
AND–Decomposition of Boolean Polynomials
with Prescribed Shared Variables

Pavel Emelyanov1,2(B)

1 Institute of Informatics Systems, Lavrentiev Ave. 6, Novosibirsk, Russia
emelyanov@iis.nsk.su, emelyanov@mmf.nsu.ru

2 Novosibirsk State University, Pirogova St. 2, Novosibirsk, Russia

Abstract. In this article, we present an algorithm for conjunctive
bi–decomposition of boolean polynomials where decomposition compo-
nents share only prescribed variables. It is based on the polynomial–time
algorithm of disjoint decomposition developed before. Some examples
and evaluation of the algorithm are given.

Keywords: AND–decomposition of boolean functions · Combinator-
ial optimization · Disjoint decomposition · Sharing prescribed variables
between decomposition components · Factoring polynomials over finite
fields

1 Introduction

Decomposition of boolean functions/formulas is an important research topic
having a long history and a wide range of applications including analyses of
logic calculi, the theory of games, the (hyper)graph theory, computer algebra
algorithms and combinatorial optimization problems. However, boolean func-
tion decomposition has attracted the most attention in logic circuit synthesis.
It is related to the algorithmic complexity and practical aspects of the imple-
mentation of electronic circuits, their size, time delay, and power consumption.
Historical and modern issues of decomposition are extensively surveyed in [1,2].
Also, we mention [3–7], which are interesting in the scope of this article.

Bi–decomposition is one of the most important cases of decomposition of
boolean functions. Even though it may not be stated explicitly, this case is
considered in many papers: [3,5–8], [2, Ch. 3–6]. It has the form F (X) =
ϕ(F1(Σ1,Δ), F2(Σ2,Δ)), where ϕ ∈ {OR, AND, XOR}, Δ ⊆ X, and {Σ1, Σ2}
is a partition of the variables X \ Δ. Decomposition is called disjoint if Δ = ∅.
From here on, we will consider conjunctive decomposition only. As an applica-
tion, we mention solving a variant of the well–known NP–complete Set Splitting
Problem known also as the Hypergraph 2–Coloring Problem.

The well–known examples of decompositions are Shannon’s Expansions

F = xFx=1 ∨ x̄Fx=0 = (x ∨ Fx=0)(x̄ ∨ Fx=1),

which are powerful tools for theoretical analysis and practical applications. We
can establish other decompositions by varying operation bases. For example,
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 164–175, 2016.
DOI: 10.1007/978-3-319-29221-2 14

AND–Decomposition of Boolean Polynomials 165

F = (xFx=0 + x + Fx=0) (xFx=1 + x + 1) ,

where + stands for Exclusive–OR. In this paper, this decomposition was deduced
as a particular case of a more general decomposition. One disadvantage of these
decompositions is that we cannot control the variables sets of their components.
Also, if a boolean function F over n variables has |UF | units1 and |ZF | zeros,
then the number of its conjunctive bi–decompositions equals

|{(G,H) | F = G · H}| = 22
n−|UF |−1 = 2|ZF |−1, (∗)

It demonstrates that there exists many of such decompositions but only effi-
ciently computed ones are interesting from a practical point of view.

The authors of [9,10], independently from [11] under more simple settings
and in a more simple way, established series algorithms for conjunctive dis-
joint bi–decomposition for boolean functions represented in Algebraic Normal
Form. This form was invented by Zhegalkin [12] and also rediscovered by other
researchers. From the algebraic point of view, ANF is a polylinear multivari-
ate polynomial over the finite field of order 2 (Zhegalkin/boolean polynomials,
Reed–Muller canonical form, Positive Polarity Form). Hence, conjunctive dis-
joint decomposition of ANF coincides with factorization of these polynomials
(further details in [13]).

In [9,10] it is also demonstrated that these decomposition algorithms for ANF
can be straightforwardly transferred to the cases of full DNF and positive DNF.
The results are based on the fact that every disjoint decomposable function given
in forms DNF (and CNF as well) or ANF uniquely defines the finest partition
of its variables. For formulas in CNF/DNF, this follows from the property of a
large class of logical calculi shown in [14]. For formulas in ANF, a similar result
follows from the fact that the ring of (multivariate) polynomials over the finite
field is a unique factorization domain.

