
Sathish Govindarajan
Anil Maheshwari (Eds.)

 123

LN
CS

 9
60

2

Second International Conference, CALDAM 2016
Thiruvananthapuram, India, February 18–20, 2016
Proceedings

Algorithms
and Discrete Applied
Mathematics

Lecture Notes in Computer Science 9602

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Sathish Govindarajan • Anil Maheshwari (Eds.)

Algorithms
and Discrete Applied
Mathematics
Second International Conference, CALDAM 2016
Thiruvananthapuram, India, February 18–20, 2016
Proceedings

123

Editors
Sathish Govindarajan
Indian Institute of Science
Bangalore
India

Anil Maheshwari
Carleton University
Ottawa, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-29220-5 ISBN 978-3-319-29221-2 (eBook)
DOI 10.1007/978-3-319-29221-2

Library of Congress Control Number: 2015960217

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the papers presented at CALDAM 2016: the Second Conference
on Algorithms and Discrete Applied Mathematics, held during February 18–20, 2016,
in Thiruvanthapuram (Trivandrum), India. This conference was organized by the
Department of Future Studies, University of Kerala, Thiruvananthapuram. The con-
ference covered a diverse range of topics on algorithms and discrete applied mathe-
matics. There were 91 submissions from 13 countries. Each submission was carefully
reviewed by at least one, and on average three, Program Committee members. In
addition, comments of several external reviewers were also sought. The committee
decided to accept 30 papers. The conference program also included invited talks by
Victor Chepoi and Surender Baswana.

The first Conference on Algorithms and Discrete Applied Mathematics was held at
the Indian Institute of Technology, Kanpur, during February 8–10, 2015, and the
proceedings were published in the Lecture Notes in Computer Science (volume 8959).
The first conference accepted 26 papers out of 58 submissions from 10 countries.

We would like to thank all the authors for contributing high-quality research papers
to the conference. We express our sincere thanks to the Program Committee members
and the external reviewers for reviewing the papers within a very short period of time.
We thank Springer for publishing the proceedings in the Lecture Notes in Computer
Science series. We thank the invited speakers Victor Chepoi and Surender Baswana for
accepting our invitation. We thank the Organizing Committee chaired by Manoj
Changat from the University of Kerala for the smooth functioning of the conference.
We thank the chair of the Steering Committee, Subir Ghosh, for his active help,
support, and guidance throughout. We thank our sponsors Google Inc., University of
Kerala, KSCSTE (Kerala State Council for Science, Technology and Environment,
Government of Kerala), and CDC-IMU (Commission for Developing Countries of
International Mathematical Union) for their financial support. Finally, we thank the
EasyChair conference management system, which was very effective in handling the
entire reviewing process.

December 2015 Sathish Govindarajan
Anil Maheshwari

Organization

Program Committee

V. Aravind Institute of Mathematical Sciences, India
John Augustine Indian Institute of Technology Madras, India
Amitabha Bagchi Indian Institute of Technology Delhi, India
Amitava Bhattacharya Tata Institute of Fundamental Research, India
Boštjan Brešar University of Maribor, Slovenia
Sunil Chandran Indian Institute of Science, India
Manoj Changat University of Kerala, India
Sandip Das Indian Statistical Institute, India
Vida Dujmovic University of Ottawa, Canada
Fabrizio Frati Roma Tre University, Italy
Sumit Ganguly Indian Institute of Technology Kanpur, India
Daya Gaur University of Lethbridge, Canada
Partha Goswami University of Calcutta, India
Sathish Govindarajan

(Co-chair)
Indian Institute of Science, India

R. Inkulu Indian Institute of Technology Guwahati, India
Gwenaël Joret Université Libre de Bruxelles, Belgium
Shuji Kijima Kyushu University, Japan
Sandi Klavzar University of Ljubljana, Slovenia
Ramesh Krishnamurti Simon Fraser University, Canada
Andrzej Lingas Lund University, Sweden
Meena Mahajan Institute of Mathematical Sciences, India
Anil Maheshwari

(Co-chair)
Carleton University, Canada

Bojan Mohar Simon Fraser University, Canada
N.S. Narayanaswamy Indian Institute of Technology Madras, India
Sudebkumar Pal Indian Institute of Technology Kharagpur, India
B.S. Panda Indian Institute of Technology Delhi, India
Abhiram Ranade Indian Institute of Technology Bombay, India
Michiel Smid Carleton University, Canada
Shakhar Smorodinsky Ben Gurion University, Israel
C.R. Subramanian Institute of Mathematical Sciences, India
Dorothea Wagner Karlsruhe Institute of Technology, Germany
David Wood Monash University, Australia

Steering and Organizing Committee

Steering Committee

Subir Kumar Ghosh (Chair) Ramakrishna Mission Vivekananda University, India
János Pach École Polytechnique Fédérale De Lausanne (EPFL),

Switzerland
Nicola Santoro Carleton University, Canada
Swami Sarvattomananda Ramakrishna Mission Vivekananda University, India
Peter Widmayer ETH Zürich, Switzerland
Chee Yap New York University, USA

Organizing Committee

P.K. Radhakrishnan (Patron,
Hon. Vice Chancellor)

University of Kerala, India

Manoj Changat (Conference
Chair)

University of Kerala, India

M. Wilcsy University of Kerala, India
Achuthsankar S. Nair University of Kerala, India
V.P. Mahadevan Pillai University of Kerala, India
K.S. Chandrasekhar University of Kerala, India
Ambat Vijayakumar Cochin University of Science and Technology, India
R. Balakrishnan Bharathidasan University, India
B. Kannan Cochin University of Science and Technology, India
G. Santhosh Kumar Cochin University of Science and Technology, India
N. Narayanan Indian Institute of Technology Madras, India
S.P. Sanal Kumar University of Kerala, India
Christabell P.J. University of Kerala, India
Thara Prabhakaran University of Kerala, India
K. Satheesh Kumar University of Kerala, India

Additional Reviewers

Acharya, Mukti
Angelini, Patrizio
Baixeries, Jaume
Banik, Aritra
Basavaraju, Manu
Baswana, Surender
Baum, Moritz
Bergamini, Elisabetta
Bhattacharya, Pritam
Biniaz, Ahmad
Boucher, Delphine

Broersma, Hajo
Cabello, Sergio
Chakraborty, Dibyayan
Choudhary, Aruni
Da Lozzo, Giordano
Datta, Samir
Diwan, Ajit
Dorbec, Paul
Duong, Dung Hoang
Erlebach, Thomas
Floderus, Peter

VIII Organization

Francis, Mathew
Gaertner, Bernd
Garg, Ankit
Gologranc, Tanja
Hamann, Michael
Hegde, Suresh Manjanath
Hinz, Andreas
Iranmanesh, Ehsan
Issac, Davis
Jansson, Jesper
Kalyanasundaram, Subrahmanyam
Khodamoradi, Kamyar
Kizhakkepallathu, Ashik Mathew
Kowaluk, Miroslaw
Krithika, R.
Kuziak, Dorota
Levcopoulos, Christos
Limaye, Nutan
Linhares Sales, Claudia
Liu, Daphne
Lugosi, Gabor
M.S., Ramanujan
Mathew, Rogers
Mehta, Shashank
Menezes, Bernard
Milanic, Martin
Mishra, Tapas Kumar
Miyano, Eiji
Moses Jr., William K.
Mukherjee, Joydeep
Mukhopadhyay, Sagnik
Mulder, Henry Martyn
Muthu, Rahul
Nandakumar, Satyadev
Nandi, Soumen

Narasimhan, Sadagopan
Nasre, Meghana
Natarajan, Aravind
Niedermann, Benjamin
O., Suil
Pal, Arindam
Pandey, Arti
Panigrahi, Pratima
Paul, Subhabrata
Peterin, Iztok
Philip, Geevarghese
Pinlou, Alexandre
Powers, Robert
Pradhan, D.
Prutkin, Roman
Radermacher, Marcel
Rao B.V., Raghavendra
Rebeiro, Chester
Rok, Alexandre
Rollova, Edita
Roselli, Vincenzo
Roy, Bodhayan
Sahoo, Uma Kant
Sarma, Jayalal
Sen, Sagnik
Shah, Chintan
Singh, Tarkeshwar
Sivadasan, Naveen
Sivasubramaniam, Sumathi
Sledneu, Dzmitry
Strasser, Ben
Sundararajan, R.
Sury, B.
Tewari, Raghunath

Organization IX

Contents

Randomization for Efficient Dynamic Graph Algorithms (Invited Talk) 1
Surender Baswana

Algorithms for Problems on Maximum Density Segment 14
Md. Shafiul Alam and Asish Mukhopadhyay

Distance Spectral Radius of Some k-partitioned Transmission Regular
Graphs. 26

Fouzul Atik and Pratima Panigrahi

Color Spanning Objects: Algorithms and Hardness Results. 37
Sandip Banerjee, Neeldhara Misra, and Subhas C. Nandy

On Hamiltonian Colorings of Trees . 49
Devsi Bantva

On the Complexity Landscape of the Domination Chain 61
Cristina Bazgan, Ljiljana Brankovic, Katrin Casel, and Henning Fernau

On the Probability of Being Synchronizable . 73
Mikhail V. Berlinkov

Linear-Time Fitting of a k-Step Function . 85
Binay Bhattacharya, Sandip Das, and Tsunehiko Kameda

Random-Bit Optimal Uniform Sampling for Rooted Planar Trees with
Given Sequence of Degrees and Applications . 97

Olivier Bodini, Julien David, and Philippe Marchal

Axiomatic Characterization of Claw and Paw-Free Graphs Using Graph
Transit Functions . 115

Manoj Changat, Ferdoos Hossein Nezhad, and Narayanan Narayanan

Linear Time Algorithms for Euclidean 1-Center in Rd with Non-linear
Convex Constraints . 126

Sandip Das, Ayan Nandy, and Swami Sarvottamananda

Lower Bounds on the Dilation of Plane Spanners . 139
Adrian Dumitrescu and Anirban Ghosh

Lattice Spanners of Low Degree . 152
Adrian Dumitrescu and Anirban Ghosh

http://dx.doi.org/10.1007/978-3-319-29221-2_1
http://dx.doi.org/10.1007/978-3-319-29221-2_2
http://dx.doi.org/10.1007/978-3-319-29221-2_3
http://dx.doi.org/10.1007/978-3-319-29221-2_3
http://dx.doi.org/10.1007/978-3-319-29221-2_4
http://dx.doi.org/10.1007/978-3-319-29221-2_5
http://dx.doi.org/10.1007/978-3-319-29221-2_6
http://dx.doi.org/10.1007/978-3-319-29221-2_7
http://dx.doi.org/10.1007/978-3-319-29221-2_8
http://dx.doi.org/10.1007/978-3-319-29221-2_9
http://dx.doi.org/10.1007/978-3-319-29221-2_9
http://dx.doi.org/10.1007/978-3-319-29221-2_10
http://dx.doi.org/10.1007/978-3-319-29221-2_10
http://dx.doi.org/10.1007/978-3-319-29221-2_11
http://dx.doi.org/10.1007/978-3-319-29221-2_11
http://dx.doi.org/10.1007/978-3-319-29221-2_11
http://dx.doi.org/10.1007/978-3-319-29221-2_12
http://dx.doi.org/10.1007/978-3-319-29221-2_13

AND–Decomposition of Boolean Polynomials with Prescribed Shared
Variables . 164

Pavel Emelyanov

Approximation Algorithms for Cumulative VRP with Stochastic Demands . . . 176
Daya Ram Gaur, Apurva Mudgal, and Rishi Ranjan Singh

Some Distance Antimagic Labeled Graphs . 190
Adarsh K. Handa, Aloysius Godinho, and Tarkeshwar Singh

A New Construction of Broadcast Graphs . 201
Hovhannes A. Harutyunyan and Zhiyuan Li

Improved Algorithm for Maximum Independent Set on Unit Disk Graph 212
Ramesh K. Jallu and Guatam K. Das

Independent Sets in Classes Related to Chair-Free Graphs 224
T. Karthick

Cyclic Codes over Galois Rings . 233
Jasbir Kaur, Sucheta Dutt, and Ranjeet Sehmi

On the Center Sets of Some Graph Classes . 240
Manoj Changat, Kannan Balakrishnan, Ram Kumar, G.N. Prasanth,
and A. Sreekumar

On Irreducible No-hole L(2, 1)-labelings of Hypercubes and Triangular
Lattices . 254

Nibedita Mandal and Pratima Panigrahi

Medians of Permutations: Building Constraints . 264
Robin Milosz and Sylvie Hamel

b-Disjunctive Total Domination in Graphs: Algorithm and Hardness
Results . 277

Arti Pandey and B.S. Panda

m-Gracefulness of Graphs . 289
Jessica Pereira, T. Singh, and S. Arumugam

Domination Parameters in Hypertrees . 299
R. Jayagopal, Indra Rajasingh, and R. Sundara Rajan

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 308
Madhu Illuri, P. Renjith, and N. Sadagopan

Relative Clique Number of Planar Signed Graphs . 326
Sandip Das, Prantar Ghosh, Swathyprabhu Mj, and Sagnik Sen

XII Contents

http://dx.doi.org/10.1007/978-3-319-29221-2_14
http://dx.doi.org/10.1007/978-3-319-29221-2_14
http://dx.doi.org/10.1007/978-3-319-29221-2_15
http://dx.doi.org/10.1007/978-3-319-29221-2_16
http://dx.doi.org/10.1007/978-3-319-29221-2_17
http://dx.doi.org/10.1007/978-3-319-29221-2_18
http://dx.doi.org/10.1007/978-3-319-29221-2_19
http://dx.doi.org/10.1007/978-3-319-29221-2_20
http://dx.doi.org/10.1007/978-3-319-29221-2_21
http://dx.doi.org/10.1007/978-3-319-29221-2_22
http://dx.doi.org/10.1007/978-3-319-29221-2_22
http://dx.doi.org/10.1007/978-3-319-29221-2_23
http://dx.doi.org/10.1007/978-3-319-29221-2_24
http://dx.doi.org/10.1007/978-3-319-29221-2_24
http://dx.doi.org/10.1007/978-3-319-29221-2_25
http://dx.doi.org/10.1007/978-3-319-29221-2_26
http://dx.doi.org/10.1007/978-3-319-29221-2_27
http://dx.doi.org/10.1007/978-3-319-29221-2_28

The cd-Coloring of Graphs. 337
M.A. Shalu and T.P. Sandhya

Characterizations of H-graphs . 349
H.P. Patil and V. Raja

On the Power Domination Number of Graph Products. 357
Seethu Varghese and A. Vijayakumar

Author Index . 369

Contents XIII

http://dx.doi.org/10.1007/978-3-319-29221-2_29
http://dx.doi.org/10.1007/978-3-319-29221-2_30
http://dx.doi.org/10.1007/978-3-319-29221-2_31

Randomization for Efficient Dynamic Graph
Algorithms

(Invited Talk)

Surender Baswana(B)

Department of CSE, IIT Kanpur, Kanpur, India
sbaswana@cse.iitk.ac.in

Abstract. In the last two decades, randomization has played a crucial
role in the design of efficient algorithms for various problems on dynamic
graphs. The aim of this article is to illustrate some of these randomization
techniques in the context of these dynamic graph algorithms.

1 Introduction

Graphs are used to model various computational problems and structures in real
life. For example, a network of routers, network of roads, network of users on
Facebook/Twitter can all be modelled as a graph so that solving any problem on
these networks amounts to solving some problem on the corresponding graph. A
few well known problems on graphs are connectivity, shortest paths, and match-
ing. There exist classical algorithms which solve these problems quite efficiently
for any given static graph. However, it is also known that most of the graphs in
real life are prone to changes. These changes may be insertion of new links or
deletion of existing links. These changes may cause a change in the solution of
the corresponding problem as well.

An algorithmic graph problem in a dynamic environment is modelled as fol-
lows. There is an online sequence of insertion and deletion of edges in the graph,
and the objective is to maintain the solution of the problem efficiently after each
of these updates. In particular, the time taken to update the solution has to be
much smaller than that of the best static algorithm for the problem. A dynamic
graph algorithm is said to be fully dynamic if it handles both insertion as well
as deletion of edges. A partially dynamic algorithm is said to be incremental or
decremental if it handles only insertion or only deletion of edges respectively.
In the last two decades, many elegant dynamic algorithms have been designed
for various graph problems such as connectivity [6,12,13,15], reachability [3,17],
shortest path [5,18], spanners [4,9], matching [2], min-cut [21]. Randomization
has played a very crucial role in the design of many of these dynamic algorithms.
For some problems like connectivity, matching, and spanners in dynamic envi-
ronment, randomization achieved a major breakthrough in improving the update

Surender Baswana — This research was partially supported by University Grants
Commission of India and the Israel Science Foundation.

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 1–13, 2016.
DOI: 10.1007/978-3-319-29221-2 1

2 S. Baswana

time from polynomial to polylogarithmic (in input size). For some problems like
single source reachability and shortest paths under deletion of edges, random-
ization has recently played a key role in breaking the long-standing barriers in
their time complexity [10,11]. Moreover, the randomized algorithms for dynamic
graph problems are usually simpler compared to the deterministic ones, making
them ideal for practical applications.

The objective of this article is to highlight some of the randomization tech-
niques that played a very important role in designing efficient dynamic algo-
rithms. Each of these techniques is demonstrated through a dynamic graph
problem followed by its randomized algorithm exploiting the technique. While
choosing these problems and algorithms, the only criteria followed is the ease
with which the corresponding technique can be explained and emphasized. We
have tried to ensure that this article is self contained, and no prerequisite from
the area of randomized algorithms or dynamic algorithms is expected.

We now state a few standard terminologies about randomized algorithms.
There are two types of randomized algorithms: Las Vegas and Monte Carlo. A
randomized algorithm is called a Las Vegas algorithm if its output is always
correct but its running time is a random variable. A randomized algorithm is
called a Monte Carlo algorithm if its running time is fixed but its output may be
incorrect with some probability. While designing or analysing a graph algorithm,
n and m will denote respectively the number of vertices and edges of a graph. In
the context of a randomized algorithm, we usually say that an event will happen
with high probability if the probability of its happening is more than 1 − n−c

for any constant c > 0. For most of the practical applications, a Monte Carlo
algorithm that succeeds with high probability is considered almost as good as
any deterministic algorithm.

2 Fingerprinting

We illustrate this technique through its application in solving the problem of
fully dynamic transitive closure of a directed graph G. The aim is to maintain
a Boolean matrix M such that M [u, v] = 1 if and only if there is at least one
path from u to v. King and Sagert [16] designed a Monte Carlo algorithm for
this problem that takes O(n2.26) update time. They first designed an O(n2)
update time algorithm for a directed acyclic graph (DAG) and then extended
it to general graphs using fast algorithms for matrix multiplication. For the
sake of clear exposition of the fingerprinting technique in this article, we restrict
ourselves to DAG only.

A simple and obvious approach to maintain the transitive closure is to keep a
matrix P-count that stores the count of all distinct paths from u to v for each
u, v ∈ V . Two paths are said to be distinct if the sets of the edges defining them
are not the same. So M [u, v] = 1 if and only if P-count[u, v] > 0. In order to
maintain P-count under insertion and deletion of edges, the following lemma,
that holds for a DAG, turns out to be very crucial. A simple proof of this lemma
is based on the existence of a topological ordering for a DAG.

Randomization for Efficient Dynamic Graph Algorithms 3

Lemma 1. Let (i, j) be any edge, and let Pu,i and Pj,v be any two paths in a
DAG. Then concatenation of Pu,i, edge (i, j), and Pj,v is a path from u to v.

Consider insertion (or deletion) of an edge (i, j). It follows from Lemma 1 that
for any two vertices u, v ∈ V , the increase (or decrease) in the number of paths
from any vertex u to any vertex v is exactly (P-count[u, i] × P-count[j, v]).
This suggests the following algorithm for updating P-count upon insertion of
an edge (deletion of an edge is similar).

Algorithm 1. Updating P-count upon insertion of an edge (i, j)
1 foreach (u, v ∈ V) do
2 P-count[u, v] ← P-count[u, v] + (P-count[u, i] × P-count[j, v]);
3 end

Algorithm 1 thus performs O(n2) arithmetic operations to update P-count
for any edge insertion or deletion. However, this is still not an O(n2) time algo-
rithm. This is because there can be Θ(2n) paths between two vertices in a DAG,
and so an entry in P-count can be a n-bit number. But the word RAM model
facilitates execution of an arithmetic operation in O(1) time provided the num-
ber of bits is O(log n) only. So, at first sight, Algorithm1 seems to have hit a
hurdle too hard to overcome. However, observe that we have to just determine
whether P-count[u, v] �= 0, and so we don’t have to maintain exact value of
P-count[u, v]. This observation can be exploited with the help of randomiza-
tion to solve our problem. Instead of working with the n-bit numbers, basically
we work with their short fingerprints as follows:

– Pick a prime number p randomly uniformly from [2, nc log n] for any c > 0.
– Perform all arithmetic operations in Algorithm1 modulo p.

Though the algorithm will take O(n2) time now, what is the guarantee about
its correctness ? If P-count[u, v] mod p �= 0, surely P-count[u, v] �= 0 and
hence M [u, v] = 1. However, if P-count[u, v] mod p = 0, it is not necessary
that P-count[u, v] = 0 (and hence M [u, v] = 0). But this may happen only if
P-count[u, v] is divisible by p. We shall now show that the probability of this
happening is extremely small.

The well-known Prime Number Theorem states that the number of prime
numbers less than k is asymptotically k/ ln k. Therefore, there are Θ(nc) prime
numbers in the interval [2, nc log n]. Consider any u, v ∈ V . Since each prime
number is ≥ 2, and P-count[u, v] at any stage is at most 2n, so the number
of its prime factors is trivially bounded by n. Therefore, the probability that a
randomly selected prime number from [2, nc log n] divides P-count[u, v] is at
most 1/nc−1. Probability of union of a set of events is upper bounded by the
sum of the probability of individual events. Therefore, the probability that any
of the n2 entries in the matrix is wrong is at most 1/nc−3 which is n−3 for c = 6.
Thus we get a Monte Carlo algorithm for fully dynamic transitive closure of a
DAG. The transitive closure matrix maintained by the algorithm is correct with
probability at least 1 − n−3 at any stage.

4 S. Baswana

3 Random Sampling

The technique of random sampling is one of the most powerful randomization
techniques to design efficient algorithms. Its power can be realized through the
following simple example. Suppose there is a large set S consisting of good ele-
ments and bad elements. Moreover, α fraction of S consists of good elements and
it can be determined efficiently whether any given element is good. The aim is
to select a good element from S. There is no efficient way to accomplish this aim
deterministically since in the worst case we might need to scan through large
number of elements. However, there is a simple randomized way to achieve it:
Pick an element randomly uniformly from S. This element is going to be a good
element with probability α. This probability can be boosted arbitrarily close to
1 by repeated sampling. We illustrate the power of random sampling technique
in dynamic algorithms through the problem of fully dynamic connectivity.

The fully dynamic connectivity problem can be described as follows. There
is an undirected graph undergoing insertion and deletion of edges. The aim is
to maintain a data structure so that the following query can be answered effi-
ciently for any u, v ∈ V : Is u connected to v by a path in G ? This problem
is arguably the most extensively researched problem in the area of dynamic
graph algorithms. The first algorithm for this problem was designed by Fred-
erickson [8] that takes O(

√
m) update time and O(1) query time. The update

time was improved to O(
√

n) using a sparsification technique [6]. Thereafter, a
major breakthrough for this problem was achieved through randomization only:
Henzinger and King [12] designed a Las Vegas algorithm that achieves expected
amortized O(log3 n) update time and O(log n) query time. Their algorithm main-
tains a partition of edges among O(log n) levels : higher the level, sparser the
edge sets. For a better exposition of the randomization technique used by Hen-
zinger and King [12], we present an algorithm with 2-level partition of the edges,
and first consider deletion of edges only.

We first present an overview and intuition underlying the algorithm. The
algorithm maintains a spanning forest F of the graph such that each tree T ∈ F
spans a connected component of the graph. So in order to determine if two
vertices are connected, we just need to determine if they belong to the same tree
in F . For any subtree T ′ of a tree T ∈ F , let E(T ′) denote the subset of edges
with at least one endpoint in T ′. An edge in E(T ′) is said to be a cut edge if its
exactly one endpoint is present in T ′.

Deletion of any non-tree edge does not change F and so can be handled
trivially. Let us consider deletion of an edge e present in some tree T ∈ F that
splits it into two trees T1 and T2. We need to determine whether there is any
edge in E that connects T1 and T2, and if so, find one such edge to join T1 and T2.
Without loss of generality, let T1 be smaller in size than T2. So we need to search
for a cut edge from E(T1). Maintaining the cut edges defined by various edges
in the forest F explicitly is a challenging task due to the underlying dynamic
environment. However, a simple randomization idea shows an efficient way to
find a cut edge from E(T1). Observe that if α fraction of E(T1) consists of cut
edges, then a randomly picked edge from E(T1) is going to be a cut edge with

Randomization for Efficient Dynamic Graph Algorithms 5

probability α. So if α is a good fraction, we can find a cut edge by repeatedly
sampling an edge and checking if it is a cut edge. But what if α is too small ?
This happens when the cut defined by T1 and T2 is very sparse. We collect edges
of each such sparse cut in a separate pool at level 2 during the algorithm. It is
ensured that the number of edges in this pool remain very small always, therefore,
searching for a cut edge in this pool can be done in a brute force manner. With
this overview, we shall now describe the algorithm in more details.

In order to carry out various tasks efficiently, we shall need a data structure
that can perform the following operations efficiently for any subtree T ′ of a tree
T ∈ F .

– Determining if two vertices belong to the same tree in F in O(log n) time.
– Picking an edge randomly uniformly from E(T ′) in O(log n) time.
– Computing all edges from E(T ′) in O(|E(T ′)| log n) time.

Henzinger and King used an elegant tree data structure, called Euler-Tour tree,
to carry out the above operations efficiently. However, for our current discussion,
we may treat it as a black box.

The algorithm maintains a 2-level partition - E1 and E2 of the edges E. In
the beginning E1 = E and E2 = ∅. As the algorithm proceeds, some edges may
get migrated to level 2. In addition, we shall maintain two (instead of just one)
spanning forests: F1 for edges E1, and F2 for edges E1 ∪ E2 such that F1 ⊆ F2.
Thus F2 at each stage is the spanning forest of the graph. Deletion of a tree edge
e is handled as follows. If e ∈ F2 \ F1, we handle it trivially by scanning E2 to
find a cut edge. If e ∈ F1, let T1 and T2 be the two trees formed by deleting e,
and let T1 be smaller than T2 in size. Algorithm 2 (on the following page) is used
to search for a cut edge from E(T1) as follows. Let t be a parameter to be fixed
later on. We sample an edge randomly uniformly from E(T1) and check whether
it is a cut edge. We repeat this step 2t log n times. If we succeed, we join T1 and
T2 by the cut edge, and add it to F1 and F2. If we don’t succeed, we scan the
entire set E(T1) to collect all cut edges. If number of cut edges is at least |E(T1)|

t ,
we join T1 and T2 by a cut edge, and add it to F1 and F2. Otherwise, we move
all cut edges to level 2. We then search E2 for a cut edge. If a cut edge is found,
we join T1 and T2 by it, and add it to F2.

Let us analyse the time complexity of deleting a tree edge. Suppose edge
deleted belongs to F1. There are two possible cases.

1. The first case is that the sampling is successful or at least |E(T1)|/t edges are
cut edges. If sampling is successful, the time complexity is O(t log2 n) time.
Let us analyse the situation when at least |E(T1)|/t edges are cut edges. In this
case an edge selected randomly from E(T1) will be a cut edge with probability
at least 1/t. Therefore, the probability that the loop does not terminate with
success is at most (1− 1

t)
2t logn ≤ n−2. In this situation, Algorithm2 computes

all edges of set E(T1). So the expected time complexity of the first case is
bounded by O(t log2 n + n−2|E(T1)| log n) = O(t log2 n) only.

2. The second case is when sampling is unsuccessful and less than |E(T1)|/t
edges are cut edges. In this case, we move all the cut edges from set E(T1)

6 S. Baswana

Algorithm 2. Efficient searching for a cut edge from E(T1).
1 count ← 0; success ← false;
2 repeat
3 count++ ;
4 Pick an edge e ∈ E(T1) randomly uniformly ;
5 if e is a cut edge then success ← true ;

6 until (count= 2t logn or success);
7 if success then Add e to F1 and F2; // Join T1 and T2 by e.
8 else
9 X ← all cut edges from E(T1);

10 if |X| ≥ |E(T1)|
t

then
11 Add any edge from X to F1 and F2; // Join T1 and T2 by e.
12 else
13 Move X to E2;
14 Search E2 for a cut edge to join T1 and T2, and add it to F2;

15 end

16 end

to level 2. Apart from searching level 2 for a cut edge to join T1 and T2, the
additional computation cost in this case is O(|E(T1)| log n). Moreover, the
number of edges passed to level 2 is at most |E(T1)|/t. We can distribute both
these quantities among the vertices of T1 proportional to their degrees: For
each v ∈ T1, we assign O(deg(v) log n) computation cost and assign deg(v)/t
edges that are moved to level 2. These are indeed huge quantities. However,
notice the following event that happens in this case: At level 1, v now belongs
to tree T1 whose size is at most half of the previous tree T . This event can
happen for v at most O(log n) times over any sequence of edge deletions.
So the additional computation cost is O(m log n) and the number of edges
passed to level 2 will be O(mt log n) over any sequence of edge deletions. This
establishes that E2 will have at most O(mt log n) edges only.

If the deleted edge belongs to F2 \ F1, we find a cut edge by scanning E2.
Since |E2| = O(mt log n) as shown above, the time complexity for handling edge
deletion in this case will be O(mt log2 n) (using Euler-Tour tree data structure).
In order to minimize the time per update, we balance the time complexities for
handling edge deletion at level 1 and level 2. So we choose t =

√
m to obtain

expected amortized O(
√

m log2 n) update time per edge deletion. This completes
the description and analysis of the decremental algorithm for connectivity. This
algorithm can be extended to handle insertion of edges by inserting every new
edge to level 2 and rebuilding the entire structure (F1 and Euler-Tour tree
data structure) after every

√
m edge insertions in O(m log n) time. Thus we can

maintain fully dynamic connectivity in expected amortized O(
√

m log2 n) time
using 2-level partition of edges. With a more refined partitioning of edges among
O(log n) levels, Henzinger and King [12] achieve O(log3 n) expected amortized
update time.

Randomization for Efficient Dynamic Graph Algorithms 7

It was a long-standing open problem to achieve worst case O(polylog n)
update time. Recently Kapron, King, and Mountjoy [15] designed a Monte Carlo
algorithm for fully dynamic connectivity that takes O(polylog n) time per update
and answers any connectivity query correctly with high probability. Interestingly,
this algorithm also employs random sampling but in a different way.

4 Maintaining Witnesses

When maintaining a property explicitly appears difficult, it is sometime easier to
maintain it implicitly by keeping one of its witnesss for the property. In order to
illustrate the effectiveness of this technique, we consider the problem of all-pairs
decremental reachability. Given a directed graph G under deletion of edges, this
problem aims at maintaining a data structure that can answer the following
query efficiently for any u, v ∈ V : Is there a path from u to v ? We shall use the
following well-known result that follows from [7].

Lemma 2. For any vertex v and a positive integer d, it takes O(md) total time
to maintain a breadth first search (BFS) tree rooted at v in G and truncated upto
depth d for any arbitrary sequence of edge deletions.

We shall now describe a Monte Carlo algorithm [3] for maintaining reachability
under deletion of edges. Let d be a parameter to be fixed later. A path is said to be
short if its length is at most d, and is said to be long otherwise. The decremental
algorithm [3] maintains reachability associated with short paths explicitly and
maintains reachability associated with long path implicitly as follows.

Reachability Associated with Short Paths: Maintain BFS tree upto depth
d from each vertex. It follows from Lemma 2 that the total update time for
maintaining these trees will be O(mnd) which is quite small if d is small.

Reachability Associated with Long Paths: Let Gr denote the graph
obtained by reversing all edges in G. Let Tout(w) and Tin(w) respectively be
the BFS trees rooted at w in graphs G and Gr. Consider any pair of vertices
u, v ∈ V such that u ∈ Tin(w) and v ∈ Tout(w). Observe that vertex w along with
the pair (Tin(w), Tout(w)) acts as a witness of reachability from u to v. Thus an
alternate scheme for computing (or maintaining) all-pairs reachability is by com-
puting (or maintaining) these witnesses. However, to materialize this scheme, we
need to have a small set of vertices that contains a witness for reachability for
all-pairs. Interestingly, for all-pairs of vertices separated by long distance, ran-
domization helps in constructing a small set of witnesses with high probability.
Indeed, Algorithm 3 computes such a set and also computes a witness matrix
that will store, with high probability, a witness of reachability for all such pairs.

Lemma 3. Suppose distance from a vertex u to a vertex v is t > d. With high
probability, W [u, v] stores a witness of reachability from u to v.

Proof. Let i be such that 2id ≤ t < 2i+1d. Let Puv be the shortest path from
u to v, and let w be any vertex on this path. If w is selected in Si, it follows

8 S. Baswana

Algorithm 3. Computing witness-matrix for reachability
1 foreach i from 0 to �log2

n
d
� do

2 Si ← a set formed by selecting each vertex independently with prob. c logn
2id

;

3 foreach w ∈ Si do
4 Tout(w) ← BFS tree of depth 2id rooted at w in G;

5 Tin(w) ← BFS tree of depth 2id rooted at w in Gr;
6 foreach u ∈ Tin(w) and v ∈ Tout(w) do
7 if W [u, v]=null then W [u, v] ← w
8 end

9 end

10 end

from Algorithm 3 that the entire path Puv is contained in Tin(w) and Tout(w).
Since each vertex of the graph is selected randomly independently in Si, the
probability that no vertex on Puv is selected in Si is

(
1 − c log n

2id

)t

≤
(

1 − c log n

2id

)2id

≤ e−c logn = 1/nc

So at least one vertex of Puv will appear in Si with probability ≥ 1 − 1/nc; and
so W [u, v] will store a witness of reachability from u to v.

Let L be the list formed by concatenating Si’s in the increasing order of i.
Notice that there may be multiple witnesses of reachability from u to v in the
list L. But Algorithm 3 ensures that W [u, v] points to the first witness in the
list L.

