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Abstract. We prove that a random automaton with n states and
any fixed non-singleton alphabet is synchronizing with high probability.
Moreover, we also prove that the convergence rate is exactly 1 − Θ( 1

n
)

as conjectured by Cameron [4] for the most interesting binary alphabet
case.

1 Synchronizing Automata

Suppose A is a complete deterministic finite automaton whose input alphabet
is A and whose state set is Q. The automaton A is called synchronizing if there
exists a word w ∈ A∗ whose action resets A, that is, w leaves the automaton in
one particular state no matter at which state in Q it is applied: q.w = q′.w for all
q, q′ ∈ Q. Any such word w is called a reset word of A. For a brief introduction
to the theory of synchronizing automata we refer reader to the survey [13].

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applications (coding theory, robotics, testing of reac-
tive systems) and also reveal interesting connections with symbolic dynamics
and other parts of mathematics. We take an example from [1]. Imagine that you
are in a dungeon consisting of a number of interconnected caves, all of which
appear identical. Each cave has a common number of one-way doors of different
colors through which you may leave; these lead to passages to other caves. There
is one more door in each cave; in one cave the extra door leads to freedom, in
all the others to instant death. You have a map of the dungeon with the escape
door identified, but you do not know in which cave you are. If you are lucky,
there is a sequence of doors through which you may pass which takes you to the
escape cave from any starting point.

The result of this paper is very positive; we prove that for an uniformly at
random chosen dungeon (automaton) there is a life-saving sequence (reset word)
with probability 1 − O( 1

n0.5c ) where n is the number of caves (states) and c is
the number of colors (letters). Moreover, we prove that the convergence rate
is tight for the most interesting 2-color case, thus confirming Peter Cameron’s
conjecture from [4]. Up to recently, the best results in this direction were much
weaker: in [10] was proved that random 4-letter automata are synchronizing with
probability p for a specific constant p > 0; in [9] was proved that if a random
automaton with n states has at least 72 ln(n) letters then it is almost surely
synchronizing. Recently, Nicaud [8] has shown (independently) by a different
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method that a random n-state automaton with 2 letters is synchronizing with
probability 1 − O(n− 1

8+o(1)). Our results give a much better convergence rate.

2 The Probability of Being Synchronizable

Let Q stand for {1, 2, . . . n} and Σn for the probability space of all unambiguous
maps from Q to Q with the uniform probability distribution. Throughout this
section let A = 〈Q, {a, b}〉 be a random automaton, that is, maps a and b are
chosen independently at random from Σn.

The underlying digraph of A = 〈Q,Σ〉 is a digraph denoted by UG(A) whose
vertex set is Q and whose edge multiset is {(q, q.a) | q ∈ Q, a ∈ Σ}. In other
words, the underlying digraph of an automaton is obtained by erasing all labels
from the arrows of the automaton. Given a letter x ∈ Σ, the underlying digraph
of x is the underlying digraph of the automaton Ax = 〈Q, {x}〉 where the tran-
sition function is the restriction of the original transition function to the letter
x. Clearly each directed graph with n vertices and constant out-degree 1 corre-
sponds to the unique map from Σn whence we can mean Σn as the probability
space with the uniform distribution on all directed graphs with constant out-
degree 1.

Theorem 1. The probability of being synchronizable for 2-letter random
automata with n states equals 1 − Θ( 1

n ).

Proof. Since synchronizing automata are necessary weakly connected, the
following lemma gives the lower bound of the theorem.

Lemma 1. The probability that A is not weakly connected is at least Ω( 1
n ).

Proof. Let us count the number of automata having exactly one disconnected
loop, that is the state having only (two) incoming arrows from itself. Such
automata can be counted as follows. We first choose the state p of a discon-
nected loop in n ways. The transitions for this state is defined in the unique
way. The number of ways to define transitions for any other state q is

1(n − 2) + (n − 2)(n − 1) = n(n − 2)

because if a maps q to q then b can map q to any state except {p, q}; if a doesn’t
map q to {p, q} then b can map q to any state except {p, q}. Thus the probability
of being such automata is equal

n(n(n − 2))n−1

n2n
=

1
n

(1 − 2
n

)n−1 = Θ(
1
n

).

