
Chapter 3
Flow Processes

Hua Shao, Wenkui He, Milan Hokr, Payton W. Gardner,
Herbert Kunz and Ales Balvin

3.1 Flow in Fracture/Matrix System

Milan Hokr, Hua Shao, Payton W. Gardner, Herbert Kunz, Ales Balvin

Flow velocity is a key parameter for the mass transport in fractured rock, which can
be generally described by the groundwater flow equation (3.1.1). Lots of benchmark
examples in different dimension have been performed for the plausibility of the code
(Kolditz et al. 2015), but a coupled fracture and matrix system, numerically using an
integrated 2D and 3D finite element mesh, was not considered. In such an integrated
system, 2D finite elements may be used to simulate fracture and fracture network
and 3D ones to rock matrix to increase the computational efficiency.

3.1.1 Theory

The transient saturated groundwater flow is described by:

S0
∂h

∂t
− div (K grad h) = Q (3.1.1)
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where h(x, t) is the piezometric head, S0 the specific storativity, q the fluid
sink/source, and κ f (x, t) is the hydraulic conductivity tensor. The global boundary
Γ consists of two parts Γ = Γ T +Γ q (Γ T Dirichlet’s and Γ q Cauchy’s conditions).
The average fluid velocity vector can be calculated using the generalisedDarcy’s law:

q = K grad h (3.1.2)

Analytical solutions for the partial differential equation (3.1.1) are only available
for some simplified cases, e.g. steady state flow, radial pumping flow. A generalised
solution for a fracture/matrix system is only possible with the help of numerical
method.
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Fig. 3.1 Simplified benchmark cases
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Table 3.1 Used parameters

Symbol Quantity Value

a Fracture aperture 0.5m

Tfracture Transmissivity 5e-8m2 s−1

Kfracture Fracture hydraulic conductivity 1e-7m s−1

Kmatrix Rock mass hydraulic conductivity 1e-9m s−1

3.1.2 Problem Definition

Based on a practical application, the Bedrichov tunnel case (CZ), four conceptual
models have been developed within the international project DECOVALEX-2015.
From that three cases (Fig. 3.1) have been simplified for the benchmark exercise.

Geometry of all three cases is comparable with she Bedrichov site. The dimension
of the matrix block in the case (a) is 300m × 400m × 100m (L×B×H) and in the
cases (b) and (c) 20m × 400m × 100m. The fracture has an aperture of 0.5m
and a hydraulic conductivity of 1e-7m/s. The transmissivity of the fracture can be
calculated to 5e-8m2/s (Table 3.1). The hydraulic conductivity of the rock mass is
1e-9m/s in the first case (Fig. 3.1a) and 1e-6m/s in the other two cases (Fig. 3.1b,
c). The initial hydraulic head was set to 0. On the left side of the model the pressure
was kept to 0.

3.1.3 Analytical Solution

There is no generalised analytical solution available for the groundwater flow (1) in a
fracture/matrix system (Fig. 3.1). A comparison between codes is therefore necessary
for a simplified case.

The first problem is constructed so that each dimension can be evaluated sep-
arately by an analytical solution (1D problem equivalent). Taking account of the

Fig. 3.2 Calculation of
velocity of interface elements
in a fracture/matrix system
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Table 3.2 Results from case (a)

P2 = 100 m Q –
fracture (m3/s)
(node/element)

Q – matrix (m3/s) Q2 = 2e-5 m3/s
P2 – fracture (m)

P2 – matrix (m)
(maximal)

Analytical 6.67e-6 1.33e-5

Flow123D 6.6667e-6 1.3333e-5 89.86 107.7

OGS 3.37e-6 / 6.67e-6 1.33e-5 90.7 109.2

case 1 (Fig. 3.1a), the flux through fracture zone and matrix zone can be calculated
correspondingly according to the velocity:

Tfracture = T
p2 − p1

L
B = 5× 10−8 100− 0

300
400 = 6.67× 10−6 m3/s

Kmatrix = T
p2 − p1

L
B H = 1× 10−9 100− 0

300
400× 100 = 1.33× 10−5 m3/s

The total inflow/outflow in the system can be calculated as Q2 = Qfracture +Qmatrix