In the scope of circuit design, ANF can have some advantages among other
representations of boolean functions. For example, it allows for a more compact
representation of some classes of boolean functions, e.g. arithmetic schemes,
coders, or cyphers. In addition, it has a natural mapping to some circuit tech-
nologies (FPGA–based and nanostructure–based electronics) and good testabil-
ity properties.

Boolean functions in full DNF (i.e. given by explicit enumeration of satisfy-
ing vectors) are considered, for example, in the circuit design based on lookup
tables (LUTs; see, for example, [15]) because they allow for very efficient oper-
ations on table content. Unfortunately, this is space consuming and as such, it
bounds number of LUT inputs. Decomposition of a table into smaller tables can
enlarge the number of admissible inputs. A potentially interesting application
of full DNF decomposition is decomposition of functions in “pre–full” DNF, i.e.
whose full DNFs are reconstructed from DNF by a well–known transformation
(put x ∨ x̄ for each missing variable x in monomials), and their sizes increase

1 UF is also called the support of function supp(F). Its cardinality is also called the
weight of function wt(F).

166 P. Emelyanov

reasonably with respect to the original. In the general context of circuit design,
for the functions specified by a full DNF, AND–decomposition on the first step
of their combinatorial optimization may produce better results due to its “multi-
plicative” nature. Then, smaller components can be minimized more effectively.

Decomposition of positive boolean functions (monotone functions) given in
CNF/DNF attracted particular attention in game theory (simple/voting games)
and combinatorial optimization (decomposition of clutters). Please, see the intro-
duction of [5,6] for a summary. In [5,6], Bioch shows that the complexity of
AND–decomposition of positive functions is O(n5M), where n is the number of
variables and M is the number of products in DNF. It follows from the possibil-
ity of constructing effectively a representation of all modular sets of a monotone
boolean function. A set of variables A is called a modular set of a boolean func-
tion F (X) if F can be represented as F (X) = H(G(A), B), where {A,B} is a
partition of X, and H and G are some boolean functions. The function G(A) is
called component of F and a modular decomposition is obtained from iterative
decompositions into such components.

Partition of variables is the principal problem in the decomposition of boolean
functions. For example, methods described in [4] assume that partitions are sup-
plied. Then they allow us to verify whether a boolean function is decomposable
wrt a given variable partition, and to compute its components. The solution,
however, implies a number of steps that may be intractable. In [7], the authors
propose a graph–theoretical approach. To partition the variable set, the authors
describe a procedure to build an undirected “Blocking Edge Graph”, where a
(minimum) vertex cut determines the partition. The procedure essentially relies
on massive checking as to whether some auxiliary boolean functions are equal to
zero. Obviously, the efficiency of this step strongly depends on the representation
of boolean functions; for some of them this problem can be unfeasible.

Constructing modular sets is a possible way of solving the partition problem
for monotone functions in DNF [5,6]. For ANF, a polynomial algorithm finding
the bi–partition of variable sets is given in [9,10]. In both cases, once some
partition is detected, the components of decomposition can be easily computed.
The same ideas are used in [11].

Approaches to boolean function decomposition can be classified into alge-
braic and logic even though the latter is surely a kind of algebra. In general,
logic-based approaches to decomposition are more powerful and achieve better
results than the algebraic ones: a boolean function can be decomposable logically,
but not algebraically, since boolean factors of a boolean function can differ from
its algebraic factors [2, Ch. 4]. A standard algebraic representation of boolean
functions is polynomials, usually over finite fields, among which F2 (the Galois
field of order 2) is the best known. Then disjoint AND–decomposition corre-
sponds to factorization/decomposition of multivariate polynomials over F2 (in
general, one distinguishes between decomposition and factorization of polyno-
mials, if they are not multilinear). AND–decomposition of boolean polynomials
with shared variables exemplifies finding boolean factors.