Now we turn to the proof of the upper bound. For this purpose, we need some
knowledge about the structure of the underlying graphs of a random mapping.
The underlying digraph UG(x) of any mapping x ∈ Σn consists of one or more
(weakly) connected components called clusters. Each cluster has a unique cycle,
and all other vertices of this cluster are located in trees rooted on this cycle.
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Lemma 2. With probability 1 − o( 1
n4 ), a random digraph from Σn has at most

5 ln n clusters.

Proof. Let νn denote the number of clusters for a random digraph. It is proved
in [11, Theorem 1] that if n,N → +∞ such that 0 < γ0 ≤ γ = N

lnn ≤ γ1 where
γ0, γ1 are constants; then uniformly for γ ∈ [γ0, γ1]

P (νn = N) =
eφ(γ)

√
π ln n

nφ(γ)(1 + o(1)),

where φ(γ) = γ(1 − ln 2γ) − 0.5 for γ 	= 0.5. It is also known that the
function p(N) = P (νn = N) has a unique maximum, which is achieved for
N = 0.5 ln n(1 + o(1)). Since also νn ≤ n, we get

P (νn > 5 ln n) < nP (νn = [5 ln n]) = o(
1
n4

).

For convenience, by the term whp (with high probability) we mean “with
probability 1 − O( 1

n )”. Call a set of states K ⊆ Q synchronizable if it can be
mapped to one state by some word. In contrast, a pair of states {p, q} is called
a deadlock if p.s 	= q.s for each word s.

First we aim to show that for proving that A is synchronizing whp, it is
enough to find whp for each letter a large synchronizable set of states which is
completely defined by this letter. Given x ∈ {a, b}, we define Sx to be the set
of big clusters of UG(x), i.e., the clusters containing more than n0.45 states and
define Tx to be the complement of Sx, or equivalently, Tx is the set of small
clusters of UG(x), i.e., the clusters containing at most n0.45 states. Since Sx and
Tx are completely defined by x, both are independent of the other letter.1 Due
to Lemma 2, whp there are at most 5 ln n clusters in UG(x), whence whp Tx

contains at most 5 ln (n)n0.45 states. Given a set of clusters X, denote by ̂X the
set of states in the clusters of X.

Theorem 2. If ̂Sa and ̂Sb are synchronizable, then A is synchronizing whp.

Proof. First, we need the following useful remark.

Remark 1. If a pair {p, q} is independent of one of the letters, it is a deadlock
with probability O( 1

n1.02 ).

Proof. Suppose {p, q} is chosen independently of a. Then the set
R = {p.a, q.a, p.a2, q.a2} is independent of b whence also of ̂Tb. If p.a = q.a
or p.a2 = q.a2 the pair {p, q} is not a deadlock. Therefore, we can assume that
there are (probably equal) states r1 ∈ {p.a, q.a} and r2 ∈ {p.a2, q.a2} which
belong to ̂Tb (because ̂Sb is synchronizable). If |R| = 4 then r1 	= r2. Since r1, r2
are independent of ̂Tb, this happens with probability 1

|̂Tb|(|̂Tb|−1)
∈ O( 1

n1.02 ).

1 Here and below by independence of two objects O1(A) and O2(A), we mean the
independence of the events O1(A) = O1 and O1(A) = O2 for each instances O1, O2

from the corresponding probability spaces.
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If |R| = 3 then a maps two states from {p, q, p.a, q.a} to one state. Since
{p, q} is independent of a and the images of different states by a are chosen
independently and uniformly at random from Q, this happens with probability
O( 1

n ). Furthermore, r1 has to belong to ̂Tb whence the probability of this case
is O( 1

n )O( 1

|̂Tb| ) ∈ O( 1
n1.02 ). Finally, in the case |R| = 2, we have that p.a ∈

{p, q}, q.a ∈ {p, q}. This happens with probability O(( 2
n−2 )2) = O( 1

n1.02 ). The
remark follows.

