of the energy current displays a nonintegrable power-
law decay,

hJ.t/J.0/i / t�.1�ı/ (1.14)

with 0 � ı < 1, for long times t ! 1 [63]. Accordingly, the Green-Kubo
formula yields an infinite value of the conductivity;

• Energy perturbations propagate superdiffusively [15, 24]: a local perturbation of
the energy broadens and its variance �2 grows in time as

�2.t/ / tˇ (1.15)

with ˇ > 1;

1 For historical reasons two of the scaling exponents introduced in this section are conventionally
denoted by the same Greek letters, ˛ and ˇ, adopted for the FPU models described in Sect. 1.2.
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• Relaxation of spontaneous fluctuations is fast (i.e. superexponential) [66]: at vari-
ance with standard hydrodynamics, the typical decay rate in time of fluctuations
at wavenumber k, �.k/, is found to scale as

�.k/ � jkj�z

(with z < 2).
• Temperature profiles in the nonequilibrium steady states are nonlinear, even for

vanishing applied temperature gradients.

Altogether, these features can be summarized by saying that the usual Fourier’s
law does not hold: the kinetics of energy carriers is so correlated that they are able
to propagate faster than in the the standard (diffusive) case.

Numerical studies [64] indicate that anomalies occur generically in 1 and 2D,
whenever the conservation of energy, momentum and length holds. This is related
to the existence of long-wavelength (Goldstone) modes (an acoustic phonon branch
in the linear spectrum of (1.2) with U D 0) that are very weakly damped. Indeed, it
is sufficient to add external (e.g. substrate) forces, to make the anomalies disappear.

Let us now discuss these features in more detail.

1.3.1 Diverging Finite-Size Conductivity

A natural way to simulate a heat conduction experiment consists in putting the
system in contact with two heat reservoirs operating at different temperatures
TC and T� (see Fig. 1.2). This requires a suitable modeling of interaction with
the environment. Several methods, based on both deterministic and stochastic
algorithms, have been proposed. A more detailed presentation can be found in
[26, 64]. A simple and widely used choice consists in adding Langevin-type forces
on some chain subsets. If this is done on the first and the last site of a finite chain
(n D 1; : : : ;N), it is obtained

Rqn D �Fn C Fn�1 C ın1.�C � �Pq1/C ınN.�� � �PqN/ ; (1.16)

T+ T−

Fig. 1.2 A one-dimensional chain of coupled oscillators interacting with two thermal reservoirs
ad different temperatures TC and T�
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Fig. 1.3 Scaling of the finite-size conductivity for the FPU-˛ˇ model: with energy e D 1 and
cubic coupling constant ˛ D 0:1

where we assume unitary-mass particles, while �˙’s are two independent Gaussian
processes with zero mean and variance 2�kBT˙ (kB is the Boltzmann constant). The
coefficient � is the coupling strength with the heat baths.

After a long enough transient, an off-equilibrium stationary state sets in, with
a net heat current flowing through the lattice.2 The thermal conductivity � of
the chain is then estimated as the ratio between the time-averaged flux j and the
overall temperature gradient .TC � T�/=L, where L is the chain length. Notice
that, by this latter choice, � amounts to an effective transport coefficient, including
both boundary and bulk scattering mechanisms. The average j can be estimated in
several equivalent ways, depending on the employed thermostatting scheme. One
possibility is to directly measure the energy exchanges with the two heat reservoirs
[26, 64]. A more general (thermostat-independent) definition consists in averaging
the heat flux as defined by (1.9).

As a result of many independent simulations performed with the above-described
methods, it is now established that � / L˛ for L large enough. Figure 1.3 illustrates
the typical outcome of simulations for the FPU chain.

1.3.2 Long-Time Tails

In the spirit of linear-response theory, transport coefficients can be computed from
equilibrium fluctuations of the associated currents. More precisely, by introducing

2From the mathematical point of view, the existence of a unique stationary measure is a relevant
question and has been proven in some specific cases models of this class, see the review [8, 28, 29].
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Fig. 1.4 Spectrum of energy current for the FPU-˛ˇ model, same parameters as in previous figure

the total heat flux

J D
X

n

jn ; (1.17)

the Green-Kubo formalism tells us that heat conductivity is given by the expression

� D 1

kBT2
lim

t!1 lim
N!1

1

N

Z t

0

dt0 hJ.t0/J.0/i ; (1.18)

where the average is performed in a suitable equilibrium ensemble, e.g. microcanon-
ical with zero total momentum (P D 0).

A condition for the formula (1.18) to give a well-defined heat conductivity is
that the time integral is convergent. This is clearly not the case when the current
correlator vanishes as in (1.14) with 0 � ı < 1. Here, the integral diverges as tı and
we may thus define a finite-size conductivity �.L/ by truncating the time integral in
the above equation to t � L=c, where c is the sound velocity. Consistency with the
definition of the power-law divergence of �.L/ implies ˛ D ı. The available data
agrees with this expectation, thus providing an independent method for estimating
the exponent ˛.

For later purposes, we mention that, by means of the Wiener–Khintchine
theorem, one can equivalently extract ı from the low-frequency behavior of the
spectrum of current fluctuations

S.!/ �
Z

d!hJ.t/J.0/iei!t (1.19)

that displays a low-frequency singularity of the form S.!/ / !�ı (see Fig. 1.4).
From the practical point of view, this turns out to be the most accurate numerical
strategy, as divergencies are better estimated than convergences to zero.
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1.3.3 Diffusion of Perturbations

Consider an infinite system at equilibrium with a specific energy e0 per particle and
a total momentum P D 0. Let us perturb it by increasing the energy of a subset
of adjacent particles by some preassigned amount �e and denote with e.x; t/ the
energy profile evolving from such a perturbed initial condition (for simplicity, we
identify x with the average particle location n`). We then ask how the perturbation

ıe.x; t/ D he.x; t/� e0i (1.20)

behaves in time and space [42], where the angular brackets denote an ensemble aver-
age over independent trajectories. Because of energy conservation,

P
n ıe.n`; t/ D

�e remains constant at any time: ıe.x; t/ can be interpreted as a probability density
(provided it is also positive-defined and normalized).

For sufficiently long time t and large x, one expects ıe.x; t/ to scale as

ıe.x; t/ D t�	G .x=t	 / (1.21)

for some probability distribution G and a scaling parameter 0 � 	 � 1. The case
	 D 1=2 corresponds to a normal diffusion and to a normal conductivity. On the
other hand, 	 D 1 corresponds to a ballistic motion and to a linear divergence of
the conductivity. Consequently, a 	 -value larger than 1=2 implies a superdiffusive
behavior of the macroscopic evolution of the energy perturbation [24]. In Fig. 1.5,
the evolution of infinitesimal energy perturbations is reported in the case of the
HPG [15]: a very good data-collapse is reported for 	 D 3=5.

