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Abstract. Let R be a Galois ring of characteristic pa, where p is a
prime and a is a natural number. In this paper cyclic codes of arbitrary
length n over R have been studied. The generators for such codes in
terms of minimal degree polynomials of certain subsets of codes have
been obtained. We prove that a cyclic code of arbitrary length n over R is
generated by at most min{a, t+1} elements, where t = max{deg(g(x))},
g(x) a generator. In particular, it follows that a cyclic code of arbitrary
length n over finite fields is generated by a single element. Moreover, the
explicit set of generators so obtained turns out to be a minimal strong
Gröbner basis.
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1 Introduction

Cyclic codes over finite rings are being studied extensively these days and the
literature is abundant with results on cyclic codes over finite rings where the
characteristic of the ring under consideration and the length of the code are
coprime. For reference see ([4,5,9,14,15]). The methodology used in most of
these papers is to focus on irreducible factors of xn − 1 and to obtain in turn,
the ideals of the ring R[x]/〈xn − 1〉 by Hensel’s lifting. However, this technique
cannot be applied to codes of general length n as the ring ceases to be a unique
factorization domain in case the length of the code and the characteristic s of
the ring are not coprime. A few expositions are available for the study of cyclic
codes over finite rings in case (n, s) �= 1. For reference see ([6,7,10,11,16,17,19]).
Dougherty et al. in [7] have given a structure theorem for codes over Galois rings
and employed Chinese remainder theorem and lifting of irreducible polynomials.
Sălăgean in [16] has given an existential proof for the existence of a minimal
strong Gröbner basis for cyclic codes of arbitrary length over a finite chain ring.
Norton et al. in [13,14] formalized the notion of generating set in standard form
for cyclic codes over principal ideal ring and obtained necessary and sufficient
conditions for the generating set to be a minimal strong Gröbner basis as defined
in [2]. The result for repeated root cyclic codes over chain ring was extended
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by Sălăgean in [16]. Abualrub et al. in [1] have given a simpler approach by
introducing minimal degree polynomials to find the generators of cyclic codes of
length 2k over Z4.

In this paper we take further the approach of Abualrub and find the genera-
tors of cyclic codes of general length over Galois rings in an explicit constructive
manner. Also, the set of generators obtained turns out to be a minimal strong
Gröbner basis. The results of Garg and Dutt [8] follow from our results.

2 Preliminaries

A cyclic code over a ring R is a linear code which is closed under cyclic shifts.
It is well known that the cyclic codes of length n over a ring R are in corre-
spondence with the ideals of R[x]/

〈
xn − 1〉 and thus cyclic codes over R, writ-

ten as vectors, can be recognized as polynomials of degree less than n, that is,
c = (c0, c1, . . . , cn−1) is identified with the polynomial c0 + c1x+ . . .+ cn−1x

n−1.
A finite ring with identity is called a Galois ring if its zero divisors including

zero form a principal ideal
〈
p
〉

for some prime p [18]. For any m ≥ 1, the Galois
extension ring of Zpa can be constructed as GR(pa,m) = Zpa [x]/

〈
f(x)

〉
, where p

is a prime, a is a natural number and f(x) ∈ Zpa [x] is a monic basic irreducible
polynomial of degree m. The ring GR(pa,m) is called a Galois ring and has
pam elements. For a = 1, we obtain the finite field GF (pm) with pm elements
([12,18]).

Let I be an ideal in R[x] and A(x) be an element of I. Let lm(A(x)) denote
the leading monomial of A(x). A set G = {Bi(x), 1 ≤ i ≤ ν} of non zero
elements of I is called a Gröbner basis of I if for each A(x) ∈ I there exists
an i ∈ {1, 2, . . . , ν} such that lm(A(x)) is divisible by lm(Bi(x)). An arbitrary
subset G of R[x] is called a Gröbner basis if it is a Gröbner basis of 〈G〉 [3].