Now let us bound the probability that A is not synchronizing. If this is the
case, A possesses some deadlock pair {p, q}. Given a state r, denote by cr the
cycle of the cluster containing r in UG(a) and by sr the length of this cycle.
Denote also by cr,i the i-th state on the cycle cr for some order induced by the
cycle cr, i.e., cr,i.a = cr,i+1 mod sr

. Let d be the g.c.d. of sp and sq. Then for
some 0 ≤ x < d and all 0 < k1, k2, 0 ≤ i ≤ d − 1, the pairs

{cp,(i+k1d) mod sp
, cq,(x+i+k2d) mod sq

} are deadlocks. (1)

It follows that in each of these pairs at least one of the states belongs to ̂Tb.

Case 1. cp = cq, that is, p and q belong to the same cluster. Since {p, q} is a
deadlock, in this case sp = sq = d > 1 and by (1) at least half of the states of cp

belongs to ̂Tb. The probability that a satisfies such configuration is at most

O(
1
n

) + 5 ln n2d(
| ̂Tb|
n

)�0.5d� ≤ O(
1
n

) + 20 ln n
1

n�0.5d�0.54
.

Indeed, first due to Lemma 2, whp there is at most 5 ln n ways to choose the
cluster cp, then we choose �0.5d� states of cp (in at most 2d ways) which belong
to ̂Tb with probability at most (| ̂Tb|/n)�0.5d�.

If d > 2 then �0.5d� ≥ 2 and we are done. If d = 2, due to Lemma 2 whp there
are at most 5 ln n cycles of size 2 in UG(a), each containing one pair. Since this
set of pairs is defined by a, these pairs are independent of b. Due to Remark 1
one of these pairs is a deadlock with probability at most 5 lnn/n1.02 = O( 1

n ).
Since {p, q} is one of these pairs, it is not a deadlock whp.

Case 2. cp and cq are different. Since k1, k2 are arbitrary in (1), for each i ∈
{0, 1, . . . d − 1} either cp,(i+k1d) mod sp

∈ ̂Tb for all k1 or cq,(x+i+k2d) mod sq
∈ ̂Tb

for all k2. Thus the probability of such configuration is at most

O(
1
n

) + (25 ln2 n)d
d−1
∑

k=0

(

d

k

)

(
| ̂Tb|
n

)
ks1+(d−k)s2

d . (2)

Indeed, first due to Lemma 2, whp we choose clusters cp, cq in at most 25 ln2 n
ways, then we choose x in d ways, and for some k ∈ {0, 1, . . . d − 1} we choose
k-subset Ip ⊆ {0, 1, . . . d − 1} in

(

d
k

)

ways such that cp,(i+k1d) mod sq
∈ ̂Tb for all

k1 and i ∈ Ip, meanwhile choosing the corresponding set Iq = {0, 1, . . . d−1}\Ip.
Since Sb is independent of a, the probability that the corresponding states from
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the cycles belong to ̂Tb equals ( |̂Tb|
n )

ks1+(d−k)s2
d . The maximum of (2) is achieved

for s1 = s2 = d and equals

(25 ln2 n)d
d−1
∑

k=0

(

d

k

)

(
| ̂Tb|
n

)d ≤ (25 ln2 n)d2dn−0.54d

up to a O( 1
n ) term. In the case d > 1, we get

25 ln2 n
∑

d=2

n0.45d2dn−0.54d = o(
1
n

).

In the case d = 1, by Lemma 2 whp there are at most 5 ln n cycles of size 1
in UG(a). Hence there are at most 25 ln2 n pairs from these cycles independent
of b. In this case the proof is the same as for d = 2 in Case 1.

In view of Theorem 2, it remains to prove that ̂Sa and ̂Sb are synchronizable
whp. For this purpose, we use the notion of the stability relation introduced by
Kari [7]. A pair of states {p, q} is called stable, if for every word u there is a word
v such that p.uv = q.uv. The stability relation, given by the set of stable pairs, is
stable under the actions of the letters and complete whenever A is synchronizing.
It is also transitive whence its reflexive closure is a congruence on Q.

