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Abstract. In this paper, we present a 2-factor approximation algo-
rithm for the maximum independent set problem on a unit disk graph,
where the geometric representation of the graph has been given. We
use dynamic programming and farthest point Voronoi diagram con-
cept to achieve the desired approximation factor. Our algorithm runs
in O(n2 log n) time and O(n2) space, where n is the input size. We also
propose a polynomial time approximation scheme (PTAS) for the same
problem. Given a positive integer k, it can produce a solution of size

1

(1+ 1
k
)2

|OPT | in nO(k) time, where |OPT | is the optimum size of the

solution. The best known algorithm available in the literature runs in
(i) O(n3) time and O(n2) space for 2-factor approximation, and (ii)
nO(k log k) time for PTAS [Das, G.K., De, M., Kolay, S., Nandy, S.C.,
Sur-Kolay, S.: Approximation algorithms for maximum independent set
of a unit disk graph. Information Processing Letters 115(3), 439–446
(2015)].

Keywords: Maximum independent set · Unit disk graph · Approxima-
tion algorithm

1 Introduction

An intersection graph of objects is a graph, where the vertex set is the set of
objects and there is an edge between two objects if their intersection is non
empty. A unit disk graph (UDG) is an intersection graph of disks of equal radii
in the plane. Given a set C = {C1, C2, . . . , Cn} of n circular disks in the plane,
each having diameter 1, the corresponding UDG G = (V,E) is defined as follows:
each vertex vi ∈ V corresponds to a disk Ci ∈ C, and there is an edge between
two vertices if and only if the Euclidean distance between the corresponding disk
centers is at most 1.

An independent set of a graph G = (V,E) is a set of vertices V ′ ⊆ V such
that no two vertices in V ′ are adjacent in G. The objective of the independent set
problem for a given graph G is to find an independent set of maximum cardinality,
which is called as maximum independent set (MIS) or Largest independent set
of G.
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The weighted version of the independent set problem is known as maximum
weighted independent set (MWIS) problem, where each vertex v ∈ V is assigned
a positive weight wv. The objective is to find an independent set of maximum
total weight.

In this paper we consider the problem of finding a MIS on a given UDG,
where the coordinates of the disk centers have been given. We call this problem
as MIS problem on UDG. Some of the applications of MIS are in map labeling,
clustering in wireless ad-hoc networks, coding theory, etc.

The remainder of the paper is organized as follows. Next section we discuss
existing work available in the literature. Section 3 discusses preliminaries and
introduces some notations that are necessary to understand the 2-factor approx-
imation algorithm for MIS on UDG proposed in Sect. 4. We propose a PTAS in
Sect. 5. Finally we conclude the paper in Sect. 6.

2 Related Work

The MIS problem on UDG is known to be NP-hard [7]. A simple 5-factor approxi-
mation algorithm is proposed in [11] and by taking the advantage of the structure
of the given UDG, the authors proposed a heuristic algorithm which provides
a performance guarantee 3. Both the algorithms do not require geometric rep-
resentation (i.e., coordinates of the disk centers) of the UDG. If the geometric
representation is given, the later algorithm runs in O(n2) time. For a given
(k + 1)-claw free graph (k ≥ 4) and for every ε > 0, Halldórsson [8] proposed
a (k

2 + ε)- factor approximation algorithm (that does not require the geometric
representation of disks) in time O(nlogk

1
ε ) using local improvement search tech-

nique for the MIS problem. Therefore there exists a (52 + ε)-factor for UDGs as
they are 6-claw free. Most of the work in the literature assume that the geometric
representation of the UDG is given, this assumption allows us to partition the
plane into grids and solve each grid. Matsui [12] considered the MIS problem on
UDG defined on a slab (i.e., all the disk centers lie between two parallel lines)
of fixed width k, and proposed an algorithm that finds an independent set of
maximum cardinality in O(n4� 2k√

3
�) time, where n denotes the number of vertices

in the UDG. The author also proposed a (1− 1
r )-factor approximation algorithm

for the MIS problem on a UDG, which runs in O(rn4� 2(r−1)√
3

�) time and uses
O(n2r) space, for any integer r ≥ 2. The algorithm can also be extended to the
weighted version of the MIS problem. For a given set R of rectangles of fixed
size, Agarwal et al. [1] proposed a 2-factor approximation algorithm for the MIS
problem that runs in O(n log n) time. The authors also proposed a PTAS that
computes an independent set of rectangles of size at least γ