The random sampling to construct Si’s is carried out independent of the edges
in graph G, so Lemma 3 must hold true for G even after any number of edges
are deleted from it. Therefore, in order to maintain reachability as the edges are
being deleted, all we need is to maintain the collection of the BFS trees built
during Algorithm3 and maintain witness matrix W accordingly. This task turns
out to be simple and efficient as follows.

Consider any vertex w ∈ Si for any i. Let Tin(w) and Tout(w) be the BFS
trees associated with w. We process w upon deletion of an edge e as follows.
We first update Tin(w) (and Tout(w)), and we get those vertices that cease to
belong to Tin(w) (and Tout(w)). This allows us to compute all those pairs of
vertices for which w has ceased to be a witness of reachability - for each such
pair (u, v), either u has ceased to belong to Tin(w) or v has ceased to belong
to Tout(w). For each such pair, if W [u, v] = w, we search for another witness,
if any, in L starting from current location (w); we stop upon finding the next
witness and update W [u, v] accordingly. As long as there is a path from u to v of
length ≥ d, Lemma 3 implies that, with high probability, W will store a witness
of reachability from u to v.

In order to answer a query of reachability from u to v, we may first query
the BFS tree of depth d associated with u for any short path from u to v. If it

Randomization for Efficient Dynamic Graph Algorithms 9

fails, we look into W [u, v] for witness of reachability for any long path from u to
v. It follows from Lemma 3 that the query will be answered correctly with high
probability.

Let us analyse the total update time for maintaining the witness matrix.
Expected size of Si is O(n logn

2id). So It follows from Lemma 2 that the time
complexity of maintaining the in and out BFS trees for vertices of set Si is of
the order of mn logn

2id 2id = mn log n. So the update time for maintaining the BFS
trees for all Si’s is O(mn log2 n). Note that once a vertex ceases to be a witness
of reachability for a pair, it will never become a witness for the pair again. So the
extra computational time spent in outputting all such pairs over any sequence of
edge deletions is O(n2) for each vertex w ∈ L. Further, each pair makes a single
scan over the list L in search of witness during the algorithm. It takes O(1) time
to check if a vertex w′ ∈ L is a witness of reachability for a pair u, v: we just
query the corresponding BFS trees associated with w′. Expected size of L is
O(n logn

d). So the total time spent in searching for a witness in L is O(n2 n logn
d)

time for all pairs. Therefore, the overall time complexity of maintaining all-pairs
reachability associated with long paths is O(n

3

d log n + mn log2 n).
Combining together the tasks of maintaining reachability for short and long

paths, the total time complexity over any sequence of edge deletions is

n3

d
log n + mn log2 n + mnd

The above expression attains its smallest value O(n2
√

m log n) if we choose
d = n

√
log n/

√
m. Thus we can conclude that all-pairs reachability can be main-

tained in expected amortized O(n2
√

log n/
√

m) time per edge deletion. This
algorithm was the first to achieve subquadratic update time for decremental
reachability. However, the algorithm is Monte Carlo and answers any reachabil-
ity query correctly with probability at least 1 − n−c for any c > 0.

Another interesting application of maintaining witnesses has been in main-
taining approximate shortest paths under deletion of edges. Roditty and Zwick
[18] presented an efficient algorithm for this problem when the graph is undi-
rected and unweighted.

5 Foiling the Adversary

While designing an efficient dynamic algorithm for a problem, the updates may
be viewed as if generated by an adversary. The sole aim of the adversary is to
cause a huge change in the solution so as to force the maximum possible update
time. There are graph problems where the solution is not unique. Instead, there
may be multiple possible solutions. For such problems, many times it is a useful
idea to build and maintain a randomized solution. If the adversary is oblivious
to the random bits used by the algorithm, it turns out that the expected update
time to maintain such a solution for any arbitrary sequence of updates is quite
small. This oblivious adversarial model is no different from randomized data-
structures like universal hashing.

10 S. Baswana

We demonstrate the power of this technique by a toy problem so as to high-
light its intricacies effectively. Consider a star graph G = (V,E) on n = |V |
vertices with a unique source vertex s joined to every other vertex by an edge.
The edges are now deleted by an adversary. The objective is that s has to cling
to exactly one neighbour, denoted by N(s), at every moment of time. Whenever
the edge (s,N(s)) is deleted, N(s) ceases to be the neighbour of s. So s needs
to switch to another neighbour among the existing ones. However, for each such
switching s needs to pay a cost of c units. The aim is to minimize the cost
incurred over any arbitrary sequence of edge deletions. Observe that if we use
any deterministic algorithm, that is, a sequence of neighbours that s should take,
then the adversary can make s pay maximum cost c(n − 2) by deleting edges in
the same sequence. We shall now present an extremely simple randomized algo-
rithm that will incur expected O(c log n) cost. The idea is to foil the adversary
by selecting a random neighbour for s whenever (s,N(s)) gets deleted. Note that
the neighbour maintained (based on the random bits) by s at any stage is not
known to the adversary.

Algorithm 4. Handling deletion of an edge (s, v)
1 if N(s)=v then
2 x ← a vertex picked randomly among all the existing neighbours of s;
3 N(s) ← x

4 end

It is easy to observe that the algorithm maintains the following invariant.
I: If A is the set of vertices adjacent to s at any moment, then for every v ∈ A,

P[N(s) = v] =
1

|A|
We shall now analyse the expected cost incurred by s for any arbitrary sequence
of edge deletions. Let X be a random variable for the number of times s changes
its neighbour for the given sequence of edge deletions. Let v1, . . . , vn−1 be the
sequence of vertices V \ {s} in the chronological order of losing their edges
incident onto s. We define a random variable Xi, 1 ≤ i < n as follows.

Xi =
{

1 if deletion of edge (s, vi) incurs a cost
0 otherwise

Clearly X =
∑

i Xi. Hence by linearity of expectation E[X] =
∑

i E[Xi] =∑
i P[Xi = 1]. Consider the moment just before the deletion of (s, vi). There

were n − i neighbours that existed at that moment. So it follows from Invariant
I that probability N(s) is vi at this moment is 1

n−i . Hence

E[X] =
n−2∑
i=1

P[Xi = 1] =
n−2∑
i=1

1
n − i

=
1

n − 1
+

1
n − 2

+ · · · +
1
2

= O(log n)

Randomization for Efficient Dynamic Graph Algorithms 11

So the expected cost incurred by s is O(c log n) which is much smaller than the
worst case cost Θ(cn) incurred by any deterministic algorithm.

The technique of foiling the adversary has been exploited in the following
algorithms.

– Fully dynamic algorithm for maximal matching [2].
– Fully dynamic algorithm for graph spanners [4].
– Decremental algorithm for connectivity [19].
– Decremental algorithm for maintaining strongly connected components [17].
– Decremental algorithm for a depth first search tree in a DAG [1].

We shall now briefly describe the fully dynamic algorithm for maximal matching
in a graph that is based on the technique of foiling the adversary by randomiza-
tion.

5.1 Fully Dynamic Maximal Matching

Let G = (V,E) be an undirected graph on n = |V | vertices and m = |E|
edges. A matching in G is a set of edges M ⊆ E such that no two edges in
M share any vertex. A matching is said to be maximal if it is not strictly
contained in any other matching. It is well known that a maximal matching
achieves a factor 2 approximation of the maximum matching. For maintaining
maximal matching in fully dynamic environment, Ivkovic and Lloyd [14] designed
a deterministic algorithm that takes O((n + m)0.7072) update time. Recently, a
randomized algorithm has been designed for fully dynamic maximal matching
that takes expected amortized O(log n) update time [2]. We now provide a sketch
of this algorithm now.

In order to maintain a maximal matching, it suffices to ensure that there is
no edge (u, v) in the graph such that both u and v are free with respect to the
matching M. Therefore, a natural approach for maintaining a maximal matching
is to maintain whether each vertex is matched or free at each stage. When an edge
(u, v) is inserted, we add (u, v) to the matching if u and v are free. For the case
when an unmatched edge (u, v) is deleted, no action is required. Otherwise, for
both u and v we search their neighbourhoods for any free vertex and update the
matching accordingly. It follows that each update takes O(1) computation time
except when it involves deletion of a matched edge; in this case the computation
time is of the order of the sum of the degrees of the two endpoints of the deleted
edge. So this trivial algorithm is quite efficient for small degree vertices, but could
be expensive for large degree vertices. An alternate approach could be to match a
free vertex u with a randomly chosen neighbour, say v. Following the adversarial
model, it can be observed that an expected deg(u)/2 edges incident to u will be
deleted before deleting the matched edge (u, v). So the expected amortized cost
per edge deletion for u is roughly O

(
deg(u)+deg(v)

deg(u)/2

)
. If deg(v) < deg(u), this cost

is O(1). But if deg(v)
 deg(u), then it can be as bad as the trivial algorithm. To
circumvent this problem a novel concept, called ownership of edges is developed
in [2]. Intuitively, we assign an edge to that endpoint which has higher degree.

12 S. Baswana

The idea of choosing a random mate and the trivial algorithm described above
can be combined together to design a simple algorithm for maximal matching.
This algorithm maintains a partition of the vertices into two levels. Level 0
consists of vertices which own fewer edges and we handle the updates there
using the trivial algorithm. Level 1 consists of vertices (and their mates) which
own larger number of edges and we use the idea of random mate to handle their
updates. This 2-level algorithm achieves O(

√
n) expected amortized time per

update. A careful analysis of the 2-level algorithm suggests that a finer partition
of vertices among more number of levels can help in achieving a faster update
time. This leads to the log2 n-level algorithm that achieves expected amortized
O(log n) time per update.

6 Conclusion

We firmly believe that randomization will continue to be an important tool for
designing efficient algorithm for new problems on dynamic graphs. It might also
play a crucial role in improving and/or simplifying the existing deterministic
algorithms for some well studied dynamic graph problems. One such problem
is fully dynamic all-pairs shortest paths [5,20]. This fundamental problem truly
deserves a simpler and more efficient algorithm.

Acknowledgments. The author is grateful to Keerti Choudhary for her valuable
comments and suggestions on a preliminary draft of this article.

References

1. Choudhary, K., Baswana, S.: On dynamic DFS tree in directed graphs. In: Italiano,
G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 102–
114. Springer, Heidelberg (2015)

2. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O(log n)
update time. SIAM J. Comput. 44(1), 88–113 (2015)

3. Baswana, S., Hariharan, R., Sen, S.: Improved decremental algorithms for main-
taining transitive closure and all-pairs shortest paths. J. Algorithms 62(2), 74–92
(2007)

4. Baswana, S., Khurana, S., Sarkar, S.: Fully dynamic randomized algorithms for
graph spanners. ACM Trans. Algorithms 8(4), 35 (2012)

5. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.
J. ACM 51(6), 968–992 (2004)

6. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification - a technique
for speeding up dynamic graph algorithms. J. ACM 44(5), 669–696 (1997)

7. Even, S., Shiloach, Y.: An on-line edge-deletion problem. J. ACM 28(1), 1–4 (1981)
8. Frederickson, G.N.: Data structures for on-line updating of minimum spanning

trees, with applications. SIAM J. Comput. 14(4), 781–798 (1985)
9. Gottlieb, L.-A., Roditty, L.: Improved algorithms for fully dynamic geometric span-

ners and geometric routing. In: SODA, pp. 591–600 (2008)

Randomization for Efficient Dynamic Graph Algorithms 13

10. Henzinger, M., Krinninger, S., Nanongkai, D.: Decremental single-source shortest
paths on undirected graphs in near-linear total update time. In: FOCS, pp. 146–155
(2014)

11. Henzinger, M., Krinninger, S., Nanongkai, D.: Sublinear-time decremental algo-
rithms for single-source reachability and shortest paths on directed graphs. In:
STOC, pp. 674–683 (2014)

12. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with poly-
logarithmic time per operation. J. ACM 46(4), 502–516 (1999)

13. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. ACM 48(4), 723–760 (2001)

14. Ivkovic, Z., Lloyd, E.L.: Fully dynamic maintenance of vertex cover. In: WG, pp.
99–111 (1994)

15. Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polyloga-
rithmic worst case time. In: SODA, pp. 1131–1142 (2013)

16. King, V., Sagert, G.: A fully dynamic algorithm for maintaining the transitive
closure. J. Comput. Syst. Sci. 65(1), 150–167 (2002)

17. Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed
graphs. SIAM J. Comput. 37(5), 1455–1471 (2008)

18. Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected
graphs. SIAM J. Comput. 41(3), 670–683 (2012)

19. Thorup, M.: Decremental dynamic connectivity. J. Algorithms 33(2), 229–243
(1999)

20. Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths.
In: STOC, pp. 112–119 (2005)

21. Thorup, M.: Fully-dynamic min-cut. Combinatorica 27(1), 91–127 (2007)

Algorithms for Problems on Maximum
Density Segment

Md. Shafiul Alam and Asish Mukhopadhyay(B)

School of Computer Science, University of Windsor,
Windsor, ON N9B3P4, Canada
{alam9,asishm}@uwindsor.ca

Abstract. Let A be a sequence of n ordered pairs of real numbers (ai, li)
(i = 1, . . . , n) with li > 0, and L and U be two positive real numbers
with 0 < L � U . A segment, denoted by A[i, j], 1 � i � j � n, of A
is a consecutive subsequence of A between the indices i and j (i and
j included). The length l[i, j], sum s[i, j] and density d[i, j] of a seg-

ment A[i, j] are l[i, j] =
∑j

t=i lt, s[i, j] =
∑j

t=i at and d[i, j] = s[i,j]
l[i,j]

respectively. A segment A[i, j] is feasible if L � l[i, j] � U . The length-
constrained maximum density segment problem is to find a feasible seg-
ment of maximum density. We present a simple geometric algorithm
for this problem for the uniform length case (li = 1 for all i), with
time and space complexities in O(n) and O(U − L + 1) respectively.
The k length-constrained maximum density segments problem is to find
the k most dense length-constrained segments. For the uniform length
case, we propose an algorithm for this problem with time complexity in
O(min{nk, n lg(U − L + 1) + k lg2(U − L + 2), n(U − L + 1)}).

Keywords: Biomolecular sequence analysis · Maximum density seg-
ment · Computational geometry · Slope selection · Data structure

1 Introduction

Let A be a sequence (ai, li) (i = 1, . . . , n) of n ordered pairs of real numbers
ai, called values, and li > 0, called lengths, and L,U two positive real numbers
with 0 < L � U . A segment of A, denoted by A[i, j], 1 � i � j � n, is a
consecutive subsequence of A between the indices i and j, both inclusive. The
length l[i, j], sum s[i, j] and density d[i, j] of a segment A[i, j] are l[i, j] =

∑j
t=i lt,

s[i, j] =
∑j

t=i at and d[i, j] = s[i,j]
l[i,j] respectively. A feasible segment of A is a

segment A[i, j] such that L � l[i, j] � U . In this paper we study the following
problems.

Problem 1. The length-constrained maximum density segment problem is to
find a feasible segment A[i, j] of maximum density d[i, j].

A. Mukhopadhyay—Research supported by an NSERC discovery grant awarded to
this author.

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 14–25, 2016.
DOI: 10.1007/978-3-319-29221-2 2

Algorithms for Problems on Maximum Density Segment 15

When the lengths are uniform (i.e., li = 1) and U and L are arbitrary,
Goldwasser et al. [7] gave an O(n) time algorithm. For the case of non-uniform
lengths and arbitrary U and L, Goldwasser et al. [8] extended the right skew
decomposition method of Lin et al. [11] to develop an O(n)-time and space algo-
rithm. An online, combinatorial algorithm with time-complexity in O(n) and
space complexity in O(m), where m is the maximum of the number of elements
in a segment of length U − L, was proposed in [4]. It also pointed out a flaw in
the linearity claim of a geometry-based algorithm by Kim [9]. Lee et al. [10] fixed
this flaw by exploiting the property of decomposability of a tangent query, and
proposed a revised alogorithm with time and space complexities in O(n). In this
paper, we present a simple modification of Kim’s algorithm [9] that redresses the
flaw using a batched mode approach, while retaining the simplicity, elegance and
linearity of his geometric approach. For the uniform length case and arbitrary
L and U , the time and space complexities of our algorithm are in O(n) and
O(U − L + 1) respectively.

As a natural extension, we consider the k length-constrained maximum den-
sity segments problem, defined next:

Problem 2. Given a positive integer k such that 1 � k � total number of feasi-
ble segments, the k length-constrained maximum density segments problem is to
find k feasible segments A[i, j] such that their densities d[i, j] are the k largest.

Our proposed algorithm solves this problem for the uniform length case and
arbitrary L and U in O(min{nk, n lg(U −L+1)+k lg2(U −L+2), n(U −L+1)})
time. Its space complexity is in O(U − L + k), O((U − L + 1) lg(U − L + 2) + k)
or O(k), depending on the value of k.

The proposed algorithms can be extended to the non-uniform case as also
to higher dimensions by reducing them to 1-dimensional problems as described
in [2,16]. These discussions are omitted for lack of space.

The ratio (C + G)/(A + C + G + T) is a measure of the GC content of a
DNA-sequence, where A,C,G, T are the nucleotide bases. According to [12,15]
the compositional heterogeneity of a genomic sequence is strongly correlated
to its GC content regardless of genome size. It has also been found that gene
length [5], gene density [17], patterns of codon usage [14] and other properties
are related to GC content. However, it is not established that the single most
dense region is the only meaningful region. Other segments with high GC con-
tent might also be meaningful. Our proposed algorithms can be used to find
length constrained CG-rich regions with the maximum density and k maximum
density in a DNA sequence efficiently.

In Sect. 2 we describe our algorithm for the maximum density segment prob-
lem. Our algorithm for the k maximum density segments problem is presented
in Sect. 3. Concluding remarks are given in Sect. 4.

2 SPLITHULL Algorithm for Maximum Density
Segment

The prefix sums of the sequence A, defined by s0 = 0 and si =
∑i

t=1 at for
1 � i � n, are computable in linear time. Define n + 1 points in the plane thus:

16 Md. Shafiul Alam and A. Mukhopadhyay

pi = (i, si), 0 ≤ i ≤ n. The density of a segment A[i, j] is then equal to slope of
the line segment through the points pi−1 and pj . This reduces our problem to
finding a segment pipj of largest slope.

The main idea underlying the new algorithm is to consider the right end
points pj (for U � j � n) of all feasible segments pipj in batches of a fixed size.
For each pj , instead of computing a single lower convex hull of the feasible set
of left points pi, we compute two lower convex hulls - a left one and a right one.
These start at 2 adjacent points pm−1 and pm, j −U +1 � m � j −L+1, going
left and right respectively. The right lower hulls are computed incrementally in
a left-to-right (LR) pass for a batched set pj , and the left hulls in a right-to-
left (RL) pass for the same batched set. This pre-empts a dynamic convex hull
update problem that arises in Kim’s algorithm [9]. Note that the points pj with
L ≤ j ≤ U −1 can be handled in a single LR pass. The correctness of this scheme
follows from the following observation:

Observation 1. For a point pj , U � j � n, let Gj be the set of the candidate
left end points pi of all feasible segments. If Gj

1 and Gj
2 are any 2 subsets of Gj

such that Gj = Gj
1 ∪ Gj

2, then

max
pi∈Gj

slope(pipj) = max{ max
pi∈Gj

1

slope(pipj), max
pi∈Gj

2

slope(pipj)}.

We consider the right end points pj , j � U , in batches of size U − L + 1.
The details of the LR and RL passes for a batch of right end points pj , j ∈
[k, k + U − L], k � U , are described below.

2.1 LR Pass

In this pass, we process the right end points pj , j ∈ [k, k + U − L], left to right.
For each new point pj , j ∈ [k, k +U −L], the current Lower Convex Hull (LCH)
Hr is dynamically updated by the insertion of a new point on the right of Hr.
Following Kim [9], we maintain 2 parameters to aid the incremental computation:
a tangent line l to the current hull Hr with the maximum slope found so far, and
the point of contact α of l with Hr. The line l is always represented by a pair of
points and its slope is the current maximum density for this batch of points pj .

Initially, Hr = {pk−L}, l = pk−Lpk and α = pk−L. Assume that Hr, l and α
have been computed for the right end point pj . For the next point pj+1, these are
updated as follows. Hr is reset to Hr = LCH(Hr, pj+1−L). The updated Hr is
traversed counterclockwise from α (or from the newly inserted hull point pj+1−L,
if α has been deleted from Hr) to find the new tangent line l of maximum slope
so far, and the new point of contact α on Hr with the updated l. We have to
consider 4 cases:

Case 1: Both pj+1−L and pj+1 are above l.
Hr is first updated and then traversed counterclockwise from the current α
to the point of contact of the tangent from pj+1 to Hr. This tangent line
and its point of contact are set to be the new l and α respectively.

Algorithms for Problems on Maximum Density Segment 17

Case 2: pj+1−L is above, and pj+1 is on or below l.
Hr is updated. However, α and l remain unchanged.

Case 3: pj+1−L is on or below l.
Hr is updated. Let l′ be a line through pj+1−L and parallel to l. Let pj+1 be
above l′; reset l = pj+1−Lpj+1 and α = pj+1−L.

Case 4: pj+1−L is on or below l, and pj+1 is on or below l′.
Hr is updated. Set l to l′ and α = pj+1−L.

Each point in the left window {pk−L, pk+1−L, . . . , pk+U−2L} is added to an
Hr once, and deleted at most once from a subsequent Hr. Noting that α never
moves left, for a new point pj , if α remains stationary (as in Case 2 above), the
cost of computation is constant and is charged to the point pj−L that is added to
the hull. Consider the case in which α moves counterclockwise (and thus right)
along an updated hull Hr. Each point on Hr is accessed at most once during
the recomputation of α, since it never moves left. The cost of recomputing α is
charged to the hull points that are passed over as we move counterclockwise on
Hr from the current α, and the cost of deleting the points on Hr on the left of α
are charged to them. Thus, each point pi in the left window is charged at most 3
times: 2 times for insertion into and deletion from Hr and once for being passed
over by α. So, the cost for this pass is linear in the number of pj ’s considered.

2.2 RL Pass

In this pass, we process the right end points pj , j ∈ [k, k + U − L − 1], right to
left. For each new point pj , j ∈ [k, k + U − L − 1], the current Lower Convex
Hull (LCH) Hl is dynamically updated by the insertion of a new point pj−U on
the left of Hr

As in the LR pass, we maintain a tangent line l and the point of contact α
of l with the current hull Hl to aid the incremental computation.

Initially, Hl = {pk−L−1}, l = pk−L−1pk+U−L−1 and α = pk−L−1. Assume
that Hl, l and α have been updated for the right end point pj . For the next
right end point pj−1, these are updated as follows. Hl is updated by inserting
the point pj−1−U on the left so that Hl = LCH(pj−1−U ,Hl). The updated Hl is
traversed counterclockwise from α (or from the newly inserted hull point pj−1−U

- if α is deleted from Hl) to find the new tangent line l having the maximum
slope found so far, and the new point of contact α on Hl with the updated l.
Again, there are 4 cases to consider:

Case 1: pj−1−U is on or above l, and pj−1 is above l.
Hl is updated. We traverse Hl counterclockwise from α to find a tangent to
it from pj−1. We reset l to this tangent line and α to the point of contact
between updated l and Hl.

Case 2: pj−1−U is on or above l, and pj−1 is on or below l.
Hl is updated. However, α and l remain unchanged.

Case 3: pj−1−U is below l.
Hl is updated. Let l′ be a line through pj−1−U and parallel to l. Let pj−1 be
above l′.

18 Md. Shafiul Alam and A. Mukhopadhyay

There will be only one point, viz., pj−1−U , on the updated Hl that is on the
left side of α. We traverse the updated Hl from pj−1−U counterclockwise
from α to the point of contact of the tangent from pj−1 to the new Hl, while
α and l are updated to the new tangent and the point of contact respectively.
In this case, on the left of α at most one point, viz., the newly added point
pj−1−U , is checked to find α. Consequently, α can move left by at most one
point.

Case 4: pj−1−U is below l, and pj−1 is on or below l′.
Hl is updated as in Case 3. We reset l to l′ and α to pj−1−U .

Time complexity analysis for this pass is exactly the same as that for the
LR pass, except that for a new point pj , α may move clockwise on Hl exactly
by one position. If it does move clockwise, then it moves to pj−U . This cost is
charged to the new point pj−U in the left window. Thus, each point pi in the
left window is charged at most 4 times: 2 times for insertion into and deletion
from Hl, once when α moves clockwise to it and once when α passes over it.

We note that once α moves clockwise and passes over a point pi on Hl, it
never moves back to that point again, or to any point lying on its left in the
current Hl. Consequently, those points cannot be in contention for α anymore.

2.3 Analysis

Each batch of U − L + 1 points in the left index window is considered at most
twice by SPLITHULL algorithm: once for an LR pass of a batch of U − L + 1
right end points and once for an RL pass of a batch of U − L right end points.
As discussed above, the cost charged to each of these left end points is constant
for each pass. Each of the right end points is accessed at most twice and that
cost is charged to the respective point. Consequently, the time complexity is in
O(n). Thus we have the following theorem:

Theorem 1. The SPLITHULL algorithm, described above, solves the length-
constrained maximum density segment problem for the uniform length case with
arbitrary L and U in O(n) time and O(U − L + 1) working space.

3 k Maximum Density Segments

Three different algorithms are proposed, depending on the size of k relative to
the parameters n,U and L.

3.1 Small k

By small k we mean k = f(n0) for some n0 and some f(n) = O(lg(U − L + 1)).
We propose an algorithm that is better in terms of asymptotic time complexity
for such small k. As before, the points are processed in batches of U − L + 1
right end points. Let X be the left end points of feasible segments whose right

Algorithms for Problems on Maximum Density Segment 19

end-points belong to a current batch and D be a candidate set of k maximum
density segments. For each batch, D is updated as follows. First, a maximum
density segment with left end point x ∈ X is found by using the LR and RL
passes of the SPLITHULL algorithm. If the density of this segment is less than
the minimum density d0 for all the segments in D, then we skip to the next batch.
Otherwise, all the feasible segments with left end point x are inserted into D.
From D, k maximum density segments are selected using a linear time selection
algorithm, and D is updated with them. Then x is deleted from X, and the
above steps are repeated with the updated X. We iterate at most k times. The
number of iterations is maximized if the density of a maximum density segment
in each iteration is greater than the minimum density of all the segments in the
current D.

Clearly, each iteration costs O(U −L+1) time. There are at most k iterations
in a pass. Total time for a pass is in O(k(U −L+1)). The total cost per left end
point is in O(k). Thus, we have the following theorem:

Theorem 2. The above algorithm solves the k length-constrained maximum
density segments problem for the uniform length case and arbitrary L and U
in O(kn) time and O(U − L + 1) working space.

3.2 Medium k

By medium k we mean k = f(n1) for some n1 and some f(n) = ω(lg(U −L+1)),
and k = g(n2) for some n2 and some g(n) = o(n(U − L + 1)). We propose an
algorithm which is more efficient for such values of k. For each batch of U −L+1
right end points, we make both LR and RL-passes to consider all the feasible
segments whose right points are in this batch. Let [b, b + U − L] be the index
window of the current batch of right end points. In the LR-pass, the left end
points of all the feasible segments are in the index window [b − U + 1, b − L + 1],
while in the RL-pass they are in the window [b − L + 2, b + U − 2L + 1]. Thus
the LR and RL-passes consider all feasible segments with right end points in the
index window [b, b + U − L]. As both the passes are very similar, we describe
only the LR-pass for the currrent batch.

Grouping the Feasible Segments: We outline a mechanism for grouping
feasible segments that aid their efficient processing. A group of feasible segments
is represented by a pair Il × Ir where Il and Ir are the index windows of |Il|
consecutive left end points and |Ir| consecutive right end points respectively of
|Il × Ir| feasible segments. Henceforth, we shall call Il the left index window and
Ir the right index window. We do not construct the groups explicitly; instead,
identify them by pairs of index windows. The processing of these groups are
described next.

First, with the single right end point pb, we make a group of all feasible
segments with the single left end point pb−U+1 and represent it by the index
pair [b−U +1, b−U +1]× [b, b]. Next, we make the following 2 groups of feasible

20 Md. Shafiul Alam and A. Mukhopadhyay

segments: [b−U +2, b−U +3]× [b, b+1] and [b−U +3, b−U +3]× [b+2, b+2].
This completes the scan of 2 more left end points pi, i ∈ [b − U + 2, b − U + 3]
and groups all the feasible segments with 3 consecutive left end points starting
from pb−U+1 and 3 consecutive right end points starting from pb.

Next, we make the following 4 groups of feasible segments: [b−U +4, b−U +
7]× [b, b+3], [b−U +5, b−U +5]× [b+4, b+4], [b−U +6, b−U +7]× [b+4, b+5]
and [b − U + 7, b − U + 7] × [b + 6, b + 6]. This completes scanning 4 more left
end points pi, i ∈ [b − U + 4, b − U + 7]. After this scan all the feasible segments
with consecutive 7 left end points starting from pb−U+1 and consecutive 7 right
end points starting from pb have been completely grouped.

This is a recursive pattern, and at the end of the i-th step we have grouped
all the combinations of segments generated by 2i−1 consecutive right end points
and the same number of consecutive left end points such that they are feasible.
We note that for each of the groups of feasible segments generated by the above
algorithm, the left and right index windows have the same length, and that
the length of the index windows are in powers of 2. For simplicity, let us assume
that U −L+1 = 2s − 1 for some positive integer s. After s, steps all the feasible
segments with consecutive 2s−1 left end points starting from pb−U+1 and ending
at pb−L+1, and the same number of consecutive right end points starting from
pb and ending at pb+U−L have been completely grouped. Thus, all the feasible
segments corresponding to the LR-pass have been completely grouped. Note that
the Gis are pairwise disjoint.

Lemma 1. The above algorithm constructs groups of feasible segments Gi, i =
1, ..., U − L + 1 such that ∪U−L+1

i=1 Gi is the set of all feasible segments in the
LR-pass and all the Gis are mutually disjoint.

The two properties of Gis mentioned in Lemma 1 ensures that the segments
in each group can be processed independently of the other groups and that we
need to process the Gis only.

In the above grouping procedure we do not consider the segments, but their
indices. It will take constant time to construct a group. For 2s − 1 right end
points, 2s − 1 groups of feasible segments will be created.

Lemma 2. In both the LR and RL-passes, groups Gi can be created in O(U −
L + 1) time.

Organizing the Points: Now we describe the processing of a group of feasible
segments. Let G = Il×Ir be a group of feasible segments where |Il| = |Ir| = m =
2t for some positive integer t. Then |G| = |Il|×|Ir| = 22t. Let Q and R be the sets
of points having index windows Il and Ir respectively. Then |Q| = |R| = m = 2t.

First, we organize the points in Q. We use Overmars and Leeuwen [13] algo-
rithm, with a simple modification, to construct the lch (lower convex hull) of
Q by composition. By construction of the geometric problem all the points are
already sorted by x-coordinate and vertically separated. In fact, all the n input
points are separated by unit distance in x-coordinate, and consequently all the
points of Q are separated by unit distance in x-coordinate.

Algorithms for Problems on Maximum Density Segment 21

The algorithm iteratively constructs the convex hull as follows. In the first
iteration, construct 2t−1 lchs of 2 consecutive points each. In the 2nd iteration,
construct 2t−2 lchs of 22 consecutive points each by composing pairs of adjacent
constituent lchs of 2 consecutive points each. In the 3rd iteration, construct 2t−3

lchs of 23 consecutive points each by composing pairs of adjacent constituent lchs
of 22 consecutive points each. Continue this for t iterations. The information of
all of these constituent lchs as well as the lch of Q is stored in a balanced binary
search tree, say C. This tree will be called LCH Tree. Its leaf nodes represent
the points of Q. Direct parents of the leaves represent the next higher level of
lchs. Direct parents of these parents represent the next higher level of lchs and
so on. The root represent the lch of Q. We denote the lch of Q by H1 and a lch
at i-th level and j-th position from left by Hi

j .
In Overmars and Leeuwen [13] algorithm each node u of C is associated with

a concatenable queue [1] to store the information about the lch of all the leaves
in the subtree of u. Thus, we have the following Lemma due to Overmars and
Leeuwen [13] (Proposition 4.1):

Lemma 3. The tree C for a set of m points can be constructed in O(m) time.

Proof. See proof of Proposition 4.1 of Overmars and Leeuwen [13].

Let us find the time to construct all the LCH Trees (Cs). Let U−L+1 = 2s−1.
There will be U−L+2

2i+1 groups of size 2i − 1. Total time for the construction of all
the Cs for the LR-pass is

s−1∑
i=0

U − L + 2
2i+1

O(2i) = O((U − L + 1) lg(U − L + 1))

Lemma 4. All the LCH trees (Cs) for LR and RL passes can be constructed in
O(n lg(U − L + 1)) time.

Searching: Let us assume that the LCH Tree C of all levels of lchs of Q have
already been constructed. Now we describe the search for maximum density
segments. For a right end point pj ∈ R, the maximum density segment is found
by drawing tangent to the top most level lch H1 (Fig. 1). For simplicity, we
assume that there is only one point of contact always. But this assumption is
not essential for the method being described in the following. For if there are
multiple points of contact, say s number of points of contact pi, pi′ , pi′′ , ... etc.,
then all of them will correspond to the same density. If necessary, all of them
will be selected first at no extra cost. Only then, the search needs to find another
segment of lower density by following all of pi, pi′ , pi′′ , ..., . If this total cost is
averaged over the pis, then it will be the same as that of following each of some
s points with different tangents separately.

Let the single point of contact be pj1 (pj−L−12 in Fig. 1). By construction,
the contour of lower hull H1 consists of a portion of the contour of each of H2

1

and H2
2 . They are joined by an edge, called bridge [13], between the 2 nearest

22 Md. Shafiul Alam and A. Mukhopadhyay

pj

pj−L+1

pj−L

pj−L−1

pj−L−2

pj−L−3

pj−L−4

pj−L−5

pj−L−6

pj−L−7

pj−L−14

pj−L−8

pj−L−9

pj−L−10

pj−L−11

pj−L−12

pj−L−13

Fig. 1. Finding the next point with respect to right end point pj

end points of those portions. So, pj1 must lie either on H2
1 or on H2

2 . Let it lie
on H2

2 . We want to find the next maximum density segment with the same right
end point pj . Let the left end point of this segment be pj2. We need to find it.
Clearly, it lies either on the contour of or interior to H1.