The state of the research on the problem of factorization over finite fields is
well presented in [13], although it does not contain the key result by Shpilka and

AND–Decomposition of Boolean Polynomials 167

Volkovich [11] reported in 2010. The authors established the strong between the
factorization of polynomials over (arbitrary) finite fields and identity testing in
these fields. Their results provide that a multilinear polynomial over F2 can be
factored in time O(L3), where L is the length of the polynomial F given as a
symbol sequence, i.e. if the polynomial over n variables has |F | = M monomials
of lengths m1, . . . ,mM then L =

∑M
i=1 mi = O(nM). We also refer |F | as a size

of the polynomial. Notice that in [16] these results were extended on polynomials
of arbitrary degrees over finite fields and rationals.

In this article, we present an algorithm for conjunctive bi–decomposition
of boolean polynomials where decomposition components share only prescribed
variables. It is based on the polynomial–time algorithm of disjoint decomposition.
Some examples and evaluation of the algorithm are given.

2 ∅–Decomposition

At first, we briefly outline the algorithm of disjoint decomposition of boolean
functions based on variable partition, i.e. a factorization algorithm for multilinear
polynomials over F2, presented in [9,10]. These articles contains the GCD–based
decomposition algorithm and the algorithm based on partitioning variable sets.
The latter in turn can be implemented either with explicit computation of a
product of some polynomials or instead of with multiple evaluations of smaller
polynomials.

In the next sections, we assume that the polynomial F does not have trivial
divisors of any kinds: neither x nor x + 1 divide F . Their interpretation in the
scope of decomposition depends on the problem context. We note that besides
the factors of the form x and x + 1, there is a number of other simple cases of
(in)decomposability that can be recognized easily.

We also assume that for F its variable set V ar(F) contains at least two
variables. Fx=v is evaluation of F assuming x = v. F ′

x represents a (formal)
derivative of F with respect to x. Bounding a monomial on a set of variables
means removing from monomial all variables that do not belong to this set of
variable. The monomial with the empty variable set is 1.

Algorithm of ∅–Decomposition

1. Take an arbitrary variable x.
2. Initialize Σsame := {x}, Σother := ∅, and Fsame := 0, Fother := 0.
3. Compute G := Fx=0 · F ′

x.
4. For each variable y ∈ V ar(F) \ {x}

if G′
y = 0 then Σother := Σother ∪ {y} else Σsame := Σsame ∪ {y}.

5. If Σother = ∅ then output Fsame := F, Fother := 1 and stop.
6. For each monomial of F , bound it on Σsame and add this new monomial to

Fsame if Fsame does not contain this monomial.
7. For each monomial of F , bound it on Σother and add this new monomial to

Fother if Fother does not contain this monomial.
8. Check out which of the products (Fsame + c1)(Fother + c2), c1, c2 = 0, 1, gives

the original polynomial F and output these components.

168 P. Emelyanov

This algorithm runs in O(L3) (more precise bounds rely on a careful descrip-
tion of the presentations of polynomials) and is based on identity testing for
partial derivatives of a product of polynomials obtained from the input one.
Although the algorithm has the same O-complexity as the algorithm of Shpilka
and Volkovich, the size of auxiliary data used by the algorithm is smaller, which
is significant on large inputs. For instance, the product of polynomials is com-
puted only once, in comparison to the approach described in [11]. In [10] we also
show that the algorithm can be implemented without computing the product
Fx=0 · F ′

x explicitly, which contributes to the efficiency of the decomposition of
large input polynomials.

The following statement provided without a proof quantitatively estimates
the evident fact that disjointly decomposable polylinear polynomials are rare.

Proposition 1. If a random polynomial F has M monomials defined over n > 2
variables, then

P[F is ∅–undecomposable]>1−
(

1− φ(M)
M

)n

>1−
(

1 − 1
eγ ln lnM+ 3

ln lnM

)n

,

where φ and γ are Euler’s totient function and constant respectively.

3 Δ–Decomposition

Therefore, other kinds of decomposition applicable to a wider class of polynomi-
als are quite interesting. An example of such a generalization is the decomposi-
tion where the components share a prescribed set of function variables.