Given a pair {p, q}, either {p, q} in one a-cluster or the states p and q belong
to different a-clusters. In the latter case, we say that {p, q} connects these a-
clusters. Suppose there exists a large set Za of distinct pairs that are stable
independently of a; that is, |Za| ≥ n0.4 and the map b alone suffices to witness
the stability. Consider the graph Γ (Sa, Za) with the set of vertices Sa, and there
is an edge between two clusters if and only if some pair from Za connects them.

The underlying idea of the two following combinatorial lemmas is that if we
have many pairs chosen independently of a given random mapping from Σn,
whp they cannot satisfy any non-trivial partition or coloring stable under the
action of this mapping.

Lemma 3 (see [2] for the proof). If such Za exists then whp Γ (Sa, Za) is
connected. If additionally all cycle pairs of one of the clusters from Sa are stable
then ̂Sa is synchronizable.

Lemma 4 (see [2] for the proof). If such Za exists then whp there is a
cluster from Sa whose cycle is stable.

Due to above lemmas, by Theorem 2 it remains to prove that whp there exists
Za and Zb. The crucial step for this is to find a stable pair completely defined
by one of the letters whence independent of the other one. For this purpose, we
reuse ideas from Trahtman’s solution [12] of the famous Road Coloring Problem.
A subset A ⊆ Q is called an F -clique of A, if it is a set of maximum size such
that each pair of states from A is a deadlock. It follows from the definition that
all F -cliques have the same size. First, we need to reformulate [12, Lemma 2] for
our purposes.
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Lemma 5. If A and B are two distinct F -cliques such that A\B = {p}, B\A =
{q} for some states p, q; Then {p, q} is a stable pair.

Proof. Arguing by contradiction, suppose there is a word u such that {p.u, q.u}
is a deadlock. Then (A ∪ B).u is an F -clique because all pairs are deadlocks.
Since p.u 	= q.u, we have |A ∪ B| = |A| + 1 > |A| contradicting maximality of A.

Given a digraph g ∈ Σn and an integer c > 0, call a c-branch of g any subtree
of a tree of g with the root of height c. For instance, the trees are exactly 0-
branches. Let T be a highest c-branch of g and h be the height of the second
by height c-branch. Let us call the c-crown of g the (probably empty) forest
consisting of all the states of height at least h+1 in T . For example, the digraph
g presented on Fig. 1 has two highest 1-branches rooted in states 6, 12. Without
the state 14, the digraph g would have the unique highest 1-branch rooted at
state 6, having the state 8 as its 1-crown.

Fig. 1. A digraph with a one cycle and a unique highest tree.

The following theorem is an analogue of Theorem 2 from [12] for 1-branches
instead trees and a relaxed condition on the connectivity of A.

Theorem 3. Suppose the underlying digraph of the letter a has a unique highest
1-branch T and its 1-crown is reachable from an F -clique F0. Denote by r the
root of T and by q the predecessor of the root of the tree containing T on the
a-cycle. Then {r, q} is stable and independent of b.

Proof. Let p be some state of height h in T which is reachable from an F -clique
F0. Since p is reachable from F0, there is another F -clique F1 containing p. Since
F1 is an F -clique, there is a unique state g ∈ F1∩T of maximal height h1 ≥ h+1.
Let us consider the F -cliques F2 = F1.a

h1−1 and F3 = F2.a
L where L is the least

common multiplier of all cycle lengths in UG(a). By the choice of L and F2, we
have that

F2\F3 = {g.ah1−1} = {r} and F3\F2 = {q}.

Hence, by Lemma 5 the pair {r, q} is stable. Since this pair is completely defined2

by the unique 1-branch of a and the letters are chosen independently, this pair
is independent of b.
2 The reason why we consider 1-branches instead of trees is that the state r would not
be completely defined by the unique highest tree of a.
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Once we have got a one stable pair which is independent of one of the letters,
it is possible to get a lot of such pairs for each of the letters.

Theorem 4 (see Sect. 3 for the proof). Whp for each letter x ∈ {a, b} of A,
there is a set of at least n0.4 distinct stable pairs independent of x.

The proof of the above theorem result is mainly based on repeatedly referring
to the following fact. Given a set D ⊂ Q and a stable pair {p, q} independent of
some letter c ∈ Σ, {p, q}.c is also the stable pair independent of the other letter
and p, q 	∈ D with probability 1 − O( |D|

n ). However, some accuracy is required
when using this argument many times.