By construction of H, any pair of lch at the same level are mutually disjoint,
Hi

j1
∩ Hi

j2
= φ for all j1 and j2 with j1 �= j2. Since pj1 lies on the contour of

H2
2 , pj2 can either be the point of contact of tangent from pj to H2

1 , or on the
contour or interior of H2

2 . To find the point of contact with H2
1 , the contour of

H2
1 can be searched in O(lg m) time using binary search on the array associated

with the corresponding node c21 in C. The second case is the same as the initial
problem except for the lch changed from H1 to H2

2 . Thus, the problem is solved
recursively. There are lg m recursions. In each recursion the tangent point to the
contour of one lch is found by using binary search on the array of points of the
contour. Total time for searching pj2 is O(lg2 m).

For each point pj ∈ R, we find the length constrained maximum density
segment with pj as the right end point. This is done in O(lg m) time by drawing
tangent from pj to the top level lch H1 (stored at the root of C). The tangent
point is found by using a binary search of the array associated with the root
of C. For each pj a node vj1 is constructed for the maximum density segment
w.r.t. pj . Since the tangents to H1 from multiple points in R may have the same
point of contact, the same point in H1 may be left end points for multiple nodes
vj1 , vk1 , ..., etc., having distinct right end points pj , pk, ..., etc. respectively.

A maximum heap T is constructed using vj1 , j ∈ Ir, as its node and the
density of a segment as the order of the heap. The heap is initially constructed
as a balanced binary search tree with the exception that each node has a null

Algorithms for Problems on Maximum Density Segment 23

middle child. The middle children will point to an implicit heap that will be
initialized and expanded as needed.

From the heap the k maximum density elements are selected by using Freder-
ickson’s [6] heap selection algorithm. A middle child will be explicitly constructed
only when Fredrickson’s [6] algorithm reaches there. Each of the vertices in the
subtree rooted at a middle child will have a maximum of lg m number of chil-
dren. After the initial construction of T , we will never create a left child or a
right child of any of its initial nodes.

Let t be any vertex of T . Let pi and pj be the left and right end points
corresponding to t. Let pi be the tangent point on the lch Hq

r . Then t will
contain a pointer to cqr, where cqr represents the lch Hq

r . For each vertex uj
1 of

T , j ∈ Ir, all the vertices of its middle subtrees as well as itself represent the
segments for which right end points are the same point pj . Contents of a vertex
t of T are as follows:

1. f(t) - a pointer to the father of t (if any).
2. lchild(t) - a pointer to the left child of t.
3. rchild(t) - a pointer to the right child of t.
4. c(t) - a pointer to the root of C corresponding to vertex t.
5. max(c(t)) - The maximum field value in the vertex ci of C (pointed to by

c(t)) where by searching the lch at ci the search has selected pi as the left
end point of a segment.

6. pj - right end point of a segment.
7. pi - left end point of a segment with right end point pj . As mentioned before,

its value is selected by searching the vertex pointed by c(t).
8. ρ - slope of pipj .

Let Fredrickson’s [6] algorithm wants to access the children of a node v of
T . Accessing the left and right children is straightforward. To access the middle
children, it creates them first. Let v corresponds to the tangent point on Hq

r w.r.t.
pj . First, we search for the next maximum density segment w.r.t. pj . We search
for the tangent point on lchs at lower levels than Hq

r . The search is conducted
by the recursive algorithm discussed above. A child node of v is created for the
tangent point on each of the lower level lchs from pj . Then Fredrickson’s [6] algo-
rithm searches those nodes. The algorithm selects k maximum density segments
in this way. The time at each node is blown up by a factor of lg2 m. We have:

Lemma 5. After constructing the LCH Tree C of a group G of size m, the k
maximum density segments can be found from G in O(k lg2 m) time.

To find the k maximum density segments for the LR-pass the heap T is
constructed from all the groups. Then Fredrickson’s [6] algorithm is used to
search the k maximum density segments from it. The CH Trees of the groups are
searched as described above. For each pass of each batch, the k maximum density
segments are updated using a linear time selection algorithm [3]. If k > k′(U−L),
where k′ is some constant number, a single heap T is constructed for all the passes
and all the batches. There will be (U − L + 1) lg(U − L + 1) nodes in the tree.

24 Md. Shafiul Alam and A. Mukhopadhyay

Fredrickson’s [6] algorithm is used to search the k maximum density segments
from it as before. From Lemmas 4 and 5 we have the following theorem:

Theorem 3. The above algorithm solves the k length-constrained maximum
density segments problem with uniform length and arbitrary L and U in
O(n lg(U −L+1)+ k lg2(U −L+2)) time and O((U −L+1) lg(U −L+2)+ k)
working space.

3.3 Large k

By large k we mean k = f(n0) for some n0 and some f(n) = Ω(n(U − L + 1)).
For such k, a brute force algorithm is more efficient. From the set of all feasible
segments, k maximum density segments are selected, using a linear time selection
algorithm [3]. Its time complexity is clearly in O(n(U − L + 1)). To minimize
space, the sequence is scanned from left to right. For each element aj ∈ A, all the
feasible segments A[i, j] with right end element aj are considered. The segments
are inserted into a candidate set D of maximum density segments. As soon as
k new segments are inserted into D, k maximum density segments are selected
from it using a linear time selection algorithm [3], and D is updated with the
new set of k maximum density segments. Its space complexity is clearly in O(k).
Thus we have the following theorem:

Theorem 4. For large k, there exists an algorithm for the k length-constrained
maximum density segments problem with uniform length, and arbitrary L and U
whose time and space complexities are in O(n(U −L+1)) and O(k) respectively.

4 Conclusions

In this paper, we have presented linear time algorithm for the problem of length-
constrained maximum density segments. We have extended our algorithm to
find the k length constrained maximum density segments problem. The algo-
rithms have already been extended to solve the corresponding problems with
non-uniform length. We have indicated the extensions of our algorithms to higher
dimensions. Our algorithms facilitate efficient solutions for these problems in
higher dimensions.

It would be interesting to study if there is any linear time algorithm for the
k length-constrained maximum density segments problem. It can also be inves-
tigated to find more efficient algorithms for the problems in higher dimensions.
It remains open to improve the trivial lower bounds for these cases.

References

1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley Series in Computer Science and Information Processing.
Addison-Wesley Pub. Co., Boston (1974)

Algorithms for Problems on Maximum Density Segment 25

2. Bentley, J.: Programming pearls: perspective on performance. Commun. ACM 27,
1087–1092 (1984)

3. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

4. Chung, K.-M., Lu, H.-I.: An optimal algorithm for the maximum-density segment
problem. SIAM J. Comput. 34(2), 373–387 (2005)

5. Duret, L., Mouchiroud, D., Gautier, C.: Statistical analysis of vertebrate sequences
reveals that long genes are scarce in gc-rich isochores. J. Mol. Evol. 40, 308–317
(1995)

6. Frederickson, G.N.: An optimal algorithm for selection in a min-heap. Inf. Comput.
104(2), 197–214 (1993)

7. Goldwasser, M.H., Kao, M.-Y., Lu, H.-I.: Fast algorithms for finding maximum-
density segments of a sequence with applications to bioinformatics. In: Guigó, R.,
Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 157–171. Springer, Heidelberg
(2002)

8. Goldwasser, M.H., Kao, M.-Y., Lu, H.-I.: Linear-time algorithms for computing
maximum-density sequence segments with bioinformatics applications. J. Comput.
Syst. Sci. 70(2), 128–144 (2005)

9. Kim, S.K.: Linear-time algorithm for finding a maximum-density segment of a
sequence. Inf. Process. Lett. 86(6), 339–342 (2003)

10. Lee, D., Lin, T.-C., Lu, H.-I.: Fast algorithms for the density finding problem.
Algorithmica 53, 298–313 (2009)

11. Lin, Y.-L., Jiang, T., Chao, K.-M.: Efficient algorithms for locating the length-
constrained heaviest segments with applications to biomolecular sequence analysis.
J. Comput. Syst. Sci. 65(3), 570–586 (2002)

12. Nekrutenko, A., Li, W.H.: Assessment of compositional heterogeneity within and
between eukaryotic genomes. Genome Res. 10(12), 1986–1995 (2000)

13. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J.
Comput. Syst. Sci. 23(2), 166–204 (1981)

14. Sharp, P.M., Averof, M., Lloyd, A.T., Matassi, G., Peden, J.F.: DNA Sequence
evolution: the sounds of silence. R. Soc. Lond. Philos. Trans. B 349, 241–247
(1995)

15. Stojanovic, N., Florea, L., Riemer, C., Gumucio, D., Slightom, J., Goodman,
M., Miller, W., Hardison, R.: Comparison of five methods for finding conserved
sequences in multiple alignments of gene regulatory regions. Nucleic Acids Res.
27(19), 3899–3910 (1999)

16. Tamaki, H., Tokuyama, T.: Algorithms for the maximum subarray problem based
on matrix multiplication. In: Proceedings of the Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 1998, pp. 446–452. Society for Industrial
and Applied Mathematics, Philadelphia (1998)

17. Zoubak, S., Clay, O., Bernardi, G.: The gene distribution of the human genome.
Gene 174(1), 95–102 (1996)

Distance Spectral Radius of Some k-partitioned
Transmission Regular Graphs

Fouzul Atik(B) and Pratima Panigrahi

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur, India

fouzulatik@gmail.com, pratima@maths.iitkgp.ernet.in

Abstract. The distance matrix of a simple graph G is D(G) = (di,j),
where di,j is the distance between the ith and jth vertices of G. The
distance spectral radius of G, written λ1(G), is the largest eigenvalue of
D(G). We determine the distance spectral radius of the wheel graph Wn,
a particular type of spider graphs, and the generalized Petersen graph
P (n, k) for k ∈ {2, 3}.

Keywords: Distance matrix · Distance eigenvalue · Distance spectral
radius · k-partitioned transmission regular graphs · Generalized petersen
graphs

1 Introduction and Background

All graphs considered in this paper are finite, simple, and undirected. For an n-
vertex connected graph G, the distance matrix D(G) of G is an n×n matrix (di,j)
such that di,j is the distance (length of a shortest path) between the vertices i and
j in G. The eigenvalues, eigenvectors, and spectrum of D(G) will be referred to
as distance eigenvalues, distance eigenvectors, and distance spectrum of G. The
distance matrix D(G) is symmetric with real eigenvalues λi, i = 1, 2, ..., n, such
that λ1 ≥ λ2 ≥ ... ≥ λn. The largest eigenvalue λ1 of D(G) is called the distance
spectral radius of the graph G and is denoted by λ1(G).

Balaban et al. [1] proposed the use of distance spectral radius λ1(G) as a
molecular descriptor, while in [11] it was successfully used to infer the extent
of branching and model boiling points of alkanes. The distance spectral radius
is a useful molecular descriptor in QSPR modeling as demonstrated by Con-
sonni and Todeschini [7,19]. In [20,21], Zhou and Trinajstic provided upper and
lower bounds for λ1(G) in terms of the number of vertices, Wiener index and
Zagreb index. Bapat [3,4] calculated the determinant and inverses of the distance
matrices of weighted trees and unicyclic graphs. Balasubramanian [2] computed
the spectrum of its distance matrix using the Givens-Householder method. Das
[9] determined the upper and lower bounds for λ1(G) of a connected bipartite
graph and characterized the graphs for which these bounds are exact. Indulal
[13] has found sharp bounds on the distance spectral radius and the distance
energy of graphs. In [12], Ilić characterized n-vertex trees with given matching
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 26–36, 2016.
DOI: 10.1007/978-3-319-29221-2 3

Distance Spectral Radius of Some k-partitioned Transmission 27

number m which minimize the distance spectral radius. Subhi and Powers [18]
proved that for n ≥ 3 the path Pn has the maximum distance spectral radius
among trees on n vertices. Stevanović and Ilić [17] generalized this result, and
proved that among trees with fixed maximum degree Δ, the broom graph has
maximum distance spectral radius and showed that the star Sn is the unique
graph with minimal distance spectral radius among trees on n vertices. Bose
et al. [5] determined the unique graph with minimal distance spectral radius
among the class ζrn of all connected graphs of order n and r pendent vertices
and have found unique graph with maximal distance spectral radius in ζrn for
each r ∈ {2, 3, n − 3, n − 2, n − 1}. In the class of all connected bipartite graphs,
Nath and Paul [16] have determined the unique graph with minimum distance
spectral radius with a given matching number and characterized the graphs with
minimal distance spectral radius with a given vertex connectivity. In [15] they
found the unique tree among all trees on n vertices and matching number m,
and the unique tree among all tree with a given number of pendent vertice, that
maximizes the distance spectral radius.

We recall that the wheel graph Wn is a simple graph with n vertices (n ≥ 4),
formed by connecting a single vertex to all vertices of an (n − 1)-cycle. This
single vertex is the center of the wheel graph Wn. For each positive integers n
and k (n > 2k) the generalized Petersen graph P (n, k) is a graph with vertex set
V (P (n, k)) = {u0, u1, u2, ..., un−1, v0, v1, v2, ..., vn−1} and edge set E(P (n, k)) =
{uiui+1, uivi, vivi+k | 0 ≤ i ≤ n − 1, subscripts are addition modulo n}. We
note that a particular case of P (n, k), that is P (5, 2), is the well known Petersen
graph. Subdivision S(G) of a graph G is the graph obtained by inserting a new
vertex into every edge of G. A subdivision of the star graph is called a spider.
The vertex in a spider (other than a path) of degree greater than two is called
the central vertex and the paths starting from the central vertex and ending at
a leaf are called legs.

In this paper we find the spectral radius of the wheel graph Wn, the general-
ized Petersen graph P (n, k) for k = 2 and 3, and spider graphs in which all the
legs are of length two.

2 Exact Value of the Distance Spectral Radius

In this section we will use the concept of equitable partition of a matrix and
associated quotient matrix.

Definition 1. [6] Suppose a real symmetric matrix A whose rows and columns
are indexed by X = {1, 2, ..., n}. Let {X1,X2, ...,Xm} be a partition of X and let

A be partitioned according to {X1,X2, ...,Xm}, that is,
⎛
⎝A1,1 A1,2 · · · A1,m

· · · · · · · · · · · ·
Am,1 Am,2 · · · Am,m

⎞
⎠,

where each Ai,j denotes the submatrix (block) of A formed by rows in Xi and
the columns in Xj. Let qi,j denote the average row sum of Ai,j. Then the matrix
Q = (qi,j) is called a quotient matrix of A w.r.t. the given partition. If the row
sum of each block Ai,j is constant then the partition is called equitable.

28 F. Atik and P. Panigrahi

From Lemma 2.3.1 of [6] and Corollary 3.9.11 of [8] we get the following result.

Lemma 1. If Q is a quotient matrix of A then the spectrum of A contains the
spectrum of Q and the largest eigenvalue of A is equal to the largest eigenvalue
of Q.

We recall that transmission Tr(v) of a vertex v is defined to be the sum of
the distances from v to all other vertices in G, i.e., Tr(v) =

∑
u∈V d(u, v). A

connected graph G is said to be s-transmission regular if Tr(v) = s for every
vertex v ∈ V . We define a class of graphs called k-partitioned transmission
regular graphs, which need not be k-partite, as given below.

Definition 2. A connected graph G is called a k-partitioned transmission regu-
lar graph if there exists a partition

⋃k
i=1 Vi of the vertex set of G such that for

any i, j ∈ {1, 2, ..., k} and for any vertex x ∈ Vi, kij =
∑

y∈Vj

d(x, y) is constant,

where d(x, y) is the distance between x and y in the graph G. In this case we call
(V1, V2, ..., Vk) as a k-partition of G.

Remark 1. If G is a k-partitioned transmission regular graph with vertex par-
tition V (G) =

⋃k
i=1 Vi, then this partition is an equitable partition of D(G).

Therefore the matrix Q = (kij) is a quotient matrix of D(G) with respect to
this equitable partition.

In this section we find the exact value of the distance spectral radius of some
k-partitioned transmission regular graphs.

Lemma 2. Let G be a k-partitioned transmission regular graph with k-partition
(V1, V2, ..., Vk). If |Vi| = |Vj | for some i, j ∈ {1, 2, ..., k}, then kij = kji.

Proof. For a k-partitioned transmission regular graph we have kij =
∑

y∈Vj

d(x, y)

for all x ∈ Vi. This implies
∑
x∈Vi

∑
y∈Vj

d(x, y) =
∑
x∈Vi

kij = |Vi|kij (1)

Again we have kji =
∑

u∈Vi

d(u, v) for all v ∈ Vj . This implies

∑
v∈Vj

∑
u∈Vi

d(u, v) =
∑
v∈Vj

kji = |Vj |kji (2)

As |Vi| = |Vj |, from Eqs. (1) and (2) we get kij = kji.

Theorem 1. Let Wn be the wheel graph with n vertices. Then

λ1(Wn) = n − 3 +
√

(n − 3)2 + (n − 1).

Distance Spectral Radius of Some k-partitioned Transmission 29

Proof. Let V (Wn) = {1, 2, 3, ..., n} be the vertex set of Wn where 1 is the center
vertex. We take V1 = {1} and V2 = {2, 3, 4, ..., n} a partition of V (Wn). Now we
find the kij , i, j = 1, 2 as follows.

Since V1 has only one vertex, k11 = 0. Again all the vertices in V2 are of distance
one from the vertex 1 in V1. So k12 =

∑
k∈V2

d1,k = n − 1 and k21 = 1.

Finally, for any vertex t ∈ V2, t has distance zero with itself, distance one from
two of its neighbor in V2, and distance two from each of the remaining (n − 4)
vertices in V2.
So k22 =

∑
k∈V2

dt,k = 2 × (n − 4) + 2 = 2(n − 3).

By Remark 1, Q = (kij) =
(

0 n − 1
1 2(n − 3)

)
is a quotient matrix of D(G) with

respect to an equitable partition.
The largest eigenvalue of the matrix Q is (n − 3) +

√
(n − 3)2 + (n − 1).

Hence applying Lemma 1 we get λ1(Wn) = (n − 3) +
√

(n − 3)2 + (n − 1).

Theorem 2. Let G be a spider graph with n legs, where each leg is of length
2. Then the distance spectral radius of G is the largest root of the polynomial
x3 − (6n − 6)x2 − (n2 + 9n − 4)x − 4n.

Proof. Consider a partition V1 ∪V2 ∪V3 of vertex set V (G), where V1 consists of
the central vertex of G, V2 contains all the neighbour of the central vertex of G,
and V3 contains all pendent vertices of G. With this partition we get that G is
a 3-partitioned transmission regular graph and corresponding to this partition
the quotient matrix of D(G) is given by

Q =

⎛
⎝0 n 2n

1 2(n − 1) 3n − 2
2 3n − 2 4(n − 1)

⎞
⎠

Characteristic polynomial of the matrix Q is given by x3 − (6n − 6)x2 − (n2 +
9n − 4)x − 4n. Hence applying Lemma 1 we get our desired result.

Theorem 3. The distance spectral radius of the generalized Petersen graph
P (n, 2), n ≥ 8, is given by

λ1(P (n, 2)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8
(n2 + 14n − 40 +

√
n4 + 20n3 + 116n2 − 320n + 1600), n ≡ 0 (mod 4),

1
8
(n2 + 14n − 55 +

√
n4 + 20n3 + 110n2 − 284n + 793), n ≡ 1 (mod 4),

1
8
(n2 + 14n − 40 +

√
n4 + 20n3 + 116n2 − 320n + 1600), n ≡ 2 (mod 4),

1
8
(n2 + 14n − 51 +

√
n4 + 20n3 + 118n2 − 204n + 785), n ≡ 3 (mod 4).

Proof. We recall that the vertex set of P (n, 2) is {u0, u1, ..., un−1, v0, v1, ..., vn−1}
such that V1 = {u0, u1, ..., un−1} induces the cycle C = (u0, u1, ..., un−1). Let
V2 = {v0, v1, ..., vn−1}. Clearly V1 ∪ V2 forms a partition of V (P (n, 2)). Because
of the symmetric structure of P (n, 2), for finding kij , i, j = 1, 2, we consider

30 F. Atik and P. Panigrahi

the vertex u0 in V1 and the vertex v0 from V2 and determine the distances from
these vertices to all vertices of the graph.

We first determine k11. We observe that d(u0, ui) = d(u0, un−i), for i =
1, 2, 3, ..., �n

2 �. The shortest path from u0 to u1, u2, u3, or u4 is through the
edges in cycle C. So one gets that d(u0, u1), d(u0, u2), d(u0, u3), and d(u0, u4)

are equal to 1, 2, 3, and 4 respectively. Let us take L =
4∑

i=1

d(u0, ui) =

10. For any even index 2m, 4 < 2m ≤ n
2 , a shortest path between u0

and u2m is (u0, v0, v2, v4, ..., v2m, u2m). So d(u0, u2m) = m + 2. For any odd
index 2p + 1, 4 < 2p + 1 ≤ n

2 , a shortest path between u0 and u2p+1 is
(u0, u1, v1, v3, ..., v2p+1, u2p+1). So d(u0, u2p+1) = p + 3. According to different
values of n, the range of 2m and 2p + 1 are given as below. For n ≡ 0, 1, 2,
or 3 (mod 4) the range of 2m and 2p + 1 are respectively 4 < 2m ≤ n

2 and
4 < 2p + 1 ≤ n

2 − 1; 4 < 2m ≤ �n
2 � and 4 < 2p + 1 < �n

2 �; 4 < 2m ≤ n
2 − 1 and

4 < 2p + 1 ≤ n
2 ; or 4 < 2m < �n

2 � and 4 < 2p + 1 ≤ �n
2 �.

Nowk11 =
n−1∑
i=0

d(u0, ui)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n
2 −1∑
i=1

[d(u0, ui) + d(u0, un−i)] + d(u0, un
2
), n ≡ 0 or 2 (mod 4),

�n
2 �∑

i=1

[d(u0, ui) + d(u0, un−i)], n ≡ 1 or 3 (mod 4).

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

[
L +

n
2 −1∑
i=5

d(u0, ui)

]
+ d(u0, un

2
), n ≡ 0 or 2 (mod 4),

2

[
L +

�n
2 �∑

i=5

d(u0, ui)

]
, n ≡ 1 or 3 (mod 4).

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8

[
n2 + 18n − 80

]
, n ≡ 0 (mod 4),

1
8

[
n2 + 18n − 83

]
, n ≡ 1 (mod 4),

1
8

[
n2 + 18n − 80

]
, n ≡ 2 (mod 4),

1
8

[
n2 + 18n − 79

]
, n ≡ 3 (mod 4).

To find k12 we have to determine the distances from u0 to all vertices of V2. We
observe that d(u0, vi) = d(u0, vn−i), where i = 1, 2, 3, ..., �n

2 �. For an even index
2m, 0 ≤ 2m ≤ n

2 , a shortest path between u0 and v2m is (u0, v0, v2, v4, ..., v2m).
So d(u0, v2m) = m+1. For any odd index 2p+1, 1 ≤ 2p+1 ≤ n

2 , a shortest path
between u0 and v2p+1 is (u0, u1, v1, v3, ..., v2p+1). So d(u0, v2p+1) = p + 2. For
n ≡ 0, 1, 2, or 3 (mod 4) the range of 2m and 2p+1 are respectively 0 ≤ 2m ≤ n

2

Distance Spectral Radius of Some k-partitioned Transmission 31

and 1 ≤ 2p + 1 ≤ n
2 − 1; 0 ≤ 2m ≤ �n

2 � and 1 ≤ 2p + 1 < �n
2 �; 0 ≤ 2m ≤ n

2 − 1
and 1 ≤ 2p + 1 ≤ n

2 ; or 0 ≤ 2m < �n
2 � and 1 ≤ 2p + 1 ≤ �n

2 �.

k12 =

n−1∑

i=0

d(u0, vi)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d(u0, v0) +

n
2 −1∑

i=1

[d(u0, vi) + d(u0, vn−i)] + d(u0, vn
2
), n ≡ 0 or 2 (mod 4),

d(u0, v0) +
� n

2 �∑

i=1

[d(u0, vi) + d(u0, vn−i)], n ≡ 1 or 3 (mod 4).

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + 2

n
2 −1∑

i=1

d(u0, vi) + d(u0, vn
2
), n ≡ 0 or 2 (mod 4),

1 + 2
� n

2 �∑

i=1

d(u0, vi), n ≡ 1 or 3 (mod 4).

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8

[
n2 + 10n

]
, n ≡ 0 (mod 4),

1
8

[
n2 + 10n − 3

]
, n ≡ 1 (mod 4),

1
8

[
n2 + 10n

]
, n ≡ 2 (mod 4),

1
8

[
n2 + 10n + 1

]
, n ≡ 3 (mod 4).

For the 2-partition (V1, V2) of the 2-partitioned transmission regular graph
P (n, 2) we have |V1| = |V2|. Hence by using Lemma 2. we get

k21 = k12

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8

[
n2 + 10n

]
, n ≡ 0 (mod 4),

1
8

[
n2 + 10n − 3

]
, n ≡ 1 (mod 4),

1
8

[
n2 + 10n

]
, n ≡ 2 (mod 4),

1
8

[
n2 + 10n + 1

]
, n ≡ 3 (mod 4).

Finally, for finding k22 we have to determine the distances from v0 to
all other vertices of V2. In this case also we have d(v0, vi) = d(v0, vn−i),
where i = 1, 2, 3, ..., �n

2 �. Now a shortest path between v0 and v2m is
(v0, v2, v4, ..., v2m). So d(v0, v2m) = m. Again a shortest path between v0 and
v2p+1 is (v0, u0, u1, v1, v3, ..., v2p+1). So d(v0, v2p+1) = p + 3. For n ≡ 0, 1, 2,
or 3 (mod 4) the range of 2m and 2p + 1 are respectively 0 ≤ 2m ≤ n

2 and
1 ≤ 2p+1 ≤ n

2 −1; 0 ≤ 2m ≤ �n
2 �+2 and 1 ≤ 2p+1 < �n

2 �−2; 0 ≤ 2m ≤ n
2 −1

and 1 ≤ 2p + 1 < n
2 ; or 0 ≤ 2m ≤ �n

2 � + 1 and 1 ≤ 2p + 1 < �n
2 � − 1. Then

32 F. Atik and P. Panigrahi

k22 =
n−1∑
i=0

d(v0, vi)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
n
2 −1∑
i=1

d(v0, vi) + d(v0, vn
2
), n ≡ 0 or 2 (mod 4),

2
�n

2 �∑
i=1

d(v0, vi), n ≡ 1 or 3 (mod 4).

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8

[
n2 + 10n

]
, n ≡ 0 (mod 4),

1
8

[
n2 + 10n − 27

]
, n ≡ 1 (mod 4),

1
8

[
n2 + 10n

]
, n ≡ 2 (mod 4),

1
8

[
n2 + 10n − 23

]
, n ≡ 3 (mod 4).

By Remark 1, quotient matrix of the distance matrix is given by Q =
(

k11 k12
k21 k22

)

and the largest eigenvalue of it is 1
2

[
(k11 + k22) +

√
(k11 − k22)2 + 4k12k21

]
.

Now by putting the values of kij , i, j = 1, 2 in the above expression and by
applying Lemma 1. we get our result.

Theorem 4. The distance spectral radius of the generalized Petersen graph
P (n, 3), n ≥ 8, is given by

λ1(P (n, 3)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
12

(n2 + 28n − 60 +
√

n4 + 40n3 + 416n2 − 4800n + 3600), n ≡ 0 (mod 6),

1
12

(n2 + 28n − 89 +
√

n4 + 40n3 + 398n2 − 680n + 1681), n ≡ 1 (mod 6),

1
12

(n2 + 28n − 96 +
√

n4 + 40n3 + 400n2 − 576n + 1088), n ≡ 2 (mod 6),

1
12

(n2 + 28n − 69 +
√

n4 + 40n3 + 398n2 − 840n + 3681), n ≡ 3 (mod 6),

1
12

(n2 + 28n − 80 +
√

n4 + 40n3 + 416n2 − 320n + 1600), n ≡ 4 (mod 6),

1
12

(n2 + 28n − 93 +
√

n4 + 40n3 + 430n2 − 72n + 1985), n ≡ 5 (mod 6).

Proof. Similar to the proof of Theorem 3.2. we take the vertex set of P (n, 3)
as {u0, u1, ..., un−1, v0, v1, ..., vn−1} with 2-partition (V1, V2) where V1 =
{u0, u1, ..., un−1} and V2 = {v0, v1, ..., vn−1}. From the symmetric structure of
P (n, 3), for finding kij , i, j = 1, 2, we consider the vertex u0 in V1 and the vertex
v0 from V2 and determine the distances from these vertices to all vertices of the
graph.

We first determine k11. We observe that d(u0, ui) = d(u0, un−i), where
i = 1, 2, 3, ..., �n

2 �. It is clear that d(u0, u1) = 1 and d(u0, u2) = 2. For
the index 3m, 3 ≤ 3m ≤ n

2 , a shortest path between u0 and u3m is
(u0, v0, v3, v6, ..., v3m, u3m). So d(u0, u3m) = m + 2. For the index 3p + 1, 4 ≤

Distance Spectral Radius of Some k-partitioned Transmission 33

3p+1 ≤ n
2 , a shortest path between u0 and u3p+1 is (u0, v0, v3, ..., v3p, u3p, u3p+1).

So d(u0, u3p+1) = p + 3. For the index 3q + 2, 5 ≤ 3q + 2 ≤ n
2 , a shortest path

between u0 and u3q+2 is (u0, v0, v3, ..., v3q, u3q, u3q+1, u3q+2). So d(u0, u3q+2) =
q + 4. According to different values of n, the range of 3m, 3p + 1 and 3q + 2 are
given as below.

For n ≡ 0, 1, 2, 3, 4 or 5 (mod 6) the range of 3m, 3p + 1 and 3q + 2 are
respectively 3 ≤ 3m ≤ n

2 , 4 ≤ 3p + 1 ≤ n−4
2 , and 5 ≤ 3q + 2 ≤ n−2

2 ; 3 ≤ 3m ≤
n−1
2 , 4 ≤ 3p + 1 ≤ n−5

2 , and 5 ≤ 3q + 2 ≤ n−3
2 ; 3 ≤ 3m ≤ n−2

2 , 4 ≤ 3p + 1 ≤ n
2 ,

and 5 ≤ 3q +2 ≤ n−4
2 ; 3 ≤ 3m ≤ n−3

2 , 4 ≤ 3p+1 ≤ n−1
2 , and 5 ≤ 3q +2 ≤ n−5

2 ;
3 ≤ 3m ≤ n−4

2 , 4 ≤ 3p + 1 ≤ n−2
2 , and 5 ≤ 3q + 2 ≤ n

2 ; 3 ≤ 3m ≤ n+1
2 ,

4 ≤ 3p + 1 ≤ n−3
2 , and 5 ≤ 3q + 2 ≤ n−7

2 .

Now k11 =

n−1∑

i=0

d(u0, ui)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n
2 −1∑

i=1
[d(u0, ui) + d(u0, un−i)] + d(u0, un

2
), n ≡ 0, 2 or 4 (mod 6),

� n
2 �∑

i=1
[d(u0, ui) + d(u0, un−i)], n ≡ 1, 3 or 5 (mod 6).

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2

[

d(u0, u1) + d(u0, u2) +

n
2 −1∑

i=3
d(u0, ui)

]

+ d(u0, un
2
), n ≡ 0, 2 or 4 (mod 6),

2

[

d(u0, u1) + d(u0, u2) +
� n

2 �∑

i=3
d(u0, ui)

]

, n ≡ 1, 3 or 5 (mod 6).

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
12

[
n2 + 32n − 120

]
, n ≡ 0 (mod 6),

1
12

[
n2 + 32n − 129

]
, n ≡ 1 (mod 6),

1
12

[
n2 + 32n − 128

]
, n ≡ 2 (mod 6),

1
12

[
n2 + 32n − 129

]
, n ≡ 3 (mod 6),

1
12

[
n2 + 32n − 120

]
, n ≡ 4 (mod 6),

1
12

[
n2 + 32n − 137

]
, n ≡ 5 (mod 6).

To find k12 we observe that d(u0, vi) = d(u0, vn−i), where i = 1, 2, 3, ..., �n
2 �.

For the index 3m, 0 ≤ 3m ≤ n
2 , a shortest path between u0 and v3m is

(u0, v0, v3, v6, ..., v3m). So d(u0, v3m) = m + 1. For the index 3p + 1, 1 ≤
3p + 1 ≤ n

2 , a shortest path between u0 and v3p+1 is (u0, u1, v1, v4, ..., v3p+1).
So d(u0, v3p+1) = p + 2. For the index 3q + 2, 2 ≤ 3q + 2 ≤ n

2 , a shortest path
between u0 and v3q+2 is ((u0, u1, u2, v2, v5, ..., v3q+2). So d(u0, v3q+2) = q+3. For
n ≡ 0, 1, 2, 3, 4 or 5 (mod 6) the range of 3m, 3p + 1 and 3q + 2 are respectively
0 ≤ 3m ≤ n

2 , 1 ≤ 3p + 1 ≤ n−4
2 , and 2 ≤ 3q + 2 ≤ n−2

2 ; 0 ≤ 3m ≤ n−1
2 ,

1 ≤ 3p + 1 ≤ n−5
2 , and 2 ≤ 3q + 2 ≤ n−3

2 ; 0 ≤ 3m ≤ n−2
2 , 1 ≤ 3p + 1 ≤ n

2 , and
2 ≤ 3q + 2 ≤ n−4

2 ; 0 ≤ 3m ≤ n−3
2 , 1 ≤ 3p + 1 ≤ n−1

2 , and 2 ≤ 3q + 2 ≤ n−5
2 ;

34 F. Atik and P. Panigrahi

0 ≤ 3m ≤ n−4
2 , 1 ≤ 3p + 1 ≤ n−2

2 , and 2 ≤ 3q + 2 ≤ n
2 ; 0 ≤ 3m ≤ n−5

2 ,
1 ≤ 3p + 1 ≤ n−3

2 , and 2 ≤ 3q + 2 ≤ n−1
2 .

Now k12 =

n−1∑

i=0

d(u0, vi)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d(u0, v0) +

n
2 −1∑

i=1
[d(u0, vi) + d(u0, vn−i)] + d(u0, vn

2
), n ≡ 0, 2 or 4 (mod 6),

d(u0, v0) +
� n

2 �∑

i=1
[d(u0, vi) + d(u0, vn−i)], n ≡ 1, 3 or 5 (mod 6).