Definition 1. Δ–Decomposability
A boolean function F is called AND–decomposable wrt a (possibly empty) subset
of variables Δ ⊆ var(F) (or Δ–decomposable, for short) if it is equivalent to the
conjunction F1 ∧ F2 of some functions F1 and F2 such that
1. var(ψ1) ∪ var(ψ2) = var(ϕ);
2. var(ψ1) ∩ var(ψ2) ⊆ Δ; and
3. var(ψi) \ Δ 	= ∅, for i = 1, 2.
The functions F1 and F2 are called Δ–decomposition components of F . We say
that F is Δ–decomposable with a variable partition {Σ1, Σ2} if F has some Δ-
decomposition components F1 and F2 over the variables Σ1 ∪ Δ and Σ2 ∪ Δ,
respectively.

The following function has no disjoint decomposition but it has {x}–decom-
position:

x + ux + vx + uvx + ust + vst + stx + uvstx = (x + u + v + xuv)(x + st)

The following function has no disjoint decomposition and any single shared vari-
able decomposition but it has decomposition with two shared variables

ytuv + stuv + suvx+yst+ysx+ytx+ stx+yt+ sx = (xs+yt+ st)(x+y +uv).

AND–Decomposition of Boolean Polynomials 169

The case Δ = var(F) seems trivial because such decomposition obviously
exists for every boolean function F . As well the statement (∗) from Introduc-
tion tells us that there exists a lot of AND–decomposition. Probably from the
circuit design point of view the following decomposition

uvx + uvy + uxy + vxy = (u + v + x + y)(uv + ux + uy + vx + vy + xy)

is not appropriate. However, effective finding decompositions with low degree
components or good structural properties could be very useful for cryptanalytic
purposes.

Notice that the Shannon-like decomposition mentioned in Introduction
F = (xFx=0 + x + Fx=0)(xFx=1 + x + 1) is a {x}–decomposition of F if
var(Fx=0) ∩ var(Fx=1) = ∅. Because F ′

x = Fx=0 + Fx=1 for multilinear polyno-
mials it follows that

F (U, V, x) = (G(U) + H(V))x + G(U) = xH(V) + (x + 1)G(U).

The function

F = stuv + stux + stvy + stxy + suvx + svxy + tuvy + tuxy + uvxy+
sux + sxy + tvy + txy + uxy + vxy + xy

has both disjoint decomposition and {x, y}–decomposition

F = (tv + tx+vx+x)(su+sy +uy +y) = (uv +ux+vy +xy)(st+sx+ ty +xy).

The reason is that this function has finer decomposition

F = (v + x)(t + x)(u + y)(s + y)

admitting different combinations for the bi–decompositions. Quite interesting
that the components of ∅–decomposition are irreducible over F2 in contrast
with {x, y}–decomposition where the components can be further decomposed.

Finally, the function

F = ((x + y)(u + v)(p + q) + (xy + 1)(uv + 1)(pq + 1))s + (x + y)(u + v)(p + q)

provides an example having three {s}–decompositions; the reader can easily
reconstruct them.

At first, we consider some decomposition which does not guarantee Δ–dis-
jointness of components but elucidates some details.

3.1 “Δ–unpredictable” Decomposition

The decomposition algorithm under development relies on solving the equation
XY + DX + EY + F = 0 over boolean polynomials. The idea comes from
the algorithmics of diophantine quadratic hyperbolic equations. The sequence of
transformations

xy + dx + ey = f
xy + dx + ey + de = f + de

(x + e)(y + d) = f + de

leads us to two cases:

170 P. Emelyanov

– f + de = 0. Then the following two solutions are possible:
• x = −e and an arbitrary y; and
• y = −d and an arbitrary x.

Notice that this case is impossible for boolean polynomials because the poly-
nomials of interest have no trivial divisors.

– f +de 	= 0 and f1 ·f2 = f +de. Then the following two solutions are possible:
{

x = f1 − e
y = f2 − d

or
{

x = f2 − e
y = f1 − d.

Let us return to the boolean polynomial equations. If decomposition exists
wrt some variable, then the following identities hold

(Axx + A∅)(Bxx + B∅) = (AxBx + AxB∅ + A∅Bx)x + A∅B∅ = xF ′
x + Fx=0.

{
A∅B∅ = Fx=0

AxBx + AxB∅ + A∅Bx = F ′
x.

Taking into account F ′
x + A∅B∅ = F ′

x + Fx=0 = Fx=1, we get

(Ax + A∅)(Bx + B∅) = Fx=1.