(1+ 1
k )

, for any k ≥ 1,
where γ is the size of a maximum independent set of R. For a given set of arbi-
trary rectangles of bounded aspect ratio in R

d, Chan [2] proposed a PTAS that
runs in O(n

1
εd−1 ) time and space, where 0 < ε ≤ 1. Chan et al. [3] considered the

same problem for pseudo disks in the plane. Their algorithm produces a solution
of size (1 − ε)|OPT |, where |OPT | is the cardinality of the MIS. Recently Das
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et al. [4] proposed a 2-factor approximation algorithm for the MIS problem with
time and space complexities O(n3) and O(n2) respectively. Their approach is,
(i) split the region into a set of disjoint strips of unit width and compute a MIS
for each non empty strip independently with the aid of dynamic programming,
(ii) find the union of the solutions for odd and even strips separately and con-
sider the one with maximum cardinality. The authors also proposed a PTAS
with the aid of two level shifting strategy of Hochbaum and Maass [9]. For any
given positive integer k > 1 the PTAS produces a solution of size 1

(1+ 1
k )2

|OPT |
in O(k4nσk log k + n log n) time and O(n + k log k) space, where OPT is an opti-
mum solution and σk ≤ 7k

3 +2. For the MIS problem on UDG, van Leeuwen [10]
proposed a fixed parameter tractable algorithm which runs in O(t222tn) time,
where the parameter t is called the thickness of the UDG. A UDG is said to
have thickness t, if each strip in the slab decomposition (of width 1) of the UDG
contains at most t disk centers.

Nieberg et al. [13] proposed a PTAS for the MWIS problem on UDG for the
case geometric representation is not given. Erlebach et al. [6] also proposed a
PTAS for finding a MWIS in an intersection graph of arbitrary radii disks, based
on dynamic programming and the shifting strategy proposed by Hochbaum and
Maass. Their approach can be extended for other geometric objects such as
squares, regular polygons, and rectangles which are approximately squares.

2.1 Our Contribution

In this paper we present a 2-factor approximation algorithm for the MIS problem
on a given UDG under the assumption that the geometric representation of the
UDG is given. Our algorithm runs in O(n2 log n) time using O(n2) space. We also
propose a polynomial time approximation scheme (PTAS) for the same problem.
Given a positive integer k, it can produce a solution of size 1

(1+ 1
k )2

|OPT | in

nO(k) time, where |OPT | is the optimum size of the solution. The best known
algorithm available in the literature runs in (i) O(n3) time and O(n2) space for
2-factor approximation, and (ii) nO(k log k) time for PTAS [4]. Hence, our 2-factor
approximation algorithm as well as PTAS are much faster than the best known
2-factor approximation algorithm and PTAS for the MIS problem on unit disk
graphs.

3 Preliminaries

Let P be the set of points (disk centers) corresponding to the given UDG and
the cardinality of P, denoted by |P| is n. From now on we deal with the point
set P instead of the given UDG. We use x(pi), y(pi) to represent the x and y
coordinates respectively for the point pi ∈ P and d(pi, pj) to denote the Euclid-
ean distance between two points pi and pj . We say that two points pi and pj

in P are independent (some times we say that pi is an independent point of
pj and vice versa in the rest of the paper) if d(pi, pj) > 1. Our objective is to
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find a maximum size subset P ′ of P such that all the points in P ′ are mutually
independent. Without loss of generality, we assume that no two points in P have
the same x-coordinate. A horizontal strip H is the region in the plane bounded
by two horizontal parallel lines. Let Q = {p1, p2, . . . , pm} be the set of points
lying in a horizontal strip H in increasing order of their x-coordinates.

Lemma 1. [4] Let p1, p2, p3, and p4 be four points of P lying inside a horizontal
strip H of width 1 such that x(p1) < x(p2) < x(p3) < x(p4). If p1, p2, p3 are
pairwise independent and p2, p3, p4 are also pairwise independent, then p1 and
p4 must be independent.