Due to Theorems 2, 4 and Lemmas 3, 4, it remains to show that we can use
Theorem 3, that is, whp the underlying graph of one of the letters has a unique
1-branch and some high height vertices of this 1-branch are accessible from F -
cliques (if F -cliques exist). The crucial idea in the solution of the Road Coloring
Problem [12] was to show that each admissible digraph can be colored into an
automaton satisfying the above property (for trees) and then use Theorem3 to
reduce the problem. In order to apply Theorem3, we need the following analogue
of the combinatorial result from [12] for the random setting.

Theorem 5 (Theorem12 [3]). Let g ∈ Σn be a random digraph, c > 0, and
H be the c-crown of g having r roots. Then |H| > 2r > 0 with probability
1 − Θ(1/

√
n), in particular, a highest c-branch is unique and higher than all

other c-branches of g by 2 with probability 1 − Θ(1/
√

n).

The proof of the above theorem has been moved to the separate paper [3] because
it is rather mathematical than computer science result and hopefully could have
independent importance.

Since the letters of A are chosen independently, the following corollary of
Theorem 5 is straightforward.

Corollary 1. Whp the underlying digraph of one of the letters (say a) satisfies
Theorem5.

In order to use Theorem 3 and thus complete the proof of Theorem 1, it
remains to show that the 1-crown of the underlying graph of a is accessible from
F -cliques of A. Let us call a subautomaton a strongly connected component of
A closed under the actions of the letters. Since each F -clique can be mapped to
some minimal (by inclusion) subautomaton, the following statement completes
the proof of Theorem 1.

Theorem 6. The 1-crown of the underlying digraph of a intersects with each
minimal subautomaton whp.

Proof. The following lemma can be obtained as a consequence of [5, Theorem 3]
but we present the proof here for the self completeness.

Lemma 6. For each constant q > 1 the number of states in each subautomaton
of A is at least n/qe2 whp.
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Proof. The probability that there is a subautomaton of size less than n/qe2 is
bounded by

n/qe2
∑

i=1

(

n

i

)

(
i

n
)2i ≤

n/qe2
∑

i=1

(1 − i
n )i

(1 − i
n )n

(
i

n
)i ≤

n/qe2
∑

i=1

(
ei

n
)i. (3)

Indeed, there are
(

n
i

)

ways to choose some subset T of i states; the probability
that arrows for both letters leads a state to the chosen set T is ( i

n )2.
For i ≤ n/qe2, we get that

( e(i+1)
n )i+1

( ei
n )i

≤ e(i + 1)
n

(1 +
1
i
)i ≤ e2(i + 1)

n
≤ 1

q
.

Hence the sum (3) is bounded by the sum of the geometric progression with the
factor 1/q and the first term equals e

n . The lemma follows.

Let g ∈ Σn and H be the 1-crown of g. Let n1 and n2 be the number of
root and non-root vertices in H respectively. Due to Corollary 1, one of the
letters (say a) satisfies Theorem 5 whp, that is, n2 > n1 for g = UG(a) whp. By
Lemma 6, we can choose some r < 1

e2 such that whp there are no subautomaton
of size less than rn. Therefore there are at least Θ(n2n) of automata satisfying
both constraints. Arguing by contradiction, suppose that among such automata
there are more than n2n−1 automata A such that their 1-crown does not intersect
with some minimal subautomaton of A. Denote this set of automata by Ln. For
1 ≤ j < d denote by Ln,d,j the subset of automata from Ln with the 1-crown
having exactly d vertices and j roots. By the definitions,

(1−r)n
∑

d=2

0.5d
∑

j=1

|Ln,d,j | = |Ln|. (4)

Given an integer rn ≤ m < (1 − r)n, let us consider the set of all m-states
automata whose letter a has a unique highest 1-branch which is higher by 1
than the second one. Due to Theorem 5 there are at most O(m2m−0.5) of such
automata. Denote this set of automata by Km. By Km,j denote the subset of
automata from Km with exactly j vertices in the 1-crown. Again, we have

m−1
∑

j=1

|Km,j | = |Km|. (5)