Going over all possible disjoint decompositions Fx=0 = A∅B∅ and Fx=1 = f1f2,
we finally arrive at:

{
Ax = f1 + A∅

Bx = f2 + B∅

or
{

Ax = f2 + A∅

Bx = f1 + B∅.

In particular, we can choose A∅ = 1, B∅ = Fx=0, f1 = Fx=1, f2 = 1, and
it yields the Shannon–like expansion F = (xFx=0 + x + Fx=0) (xFx=1 + x + 1)
mentioned above. A simple corollary of this expansion is

F = 1 ⇐⇒
{

(x + 1)(Fx=0 + 1) = 0
x (Fx=1 + 1) = 0,

which suggests an idea of a polynomial–time SAT–ANF algorithm.
Let us briefly review the case |Δ| = 2. Given an F and variables x, y. Then

F = xyF ′′
xy + x(Fy=0)′

x + y(Fx=0)′
y + Fx=0,y=0

= (Ax,yxy + Axx + Ayy + A∅)(Bx,yxy + Bxx + Byy + B∅).

Expanding, simplifying, and equaling correspondent coefficients we have the fol-
lowing system of polynomial equations:

⎧
⎪⎪⎨

⎪⎪⎩

A∅B∅ = Fx=0,y=0

AxBx + AxB∅ + A∅Bx = (Fy=0)′
x

AyBy + AyB∅ + A∅By = (Fx=0)′
y

Ax,yBx,y+Ax,y(Bx+By+B∅)+Bx,y(Ax+Ay+A∅)+AxBy+AyBx =F ′′
xy,

we can proceed analogously to the case |Δ| = 1.

AND–Decomposition of Boolean Polynomials 171

3.2 Decompositions with Non–empty Prescribed Δ

Let F be a boolean polynomial over the variables var(F) = {x1, . . . , xn} and
Δ ⊆ var(F), |Δ| = k, be a set of shared variables of the bi–decomposition
we are trying to find. Every monomial

∏
xi∈δ xi, δ ⊆ Δ, including ∅, has the

coefficients Aδ and Bδ in the corresponding components of the bi–decomposition.
These coefficients, which are polynomials over the variables var(F) \ Δ satisfy
the following system of 2k equations:

for all δ ⊆ Δ
∑

∀α,β⊆δ
α∪β=δ

AαBβ = F |δ , where F |δ = (F |x=0,x∈Δ\δ)|′y,y∈δ .

As previously noted, solving this system starts with finding all disjoint decom-
positions (i.e. var(A∅) ∩ var(B∅) = ∅):

A∅B∅ = F |∅.

Propagating these and subsequently found decompositions we can deduce all
solutions of the system. Because we are interested in Δ–decompositions, we
have to maintain the disjointness of variables sets ∪δvar(Aδ) and ∪δvar(Bδ).

To estimate the algorithm’s time complexity, we would make some prelimi-
nary remarks. [9,10] describe cubic algorithms for the disjoint bi–decomposition
of boolean polynomials. Recall that the basic idea of one of them is to partition
the variable set into two sets (if exists) with respect to one selected variable:

– one of them contains this variable and corresponds to an undecomposable
component of decomposition; and

– another one corresponds to the second component that might be further
decomposable.

Then, these decomposition components can be easily reconstructed.
It is important to note that the selected variable must not be a trivial divisor

of the polynomial of interest. If the polynomial has t trivial divisors, then it
has at least 2t−1 disjoint bi–decompositions corresponding to the bi–partitions
of this set of trivial divisors. It follows that every boolean polynomial over n
variables has at most d = max(n, 2t−1(n − t)) disjoint bi–decompositions, and
this bound can be improved under additional conditions.

Hence, precise estimation of the worst–time complexity of Δ–decompositions
is quite difficult in the presence of trivial divisors for intermediate decomposi-
tions. An upper bound for this multiplier can be O(nk) but it is quite coarse.
We give the worst–time complexity under the assumption that all intermediate
decompositions produce two components.