We define the set Si,j is as follows: (i) all the points in Si,j are mutually
independent, (ii) Si,j is a maximum cardinality subset of Q, and (iii) pj and pi are
two right most points in Si,j with j < i. Let n(Si,j) denote the number of points
in Si,j . We use Si = {Si,j | 1 ≤ j < i} to denote the collections of sets Si,j for
fixed i. We say that two points pu and pv in Si,j are consecutive if x(pu) < x(pv)
and there is no other point pw of Si,j such that x(pu) < x(pw) < x(pv). For
simplicity, the set Si,j can be viewed as a chain Ci,j . In general, a chain is a
series of connected line segments. In our context, the chain Ci,j corresponding
to the set Si,j is defined by joining consecutive points using line segments from
left to right. Therefore, Si can be viewed as a collection of chains ending at pi

(see Fig. 1). Note that these chains may or may not have a common point(s)
except pi. For a given horizontal strip H we first compute a MIS of the set
Q = {p1, p2, . . . , pm} of points lying inside the strip. The basic idea of our
algorithm is to extend the length of chains as long as possible while processing
the points from left to right iteratively. We find a largest possible independent
subset of {p1, p2, . . . , pi} in the ith iteration for 1 ≤ i ≤ m. Finally, we obtain a
MIS which is a longest chain (a chain of maximum length) after processing all
the points in the strip H.

H

1

pi

Fig. 1. Pictorial representation of the collection Si in the form of chains (not all are
drawn).

Let a variable ni be associated with each point pi in the strip which is
used to store the size of largest independent subset of {p1, p2, . . . , pi}, i.e.,
ni = max{n(si,j) | j < i}. In other words, the length of the longest chain
ending at pi is ni. Initially we set ni = 0 for every point pi in the strip, indi-
cating that the maximum length of a chain ending at pi is zero. The value of ni

gets updated while the point pi is being processed. Therefore, we have a largest
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independent subset of {p1, p2, . . . , pi} by the time pi is processed. We define the
following sets: Sα

i = {pj ∈ Q | pj ∈ Si,j with j < i and |Si,j | = ni − α} for
α = 0, 1, 2, · · · . These sets play crucial role in the proposed algorithm. We use
FPV D(S) to denote the farthest point Voronoi diagram (FPVD) [5] of a point
set S.

4 2-Factor Approximation Algorithm

In this section we propose a dynamic programming based algorithm with the
help of FPVD to compute a MIS of the points lying in a horizontal strip H
of width 1. We partition the region containing the points in P into disjoint
strips H1,H2, . . . , Hν of width 1 using the horizontal lines at y-coordinates
h1, h2, . . . , hν + 1 such that no point in P lies on any horizontal line. The ith

strip Hi contains the points Pi = {p ∈ P | hi < y(p) < hi+1}. We compute a
MIS for each non empty strip separately.

Description of our algorithm to find a MIS for a given set {p1, p2, . . . , pm}
of points lying in a strip H of width 1 is as follows: let μ > 1 be a predefined
sufficiently large constant. For the points p1, p2, . . . , pμ, we find a maximum
independent subset in a naive way. We process the points one by one from
left to right. For every point pi in the strip we maintain a collection of sets
Si = {Si,j}, where j < i. We compute these sets for 1 < i ≤ μ in brute force
manner (because, before processing the point pμ+1 we should have the sets Si,js
in hand for every 1 < i ≤ μ and j < i) and for i > μ on the fly while pi is being
processed. We define Si,j = ∅ if pi and pj are not independent. Without loss of
generality we assume that the points in the sets are stored in increasing order
of their x-coordinate.

We also maintain the three sets S0
i , S1

i , S2
i (defined in the previous section)

and their corresponding FPVDs separately for each point pi in the strip. By
definition, each set Sα

i (0 ≤ α ≤ 2) contains the last but one points in the chains
having length ni − α ending at pi. These sets and their FPVDs of every point
up to pi should be in hand before proceeding to process the point pi+1 in the
strip.

Lemma 2. Let p� be the farthest independent point of pi+1 in Sα
i (for some

0 ≤ α ≤ 2). If p�, pi, and pi+1 are mutually independent then pi+1 is independent
with all the points in the chain Ci,�.

