
Chapter 11
Characterisation of the Idiotypic Immune
Network Through Persistent Entropy

Matteo Rucco, Filippo Castiglione, Emanuela Merelli
and Marco Pettini

Abstract In the present work we intend to investigate how to detect the behaviour of
the immune system reaction to an external stimulus in terms of phase transitions. The
immune model considered follows Jerne’s idiotypic network theory. We considered
two graph complexity measures—the connectivity entropy and the approximate von
Neumann entropy—and one entropy for topological spaces, the so-called persistent
entropy. The simplicial complex is obtained enriching the graph structure of the
weighted idiotypic network, and it is formally analyzed by persistent homology and
persistent entropy. We obtained numerical evidences that approximate von Neumann
entropy andpersistent entropy detect the activationof the immune system. In addition,
persistent entropy allows also to identify the antibodies involved in the immune
memory.

11.1 Introduction

Complex systems are system typically characterised by a number of not identical
agents whose aggregate activity is nonlinear and often exhibits hierarchical self-
organisation under selective pressures. Although complex systems science is a rel-
atively young research area, it attracts lots of interest from researchers mainly due
to the emerging of new techniques in several fields, e.g., physics, mathematics, data
analysis and computer sciences [12, 22]. Classical data analysis (both descriptive

M. Rucco (B) · E. Merelli
School of Science and Technology, University of Camerino, Camerino, Italy
e-mail: matteo.rucco@unicam.it

E. Merelli
e-mail: emanuela.merelli@unicam.it

F. Castiglione
Institute for Applied Mathematics (IAC) CNR, Rome, Italy
e-mail: f.castiglione@iac.cnr.it

M. Pettini
Centre de Physique Théorique, Aix-Marseille University, Marseille, France
e-mail: pettini@cpt.univ-mrs.fr

© Springer International Publishing Switzerland 2016
S. Battiston et al. (eds.), Proceedings of ECCS 2014, Springer Proceedings
in Complexity, DOI 10.1007/978-3-319-29228-1_11

117



118 M. Rucco et al.

and exploratory) can not be sufficient for analyzing the huge amount of data that
usually characterize a complex system. Persistent homology, a branch of computa-
tional topology, is nowadays largely applied for the study of complex systems [5].
Ibekwe et al., used Topological Data Analysis (TDA) for reconstructing the rela-
tionship structure of E. coli O157, they also prove that the non-O157 is in 32 soils
(16 organic and 16 conventionally managed soils) [11]. De Silva used TDA for the
analysis of sensor network [4]. TDA has been successfully applied for the study of
viral evolution in biological complex systems [2]. Rucco et al., used a set of topo-
logical data analysis techniques for improving the pulmonary embolism detection in
[21]. Petri et al., used an homological approach for studying the characteristics of
functional brain networks at the mesoscopic level [18].

In this paper we intend to study the behaviour of a biological complex system:
the idiotypic network of the mammal immune system from an information-theoretic
viewpoint. In order to accomplish our aim we used both a classical approach graph-
based and an innovative approach topology-based. The rest of this paper is organised
as follows. Section11.2 reports the explanation the theory of our case study and the
theoretical background related to our work. In Sect. 11.3 we summarised the analysis
of our in silico experiment. Section11.4 provides concluding remarks.

11.2 Background

11.2.1 Case Study: The Immune Network Theory

In 1974 Niels Jerne suggested the idiotypic network theory to explain the phenomena
of antigenic recognition by the immune cells in terms of a network of interacting cells
and antibodies. Jerne’s model introduced several features of immune system (I.S.),
briefly when the antigen is presented to the organism, the I.S. reacts following two
possible pathway: suppression or immunity. The class Ab1 of antibodies, elicited
directly by the antigen, elicits the production of new antibodies Ab2 which in turn
induces Ab3 and so on. This phenomenon is known as the idiotypic cascade. During
the onto-genesis the I.S. learns which antibodies should be produced and the system
remembers this decisions for a long time. This phenomena, called immunological
memory is a property of the network of cells as a whole, rather than of the individual
cells [9].

11.2.2 Graph Entropy Measures

Given a dynamical system and its graph representation there are several measures for
its characterization as suggested by Reidys [15]. Even if one needs a global measure
for culling the dramatic leap in the dynamics of the system, some classical measures
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are not sufficient for detecting whenever the system reacts to a stimulus: e.g., the
density of a graph and defined as the ratio between the present links and the number
of all possible links in the graph can not significantly change during the stimulus.
For this reason we argue that entropies are more meaningful. In this study we report
on the application of connectivity entropy and approximate von Neumann entropy
[16, 17]. Both measures can be interpreted as a complexity measure of a graph, in
fact both are depending by the number and the degree of the vertices.