-20 -10 0 10 20

x/t
γ

10
-4

10
-3

10
-2

10
-1

δe t
γ

Fig. 1.5 Spreading of infinitesimal perturbations in the HPG model: rescaled perturbation profiles
at different times t D 40; 80; 160; 320; 640; 1280; 2560; 3840 (the width increases with time), with
	 D 3=5
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Remarkably, the above results can be rationalized in terms of a very simple
random dynamics: the Lévy walk model [7, 95]. Consider a point particle that
moves ballistically in between successive “collisions”, whose time separation is
distributed according to a power law,  .t/ / t�
�1, 
 > 0, while its velocity
is chosen from a symmetric distribution �.v/. By assuming a ı-like distribution,
�.v/ D .ı.v� Qv/Cı.vC Qv//=2, the propagator P.x; t/ (the probability distribution
function to find in x at time t, a particle initially localized at x D 0) can be written
as P.x; t/ D PL.x; t/C t1�
Œı.x � Qvt/C ı.x � Qvt/� where [7]

PL.x; t/ /
8
<

:

t�1=
 exp
��.x=t1=
/2

� jxj < t1=


t x�
�1 t1=
; jxj < Qvt
0 jxj > Qvt

; (1.22)

where  is a generalized diffusion coefficient. From the evolution of the perturbation
profile, it is possible to infer the exponent ˛ of the thermal conductivity. In fact, in
[24] it has been argued that the exponents ˛, ˇ (the growth rate of the mean square
displacement, �2.t/ D P

n n2ıe.x D n`; t/ / tˇ) and 	 D 1=
 are linked by the
following relationships,

˛ D ˇ � 1 D 2 � 1

	
: (1.23)

In particular, we see that the case 	 D 1=2 corresponds to normal diffusion (ˇ D 1)
and to a normal conductivity (˛ D 0). On the other hand, 	 D 1 corresponds to a
ballistic motion (ˇ D 2) and to a linear divergence of the conductivity (˛ D 1). The
numerically observed value 	 D 3=5 corresponds to an anomalous divergence with
˛ D 1=3.

The spreading of the wings can be accounted by means of a model which allows
for velocity fluctuations [25, 94], which originates from wave dispersion. Assigning
smoother velocity distributions �.v/ leads to broadening of ı side-peaks, but does
not affect the shape and the scaling behavior of the bulk contribution PL.x; t/, which
scales, as predicted in Eq. (1.21), with the exponent 	 D 1=
.

An alternative way to study finite amplitude perturbations is by looking directly
at the behavior of the nonequilibrium correlation function of the energy density [96],

Ce.x; t/ D hıe.y; �/ıe.x C y; t C �/i ; (1.24)

where the angular brackets denote a spatial as well as a temporal average over the
variables y and � , respectively. At t D 0, Ce.x; 0/ is a ı function in space. More-
over, in the microcanonical ensemble, energy conservation implies that the areaR

dxCe.x; t/ is constant at any time. By assuming that Ce.x; t/ is normalized to a unit
area, its behavior is formally equivalent to that of a diffusing probability distribution.
This allows one to determine the scaling behavior of the heat conductivity from the
growth rate of the variance of Ce.x; t/ [96]. As the determination of the variance is
troubled by the fluctuating tails, it is preferable to proceed by looking at the decay
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of the maximum Ce.0; t/, that is statistically more reliable. An interesting relation
between correlation function and anomalous heat transport has been pointed out
recently [69] and is reviewed in Chap. 6.

1.3.4 Relaxation of Spontaneous Fluctuations

The above discussion suggests that scaling concepts can be of great importance
in dealing with thermal fluctuations of conserved quantities. The evolution of a
fluctuation of wavenumber k excited at t D 0 is described by its correlation function.
For 1D models like (1.1) one of such functions is defined by considering the relative
displacements un D qn � n` and defining the collective coordinates through the
discrete transform

U.k; t/ D 1

N

NX

nD1
un exp.�ikn/ : (1.25)

By virtue of the periodic boundaries, the allowed values of the wavenumbers k are
integer multiples of 2�=N. We then define the dynamical structure factor, namely
the square modulus of the temporal Fourier transform of the particle displacements
as

S.k; !/ D ˝ˇ̌
U.k; !/

ˇ̌2˛
: (1.26)

The angular brackets denote an average over an equilibrium ensemble.
For sufficiently small wavenumbers k, the dynamical structure factor S.k; !/

usually displays sharp peaks at finite frequency, whose position is proportional to
the wavenumber !max D cjkj; c is naturally interpreted as the phonon sound speed.
The data in Fig. 1.6 show that long-wavelength correlations, k ! 0, obey dynamical

Fig. 1.6 FPU˛ˇ model:
check of dynamical scaling
for the dynamical structure
factors ˛ D 0:1, N D 4096,
e D 0:5 and four different
wavenumbers k D 2; 4; 8; 16

(in units of 2�=N). The best
estimate of the dynamical
exponent is z D 1:5

-6 -4 -2 0 2 4 6

(ω −ω
 max
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scaling, i.e. there exist a function f such that

S.k; !/ � f
�! � !max

kz

	
: (1.27)

for ! close enough to !max. The associated linewidths are a measure of the
fluctuation’s inverse lifetime. Simulations indicate that these lifetimes scale as k�z

with z � 1:5. Thus the behavior is different from the diffusive one where one would
expect z D 2. As explained above, one may think of this as a further signature of an
underlying superdiffusive process, intermediate between standard Brownian motion
and ballistic propagation.

Other correlation functions can be defined similarly and obey some form of
dynamical scaling. For instance, one could consider the structure factor Se.k; !/
associated with the local energy density en, defined in (1.6). It has a large central
component (as a result of the heat modes) and a ballistic one (following from the
sound modes). If we assume that the low-frequency part is dominated by the heat-
mode scaling, we should have for ! ! 0

Se.k; !/ � g.!=q5=3/ ; (1.28)

with g being a suitable scaling function.
The origin of the nontrivial dynamical exponents is to be traced back to the

nonlinear interaction of long-wavelength fluctuations. For a chain of coupled
anharmonic oscillators with three conserved fields (H, L, and P), a linear theory
would yield two propagating sound modes and one diffusing heat mode, all of
the three diffusively broadened. In contrast, the nonlinear theory predicts that, at
long times, the sound mode correlations satisfy Kardar-Parisi-Zhang scaling, while
the heat mode correlations follow a Lévy-walk scaling. Various spatiotemporal
correlation functions of Fermi-Pasta-Ulam chains and a comparison with the
theoretical predictions can be found in [17].

1.3.5 Temperature Profiles

Anomalous transport manifests itself also in the shape of the steady-state tempera-
ture profiles. For chains in contact with two baths like in Eq. (1.16), one typically
observes that the kinetic temperature profile Tn D hp2ni is distinctly nonlinear also
for small temperature differences�T. For fixed �T, the profile typically satisfies a
“macroscopic” scaling, Tn D T.n=L/ for L ! 1 with T.0/ D TC and T.1/ D T�.3

3Temperature discontinuities may appear at the chain boundaries. This is a manifestation of
the well-known Kapitza resistance, the temperature discontinuity arising when a heat flux is
maintained across an interface among two substances. This discontinuity is the result of a boundary
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In view of the above correspondence with Lèvy processes it may be argued that
this feature too could be described in terms of anomalous diffusing particles in a
finite domain and subject to external sources that steadily inject particles through its
boundaries. The idea is to interpret the local temperature T.x/ as the density P.x/
of suitable random walkers. A general stochastic model can be defined as follows
[61]. Let n denote the position of a discrete-time random walker on a finite one-
dimensional lattice (1 � n � N/. In between consecutive scattering events, the
particle either jumps instantaneously (Lévy flight—LF) or moves with unit velocity
(Lévy walk—LW) over a distance of m sites, that is randomly selected according to
the step-length distribution

�m D q

jmj1C
 ; �0 D 0 ; (1.29)

which is the discrete analogous of the  distribution defined above, with 
 (1 �

 � 2) being the Lévy exponent and q a normalization constant. The process can
be formulated by introducing the vector W � fWn.t/g, where Wn is the probability
for the walker to undergo a scattering event at site n and time t. It satisfies a master
equation, which, for LFs, writes

W.t C 1/ D QW.t/C S; (1.30)

where S accounts for the particles steadily injected from external reservoirs; Q is
a matrix describing the probability of paths connecting pair of sites. In the simple
case of absorbing BC, it is readily seen that Qji is equal to the probability �j�i of a
direct flight, as from Eq. (1.29). In the LW case, the W components in the r.h.s. must
be estimated at different times (depending on the length of the path followed from j
to i) [52]. Since, the stationary solution is the same in both cases, this difference is
immaterial, and is easier to refer to LFs, since Eq. (1.30) can be solved iteratively.
Note that in the LF case, Wi is equal to the density Pi of particles at site i, while for
the LW, Pi includes those particles that are transiting at the ith site during a ballistic
step.