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d(u0, v0) + 2

n
2 −1∑

i=1
d(u0, vi) + d(u0, vn

2
), n ≡ 0, 2 or 4 (mod 6),

d(u0, v0) + 2
� n

2 �∑

i=1
d(u0, vi), n ≡ 1, 3 or 5 (mod 6).

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
12

[
n2 + 20n

]
, n ≡ 0 (mod 6),

1
12

[
n2 + 20n − 9

]
, n ≡ 1 (mod 6),

1
12

[
n2 + 20n − 8

]
, n ≡ 2 (mod 6),

1
12

[
n2 + 20n − 9

]
, n ≡ 3 (mod 6),

1
12

[
n2 + 20n

]
, n ≡ 4 (mod 6),

1
12

[
n2 + 20n + 7

]
, n ≡ 5 (mod 6).

For the 2-partition (V1, V2) of the 2-partitioned transmission regular graph
P (n, 3) we have |V1| = |V2|. Hence by using Lemma 2. we get

k21 = k12

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
12

[
n2 + 20n

]
, n ≡ 0 (mod 6),

1
12

[
n2 + 20n − 9

]
, n ≡ 1 (mod 6),

1
12

[
n2 + 20n − 8

]
, n ≡ 2 (mod 6),

1
12

[
n2 + 20n − 9

]
, n ≡ 3 (mod 6),

1
12

[
n2 + 20n

]
, n ≡ 4 (mod 6),

1
12

[
n2 + 20n + 7

]
, n ≡ 5 (mod 6).

Finally, for finding k22 we have to obtain the distances from v0 to all other
vertices of V2. We observe that d(v0, vi) = d(v0, vn−i), where i = 1, 2, 3, ..., �n

2 �.
For the index 3m, 0 ≤ 3m ≤ n

2 , a shortest path between v0 and v3m is
(v0, v3, v6, ..., v3m). So d(v0, v3m) = m. For the index 3p + 1, 1 ≤ 3p + 1 ≤
n
2 , a shortest path between v0 and v3p+1 is (v0, u0, u1, v1, v4, ..., v3p+1). So

Distance Spectral Radius of Some k-partitioned Transmission 35

d(v0, v3p+1) = p + 3. For the index 3q + 2, 2 ≤ 3p + 2 ≤ n
2 , a shortest path

between v0 and v3q+2 is (v0, u0, u1, u2, v2, ..., v3q+2). So d(v0, v3q+2) = q + 4. For
n ≡ 0, 1, 2, 3, 4 or 5 (mod 6) the range of 3m, 3p + 1 and 3q + 2 are respectively
0 ≤ 3m ≤ n

2 , 1 ≤ 3p + 1 ≤ n−4
2 , and 2 ≤ 3q + 2 ≤ n−2

2 ; 0 ≤ 3m ≤ n+5
2 ,

1 ≤ 3p + 1 ≤ n−11
2 , and 2 ≤ 3q + 2 ≤ n−3

2 ; 0 ≤ 3m ≤ n+4
2 , 1 ≤ 3p + 1 ≤ n

2 , and
2 ≤ 3q + 2 ≤ n−10

2 ; 0 ≤ 3m ≤ n−3
2 , 1 ≤ 3p + 1 ≤ n−1

2 , and 2 ≤ 3q + 2 ≤ n−5
2 ;

0 ≤ 3m ≤ n+2
2 , 1 ≤ 3p + 1 ≤ n−8

2 , and 2 ≤ 3q + 2 ≤ n
2 ; 0 ≤ 3m ≤ n+1

2 ,
1 ≤ 3p + 1 ≤ n−3

2 , and 2 ≤ 3q + 2 ≤ n−7
2 .

Now k22 =
n−1∑
i=0

d(v0, vi)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

[
n
2 −1∑
i=1

d(v0, vi)

]
+ d(v0, vn

2
), n ≡ 0, 2 or 4 (mod 6),

2

[
�n

2 �∑
i=1

d(v0, vi)

]
, n ≡ 1, 3 or 5 (mod 6).

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
12

[
n2 + 24n

]
, n ≡ 0 (mod 6),

1
12

[
n2 + 24n − 49

]
, n ≡ 1 (mod 6),

1
12

[
n2 + 24n − 64

]
, n ≡ 2 (mod 6),

1
12

[
n2 + 24n − 9

]
, n ≡ 3 (mod 6),

1
12

[
n2 + 24n − 40

]
, n ≡ 4 (mod 6),

1
12

[
n2 + 24n − 49

]
, n ≡ 5 (mod 6).

Hence applying Remark 1 and Lemma 1 we get the desired result.

References

1. Balaban, A.T., Ciubotariu, D., Medeleanu, M.: Topological indices and real number
vertex invariants based on graph eigenvalues or eigenvectors. J. Chem. Inf. Comput.
Sci. 31, 517–523 (1991)

2. Balasubramanian, K.: A topological analysis of the C60 buckminsterfullerene and
C70 based on distance matrices. Chem. Phys. Lett. 239, 117–123 (1995)

3. Bapat, R.B.: Distance matrix and Laplacian of a tree with attached graphs. Linear
Algebra Appl. 411, 295–308 (2005)

4. Bapat, R.B., Kirkland, S.J., Neumann, M.: On distance matrices and Laplacians.
Linear Algebra Appl. 401, 193–209 (2005)

36 F. Atik and P. Panigrahi

5. Bose, S.S., Nath, M., Paul, S.: Distance spectral radius of graphs with r pendent
vertices. Linear Algebra Appl. 435, 2828–2836 (2011)

6. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2011)
7. Consonni, V., Todeschini, R.: New spectral indices for molecule description.

MATCH Commun. Math. Comput. Chem. 60, 3–14 (2008)
8. Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs-Theory and Applications.

Academic Press, New York (1980)
9. Das, K.C.: On the largest eigenvalue of the distance matrix of a bipartite graph.

MATCH Commun. Math. Comput. Chem. 62, 667–672 (2009)
10. Fowler, P.W., Caporossi, G., Hansen, P.: Distance matrices, wiener indices, and

related invariants of fullerenes. J. Phys. Chem. A 105, 6232–6242 (2001)
11. Gutman, I., Medeleanu, M.: On the structure-dependence of the largest eigenvalue

of the distance matrix of an alkane. Indian J. Chem. A 37, 569–573 (1998)
12. Ilic̃, A.: Distance spectral radius of trees with given matching number. Discrete

Appl. Math. 158(16), 1799–1806 (2010)
13. Indulal, G.: Sharp bounds on the distance spectral radius and the distance energy

of graphs. Linear Algebra Appl. 430, 106–113 (2009)
14. Minc, H.: Nonnegative Matrices. John Wiley & Sons, New York (1988)
15. Nath, M., Paul, S.: On the distance spectral radius of bipartite graphs. Linear

Algebra Appl. 436, 1285–1296 (2012)
16. Nath, M., Paul, S.: On the distance spectral radius of trees. Linear and Multilinear

Algebra 61, 847–855 (2013)
17. Stevanovic̃, D., Ilic̃, A.: Distance spectral radius of trees with fixed maximum

degree. Electron. J. Linear Algebra 20(1), 168–179 (2010)
18. Subhi, R., Powers, D.: The distance spectrum of the path Pn and the first distance

eigenvector of connected graphs. Linear and Multilinear Algebra 28, 75–81 (1990)
19. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH,

Weinheim (2000)
20. Zhou, B.: On the largest eigenvalue of the distance matrix of a tree. MATCH

Commun. Math. Comput. Chem. 58, 657–662 (2007)
21. Zhou, B., Trinajstic̃, N.: On the largest eigenvalue of the distance matrix of a

connected graph. Chem. Phys. Lett. 447, 384–387 (2007)

Color Spanning Objects:
Algorithms and Hardness Results

Sandip Banerjee1(B), Neeldhara Misra2, and Subhas C. Nandy1

1 Indian Statistical Institute, Kolkata, India
{sbanerjee,nandysc}@isical.ac.in

2 Indian Institute of Technology, Gandhinagar, India
neeldhara.m@iitgn.ac.in

Abstract. In this paper, we study the Shortest Color Spanning
Intervals problem, and related generalizations, namely Smallest
Color Spanning t Squares and Smallest Color Spanning t Cir-
cles. The generic setting is the following: we are given n points in the
plane (or on the line), each colored with one of k colors, and for each
color i we also have a demand si. Given a budget t, we are required to
find at most t objects (for example, intervals, squares, circles, etc.) that
cover at least si points of color i. Typically, the goal is to minimize the
maximum perimeter or area.

We provide exact algorithms for these problems for the cases of inter-
vals, circles and squares, generalizing several known results. In the case
of intervals, we provide a comprehensive understanding of the complex-
ity landscape of the problem after taking several natural parameters into
account. Given that the problem turns out to be W [1]-hard parameter-
ized by the standard parameters, we introduce a new parameter, namely
sparsity, and prove new hardness and tractability results in this con-
text. For squares and circles, we use existing algorithms of one smallest
color spanning object in order to design algorithms for getting t identical
objects of minimum size whose union spans all the colors.

Keywords: Color spanning sets · Computational geometry · Parame-
terized complexity · Exact algorithms

1 Introduction

We are given a set of n points on a line, each colored with one of the k colors, and
a non-negative demand si for each color i. The problem of Shortest Color
Spanning t-Intervals involves finding at most t intervals each of length at
most d such that at least si points of every color i are covered by the union

S. Banerjee—The work was done while the author was visiting the Indian Institute
of Science, Bangalore, India.
N. Misra—The author is supported by the DST-INSPIRE fellowship, project DSTO-
1209.

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 37–48, 2016.
DOI: 10.1007/978-3-319-29221-2 4

38 S. Banerjee et al.

of these intervals, where t and d are positive integers. A natural generalization
involves considering points in the plane, and attempting to meet all the demands
using a collection of geometric objects in the plane that minimize some desirable
parameter, for instance, the maximum perimeter. In the context of location
planning, suppose there are n facilities of k types e.g. schools, banks, hospitals,
etc. in a locality, the objective is to choose a suitable residential location with a
representative from each facility type in the neighborhood. This situation calls
for the computation of a color spanning object of smallest perimeter or area. In
this work, we study the problems of spanning intervals, squares, and circles from
an algorithmic perspective. Apart from studying the problem in the general form
described above, our study covers situations involving a fixed number of objects,
and also the special case when all demands are one. In addition to proposing
some polynomial time algorithms, we consider the parameterized complexity of
those variants that are NP-hard in general.

In parameterized complexity, each problem instance comprises of an instance
x in the usual sense, and a parameter k. A problem with parameter k is called
fixed parameter tractable (FPT) if it is solvable in time f(k) · g(|x|), where f is
an arbitrary function of k and g is a polynomial in the input size |x|. Just as
NP-hardness is used as evidence that a problem probably is not polynomial time
solvable, there exists a hierarchy of complexity classes above FPT, and showing
that a parameterized problem is hard for one of these classes is considered as
an evidence that the problem is unlikely to be fixed-parameter tractable. The
main classes in this hierarchy are: FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P] ⊆ XP . A
parameterized problem belongs to the class XP if there exists an algorithm for
it with running time bounded by nh(k), for some function h of k. For the details
in parameterized complexity refer to [6].

We will mostly focus on the parameterized complexity of SCSI-t problem,
where we are given budgets d and t, and we are required to find t intervals of
length at most d each, such that their union covers at least si points of color
i. We first show that the FPT algorithm described in [9] for the case when all
demands are “1” can be extended to a FPT algorithm when parameterized by k
and s∗, where s∗ is the maximum demand among all the colors. This FPT result
is the best we can hope for, in the following sense: if we do not incorporate the
maximum demand as a parameter, we know that the problem is W [1]-hard even
for the case of unit intervals if we parameterize by both k and t [9]. Also note
that it does not make sense to parameterize by s∗ alone, as the problem is NP-
hard even when si = 1 for all the colors i [9]. In [9] it is also shown that for unit
intervals the problem is W [2]-hard with respect to the parameter t even when all
demands are “1”. Therefore, for all combinations of natural parameters, namely
k, t, d and s∗, the complexity is understood. We have FPT if we incorporate
both k and s∗ as parameter; but for any other combination of the parameters,
we encounter hardness in the parameterized sense.

Given the overwhelming proportion of hardness results, we are motivated to
look for other parameters that reflect possible structure in the point set. To this
end, we introduce the following notion: we say that a point set P is (q, d)-sparse

Color Spanning Objects: Algorithms and Hardness Results 39

if any interval of length at most d covers at most q points from P . In this con-
text, we show that SCSI-t problem remains NP -hard on (3, 1)-sparse point sets
even when P contains at most “2” points of each color. However, we comple-
ment this by showing that the problem is FPT when parameterized by t, q and
the maximum frequency with which any color repeats itself. We also generalize
the O(n2) time algorithm for SCSI-2 problem [9] to the case of t intervals, with
two algorithms of running times O(ntk) and O((f(s∗, t))kn) respectively, where
f(s∗, t) denotes the number of ordered sets of t non-negative integers that sum to
s∗. Note that an O(nt+2) time algorithm for this problem is relatively straight-
forward by brute-force: we can guess the two endpoints of the largest interval —
this gives us a candidate upper bound on the length of the remaining intervals.
Therefore, it is now enough to guess the left endpoints of all the remaining (t−1)
intervals, and checking, in O(n) time, whether all demands are satisfied. Subse-
quently, we also consider the color spanning problem for two congruent objects
in the plane with an objective to minimize the perimeter. Specifically, we focus
on axis-parallel squares, and circles. For a given set P of n points with k col-
ors in the plane, we can compute in O((n2k + min(m2kω−2,mn log2 n)) log n)
time two color-spanning axis-parallel squares, where m denotes min(2k, n2) and
ω denotes the constant in the power of N in the time complexity of multi-
plying two N × N matrices. We also provide an algorithm with running time
O(n3 + (n2k log n + min(mnk log n,m2kω−2)) log n) time for the case of two cir-
cles, where m is as defined earlier. These results naturally generalize the com-
plexity of SCSI-t problem to that of finding t color spanning objects with the
goal of minimizing the maximum perimeter.

Related Work. Chen and Misiolek [4] studied the problem of finding a shortest
color spanning interval when the points are on a line, and they provide a linear
time algorithm for the case when all points are sorted. Khanteimouri et al. [11]
gave an O(n2 log n)-time algorithm for the special case of SCSI-2 problem with
si = 1 for all colors i. This was subsequently improved by Jiang and Wang [9]
to an O(n2) time algorithm with arbitrary demands. In [9], SCSI-t problem is
also studied at length from the perspective of approximation and fixed-parameter
tractable algorithms. First, several hardness results are established. For instance,
they show that (i) approximating SCSI-t problem within any ratio is NP-hard
when t is a part of the input, (ii) is W[2]-hard when t is a parameter, and (iii)
is W[1]-hard with both t and k are parameters. On the other hand, they show
that SCSI-t problem with si = 1 for all i is fixed-parameter tractable with k as
the parameter, and admits an exact algorithm running in O(2kn max(k, logn))
time.

In the context of points in a plane, there have been several studies for different
geometric objects, and with varying objectives. In the context of location plan-
ning, a natural question is to ask for the smallest color spanning circle. This can
be found in O(kn log n) time by computing the upper envelope of Voronoi sur-
faces [8]. Abellanas et al. [2] proposed an O(n(n−k) log2 k) time and O(n) space
algorithm for the problem of compuing a smallest color spanning axis-parallel
rectangle. Das et al. [5] improved the running time to O(n log2 n). They studied

40 S. Banerjee et al.

related problems like color spanning strips and rectangles of arbitrary orienta-
tions. In a subsequent work, Abellanas et al. [1] used the farthest colored Voronoi
diagram (FCVD) to develop an O(n2α(k) log k) time algorithm for the smallest
color-spanning circle problem. More recently, Khanteimouri et al. [10] studied
the problem of computing the smallest color-spanning axis-parallel square. Their
proposed algorithm runs in O(n log2 n) time using O(n) space.

2 Shortest Color Spanning Intervals

In this section, we study the Shortest Color Spanning Intervals (SCSI-t)
problem. An instance of the problem is given by (P, k, t, d, {s1, . . . , sk}), where
P is a set of points on the line and [k] is a set of colors, t and d are non-negative
integers. The question is if there exists a collection of at most t intervals of
length at most d each, such that they together cover at least si points of every
color i. We will use s∗ to denote max(s1, . . . , sk). We use Shortest Color
Spanning Unit Intervals to refer to the special case when d is fixed to be
“1”, i.e., we would like to meet all demands using at most t unit intervals. We
first consider the natural parameters that arise from the problem, namely k, t, s∗

and d. Subsequently, we introduce the parameters max frequency and sparsity,
and analyze the problem in the presence of these additional parameters as well.
We also use OPT-SCSI-t to refer to the version of the problem where d is not
given as input, and the goal is to minimize d when t is fixed.

2.1 Standard Parameterizations

By Theorem 2 in [9], we know that SCSI-t problem is W [2]-hard when parame-
terized by t, even for constant values of d and s∗, and W [1]-hard when para-
meterized by both t and k, for constant d. They also show (in Theorem 3) that
the problem is FPT when parameterized by k, when all demands are “1”. We
note that the reduction from Clique that establishes the W [1]-hardness, when
parameterized by t and k, has some colors with unbounded demands. Hence, it
is natural to ask if the problem is FPT when parameterized by both k and the
maximum demand s∗. We answer this question in the affirmative by adopting
a natural generalization of the dynamic programming (DP) approach proposed
in [9]. We begin by recalling the following lemma.

Lemma 1 ([9]). There must exist an optimal solution for the problem SCSI-t
problem such that a longest interval has both left and right endpoints in P .

Let w denote a word of length k over the alphabet {1, 2 . . . s∗} and let w∗

represent the initial demand for each color, that is, w∗[i] = si for all i ∈ [k]. For
w1, w2 ∈ {1, 2 . . . s∗}k, we define wd = w1 − w2 as follows:

wd[j] =
{

w1[j] − w2[j] ifw1[j] ≥ w2[j];
0 otherwise,

for all j ∈ [k].

Color Spanning Objects: Algorithms and Hardness Results 41

Let N [w, i] be the minimum number of intervals required to cover color j
w[j] times among the points p1, p2 . . . pi. Our final answer from the DP table
will be N [w∗, n]. To describe the recurrence in the DP we need following:

• An index g(i), which is the smallest index j, 1 ≤ j ≤ i, such that the points
pj , pj+1 . . . pi are covered by an interval Ir

i of length d with right end-point at
pi.

• An indicator vector Ĉi, where Ĉi[j] denotes the number of times color j
appears in the interval Ir

i .

The index g(i) can be computed by scanning all the points from right to
left in O(n) time. To compute Ĉi[j], we sweep the points from right to left by
using an interval I of length d, and maintaining for color j the number of points
covered by the current interval I. Assume that we have already computed Ĉi[j]
and the right end point of I is at pi. To compute ˆCi−1[j] we simply add the
number of points of color j that are covered by Ir

i−1 but not Ir
i , and subtract

“1” if the point pi had color j. We now propose the following recurrence:

N [w, i] = min(N [w − Ĉi, i − g(i)] + 1, N [w, i − 1]).

The two considered cases in this recurrence are whether pi is the last point
covered by an interval I = [pg(i), p] of length d with the color set Ĉi, or not.

The running time of this procedure is O((s∗)kkn) since in the DP table
N [w, i] has (s∗)kn entries, and each entry takes O(k) time to compute because
g(i) and Ĉi[j] have been computed initially and the set union operation takes
O(k) time. We have thus shown the following.

Theorem 1. SCSI-t problem admits an algorithm with running time
O((s∗)kkn), and therefore is FPT with respect to the parameters s∗ and k.

We also remark that the kernel lower bound stated in Proposition 1 is a
direct consequence of Theorem 2 in [12], as their reduction can be viewed as a
polynomial parameter transformation from Colorful Red-Blue Dominating
Set to SCSI-t problem. The parameterization of the Colorful Red-Blue
Dominating Set problem by the size of the solution and number of blue vertices
seems unlikely to admit a polynomial kernel [12].

Proposition 1. SCSI-t problem does not have a polynomial kernel when para-
meterized by k and t, even for constant values of d and s∗, unless CoNP ⊆
NP/Poly.

2.2 Frequency and Sparsity

We now consider two auxiliary parameters: max frequency, and sparsity. We use
fi to denote the number of points in P that have color i. Clearly,

∑
i∈[k] fi = n.

We use f∗ to denote max(f1, . . . , fk). We also introduce the following definition:

Definition 1. A point set P is said to be (q, d)-sparse, or has sparsity q with
respect to d, if any interval of length d contains at most q points from P .

42 S. Banerjee et al.

We first show that SCSI-t problem is NP -hard even when the given point
set is (3, 1)-sparse, every color appears at most twice, and the demand of each
color is one. In other words, the problem is para-NP complete by the combined
parameters f∗, s∗, q and d. Subsequently, we observe that when parameterized
by q, f∗ and t, the problem is FPT .

Theorem 2. SCSI-t problem for unit intervals is NP -hard on a (3, 1) sparse
point set even when there are at most two points of every color and t = k.

Proof. Our reduction is from vertex cover restricted to cubic graphs [7]. Let
(G = (V,E), k) denote an instance of the vertex cover problem, where G is a
cubic graph on n vertices and m edges, and the problem is to find a vertex cover
of size at most k. We will construct n clusters of points, namely {C1, C2 . . . Cn},
on a real line corresponding to the n vertices of V . Each cluster Cα consists
of three points in an unit interval. The distance between any pair of points in
two different clusters is greater than “1” (see Figure 1). Now, we map each edge
(α, β) ∈ E to a pair of points in Cα and Cβ respectively. Also ensure that no point
is being mapped for more than one edge. Now, we assign colors to the points
placed on the line. We first assign distinct colors to the edges of the graph G. If
an edge is of color i, then its two adjacent points are also assigned color i. Thus,
we have a (3, 1)-sparse point set where each color appear twice. This completes
the description of the construction. We now turn to a proof of equivalence.

In the forward direction, suppose G admits a vertex cover S of size at most
k (= t). For every vertex v ∈ S, we can choose the corresponding cluster Cv.
Since S is a vertex cover of size k, the edges are incident to the members in S
span all the m colors. Thus, the corresponding clusters {Cv, v ∈ S} also span all
the m colors at least once. Since each cluster spans unit interval, we have color
spanning k intervals corresponding to the clusters {Cv, v ∈ S}.

In the reverse direction, suppose there is a solution with at most t unit inter-
vals of the SCSI-t problem. We choose the vertices of the graph corresponding to
the clusters that are (fully or partially) spanned by these t intervals. Note that,
none of these intervals spans more than one cluster. Now, suppose the chosen
vertices do not form a vertex cover. This implies that our solution of t intervals
of the SCSI-t problem didn’t cover the representative point of those colors whose
corresponding edges have been missed out in G. This contradicts the correctness
of the solution of the SCSI-t problem. ��
We now turn to our FPT algorithm. Let us fix one particular point p in the
point set. We first argue that the number of d-length intervals that can cover
p is bounded by a function of q and f∗ on (q, d)-sparse point sets. We then
show that SCSI-t problem, when restricted to (q, d)-sparse point sets, reduces
to r-Hitting Set, where all sets have at most r elements. The r-Hitting Set
problem is FPT when parameterized by both r and the size of the solution [3]. In
our reduction, r will be a function of f∗ and q, while the size of the solution will be
t. Therefore, this will establish that SCSI-t problem is FPT when parameterized
by f∗, q and t when the point set is (q, d)-sparse and all demands are one. This
complements our NP -hardness result above, which showed that the problem is

Color Spanning Objects: Algorithms and Hardness Results 43

v1

v2

v3

v4

e1

e2 e3

e4

e5

e6

C1 C2 C3 C4

e1 e4 e6 e1 e2 e5 e2 e3 e5 e3 e4 e5

Fig. 1. Proof of Theorem 2. Here G represents the given cubic graph. 4 clusters Ci,
i = {1, 2, 3, 4} are constructed from the 4 vertices where each cluster has 3 vertices
representing 3 edges incident on each vertex.

para-NP -hard when parameterized by both f∗ and q. We also remark that the
problem is trivially FPT if parameterized by f∗ and k, since n = kf∗. We remark
that if we branch exhaustively on the sets in the family, then it is also easy to
keep track of arbitrary demands. The following theorem says the conclusion of
this discussion. Here we omit the proof details due to lack of space.

Theorem 3. SCSI-t problem is FPT with respect to the parameters q, f∗ and t,
where q is the sparsity of the point set with respect to d, and f∗ is the maximum
number of points of any given color. The running time is bounded by the running
time of algorithms for the (qf∗)-Hitting Set problem.

2.3 Polynomial Time Cases and XP Algorithms

We now turn to the optimization variants of the SCSI-t problem, where the
length of the interval is not given as input. First we will discuss an O(ntk) time
algorithm for the decision version of SCSI-t problem when d is a part of the
input. For every point p in P , we maintain a 2 dimensional table Tp of size kn,
where Tp[i][q] stores the number of points with color i between the points p and
q. But if the distance of p and q is larger than d, then Tp[i][q] stores only the
number of points with color i between the points pg(p) and p, where g(p) is the
smallest index j (1 ≤ j ≤ p) such that the points pj , pj+1, . . . p are covered by
an interval of length d with right end point at p.

After this preprocessing, we can choose t different points in P for placing
the right endpoints of t intervals. The number of such choices is O(nt). For
each choice we check whether the demand of all colors are satisfied using the
corresponding array entries. The algorithm returns true if there exists a set of
t intervals among O(nt) such sets for which the demand is met.

44 S. Banerjee et al.

When d is not given as input, the algorithm needs to determine the length
of the longest interval that satisfies the demand of all the colors. This requires
a little more computation as stated in the following result.

Theorem 4. The optimization version of the SCSI-3 admits anO(min((f(s∗))kn,
n3k)) time algorithm, where f(x) is the number of ordered triplets of non-negative
integers that sum to x.

Proof. For the first algorithm, we proceed as follows. For each color j ∈ [k], let
the array Aj store the locations of the points that are colored j in sorted order.
Further, we allocate an array B of size n × k whose [i, j]-th entry contains the
distances required to have sj points of color j nearest to pi, for j = 1, 2, . . . , k, and
i = 1, 2, . . . , n. Each of these elements can be computed in time O(log n) using a
binary search over the arrays Aj . In each row of the array B, the corresponding
color is attached with each of its element. Next, we sort each row of the array
B with respect to their distance values. This completes our preprocessing step,
and it takes O(nk log n) time.

Guess the left endpoints of the three intervals in the solution, at points say
pi, pj , p� ∈ P , in O(n3) ways. For each triple (i, j, �), we execute a linear scan of
the i-th, j-th and �-th row of B to find the minimum length required for the three
intervals with left end-point at pi, pj , pk respectively, to satisfy the demands of
all the colors. Thus, the entire algorithm needs O(n3k) time.

For the second algorithm, we consider every demand si, and guess how the
three intervals of an optimal solution will meet these demands. Thus, for each si,
we create all possible ordered triplets of non-negative integers (sx

i , sy
i , sz

i) such
that sx

i + sy
i + sz

i = si. The number of such triplets is f(si) = (si + 1) +
(
si+1
2

)
.

Taking all the colors into account, we have generated
∏

i∈k f(si) ≤ f(s∗)k many
possibilities of creating three intervals to meet the demands of all the colors.

For each possibility [(sx
i , sy

i , sz
i), i = 1, 2, . . . , k], we now have three subprob-

lems (i) [sx
i , i = 1, 2, . . . , k], (ii) [sy

i , i = 1, 2, . . . , k] and (iii) [sz
i , i = 1, 2, . . . , k] of

satisfying demands with one interval. Each of these subproblems can be solved in
linear time using the algorithm of [4]. So, the entire process needs O((f(s∗))kn)
time. ��
The arguments above generalizes easily to give us an XP algorithms.

Corollary 1. SCSI-t admits an algorithm with running time
O(min((f(s∗, t))kn, ntk)), where f(s∗, t) denotes the number of ordered sets
of t non-negative integers that sum to s∗.

3 Smallest Color Spanning Squares and Circles

In this section, we will discuss the problem of finding optimal color spanning
sets with respect to axis-parallel squares and circles as stated below.

Color Spanning Objects: Algorithms and Hardness Results 45

Shortest Color Spanning Squares (Circles) Problem
Input: A set of points P = {p1, . . . , pn} in R

2, and a set of colors [k],
a mapping � : P → [k], a collection of demands {s1, . . . , sk},
and a non-negative integer t.

Question: Does there exist a collection I of at most t axis parallel
squares (resp. circles), such that color i is covered at least
si times by the union of objects in I, and the maximum
side-length (circumference) is minimized?

We use SCSS-t and SCSC-t to refer to the Smallest Color Spanning t
Squares and Smallest Color Spanning t Circles problems, respectively.
Our focus here is on designing the exact algorithms. In the following sections,
we will focus on the special case for t = 2. Subsequently we generalize these
algorithms to XP algorithms with the parameter t. It is easy to infer the hardness
of these problems based on the known hardness results for the case of intervals.
Here we describe our results for squares and circles. In the context of SCSS-t
problem, the following observation can be easily inferred from known results,
see, for instance [10].

Observation 1 ([10]). For the desired squares S1 and S2, its three edges are
supported by three points of P of different colors. Thus, the size of S1 and S2 is
determined by the vertical distance of two horizontal lines defined by a pair of
bicolored points in P or the horizontal distance of two vertical lines defined by a
pair of bicolored points in P .

We first consider each pair of bicolored points and compute their horizontal
and vertical distances and store them in an array D. We sort the elements of
D in increasing order. This step needs O(n2 log n) time. Consider an element
d ∈ D and a point p ∈ P . Consider a horizontal interval [a, b] of length 2d with
p at its middle most point. Now, consider the projection of the points of colors
different from p that are in the rectangle of height d drawn on the base [a, b].
Observe that the squares with p at its bottom boundary will have their bottom-
left corner at the projection points on the horizontal line segment [a, p]. We can
compute the color content of each of these squares by sweeping the bottom-left
corner of the square along [a, p] in O(n) time. Thus, for all such points in P , we
can compute the possible squares in O(n2) time. The color content of each of
these squares can be represented by a bit-vector of size k. Now, we have a set X
of O(min(n2, 2k)) possible bit vectors such that the corresponding colors of each
of them can be covered by a square of size d. We need to check whether there
exists a pair of bit-vectors in X that cover all the colors. The computation of the
array X needs O(n2k) time. While processing an element d ∈ D (considering a
square of size d), for each bit vector in X, we have to perform a binary search
in the array X maintained as a balanced search tree of depth k to see the
presence of it’s complement bit vector in X. We show that the above task can
be completed in two different ways with time complexities O(n2k + mn log2 n)

46 S. Banerjee et al.

and O(n2k + m2kω−2) respectively, where m = min(2k, n2). In order to find the
smallest feasible d, we perform a binary search on the array D, and execute the
aforesaid task for the chosen values of d. Thus, we have the following theorem.

Theorem 5. For a given set P of n points with k colors in the plane, we can
compute, in O((n2k + min(m2kω−2,mn log2 n)) log n) time, two squares S1 and
S2 minimizing max(|S1|, |S2|) such that their union contains at least one point of
each color from P , where |S| is the perimeter of the square S, m = min(2k, n2),
and ω denotes the (constant) power of N in the time complexity of the multipli-
cation of two N × N matrices.

Proof. Computation of the array D needs O(n2) time. We need to consider
O(log n) values from D for testing the feasibility. Thus, to prove the theorem, we
need to justify the time complexity of testing the feasibility of an element d ∈ D.
We describe the following two methods for this purpose. It needs to mention that
in both the methods, the computation of the array X needs O(n2k) time. The
size of the array X is m = min(n2, 2k).

Method-1 Consider a bit-vector x ∈ X, compute y = x′ (the complement of
x), and choose points of only the colors corresponding to the “1” entries in
y. Now, execute the O(n log2 n) algorithm [11] to compute the smallest color
spanning square among the points with colors in y. Let it be of size d′. If
d′ ≤ d, then d is feasible. Execute this process for all the members of X to
check whether there exists at least one x ∈ X for which d is feasible. Thus,
the overall time complexity is O(mn log2 n).

Method-2 Here, we need to identify a pair of elements x, y ∈ X such that the
bitwise OR of x and y gives (1, 1, 1, . . . , 1). In other words, bitwise AND of
x′ and y′ produces (0, 0, 0, . . . , 0). We form a matrix B = X ′ (complement
of each vector of X) of size m × k, where m = min(2k, n2). Now, compute
B×BT (BT stands for the transpose of B). Thus we need to perform (m/k)2

multiplications of k × k matrices, where each unit operation consists of k
bitwise AND operations of two bit-vectors. If there exists at least one zero
in the product matrix, then d is feasible. Thus, the time required to test the
feasibility of an element d ∈ D is (m/k)2 × O(kω) = O(m2kω−2), where ω is
as mentioned in the statement of the theorem.

The result follows from the fact that if n log2 n ≤ m, we adopt Method 1,
otherwise we adopt Method 2. ��
Now we can extend our algorithm for t squares, where t (t ≥ 1) is a parameter.
Split the k colors into t color classes. The number of such splitting is tk. For
each possible split, we execute the following:

For each color-class, compute the smallest color-spanning square with colors
in that class. This needs T = O(n log2 n) time [10]. Let Δ be the largest size
square required considering all the color-classes in that split.

Finally, report the minimum Δ values among all tk possible splits. Thus, for the
t squares we have the following result.

Color Spanning Objects: Algorithms and Hardness Results 47

Corollary 2. For a given set P of n points with k colors in the plane, t squares
S1, S2, . . . St can be computed in O(tk+1 ×T) time, such that their union ∪t

j=1Sj

contains at least one point of each color, and max(|S1|, |S2|, . . . , |St|) is mini-
mized.

We now turn to the SCSC-2 problem. We begin with the following observation.

Observation 2. In the optimum solution of the SCSC-2 problem, the smallest
among the two circles must pass either through “3” given points of different
colors, or with “2” points of different colors where these two points define its
diameter.

The observation directly implies that the solution of the SCSC-2 problem
will be an element of the set D of radii of (i) the disks with all possible pair of
bicolored points defining their diameters, and (ii) the disks with all possible triple
of points of different color on its circumference. Thus the number of elements in
D is O(n3). For an element d ∈ D, we can check the feasibility of the SCSC-
2 problem with radius d by executing the following steps. This needs Voronoi
diagram V Di with all the points of color i, for all i = 1, 2, . . . , k. Our objective
is to compute the smallest feasible d in the array D.