Connectivity entropy has been used by Ortiz et al., for analyzing the structural
properties of a social network and then for identifying the set of key players in the
network.We repeated the experiment using the idiotypic network instead of the social
network [16].

Approximate von Neumann entropy has been used by Han and collaborators on a
graph classification and characterization tasks. In our approach we used this entropy
measures for distinguish graphs corresponding to the same system but in different
conditions, namely before, during and after a stimulus [8].

Consider now the following definitions.

11.2.2.1 Connectivity Entropy

Let G = (V, E) be a graph, with V = {v1, v2, . . . , vn} the set of vertices and E the
edges. We can define [16]:
Connectivity of a node vi ∈ V in a graph such as:

χ(vi ) = deg(vi )

2N
, N > 0 (11.1)

where deg(vi ) isthe number of incident edges to vertex vi and N the total number
of edges in the graph. Because, 0 ≤ χ(vi ) ≤ 1, and ΣN

i=1χ(vi ) = 1, χ(vi ) is known
as connectivity probability distribution of the graph.
The Connectivity entropy Hco of a graph G is:

Hco(G) = −Σχ(vi )log2χ(vi ) (11.2)

11.2.2.2 Approximated von Neumann Entropy

Let G = (V, E) be a graph, with V = {v1, v2, . . . , vn} the set of vertices and E the
edges. Let deg(u) the degree for the vertex u and defined as the sum of the weight
of its incident edges. The approximate von Neumann entropy is defined as [8]:

HU
T = ln|V | − 1

2|V |
∑

(u,v)∈E

1

deg(u)deg(v)
(11.3)
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11.2.3 Topological Data Analysis

Topological data analysis (TDA) is based on the concept of computational homology,
a tool that transforms local data into global algebraic structure. Roughly speaking,
the idea is to infer a “shape of the data”, building the so-called simplicial complexes.
A simplicial complexes is a nested collection of simplices (vertices, line segment,
triangle, etc. …). Then, homology associates to the simplicial complexes a sequence
of abelian groups Hk(X), k ∈ X. The vector containing the ranks of each groups is a
topological invariant, the so-called Betti numbers. Betti numbers are the numbers
of holes in a space with different dimensions. Persistent homology is one of the most
used techniques for computing the topological invariants of a topological space. It
returns a parametrized version of the Betti numbers: the Betti barcodes (see for exam-
ple Fig. 11.1) [5]. The barcodes are equipped with the generators of the topological
feature (connected components, holes, voids, etc.). Generators are the set of nested
simplices forming the topological features.

11.2.4 Simplicial Complexes from Graph

Given a graph directed or undirected, it is possible to construct a simplicial complex
from it following several approaches [10, 13]. In this paperwe apply the cliqueweight
rank persistent homology (CWRPH) [19]. This innovative techniques is based on the
concept of a flag complex: given a graphG, the simplices of a clique complexC(G) are
the complete subgraphs of G and the 0-simplices of C(G) are the vertices of G, (i.e.,
the complete subgraph complex). The maximal simplices are given by the collection
of vertices that make up the cliques of G. In the literature, a clique complex is also
referred to as a flag complex. CWRPH describes a formal procedure for building a
C(G) but taking into account the weights of the links of G.

11.2.4.1 Improved jHoles

jHoles is the first Java high-performance implementation of the CWRPH algorithm
[1]. The first release of jHoles implemented the following standard clique weight
rank descending persistent homology:

1. Extract the descending (ascending) listW of all weightswt indexed by the discrete
parameter t ;

2. List all maximal cliques of each connected component in G with the Bron-
Kerbosch algorithm [23];
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Fig. 11.1 jHoles application example. Construction of a topological space from an undirected
weighted graph G (up). The Betti barcode representing the evolution of topological invariants
(down). Where W is the set of weights for the graph G, and F denotes the set of filter values used
during the computation of persistent homology for the simplicial complex. The resulting simplicial
complex is characterized by the tuple β0 = 1, and β1 = 1. β0 = 1 indicates that there is only 1
connected components formed by the four 2-simplices (filled triangles), while β1 = 1 indicates
that the simplices are arranged in a circular motif that corresponds to a persistent homological loop
of dimension 1

3. Find all the combinations of each clique: a n − clique, with n ≥ 3 must be tes-
sellated with a set of 3 − cliques, because a simplex is just the generalization of
a n-dimensional triangle;

4. For each combination and clique, rank it according to the index t of the minimum
(maximum) weight of the face;

5. The resulting structure is a clique simplicial complex overwhich persistent homol-
ogy can be computed; output barcodes, intervals and generators.