Proof. Let pu be a point lying left to p� (i.e., x(pu) < x(p�)) in the chain Ci,�.
By the definition of Ci,�, the points pu and pi are independent. Therefore, pu, p�,
pi are pairwise independent. Hence by Lemma 1, pu and pi+1 are independent
as p�, pi, and pi+1 are mutually independent. ��
Lemma 3. Let pi and pi+1 be independent. Also, let pu be the farthest indepen-
dent point of pi+1 in Sα

i (for some 0 ≤ α ≤ 2). If pu, pi, and pi+1 are mutually
independent then the cardinality of a MIS M ′ of {p1, p2, . . . , pi+1} having pu, pi,
and pi+1 as right most three points is greater than or equal to the cardinality of a
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MIS M ′′ of {p1, p2, . . . , pi+1} having pv, pi, and pi+1 as right most three points,
where pv is the farthest point of pi+1 in Sβ

i , for β ≥ α.

Proof. |M ′| ≥ |M ′′|, follows from the definition of Sα
i and Sβ

i and β ≥ α. Now
we have to prove that pv, pi, and pi+1 are mutually independent. The case β = α
is trivial. Let us consider the case β > α, i.e., β − α = 1 or 2. By the statement
of the lemma pi and pi+1 are independent, and pv and pi are independent due
to definition of Sβ

i . Now consider the chain Ci,u, since pu is the farthest point
of pi+1 in Sα

i , the length of Ci,u is ni − α. Let {s1, s2, . . . , sni−α−2, sni−α−1(=
pu), sni−α(= pi)} be the set of points in the chain Ci,u from left to right. Consider
the following two cases:

Case A: β − α = 1
Case B: β − α = 2

In Case A, sni−α−2 ∈ Sβ
i and in Case B, sni−α−3 ∈ Sβ

i .
Since sni−α−1 and pi+1 are independent and by Lemma 1, (i) sni−α−2 and pi+1,
and (ii) sni−α−3 and pi+1 are independent. Since in Case A sni−α−2 ∈ Sβ

i and
in Case B sni−α−3 ∈ Sβ

i , then pv and pi+1 are independent as pv is the farthest
point of pi+1 in Sβ

i . Thus the lemma. ��
Lemma 4. Let pi and pi+1 be independent. If pu is the farthest point of pi+1 in
S2

i , then pu and pi+1 are independent.

Proof. Note that Sα
i = {pj ∈ Q | pj ∈ Si,j with j < i and |Si,j | = ni − α} for

α = 0, 1, 2. Consider a chain Ci,j corresponding to Si,j such that n(Si,j) = ni.
Let the members of the chain Ci,j be s1, s2, . . . , sni−4, sni−3, sni−2, sni−1(=
pj), sni

(= pi) from left to right. Now consider a chain containing the points
s1, s2, . . . , sni−4, sni−3, sni

(= pi) of length ni−2. Therefore, sni−3 ∈ S2
i . Observe

that sni−3 is independent with pi+1, since sni−3, sni−2, sni−1, sni
(= pi) are pair-

wise independent and x(sni−3) < x(sni−2) < x(sni−1) < x(sni
). Therefore,

x(sni
) − x(sni−3) > 1 (by Lemma 1). Again x(pi+1) > x(pi) implies sni−3 and

pi+1 are independent. Now, since sni−3 is independent with pi+1 then pu is also
independent with pi+1 as (i) pu ∈ S2

i , (ii) sni−3 ∈ S2
i , and (iii) pu is the farthest

point of pi+1 in S2
i . Thus the lemma. ��

Lemma 5. Let pi and pi+1 be independent. If pu, pv, and pw are the farthest
points of pi+1 in S0

i , S1
i , and S2

i respectively, then either (i) pu, pi+1, or (ii)
pv, pi+1, or (iii) pw, pi+1 are independent.