Step 1: [Compute the array X (X can be defined as in the SCSS-2 problem).]
1.1: Consider each pair of bichromatic points. If circular arcs of radius d

intersect (at a point, say c), then there exists a disk of radius d with
these two points on its boundary. In that case, execute the following
steps.

1.2: Perform Voronoi query with the point c in each V Di, i = 1, 2, . . . , k. If
qi is the point of color i nearest to c, and δ(qi, c) ≤ d, then color i is
covered by C. Here δ(., .) is the Euclidean distance between two points.
Thus, the colors covered by C is determined in O(k log n) time.

1.3: Store a bit-vector of length k whose 1-entries represent the color present.
Step 2: [Test the feasibility of d] This is similar to the method of solving the

SCSS-2 problem where the computation of the smallest color spanning disks
C ′ with all the points of colors that are not covered by C is done using the
algorithm of [8].

We perform a binary search to compute the smallest feasible d ∈ D. Thus, we
have the following result.

Theorem 6. For a given set P of n points with k colors in the plane, we can
compute in T = O(n3 + (n2k log n + min(mnk log n,m2kω−2)) log n) time, two
congruent circles C1 and C2 such that at least one point pi ∈ P representing one
of the colors k is enclosed by one of the circles C1 or C2 with minimizing the
max(|C1|, |C2|), where |C| is the circumference of the circle C.

Similar with the arguments for t squares, we can extend for t circles also. We
conclude this section with the following result.

48 S. Banerjee et al.

Corollary 3. For a given set P of n points with k colors in the plane, we can
compute in O(tk+1 × T) time t circles, C1, C2, . . . , Ct such that at least one
point of each color is enclosed in one of the circles and max(|C1|, |C2|, . . . , |Ct|)
is minimized. Here |C| is the circumference of circle C.

References

1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,
Sacristán, V.: The farthest color voronoi diagram and related problems. Technical
report (2006)

2. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,
Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001)

3. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76(7), 524–531 (2010)

4. Chen, D., Misiolek, E.: Algorithms for interval structures with applications. Theor.
Comput. Sci. 508, 41–53 (2013)

5. Das, S., Goswami, P.P., Nandy, S.C.: Smallest color spanning objects revisited. Int.
J. Comput. Geom. Appl. 19, 457–478 (2009)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

8. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of voronoi surfaces
and its applications. Discrete Comput. Geom. 9, 267–291 (1993)

9. Jiang, M., Wang, H.: Shortest color spanning intervals. Theoretical Computer Sci.
(2015, in Press)

10. Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the small-
est color-spanning axis-parallel square. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
Algorithms and Computation. LNCS, vol. 8283, pp. 634–643. Springer, Heidelberg
(2013)

11. Khanteimouri, P., Mohades, A., Abam, M., Kazemi, M.: Spanning colored points
with intervals. In: Proceedings of the 25th Canadian Conference on Computational
Geometry (CCCG), pp. 265–270 (2013)

12. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg
(2009)

On Hamiltonian Colorings of Trees

Devsi Bantva(B)

Lukhdhirji Engineering College, Morvi 363 642, Gujarat, India
devsi.bantva@gmail.com

Abstract. A hamiltonian coloring c of a graph G of order n is a map-
ping c : V (G) → {0, 1, 2, ...} such that D(u, v) + |c(u) − c(v)| ≥ n − 1,
for every two distinct vertices u and v of G, where D(u, v) denotes the
detour distance between u and v which is the length of a longest u, v-path
in G. The value hc(c) of a hamiltonian coloring c is the maximum color
assigned to a vertex of G. The hamiltonian chromatic number, denoted
by hc(G), is the min{hc(c)} taken over all hamiltonian coloring c of G. In
this paper, we present a lower bound for the hamiltonian chromatic num-
ber of trees and give a sufficient condition to achieve this lower bound.
Using this condition we determine the hamiltonian chromatic number of
symmetric trees, firecracker trees and a special class of caterpillars.

Keywords: Hamiltonian coloring · Hamiltonian chromatic number ·
Symmetric tree · Firecracker · Caterpillar

1 Introduction

A hamiltonian coloring c of a graph G of order n is a mapping c : V (G) →
{0, 1, 2, ...} such that D(u, v) + |c(u)−c(v)| ≥ n−1, for every two distinct vertices
u and v of G, where D(u, v) denotes the detour distance between u and v which
is the length of a longest u,v-path in G. The value of hc(c) of a hamiltonian
coloring c is the maximum color assigned to a vertex of G. The hamiltonian
chromatic number hc(G) of G is min{hc(c)} taken over all hamiltonian coloring
c of G. It is clear from definition that two vertices u and v can be assigned
the same color only if G contains a hamiltonian u,v-path, and hence a graph
G can be colored by a single color if and only if G is hamiltonian-connected.
Thus the hamiltonian chromatic number of a connected graph G measures how
close G is to being hamiltonian-connected. The concept of hamiltonian coloring
was introduced by Chartrand et al. [2] which is a variation of radio k-coloring of
graphs.

At present, the hamiltonian chromatic number is known only for handful
of graph families. Chartrand et al. [2,3] determined the hamiltonian chromatic
number for complete graph Kn, cycle Cn, star K1,k, complete bipartite graph
Kr,s and presented upper bound for the hamiltonian chromatic number of paths
and trees. The exact value of hamiltonian chromatic number of paths which is
equal to the radio antipodal number ac(Pn) was given by Khennoufa and Togni
in [6]. Shen et al. [7] discussed the hamiltonian chromatic number for graphs G

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 49–60, 2016.
DOI: 10.1007/978-3-319-29221-2 5

50 D. Bantva

with max{D(u, v) : u, v ∈ V (G), u �= v} ≤ n/2, where n is the order of graph G;
such graphs are called graphs with maximum distance bound n/2 or DB (n/2)
graphs for short and they determined the hamiltonian chromatic number for
double stars and a special class of caterpillars.

In this paper, we present a lower bound for the hamiltonian chromatic num-
ber of trees (Theorem 4) and give a sufficient condition to achieve this lower
bound (Theorem 5). Using this condition we determine the hamiltonian chro-
matic number of symmetric trees, firecracker trees and a special class of cater-
pillars. We use an approach similar to the one used in [1] to derive a lower
bound of the hamiltonian chromatic number of trees. We remark that our proof
for the hamiltonian chromatic number of a special class of caterpillars is simple
than one given in [7] by different approach. We also inform the readers that the
hamiltonian chromatic number obtain in this paper is one less than that defined
in [2–5,7] as we allowed 0 for coloring while they do not.

2 Preliminaries

A tree is a connected graph that contains no cycle. The diameter of T , denoted
by diam(T) or simply d, is the maximum distance among all pairs of vertices
in T . The eccentricity of a vertex in a graph is the maximum distance from it
to other vertices in the graph, and the center of a graph is the set of vertices
with minimum eccentricity. It is well known that the center of a tree T , denoted
by C(T), consists of a single vertex or two adjacent vertices, called the central
vertex/vertices of T . We view T as rooted at its central vertex/vertices; if T has
only one central vertex w then T is rooted at w and if T has two adjacent central
vertices w and w

′
then T is rooted at w and w

′
in the sense that both w and

w
′
are at level 0. If u is on the path joining another vertex v and central vertex

w, then u is called ancestor of v, and v is a descendent of u. Let u �∈ C(T) be
adjacent to a central vertex. The subtree induced by u and all its descendent is
called a branch at u. Two branches are called different if they are at two vertices
adjacent to the same central vertex, and opposite if they are at two vertices
adjacent to different central vertices. Define the detour level of a vertex u from
the center of graph by

L(u) := min{D(u,w) : w ∈ C(T)}, u ∈ V (T).

Define the total detour level of T as

L(T) :=
∑

u∈V (T)

L(u).

For any u, v ∈ V (T), define φ(u, v) := max{L(t) : t is a common ancestor of u
and v}, and

δ(u, v) :=
{

1, if C(T) = {w,w
′} and path Puv contains an edge ww

′
,

0, otherwise.

On Hamiltonian Colorings of Trees 51

Lemma 1. Let T be a tree with diameter d ≥ 2. Then for any u, v ∈ V (T) the
following holds:

1. φ(u, v) ≥ 0;
2. φ(u, v) = 0 if and only if u and v are in different or opposite branches;
3. δ(u, v) = 1 if and only if T has two central vertices and u and v are in opposite

branches;
4. the detour distance D(u, v) in T between u and v can be expressed as

D(u, v) = L(u) + L(v) − 2φ(u, v) + δ(u, v). (1)

Note that for a tree T the detour distance D(u, v) is same as the ordinary
distance d(u, v) as there is unique path between any two vertices u and v of T .
Thus, one can use expression (1) for ordinary distance d(u, v) which can also be
used for other purpose.

Define

ε(T) :=
{

0, if C(T) = {w},

1, if C(T) = {w,w
′}.

ε
′
(T) := 1 − ε(T).

3 On Hamiltonian Colorings of Trees

For a connected graph G of order n ≥ 5, by defining D(σ) =
∑n−1

i=1 D(vi, vi+1) for
an ordering σ : v1, v2,....,vn and D(G) = max{D(σ) : σ is an ordering of V (G)},
Chartrand et al. [4] established the following lower bound for the hamiltonian
chromatic number of a connected graph G.

Theorem 1 ([4]). If G is a connected graph of order n ≥ 5, then hc(G) ≥
(n − 1)2 + 1 − D(G).

For an ordering σ : v1, v2,....,vn of the vertices of G, define cσ to be an
assignment of positive integers to V (G): cσ(v1) = 1 and cσ(vi+1) − cσ(vi) =
(n−1)−D(vi, vi+1) for each 1 ≤ i ≤ n−1. If max{D(u, v) : u, v ∈ V (G), u �= v}
≤ n/2 for a connected graph G of order n then such a graph G is called a
graph with maximum distance bound n/2 or DB(n/2) graph for short. Shen
et al. [7] proved the following Theorems about DB(n/2) graphs and using it
determined the hamiltonian chromatic number for double stars and a special
class of caterpillars.

Theorem 2 ([7]). Let G be a DB(n/2) graph of order n ≥ 4. Then for any σ,
cσ is a hamiltonian coloring for G with hc(cσ) = (n − 1)2 + 1 − D(σ).

Theorem 3 ([7]). If G is DB(n/2) graph of order n ≥ 5, then hc(G) =
(n − 1)2 + 1 − D(G), and for any σ such that D(σ) = D(G), hc(cσ) = hc(G).
Namely, cσ is a minimum hamiltonian coloring for G.

52 D. Bantva

Now, let T be a tree with maximum degree Δ. Note that a hamiltonian
coloring c of T is injective for Δ(T) ≥ 3 as in this case no two vertices of T contain
hamiltonian path. Throughout this section we consider T with Δ(T) ≥ 3 then
c induces a linear order of the vertices of T , namely V (T) = {u0, u1, ..., un−1}
(where n = |V (T)|) such that

0 = c(u0) < c(u1) < ... < c(un−1) = span(c).

Theorem 4. Let T be a tree of order n ≥ 4 and Δ(T) ≥ 3. Then

hc(T) ≥ (n − 1)(n − 1 − ε(T)) + ε
′
(T) − 2L(T). (2)

Proof. It is enough to prove that any hamiltonian coloring of T has span not
less than the right-hand side of (2). Suppose c is any hamiltonian coloring of
T then c order the vertices of T into a linear order u0, u1,...,un−1 such that
0 = c(u0) < c(u1) < ... < c(un−1). By definition of c, we have c(ui+1) − c(ui) ≥
n − 1 − D(ui, ui+1) for 0 ≤ i ≤ n − 1. Summing up these n − 1 inequalities, we
obtain

span(c) = c(un−1) ≥ (n − 1)2 −
n−1∑
i=0

D(ui, ui+1) (3)

Case-1: T has one central vertex. In this case, we have φ(ui, ui+1) ≥ 0 and
δ(ui, ui+1) = 0 for 0 ≤ i ≤ n − 2 by the definition of the function φ and δ. Since
T has only one central vertex, u0 and un−1 cannot be the central vertex of T
simultaneously. Hence L(u0) + L(un−1) ≥ 1. Thus, by substituting (1) in (3),

span(c) ≥ (n − 1)2 −
n−1∑
i=0

[L(ui) + L(ui+1) − 2φ(ui, ui+1) + δ(ui, ui+1)]

= (n − 1)2 − 2
n−1∑
i=0

L(ui) + L(u0) + L(un−1) − 2
n−1∑
i=0

φ(ui, ui+1)

≥ (n − 1)2 + 1 − 2L(T)

= (n − 1)(n − 1 − ε(T)) + ε
′
(T) − 2L(T).

Case-2: T has two central vertices. In this case, we have φ(ui, ui+1) ≥ 0 and
δ(ui, ui+1) ≤ 1 for 0 ≤ i ≤ n − 2 by the definition of the function φ and δ.
Since T has two central vertices, we can set {u0, un−1} = {w,w

′}. Thus, by
substituting (1) in (3),

span(c) ≥ (n − 1)2 −
n−1∑
i=0

[L(ui) + L(ui+1) − 2φ(ui, ui+1) + δ(ui, ui+1)]

= (n − 1)2 − 2
n−1∑
i=0

[L(ui) + L(ui+1)] − 2
n−1∑
i=0

φ(ui, ui+1) +
n−1∑
i=0

δ(ui, ui+1)

= (n − 1)2 − 2
n−1∑
i=0

L(ui) + L(u0) + L(un−1) +
n−1∑
i=0

δ(ui, ui+1)

On Hamiltonian Colorings of Trees 53

≥ (n − 1)2 − 2
∑

u∈V (T)

L(ui) + (n − 1)

= (n − 1)(n − 2) − 2L(T)

= (n − 1)(n − 1 − ε(T)) + ε
′
(T) − 2L(T).

Theorem 5. Let T be a tree of order n ≥ 4 and Δ(T) ≥ 3. Then

hc(T) = (n − 1)(n − 1 − ε(T)) + ε
′
(T) − 2L(T) (4)

holds if there exists a linear order u0, u1,...,un−1 with 0 = c(u0) < c(u1) < ... <
c(un−1) of the vertices of T such that

1. u0 = w, un−1 ∈ N(w) when C(T) = {w} and {u0, un−1} = {w,w
′} when

C(T) = {w,w
′},

2. ui and ui+1 are in different branches when C(T) = {w} and opposite branches
when C(T) = {w,w

′},
3. D(ui, ui+1) ≤ n/2, for 0 ≤ i ≤ n − 2.

Moreover, under these conditions the mapping c defined by

c(u0) = 0 (5)

c(ui+1) = c(ui) + n − 1 − L(ui) − L(ui+1) − ε(T), 0 ≤ i ≤ n − 2 (6)

is an optimal hamiltonian coloring of T .

Proof. Suppose that a linear order u0, u1, ..., un−1 of the vertices of T satisfies
the conditions (1), (2) and (3) of hypothesis, and c is defined by (5) and (6). By
Theorem 4, it is enough to prove that c is a hamiltonian coloring whose span is
equal to c(un−1) = (n − 1)(n − 1 − ε(T)) + ε

′
(T) − 2L(T).

Let c is defined by (5) and (6). Without loss of generality we assume that
j − i ≥ 2. Then

c(uj) − c(ui) =
j−1∑
t=i

[c(ut+1) − c(ut)]

=
j−1∑
t=i

[n − 1 − L(ut) − L(ut+1) − ε(T)]

=
j−1∑
t=i

[n − 1 − D(ut, ut+1)]

= (j − i)(n − 1) −
j−1∑
t=i

D(ut, ut+1)

≥ (j − i)(n − 1) − (j − i)
(n

2

)

= (j − i)
(

n − 2
2

)

≥ n − 2

54 D. Bantva

Note that D(ui, uj) ≥ 1; it follows that |c(uj)−c(ui)|+D(ui, uj) ≥ n−1. Hence,
c is a hamiltonian coloring for T . The span of c is given by

span(c) = c(un−1) − c(u0)

=
n−2∑
t=0

[c(ut+1) − c(ut)]

=
n−2∑
t=0

[n − 1 − L(ut) − L(ut+1) − ε(T)]

= (n − 1)2 −
n−2∑
t=0

[L(ut) + L(ut+1)] − (n − 1)ε(T)

= (n − 1)(n − 1 − ε(T)) − 2L(T) + L(u0) + L(un−1)

= (n − 1)(n − 1 − ε(T)) + ε
′
(T) − 2L(T)

Therefore, hc(T) ≤ (n − 1)(n − 1 − ε(T)) + ε
′
(T) − 2L(T). This together with

(2) implies (4) and that c is an optimal hamiltonian coloring.

Corollary 1. Let T be a DB(n/2) tree (or d ≤ n/2) of order n ≥ 4 and Δ(T) ≥
3, where d is diameter of T . Then

hc(T) = (n − 1)(n − 1 − ε(T)) + ε
′
(T) − 2L(T) (7)

holds if there exists a linear order u0, u1,...,un−1 with 0 = c(u0) < c(u1) < ... <
c(un−1) of the vertices of T such that

1. u0 = w, un−1 ∈ N(w) when C(T) = {w} and {u0, un−1} = {w,w
′} when

C(T) = {w,w
′},

2. ui and ui+1 are in different branches when C(T) = {w} and opposite branches
when C(T) = {w,w

′}.
Moreover, under these conditions the mapping c defined by

c(u0) = 0 (8)

c(ui+1) = c(ui) + n − 1 − L(ui) − L(ui+1) − ε(T), 0 ≤ i ≤ n − 2 (9)

is an optimal hamiltonian coloring of T .

Proof. The proof is straight forward by Theorem 5 as for any tree T ,
max{D(u, v) : u, v ∈ V (G), u �= v} ≤ d ≤ n/2.

4 Hamiltonian Coloring of Some Families of Tree

In this section, we determine the hamiltonian chromatic number for three families
of tree using Corollary 1. We continue to use terminology and notation defined
in the previous section.

On Hamiltonian Colorings of Trees 55

A symmetric tree is a tree in which all vertices other than leaves (degree-one
vertices) have the same degree and all leaves have the same eccentricity. Let
k, d ≥ 2 be integers. We denote the symmetric tree with diameter d and non-leaf
vertices having degree k + 1 by Tk+1(d). A k-star is a tree consisting of k leaves
and another vertex joined to all leaves by edges. We define the (n, k)-firecracker
trees, denoted by F (n, k), to be the tree obtained by taking n copies of a (k−1)-
star and identifying a leaf of each of them to a different vertex of a path of length
n−1. A tree is said to be a caterpillar C if it consists of a path v1v2...vm(m ≥ 3),
called the spine of C, with some hanging edges known as legs, which are incident
to the inner vertices v2,v3,...,vm−1. If d(vi) = k for i = 2, 3, ...,m − 1, then we
denote the caterpillar by C(m, k), where d(vi) denotes the degree of vi. For all
above defined trees it is easy to verify that d ≤ n/2, and hence DB(n/2) trees
as max{D(u, v):u, v ∈ V (T)} ≤ d ≤ n/2.

Now we determine the hamiltonian chromatic number for above defined trees
using Corollary 1. Note that for this purpose it is enough to give a linear order
u0, u1, ..., un−1 of vertices of T which satisfies conditions of Corollary 1.

Theorem 6. Let k, d ≥ 2 be integers. Then hc(Tk+1(d))

=

⎧
⎨

⎩

(k+1)2

(k−1)2
(k

d
2 − 1)

[
(k

d
2 − 1) + 1

k+1
(2− (k − 1)d)

]
− k+1

k−1
d+ 1, if d is even,

4k
(k−1)2

(k
d−1
2 − 1)

[
k(k

d−1
2 − 1) + 1

]
+ 2k

k−1
(2− d)k

d−1
2 − 2k

k−1
, if d is odd.

(10)

Proof. Note that Tk+1(d) has one or two central vertex/vertices depending on d
and hence we consider the following two cases.

Case 1: d is even. In this case Tk+1(d) has a unique central vertex, denoted by
w. Denote the children of the central vertex w by w1, w2, . . . , wk+1. Denote the
k children of each wt by wt

0, w
t
1, . . . , w

t
k−1, 1 ≤ t ≤ k + 1. Denote the k children

of each wt
i by wt

i0, w
t
i1, . . . , w

t
i(k−1), 0 ≤ i ≤ k − 1, 1 ≤ t ≤ k + 1. Inductively,

denote the k children of wt
i1,i2,...,il

(0 ≤ i1, i2, . . . , il ≤ k − 1, 1 ≤ t ≤ k + 1) by
wt

i1,i2,...,il,il+1
where 0 ≤ il+1 ≤ k − 1. Continue this until all vertices of Tk+1(d)

are indexed this way. We then rename the vertices of Tk+1(d) as follows:
For 1 ≤ t ≤ k + 1, set

vt
j := wt

i1,i2,...,il
, where j = 1 + i1 + i2k + · · · + ilk

l−1 +
∑

l+1≤t≤�d/2�
kt.

We give a linear order u0, u1, . . . , un−1 of the vertices of Tk+1(d) as follows.
We first set u0 = w. Next, for 1 ≤ j ≤ n − k − 2, let

uj :=

{
vts, where s = �j/(k + 1)�, if j ≡ t (mod (k + 1)) for t with 1 ≤ t ≤ k,

vk+1
s , where s = �j/(k + 1)�, if j ≡ 0 (mod (k + 1)).

Finally, let
uj := wj−n+k+2, n − k − 1 ≤ j ≤ n − 1.

Note that un−1 = wk+1 is adjacent to w, and for 1 ≤ i ≤ n − 2, ui and ui+1 are
in different branches so that φ(ui, ui+1) = 0.

56 D. Bantva

Case 2: d is odd. In this case Tk+1(d) has two (adjacent) central vertices, denoted
by w and w′. Denote the neighbours of w other than w′ by w0, w1, . . . , wk−1

and the neighbours of w′ other than w by w′
0, w

′
1, . . . , w

′
k−1. For 0 ≤ i ≤ k −

1, denote the k children of each wi (respectively, w′
i) by wi0, wi1, . . . , wi(k−1)

(respectively, w′
i0, w

′
i1, . . . , w

′
i(k−1)). Inductively, for 0 ≤ i1, i2, . . . , il ≤ k − 1,

denote the k children of wi1,i2,...,il (respectively, w′
i1,i2,...,il

) by wi1,i2,...,il,il+1

(respectively, w′
i1,i2,...,il,il+1

), where 0 ≤ il+1 ≤ k − 1. We rename

vj := wi1,i2,...,il , v′
j := w′

i1,i2,...,il , where j = 1+i1+i2k+ · · ·+ilk
l−1+

∑

l+1≤t≤�d/2�
kt.

We give a linear order u0, u1, . . . , un−1 of the vertices of Tk+1(d) as follows. We
first set

u0 := w, un−1 := w′,

and for 1 ≤ j ≤ n − 2, let

uj :=
{

vs, where s = �j/2�, if j ≡ 0 (mod 2)
v′

s, where s = �j/2�, if j ≡ 1 (mod 2).

Then ui and ui+1 are in opposite branches for 1 ≤ i ≤ n − 2, and ui+2j ,
j=0,1,...,(k − 1) are in different branches for 1 ≤ i ≤ n − 2k + 1, so that
φ(ui, ui+1) = 0 and δ(ui, ui+1) = 1.

Therefore, in each case above, a defined linear order of vertices satisfies the
conditions of Corollary 1. The hamiltonian coloring defined by (8) and (9) is an
optimal hamiltonian coloring whose span equal to the right-hand side of (7). But
it is straight forward to verify that the order of Tk+1(d) is given by

n :=

{
1 + k+1

k−1 (k
d
2 − 1), if d is even,

2
(
1 + k

k−1 (k
d−1
2 − 1)

)
, if d is odd.

(11)

With the help of formula 1 + 2x + 3x2 + ... + pxp−1 = pxp

x−1 − xp−1
(x−1)2 , one can

verify that the total level of Tk+1(d) is given by

L(Tk+1(d)) :=

⎧⎪⎪⎨
⎪⎪⎩

(k + 1)
(

dk
d
2

2(k−1) − k
d
2 −1

(k−1)2

)
, if d is even

2k

(
(d−1)k

d−1
2

2(k−1) − k
d−1
2 −1

(k−1)2

)
, if d is odd.

(12)

By substituting (11) and (12) into (7), we obtain the right-hand side of (10) is
the hamiltonian chromatic number of Tk+1(d).

Theorem 7. For m ≥ 3 and k ≥ 4,

hc(F (m, k)) =
{

m2k2 − 6m(k − 1) − k
2 (m2 − 1) + 2, if m is odd,

m2k2 − 6m(k − 1) − k
2m2 + 2, if m is even.

(13)

On Hamiltonian Colorings of Trees 57

Proof. Let wi
1,w

i
2,...,w

i
k denote the vertices of the ith copy of the (k − 1)-star

in F (m, k), where wi
1 is the apex vertex (center) and wi

2,...,w
i
k are the leaves.

Without loss of generality we assume that w1
k, w2

k,...,wm
k are identified to the

vertices in the path of length m − 1 in the definition of F (m, k). Note that
F (m, k) has one or two central vertex/vertices depending on m and hence we
consider the following two cases.

Case-1: m is odd. In this case F (m, k) has only one central vertex w which is
w

�m
2 �

k . We give a linear order u0, u1,...,un−1 of the vertices of F (m, k) as follows.
We first set u0 = w = w

�m
2 �

k . Next, for 1 ≤ t ≤ n − m, let

ut := wi
j , where t =

⎧⎨
⎩

(j − 1)m + (i −
m
2 �), if i =
m

2 �
(j − 1)m + 2i, if i <
m

2 �
(j − 1)m + 2(i −
m

2 �) + 1, if i >
m
2 �.

Finally, for n − m + 1 ≤ t ≤ n − 1, let

ut := wi
j , where t =

{
(j − 1)m − 2(i −
m

2 �) + 1, if i <
m
2 �

(j − 1)m + 2(m − i + 1), if i >
m
2 �.

Case-2: m is even. In this case F (m, k) has two central vertices w and w
′
which

are w
m
2

k and w
m
2 +1

k respectively. We give a linear order u0, u1,...,un−1 of the
vertices of F (m, k) as follows. We first set u0 = w

′
= w

m
2 +1

k and un−1 = w =
w

m
2

k . Next, for 1 ≤ t ≤ n − m + 1, let

ut := wi
j , where t =

{
(j − 1)m + 2i − 1, if i ≤ m

2
(j − 1)m + 2(i − m

2), if i > m
2 .

Finally, for n − m + 2 ≤ t ≤ n − 2, let

ut := wi
j , where t =

{
(j − 1)m + 2i − 1, if i < m

2
(j − 1)m + 2(i − 1 − m

2), if i > m
2 + 1.

Therefore, in each case above, a defined linear order of vertices satisfies con-
ditions of Corollary 1. The hamiltonian coloring defined by (8) and (9) is an
optimal hamiltonian coloring whose span equal to the right-hand side of (7).
But the order and total level of firecrackers F (m, k) are given by

n := mk (14)

L(F (m, k)) :=

{
km2+(8k−12)m−k

4 , if m is odd,
km2+6m(k−2)

4 , if m is even.
(15)

By substituting (14) and (15) into (7), we obtain the right-hand side of (13) is
the hamiltonian chromatic number of F (m, k).

58 D. Bantva

Theorem 8. Let m, k ≥ 3. Then hc(C(m, k))

=
{

(m − 2)2k2 − 1
2 (5m2 − 20m + 19)k + 1

2 (3m2 − 12m + 11), if m is odd,
(m − 2)2k2 − 1

2 (5m2 − 20m + 20)k + 1
2 (3m2 − 12m + 12), if m is even.

(16)

Proof. Let v1, v2,...,vm be the vertices of spine and vj
i , 1 ≤ j ≤ k−2 are pendent

vertices at ith, 2 ≤ i ≤ m − 1 vertex of spine. Note that C(m, k) has one or two
central vertex/vertices depending on m and hence we consider the following two
cases.

Case-1: m is odd. In this case C(m, k) has only one central vertex which is
v�m

2 � = w. We first set u0 = v�m
2 �+1, un−1 = w and other vertices as follows.

For 1 ≤ t ≤ m − 2,

ut := vi, where t =
{

2i − 1, if i <
m
2 �,

2(i −
m
2 �), if i >
m

2 � + 1.

For m − 1 ≤ t ≤ n − 1,

ut := vj
i , where t =

⎧⎨
⎩

(m − 2)j + 2(i − 1), if i <
m
2 �,

(m − 2)j + 1, if i =
m
2 �,

(m − 2)j + 2(i −
m
2 �) + 1, if i >
m

2 �.

Case-2: m is even. In this case C(m, k) has two central vertices which are
vm

2
= w and vm

2 +1 = w
′
. We first set u0 = vm

2 +1, un−1 = m
2 and other vertices

as follows.
For 1 ≤ t ≤ m − 2,

ut := vi, where t =
{

2i − 1, if i < m
2 − 1,

2(i − m
2), if i > m

2 + 1.

For m − 1 ≤ t ≤ n − 1,

ut := vj
i , where t =

{
(m − 2)j + 2(i − 2) + 1, if i ≤ m

2 ,
(m − 2)j + 2(i − m

2), if i > m
2 .

Therefore, in each case above, a defined linear order of vertices satisfies con-
ditions of Corollary 1. The hamiltonian coloring defined by (8) and (9) is an
optimal hamiltonian coloring whose span equal to the right-hand side of (7).
But the order and total level of caterpillars C(m, k) are given by

n := m(k − 1) − 2(k − 2) (17)

L(C(m, k)) :=

{
(m2−5)(k−1)

4 + 1, if m is odd,
m(m−2)(k−1)

4 , if m is even.
(18)

By substituting (17) and (18) into (7), we obtain the right-hand side of (16) is
the hamiltonian chromatic number of C(m, k).

On Hamiltonian Colorings of Trees 59

We remark that Theorem 5 is also useful to determine hamiltonian chromatic
number of non DB(n/2) trees. See the following result.

Theorem 9. Let P
′
m be a tree obtained by attaching a pendant vertex to central

vertex/vertices of path Pm. Then

hc(P
′
m) :=

{ 1
2 (m2 − 1), if m is odd,
m2

2 + 2m − 4, if m is even.
(19)

Proof. The order and total level of P
′
m are given by

n :=
{

m + 1, if m is odd,
m + 2, if m is even.

(20)

L(P
′
m) :=

{
m2+3

4 , if m is odd,
m2−2m+8

4 , if m is even.
(21)

Substituting (20) and (21) into (2) we obtain that the right-hand side of (19) is
a lower bound for hc(P

′
m). Now we give a linear ordering of vertices of P

′
m which

satisfies conditions of Theorem 5. Note that P
′
m has one central vertex when m

is odd and two adjacent central vertices when m is even. Hence we consider the
following two cases.

Case-1: m is odd. Let v1v2...vm be the vertices of path and v
′

be the vertex
attached to central vertex v(m+1)/2 then we order the vertices as follows:

v(m+1)/2, v1, v(m+3)/2, v2, v(m+5)/2, v3, v(m+7)/2,, v(m−1)/2, vm, v
′
.

Rename the vertices of P
′
m in the above ordering by u0, u1,...,un−1. Namely, let

u0 = v(m+1)/2, u1 = v1,...,un−1 = v
′
then it satisfies conditions of Theorem 5.

Case-2: m is even. Let v1v2...vm be the vertices of path and v
′
and v

′′
are attached

to central vertices vm/2 and vm/2+1 then we order the vertices as follows:

vm/2+1, v1, vm/2+2, v2, vm/2+3, v3,, vm/2−1, vm, v
′
, v

′′
, vm/2.

Rename the vertices of P
′
m in the above ordering by u0, u1,...,un−1. Namely, let

u0 = vm/2+1, u1 = v1,...,un−1 = vm/2 then it satisfies conditions of Theorem 5.
Therefore, in each case above, a defined linear order of vertices of P

′
m satisfies

conditions of Theorem 5 and hence the hamiltonian coloring defined by (5) and
(6) is an optimal hamiltonian coloring whose span is (4) which is (19) for the
current case.

Acknowledgement. I want to express my deep gratitude to an anonymous referee
for kind comments and constructive suggestions.

60 D. Bantva

References

1. Bantva, D., Vaidya, S., Zhou, S.: Radio number of trees. Electron. Notes Discrete
Math. 48, 135–141 (2015)

2. Chartrand, G., Nebeskỳ, L., Zhang, P.: Hamiltonian colorings of graphs. Discrete
Appl. Math. 146, 257–272 (2005)

3. Chartrand, G., Nebeskỳ, L., Zhang, P.: On hamiltonian colorings of graphs. Dis-
crete Math. 290, 133–143 (2005)

4. Chartrand, G., Nebeskỳ, L., Zhang, P.: Bounds for the hamiltonian chromatic
number of graphs. Congr. Numer. 157, 113–125 (2002)

5. Chartrand, G., Nebeskỳ, L., Zhang, P.: A survey of hamiltonian colorings of graphs.
Congr. Numer. 169, 179–192 (2004)

6. Khennoufa, R., Togni, O.: A note on radio antipodal colourings of paths. Math.
Bohemica 130(3), 277–282 (2005)

7. Shen, Y., He, W., Li, X., He, D., Yang, X.: On hamiltonian colorings for some
graphs. Discrete Appl. Math. 156, 3028–3034 (2008)

On the Complexity Landscape
of the Domination Chain

Cristina Bazgan1,2, Ljiljana Brankovic3, Katrin Casel4,
and Henning Fernau4(B)

1 Institut Universitaire de France, France
2 PSL, Université Paris-Dauphine, LAMSADE UMR CNRS 7243,

75775 Paris Cedex 16, France
bazgan@lamsade.dauphine.fr

3 The University of Newcastle, Callaghan, NSW 2308, Australia
ljiljana.brankovic@newcastle.edu.au

4 Fachbereich 4, Informatikwissenschaften, Universität Trier, 54286 Trier, Germany
{casel,fernau}@uni-trier.de

Abstract. In this paper, we survey and supplement the complexity
landscape of the domination chain parameters as a whole, including
classifications according to approximability and parameterised complex-
ity. Moreover, we provide clear pointers to yet open questions. As this
posed the majority of hitherto unsettled problems, we focus on Upper
Irredundance and Lower Irredundance that correspond to finding
the largest irredundant set and resp. the smallest maximal irredundant
set. The problems are proved NP-hard even for planar cubic graphs.
While Lower Irredundance is proved not c log(n)-approximable in
polynomial time unless NP ⊆ DTIME(nlog logn), no such result is known
for Upper Irredundance. Their complementary versions are constant-
factor approximable in polynomial time. All these four versions are APX-
hard even on cubic graphs.