Each automaton from Ln,d,j can be obtained from Km,j for m = n−(d−j) as
follows. Let us take an automaton B = (Qb, Σ) from Km,j with no subautomaton
of size less than rn. First we append a set Hb of d − j states to the set Hb to
every possible positions, in at most

(

n
d−j

)

ways. The indices of the states from
Hb are shifted in compliance with the positions of the inserted states, that is,
the index q is shifted to the amount of chosen indices z ≤ q for Hb. Next, we
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choose an arbitrary forest on d vertices and j roots which belong to the 1-crown
of B in at most jdd−j−1 ways. Thus we have completely chosen the action of the
letter a.

Next we choose some minimal subautomaton M of B and redefine arbitrarily
the image by the letter b for all states from Qb\M to the set Qb ∪ Hb in nm−|M |

ways. Within this definition, all automata from Km,j which differs only in the
images of the states from Qb\M by the letter b can lead to the same automaton
from Ln,d,j . Given a subautomaton M , denote such class of automata by Km,j,M .
There are exactly mm−|M | automata from Km,j in each such class. Since |M | ≥
rn and M is minimal, B can appear in at most 1/r of such classes.

Thus we have completely chosen both letters and obtained each automaton
in Ln,d,j . Thus for the automaton B and one of its minimal subautomaton M of
size z ≥ rn, we get at most

(

n

d − j

)

jdd−j−1nm−z

automata from L′
n,d,j each at least mm−z times, where L′

n,d,j is the set of
automata containing Ln,d,j without the constraint on the size of minimal sub-
automaton. Notice that we get each automaton from Ln,d,j while B runs over
all automata from Kn−(d−j),j with no subautomaton of size less than rn. Thus
we get that

|Ln,d,j | ≤
n

∑

z=rn

∑

a,M,|M |=z

∑

B∈Km,j,M

(

n
d−j

)

jdd−j−1nm−z

mm−z
. (6)

Since each automaton B ∈ Km,j with no minimal subautomaton of size less
than rn appears in at most 1/r of Km,j,M , we get

|Ln,d,j | ≤ 1
r
|Km,j | max

rn≤z≤m

(

n
d−j

)

jdd−j−1nm−z

mm−z
=

1
r
|Km,j |

(

n
d−j

)

jdd−j−1nm−rn

mm−rn
.

(7)
Using (4) and (5), we get

|Ln| =
1
r

(1−r)n
∑

d=2

0.5d
∑

j=1

|Km,j |
(

n
d−j

)

jdd−j−1nm−rn

mm−rn

≤ 1
r

(1−r)n
∑

d=2

max
j≤0.5d

|Km|
(

n
d−j

)

jdd−jnm−rn

mm−rn
. (8)

Using Stirling’s approximation

x! = (
x

e
)x

√
2πxO(1) and (1 − x

k
)k = exO(1),
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we get
(

n

d − j

)

jdd−j = O(1)
nnjdd−j

(d − j)d−j(n − (d − j))n−(d−j)

= O(1)
jnd−j

(1 − j
d )d−j(1 − d−j

n )n−(d−j)
≤ O(1)jnd−jed (9)

Using that |Km| = O(m2m−0.5) from (8), we get

|Ln| ≤ O(1)
(1−r)n
∑

d=2

max
j≤0.5d

m2m−0.5jnd−jed(
n

m
)
m−rn

≤ O(1)
(1−r)n
∑

d=2

max
j≤0.5d

(n − d + j)n−d+j+rn−0.5jedn(1−r)n

≤ O(1)
(1−r)n
∑

d=2

(n − 0.5d)(1+r)n−0.5(d+1)dedn(1−r)n

≤ O(1)
(1−r)n
∑

d=2

dn2n−0.5(d+1)ed(0.5−r)(1 − 0.5d

n
)−0.5(d+1) ≤ O(1)

(1−r)n
∑

d=2

ef(d),

(10)

where

f(d) = ln dn2n−0.5(d+1)ed(0.5−r)(1 − 0.5d

n
)−0.5(d+1)

= 0.5(2 ln d + (4n − (d + 1)) ln n + d(1 − 2r) + 2 ln(1 − 0.5d)(d + 1)).
(11)

For the derivative of f(d), we get

f ′(d) = 0.5(
2
d

− ln n + (1 − 2r) + 2 ln(1 − 0.5d

n
) +

d + 1
n − 0.5d

n

.