Estimation of the worst–time complexity of the Δ–decomposition algorithm
involves the estimation of complexity of solving 2k equations which includes

– varying decompositions of the previous steps that can produce several versions
of each equation; the number of versions for the last equation can be bounded
as 2k;

172 P. Emelyanov

– coefficients of each next equation are computed with the help of the solutions
of the previous equations; the complexity can be estimated as kS(k, n,M),
where S(k, n,M) is complexity of the summation of k boolean polynomials
with at most n variables and at most M monomials; and

– for each equation, disjoint decomposition needs to be done; let its complexity
be T (n,M).

Putting all together, we have O(k22kS(k, n,M)T (n,M)).
We can make an important observation affecting the algorithm’s complex-

ity. If the variable set of F |∅ contains all variables of F outside Δ, i.e.
var(F |∅) = var(F) \ Δ, and we deduce some decomposition A∅B∅ = F |∅,
then all subsequent decompositions can avoid the step of the partition of vari-
ables sets because it has been already determined by the couple var(A∅) and
var(B∅). This can reduce time complexity from cubic to quadratic with respect
to the lengths of polynomials. Even if not all variables of F outside Δ appear in
F |∅, we can check only these variables with respect to one part of the partition
to complete the decomposition.

3.3 Examples and Experimental Evaluation

From the circuit design point of view, optimization quality of decompositions is
essential. In contrast with disjoint decomposition when the sizes of components
are always less than the size of the original polynomial, decompositions with
shared variables have components, sizes of which can vary in wide range. We
consider the case |Δ| = 1: F (X,Y, s) = F1(X, s)F2(Y, s), X ∩ Y = ∅. The
decomposition quality is the ratio

QF =
|F |

|F1| + |F2| .

It is easy to construct a family of boolean functions over n ≥ 5 variables such
that for every function F from its decomposition quality is

QF =

{
2

n−3
2 , n is odd,

1
52

n+2
2 , n is even.

These functions base on “bi–partitions” of the set of all monomials over n−1 vari-
ables: sums of every subset and its complement2 form respectively a derivative
and 0–evaluation of the function of interest wrt a shared variable of decomposi-
tion. Decomposition components of these functions have the same construction.
A 5–variable boolean function belonging to this family is

(s + x1 + x2 + x1x2)(s + y1 + y2 + y1y2) =
s + sx1 + sx2 + sy1 + sy2 + x1y1 + x1y2 + x2y1 + x2y2+
sx1x2 + sy1y2 + x1y1y2 + x2y1y2 + x1x2y1 + x1x2y2 + x1x2y1y2

2 To exclude polynomials with trivial divisors they have to be relative prime.

AND–Decomposition of Boolean Polynomials 173

Fig. 1. Polynomial with 100 variables Fig. 2. Polynomial with 1000 variables

The total sizes of decomposition components can be also larger than the size
of the original polynomial. 3–variables function examples are

sx1y1 + s + 1 = (sx1 + s + 1)(sy1 + s + 1)
sx1 + sy1 + x1 = (sx1 + s + x1)(sy1 + s + 1)

sx1y1 + x1y1 + s = (sx1 + s + x1)(sy1 + s + y1)

and a 5–variables example is

sx1y2 + sx2y1 + x1y2 = (sx1 + sx2 + x1)(sy1 + sy2 + y2).

For all these functions the decomposition quality Q = 1
2 , i.e. we observe regres-

sion of decomposition representation instead of its improvement.
For computational evaluation of the developed decomposition algorithm, we

use Maple 17 for Windows run on 1.6 GHz notebook with 12 GB RAM. The
figures show the plots of decomposition time depending on the number of mono-
mials of random polynomials. These polynomials have 100 or 1000 variables,
surely containing two decomposition components of almost equal sizes, sharing
one variable (Figs. 1 and 2).

4 Final Remarks

Not only cases of decomposition with the prescribed Δ (empty or non) can be
interesting. Some other cases of interest are:

– The “pure” product can be spoiled by a few monomials

F (X,Y) = G(X)H(Y) + D(X,Y), where |F | |D|,

i.e. the “defect” D(X,Y) can extend or shrink this product. Its detecting
allows us to provide a more compact form of the original polynomial.

174 P. Emelyanov

– A set of shared variables Δ can be à priori unknown. It is computed in the
course of the algorithm, and the induced decompositions should fit different
optimality criteria which can involve, for instance among others, minimum Δ
or Δ such that components of decomposition are as balanced as possible.