1 Introduction

The well-known domination chain

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G)

links parameters related to the fundamental notions of independence, domination
and irredundance in graphs. It was introduced in [12,22], is thoroughly discussed
in the textbook [34] and studied further in many ways, [11,21,39,43] showing
only a small selection. These studies cover both combinatorial and computational
aspects. We focus on the latter aspects in this paper. In this chain, γ(G) and
Γ (G) are the minimum and maximum cardinalities over all minimal dominating
sets in G, α(G) is the maximum cardinality of an independent set, i(G) is the
minimum cardinality over all maximal independent sets in G. The less known
irredundance parameters are explained below.

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 61–72, 2016.
DOI: 10.1007/978-3-319-29221-2 6

62 C. Bazgan et al.

With n(G) being the order (number of vertices) of G, we can write co−ζ(G) =
n(G) − ζ(G). Then, we state the following complementary domination chain:

co − IR(G) ≤ co − Γ (G) ≤ co − α(G) ≤ co − i(G) ≤ co − γ(G) ≤ co − ir(G) .

Sometimes, the complement problems have received their own names, like Non-
blocker, Maximum Enclaveless Set, or Maximum Spanning Star For-
est, which all refer to the complement problem of Minimum Domination, or,
most likely better known, Minimum Vertex Cover which refers to the comple-
ment problem of Maximum Independent Set. We will also use τ(G) instead
of co − α(G) to refer to this graph parameter.

Throughout this paper, we will use rather standard terminology from graph
theory. For any subset S ⊆ V and v ∈ S we define the private neighbourhood
of v with respect to S as pn(v, S) := N [v] − N [S − {v}]. Any w ∈ pn(v, S) is
called a private neighbour of v (with respect to S). S is called irredundant if
every vertex in S has at least one private neighbour, i.e., if |pn(v, S)| > 0 for
every v ∈ S. A maximal irredundant set is also known as an upper irredundant
set. IR(G) denotes the cardinality of the largest irredundant set in G, while
ir(G) is the cardinality of the smallest maximal irredundant set in G that is the
smallest upper irredundant set in G. The domination chain is largely due to the
following two combinatorial properties: (1) Every maximal independent set is a
minimal dominating set. (2) A dominating set S ⊆ V is minimal if and only if
|pn(v, S)| > 0 for every v ∈ S. Observe that v can be a private neighbour of
itself, i.e., a dominating set is minimal if and only if it is also an irredundant
set. Actually, every minimal dominating set is also a maximal irredundant set.

For any ε > 0, a graph G = (V,E) is called everywhere-ε-dense if every
vertex in G has at least ε|V | neighbours and average-ε-dense if |E| ≥ εn2, for
0 < ε < 1/2.

We first present some combinatorial bounds for IR(G). The same kind of
bounds have been derived for Γ (G) in [6]. Some proofs are omitted due to space
restrictions.

Lemma 1. For any connected graph G with n > 0 vertices we have:

α(G) ≤ IR(G) ≤ max
{

α(G),
n

2
+

α(G)
2

− 1
}

(1)

Lemma 2. For any connected graph G with n > 0 vertices, minimum degree δ
and maximum degree Δ, we have:

α(G) ≤ IR(G) ≤ max
{

α(G),
n

2
+

α(G)(Δ − δ)
2Δ

− Δ − δ

Δ

}
(2)

This lemma generalises [35, Proposition 12], which states the property for Δ-
regular graphs, where, in particular, δ = Δ. Equation 1 immediately yields:

Lemma 3. Let G be a connected graph. Then,

τ(G)
2

+ 1 ≤ co − IR(G) ≤ τ(G) (3)

On the Complexity Landscape of the Domination Chain 63

2 The Complexity of the Domination Chain

We are studying algorithmic and complexity aspects of the domination chain
parameters in this paper. For the basic definitions on classical complexity,
approximation and parameterised algorithms we refer to standard texts like
[5,26]. For providing hardness proofs in the area of approximation algorithms,
L-reductions and E-reductions have become a kind of standard. An optimisation
problem APX-hard under L-reduction has no polynomial-time approximation
scheme if P �= NP. The notion of an E-reduction was introduced by Khanna
et al. [37].

We have summarised what is known (and what is done in this paper) in
Tables 1 and 2. Clearly, there is no need to repeat classical complexity results
in Table 2. However, observe that the status of parameterised complexity and
approximation of these problems and their complementary versions indeed dif-
fer. The hitherto unsolved questions regarding Upper Domination have been
tackled and largely resolved in [6], which can be seen as a kind of companion
paper to this one. Notice that in Table 1, the optimisation problems that cor-
respond to the first three listed graph parameters are minimisation problems
(in particular Lower Irredundance wich corresponds to find ir(G)), while
the last three are maximisation problems (in particular Upper Irredundance
wich corresponds to find IR(G)); this split is indicated by the double lines;
this is reversed in Table 2. Also, when considering these problems as parame-
terised problems, we only consider the standard parameterisation, which is a
lower bound on the entity to be maximised or an upper bound on the entity to
be minimised. In order to distinguish the problem parameters of the two tables,
we use k in Table 1 and
 in Table 2. The purpose of this paper is to survey the
state of art and to solve most of what was still open until now.

3 On the Classical Complexity of Irredundant Set
Problems

In this section, we prove that Lower Irredundance and Upper Irredun-
dance (also their complementary versions) are NP-hard on planar cubic graphs.

Theorem 1. Lower Irredundance is NP-hard on planar cubic graphs.

Proof. We use the same construction as in [39], where Minimum Domination on
planar cubic graphs is reduced to Minimum Independent Domination, that
is: Given a planar cubic graph G = (V,E), construct G′ from G by replacing
every (u, v) ∈ E by the following planar cubic subgraph with four new vertices:

The argumentation [39] shows that i(G′) = γ(G) + |E| which automatically
gives us ir(G′) ≤ γ(G) + |E|. One can also proof that ir(G′) ≥ γ(G) + |E| which

64 C. Bazgan et al.

Table 1. Status of various problems related to the domination chain

means that Minimum Domination on G has a solution of cardinality at most
k if and only if Lower Irredundance on G′ has a solution of cardinality at
most k + |E|. ��

Interesting side note to this proof is that ir, γ and i coincide on G′. Since
especially ir and i are known to differ arbitrarily even on cubic graphs [46],
this is obviously due to the special structure of G′. It contains induced K1,3

(every original vertex with its neighbourhood), so the result for ir = γ = i from
[28] does not apply. This makes this construction an interesting candidate to
study the characterisation of the graph class for which ir = i. With a different
construction, we can show the same type of result for Upper Irredundance.

Theorem 2. Upper Irredundance is NP-hard on planar cubic graphs.

4 A Special Flavour of Minimax/Maximin Problems

Half of the parameters in the domination chain can be defined as either, in case
of minimax problems, looking for the smallest of all (inclusion-wise) maximal
vertex sets with a certain property (i(G) is the size of the smallest maximal
independent set; similarly, ir(G) is defined), or, in case of maximin problems,
looking for the largest of all minimal vertex sets with a certain property (Γ (G) is
an example). Also, the complementary problems share this flavour; for instance,
co − i(G) can be seen as looking for the largest of all minimal vertex covers.

Typical exact algorithms for maximisation problems fix certain subsets to
be part of the solution. In the decision variant, when a parameter value that
lower-bounds the size of the solution is part of the input, we might have a

On the Complexity Landscape of the Domination Chain 65

Table 2. Status of various problems related to the complementary domination chain

sufficient number of vertices in our partial solution and now want to (rather
immediately) announce that a sufficiently large solution exists. This is not a
problem for determining α(G) or IR(G), but this may become problematic in the
case of maximin problems. In the following we consider the extension-problem
for the other two maximin problems related to the domination-chain: co − i(G)
and co − ir(G). The first one can formally be stated as follows:

Minimal Vertex Cover Extension
Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G possess a minimal vertex cover S′ with S′ ⊇ S?

Observe that this extension problem can also be seen as a kind of subset problem
for independent sets by rephrasing the question to: Is there a maximal indepen-
dent set S′ for G with S′ ⊆ V − S? In more general terms, one can view the
extension-version of some maximin problem as exclusion-version of the comple-
mentary minimax problem.

Theorem 3. Minimal Vertex Cover Extension is NP-hard even restricted
to planar cubic graphs.

Proof. Consider the following simple reduction from satisfiability: For a formula
c1 ∧ · · · ∧ cm over variables x1, . . . , xn, let G = (V,E) be the graph with vertices
vi, v̄i for every i = 1, . . . , n and c1, . . . , cm and edges connecting every clause
with its literals and connecting vi with v̄i for every i. For this graph, the set
S = {c1, . . . , cm} can be extended to a minimal vertex cover if and only if the
formula c1 ∧ · · · ∧ cm is satisfiable. A more sophisticated construction yields a
planar cubic graph G as input for Minimal Vertex Cover Extension. ��
The maximin problem co−ir(G) can also be considered with respect to extension.
Since complements of irredundant sets are rather uncomfortable, we describe this
problem in terms of the complementary problem ir(G):

66 C. Bazgan et al.

Minimal Co-Irredundant Extension
Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G possess a maximal irredundant set S′ with S′ ⊆ V − S?

Theorem 4. Minimal Co-Irredundant Extension is NP-hard.

5 Approximation Results

In this section, after studying the approximation on general graphs, we consider
bounded degree graphs and cubic graphs.

Theorem 5. For any c > 0, there is no c log(n)-approximation for Lower
Irredundance unless NP ⊆ DTIME(nlog log n).

For the little studied complement of Lower Irredundance we observe:

Observation 1. For any graph G without isolated vertices one can compute
a minimal dominating set of cardinality at most n

2 in polynomial time for an
arbitrary spanning forest of G. The complement of this dominating set is conse-
quently a 2-approximation for Co-Lower Irredundance.

Using Lemma 3, one can use known exact or approximation algorithms for
Minimum Vertex Cover and also results from parameterized approximation
such as [15] to deduce:

Theorem 6. Co-Upper Irredundance can be approximated with factor 4
in polynomial, factor 3 in O∗(1.2738τ(G)) and factor 2 in O∗(1.2738τ(G)) or
O∗(1.2002n) time.

There is a kind of methodology to link optimisation problems related to
the domination chain to those related to the complementary domination chain,
which can be stated as follows.

Theorem 7. Assume that the optimisation problem associated to some graph
parameter ζ of the domination chain is APX-hard on cubic graphs. Then, the
optimisation problem associated to the complement problem of ζ is also APX-
hard on cubic graphs.

Proof. We claim that the reduction that acts as the identity on graph (instances)
and complements solution sets is an L-reduction. Given a cubic graph G =
(V,E) of order n with m = 3

2n edges as an instance of the optimisation problem
belonging to ζ (and also to the complement problem). Let us distinguish the two
optima by writing optζ(G) and optco−ζ(G), respectively. Then, optco−ζ(G) =
n − optζ(G). Similarly, if S′ is a solution to G in the complement problem, then
n − |S′| is the size of the solution S := V \ S′ of the original problem. Hence,

∣∣optζ(G) − |S|∣∣ =
∣∣(n − optco−ζ(G)) − (n − |S′|)∣∣ =

∣∣optco−ζ −|S′|∣∣ .

On the Complexity Landscape of the Domination Chain 67

Moreover, as ir(G) ≥ 2n
9 according to [23], which yields optζ(G) ≥ 2n

9 by the
domination chain,

optco−ζ(G) ≤ n ≤ 9
2

optζ(G),

which proves the claim. ��
Theorem 3.3 in [2] shows that Minimum Domination, restricted to cubic
graphs, is APX-hard. We can use Theorem 7 to immediately deduce:

Corollary 1. The complement problem corresponding to Minimum Domina-
tion is APX-hard when restricted to cubic graph instances.

This sharpens earlier results [8] that only considered the subcubic case.

Corollary 2. Lower Irredundance restricted to cubic graphs is APX-hard.
Similarly, Co-Lower Irredundance is APX-hard on cubic graphs.

Proof. The reduction from Theorem 1 can be seen as an L-reduction from the
APX-hard Minimum Domination problem on cubic graphs [2] to Lower Irre-
dundance on cubic graphs. Observe that γ(G) ≥ n

4 and |E| = 3
2n for any cubic

graph G, which gives ir(G′) = γ(G) + |E| ≤ 7γ(G). Furthermore, any maximal
irredundant set of cardinality val′ for G′ can be used to compute a dominating
set for G of cardinality val = val′ − |E|, which yields val − γ(G) = val′ − ir(G′).
Together with Theorem 7 the result for Co-Lower Irredundance follows. ��
The computations in the previous proof can be carried out completely analo-
gously for Upper Irredundance and Co-Upper Irredundance.

Corollary 3. Upper Irredundance is APX-hard on cubic graphs. Similarly,
Co-Upper Irredundance is APX-hard on cubic graphs.

Manlove’s NP-hardness proof for Minimum Independent Domination on
cubic planar graphs [39] turns out to be an L-reduction, so that with Theorem 7
we can conclude:

Corollary 4. Minimum Independent Domination and Maximum Minimal
Vertex Cover is APX-hard on cubic graphs.

This improves on earlier results for Maximum Minimal Vertex Cover,
for instance, the APX-hardness shown in [40] for graphs of maximum degree
bounded by five.

6 Further Algorithmic Observations

Most of the previously collected results have been hardness results; here we
complement some of them by simple algorithmic results.

68 C. Bazgan et al.

Observation 2. The approximation-results for Upper Domination restricted
to graphs of bounded degree from [6] are based on Eq. 2 and the fact that every
maximal independent set is an upper dominating set which is also true for Upper
Irredundance. The approximation by a suitable independent set yields the
same approximation-ratio here which especially means that Upper Irredun-

dance can be approximated within factor at most 6Δ2+2Δ−3
10Δ for any graph G of

bounded degree Δ.

Observation 3. With Brooks’ Theorem one can always find an independent set of
cardinality at least n

Δ for any graph G of bounded degree Δ. From a parameterised
point of view, this immediately gives a Δk-kernel for Maximum Independent
Set,Upper Domination and Upper Irredundance for the natural parameter
k of these problems, since any bounded-degree graph with more than Δk vertices is
a trivial “yes”-instance.

Observation 4. Bounded degree Δ implies γ ≥ n
Δ+1 , which means that any

greedy solution yields a (Δ + 1)-approximation for Minimal Maximum Inde-
pendent Set (i(G) in domination chain) and Minimum Domination. For
standard parameterisation this also yields a (Δ + 1)k kernel for these problems
since graphs with more than (Δ + 1)k vertices are trivial “no”-instances.

Lower Irredundance is the only problem for which these consequences
of bounded degree are less obvious. A more thorough investigation of lower
irredundant sets in [23] yields the bound ir(G) ≥ 2n

3Δ .

Observation 5. The bound from [23] implies that any greedy maximal irredun-
dant set for a graph of bounded degree Δ is a 1.5Δ-approximation for Lower
Irredundance. Parameterised by k = ir(G), any graph with more than 1.5Δk
vertices is a trivial “no”-instance which yields a 1.5Δk kernel.

Notice that, although the kernel results indicated in the previous two obser-
vations look weak at first glance, they allow for lower bound results based on
the assumption that P �= NP according to [17].

7 Consequences for Everywhere Dense Graphs

In [3], Arora et al. presented a unified framework for proving polynomial time
approximation schemes for (average) dense graphs, mainly for Max Cut type
problems, and for Min Bisection for everywhere dense graphs. Concerning
the problems from the domination chain Minimum Vertex Cover and Min-
imum Domination were studied; in [20], Minimum Vertex Cover is proved
APX-hard on everywhere dense graphs and in [32], it is proved that Minimum
Domination is NP-hard on (average) dense graphs. We will show inapproxima-
tion results for more domination-chain problems on everywhere dense graphs.
Interestingly, we can make use of our reductions for sparse (cubic) graphs:

Theorem 8. For any ε > 0, Upper Irredundance and Co-Upper Irre-
dundance are APX-hard for everywhere-ε-dense graphs.

On the Complexity Landscape of the Domination Chain 69

Proof. We construct an L-reduction from (Co-)Upper Irredundance on cubic
graphs to (Co-)Upper Irredundance on everywhere-ε-dense graphs. Given a
connected cubic graph G = (V,E) on n vertices, we construct a dense graph G′

by joining a clique C of � εn−3
1−ε � new vertices to G. G′ has minimum degree εn′,

where n′ = n + � εn−3
1−ε � = � εn−3+n−εn

1−ε � = �n−3
1−ε � is the number of vertices of G′.

Any vertex v ∈ V has 3 + � εn−3
1−ε � = � εn−3+3−3ε

1−ε � = � ε(n−3)
1−ε � many neighbours

in G′. Any vertex in the added clique has an even higher degree if n ≥ 4. As
any maximal irredundant set of G′ that contains a vertex of C is a singleton set,
opt(G′) = opt(G) and, w.l.o.g., any maximum irredundant set in G′ is a subset
of V which makes it a maximal irredundant set of G.

For Co-Upper Irredundance, we have opt(G′) = opt(G) + � εn−3
1−ε � and,

given any solution S′ in G′, we can transform it into a new one containing all new
vertices and some vertices from V . The set S′ ∩ V is a solution for G. In a cubic
graph, the optimum value of the complement of an upper irredundant set is at
least n/4 using inequality (3) and the fact that τ(G) ≥ n/2 (as G is connected
and non-trivial) and thus opt(G) ≥ n/4. Thus opt(G′) ≤ opt(G) + εn−3

1−ε ≤
opt(G) + 4ε opt(G)−3

1−ε ≤ 1+3ε
1−ε opt(G). ��

Observe that the arguments and the computations of the previous proof are also
valid for Co-Upper Domination. Since it is also APX-hard on cubic graphs [6]
we can conclude the same result. Almost the same reduction is an E-reduction
when we start with a general instance for Upper Domination (just adding
more vertices in order to be sure that G′ is everywhere-ε-dense). Since Upper
Domination is not n1−δ-approximable for any δ > 0, if P �= NP on general
graphs [6] we can conclude the same result for everywhere-dense graphs.

Corollary 5. For any ε > 0, Co-Upper Domination is APX-hard and
Upper Domination is not n1−δ-approximable for any δ > 0, if P �= NP, for
everywhere-ε-dense graphs.

The inapproximability result from [45] with the above reduction yields:

Proposition 1. For any ε > 0, Maximum Independent Set is not n1−δ-
approximable for any δ > 0, if P �= NP, for everywhere-ε-dense graphs.1

Theorem 9. For any ε > 0, Maximum Minimal Vertex Cover is APX-
hard and Minimum Maximal Independent Set is not n1−δ-approximable for
any δ > 0, if P �= NP, for everywhere-ε-dense graphs.

Proof. We give an E-reduction from Minimum Maximal Independent Set
on general graphs to Minimum Maximal Independent Set on everywhere-ε-
dense graphs. Consider for a graph G the family {Gj : j ∈ N}, recursively defined
by G0 := G and Gj+1 := Gj + Gj (“+” denotes graph join). If the order of G
is n, the order of Gj is 2jn for every j ∈ N. Also every v ∈ Gj has degree at
least n(2j − 1) which means that Gj is (1 − 1/2j)-dense. Let V be the vertices

1 We were informed about this fact by Marek Karpiński.

70 C. Bazgan et al.

of G and V ∪ V ′ be the vertices of G + G. For any independent set S of G + G
either S ⊆ V or S ⊆ V ′, which means that independent sets in G + G always
yield equivalent independent sets in G and hence i(G) = i(G + G). Inductively,
this argument implies i(G) = i(Gj) for all j ∈ N. For j = �log2(1/(1 − ε))�, the
graph Gj hence yields the aforementioned E-reduction since any independent
set in Gj yields an independent set in G of the same size.

Starting with a cubic graph G, Gj yields an L-reduction from Maximum
Minimal Vertex Cover on cubic graphs, which is APX-hard by Corollary 4,
to Maximum Minimal Vertex Cover on everywhere-ε-dense graphs, since
for cubic graphs co − i(G) ≥ n

2 and hence co − i(Gj) < 2jn ≤ 2j+1co − i(G). ��

8 Summary, Open Problems and Prospects

We have presented a sketch of the complexity landscape of the domination chain.
As can be seen from our tables, the status of most combinatorial problems
has now been solved. However, there are still several question marks in these
tables, and also the positive (algorithmic) results implicitly always ask for pos-
sible improvements.

For the investigation of complexity aspects of graph parameters, chains of
inequalities like the domination chain help to unify proofs, but also to find spots
that have not been investigated yet. Also, the idea of looking at the comple-
mentary chain should work out in each case. An example of a similar chain of
parameters is the Roman domination chain [16]. Most of what we know is con-
cerning Roman domination and its complementary version, which is also called
the differential of a graph; see [1,8–10].

Acknowledgements. We gratefully acknowledge the support by the Deutsche
Forschungsgemeinschaft, grant FE 560/6-1.

References

1. Abu-Khzam, F.N., Bazgan, C., Chopin, M., Fernau, H.: Approximation algorithms
inspired by kernelization methods. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014.
LNCS, vol. 8889, pp. 479–490. Springer, Heidelberg (2014)

2. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor.
Comput. Sci. 237(1–2), 123–134 (2000)

3. Arora, S., Karger, D.R., Karpinski, M.: Polynomial time approximation schemes
for dense instances of NP-hard problems. J. Comput. Syst. Sci. 58(1), 193–210
(1999)

4. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C.: Analysis of approximation
algorithms for k-set cover using factor-revealing linear programs. Theor. Comput.
Syst. 45(3), 555–576 (2009)

5. Ausiello, G., Creczenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and Approximation; Combinatorial Optimization Prob-
lems and Their Approximability Properties. Springer, Heidelberg (1999)

On the Complexity Landscape of the Domination Chain 71

6. Bazgan, C., Brankovic, L., Casel, K., Fernau, H., Jansen, K., Lampis, M., Liedloff,
M., Monnot, J., Paschos, V.: Algorithmic aspects of upper domination (2015, under
preparation)

7. Berman, P., Fujito, T.: On approximation properties of the Independent set prob-
lem for degree 3 graphs. In: Akl, S.G., Dehne, F., Sack, J.-R., Santoro, N. (eds.)
WADS 1995. LNCS, vol. 955, pp. 449–460. Springer, Heidelberg (1995)

8. Bermudo, S., Fernau, H.: Computing the differential of a graph: hardness, approx-
imability and exact algorithms. Discrete Appl. Math. 165, 69–82 (2014)

9. Bermudo, S., Fernau, H.: Combinatorics for smaller kernels: the differential of a
graph. Theor. Comput. Sci. 562, 330–345 (2015)

10. Bermudo, S., Fernau, H., Sigarreta, J.M.: The differential and the Roman domi-
nation number of a graph. Appl. Anal. Discrete Math. 8, 155–171 (2014)

11. Binkele-Raible, D., Brankovic, L., Cygan, M., Fernau, H., Kneis, J., Kratsch, D.,
Langer, A., Liedloff, M., Pilipczuk, M., Rossmanith, P., Wojtaszczyk, J.O.: Break-
ing the 2n-barrier for Irredundance: two lines of attack. J. Discrete Algorithms
9, 214–230 (2011)

12. Bollobás, B., Cockayne, E.J.: Graph-theoretic parameters concerning domination,
independence, and irredundance. J. Graph Theor. 3, 241–249 (1979)

13. Boria, N., Della Croce, F., Paschos, V.T.: On the max min vertex cover problem.
In: Kaklamanis, C., Pruhs, K. (eds.) WAOA 2013. LNCS, vol. 8447, pp. 37–48.
Springer, Heidelberg (2014)

14. Bourgeois, N., Croce, D.F., Escoffier, B., Paschos, V.T.: Fast algorithms for min
independent dominating set. Discrete Appl. Math. 161(4–5), 558–572 (2013)

15. Brankovic, L., Fernau, H.: A novel parameterised approximation algorithm for
minimum vertex cover. Theor. Comput. Sci. 511, 85–108 (2013)

16. Chellali, M., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., McRae, A.A.: A
Roman domination chain. Graphs and Combinatorics (2015, to appear)

17. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM J. Comput. 37, 1077–1108
(2007)

18. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010)

19. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

20. Clementi, A.E.F., Trevisan, L.: Improved non-approximability results for mini-
mum vertex cover with density constraints. Theor. Comput. Sci. 225(1–2), 113–128
(1999)

21. Cockayne, E.J., Grobler, P.J.P., Hedetniemi, S.T., McRae, A.A.: What makes an
irredundant set maximal? J. Comb. Math. Comb. Comput. 25, 213–223 (1997)

22. Cockayne, E.J., Hedetniemi, S.T., Miller, D.J.: Properties of hereditary hyper-
graphs and middle graphs. Can. Math. Bull. 21, 461–468 (1978)

23. Cockayne, E.J., Mynhardt, C.M.: Irredundance and maximum degree in graphs.
Comb. Probab. Comput. 6(2), 153–157 (1997)

24. Dehne, F., Fellows, M.R., Fernau, H., Prieto, E., Rosamond, F.A.: nonblocker:
parameterized algorithmics for minimum dominating set. In: Wiedermann, J.,
Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS,
vol. 3831, pp. 237–245. Springer, Heidelberg (2006)

25. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. Con-
gressus Numerantium 87, 161–187 (1992)

26. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, London (2013)

72 C. Bazgan et al.

27. Downey, R.G., Fellows, M.R., Raman, V.: The complexity of irredundant set para-
meterized by size. Discrete Appl. Math. 100, 155–167 (2000)

28. Favaron, O.: Stability, domination and irredundance in a graph. J. Graph Theor.
10, 429–438 (1986)

29. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

30. Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach. Universität
Tübingen, Habilitationsschrift, Germany (2005)

31. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York
(1979)

32. Gaspers, S., Messinger, M.-E., Nowakowski, R.J., Pra�lat, P.: Clean the graph before
you draw it!. Inf. Process. Lett. 109(10), 463–467 (2009)

33. Halldórsson, M.M.: Approximating the minimum maximal independence number.
Inf. Process. Lett. 46, 169–172 (1993)

34. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208.
Marcel Dekker, New York (1998)

35. Henning, M.A., Slater, P.J.: Inequalities relating domination parameters in cubic
graphs. Discrete Math. 158(1–3), 87–98 (1996)

36. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method.
In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54.
Springer, Heidelberg (2012)

37. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.: On syntactic versus computa-
tional views of approximability. SIAM J. Comput. 28, 164–191 (1998)

38. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
J. Comput. Syst. Sci. 74, 335–349 (2008)

39. Manlove, D.F.: On the algorithmic complexity of twelve covering and independence
parameters of graphs. Discrete Appl. Math. 91, 155–175 (1999)

40. Mishra, S., Sikdar, K.: On the hardness of approximating some NP-optimization
problems related to minimum linear ordering problem. RAIRO Informatique
théorique et Appl./Theor. Inf. Appl. 35(3), 287–309 (2001)

41. Nguyen, C.T., Shen, J., Hou, M., Sheng, L., Miller, W., Zhang, L.: Approximating
the spanning star forest problem and its application to genomic sequence align-
ment. SIAM J. Comput. 38(3), 946–962 (2008)

42. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43, 425–440 (1991)

43. Reid, K.B., McRae, A.A., Hedetniemi, S.M., Hedetniemi, S.T.: Domination and
irredundance in tournaments. Australas. J. Comb. 29, 157–172 (2004)

44. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. In:
Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS,
vol. 8283, pp. 328–338. Springer, Heidelberg (2013)

45. Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique
and chromatic number. Theor. Comput. 3(6), 103–128 (2007)

46. Zverovich, I.E., Zverovich, V.E.: The domination parameters of cubic graphs.
Graphs Comb. 21(2), 277–288 (2005)

On the Probability of Being Synchronizable

Mikhail V. Berlinkov(B)

Institute of Mathematics and Computer Science,
Ural Federal University, 620000 Ekaterinburg, Russia

m.berlinkov@gmail.com

Abstract. We prove that a random automaton with n states and
any fixed non-singleton alphabet is synchronizing with high probability.
Moreover, we also prove that the convergence rate is exactly 1 − Θ(1

n
)

as conjectured by Cameron [4] for the most interesting binary alphabet
case.

1 Synchronizing Automata

Suppose A is a complete deterministic finite automaton whose input alphabet
is A and whose state set is Q. The automaton A is called synchronizing if there
exists a word w ∈ A∗ whose action resets A, that is, w leaves the automaton in
one particular state no matter at which state in Q it is applied: q.w = q′.w for all
q, q′ ∈ Q. Any such word w is called a reset word of A. For a brief introduction
to the theory of synchronizing automata we refer reader to the survey [13].

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applications (coding theory, robotics, testing of reac-
tive systems) and also reveal interesting connections with symbolic dynamics
and other parts of mathematics. We take an example from [1]. Imagine that you
are in a dungeon consisting of a number of interconnected caves, all of which
appear identical. Each cave has a common number of one-way doors of different
colors through which you may leave; these lead to passages to other caves. There
is one more door in each cave; in one cave the extra door leads to freedom, in
all the others to instant death. You have a map of the dungeon with the escape
door identified, but you do not know in which cave you are. If you are lucky,
there is a sequence of doors through which you may pass which takes you to the
escape cave from any starting point.

The result of this paper is very positive; we prove that for an uniformly at
random chosen dungeon (automaton) there is a life-saving sequence (reset word)
with probability 1 − O(1

n0.5c) where n is the number of caves (states) and c is
the number of colors (letters). Moreover, we prove that the convergence rate
is tight for the most interesting 2-color case, thus confirming Peter Cameron’s
conjecture from [4]. Up to recently, the best results in this direction were much
weaker: in [10] was proved that random 4-letter automata are synchronizing with
probability p for a specific constant p > 0; in [9] was proved that if a random
automaton with n states has at least 72 ln(n) letters then it is almost surely
synchronizing. Recently, Nicaud [8] has shown (independently) by a different
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 73–84, 2016.
DOI: 10.1007/978-3-319-29221-2 7

74 M.V. Berlinkov

method that a random n-state automaton with 2 letters is synchronizing with
probability 1 − O(n− 1

8+o(1)). Our results give a much better convergence rate.

2 The Probability of Being Synchronizable

Let Q stand for {1, 2, . . . n} and Σn for the probability space of all unambiguous
maps from Q to Q with the uniform probability distribution. Throughout this
section let A = 〈Q, {a, b}〉 be a random automaton, that is, maps a and b are
chosen independently at random from Σn.

The underlying digraph of A = 〈Q,Σ〉 is a digraph denoted by UG(A) whose
vertex set is Q and whose edge multiset is {(q, q.a) | q ∈ Q, a ∈ Σ}. In other
words, the underlying digraph of an automaton is obtained by erasing all labels
from the arrows of the automaton. Given a letter x ∈ Σ, the underlying digraph
of x is the underlying digraph of the automaton Ax = 〈Q, {x}〉 where the tran-
sition function is the restriction of the original transition function to the letter
x. Clearly each directed graph with n vertices and constant out-degree 1 corre-
sponds to the unique map from Σn whence we can mean Σn as the probability
space with the uniform distribution on all directed graphs with constant out-
degree 1.

Theorem 1. The probability of being synchronizable for 2-letter random
automata with n states equals 1 − Θ(1

n).

Proof. Since synchronizing automata are necessary weakly connected, the
following lemma gives the lower bound of the theorem.

Lemma 1. The probability that A is not weakly connected is at least Ω(1
n).

Proof. Let us count the number of automata having exactly one disconnected
loop, that is the state having only (two) incoming arrows from itself. Such
automata can be counted as follows. We first choose the state p of a discon-
nected loop in n ways. The transitions for this state is defined in the unique
way. The number of ways to define transitions for any other state q is

1(n − 2) + (n − 2)(n − 1) = n(n − 2)

because if a maps q to q then b can map q to any state except {p, q}; if a doesn’t
map q to {p, q} then b can map q to any state except {p, q}. Thus the probability
of being such automata is equal

n(n(n − 2))n−1

n2n
=

1
n

(1 − 2
n

)n−1 = Θ(
1
n

).

Now we turn to the proof of the upper bound. For this purpose, we need some
knowledge about the structure of the underlying graphs of a random mapping.
The underlying digraph UG(x) of any mapping x ∈ Σn consists of one or more
(weakly) connected components called clusters. Each cluster has a unique cycle,
and all other vertices of this cluster are located in trees rooted on this cycle.

On the Probability of Being Synchronizable 75

Lemma 2. With probability 1 − o(1
n4), a random digraph from Σn has at most

5 ln n clusters.

Proof. Let νn denote the number of clusters for a random digraph. It is proved
in [11, Theorem 1] that if n,N → +∞ such that 0 < γ0 ≤ γ = N

lnn ≤ γ1 where
γ0, γ1 are constants; then uniformly for γ ∈ [γ0, γ1]

P (νn = N) =
eφ(γ)

√
π ln n

nφ(γ)(1 + o(1)),

where φ(γ) = γ(1 − ln 2γ) − 0.5 for γ 	= 0.5. It is also known that the
function p(N) = P (νn = N) has a unique maximum, which is achieved for
N = 0.5 ln n(1 + o(1)). Since also νn ≤ n, we get

P (νn > 5 ln n) < nP (νn = [5 ln n]) = o(
1
n4

).

For convenience, by the term whp (with high probability) we mean “with
probability 1 − O(1

n)”. Call a set of states K ⊆ Q synchronizable if it can be
mapped to one state by some word. In contrast, a pair of states {p, q} is called
a deadlock if p.s 	= q.s for each word s.

First we aim to show that for proving that A is synchronizing whp, it is
enough to find whp for each letter a large synchronizable set of states which is
completely defined by this letter. Given x ∈ {a, b}, we define Sx to be the set
of big clusters of UG(x), i.e., the clusters containing more than n0.45 states and
define Tx to be the complement of Sx, or equivalently, Tx is the set of small
clusters of UG(x), i.e., the clusters containing at most n0.45 states. Since Sx and
Tx are completely defined by x, both are independent of the other letter.1 Due
to Lemma 2, whp there are at most 5 ln n clusters in UG(x), whence whp Tx

contains at most 5 ln (n)n0.45 states. Given a set of clusters X, denote by X̂ the
set of states in the clusters of X.

Theorem 2. If Ŝa and Ŝb are synchronizable, then A is synchronizing whp.

Proof. First, we need the following useful remark.

Remark 1. If a pair {p, q} is independent of one of the letters, it is a deadlock
with probability O(1

n1.02).