The source term is fixed by assuming that the reservoir is a semi-infinite lattice,
homogeneously filled by Lévy walkers of the same type as those residing in the
domain. This amounts to defining Sm D s m�
, where s measures the density of
particles and m the distance from the reservoir. It is easy to verify that in the presence
of two identical reservoirs at the lattice ends, the density is constant (for any N),
showing that our definition satisfies a kind of “zeroth principle”, as it should.

In the nonequilibrium case, it is not necessary to deal with two reservoirs. The
linearity of the problem teaches us that it is sufficient to study the case of a single
reservoir, that we assume to be in n D 0: the effect of, say, a second one on the

resistance, that is explained as a “phonon mismatch” between the two media: see [2] for a
discussion of the class of models at hand.
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Fig. 1.7 Temperature profile T.x/ of the oscillator chain with conservative noise with free
boundary condition and � D 	 D 1 (solid line) and density profile P.x/ for the master equation
with reflection coefficient r D �0:1 (dashed line)

opposite side can be accounted for by a suitable linear combination. For large-
enough N values, the steady-state density depends on n and N through the combined
variable x D n=N, i.e. P.x/ D Pn. As seen in Fig. 1.7, P vanishes for x ! 1 because
on that side the absorbing boundary is not accompanied by an incoming flux of
particles.

Altogether, upon identifying the particle density with the temperature, the profile
can be viewed as a stationary solution of the stationary Fractional Diffusion
Equation (FDE)

D

x P D ��.x/ (1.31)

on the interval 0 � x � 1 (see e.g. [98] and references therein for the definition of
the integral operator D


x ). The source term �.x/ must be chosen so as to describe
the effect of the external reservoirs. A condition to be fulfilled is that two identical
reservoirs yield a homogeneous state T.x/ D const: Using the integral definition of
D


x [98], it can be shown that this happens for �.x/ D �eq.x/ � x�
 C .1 � x/�

(we, henceforth, ignore irrelevant proportionality constants). It is thus natural to
associate �.x/ D x�
 to the nonequilibrium case with a single source in x D 0. The
numerical solution of the FDE agrees perfectly with the stationary solution of the
discrete model, thus showing that long-ranged sources are needed to reproduce the
profiles in the continuum limit.

A distinctive feature of the profile is that it is not analytic at the boundaries.
Indeed, the data for x ! 0 are well fitted by

P.x/ D P.0/C Cx
m (1.32)

(the same behavior occurs for x ! 1, as the profiles are symmetric). In view of the
similarity with the shape of the liquid surface close to a wall, we metaphorically term

m as the meniscus exponent. Such nonanalytic behavior is peculiar of anomalous
kinetics, as opposed to the familiar linear shape in standard diffusion. For the above
discussed case of absorbing BC, we find that 
m � 
=2. This value is consistent
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with the singular behavior of the eigenfunctions of D

x [98]. In the general case,

by assuming a linear dependence of 
m on both r, and 
, it has been conjectured
that [61]


m D 


2
C r

�

2

� 1
	
: (1.33)

This expression is consistent with the 
m D ˛=2 value found above for r D 0.
Moreover, for ˛ D 2 (normal diffusion) it yields 
m D 1, as it should.

Let us now compare this probability distribution of the above process with
the temperature profiles in one-dimensional systems displaying anomalous energy
transport. It is convenient to refer to a chain of harmonic oscillators coupled with
two Langevin heat baths (with a damping constant �), and with random collisions
that exchange the velocities of neighboring particles with a rate 	 [23]. On the one
hand, this model has the advantage of allowing for an exact solution of the associated
Fokker-Planck equation [67]; on the other hand it is closely related to a model that
has been proved to display a Lévy-type dynamics [4].

In Fig. 1.7 we compare the temperature profile T.x/ (suitably shifted and
rescaled) of the heat-conduction model [67] with free BC and the solution of
our discrete Lévy model with a reflection coefficient r D �0:1. Since they are
essentially indistinguishable, we can conclude that the Lévy interpretation does not
only allow explaining the anomalous scaling of heat conductivity [15], but also the
peculiar shape of T.x/. The weird (negative) value of r can be justified a posteriori
by introducing two families of walkers and interpreting the reflection as a change
of family. The relevant quantity to look at is the difference between the densities of
the two different families. The reason why it is necessary to invoke the presence of
such two families and their physical meaning in the context of heat conductivity is
an open problem.

In the case of a chain with fixed BC, the temperature profile T.x/ can be
computed analytically [67] and it is thereby found that 
m D 1=2. By inserting
this value in Eq. (1.33) and recalling that 
 D 3=2, we find that r D 1, i.e. the fixed-
BC T.x/ corresponds to the case of perfectly reflecting barriers. Unfortunately, this
(physically reasonable) result could not be tested quantitatively. Indeed, it turns out
that finite-size corrections become increasingly important upon increasing r, and for
r close to 1, it is practically impossible to achieve convergence to the steady-state.

The description of the steady state in terms of Lévy walk has been further
investigated in [27]. The authors calculate exactly the average heat current, the
large deviation function of its fluctuations, and the temperature profile in the steady
state. The current is nonlocally connected to the temperature gradient. Also, all
the cumulants of the current fluctuations have the same system-size dependence
in the open geometry as those of deterministic models like the HPG. The authors
investigated also the case of a ring geometry and argued that a size-dependent cutoff
time is necessary for the Lévy-walk model to behave like in the deterministic case.
This modification does not affect the results on transport in the open geometry for
large enough system sizes.
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1.4 Universality and Theoretical Approaches

In view of their common physical origin, it is expected that the exponents describing
the different processes will be related to each other by some “hyperscaling
relations”. Their value should be ultimately dictated by the dynamical scaling of the
underlying dynamics. Moreover, one can hope that they are largely independent of
the microscopic details, thus allowing for a classification of anomalous behavior in
terms of “universality classes”. This crucial question is connected to the predictive
power of simplified models and to the possibility of applying theoretical results to
real low-dimensional materials.

1.4.1 Methods

Various theoretical approaches to account for the observed phenomenology have
been developed and implemented. In the rest of the volume they will be exposed in
detail; here we limit ourselves to a brief description. The methods discussed are

1. Fluctuating hydrodynamics approach: here the models are described in terms
of the random fields of deviations of the conserved quantities with respect
to their stationary values. The role of fluctuations is taken into account by
renormalization group or some kind of self-consistent theory.

2. Mode-coupling theory: this is closely related to the above, as it amounts
to solving (self-consistently) some approximate equations for the correlation
functions of the fluctuating random fields.