The last generalization attracts attention to the problem how Δ–decom-
posability depends on cardinality of Δ. Is it possible to estimate probability
P(n, |F |, |Δ|) of that we can decompose, a polynomial F over n variables among
which the subset Δ is large enough?

Since decompositions with shared variables can have components, sizes of
which vary in wide range, it is interesting to estimate the average decomposition
quality over all boolean functions with n–variables.

As it is mentioned in Introduction positive boolean functions play an impor-
tant role in the combinatorial optimization and graph/game theory. We know
that the algorithm of disjoint decomposition of boolean functions in ANF can
be transferred on boolean functions in positive and full DNF. Is it possible to
do the same for Δ-decomposition?

References

1. Perkowski, M.A., Grygiel, S.: A survey of literature on function decomposition,
Version IV. PSU Electrical Engineering Department Report, Portland State Uni-
versity, Portland, Oregon, USA, November 1995

2. Khatri, S.P., Gulati, K. (eds.): Advanced Techniques in Logic Synthesis, Optimiza-
tions and Applications. Springer, New York (2011)

3. Mishchenko, A., Sasao, T.: Large-scale SOP minimization using decomposition and
functional properties. In: Proceedings of the 40th ACM/IEEE Design Automation
Conference (DAC ’03), pp. 149–154. ACM, New York (2003)

4. Steinbach, B., Lang, C.: Exploiting functional properties of Boolean functions for
optimal multi-level design by bi-decomposition. Artif. Intell. Rev. 20(3–4), 319–360
(2003)

5. Bioch, J.C.: The complexity of modular decomposition of Boolean functions. Dis-
crete Appl. Math. 149(1–3), 1–13 (2005)

6. Bioch, J.C.: Decomposition of Boolean functions. In: Crama, Y., Hammer, P.L.
(eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engi-
neering. Encyclopedia of Mathematics and its Applications, vol. 134, pp. 39–78.
Cambridge University Press, New York (2010)

7. Choudhury, M., Mohanram, K.: Bi-decomposition of large Boolean functions using
Blocking Edge Graphs. In: Proceedings of the 2010 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD ’10), pp. 586–591. IEEE Press, Pis-
cataway (2010)

8. Mishchenko, A., Steinbach, B., Perkowski, M.A.: An algorithm for bi-
decomposition of logic functions. In: Proceedings of the 38th ACM/IEEE Design
Automation Conference (DAC ’01), pp. 103–108. ACM, New York (2001)

9. Emelyanov, P., Ponomaryov, D.: On tractability of disjoint AND-decomposition
of Boolean formulas. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol.
8974, pp. 92–101. Springer, Heidelberg (2015)

AND–Decomposition of Boolean Polynomials 175

10. Emelyanov, P., Ponomaryov, D.: Algorithmic issues of conjunctive decomposition
of boolean formulas. Programming and Computer Software 41(3) (2015) 162–169
Translated: Programmirovanie, vol. 41, No. 3, pp. 62–72 (2015)

11. Shpilka, A., Volkovich, I.: On the relation between polynomial identity testing and
finding variable disjoint factors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 408–419.
Springer, Heidelberg (2010)

12. Zhegalkin, I.: Arithmetization of symbolic logics. Sb. Math. 35(1), 311–377 (1928).
In Russian

13. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, New York (2013)

14. Ponomaryov, D.: On decomposability in logical calculi. Bull. Novosibirsk Comput.
Cent. 28, 111–120 (2008)

15. Kuon, I., Tessier, R., Rose, J.: FPGA Architecture: Survey and Challenges. Now
Publishers Inc., Boston - Delft (2008)

16. Kopparty, S., Saraf, S., Shpilka, A.: Equivalence of polynomial identity testing and
polynomial factorization. Comput. Complex. 24(2), 295–331 (2015)

	AND--Decomposition of Boolean Polynomials with Prescribed Shared Variables
	1 Introduction
	2 --Decomposition
	3 --Decomposition
	3.1 ``--unpredictable'' Decomposition
	3.2 Decompositions with Non--empty Prescribed
	3.3 Examples and Experimental Evaluation

	4 Final Remarks
	References