= 2e-5m3/s. The calculated flow rate from both fracture and rock mass agree well
with the analytical results (Table 3.2) in case of pressure is known. It is meaningful to
check both types of boundary conditions for each case, e.g. given pressure to get flow
and givenflow to get pressure. Therefore, instead of pressure (p2), Cauchy’s condition
(Q2) can be used as boundary condition, in particular the uniform flux is prescribed
2e-5m3/s per 40,200m2 areawhich is 4.97512e-10m/s on both the fracture boundary
(200m2) and the matrix boundary (40,000m2). As result the hydraulic head in the

Fig. 3.3 Profile of velocity along fracture and matrix given by code OGS
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Fig. 3.4 Distribution of
velocity Vx given by code
Flow123

fracture (90.7m) is lower than the maximal pressure in the matrix (109.2 m) because
of high hydraulic conductivity of fracture (Fig. 3.3).

For the numerical method, the flow velocity is calculated within the element. The
nodal output for velocity is a mean value from all neighbor elements (Fig. 3.2) and
is therefore not suitable for the flux calculation especially in case of fracture/matrix
system due to high difference on the hydraulic conductivities.

A spatial distribution of the velocity values in a 3D view (code Flow123D)
(Fig. 3.4) are in correspondence with the graph (Fig. 3.3).

Flow123D results are in two variants for coarser (8 m) and finer mesh (2 m) at the
2D/3D contact edge. Practically, the case (b) is not exactly following the definition,
as the mixed-hybrid formulation does not allow the 2D/3D communication through
an edge (only through a side), so there is a 1m wide overlap of the 2D domain
above the 3D domain. The mesh here corresponds to the finer variant of the case (c)
(Table 3.3).

It is worthwhile to have a benchmark exercise based on the application orientated
cases. In most cases there are no analytical solutions available. Results comparison
from different codes is therefore important to guarantee the quality in the develop-
ment, implementation, and application of a code.

Table 3.3 Results from case (b) and (c)

Case (b) Case (b) Case (c) Case (c)

P2 = 100m Q2 =
6.67e-5m3/e

P2 = 100m Q2 = 6.67e-5m3/s

Q − outflow
(m3/s)

P2 − pressure
(m)

Q− inflow (m3/s) P2 − pressure
(m)

Flow123D 6.65312e-06 100.20364 6.62004e-06 (c) 100.70816 (c)

6.64631e-05 (f) 100.30633 (f)

OGS 6.67e-6 100.03 6.66e-6 100.03
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3.2 Water Table Experiment

Wenkui He

3.2.1 Description

This benchmark problem described here is based on the laboratory experiment of
Vauclin et al. (1979), in which water infiltration in variably saturated sandy soil was
conducted. The dimensions of the soil slab are 3m long, 2m high and 5cm thick.
The initial water table was 0.65m above the bottom. A constant flux of 0.148m/h
was imposed over a region on the soil surface, which has a width of 0.5m. There
was no lateral flow on the left hand side of the domain. The pressure head of the
right hand side of the domain was fixed by connecting with a constant head reservoir.
Thewater table elevations on different positions of the domain weremeasured during
the experiment which lasted 8h.

3.2.2 Model Setup

The soil parameters applied for the two-dimensional model are given in Table 3.4,
which are based on Vauclin et al. (1979) and Clement et al. (1994). The initial and
boundary conditions are shown in Fig. 3.5. The entire model domain consists of 1200
uniform rectangular elements with a length of 0.10m and a width of 0.05m. A fixed
time step size of 60 s is applied for the simulation.

Table 3.4 Soil properties

Symbol Parameter Value Unit

φ Porosity 0.30 –

ks Saturated hydraulic
conductivity

8.40 md−1

Sr Residual water
saturation

0.01 –

Smax Maximum water
saturation

1.0 –

α Van Genuchten
parameter

3.3 1/m

n Van Genuchten
parameter

4.1 –
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Fig. 3.5 Initial and
boundary condition of the
model (from He et al.
2015b). h(x, z, t) is pressure
head at coordinates x and z
at time t

Fig. 3.6 A comparison of
the water table positions
simulated by using OGS
with the experimental data
(Vauclin et al. 1979)

3.2.3 Results

The simulated water table positions at different times are illustrated in Fig. 3.6
together with the experimental data of Vauclin et al. (1979). Generally, the simu-
lated results can match to the experiment data quite well.
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