3. Kinetic theory: it is based on the familiar approach to phonon transport by means
of the Boltzmann equation.

4. Exact solution of specific models: typically in this case the original microscopic
Hamiltonian dynamics is replaced by some suitable stochastic one which can be
treated by probabilistic methods.

A sound theoretical basis for the idea that the above described anomalies
are generic and universal for all momentum-conserving system was put forward
in [77]. The authors treated the case of a fluctuating d-dimensional fluid and
applied renormalization group techniques to evaluate the contribution of noisy
terms to transport coefficients. The calculation predicts that the thermal conductivity
exponent is ˛ D .2 � d/=.2 C d/. From the arguments exposed above, it follows
that in 1D the exponents are

˛ D ı D 1

3
; ˇ D 4

3
; z D 3

2
: (1.34)

According to this approach, any possible additional term in the noisy Navier-Stokes
equation yields irrelevant corrections in the renormalization procedure, meaning
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that the above exponents are model independent, provided the basic conservation
laws are respected.

Next we give a flavour of one of the other approaches: the Mode-Coupling
Theory (MCT). This type of theories has been traditionally invoked to estimate
long-time tails of fluids [82] and to describe the glass transition [87]. In the simplest
version, it involves the normalized correlator of the particle displacement [see
Eq.(1.25)], where the discrete wavenumber k has been turned to the continuous
variable q)

G.q; t/ D hU�.q; t/U.q; 0/i
hjU.q/j2i :

G.q; t/ is akin to the density–density correlator, an observable routinely used in
condensed-matter physics. The main idea is to write a set of approximate equations
for G.q; t/ that must be solved self-consistently. For the problem at hand, the
simplest version of the theory amounts to consider the equations [60, 86]

RG.q; t/C "

Z t

0

� .q; t � s/ PG.q; s/ ds C !2.q/G.q; t/ D 0 ; (1.35)

where the memory kernel � .q; t/ is proportional to hF .q; t/F .q; 0/i, with F .q/
being the nonlinear part of the fluctuating force between particles. Equation (1.35)
is derived within the well-known Mori–Zwanzig projection approach [53]. It must
be solved with the initial conditions G.q; 0/ D 1 and PG.q; 0/ D 0.

The mode-coupling approach basically amounts to replacing the exact memory
function � with an approximate one, where higher-orders correlators are written
in terms of G.q; t/. In the generic case, in which k3 is different from zero [see
Eq. (1.11)], the lowest-order mode coupling approximation of the memory kernel
turns out to be [60, 86]

� .q; t/ D !2.q/
2�

N

X

pCp0�qD0;˙�
G. p; t/G. p0; t/ : (1.36)

Here p and p0 range over the whole Brillouin zone (from �� to � in our units) . This
yields a closed system of nonlinear integro-differential equations. Both the coupling
constant " and the frequency !.q/ are temperature-dependent input parameters,
which should be computed independently by numerical simulations or approximate
analytical estimates. For the present purposes it is sufficient to restrict ourselves
to considering their bare values, obtained in the harmonic approximation. In the
adopted dimensionless units they read " D 3k23kBT=2� and !.q/ D 2j sin q

2
j. Of

course, the actual renormalized values are needed for a quantitative comparison
with specific models. The long-time behavior of G can be determined by looking
for a solution of the form

G.q; t/ D C.q; t/ei!.q/t C c:c: (1.37)
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with PG � !G. It can thus be shown [19, 21] that, for small q-values and long
times C.q; t/ D g.

p
"tq3=2/ i.e. z D 3=2 in agreement with the above mentioned

numerics. Furthermore, in the limit
p
"tq3=2 ! 0 one can explicitly evaluate the

functional form of g, obtaining

C.q; t/ D 1

2
exp

�
�Dq2jtj 43

	
; (1.38)

where D is a suitable constant of order unity. The correlation displays a “compressed
exponential” behavior in this time range. This also means that the lineshapes
of the structure factors S.q; !/ are non-Lorentzian but rather exhibit an unusual
faster power-law decay .! � !max/

�7=3 around their maximum. Upon inserting this
scaling result into the definition of the heat flux, one eventually concludes that the
conductivity exponent is ˛ D 1=3, in agreement with (1.34).

A more refined theory requires considering the mutual interaction among all
the hydrodynamic modes associated with the conservation laws of the system at
hand. The resulting calculations are considerably more complicated but they can be
worked out [88, 89]. As a result, the same values of the scaling exponents are found,
but also a more comprehensive understanding is achieved (see Chap. 3 for a detailed
account).

1.4.2 Connection with the Interface Problem

Relevant theoretical insight comes from the link with one of the most important
equations in nonequilibrium statistical physics, the Kardar-Parisi-Zhang (KPZ)
equation. This is a nonlinear stochastic Langevin equation which was originally
introduced in the (seemingly unrelated) context of surface growth [3]. Let us first
consider the fluctuating Burgers equation for the random field �.x; t/

@�

@t
D �

2

@�2

@x
C D

@2�

@x2
C @

@x
; (1.39)

where .x; t/ represents a Gaussian white noise with h.x; t/.x0; t0/i D 2Dı.x �
x0/ı.t�t0/. As it is well-known, Eq. (1.39) can be transformed into the KPZ equation
by introducing the “height function” h such that � D @h

@x ,

@h

@t
D �

2

�
@h

@x

�2
C D

@2h

@x2
C : (1.40)

It has been shown [89] that the mode-coupling approximation for the correlator of �
obeying (1.39) is basically identical to the equation for C described in the previous
paragraph. Thus one may argue that the dynamical properties are those of the KPZ
equation in one dimension. Loosely speaking, we can represent the displacement
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Fig. 1.8 Evolution of the
variance (1.41) for the FPU
˛ˇ chain with e D 0:5

˛ D 0:1 and for increasing
chain lengths N (bottom to
top solid lines). The dashed
line is the expected KPZ
growth rate
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field as the superposition of counterpropagating plane waves modulated by an
envelope that is ruled, at large scales, by Eq. (1.40).

In order to illustrate this, we have performed a typical “KPZ numerical experi-
ment” [3] for the for the FPU ˛ˇ chain. In practice, we monitored

w2.t;N/ D
*
1

N

X

n

h2n � .
1

N

X

n

hn/
2

+
(1.41)

where hn.t/ D qn.t/ � qn.0/, qn.0/ is an equilibrium configuration and the angular
brackets denote an average over an ensemble of different trajectories. The results are
reported in Fig. 1.8. The only difference with respect to the usual setup is that here
the square-width is plotted only at times t multiples of L=c, where c is the effective
sound speed. These are the only moments, when the effect of counterpropagating
sound waves cancel out, offering the chance to identify a KPZ-like behavior. In
fact, one can see that the growth in Fig. 1.8 is compatible with the expected KPZ
exponent 2/3 (actually, a bit smaller) followed by a saturation due to the finite size
of the chain. A more rigorous discussion of the above topics can be found in Chap. 3.

1.4.3 Other Universality Classes

In the previous section we argued that the scaling properties of anomalous transport
are independent of the microscopic details and correspond to those of the KPZ
universality class. One might wonder whether other classes exist and under which
conditions they can be observed. A reasonable argument, that can be invoked to
delimit the KPZ universality class, is the symmetry of the interaction potential with
respect to the equilibrium position. With reference to the MCT, one realizes that the
symmetry of the fluctuations implies that the quadratic kernel in (1.36) should be
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replaced by a cubic one,4 thus yielding different values of the exponents [21]. In the
language of KPZ interfaces, whenever the coefficient of the nonlinear term vanishes,
the evolution equation reduces to the Edwards-Wilkinson equation that is indeed
characterized by different scaling exponents. The argument can be made more
precise in the framework of the full hydrodynamic theory [88, 89]. There, different
dynamical exponents can arise if the coupling between some modes vanishes (we
refer again the reader to Chap. 3 for a detailed discussion). A thermodynamic
interpretation of this difference is given in [57, 58].