Proof. Suppose {p, q} is chosen independently of a. Then the set
R = {p.a, q.a, p.a2, q.a2} is independent of b whence also of T̂b. If p.a = q.a
or p.a2 = q.a2 the pair {p, q} is not a deadlock. Therefore, we can assume that
there are (probably equal) states r1 ∈ {p.a, q.a} and r2 ∈ {p.a2, q.a2} which
belong to T̂b (because Ŝb is synchronizable). If |R| = 4 then r1 	= r2. Since r1, r2
are independent of T̂b, this happens with probability 1

|̂Tb|(|̂Tb|−1)
∈ O(1

n1.02).

1 Here and below by independence of two objects O1(A) and O2(A), we mean the
independence of the events O1(A) = O1 and O1(A) = O2 for each instances O1, O2

from the corresponding probability spaces.

76 M.V. Berlinkov

If |R| = 3 then a maps two states from {p, q, p.a, q.a} to one state. Since
{p, q} is independent of a and the images of different states by a are chosen
independently and uniformly at random from Q, this happens with probability
O(1

n). Furthermore, r1 has to belong to T̂b whence the probability of this case
is O(1

n)O(1

|̂Tb|) ∈ O(1
n1.02). Finally, in the case |R| = 2, we have that p.a ∈

{p, q}, q.a ∈ {p, q}. This happens with probability O((2
n−2)2) = O(1

n1.02). The
remark follows.

Now let us bound the probability that A is not synchronizing. If this is the
case, A possesses some deadlock pair {p, q}. Given a state r, denote by cr the
cycle of the cluster containing r in UG(a) and by sr the length of this cycle.
Denote also by cr,i the i-th state on the cycle cr for some order induced by the
cycle cr, i.e., cr,i.a = cr,i+1 mod sr

. Let d be the g.c.d. of sp and sq. Then for
some 0 ≤ x < d and all 0 < k1, k2, 0 ≤ i ≤ d − 1, the pairs

{cp,(i+k1d) mod sp
, cq,(x+i+k2d) mod sq

} are deadlocks. (1)

It follows that in each of these pairs at least one of the states belongs to T̂b.

Case 1. cp = cq, that is, p and q belong to the same cluster. Since {p, q} is a
deadlock, in this case sp = sq = d > 1 and by (1) at least half of the states of cp

belongs to T̂b. The probability that a satisfies such configuration is at most

O(
1
n

) + 5 ln n2d(
|T̂b|
n

)�0.5d� ≤ O(
1
n

) + 20 ln n
1

n�0.5d�0.54
.

Indeed, first due to Lemma 2, whp there is at most 5 ln n ways to choose the
cluster cp, then we choose �0.5d� states of cp (in at most 2d ways) which belong
to T̂b with probability at most (|T̂b|/n)�0.5d�.

If d > 2 then �0.5d� ≥ 2 and we are done. If d = 2, due to Lemma 2 whp there
are at most 5 ln n cycles of size 2 in UG(a), each containing one pair. Since this
set of pairs is defined by a, these pairs are independent of b. Due to Remark 1
one of these pairs is a deadlock with probability at most 5 lnn/n1.02 = O(1

n).
Since {p, q} is one of these pairs, it is not a deadlock whp.

Case 2. cp and cq are different. Since k1, k2 are arbitrary in (1), for each i ∈
{0, 1, . . . d − 1} either cp,(i+k1d) mod sp

∈ T̂b for all k1 or cq,(x+i+k2d) mod sq
∈ T̂b

for all k2. Thus the probability of such configuration is at most

O(
1
n

) + (25 ln2 n)d
d−1∑
k=0

(
d

k

)
(
|T̂b|
n

)
ks1+(d−k)s2

d . (2)

Indeed, first due to Lemma 2, whp we choose clusters cp, cq in at most 25 ln2 n
ways, then we choose x in d ways, and for some k ∈ {0, 1, . . . d − 1} we choose
k-subset Ip ⊆ {0, 1, . . . d − 1} in

(
d
k

)
ways such that cp,(i+k1d) mod sq

∈ T̂b for all
k1 and i ∈ Ip, meanwhile choosing the corresponding set Iq = {0, 1, . . . d−1}\Ip.
Since Sb is independent of a, the probability that the corresponding states from

On the Probability of Being Synchronizable 77

the cycles belong to T̂b equals (|̂Tb|
n)

ks1+(d−k)s2
d . The maximum of (2) is achieved

for s1 = s2 = d and equals

(25 ln2 n)d
d−1∑
k=0

(
d

k

)
(
|T̂b|
n

)d ≤ (25 ln2 n)d2dn−0.54d

up to a O(1
n) term. In the case d > 1, we get

25 ln2 n
∑
d=2

n0.45d2dn−0.54d = o(
1
n

).

In the case d = 1, by Lemma 2 whp there are at most 5 ln n cycles of size 1
in UG(a). Hence there are at most 25 ln2 n pairs from these cycles independent
of b. In this case the proof is the same as for d = 2 in Case 1.

In view of Theorem 2, it remains to prove that Ŝa and Ŝb are synchronizable
whp. For this purpose, we use the notion of the stability relation introduced by
Kari [7]. A pair of states {p, q} is called stable, if for every word u there is a word
v such that p.uv = q.uv. The stability relation, given by the set of stable pairs, is
stable under the actions of the letters and complete whenever A is synchronizing.
It is also transitive whence its reflexive closure is a congruence on Q.

Given a pair {p, q}, either {p, q} in one a-cluster or the states p and q belong
to different a-clusters. In the latter case, we say that {p, q} connects these a-
clusters. Suppose there exists a large set Za of distinct pairs that are stable
independently of a; that is, |Za| ≥ n0.4 and the map b alone suffices to witness
the stability. Consider the graph Γ (Sa, Za) with the set of vertices Sa, and there
is an edge between two clusters if and only if some pair from Za connects them.

The underlying idea of the two following combinatorial lemmas is that if we
have many pairs chosen independently of a given random mapping from Σn,
whp they cannot satisfy any non-trivial partition or coloring stable under the
action of this mapping.

Lemma 3 (see [2] for the proof). If such Za exists then whp Γ (Sa, Za) is
connected. If additionally all cycle pairs of one of the clusters from Sa are stable
then Ŝa is synchronizable.

Lemma 4 (see [2] for the proof). If such Za exists then whp there is a
cluster from Sa whose cycle is stable.

Due to above lemmas, by Theorem 2 it remains to prove that whp there exists
Za and Zb. The crucial step for this is to find a stable pair completely defined
by one of the letters whence independent of the other one. For this purpose, we
reuse ideas from Trahtman’s solution [12] of the famous Road Coloring Problem.
A subset A ⊆ Q is called an F -clique of A, if it is a set of maximum size such
that each pair of states from A is a deadlock. It follows from the definition that
all F -cliques have the same size. First, we need to reformulate [12, Lemma 2] for
our purposes.

78 M.V. Berlinkov

Lemma 5. If A and B are two distinct F -cliques such that A\B = {p}, B\A =
{q} for some states p, q; Then {p, q} is a stable pair.

Proof. Arguing by contradiction, suppose there is a word u such that {p.u, q.u}
is a deadlock. Then (A ∪ B).u is an F -clique because all pairs are deadlocks.
Since p.u 	= q.u, we have |A ∪ B| = |A| + 1 > |A| contradicting maximality of A.

Given a digraph g ∈ Σn and an integer c > 0, call a c-branch of g any subtree
of a tree of g with the root of height c. For instance, the trees are exactly 0-
branches. Let T be a highest c-branch of g and h be the height of the second
by height c-branch. Let us call the c-crown of g the (probably empty) forest
consisting of all the states of height at least h+1 in T . For example, the digraph
g presented on Fig. 1 has two highest 1-branches rooted in states 6, 12. Without
the state 14, the digraph g would have the unique highest 1-branch rooted at
state 6, having the state 8 as its 1-crown.

Fig. 1. A digraph with a one cycle and a unique highest tree.

The following theorem is an analogue of Theorem 2 from [12] for 1-branches
instead trees and a relaxed condition on the connectivity of A.

Theorem 3. Suppose the underlying digraph of the letter a has a unique highest
1-branch T and its 1-crown is reachable from an F -clique F0. Denote by r the
root of T and by q the predecessor of the root of the tree containing T on the
a-cycle. Then {r, q} is stable and independent of b.

Proof. Let p be some state of height h in T which is reachable from an F -clique
F0. Since p is reachable from F0, there is another F -clique F1 containing p. Since
F1 is an F -clique, there is a unique state g ∈ F1∩T of maximal height h1 ≥ h+1.
Let us consider the F -cliques F2 = F1.a

h1−1 and F3 = F2.a
L where L is the least

common multiplier of all cycle lengths in UG(a). By the choice of L and F2, we
have that

F2\F3 = {g.ah1−1} = {r} and F3\F2 = {q}.

Hence, by Lemma 5 the pair {r, q} is stable. Since this pair is completely defined2

by the unique 1-branch of a and the letters are chosen independently, this pair
is independent of b.
2 The reason why we consider 1-branches instead of trees is that the state r would not
be completely defined by the unique highest tree of a.

On the Probability of Being Synchronizable 79

Once we have got a one stable pair which is independent of one of the letters,
it is possible to get a lot of such pairs for each of the letters.

Theorem 4 (see Sect. 3 for the proof). Whp for each letter x ∈ {a, b} of A,
there is a set of at least n0.4 distinct stable pairs independent of x.

The proof of the above theorem result is mainly based on repeatedly referring
to the following fact. Given a set D ⊂ Q and a stable pair {p, q} independent of
some letter c ∈ Σ, {p, q}.c is also the stable pair independent of the other letter
and p, q 	∈ D with probability 1 − O(|D|

n). However, some accuracy is required
when using this argument many times.

Due to Theorems 2, 4 and Lemmas 3, 4, it remains to show that we can use
Theorem 3, that is, whp the underlying graph of one of the letters has a unique
1-branch and some high height vertices of this 1-branch are accessible from F -
cliques (if F -cliques exist). The crucial idea in the solution of the Road Coloring
Problem [12] was to show that each admissible digraph can be colored into an
automaton satisfying the above property (for trees) and then use Theorem3 to
reduce the problem. In order to apply Theorem3, we need the following analogue
of the combinatorial result from [12] for the random setting.

Theorem 5 (Theorem12 [3]). Let g ∈ Σn be a random digraph, c > 0, and
H be the c-crown of g having r roots. Then |H| > 2r > 0 with probability
1 − Θ(1/

√
n), in particular, a highest c-branch is unique and higher than all

other c-branches of g by 2 with probability 1 − Θ(1/
√

n).

The proof of the above theorem has been moved to the separate paper [3] because
it is rather mathematical than computer science result and hopefully could have
independent importance.

Since the letters of A are chosen independently, the following corollary of
Theorem 5 is straightforward.

Corollary 1. Whp the underlying digraph of one of the letters (say a) satisfies
Theorem5.

In order to use Theorem 3 and thus complete the proof of Theorem 1, it
remains to show that the 1-crown of the underlying graph of a is accessible from
F -cliques of A. Let us call a subautomaton a strongly connected component of
A closed under the actions of the letters. Since each F -clique can be mapped to
some minimal (by inclusion) subautomaton, the following statement completes
the proof of Theorem 1.

Theorem 6. The 1-crown of the underlying digraph of a intersects with each
minimal subautomaton whp.

Proof. The following lemma can be obtained as a consequence of [5, Theorem 3]
but we present the proof here for the self completeness.

Lemma 6. For each constant q > 1 the number of states in each subautomaton
of A is at least n/qe2 whp.

80 M.V. Berlinkov

Proof. The probability that there is a subautomaton of size less than n/qe2 is
bounded by

n/qe2∑
i=1

(
n

i

)
(
i

n
)2i ≤

n/qe2∑
i=1

(1 − i
n)i

(1 − i
n)n

(
i

n
)i ≤

n/qe2∑
i=1

(
ei

n
)i. (3)

Indeed, there are
(
n
i

)
ways to choose some subset T of i states; the probability

that arrows for both letters leads a state to the chosen set T is (i
n)2.

For i ≤ n/qe2, we get that

(e(i+1)
n)i+1

(ei
n)i

≤ e(i + 1)
n

(1 +
1
i
)i ≤ e2(i + 1)

n
≤ 1

q
.

Hence the sum (3) is bounded by the sum of the geometric progression with the
factor 1/q and the first term equals e

n . The lemma follows.

Let g ∈ Σn and H be the 1-crown of g. Let n1 and n2 be the number of
root and non-root vertices in H respectively. Due to Corollary 1, one of the
letters (say a) satisfies Theorem 5 whp, that is, n2 > n1 for g = UG(a) whp. By
Lemma 6, we can choose some r < 1

e2 such that whp there are no subautomaton
of size less than rn. Therefore there are at least Θ(n2n) of automata satisfying
both constraints. Arguing by contradiction, suppose that among such automata
there are more than n2n−1 automata A such that their 1-crown does not intersect
with some minimal subautomaton of A. Denote this set of automata by Ln. For
1 ≤ j < d denote by Ln,d,j the subset of automata from Ln with the 1-crown
having exactly d vertices and j roots. By the definitions,

(1−r)n∑
d=2

0.5d∑
j=1

|Ln,d,j | = |Ln|. (4)

Given an integer rn ≤ m < (1 − r)n, let us consider the set of all m-states
automata whose letter a has a unique highest 1-branch which is higher by 1
than the second one. Due to Theorem 5 there are at most O(m2m−0.5) of such
automata. Denote this set of automata by Km. By Km,j denote the subset of
automata from Km with exactly j vertices in the 1-crown. Again, we have

m−1∑
j=1

|Km,j | = |Km|. (5)

Each automaton from Ln,d,j can be obtained from Km,j for m = n−(d−j) as
follows. Let us take an automaton B = (Qb, Σ) from Km,j with no subautomaton
of size less than rn. First we append a set Hb of d − j states to the set Hb to
every possible positions, in at most

(
n

d−j

)
ways. The indices of the states from

Hb are shifted in compliance with the positions of the inserted states, that is,
the index q is shifted to the amount of chosen indices z ≤ q for Hb. Next, we

On the Probability of Being Synchronizable 81

choose an arbitrary forest on d vertices and j roots which belong to the 1-crown
of B in at most jdd−j−1 ways. Thus we have completely chosen the action of the
letter a.

Next we choose some minimal subautomaton M of B and redefine arbitrarily
the image by the letter b for all states from Qb\M to the set Qb ∪ Hb in nm−|M |

ways. Within this definition, all automata from Km,j which differs only in the
images of the states from Qb\M by the letter b can lead to the same automaton
from Ln,d,j . Given a subautomaton M , denote such class of automata by Km,j,M .
There are exactly mm−|M | automata from Km,j in each such class. Since |M | ≥
rn and M is minimal, B can appear in at most 1/r of such classes.

Thus we have completely chosen both letters and obtained each automaton
in Ln,d,j . Thus for the automaton B and one of its minimal subautomaton M of
size z ≥ rn, we get at most

(
n

d − j

)
jdd−j−1nm−z

automata from L′
n,d,j each at least mm−z times, where L′

n,d,j is the set of
automata containing Ln,d,j without the constraint on the size of minimal sub-
automaton. Notice that we get each automaton from Ln,d,j while B runs over
all automata from Kn−(d−j),j with no subautomaton of size less than rn. Thus
we get that

|Ln,d,j | ≤
n∑

z=rn

∑
a,M,|M |=z

∑
B∈Km,j,M

(
n

d−j

)
jdd−j−1nm−z

mm−z
. (6)

Since each automaton B ∈ Km,j with no minimal subautomaton of size less
than rn appears in at most 1/r of Km,j,M , we get

|Ln,d,j | ≤ 1
r
|Km,j | max

rn≤z≤m

(
n

d−j

)
jdd−j−1nm−z

mm−z
=

1
r
|Km,j |

(
n

d−j

)
jdd−j−1nm−rn

mm−rn
.

(7)
Using (4) and (5), we get

|Ln| =
1
r

(1−r)n∑
d=2

0.5d∑
j=1

|Km,j |
(

n
d−j

)
jdd−j−1nm−rn

mm−rn

≤ 1
r

(1−r)n∑
d=2

max
j≤0.5d

|Km|
(

n
d−j

)
jdd−jnm−rn

mm−rn
. (8)

Using Stirling’s approximation

x! = (
x

e
)x

√
2πxO(1) and (1 − x

k
)k = exO(1),

82 M.V. Berlinkov

we get
(

n

d − j

)
jdd−j = O(1)

nnjdd−j

(d − j)d−j(n − (d − j))n−(d−j)

= O(1)
jnd−j

(1 − j
d)d−j(1 − d−j

n)n−(d−j)
≤ O(1)jnd−jed (9)

Using that |Km| = O(m2m−0.5) from (8), we get

|Ln| ≤ O(1)
(1−r)n∑

d=2

max
j≤0.5d

m2m−0.5jnd−jed(
n

m
)
m−rn

≤ O(1)
(1−r)n∑

d=2

max
j≤0.5d

(n − d + j)n−d+j+rn−0.5jedn(1−r)n

≤ O(1)
(1−r)n∑

d=2

(n − 0.5d)(1+r)n−0.5(d+1)dedn(1−r)n

≤ O(1)
(1−r)n∑

d=2

dn2n−0.5(d+1)ed(0.5−r)(1 − 0.5d

n
)−0.5(d+1) ≤ O(1)

(1−r)n∑
d=2

ef(d),

(10)

where

f(d) = ln dn2n−0.5(d+1)ed(0.5−r)(1 − 0.5d

n
)−0.5(d+1)

= 0.5(2 ln d + (4n − (d + 1)) ln n + d(1 − 2r) + 2 ln(1 − 0.5d)(d + 1)).
(11)

For the derivative of f(d), we get

f ′(d) = 0.5(
2
d

− ln n + (1 − 2r) + 2 ln(1 − 0.5d

n
) +

d + 1
n − 0.5d

n

.

Thus for n big enough, we have that f ′(d) < −1 for all d ≥ 2. Hence the sum (10)
is bounded by the doubled first term of the sum, which is equal to O(1)n2n−1.5.
This contradicts |Ln| ≥ Θ(n2n−1) and the theorem follows.

3 Searching for Stable Pairs

Lemma 7. If A has a stable pair {p, q} independent of b; then for any con-
stant k > 0 whp there are k distinct stable pairs independent of a and only 2k
transitions by b have been observed.

On the Probability of Being Synchronizable 83

Proof. Consider the chain of states p.b, q.b, . . . p.bk+1, q.bk+1. Since {p, q} is inde-
pendent of b, the probability that all states in this chain are different is

(1− 2
n

)(1− 3
n

) . . . (1− 2(k + 1)
n

)(1− 2k + 3
n

) ≥ (1− 2(k + 2)
n

)2(k+1) = 1−O(
1
n

).

Since {p, q} is independent of b, all states in this chain are independent of a.

Lemma 8. If for some 0 < ε < 0.125 the automaton A has k = [1
2ε] + 1 stable

pairs independent of b; then whp there are n0.5−ε stable pairs independent of a
and at most kn0.5−ε transitions by a have been observed.

Proof. Let {p, q} be one of these c stable pairs. Consider the chain of states

p, q, p.b, q.b, . . . p.bn0.5−ε

, q.bn0.5−ε

.

Since {p, q} is independent of b, the probability that all states in this chain are
different is

(1− 2

n
)(1− 3

n
) . . . (1− 2n0.5−ε

n
)(1− 2n0.5−ε + 1

n
) ≥ (1− 2n0.5−ε

n
)2n0.5−ε

= 1−O(
1

n2ε
).

Since these c stable pairs are independent of b, for k = [1
2ε] + 1 the probability

that there is such a pair {p, q} is at least 1 − O(1
n2kε) = 1 − O(1

n). Again, all
states in the chain are independent of a.

Theorem 4. Whp for each letter x ∈ {a, b} of A, there is a set of at least n0.4

distinct stable pairs independent of x, and only O(n0.4) transitions have to be
observed.

Proof. By Corollary 1 and Theorem 6, there is a letter (say a) in the automaton
A satisfying Theorem 3. Hence, there is a stable pair independent of b. Thus if
we subsequently apply Lemma 7 for b and Lemma 8 for a, we get that there are
n0.5−ε stable pairs independent of b and only O(n0.5−ε) transitions by b have
been observed. It remains to notice that we can do the same for the letter b if
we additionally use Lemma 7 for a.

4 Conclusions

Theorem 1 gives an exact order of the convergence rate for the probability
of being synchronizable for 2-letter automata up to the constant factor. One
can easily verify that the convergence rate for t-size alphabet case (t > 1) is
1 − O(1

n0.5t) because the main restriction appears for the probability of having
a unique 1-branch for some letter. Thus the first open question is about the
tightness of the convergence rate 1 − O(1

n0.5t) for the t-letter alphabet case.
Since only weakly connected automata can be synchronizing, the second nat-

ural open question is about the convergence rate for random weakly connected
automata of being synchronizable. Especially, binary alphabet is of certain inter-
est because the lower bound for this case appears from a non-weakly connected

84 M.V. Berlinkov

case. We suppose exponentially small probability of not being synchronizable for
this case and Θ(1

nk−1) for random k letter automata.
In conclusion, let us briefly remark that following the proof of Theorem1

we can decide, whether or not a given n-state automaton A is synchronizing in
linear expected time in n. Notice that the best known deterministic algorithm
(basically due to Černý [6]) for this problem is quadratic on the average and in
the worst case.

The author is thankful to Mikhail Volkov for permanent support in the
research and also to Cyril Nicaud, Dominique Perrin, Marie-Pierre Béal and
Julia Mikheeva for their interest and useful suggestions about the presentation
of the current paper.

References

1. Araújo, J., Bentz, W., Cameron, P.: Groups synchronizing a transformation of
non-uniform kernel. Theor. Comp. Sci. 498, 1–9 (2013)

2. Berlinkov, M.: On the probability of being synchronizable (2013). arXiv:1304.5774
3. Berlinkov, M.: Highest trees of random mappings (2015). arXiv:1504.04532
4. Cameron, P.J.: Dixon’s theorem and random synchronization. arXiv:1108.3958
5. Carayol, A., Nicaud, C.: Distribution of the number of accessible states in a ran-

dom deterministic automaton. In: Leibniz International Proceedings in Informatics
(LIPIcs), STACS 2012, vol. 14, pp. 194–205 (2012)

6. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14(3), 208–216 (1964) (in
Slovak)

7. Kari, J.: Synchronization and stability of finite automata. J. Univers. Comp. Sci.
2, 270–277 (2002)

8. Nicaud, C.: Fast synchronization of random automata (2014). arXiv:1404.6962
9. Skvortsov, E., Zaks, Y.: Synchronizing random automata. Discrete Math. Theor.

Comput. Sci. 12(4), 95–108 (2010)
10. Skvortsov, E., Zaks, Y.: Synchronizing random automata on a 4-letter alphabet.

J. Math. Sci. 192, 303–306 (2013)
11. Timashov, A.: Asymptotic expansions for the distribution of the number of com-

ponents in random mappings and partitions. Discrete Math. Appl. 21(3), 291–301
(2011)

12. Trahtman, A.: The road coloring problem. Israel J. Math. 172(1), 51–60 (2009)
13. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,

C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

http://arxiv.org/abs/1304.5774
http://arxiv.org/abs/1504.04532
http://arxiv.org/abs/1108.3958
http://arxiv.org/abs/1404.6962

Linear-Time Fitting of a k-Step Function

Binay Bhattacharya1, Sandip Das2, and Tsunehiko Kameda1(B)

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
{binay,tiko}@sfu.ca

2 Indian Statistical Institute, Kolkata, India

Abstract. Given a set of n weighted points on the x-y plane, we want
to find a step function consisting of k horizontal steps such that the max-
imum vertical weighted distance from any point to a step is minimized.
We solve this problem in O(n) time when k is a constant. Our approach
relies on the prune-and-search technique, and can be adapted to design
similar linear time algorithms to solve the line-constrained k-center prob-
lem and the size-k histogram construction problem as well.

Keywords: Linear-time algorithm · Step function fitting · Weighted
points · Prune-and-search · Anchored step function

1 Introduction

We consider the problem of fitting a step function to a weighted point set. Given
an integer k > 0 and a set P of n weighted points in the plane, our objective
is to fit a k-step function to them so that the maximum weighted vertical dis-
tance of the points to the step function is minimized. We call this problem the
k-step function problem. It has applications in areas such as geographic infor-
mation systems, digital image analysis, data mining, facility locations, and data
representation (histogram), etc.

In the unweighted case, if the points are presorted, the problem can be solved
in linear time using the results of [10–12], as shown by Fournier and Vigneron [8].
Later they showed that the weighted version of the problem can also be solved
in O(n log n) time [9], using Megiddo’s parametric search technique [17]. The
algorithm uses the AKS sorting network due to Ajtai et al. [1] with the speed-up
technique proposed by Cole [6]. It is known that the use of the AKS network
has a huge hidden constant, making it impractical. Prior to these results, the
problem had been discussed by several researchers [5,7,15,16,19].

Guha and Shim [13] considered this problem in the context of histogram
construction. In databases, it is known as the maximum error histogram problem.
For weighted points this problem is to partition the given points into k buckets
based on their x-coordinates, such that the maximum y-spread in each bucket
is minimized. This problem is of interest to the data mining community as well
(see [13] for references). Guha and Shim [13] computed the optimum histogram
of size k, minimizing the weighted maximum error in O(n log n+ k2 log6 n) time
and O(n log n) space.
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 85–96, 2016.
DOI: 10.1007/978-3-319-29221-2 8

86 B. Bhattacharya et al.

Our objective in this paper is to improve the above result to O(n) time when
k is a constant. We show that we can optimally fit a k-step function to unsorted
weighted points in linear time. We earlier suggested a possible approach to this
problem at an OR workshop [3]. Here we flesh it out, presenting a complete and
rigorous algorithm and proofs. Our algorithm exploits the well-known properties
of prune-and-search along the lines in [2].

This paper is organized as follows. Section 2 introduces the notations used in
the rest of this paper. It also briefly discusses how the prune-and-search technique
can be used to optimally fit a 1-step function (one horizontal line) to weighted
points. We then consider in Sect. 3 a variant of the 2-step function problem, called
the anchored 2-step function problem. We discuss a “big component” in the
context of a k-partition of the point set P corresponding to a k-step function in
Sect. 4. Section 5 presents our algorithm for the optimal k-step function problem.
Section 6 concludes the paper, mentioning some applications of our results.

2 Preliminaries

2.1 Model

Let P = {p1, p2, . . . , pn} be a set of n weighted points in the plane. For 1 ≤ i ≤ n
let pi.x (resp. pi.y) denote the x-coordinate (resp. y-coordinate) of point pi, and
let w(pi) denote the weight of pi. The points in P are not sorted, except that
p1.x ≤ pi.x ≤ pn.x holds for any i = 1, . . . , n.1 Let Fk(x) denote a generic k-step
function, whose jth segment (=step) is denoted by sj . For 1 ≤ j ≤ k−1, segment
sj represents a half-open horizontal interval [s(l)j , s

(r)
j) between two points s

(l)
j

and s
(r)
j . The last segment sk represents a closed horizontal interval [s(l)k , s

(r)
k].

Note that s
(l)
j .y = s

(r)
j .y, which we denote by sj .y. We assume that for any

k-step function Fk(x) segments s1 and sk satisfy s
(l)
1 .x = p1.x and s

(r)
k .x = pn.x,

respectively. Segment sj is said to span a set of points Q ⊆ P , if s(l)j .x ≤ p.x <

s
(r)
j .x holds for each p ∈ Q. A k-step function Fk(x) gives rise to a k-partion

of P , P = {Pj | j = 1, 2, . . . , k}, such that segment si spans Pi. It satisfies the
contiguity condition in the sense that for each component Pj , a, b ∈ Pj , where
a.x ≤ b.x, implies that every point p with a.x ≤ p.x ≤ b.x also belongs to Pj .
In the rest of this paper, we consider only partitions that satisfy the contiguity
condition. Figure 1 shows an example of fitting a 4-step function F4(x).

Given a step function F (x), defined over an x-range that contains p.x, let
d(p, F (x)) denote the vertical distance of p from F (x). We define the cost of p
with respect to F (x) by the weighted distance D(p, F (x)) � d(p, F (x))w(p). We
generalize the cost definition for a set Q ⊆ P of points by

D(Q,F (x)) = max
p∈Q

{D(p, F (x))}. (1)

1 For the sake of simplicity we assume that no two points have the same x or y
coordinate. But the results are valid if this assumption is removed.

Linear-Time Fitting of a k-Step Function 87

p
q

D(p, F4(x))D(q, F4(x))

Fig. 1. Fitting a 4-step function

Point ph is said to be critical with respect to F (x) if

D(ph, F (x)) = D(P, F (x)). (2)

Note that there can be more than one critical point with respect to a given step
function.

For a set of weighted points in the plane or on a line, the point that minimizes
the maximum weighted distance to them is called the weighted 1-center [2]. By
the pigeon hole principle, ∃Pi ∈ P such that |Pi| ≥ �n/k�. Such a component is
called a big component. A big component spanned by a segment in an optimal
solution plays an important role. (See Procedure Find-Big(k) in Sect. 4.3.)

2.2 Bisector

If we map each point pi ∈ P onto the y-axis, the cost of (or the weighted
distance from) pi grows linearly from 0 at pi.y in each direction as a function
of y. Consider arbitrary two points p and q. Their costs intersect at either one
or two points,2 one of which always lies between p.y and q.y. If there are two
intersections, the other intersection lies outside interval [p.y, q.y]. Let a (resp. b)
be the y-coordinate of the upper (resp. lower) intersection point, where b ≤ a.
We call the horizontal line y = a (resp. y = b) the upper (resp. lower) bisector
of p and q. If there are only one intersection, we pretend that there were two at
b = a, which lies between p.y and q.y. (Note that the y-axis is shown horizontally
in this figure, where y increases to the right.)

We pair up the points arbitrarily and consider the two intersections of each
pair. Let y = U (resp. y = L) be the line at or above (resp. at or below) which
at least 2/3 of the upper (resp. lower) bisectors lie, and at or below (resp. at or
above) which at least 1/3 of the upper (resp. lower) bisectors lie.3

Lemma 1. We can identify n/6 points that can be removed without affecting
the weighted 1-center for the values of their y-coordinates.

Proof. Consider the three possibilities.
2 For two points p and q, if p.y �= q.y and w(p) = w(q) hold then there is only one

intersection. If p.y = q.y, we can ignore one of the points with the smaller weight.
3 We define U and L this way, because many points could lie on them.

88 B. Bhattacharya et al.

(i) The weighted 1-center lies above U .
(ii) The weighted 1-center lies below L.
(iii) The weighted 1-center lies between U and L, including U and L.

p.y q.y ab yU

(a)

p.y q.yab yU
(b)

Fig. 2. 1/3 of upper intersections are at y < U : (a) p can be ignored at y > U ; (b) q
can be ignored at y > U .

In case (i), there are two subcases, which are shown in Fig. 2(a) and (b),
respectively. Since the center lies above U , we are interested in the upper envelope
of the costs in the y-region given by y > U . In the case shown in Fig. 2(a), the
costs of points p and q satisfy d(y, p.y)w(p) < d(y, q.y)w(q) for y > U . Thus
we can ignore p. In the case shown in Fig. 2(b), the costs of points p and q
satisfy d(y, p.y)w(p) > d(y, q.y)w(q) for y > U . Thus we can ignore q. Since
n/2×1/3 = n/6 pairs have their upper bisectors at or below U , in either case, one
point from each such pair can be ignored, i.e., 1/6 of the points can be eliminated,
because it cannot affect the weighted 1-center. In case (ii) a symmetric argument
proves that 1/6 of the points can be discarded.

p.y q.y ab yU
(a)

p.y q.yab yU
(b)

Fig. 3. 2/3 of upper bisectors are at y > U .

In case (iii) see Fig. 3. The costs of each of the 2n/3 pairs as functions of y
intersect at most once at y < U . The cost functions of 2n/3 pairs intersect at
most once at y > L. Therefore, n/3 pairs must be common to both, i.e., both
intersections of each such pair occur outside of the y-interval [L,U]. This implies
that their cost functions do not intersect within in [L,U], i.e., one of each pair
lies above that of the other in [L,U], and can be discarded. 	

2.3 Optimal 1-Step Function

This problem is equivalent to finding the weighted center for n points on a line.
We pretend that all the points had the same x-coordinate. Then the problem

Linear-Time Fitting of a k-Step Function 89

becomes that of finding a weighted 1-center on a line [2,4]. This can be solved
in linear time using Megiddo’s prune-and-search method [17]. In [18] Megiddo
presents a linear time algorithm in the case where the points are unweighted. For
the weighted case we now present a more technical algorithm that we can apply
later to solve other related problems. The following algorithm uses a parameter
c which is a small integer constant.

Algorithm 1. 1-Step
Input: Point set P
Output: 1-step function F ∗

1 (x)

1. Pair up the points of P arbitrarily.
2. For each such pair (p, q) determine their horizontal bisector line(s).
3. Determine a horizontal line, y = U , that places 2/3 of the upper bisector

lines (out of n) at or above U , and the rest of the upper bisector lines at or
below U .

4. Determine a horizontal line, y = L, that places 2/3 of the lower bisector lines
(out of n) at or below L and the rest of the lower bisector lines at or above L.

5. Determine the critical points for U and L.
6. If there exist critical points on both sides of U , y = U is an optimal 1-step

function; Stop. Otherwise, determine the direction dU (higher or lower) in
which the optimal line must lie.

7. If there exist critical points on both sides of L, y = L is an optimal 1-step
function; Stop. Otherwise, determine the direction dL (higher or lower) in
which the optimal line must lie.

8. Based on dU and dL, discard 1/6 of the points from P by Lemma 1.
9. If the size of the reduced set P is greater than a specified constant c, repeat this

algorithm from the beginning with the reduced set P . Otherwise, determine the
optimal line using any known method that runs in constant time.

Lemma 2. An optimal 1-step function can be found in linear time.

Proof. The recurrence relation for the running time T (n) of the above method
for general n is T (n) ≤ T (n − n/6) + O(n), which yields T (n) = O(n). 	