Proof. Follows form Lemma 4 as pw and pi+1 are independent. ��

4.1 Algorithm

Here, we assume that the set of points {p1, p2, . . . , pi} are already processed one
by one from left to right. Now we describe the method of processing the point
pi+1. Let S0

i+1 = S1
i+1 = S2

i+1 = ∅. Note that at the time of processing pi+1, we
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have (i) the collection {Su,v} and n(Su,v) such that 1 ≤ v < u ≤ i, and (ii) the
sets S0

u, S1
u, S2

u and their FPVDs for every u ≤ i. The steps involved in processing
the point pi+1 are as follows. If d(pi, pi+1) > 1, then we find a point p� ∈ S0

i ,
which is farthest from pi+1. If d(pi+1, p�) > 1, then Si+1,i = {pi+1}∪Si,� (i.e., we
extend the chain ending at pi corresponding to Si,� up to pi+1) and n(Si+1,i) =
n(Si,�)+1. Note that we are not storing Si+1,i explicitly. We can use a matrix M
of size m×m and store p� in the (i+1, i)th entry of M . If d(pi+1, p�) ≤ 1, then we
repeat the same process with S1

i and S2
i in order. We repeat the entire process for

pi−1, pi−2, . . . , p1. Calculate ni+1 = max{n(Si+1,j) | j < i + 1}. To find the sets
S0

i+1, S
1
i+1, and S2

i+1 we repeat the above process again. If n(Si+1,i) = ni+1 − α
then Sα

i+1 = Sα
i+1 ∪{pi} for 0 ≤ α ≤ 2. Next, we store FPVDs of S0

i+1, S
1
i+1, and

S2
i+1 to process the remaining points in the horizontal strip H. The pseudo code

of the algorithm for processing the point pi+1 is given in Algorithm 1. In the
algorithm flag variables flag1 and flag2 are used to handle the cases Sα

i = ∅
for any α = 0, 1, 2 and there is no independent point left to pi+1 respectively.

4.2 Correctness of the Algorithm

Let the current point being processed is pi+1. If d(pi+1, pi) > 1 we check for
the independence of pi+1 with the farthest point in S0

i , S1
i , and S2

i in order.
The farthest independent point, say p�, encountered first is considered to be in
the solution. The existence of p� is guaranteed by Lemma 5. By Lemma 2, pi+1

is independent with all the points in the chain Ci,�. Therefore, the points in
the chain together with pi+1 forms an independent set of {p1, p2, . . . , pi+1} and
that is the possible maximum independent set having p�, pi, and pi+1 as right
most three points (see Lemma 3). Hence, we can safely extend the chain Ci,�

up to pi+1. We considered all the points pi, pi−1, . . . , p1 (see line number 3 in
Algorithm 1) and hence we are considering all possible chains ending at pi+1.

Lemma 6. Algorithm 1 processes the point pi+1 correctly in O(i log i) time and
uses O(m2) space.

Proof. Correctness of Algorithm 1 follows from the discussion in SubSect. 4.2.
The worst case time complexity of lines 4–21 is O(log i) due to planar point
location in line number 9. Therefore, time complexity of lines 3–22 is O(i log i).
Again, time complexity of lines 27–33 is O(i log i). Computing FPVDs in line
number 34 can be done in O(i log i). Thus the total time complexity of Algorithm
1 is O(i log i).

The space complexity follows from (i) size of the matrix M , (ii) collection
{Si,j}, (iii) counters n(Si,j), (iv) sets S0

i , S1
i , S2

i , and (v) storing FPVDs of the
sets S0

i , S1
i , S2

i for 1 ≤ i ≤ m. ��
We now describe the algorithm for computing a MIS for the set of points

{p1, p2, . . . , pm} within a strip H of width 1. For a given predefined constant μ
we execute Algorithm 1 for each point pμ+1, pμ+2, . . . , pm in the strip and report
the largest set Si,j for 1 ≤ j < i ≤ m. Hence the size of a MIS for a given strip
of width 1 is equal to max{n1, n2, . . . , nm}. The pseudo code of the algorithm is
available in Algorithm 2.



Improved Algorithm for Maximum Independent Set on Unit Disk Graph 219

Algorithm 1. Processing the point pi+1

Input: (i) Su,v (in the form of matrix M) and n(Su,v) for 1 ≤ v < u ≤ i, and (ii)
S0

u, S1
u, and S2

u and their FPVDs for u ≤ i.
Output: (i) Si+1,j (in the form of matrix M) and n(Si+1,j) for j < i + 1, and (ii)

S0
i+1, S

1
i+1, S

2
i+1 and their FPVDs.