The FPU model is a natural instance to test this working hypothesis. In fact,
systematically larger values of the scaling exponent ˛ have been reported for the
FPU-ˇ case where the cubic term of the potential is absent [65]. The existence of
two universality classes for thermal transport in one-dimensional oscillator systems
has been also demonstrated in [55], where it was further proposed that the criterion
for being out of the KPZ class is the condition 	 D cP=cV D 1, where cP and cV are
the specific heat capacities at constant pressure and volume, respectively.

The scenario can be further illustrated by considering a modification of the HPG
model, the so-called Hard-Point Chain (HPC) [20], characterized by a square-well
potential in the relative distances

V.y/ D


0 0 < y < a
1 otherwise

: (1.42)

The infinite barriers at y D a imply an elastic “rebounding” of particles as if they
were linked by an inextensible and massless string of fixed length a. The string
has no effect on the motion, unless it reaches its maximal length, when it exerts
a restoring force that tends to rebound the particles one against the other. The
potential (1.42) introduces the physical distance a as a parameter of the model.

As it is well known, the thermodynamics of models like the HPC can be solved
exactly and the equation of state is found to be

L D N

�
1

ˇP
� a

exp.ˇPa/� 1

�

where P is the pressure of the HPC. Note that, for large values of a, the equation of
state is the same of an HPC i.e. the one of an ideal gas in 1D. The important point
here is that we can choose the parameter a such as P D 0. In this particular point
the interaction is symmetric (L=N D a=2).

A peculiarity of the HPC model is that energy transfer occurs also at rebounding
“collisions” at distance a, this means that besides the contribution defined by
Eq. (1.10) one should include a term j0i as from Eq. (1.9). However, one cannot

4In fact, the quadratic kernel corresponds to a quadratic force originating from the leading cubic
nonlinearity of any asymmetric interaction potential, while a quartic leading nonlinearity of a
symmetric interaction potential yields a cubic kernel (force).
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proceed directly, since the force is singular, there. By defining the force between two
particles as the momentum difference induced by a collision, j0i can be written as the
kinetic energy variation times the actual distance a, i.e. j0i D ami.u

02
i �u2i /=2, divided

by a suitable time-interval �t. In order to get rid of the microscopic fluctuations, it
is necessary to consider a sufficiently long �t, so as to include a large number of
collisions. Since the number of collisions is proportional to the system size, it is
only in long systems that fluctuations can be removed without spoiling the slow
dynamics of the heat flux. Equilibrium simulations show that for L=N D a=2 the
leading contribution to the heat flux is given by the term j0i which exhibits a low-
frequency divergence with an exponent ı D 0:45, that is not only definitely larger
than 1/3 (the value predicted for the KPZ class), but is also fairly close to the results
found for the FPU-ˇ model [65].

In out-of-equilibrium simulations, a compatible exponent ˛ D 0:4 has been
measured [81]. Those values should be compared with ˛ D 1=2, the prediction of
mode-coupling theory, thus supporting the conjecture that the case P D 0 belongs
to a universality class different from KPZ.

To conclude this section, let us mention that further support to this scenario
comes from a stochastic model of a chain of harmonic oscillators, subject to
momentum and energy-conserving noise [4]. Indeed, one can prove that the
dynamical exponents are different from the KPZ class, e.g. ı D 1=2 [4] and
˛ D 1=2 [67]. Details about this class of models can be found in Chap. 5. The
qualitative explanation is that, as the stochastic collisions occur independently of
the actual positions, the effective interaction among particles is symmetric and thus
equivalent to the P D 0 case. Notably, this remains true even if the harmonic
potential is replaced by an anharmonic one, like the FPU-˛ˇ [5]. Finally, the
application of kinetic theories to the ˇ-FPU model [70, 78, 80] yields a non-KPZ
behavior, ˛ D 2=5. We refer the reader to Chap. 4 for a detailed account.

1.4.4 Comparison with Simulations and Experiments

The theoretical predictions have been intensively investigated in the recent literature.
A direct validation by numerical simulations is, to some extent, challenging and has
been debated through the years [22]. Generally speaking, the available numerical
estimates of ˛ and ı may range between 0.25 and 0.44 [64]. As a matter of fact,
even in the most favorable cases of computationally efficient models as the HPG,
finite-size corrections to scaling are sizeable. In this case, ˛-values as diverse as
0.33 [40] and 0.25 [10] for comparable parameter choices have been reported. On
the other hand, a numerically convincing confirmation of the ˛ D 1=3 prediction
comes from the diffusion of perturbations [15]. We refer to Chap. 6 for some detailed
numerics.

The ultimate goal would be of course the validation of the universality hypothesis
in more realistic systems, possibly characterized by more than one degree of
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freedom per lattice site. The first remarkable attempt was the application to the
vibrational dynamics of individual single-walled carbon nanotubes, which can be
in many respect considered as one-dimensional objects. Signature of anomalous
thermal transport was first reported in molecular dynamics simulations in [72]. Note
that this type of simulations involve complicated three-body interactions among
carbon atoms, thus supporting the claim that toy models like ours can indeed capture
some general features. We refer the reader to Chap. 7 for a critical discussion of
molecular dynamics results on carbon-based material. Chapter 8 will report some
experimental data on nanotubes and nanowires and discuss the current state of the
art.

1.5 The Coupled Rotors Model

As discussed in the previous sections, one-dimensional anharmonic chains generi-
cally display anomalous transport properties. A prominent exception is the coupled
rotors chain described by the equation of motion

Pqn D pn ; Ppn D sin.qnC1 � qn/� sin.qn � qn�1/ : (1.43)

The model is sometime referred to as the Hamiltonian version of the XY spin chain.
The energy flux is jen D hpn sin.qnC1 � qn/i. As the interaction depends only on the
angle differences, angular momentum is conserved and one may expect anomalous
transport to occur. Nevertheless, molecular dynamics simulations have convincingly
demonstrated normal diffusion [36, 38, 92].

There are two complementary views to account for this difference. In the general
perspective of nonlinear fluctuating hydrodynamics, the chain “length” L defined
as L D P

n.qnC1 � qn/ is not even well defined, because of the phase slips of
˙2� , so the corresponding evolution equation breaks down and normal transport is
eventually expected. From a dynamical point of view, one can invoke that normal
transport sets in due to the spontaneous formation of local excitations, the so-
called rotobreathers, that behave like scattering centers [33]. Phase slips (jumps
over the energy barrier), on their side, may effectively act as localized random
kicks, that contribute to scatter the low-frequency modes, thus leading to a finite
conductivity. In order to test the validity of this conjecture, one can study the
temperature dependence of � for low temperatures T, when jumps across barriers
become increasingly rare. Numerics indicates that the thermal conductivity behaves
as � � exp.=T/ with  � 1:2. The same kind of dependence on T (although with
 � 2) is found for the average escape time � across the potential barrier: this can
be explained by assuming that the phase slips are the results of activation processes.