3 Generators of Cyclic Codes over a Galois Ring R
as Ideals of R[x]/

〈
Xn − 1

〉

Let R = GR(pa,m) be a Galois ring and Rn = R[x]/
〈
xn − 1

〉
. The aim of this

paper is to find the generators of cyclic codes over Galois rings as ideals of Rn.
These generators are found in terms of minimal degree polynomials of certain
subsets of the given code.

Let C be an ideal in Rn and ge(x) be a minimal degree polynomial in C
with minimum power of p in the leading coefficient. Let the leading coefficient
of ge(x) be pieue where ue is a unit and 0 ≤ ie ≤ a − 1. If ie = 0 then ge(x) is
a monic polynomial otherwise for 0 ≤ j ≤ e − 1, successively define gj(x) to be
minimal degree polynomial with minimum power of p in the leading coefficient
among all polynomials in C having the power of p in the leading coefficient less
than ij+1, where ij is the power of p in the leading coefficient of gj(x) and i0
is the minimum power of p in the leading coefficients among all polynomials in
C. Then 0 ≤ i0 < i1 < . . . < ij < ij+1 < . . . < ie. For i0 = 0, g0(x) is a monic
polynomial. Let tj be the degree of the polynomial gj(x). Clearly tj > tj+1.
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Remark 1. It is easy to see that for any polynomial c(x) in C with power of
p in the leading coefficient l, there exists a j with 0 ≤ j ≤ e such that tj ≤
deg(c(x)) < tj−1. Then l ≥ ij and the polynomial

r(x) = c(x) − pl−ijgj(x)uxdeg(c(x))−tj

is in C for some unit u. Moreover, r(x) = 0 or deg(r(x)) < deg(c(x)). The
polynomial r(x) can be expressed as r(x) = c(x)−q(x)gj(x) for some q(x) ∈ Rn.

The following theorem gives the generators of a cyclic code over the ring R.

Theorem 1. Let C be an ideal in Rn and gj(x) be polynomials as defined above.
Then C =

〈
g0(x), g1(x), . . . , ge(x)

〉
.

Proof. Let c(x) be a polynomial in C. By Remark 1, there exists a j and a
polynomial q1(x) ∈ Rn such that the polynomial

r1(x) = c(x) − q1(x)gj(x)

is in C. Moreover, r1(x) = 0 or deg
(
r1(x)

)
< deg

(
c(x)

)
. If r1(x) = 0 then

c(x) ∈ 〈
gj(x)

〉 ⊂ 〈
g0(x), g1(x), . . . , ge(x)

〉
. If deg

(
r1(x)

)
< deg

(
c(x)

)
< tj−1

then by Remark 1 there exists a k and a polynomial q2(x) ∈ Rn such that the
polynomial

r2(x) = r1(x) − q2(x)gk(x)

is in C. Moreover, r2(x) = 0 or deg
(
r2(x)

)
< deg

(
r1(x)

)
< deg

(
c(x)

)
.

Clearly k ≥ j. If r2(x) = 0 then c(x) belongs to
〈
gj(x), gk(x)

〉 ⊂〈
g0(x), g1(x), . . . , ge(x)

〉
. If deg

(
r2(x)

)
< deg

(
r1(x)

)
, it is evident that after

repeating the argument a finite number of times we shall have the remainder
equal to zero as the degrees of the remainders form a decreasing sequence of nat-
ural numbers which is bounded below by te. Therefore back substituting for the
remainders it is clear that any polynomial c(x) in C belongs to

〈
gj(x), . . . , ge(x)

〉

where j is the smallest value such that deg
(
c(x)

) ≥ tj for 0 ≤ j ≤ e. Conse-
quently we get C =

〈
g0(x), g1(x), . . . , ge(x)

〉
. 	


The following corollaries are an immediate consequence of Theorem 1.

Corollary 1. A cyclic code C of arbitrary length n over a Galois ring of char-
acteristic pa is generated by at most k elements, with k = min{a, t + 1}, where
t = max{deg(g(x))}, g(x) a generator.

Corollary 2. A cyclic code C of arbitrary length n over an integer residue ring
of characteristic pa is generated by at most k elements, with k = min{a, t + 1},
where t = max{deg(g(x))}, g(x) a generator.