1: Let M be a matrix of size m × m and M [i, j] ← φ for 1 ≤ i, j ≤ m
2: flag1 = 0,flag2 = 0
3: for (w = i, i − 1, . . . , 1) do
4: if (d(pw, pi+1) > 1) then
5: flag2 = 1
6: for (α = 0, 1, 2) do
7: if (Sα

w �= ∅) then
8: flag1 = 1
9: Find the farthest point p� of pi+1 in FPV D(Sα

w) using planar point
location algorithm [14].

10: if (d(p�, pi+1) > 1) then
11: M [i + 1, w] ← p�

12: n(Si+1,w) = n(Sw,�) + 1
13: break /* break the for loop for (α = 0, 1, 2) */
14: end if
15: end if
16: end for
17: if (flag1 = 0) then
18: M [i + 1, w] ← pw

19: n(Si+1,w) = 2
20: end if
21: end if
22: end for
23: S0

i+1 ← ∅, S1
i+1 ← ∅, S2

i+1 ← ∅
24: if flag2 = 0 then
25: ni+1 = 1
26: else
27: ni+1 = max{n(Si+1,j) | j < i + 1}
28: Repeat line numbers 3 - 22 by replacing lines 11 - 12 by lines 29 - 33.
29: for (α = 0, 1, 2) do
30: if (n(Si+1,w) = ni+1 − α) then
31: Sα

i+1 = Sα
i+1 ∪ {pw}

32: end if
33: end for
34: Compute and store FPV D(S0

i+1), FPV D(S1
i+1), and FPV D(S2

i+1).
35: end if

Theorem 1. Algorithm 2 correctly computes a MIS for the set Q =
{p1, p2, . . . , pm} inside a strip H of width 1 in O(m2 log m) time using O(m2)
space.



220 R.K. Jallu and G.K. Das

Algorithm 2. MIS STRIP

Input: The set Q = {p1, p2, . . . , pm} of m points lying in the strip H of width 1 and
a constant μ.

Output: A maximum cardinality subset Q′ of Q such that the points in Q′ are mutu-
ally independent.

1: For the points {p1, p2, . . . , pμ} compute {Si,j}(j < i) in brute force manner.
2: for (i = μ + 1 to m) do
3: Process the point pi by calling Algorithm 1.
4: end for
5: Return a set with maximum cardinality among {Si,j} for 1 ≤ j < i ≤ m.

Proof. Correctness of the algorithm follows from Lemma 6. Time complexity of

Algorithm 2 is
m∑

i=1

O(i log i) (see for loop in line number 2 in Algorithm 2, where

it calls Algorithm 1 O(m) times). Therefore, total time complexity of Algorithm
2 is O(m2 log m) in worst case.

Space complexity of Algorithm 2 follows from Lemma 6 as we can reuse the
matrix M for every call to Algorithm 1. ��

Now, we describe an algorithm to find a MIS for the point set P. Let
MIS1,MIS2, . . . , MISν be the largest possible independent sets corresponding
to the points in P ∩H1,P ∩H2, . . . ,P ∩Hν respectively. We execute Algorithm 2
for every strip Hi for 1 ≤ i ≤ ν. Let MISodd and MISeven be the union of max-
imum independent sets in odd and even strips respectively. We report MISodd

if |MISodd| ≥ |MISeven|, otherwise we report MISeven. The pseudo code of the
algorithm is given in Algorithm 3

Theorem 2. Given a set P of n points (disk centers) corresponding to a given
UDG, a subset of at least 1

2 |OPT | mutually independent points (disks) can be
computed in O(n2 log n) time and using O(n2) space using Algorithm 3, where
|OPT | is the cardinality of a largest independent set for the point set P.

Proof. Let χ be the solution obtained by Algorithm 3. Observe that both MISodd

and MISeven are independent as all strips are of width 1 unit and two points
in P are independent if the Euclidean distance between them is greater than 1.
Also, observe that the points in any two even strips (resp. odd) are independent.
We have to prove that |χ| > 1

2 |OPT |, where OPT is a MIS of P. Since MISodd

and MISeven are union of solutions in odd and even strips respectively, hence,

|MISodd| + |MISeven| ≥ |OPT | (1)
|χ| + |χ| ≥ |MISodd| + |MISeven| (2)

From inequalities 1 and 2, |χ| ≥ 1
2 |OPT |.