An important extension is the 2D case, i.e. rotors coupled to their neighbors on
a square lattice, akin to the celebrated XY-model. As it is well known, the latter is
characterized by the presence of the so called Kosterlitz-Thouless-Berezinskii phase
transition at a temperature TKTB, between a disordered high-temperature phase and a
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low-temperature one, where vortices condensate. It is likely that transport properties
are qualitatively different in the two phases. Numerical simulations [18] performed
on a finite lattice indeed show that they are drastically different in the high-
temperature and in the low-temperature phases. In particular, thermal conductivity
is finite in the former case, while in the latter it does not converge up to lattice sizes
of order 104. In the region where vorticity is negligible (T < 0:5) the available
data suggest a logarithmic divergence with the system size, analogous to the one
observed for coupled oscillators (see next section). Close to TKTB, where a sizable
density of bounded vortex pairs are thermally excited, numerical data still suggests
a divergence, but the precise law has not be reliably estimated.

1.6 Two-Dimensional Lattices

Heat conduction in 2D models of anharmonic oscillators coupled through
momentum-conserving interactions is expected to exhibit different properties from
those of 1D systems. In fact, extension of the arguments discussed in the previous
sections predicts a logarithmic divergence of � with the system size N at variance
with the power-law predicted for the 1D case. Consideration of this case is not
only for completeness of the theoretical framework, but is also of great interest for
almost-2D materials, like graphene, that will be treated in the Chaps. 7 and 9.

Although the theory in this case if far less developed, there are several numerical
evidences in favor of such logarithmic divergence. In [68], a square lattice of
oscillators interacting through the FPU-ˇ (see Eq. (1.11), with k3 D 0) or the
Lennard-Jones [see Eq. (1.13)] potentials, was investigated by means of both
equilibrium and nonequilibrium simulations. The models are formulated in terms
of two-dimensional vector displacements uij and velocities and Puij, defined on a
square lattice containing Nx � Ny atoms of equal masses m and nearest-neighbor
interactions. Periodic and fixed boundary conditions have been adopted in the
direction perpendicular (y) and parallel (x) to the thermal gradient, respectively.
Simulations for different lattice sizes have been performed by keeping the ratio
Ny=Nx constant and not too small to observe genuine 2D features (in [68] Ny=Nx D
1=2 was chosen).

The simulations reveal several hallmarks of anomalous behavior: temperature
profiles display deviations from the linear shape predicted by Fourier law and the
size dependence of the thermal conductivity is well-fitted by a logarithmic law

� D A C B log Nx ; (1.44)

with A and B being two unknown constants. A consistent indication comes from the
evaluation of the Green-Kubo integrand in the microcanonical ensemble. Indeed,
the energy-current autocorrelation is compatible with a decay 1=t at large times.

Despite these first indications, the numerics turns out to be very difficult, which is
not surprising in view of the very weak form of the anomaly, peculiar of the 2D case.
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As a matter of fact very robust finite-size effects are observed in the calculations for
other lattices, which well exemplify the difficulties in observing the true asymptotic
behavior with affordable computational resources [90].

Another interesting issue concerns dimensional crossover, namely how the
divergence law of the thermal conductivity will change from the 2D class to 1D
class as Ny=Nx decreases. This issue has been studied for the two-dimensional FPU
lattice in [93]. We refer to Chap. 6 for a further detailed discussion.

1.7 Integrable Nonlinear Systems

The harmonic crystal behaves as an ideal conductor, because its dynamics can
be decomposed into the superposition of independent “channels”. This peculiarity
can be generalized to the broader context of integrable nonlinear systems. They
are mostly one-dimensional models characterized by the presence of “mathe-
matical solitons”, whose stability is determined by the interplay of dispersion
and nonlinearity. This interplay is expressed by the existence of a macroscopic
number of conservation laws, constraining the dynamical evolution. Intuitively, the
existence of freely travelling solitons is expected to yield ballistic transport, i.e. an
infinite conductivity. From the point of view of the Green-Kubo formula, this ideal
conducting behavior is reflected by the existence of a nonzero flux autocorrelation at
arbitrarily large times. This, in turn, implies that the finite-size conductivity diverges
linearly with the system size.

Although integrable models are, in principle, exactly solvable, the actual com-
putation of dynamic correlations is technically involved. A more straightforward
approach is nevertheless available to evaluate the asymptotic value of the current
autocorrelation. This is accomplished by means of an inequality due to Mazur
[73] that, for a generic observable A , (with hA i D 0, where h: : :i denotes the
equilibrium thermodynamic average) reads

lim
�!1

1

�

Z �

0

hA .t/A .0/i dt 	
X

n

hAQni2
hQ2

ni ; (1.45)

where Qn denote a set of conserved and mutually orthogonal quantities,
(hQnQmi D hQ2

niın;m).
In the present context the most relevant example is the equal-masses Toda chain

with periodic boundary conditions, defined, in reduced units, by the Hamiltonian

H D
NX

nD1

�
p2n
2

C exp.�rn/

�
; (1.46)

where rn D qnC1 � qn is the relative position of neighboring particles. The model
is completely integrable, since it admits N independent constants of the motion
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[34, 43]. Lower bounds on the long time value of hJ.t/J.0/i can be calculated
through the inequality (1.45) [99]. The resulting lower bound to the conductivity is
found to increase monotonously with the temperature. At low T, the growth is linear
with a slope comparable to the density of solitons Ns=N D .ln 2=�2/T. This trend
is interpreted as an evidence for the increasing contribution of thermally excited
nonlinear modes to ballistic transport.

To conclude, let us also mention that Mazur-type of inequalities have been
recently used as a theoretical basis for the study of thermoelectric coefficients. This
is discussed in Chap. 10 of the present volume.

1.8 Coupled Transport

Up to this point we have restricted the discussion to models where just one quantity,
the energy, is exchanged with external reservoirs and transported across the system.
In general, however, the dynamics can be characterized by more than one conserved
quantity. In such cases, it is natural to expect the emergence of coupled transport
phenomena, in the sense of ordinary linear irreversible thermodynamics. Works on
this problem are relatively scarce [6, 39, 54, 75]. Interest in this field has been revived
by recent works on thermoelectric phenomena [12, 13, 84] in the hope of identifying
dynamical mechanisms that could enhance the efficiency of thermoelectric energy
conversion. This will be treated in detail in Chap. 10.

Here, we briefly discuss two models: a chain of coupled rotors and the discrete
nonlinear Schrödinger equation, where the second conserved quantity is the momen-
tum and the norm (number of particles), respectively.

1.8.1 Coupled Rotors

The evolution equation defined in (1.43) must be augmented to include the exchange
of momentum with the external reservoirs,

Ppn D sin.qnC1 � qn/� sin.qn � qn�1/ (1.47)

Cı1n

�
	.FC � p1/C p

2	TC C
	

C ı1N

�
	.F� � pN/C p

2	T� �
	

where F˙ and T˙ denote the torque applied to the chain boundary and the
corresponding temperature, respectively; 	 is the coupling strength with the external
baths and ˙ is a Gaussian white noise with unit variance. The effect of external
forces on the Hamiltonian XY model has been preliminary addressed in [31, 46, 49].