Here we propose an improved version of jHoles that implements the following
algorithm:

1. Extract the descending (ascending) listW of all weightswt indexed by the discrete
parameter t ;
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2. (Parallel) List all maximal cliques of each connected component in G with the
Bron-Kerbosch algorithm [23];

3. (Parallel) Find recursively all permutations of each clique (clique tessellation with
a set of 3-cliques);

4. (Parallel) For each permutation and clique, rank it according to the index t of the
minimum (maximum) weight of the face;

5. The resulting structure is a clique simplicial complex overwhich persistent homol-
ogy can be computed; output barcodes, intervals and generators.

Each permutation is a simplex belonging to the complex, while each maximal clique
is a largest simplex. Steps from 2 to 4 are tasks that can be executed in parallel
respectively on each connected component or face and are the core of the filtration.
Step 4 ranks each face according to the index of the minimum (maximum) weight of
its edges for the standard descending (ascending) filtration. The use of permutations
instead of combinations in step 3 significantly improves algorithm performances
and memory usage (the number of permutations of a set is strictly smaller than the
number of its combinations).

Roughly speaking, the persistent homology algorithm, spans over the set F of filter
values and at each iteration it introduces the simplex rankedwith the actual filter value
and then computes the homology of the new topological space (see Fig. 11.1) [6].

11.2.5 Persistent Entropy

Diaz et al., defined an entropy based on the persistent barcode (Definition3 of [3]).
The aim of their paper is an algorithm entropy-driven for finding the best filtration
of a set of simplices. We argue that when the filtration is given their entropy can be
easly extended without loosing the interpretation à la Shannon. Here we propose to
use the maximum of the filtration value of a persistent barcode plus one as upper
bound, let call this quantity m.

Definition 1 (Persistent entropy) Given a filtered topological space equipped with
an ascending filtration algorithm, the set of filtration value F and the correspond-
ing persistence barcode B = [a j ; b j ] : j ∈ J . A persistence line in a barcode is
conventionally represented as [a j ; ∞) here it is substitute with [a j ;m) where
m = (max{F} + 1).

E(F) = −
∑

j∈J

p j log(p j ) (11.4)

where p j = l j/L , l j = b j − a j , and L = ∑
j∈J l j
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11.3 Analysis of the Idiotypic Network

11.3.1 Simulation Results

In this section, we provide a detailed study of the simulation of the idiotypic network
obtained with C-ImmSim that is the agent-based simulator simulation of the immune
system [20]. The computational ABM employed is discrete in mathematical terms
because it represents biological entities as individuals in a heterogeneous popula-
tion of cells and molecules. In particular, the major classes of cells of the lymphoid
lineage and some of the myeloid lineage. Moreover the model accounts for various
interleukins and messengers. This “discreteness” confers the model the character of
being “easily scalable” in terms of introducing new biological complexity, at vari-
ance with corresponding equation based models. The model is stochastic, meaning it
can naturally display biological “controlled” variability: for example, it is possible to
separate the sorting of repertoire specificities from the random occurrences (encoun-
ters, binding, cell death, cell replacement, diffusion, cell division) during the running
of the response. In other words, each repertoire expresses a private specificity, and by
repeating runs with random events, the impact of different repertoires can be com-
pared and their variations statistically determined, at the same time increasing the
significance of results. TheABMmodel, is a polyclonalmodel, since all lymphocytes
are equipped with a receptor represented as a binary string. This allows for a num-
ber of immunological features such as expressed and potential repertoire definition,
specific recognition/binding, antigens peptides presentation, specific clonal memory,
hypermutation, etc. In our configuration a simulation has a lifespan of 2190 ticks,
where a tick = 8h, and a repertoire of at most 1012 antibodies and antigen volume
equal to V = 10µL. The results are the average over 100 runs. In the simulator each
idiotype (both antigens and antibodies) is represented with a bit-string, in our case
of 12 bit length. An idiotype interacts with each other if and only if their Hamming
distance is 11 ≤ d(A j , Ak) ≤ 12. The pair-wise distances are stored in a matrix, the
so-calledAffinity matrix: Ji,k .We defined aweight function for the idiotypic network,
the coexistence function between antibodies (see 11.5):

CAbj,k (t) = d(Ab j (t), Abk(t)) ∗ [Ab j (t)] ∗ [Abk(t)]∑n
l=1[Abl(t)]

(11.5)

where [Abl(t)] is the concentration of the lth antibody Abl at tick t . The meaning of
(11.5) is that for lower values of affinity the concentration must be more significant
because the match between antibodies is less probable (Fig. 11.2).