Thus for n big enough, we have that f ′(d) < −1 for all d ≥ 2. Hence the sum (10)
is bounded by the doubled first term of the sum, which is equal to O(1)n2n−1.5.
This contradicts |Ln| ≥ Θ(n2n−1) and the theorem follows.

3 Searching for Stable Pairs

Lemma 7. If A has a stable pair {p, q} independent of b; then for any con-
stant k > 0 whp there are k distinct stable pairs independent of a and only 2k
transitions by b have been observed.
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Proof. Consider the chain of states p.b, q.b, . . . p.bk+1, q.bk+1. Since {p, q} is inde-
pendent of b, the probability that all states in this chain are different is

(1− 2
n

)(1− 3
n

) . . . (1− 2(k + 1)
n

)(1− 2k + 3
n

) ≥ (1− 2(k + 2)
n

)2(k+1) = 1−O(
1
n

).

Since {p, q} is independent of b, all states in this chain are independent of a.

Lemma 8. If for some 0 < ε < 0.125 the automaton A has k = [ 1
2ε ] + 1 stable

pairs independent of b; then whp there are n0.5−ε stable pairs independent of a
and at most kn0.5−ε transitions by a have been observed.

Proof. Let {p, q} be one of these c stable pairs. Consider the chain of states

p, q, p.b, q.b, . . . p.bn0.5−ε

, q.bn0.5−ε

.

Since {p, q} is independent of b, the probability that all states in this chain are
different is

(1− 2

n
)(1− 3

n
) . . . (1− 2n0.5−ε

n
)(1− 2n0.5−ε + 1

n
) ≥ (1− 2n0.5−ε

n
)2n0.5−ε

= 1−O(
1

n2ε
).

Since these c stable pairs are independent of b, for k = [ 1
2ε ] + 1 the probability

that there is such a pair {p, q} is at least 1 − O( 1
n2kε ) = 1 − O( 1

n ). Again, all
states in the chain are independent of a.

Theorem 4. Whp for each letter x ∈ {a, b} of A, there is a set of at least n0.4

distinct stable pairs independent of x, and only O(n0.4) transitions have to be
observed.

Proof. By Corollary 1 and Theorem 6, there is a letter (say a) in the automaton
A satisfying Theorem 3. Hence, there is a stable pair independent of b. Thus if
we subsequently apply Lemma 7 for b and Lemma 8 for a, we get that there are
n0.5−ε stable pairs independent of b and only O(n0.5−ε) transitions by b have
been observed. It remains to notice that we can do the same for the letter b if
we additionally use Lemma 7 for a.

4 Conclusions

Theorem 1 gives an exact order of the convergence rate for the probability
of being synchronizable for 2-letter automata up to the constant factor. One
can easily verify that the convergence rate for t-size alphabet case (t > 1) is
1 − O( 1

n0.5t ) because the main restriction appears for the probability of having
a unique 1-branch for some letter. Thus the first open question is about the
tightness of the convergence rate 1 − O( 1

n0.5t ) for the t-letter alphabet case.
Since only weakly connected automata can be synchronizing, the second nat-

ural open question is about the convergence rate for random weakly connected
automata of being synchronizable. Especially, binary alphabet is of certain inter-
est because the lower bound for this case appears from a non-weakly connected
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case. We suppose exponentially small probability of not being synchronizable for
this case and Θ( 1

nk−1 ) for random k letter automata.
In conclusion, let us briefly remark that following the proof of Theorem1

we can decide, whether or not a given n-state automaton A is synchronizing in
linear expected time in n. Notice that the best known deterministic algorithm
(basically due to Černý [6]) for this problem is quadratic on the average and in
the worst case.

The author is thankful to Mikhail Volkov for permanent support in the
research and also to Cyril Nicaud, Dominique Perrin, Marie-Pierre Béal and
Julia Mikheeva for their interest and useful suggestions about the presentation
of the current paper.
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