As discussed in Sect. 1.5, (angular) momentum is conserved and one can, in fact,
define the corresponding flux as jpn D sin.qnC1 � qn/. A chain of rotors is perhaps
the simplest model where one can exert a gradient of forces that couples to heat
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transport, giving rise to nontrivial phenomena, even though the transport itself is
normal. For FC D F�, all the oscillators rotate with the same frequency ! D F,
no matter which force is applied: no momentum flux is generated. In fact, what
matters is the difference between the forces applied at the two extrema of the chain.
Therefore, from now on we consider the case of zero-average force, i.e. FC D �F�.
In the presence of such a gradient of forces, the oscillators may rotate with different
frequencies and, as a result, a coupling between angular momentum and energy
transport may set in. In principle, one could discuss the same setup for general
chains of kinetic oscillators, as (linear) momentum is conserved in that context too.
However, nothing interesting is expected to arise. For a binding potential, like in
the FPU model, the presence of an external force is akin to the introduction of a
homogeneous, either positive or negative, pressure all along the chain. In fact, the
pressure P is, by definition, equal to the equilibrium average of the momentum flux,
P D h jpi (at equilibrium, the r.h.s. is independent of n). On the other hand, if the
potential is not binding [e.g., the Lennard-Jones chain (1.13)] and the applied force
is equivalent to a negative pressure, the system would break apart.

In the presence of two fluxes, the linear response theory implies that they must
satisfy the equations [84] (angular brackets denote an ensemble, or equivalently, a
time average, assuming ergodicity)

h jpi D �Lpp
d.ˇ
/

dy
C Lpe

dˇ

dy
(1.48)

h jei D �Lep
d.ˇ
/

dy
C Lee

dˇ

dy
;

where y D n=N, ˇ is the inverse temperature 1=T (in units of the Boltzmann
constant) and 
 is the chemical potential, which, in the case of the coupled
rotors, coincides with the average angular frequency !n D hpni. Finally, L is the
symmetric, positive definite, 2 � 2 Onsager matrix. If Lep D 0, the two transport
processes are uncoupled.

In the case of the rotor chain, it is important to realize that a correct definition
of the kinetic temperature requires subtracting the coherent contribution due to the
nonzero angular velocity, i.e.

Tn D h. pn � !n/
2i :

The effect of coupling between energy and momentum transport is better understood
by considering a setup where the two thermal baths operate at the same temperature
T. Because of the flux of momentum, the temperature profile deviates from the value
imposed at the boundaries. In Fig. 1.9 we show the results for T D 0:5 and F D 1:5

and two different system sizes. Notably, the temperature profile displays a peak in
the central region [46], where it reaches a value around 1.2; the average frequency
varies nonuniformly across the sample with a steep region in correspondence of the
central hot spot. At the same time, the energy flux je is zero, so that the anomalous
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Fig. 1.9 Stationary profile of the temperature (upper panel) and of the average frequency (lower
panel) for T.0/ D T.1/ D 0:5, F D 1:5, and 	 D 1; y D n=N. The dashed and solid curves
correspond to N D 100, and 200, respectively

behavior of the temperature profile is entirely due to the coupling with the nonzero
momentum flux.

This behavior can be traced back to the existence of a (zero-temperature)
boundary-induced transition. In fact, for T D 0, there exists a critical torsion Fc D
1=	 [49] such that for F < Fc the ground state is a twisted fully-synchronized state,
whereby each element is at rest and is characterized by a constant phase gradient.
Here, Tn D 0 throughout the whole lattice. For F > Fc the fully synchronized state
turns into a chaotic asynchronous dynamics with !1 D F D �!N . Remarkably,
even though both heat baths operate at zero temperature and the equations are
deterministic and dissipative, the temperature in the middle raises to a finite value
(see Fig. 1.10) even in the thermodynamic limit.

The phenomenon can be interpreted as the onset of an interface (the hot region)
separating two different phases: the oscillators rotating with a frequency F (on the
left) from those rotating with a frequency �F (on the right). The phenomenon
is all the way more interesting in view of the anomalous scaling of the interface
width with the system size (it grows as N1=2, see Fig. 1.10) and its robustness (it is
independent of the value of the torsion F, provided it is larger than the critical value
Fc [49]).

Accordingly, the interface is neither characterized by a finite width nor it is
extensive. A more careful inspection reveals that the N1=2 width is due to a spatial
Brownian-like behavior of an instantaneously much thinner interface. Nevertheless,
even the instantaneous interface extends over a diverging number of sites, of
order N1=5, thus leaving the anomaly fully in place. Such a state can neither be
predicted within a linear-response type of theory, nor traced back to some underlying
equilibrium transition. Even more remarkably, it constitutes an example of a highly
inhomogeneous, unusual chaotic regime. Indeed, while the fractal dimension is
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Fig. 1.10 Stationary profile of the temperature (upper panel) and of the average frequency (lower
panel) for T.0/ D T.1/ D 0:, F D 1:05, and 	 D 1; z D .n � N=2/=N1=2 . The various curves
correspond to N D 200, 400, 800, 1600, and 3200

extensive (i.e. proportional to the number of oscillators) the Kolmogorov-Sinai (KS)
entropy is not: it increases only as N1=2. The KS entropy measures the diversity of
the “ground state” non-equilibrium configurations that are compatible with the given
thermal baths. Its lower-than-linear increase with N implies that we are not in the
presence of a macroscopic degeneracy, as in spin glasses.

The anomaly of the regime is finally reinforced by the scaling behavior of the
momentum flux, which scales as N�1=5. A theoretical explanation of this behavior
is still missing. All of these anomalies disappear as soon as the temperature at the
boundaries is selected to be strictly larger than zero. In particular, the width of the
hot spot suddenly becomes extensive and the scaling of the momentum is normal
(jp ' 1=N). The nonmonotonous behavior of the temperature is nevertheless a
nontrivial consequence of the coupling between heat and momentum transport.

1.8.2 The Discrete Nonlinear Schrödinger Equation

The above discussed non-equilibrium transition is not a peculiarity of the rotor
model. A similar scenario can be observed also in the Discrete Nonlinear
Schrödinger (DNLS) equation [30, 51], a model with important applications in
many domains of physics. In one dimension, the DNLS Hamiltonian is

H D 1

4

NX

nD1

�
p2n C q2n

�2 C
N�1X

nD1
. pnpnC1 C qnqnC1/ ; (1.49)
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where the sum runs over the N sites of the chain. The sign of the quartic term
is positive, while the sign of the hopping term is irrelevant, due to the symmetry
associated with the canonical (gauge) transformation zn ! znei�n (where zn �
. pnC{qn/=

p
2 denotes the amplitude of the wave function). The equations of motion

are

iPzn D �znC1 � zn�1 � 2jznj2zn (1.50)

with n D 1; 
 
 
 ;N, and fixed boundary conditions (z0 D zNC1 D 0). The model has
two conserved quantities, the energy and the total norm (or total number of particles)

A D
NX

nD1
. p2n C q2n/ D

NX

nD1
jznj2 ; (1.51)

so that it is a natural candidate for the study of coupled transport.
Since the Hamiltonian is not the sum of a kinetic and potential energy, the thermal

baths cannot be described by standard Langevin equations. An effective strategy
has been proposed in [48]. Here below we report the evolution equation for the first
oscillator, in contact with a thermal bath at temperature TC and with a chemical
potential 
C (a similar equation holds for the last particle at site N)

Pp1 D �. p21 C q21/q1 � q2 � 	
�
. p21 C q21/p1 C p2 � 
Cp1

� C p
2	TC� 0

1 (1.52)

Pq1 D . p21 C q21/p1 C p2 � 	 �
. p21 C q21/q1 C q2 � 
Cq1

� C p
2	TC� 00

1 ;

where 	 measures the coupling strength with the thermal bath, while � 0
1 and � 00

1

define two independent white noises with unit variance. It can be easily seen that the
deterministic components of the thermostat, are gradient terms. As a result, in the
absence of thermal noise, they would drive the system towards a state characterized
by a minimal .H � 
A/. Notice the nonlinear structure of the dissipation terms in
Eq. (1.52).