For each simulation we computed the coexistence function (see 11.5) and we used
theweighted idiotypic network to calculate the graph entropies (see 11.2, and 11.3) as
input for the persistent homology computation. In thisworkwe used the cliqueweight
rank persistent homology (CWRPH) algorithm implemented in the new version of
jHoles, and described in par.: Sect. 11.2.4. The output of the persistent homology has
been used for computing both the persistent entropy (see 11.4) and for identifying
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Fig. 11.2 Example of immune network at the end of the simulation (tick = 2190). The nodes
represent the antibodies, a link exists if and only if two antibodies are affine. The node color
represents the antibodies classes

Fig. 11.3 Antibodies frequency

the persistent holes and their generators, namely the persistent antibodies that govern
the evolution of the idiotypic network during the virgin state, the activation and the
immune memory (see Fig. 11.3).
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11.4 Concluding Remarks

The charts for each simulations highlight interesting emerging features. In all cases
the peak corresponding to the activation of the immune response has been identified.
However the connectivity entropy (see Fig. 11.4) does not distinguish between the
activation and the immune memory states. The connectivity entropy highlighted that
after time step 199 some new higher-degree antibodies are involved in the dynamics
of the system. While, both the approximated von Neumann entropy (see Fig. 11.5)
and the persistent entropy (see Fig. 11.6) are able to recognize the activation of the
immune system: the peaks in the charts point out the immune activation that is follow-
ing by a transient that represents the immune response. During the immune response
the antibodies play a dual role: they can simultaneously elicit and suppress each
other. After this transient there is a plateau that represents the persistent immune net-
work activation corresponding to the immune memory. Persistent entropy is directly
computed from the result of persistent homology: the Betti numbers. The analysis
of the generators of the homological classes allows to identify the real number of
antibodies that have been used: 203 instead of 4096 (see Fig. 11.3). The analysis of
the persistent Betti numbers reveals that there is a subset of antibodies arranged in a
1-dimensional hole that is present both in the activation state and in thememory state.
This 1-dimensional hole is formed by the antibodies: Ab1, Ab2, Ab7, Ab13. This hole
is formed by the most active antibodies, see the histogram in Fig. 11.3. The removal
of this 1-dimensional hole from the barcodes will flatten the entropy, that means
this cycle is formed by the most specialized antibodies for the antigen that has been
injected. Both the approximated von Neumann entropy and the persistent entropy
can be thought as complexity measures for graphs or for simplicial complexes. The
reason is evident in their mathematical definitions: von Neumann entropy depends
on the total number of vertices and the degree of linked vertices, while persistent
entropy depends by the topological noise and by the persistent topological features.

To conclude, we suggest that persistent entropy and in general topological data
analysis are useful tools for the analysis of dynamical complex systems. Topologi-
cal data analysis and persistent entropy can be used for discovering hidden patterns
among antibodies. The transformation of a graph into a simplicial complex of dimen-
sion greater than 1 allows to discover new patterns and than it allows to extract new
knowledge that otherwise can not be captured. The dimension of these patterns is
equivalent to the dimension of the relation among antibodies. A relation of dimen-
sion 2, typically expressed by a graph, represents a classical 2-bodies problem while
a n-ary relation represents a n-(anti)bodies problem that makes sense if and only if
all the (anti)bodies are communicating simultaneously. Generally, a n-ary relation
can not be decomposed in a set of 2-bodies problems: e.g. a filled triangle, that is
a simplicial complex of dimension 2, represents a 3-body problems, it exists if and
only if simultaneously are present the three vertices and three edges, otherwise it is
represented as an empty triangle (Fig. 11.1).
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Fig. 11.4 Connectivity entropy. The maximum is reached at tick = 199

Fig. 11.5 Approximate von Neumann entropy. The minimum is reached at tick = 199
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Fig. 11.6 Persistent entropy. The maximum is reached at tick = 199

Future investigation will be focusing on the use of the persistent entropy for
characterising the S[B] systems [14], and on the use of other entropy measures, like
the ones proposed by Felice [7].
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