The time and space complexities follow as we can execute Algorithm 3 for
every strip independently. Thus the theorem. ��
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Algorithm 3. MIS P
Input: The set P of n points and strips H1, H2, . . . , Hν .
Output: An independent subset of P.
1: Compute MIS1, MIS2, . . . , MISν for the points lying in strips H1, H2, . . . , Hν by

calling Algorithm 2 for each strip separately.
2: if (ν = 2u) then

3: MISodd =
u−1⋃

i=0

MIS2i+1 and MISeven =
u⋃

i=1

MIS2i

4: else
5: if (ν = 2u + 1) then

6: MISodd =
u⋃

i=0

MIS2i+1 and MISeven =
u⋃

i=1

MIS2i

7: end if
8: end if
9: if |MISodd| ≥ |MISeven| then
10: return MISodd

11: else
12: return MISeven

13: end if

5 Polynomial Time Approximation Scheme

We design a polynomial time approximation scheme (PTAS) for the maximum
independent set problem on a given UDG, where the geometric representation of
the graph has been given i.e., the center of the unit disks are given. We assume
that P be the set of centers of the unit disks associated with the UDG. Also
assume that R be an enclosing rectangle of the point set P. To design a PTAS
we use two level shifting strategy, proposed by Hauchbaum and Maass [9]. In the
first level of shifting strategy we execute k + 1 iterations as follows: in the i-th
iteration (0 ≤ i ≤ k), we partition the region R into disjoint vertical slabs such
that (i) the first slab is of width i starting from left, (ii) width of each even slab
is 1, and (iii) width of other slab is k (note that width of last slab may be less
than k). Therefore, solution of different slabs of width k are non-intersecting [1].

In an iteration of the first level, we consider only those vertical slabs contain-
ing at least one point in P, and compute maximum independent set by applying
second level shifting strategy by considering horizontal partition of each vertical
slab, add up the solutions of all slabs to get the solution of that iteration. The
iteration producing maximum size solution is reported.

Lemma 7. [4] If nk is the maximum number of mutually non-overlapping unit
disks whose centers lie in a strip of width k > 1 and intersected by a vertical line
	, then nk ≤ 7k

3 + 2.

5.1 Computing MIS for Unit Disks Centered in a k × K Square

Let Q ⊆ P be the set of points inside a cell χ of size k × k. Consider a vertical
line 	v and a horizontal line 	h that partition χ into four sub-cells each of size



222 R.K. Jallu and G.K. Das

k
2 × k

2 . Let Q(	v, 	h) ⊆ Q be the set of points whose distance from 	v or 	h is
at most 1

2 , and Q1, Q2, Q3, Q4 ⊆ Q be the set of points in the four quadrants
whose distance from 	v and 	h is greater than 1

2 . To compute a MIS for the set
of points in Q, we use the following divide and conquer technique.

Consider all possible subsets Q′ ⊆ Q(	v, 	h) of size at most 2 × nk, where
nk = 7k

3 + 2 (since 2 × nk is the maximum possible size of the point set in
Q(	v, 	h) that can appear in an optimal solution due to Lemma 7). For each
of Q′, we do the following in each quadrant: delete all the points in Qi (i =
1, 2, 3, 4) which are not independent with Q′. Let Q′

i ⊆ Qi be the remaining
set of points. Now compute the optimum solution for Q′

i recursively using the
same procedure. If T (m, k) is the time complexity for finding MIS in χ, then
T (m, k) = 4 ∗ T (m, k

2 ) × m2nk = mO(k). Thus, we have the following result:

Theorem 3. Given a set P of n points in the plane and an integer k > 1, the
proposed algorithm computes an independent set of size at least 1

(1+ 1
k )2

|OPT | in
nO(k) time, where |OPT | is the optimum size of the solution.

6 Conclusion

In this paper we proposed a 2-factor approximation algorithm for the MIS prob-
lem on UDG, where the geometric representation of the UDG is given. Our
algorithm runs in O(n2 log n) time and O(n2) space, outperforming the exist-
ing algorithms in the literature with respect to time complexity by a factor of

n
log n [4]. We also proposed a PTAS for the same problem. The running time of
our proposed PTAS is nO(k). The previous best known PTAS runs in nO(k log k)

time [4].
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