An additional problem of the DNLS model is the determination of the tempera-
ture, as one cannot rely on the usual kinetic definition (this is again a consequence
of the nonseparable Hamiltonian). An operative definition can be, however, given
by adopting the microcanonical approach [83], i.e. by invoking the thermodynamic
relationships,

T�1 D @S

@H
;




T
D �@S

@A
;

where S is the entropy. As shown in [35, 47], the partial derivative @S =@Ci (i D
1; 2, with C1 D H and C2 D A) can be computed by exploiting the fact that Ci is a
conserved quantity,

@S

@Ci
D


Wk�k
rCi 
 �

r 

�

�

k�kW

��
(1.53)
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where h i stands for the microcanonical average,

� D rC1
krC1k � .rC1 
 rC2/rC2

krC1kkrC2k2 (1.54)

W2 D
2NX

m;nD1
m<n

�
@C1
@xm

@C2
@xm

� @C1
@xn

@C2
@xm

�2
;

and x2n D qn, x2nC1 D pn. The resulting definitions of T and 
 have the unpleasant
property of being nonlocal: numerical simulations, however, show that they give
meaningful results even when they are implemented for relatively short subchains.

As for the fluxes, they are naturally defined from the continuity equations for
energy and norm

jen D Pqnqn�1 C Ppnqn�1 jpn D qnpn�1 � pnqn�1 ; (1.55)

Notice that for the sake of simplicity we still use the same notations as in
the previous setup although here jpn denotes the flux of norm/mass rather than
momentum.

If one sets TC D T� D 0, as in the XY model, the control parameter, i.e. the
driving force, is given by ı
 D j
� �
Cj=2 [48]. When ı
 is larger than a critical
value (that here depends on A), a bumpy temperature profile spontaneously emerges.
As shown in Fig. 1.11, the left-right symmetry of the profile found in the XY model
is lost, but the width of the peak still scales as N1=2. A second crucial difference is the
scaling behavior of the norm-flux, which decreases as N�2=5 instead of N�1=5. This
suggests that more than one universality class is presumably present: the symmetry
of the profile might play a crucial role.

Fig. 1.11 Temperature
profiles of the DNLS equation
for 2000, 4000, 8000 and
T D 0, 
C D 2 and

� D 5; z D .n � On/=pN,
where On is the site with the
highest temperature

0 20 40 60 80z
0
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2

3

4

5

T



32 S. Lepri et al.

In coupled transport, each conservation law implies the presence of a correspond-
ing thermodynamic variable. In the case of the DNLS equation, there are two of
them: the temperature T (or, equivalently ˇ) and the chemical potential 
. If the
extrema of a given system are “attached” to two different points in the .
;T/ space,
a new question arises with respect to the transport of just one variable: the selection
of the path in the phase plane. This problem can be solved with the help of the linear
transport equations (1.48), which can be rewritten as

dˇ

d

D h jeiˇLpp � h jpiˇLep

h jei �
Lpe � 
Lpp

� � h jpi �
Lee � 
Lep

� : (1.56)

The above first order differential equation can be solved once the Onsager matrix
is known across the thermodynamics phase-diagram and the ratio of the two fluxes
is given. This determines unambiguously the resulting temperature and chemical-
potential profiles.

It is worth recalling that in the absence of a mutual coupling between the two
transport processes (zero off-diagonal elements of the Onsager matrix) such curves
would be vertical and horizontal lines in the latter representation. It is remarkable
that the solid lines, which correspond to je D 0, are almost vertical for large 
:
this means that in spite of a large temperature difference, the energy flux is very
small. This is an indirect but strong evidence that the nondiagonal terms are far
from negligible.

The condition of a vanishing particle flux jp D 0 defines the Seebeck coefficient
which is S D �d
=dT. Accordingly, the points in Fig. 1.12, where the dashed

-2 -1 0 1 2
0

1

2

3

4

T

μ

Fig. 1.12 Zero-flux curves in the .
; T/ planes. Black dashed lines correspond to jp D 0 and are
obtained with norm-conserving thermostats upon fixing the total norm density atot, TL and TR. Blue
solid lines are for je D 0 using energy-conserving thermostats with fixed total energy density htot,

L=TL and 
R=TR. Simulations are for a chain of length N D 500. The thick dot-dashed lines
identify the locus where S changes sign (see text) (Color figure online)



1 Heat Transport in Low Dimensions 33

curves are vertical identify the locus where S changes sign. The je D 0 curves
have no direct interpretation in terms of standard transport coefficients.

1.9 Conclusions and Open Problems

In the previous sections we have seen that various theoretical approaches predict
the existence of two universality classes for the divergence of heat conductivity
in systems characterized by momentum conservation. Although this scenario is
generally confirmed by numerical simulations, some exceptions have been found
as well. The most notable counterexample is the normal conduction which emerges
in chains of coupled rotors. As we have already discussed in Sect. 1.5, it is quite
clear that the peculiarity of this model is to be traced back to the 2�-slips of the
angles qn.

Further, less-understood, anomalies have been found in models where qn is
a genuine displacement variable. One example is a momentum conserving mod-
ification of the famous “ding-a-ling” model. The system is composed of two
kinds of alternating point particles (A and B): the A particles mutually interact
via nearest-neighbour harmonic forces; the B particles are free to move and
collide elastically with the A particles. Equilibrium and non-equilibrium numerical
simulations indicate that the thermal conductivity � is finite [59].

Normal heat transport in accordance to Fourier law has been claimed also in
simulations of the FPU-˛ˇmodel (and of other asymmetric potentials), at low-
enough energies/temperatures [97]. More detailed numerical simulations, however,
indicate that the unexpected results for asymmetric potentials do not represent the
asymptotic behavior [16, 91], but rather follow from an insufficient chain length.
This if further strengthened in [56] where mode-coupling arguments have been used
to determine the frequency below which finite-size effects are negligible. It turns out
that, in some cases, the asymptotic behavior may only be seen at exceedingly low
frequencies (and thereby exceedingly large system-sizes).

More recent studies report a finite thermal conductivity in the thermodynamic
limit for potentials that allow for bond dissociation (like e.g Lennard-Jones, Morse,
and Coulomb potentials) [37, 85]. This is explained by invoking phonon scattering
on the locally strongly-stretched loose interatomic bonds at low temperature and by
the many-particle scattering at high temperature. Nevertheless, the hard-point gas,
a model where “dissociation” arises automatically, without the need to overcome
an energy barrier, is found to exhibit a clean divergence of the conductivity. On the
other hand, the universality of scaling in this model has been recently challenged by
numerical studies of the hard-point gas with alternate masses and thermal baths at
different temperatures acting at the boundaries. When the mass ratio is varied, the
anomalous exponent is found to depart significantly from the value 1/3 predicted by
the nonlinear fluctuating hydrodynamics [45].
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Irrespective whether the above discrepancies are a manifestation of strong finite-
size corrections, or of the existence of other universality classes, where the standard
hydrodynamic theories do not apply, they have to be explained.

Acknowledgements We wish to thank L. Delfini and S. Iubini for their effective contribution to
the achievement of several results summarized in this chapter.
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