Proof. For m = 1, the Galois ring GR(pa,m) is an integer residue ring of char-
acteristic pa. 	

As finite fields are special case of Galois rings with a = 1. We have the following
corollary.
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Corollary 3. A cyclic code C of arbitrary length n over finite fields is generated
by a single element.

Theorem 2. Let ge(x) be the polynomial as defined above. Then ge(x) =
piehe(x), where he(x) is a monic polynomial in Re[x]/

〈
xn − 1

〉
, Re is a Galois

ring of characteristic pa−ie .

Proof. Let ge(x) = pieuex
te + bte−1x

te−1 + . . . + b0. Suppose bj �≡ 0 (mod pie)
for some j, where 0 ≤ j ≤ te − 1. Now pa−iege(x) ∈ C and is a polynomial
of degree less than te, a contradiction. Hence bj ≡ 0 (mod pie) for every j.
Thus ge(x) = piehe(x) where he(x) ∈ Re[x]/

〈
xn − 1

〉
, Re is a Galois ring of

characteristic pa−ie . Clearly he(x) is a monic polynomial. 	

Theorem 3. Let the polynomials gj(x) be the polynomials as defined above.
Then for 0 ≤ j ≤ e − 1

1. pij+1−ijgj(x) ∈ 〈
gj+1(x), gj+2(x), . . . , ge(x)

〉
.

2. gj(x) = pijhj(x) where hj(x) is a monic polynomial in Rj [x]/
〈
xn − 1

〉
, Rj is

a Galois Ring of characteristic pa−ij .
3. hj+1(x)|hj(x) (mod pij+2−ij+1).

Proof. Let c(x) = pij+1−ijgj(x) − gj+1(x)xtj−tj+1 . Then c(x) is in C and
deg(c(x)) < tj . Now proceeding as in Theorem 1, it is easy to see that

c(x) = pij+1−ijgj(x) − gj+1(x)xtj−tj+1 ∈ 〈gk(x), gk+1(x), . . . , ge(x)〉

for some k > j. This further implies that

pij+1−ijgj(x) ∈ 〈gj+1(x), gj+2(x), . . . , ge(x)〉 (1)

This completes the proof for part 1 of the theorem.
Next, we need to show that

gj(x) = pijhj(x) (2)

for 0 ≤ j ≤ e − 1. From Theorem 2, ge(x) = piehe(x), where he(x) is a monic
polynomial in Re[x]/

〈
xn−1

〉
, Re is a Galois ring of characteristic pa−ie . Suppose

ge−1(x), ge−2(x), . . . , gj(x) satisfy (2). Then we will show that gj−1(x) satisfies
(2). From (1) we have

pij−ij−1gj−1(x) ∈ 〈gj(x), gj+1(x), . . . , ge(x)〉.

This gives

pij−ij−1gj−1(x) = gj(x)Fj(x) + . . . + ge(x)Fe(x)

= pijhj(x)Fj(x) + . . . + piehe(x)Fe(x)

= pijK(x).
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Suppose there exists a coefficient gl,j−1 of the polynomial gj−1(x) such that
gl,j−1 �≡ 0 (mod pij−1). Multiplying both sides by pa−ij we get, pa−ij−1gj−1(x) =
0, a contradiction. Thus gj−1(x) = pij−1hj−1(x), where hj−1(x) is a monic poly-
nomial. Therefore by principle of mathematical induction (2) holds for all j.

Next, for 1 ≤ k ≤ a − 1, consider the maps

ψk : GR(pa,m) −→ GR(pk,m)

defined by
ψk(α) = α (mod pk).

ψk is a ring homomorphism for all k which can be extended to

φk : GR(pa,m)[x]/
〈
xn − 1

〉 −→ GR(pk,m)[x]/
〈
xn − 1

〉

by defining

φk(c0 + c1x + . . . + cn−1x
n−1) = ψk(c0) + ψk(c1)x + . . . + ψk(cn−1)xn−1.

From (1) and (2) we have

pij+1hj(x) ∈ 〈
pij+1hj+1(x), pij+2hj+2(x), . . . , piehe(x)

〉
,

which implies

pij+1hj(x) = pij+1hj+1(x)Fj+1(x) + pij+2hj+2(x)Fj+2(x) + . . . + piehe(x)Fe(x),

where Fk(x) ∈ Rn for j + 1 ≤ k ≤ e. Therefore

pij+1
(
hj(x) − hj+1(x)Fj+1(x)

)
= pij+2hj+2(x)Fj+2(x) + . . . + piehe(x)Fe(x)

= pij+2F (x),

where F (x) = hj+2(x)Fj+2(x) + . . . + pie−ij+2he(x)Fe(x). Now

pij+1
(
hj(x) − hj+1(x)Fj+1(x) − pij+2−ij+1F (x)

)
= 0.

It follows that the power of p in each coefficient of the polynomial

hj(x) − hj+1(x)Fj+1(x) − pij+2−ij+1F (x)

is greater than or equal to a−ij+1. As
〈
pa−ij+1

〉 ⊂ 〈
pij+2−ij+1

〉
, the coefficients of

the polynomial hj(x) − hj+1(x)Fj+1(x) − pij+2−ij+1F (x) vanish mod pij+2−ij+1 .
Thus

φij+2−ij+1

(
hj(x) − hj+1(x)Fj+1(x) − pij+2−ij+1F (x)

)
= 0.

As φij+2−ij+1 is a homomorphism, we have

φij+2−ij+1

(
hj(x)

)
= φij+2−ij+1

(
hj+1(x)Fj+1(x)

)
+ φij+2−ij+1

(
pij+2−ij+1F (x)

)

or
φij+2−ij+1

(
hj(x)

)
= φij+2−ij+1

(
hj+1(x)Fj+1(x)

)

which gives hj+1(x)|hj(x) (mod pij+2−ij+1). 	
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Theorem 4. The set {g0(x), g1(x), . . . , ge(x)} is a minimal strong Gröbner
basis of C.

Proof. The result follows as an immediate consequence of Theorem 3 above and
Theorem 3.2 of [14]. 	

Some examples of minimal strong Gröbner basis are given below.

Example 1. Let G = {g0(x), g1(x), g2(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 2
with h0(x) = x3 + x2 + x + 1, h1(x) = x2 + 1 and h2(x) = x + 1. Let C be the
cyclic code of length 8 over Z8 generated by G. It is easy to see that x+1|x2 +1
over Z2 and x2 + 1|x3 + x2 + x + 1 over Z4. Also, 4(x2 + 1) ∈ 〈4(x + 1)〉 and
2(x3 + x2 + x + 1) ∈ 〈2(x2 + 1), 4(x + 1)〉. Therefore by Theorem 3 above, G is
a minimal strong Gröbner basis.

Example 2. Let G1 = {g0(x), g1(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 1 with
h0(x) = x5 + x4 + x3 + x2 + x + 1 and h1(x) = x4 + x2 + 1. Let C1 be the cyclic
code of length 6 over Z4 generated by G1. Then G1 is a minimal strong Gröbner
basis.

Example 3. Let G2 = {g0(x), g1(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 1 with
h0(x) = x3 − 1, h1(x) = x + 1. Then G2 is a minimal strong Gröbner basis for
the cyclic code C2 of length 6 over Z4.

Example 4. Let G3 = {g0(x), g1(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 1 with
h0(x) = x3 + x2 + x + 1 and h1(x) = x2 + 1. Let C3 be the cyclic code of length
4 over Z4 generated by G3. Then G3 is a minimal strong Gröbner basis.

Example 5. Let G4 = {g0(x), g1(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 1 with
h0(x) = x2 + 1 and h1(x) = x + 1. Then G4 is a minimal strong Gröbner basis
for the cyclic code C4 of length 4 over Z4.

4 Conclusion

A cyclic code of arbitrary length n over a Galois ring of characteristic pa is
generated by at most min{a, t + 1} elements, where t = max{deg(g(x))}, g(x)
a generator. Moreover, the set of generators so obtained is a minimal strong
Gröbner basis of the code.
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