3 Anchored 2-Step Function Problem

In general, we denote an optimal k-step function by F ∗
k (x) and its ith segment

by s∗
i . Later, we need to constrain the first and/or the last step of a step function

to be at a specified height. A k-step function is said to be left-anchored (resp.
right-anchored) if s1.y (resp. sk.y) is assigned a specified value, and is denoted
by ↓Fk(x) (resp. F ↓ k(x)). The anchored k-step function problem is defined
as follows. Given a set P of points and two y-values a and b, determine the
optimal k-step function ↓F ∗

k (x) (resp. F↓∗
k(x)) that is left-anchored (resp. right-

anchored) at a (resp. b) such that cost D(P, ↓F ∗
k (x)) (resp. D(P, F↓∗

k(x))) is the
smallest possible. If a k-step function is both left- and right-anchored, it is said
to be doubly anchored and is denoted by ↓F↓k(x).

90 B. Bhattacharya et al.

s∗
1a

y

x

s∗
2b

(a)

g(x)

x

h(x)

x

Cost
h(x)

g(x)

(b)

Fig. 4. (a) s∗
1.y = a; (b) Monotone functions g(x) and h(x).

3.1 Doubly Anchored 2-Step Function

Suppose that segment s1 (resp. s2) is anchored at a (resp. b). See Fig. 4(a). Let
us define two functions g(x) and h(x) by

g(x) = max
p.x≤x

{w(p)|p.y − a| | p ∈ P},
h(x) = max

p.x>x
{w(p)|p.y − b| | p ∈ P}, (3)

where g(x) = 0 for x < p1.x and h(x) = 0 for x > pn.x. Intuitively, if we
vertically divide the points of P at x into two components P1 and P2, then g(x)
(resp. h(x)) gives the cost of component P1 (resp. P2). See Fig. 4(b). Clearly the
global cost for the entire P is minimized for any x at the lowest point in the
upper envelope of g(x) and h(x). which is named x. Since the points in P are
not sorted, g(x) and h(x) are not available explicitly, but we can compute x in
linear time using the prune-and-search method as follows. Starting with P ′ = P ,
we find the point in P ′ that has the median x-coordinate, xm. We test whether
g(xm) = h(xm), g(xm) < h(xm) or g(xm) > h(xm) in linear time. The outcome
of this test will determine the side of x = xm on which x lies. If g(xm) ≤ h(xm),
for example, we know that x ≥ xm. In this case, we can prune all the points p
with p.x < xm, i.e., about 1/2 of them from P ′, remembering just the maximum
cost, in our search for x. If g(xm) > h(xm), on the other hand, we can prune
all points p with p.x ≥ xm, i.e., at least 1/2 of them from P ′. We now repeat
with the greatly reduced set P ′. We can stop when |P ′| = 2, and find the lowest
point. The total time required is O(n).

3.2 Left- or Right-Anchored 2-Step Function

Without loss of generality, we discuss only a left-anchored 2-step function. Given
an anchor value a, we want to determine the optimal 2-step function with the
constraint that s∗

1.y = a, denoted by ↓F ∗
2 (x). See Fig. 4(a). In this case, b in

Eq. (3) is not given, but we need to find the optimal value for it. To make use
of the prune-and-search technique, we need to find the big component of P that
is spanned by one segment of ↓F ∗

2 (x).

Linear-Time Fitting of a k-Step Function 91

Procedure 1. Find-Big-2

1. Partition P into two components, P1 and P2, whose sizes differ by at most
one.4

2. Let s1 be the segment with s1.y = a spanning P1, and let s2 be the 1-step
(optimal) solution for P2.

3. If D(P1, s1) < D(P2, s2) (resp. D(P1, s1) > D(P2, s2)) then P1 (resp. P2) is
the big component.

4. If D(P1, s1) = D(P2, s2), we have found the optimal 2-step function.

If P1 is the big component, we can eliminate all the points belonging to
it, without affecting ↓F ∗

2 (x) that we will find. (See Step 3 of the algorithm
below.) We then repeat the process with the reduced set P . If P2 is the big
component, on the other hand, we need to do more work, similar to what we did
in Algorithm 1-Step. See Step 4 in the following algorithm.

Algorithm 2. Left-Anchored 2-Step
Input: Point set P and line y = a
Output: Left-anchored optimal 2-step function ↓F ∗

2 (x)

1. Set s1.y = a.
2. Execute Procedure Find-Big-2.
3. If P1 is a big component, remove from P all the points belonging to P1, remem-

bering D(P1, s1) as a lower bound on the cost of the first segment from now on.
4. If P2 is the big component then carry out the following steps.

(a) Determine points U and L from P2 as described in Algorithm 1-Step.
(b) Find the doubly anchored 2-step solutions for P , one with left anchor a

and right anchor U , and the other with left anchor a and right anchor L.
(c) Eliminate 1/6 of the points of P2 from P , based on the two solutions.5

5. If |P ′| > c (a small constant), repeat Steps 2 to 4 with the reduced set P . Oth-
erwise, optimally solve the problem in constant time, using a known method.

Lemma 3. Algorithm Left-Anchored 2-Step runs in linear time.

Proof. Each iteration of Steps 2, 3, and 4 will eliminate at least 1/2×1/6 = 1/12
of the points of P . Such an iteration takes linear time in the input size. The total
time needed for all the iterations is therefore linear. 	

4 k-Step Function

4.1 Approach

To design a recursive algorithm, assume that for any set of points Q ⊂ P , we can
find the optimal (j − 1)-step function and the optimal anchored j-step function

4 As before, we assume that the points have different y-coordinates. Either one is the
big component.

5 See Steps 6–8 of Algorithm 1-Step.

92 B. Bhattacharya et al.

for any 2 ≤ j < k in O(|Q|) time, where k is a constant. We have shown that
this is true for k = 2 in the previous two sections. So the basis of recursion holds.

Given an optimal k-step function F ∗
k (x), for each i (1 ≤ i ≤ k), let P ∗

i be
the set of points vertically closest to segment s∗

i . By definition, the partition
{P ∗

i | i = 1, 2, . . . , k} satisfies the contiguity condition. It is easy to see that
for each segment s∗

i , there are critical points with respect to s∗
i , lying on the

opposite sides of s∗
i .

In finding the optimal k-step function, we first identify a big component that
will be spanned by a segment in an optimal solution. Such a big component
always exists, as shown by Lemma 5 below. Our objective is to eliminate a
constant fraction of the points in a big component. This will guarantee that a
constant fraction of the input set is eliminated when k is a fixed constant. The
points in the big component other than two critical points are “useless” and can
be eliminated from further considerations.6 This elimination process is repeated
until the problem size gets small enough to be solved in constant time.

4.2 Feasibility Test

A point set P is said to be D-feasible if there exists a k-step function Fk(x)
such that D(P, Fk(x)) ≤ D. To test D-feasibility we first find the median m of
{pi.x | i = 1, 2, . . . , n} in O(n) time, and partition P into two parts P1 = {pi |
pi.x ≤ m} and P2 = {pi | pi.x > m}, which also takes O(n) time. We then find
the intersection I of the y-intervals in {|pi.y − y| ≤ D | pi ∈ P1}.

Case (a): [|I| = ∅] The first step ends at some point pj ∈ P1. Throw away all
the points in P2 and work on the remaining points in P1, where |P1| ≤ |P |/2.

Case (b): [|I| �= ∅] The first step may end at some point pj ∈ P2. Throw
away all the points in P1 and work on the points in P2, where |P2| ≤ |P |/2.
After computing the intersection I ′ of the y-intervals for the left half of P2, I
should be updated to I ∩ I ′.

Repeating this, we can find in O(n) time the longest first step s1 and the
set of points that are at no more than distance D from s1. Remove those points
from P , and find s2 in O(n) time, and so on. Since we are done after finding k
steps {s1, . . . , sk}, it takes O(kn) time.

Lemma 4. A D-feasibility test can be carried out in O(kn) time. 	

4.3 Identifying a Big Component

Lemma 5. Let {Pi | i = 1, . . . , k} be a k-partition, satisfying the contiguity
condition, such that the sizes of the components differ by no more than 1. Then
there exists an j such that Pj is a big component spanned by s∗

j .

6 Note that there may be more than two critical points in which case all but two are
“useless.”

Linear-Time Fitting of a k-Step Function 93

Proof. Let {P ∗
i | i = 1, . . . , k} be an optimal k-partition. Let j be the smallest

index such that s
(r)
j .x ≤ s

∗(r)
j .x. (Such an index must exists, because if s(r)j .x >

s
∗(r)
j .x for all 1 ≤ j ≤ k − 1, then s

(r)
k .x = s

∗(r)
j .x.) We clearly have sj ⊂ s∗

j ,
which implies that s∗

j spans Pj . 	

We now want to find a big component Pj spanned by s∗

j , whose existence
was proved by Lemma 5.

Procedure 2. Find-Big(k)
Input: k-partition {Pi | i = 1, . . . , k} such that the sizes of the components differ
by no more than 1.
Output: A big component Pj spanned by s∗

j for some j.

1. Using Algorithm 1-Step, compute the optimal 1-step function for P1 and let
D1 be its cost for P1. If P is not D1-feasible (i.e., D(P, F ∗

k (x)) > D1). Then
P1 is spanned by s∗

1. Stop.
2. Using Algorithm 1-Step, compute the optimal 1-step function for Pk and let

D′
k be its cost for Pk. If P is not D′

k-feasible (i.e., D(P, F ∗
k (x)) > D′

k). Then
Pk is spanned by s∗

k. Stop.
3. Find an index j (1 < j < k) such that for Dj−1 = D(∪j−1

i=1Pi, F
∗
j−1(x)) and

Dj = D(∪j
i=1Pi, F

∗
j (x)), P is Dj−1-feasible but not Dj-feasible.7 In this case

Pj is spanned by s∗
j . Stop.

In Step 1, the optimal 1-step function for P1 can be found in O(|P1|) time
by Lemma 2, and it takes O(n) time to test if P is not D1-feasible. Similarly,
Step 2 can be carried out in O(n) time.

Lemma 6. Step 3 of Procedure Find-Big(k) is correct.

Proof. We can stretch a step s of an optimal step function by making it as
long as possible as follows. Move s(l).x (resp. s(r).x) to the left (resp. right) as
far as possible without changing the cost of the step function. The step that
has been stretched is called a stretched step. Let us assume without loss of
generality that s∗

j found in Step 3 is stretched. Since the optimal cost D∗ satisfies

D∗ ≤ Dj−1 we must have s
∗(l)
j .x ≤ s

(l)
j .x. Let G∗

j (x) denote the optimal (k− j)-
step function for the point set ∪k

i=j+1Pi. Since P is not Dj-feasible, we have

D(∪k
i=j+1Pi, G

∗
j (x)) > Dj . This implies that s

(r)
j .x could be stretched to the

right under F ∗
k (x), i.e., s∗(r)

j .x ≥ s
(r)
j .x. It follows that Pj is spanned by s∗

j . 	

If Procedure Find-Big(k) does not stop after Step 2, we must carry out Step 3.
Using binary search we compute logn of the values out of {Di | 1 ≤ i ≤ k − 1},
which takes O(f(k)n) time for some function f(k), under the assumption that
any i-step function problem, i < k, is solvable in time linear in the size of the
input point set, which we will show later.

7 Unless P ∗
i = Pi for all i, such an i always exists.

94 B. Bhattacharya et al.

5 Algorithm

5.1 Optimal k-Step Function

An optimal k-step doubly anchored function ↓F ↓ ∗
k(x) consists of k horizontal

segments s∗
i , i = 1, 2, . . . , k satisfying s

∗(l)
1 .x = p1.x, s∗

1.y = a, s∗(r)
k .x = pn.x,

and sk.y = b. Let P ∗
i be the set of points of P vertically closest to s∗

i . For each
segment s∗

i , there are critical points with respect to s∗
i , lying on the opposite

sides of s∗
i .

In finding an optimal doubly anchored k-step function, we first identify, as
before, a big component which contains at least n/k points vertically closest to
the same segment in some optimal solution. Once a big component, say Pj , is
identified, we prune 1/6 of the points using a process very similar to Algorithm
One-step. The only difference is that the step function is doubly anchored. We
can therefore claim that

Lemma 7. An optimal doubly anchored k-step function for a set P of n points
can be computed in linear time, when k is a constant. 	

Let Pj be a big component spanned by s∗

j , and carry out the following procedure.

Procedure 3. Prune-Big(k, Pj)
Input: A big component Pj spanned by s∗

j .
Output: 1/6 of points in Pj removed.

1. Determine U and L from Pj as described in Algorithm One-step.
2. Find two anchored j-step functions F↓∗

j (x) for ∪j−1
i=1Pi, one anchored on the

right by L and the other anchored on the right by U .
3. If j < k, find two anchored (k−j+1)-step functions ↓F ∗

k−j+1(x) for ∪k
i=j+1Pi,

one anchored on the left by L and the other anchored on the left by U .
4. Identify 1/6 points of Pj with respect to L and U , which are “useless” based

on F↓∗
j (x) and ↓F ∗

k−j+1(x) found above, and remove them from P .

Since we have discussed the left and right-anchored cases and the doubly
anchored case for k = 2, as well as the single step case (k = 1), Proce-
dure Prune-Big(k, Pj) is applicable recursively to any k. Our algorithm can
now be described formally as follows.

Algorithm 3. Find k-Step Function.
Input: Point set P
Output: Optimal k-step function F ∗

k (x)

1. Partition P into components {Pi | i = 1, 2, . . . , k}, satisfying the contiguous
condition, such that their sizes differ by no more than one.

2. Execute Procedure Find-Big(k) to find a big component Pj spanned by s∗
j .

3. Execute Procedure Prune-Big(k, Pj).
3. If |P | > c for some fixed c, repeat the above process with the reduced P .

Linear-Time Fitting of a k-Step Function 95

5.2 Analysis of Algorithm

To carry out Step 1 of Algorithm Find k-Step Function, we first find the
(hn/k)th smallest among {pi.x | 1 ≤ i ≤ n}, for h = 1, 2, . . . , k − 1. We then
place each point in P into k components delineated by these k − 1 values. It
is clear that this can be done in O(kn) time.8 As for Step 2, we showed in
Sect. 4.3 that finding a big component spanned by an optimal step s∗

j takes
O(n) time, since k is a constant. Step 3 also runs in O(n) time by Lemma 7.
Since Steps 1 to 3 are repeated O(log n) times, each time with a point set whose
size is at most a constant fraction of the size of the previous set, the total time
is also O(n), when k is a constant. By solving a recurrence relation for the
running time of Algorithm Find k-Step Function, we can show that it runs in
O(22k log kn) = O(k2kn) time.

Theorem 1. Given a set of n points in the plane P = {p1, p2, . . . , pn}, we can
find the optimal k-step function that minimizes the maximum distance to the n
points in O(k2kn) time. 	

Thus the algorithm is optimal for a fixed k.

6 Conclusion and Discussion

We have presented a linear time algorithm to solve the optimal k-step function
problem, when k a constant. Most of the effort is spent on identifying a big
component. It is desirable to reduce the constant of proportionality.

Our algorithm is directly applicable to solve the size-k histogram construction
problem [13] in optimal linear time when k is a constant. The line-constrained k
center problem is defined by: Given a set P of weighted points and a horizontal
line L, determine k centers on L such that the maximum weighted distance
of the points to their closest centers is minimized. This problem was solved in
optimal O(n log n) time for arbitrary k even if the points are sorted [14,20]. The
technique presented here can be applied to solve this problem in linear time if k
is a constant.

A possible extension of our work reported here is to use a cost other than
the weighted vertical distance. There is a nice discussion in [13] on the various
measures one can use.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n logn) sorting network. In: Proceed-
ings of the 15th Annual ACM Symposium on Theory of Computing (STOC), pp.
1–9 (1983)

2. Bhattacharya, B., Shi, Q.: Optimal algorithms for the weighted p-center problems
on the real line for small p. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.
LNCS, vol. 4619, pp. 529–540. Springer, Heidelberg (2007)

8 This could be done in O(n log k) time.

96 B. Bhattacharya et al.

3. Bhattacharya, B., Das, S.: Prune-and-search technique in facility location. In:
Proceedings of the 55th Conference on Canadian Operational Research Society
(CORS), p. 76, May 2013

4. Chen, D.Z., Li, J., Wang, H.: Efficient algorithms for the one-dimensional k-center
problem. Theor. Comput. Sci. 592, 135–142 (2015)

5. Chen, D.Z., Wang, H.: Approximating points by a piecewise linear function: I. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 224–233.
Springer, Heidelberg (2009)

6. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J.
ACM 34, 200–208 (1987)

7. Dı́az-Báñez, J., Mesa, J.: Fitting rectilinear polygonal curves to a set of points in
the plane. Eur. J. Oper. Res. 130, 214–222 (2001)

8. Fournier, H., Vigneron, A.: Fitting a step function to a point set. Algorithmica 60,
95–101 (2011)

9. Fournier, H., Vigneron, A.: A deterministic algorithm for fitting a step function to
a weighted point-set. Inf. Process. Lett. 113, 51–54 (2013)

10. Frederickson, G.: Optimal algorithms for tree partitioning. In: Proceedings of the
2nd ACM-SIAM Symposium on Discrete Algorithms, pp. 168–177 (1991)

11. Frederickson, G., Johnson, D.: Generalized selection and ranking. SIAM J. Com-
put. 13(1), 14–30 (1984)

12. Gabow, H., Bentley, J., Tarjan, R.: Scaling and related techniques for geometry
problems. In: Proceedings of the 16th Annual ACM Symposium on Theory of
Computing (STOC), pp. 135–143 (1984)

13. Guha, S., Shim, K.: A note on linear time algorithms for maximum error his-
tograms. IEEE Trans. Knowl. Data Eng. 19, 993–997 (2007)

14. Karmakar, A., Das, S., Nandy, S.C., Bhattacharya, B.: Some variations on con-
strained minimum enclosing circle problem. J. Comb. Optim. 25(2), 176–190 (2013)

15. Liu, J.-Y.: A randomized algorithm for weighted approximation of points by a step
function. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508,
pp. 300–308. Springer, Heidelberg (2010)

16. Lopez, M.A., Mayster, Y.: Weighted rectilinear approximation of points in the
plane. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008.
LNCS, vol. 4957, pp. 642–653. Springer, Heidelberg (2008)

17. Megiddo, N.: Applying parallel computation algorithms in the design of serial
algorithms. J. ACM 30, 852–865 (1983)

18. Megiddo, N.: Linear-time algorithms for linear-programming in R3 and related
problems. SIAM J. Comput. 12, 759–776 (1983)

19. Wang, D.: A new algorithm for fitting a rectilinear x-monotone curve to a set of
points in the plane. Pattern Recogn. Lett. 23, 329–334 (2002)

20. Wang, H., Zhang, J.: Line-constrained k-median, k-means, and k-center problems
in the plane. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp.
3–14. Springer, Heidelberg (2014)

Random-Bit Optimal Uniform Sampling
for Rooted Planar Trees with Given Sequence

of Degrees and Applications

Olivier Bodini1,2(B), Julien David1,2, and Philippe Marchal1,2

1 LIPN, Institut Galilée, Université Paris 13, Villetaneuse, France
olivier.bodini@lipn.fr

2 LAGA, Institut Galilée, Université Paris 13, Villetaneuse, France

Abstract. In this paper, we redesign and simplify an algorithm due
to Remy et al. for the generation of rooted planar trees that satisfy a
given partition of degrees. This new version is now optimal in terms of
random bit complexity, up to a multiplicative constant. We then apply
a natural process “simulate-guess-and-proof” to analyze the height of a
random Motzkin in function of its frequency of unary nodes. When the
number of unary nodes dominates, we prove some unconventional height
phenomenon (i.e. outside the universal Θ(

√
n) behavior.)

1 Introduction

Trees are probably among the most studied objects in combinatorics, computer
science and probability. The literature on the subject is abundant and covers
many aspects (analysis of structural properties such as height, profile, path
length, number of patterns, but also dynamic aspects such as Galton-Watson
processes or random generation, ...) and use various techniques such as analytic
combinatorics, graph theory, probability, ...

More particularly, in computer science, trees are a natural way to structure
and manage data, and as such, they are the basis of many crucial algorithms
(binary search trees, quad-trees, 2–3–4 trees, ...). In this article, we are essentially
interested in the random sampling of rooted planar trees. This topic itself is also
subject to a extensive study. To mention only the best known algorithms, we
can distinguish four approaches. The first two of them are in fact more general,
but can be applied efficiently to the sampling of trees, the two others are ad hoc
to tree sampling:

1. The random sampling by the recursive method [FZC94] of generating a tree
from rules described with coefficients associated generating series [DPT10],

2. The random generation under Boltzmann model that allows uniform genera-
tion to approximate size from the evaluation of generating functions [DFLS04,
BP10,BRS12,BLR15].

O. Bodini—Supported by ANR MetaConc (ANR-15-CE40-0014, France)
J. David—Supported by ANR MetaConc (ANR-15-CE40-0014, France).

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 97–114, 2016.
DOI: 10.1007/978-3-319-29221-2 9

98 O. Bodini et al.

3. The random generation by Galton-Watson processes based on the dynamics
of branching processes [Dev12],

4. Samplers following Remy precepts [Rem85,ARS97a,ARS97b,BBJ13,BBJ14].

Concerning the generation of trees with a fixed degree sequence, the reference
algorithms are due to Alonso et al. [ARS97a]. However, the complete under-
standing of their approach seems to us quite intricate. Moreover their approach
is not optimal in terms of entropy (i.e. the minimum numbers of random bits
necessary to draw an object uniformly as described in the famous Knuth-Yao
paper [KY76]. See also [Lum13] for a modern description of an optimal uniform
sampler).

In this article, we give two versions of an algorithm for drawing efficiently
trees whose degree sequence is given. Our first version is fast and easy to imple-
ment, and its description is simple and (we hope) natural. It works, essentially
like Alonso’s algorithm, though we explicitly use the Lukasiewicz code of trees.
Our second version only modifies the two first steps of the first algorithm. It
is nearly optimal in terms of entropy because it uses in average only a linear
number of random bits to draw a tree. Moreover, Lukasiewicz codes and a very
elementary version of cyclic lemma allows us to give a simple proof of Tutte’s
theorem [Tut64] which gives in an explicit multinomial form the number of plane
trees with a given partition of the degrees.

From our sampler, we simulate various kinds of trees. We focus our attention
on unary-binary rooted planar trees (also called Motzkin trees) with a fixed
frequency of unary nodes. In particular, we look for the variation of the height
depending on the frequency of unary nodes. We can easily conjecture the nature
of the variation.

Our second contribution is to describe and prove the distribution of the
height according to the number of unary nodes. The proof follows a probabilis-
tic approach and essentially deals with the notion of continuous random trees
(CRT). Even if the distribution of the height still follows a classical theta law,
the expected value can leave the universal Θ(

√
n) behaviors.

The general framework used in this paper to describe trees is the setup of
analytic combinatorics even if we use some classical notion on word theory and a
basis of probabilistic concepts in the second part of the paper. More specifically,
we deal with the symbolic method to describe the bijection between Lukasiewicz
words and trees. A combinatorial class is a set of discrete objects O, provided
with a (multidimensional) size function s : O → N

d for some integer d, in such
a way that for every n ∈ N

d, the set of discrete objects of size n, denoted
by On, is finite. In the classical definition, the size is just scalar, but for our
parametrized problem this extension is more convenient. For more details, see
for instance [FS09]. This approach is very well suited to the definition of trees.
For instance, the class of binary trees B can be described by the following classical
specification: B = Z + ZB2.

In this framework, random sampling can be interpreted as follows. A size
uniform random generator is an algorithm that generates discrete objects of a

Random-Bit Optimal Uniform Sampling for Rooted Planar Trees 99

combinatorial class (O, s), such that for all objects o1, o2 ∈ On of the same size,
the probability to generate o1 is equal to the probability to generate o2.

The paper is organized as follows. Section 2 presents the definition of tree-
alphabets, valid words, Lukasiewicz words, ordered trees and the links between
the objects. Section 3 presents a re-description of an algorithm by Alonso et
al. [ARS97a], using the notion of Lukasiewicz words. Our approach is to prove the
algorithm step by step, using simple arguments. Section 4 presents the dichoto-
mous sampling method, which directly generates random valid words, using a
linear number of random bits. The last part of the paper follows a simulate-guess-
and-prove scheme. We first show some examples of random trees obtained from
the generator. Then, we experimentally and theoretically study the evolution of
the tree’s height according to the proportion of unary nodes.

2 Words and Trees

2.1 Valid Words and Lukasiewicz Words

This section is devoted to recall the one-to-one map between trees and
Lukasiewicz words. This bijection is the central point for the sampling part
of the paper. Let us recall basic definitions on words. An alphabet Σ is a finite
tuple (a1, ..., ad) of distinct symbols called letters. A word w defined on Σ is a
sequence of letters from Σ. In the following, wi denotes the i-th letter of the
word w, |w| its length and for all letter a ∈ Σ, |w|a counts the occurrences of
the letter a in w. A language defined on Σ is a set of words defined of Σ.

The following new notion of tree-alphabet will make sense in the next sections.
It will allow us to define subclasses of Lukasiewicz words which are in relation
to natural combinatorial classes of trees.

Definition 1. A tree-alphabet Σf is a couple (Σ, f) constituted by an alphabet
Σ = (a1, . . . , ak) and a function f : Σ → N ∪ {−1} that associates each symbol
of Σ to an integer such that:

i. f(a1) = −1,
ii. f(ai) ≤ f(ai+1), for 1 ≤ i < k.

We finish this section by introducing Lukasiewicz words.

Definition 2. A word w on the tree-alphabet Σf = ((a0, ..., ak), f) is a f -
Lukasiewicz word if:

i. for all i ≤ n, we have
∑i

j=1 f(wj) ≥ 0
ii.

∑n
i=1 f(wi) = −1

When the condition ii. is verified, we say that the word w is f-valid. By exten-
sion and convenience, we also say that a k-tuple (n1, . . . , nk) is f-valid when∑k

i=1 f(ni) = −1.
The Lukasiewicz words Lf are just the union over all tree-alphabet Σf of

the f -Lukasiewicz words.

100 O. Bodini et al.

A classical and useful representation of words on a tree-alphabet is to plot
a path describing the evolution of

∑i
j=1 f(wj). Then, a word of size n is valid

if and only if the path terminates at position (n,−1) and it is a Lukasiewicz
word if and only if the only step that goes under the x − axis is the last one. In
particular, these remarks prove that we can verify in linear time if a word is or
not a Lukasiewicz word.

For instance, if f(a) = −1, f(b) = 0 and f(c) = 1, the following paths
represent (from left to right) a Lukasiewicz word, a f -valid word and a non valid
word:

i

∑i
j=1 f(wj)

c c b a b a a b a b a c c a c a c a b a a

Finally, we can give an alternative definition of Lukasiewicz words in the
framework of the symbolic method as follows: a word w defined over Σf is a
Lukasiewicz word if w = aw1 . . . wf(a)+1 where a ∈ Σf and for all i ≤ f(a) + 1,
the word wi is a Lukasiewicz word. In other word, the combinatorial class of
Lukasiewicz words follows the recursive specification:

L =
∑

a∈Σf

aLf(a)+1

2.2 The Tree Classes

Rooted planar trees are very classical combinatorial objects. Let us recall how we
can define them recursively and how this can be described by a formal grammar.
Let us begin by the rooted tree class T over the tree-alphabet Σf which can be
defined as the smallest set verifying:

– [x] ∈ T for every x ∈ Σ such that f(x) = −1.
– Let x such that f(x) = k and T1, · · · , Tk in T , then x[T1, · · · , Tk] is in T .

So, the set T of all planar Σf -labelled trees is a combinatorial class whose size of
a tree T is given by (|f−1(a1)|, · · · , |f−1(ad)|). And just observing the recursive
definition, we can specify it by the following symbolic grammar:

G =
∑

s∈Σf

sGf(s)+1

Theorem 1 (Lukasiewicz). The combinatorial class of f-Lukasiewicz words
Lf is isomorphic to the combinatorial class of trees described by the specification
(grammar) G =

∑
s∈Σf

sGf(s)+1.

An explicit bijection can be done as follows: from a Σf -labelled tree T , a prefix
walk gives a word. This word is a f -Lukasiewicz word. Conversely, from a f -
Lukasiewicz word w, we build a tree recursively, the root is of degree f(w1) + 1
and we continue with the children as a left-first depth course.

Random-Bit Optimal Uniform Sampling for Rooted Planar Trees 101

3 A Random Sampler as a Proof of Tutte’s Theorem

This section is devoted to describe the algorithm that we propose for drawing
uniformly a rooted planar tree with a given sequence of degree. The diagram
(Fig. 1) shows the very simple strategy we adopt.

Input: A tree-alphabet Σf
of k letters, a tuple n

Permutation
Probability of each
permutation: 1

n!

Valid Word
Probability for each

valid word:

∏k
i=1 ni!

n!

Lukasiewicz
Word

Probability for each

Lukasiewicz word:

∏k
i=1 ni!
(n−1)!

Planar Tree

Probability for each

tree:

∏k
i=1 ni!
(n−1)!

Fisher-Yates Algorithm: Θ(n)

Dichotomous Sampling:
Θ(n) random bit complex-
ity

Transform according to n

Circular permutation: Θ(n)

Bijection in Θ(n)

Fig. 1. Diagram of the two possible algorithms. The algorithm (Sect. 3) using the
Fisher-Yates algorithm uses Θ(n log n) random bits to generate a random tree with
n nodes, but is easy to implement. The algorithm (Sect. 4) using the Knuth-Yao
algorithm [KY76] or our dichotomous sampling method consums a linear number of
random-bit, but doesn’t allow us to prove Tutte’s enumerative theorem.

The first algorithm contains 4 steps. The first and the last steps respectively
consist in generating a random permutation using the Fisher-Yates algorithm
and the transformation of a Lukasiewicz word into a tree. The two other steps
are described in the two following subsections. Each subsection contains an algo-
rithm, the proof of its validity, and its time and space complexity. We also uses
the transformations to obtain enumeration results on each combinatorial object.
Those enumeration results will be useful to prove that the random generator is
size-uniform.

From a Permutation to a Valid Word. This part is essentially based on
the following surjection from permutations to words. Let Wn be the set of words
of size n such that for all 1 ≤ i ≤ k, there are ni occurrences of the letter ai.
Consider the application Φ from the set of permutations Σn of size n to the
set of words Wn such that Φ((σ1, ..., σn)) = φ(σ1) · · · φ(σn) where φ(k) = ai if
n1 + · · · ni−1 + 1 ≤ k ≤ n1 + · · · ni.

102 O. Bodini et al.

Algorithm 1. From a permutation to a valid word
Input: A tree-alphabet Σf of k letters and a tuple n, a permutation σ of

length n
Output: A tabular w encoding a valid word

1 Create a tabular w of size n;
2 pos ← 1;
3 for i ∈ {1, . . . , k} do
4 for j ∈ {1, . . . , ni} do
5 w[σpos] ← ai;
6 pos ← pos + 1;

7 return w;

Lemma 1. For each valid word w ∈ Σn
f defined over a k letters alphabet, the

number of permutations associated to w by the Algorithm 1 is exactly
∏k

i=1 ni!.

Proof. Let us define mi =
∑i−1

j=1 nj and m1 = 0. The application is invariant
by permutation of the values inside [mi, . . . , mi + ni]. So, the cardinality of the
kernel is

∏k
i=1 ni!.

Corollary 1. The number of valid words in Σn
f is exactly n!

∏k
i=1 ni!

.

Lemma 2. The time and space complexity of Algorithm 1 is Θ(n).

Proof. The space complexity is linear since we create a tabular of size n. Instruc-
tions of line 1, 2, 5, 6 can be done in constant time. Lines 5 and 6 are executed∑k

i=1 ni times, that is to say n times.

From a Valid Word to a Lukasiewicz Word. This part is essentially based
on a very simple version of the cyclic lemma which says that among the n
circular permutations of a valid word, there is only one which is a Lukasiewicz
word. Therefore, if we have a uniform random valid word and transform it into
a Lukasiewicz word, we obtain a uniform Lukasiewicz word.

i

∑i
j=1 f(wj)

b a b a c a c

Circular

Permutation
i

∑i
j=1 f(wj)

c a c b a b a

Fig. 2. An example: the valid word babacac is not a Lukasiewicz word but cacbaba is.
The proof consists to find the smallest value of i such that

∑i
j=1 f(wi) is minimal, and

compute the word wi+1 · · · w|w|w1 · · · wi .

Random-Bit Optimal Uniform Sampling for Rooted Planar Trees 103

Lemma 3. For each valid word w ∈ Σn
f , there exists a unique integer � such

that w�+1 · · · wnw1 · · · w� is a Lukasiewicz word. Such integer is defined as the
smallest integer that minimizes

∑�
j=1 f(wj).

Proof. Let w′ = w�+1 · · · wnw1 · · · w� be the circular permutation of w at a posi-
tion �. We notice that w′ is a valid word. Let’s now picture the path representa-
tion of w and w′ (see Fig. 2). Let b(i) (resp. (a(i)) be the height of the path at
position i before (resp. after) the circular permutation. In other words:

b(i) =
i∑

j=1

f(wj)

a(i) =

{
b(i) − b(�), for all i ∈ {� + 1, . . . , n}
b(i) − b(�) − 1, for all i ∈ {1, . . . , �}

w′ is a Lukasiewicz word iff a(i) ≥ 0, for all i ∈ {1, . . . , � − 1, � + 1, . . . , n}, that
is to say:

a(i) ≥ 0 ⇐⇒
{

b(i) ≥ b(�), for all i ∈ {� + 1, . . . , n}
b(i) > b(�), for all i ∈ {1, . . . , � − 1}

This concludes the proof.

Corollary 2. The number of Lukasiewicz words in Σn
f is exactly (n−1)!

∏k
i=1 ni!

.

Proof. From Lemma 3 we know that each Lukasiewicz word can be obtained
from exactly n valid words. We conclude using Corollary 1.

Corollary 3 (Tutte). The number of trees having ni nodes of degree i and such
that (n1, ..., nk) is f-valid is exactly (n−1)!

∏k
i=1 ni!

.

Proof. It is a direct consequence of the bijection between trees and Lukasiewicz
words.

We use the property of Lemma 3 to describe an algorithm that transforms any
valid word into its associated Lukasiewicz word.

Lemma 4. Algorithm 2 transforms a valid word into its Lukasiewicz word. Its
time and space complexity is Θ(n).

Proof. The space complexity is linear since we create a tabular v of size n.
The first loop computes the unique integer � such that w�+1 · · · wnw1 · · · w� is a
Lukasiewicz word, in linear time. The second and the third loop fill the tabular
v of length n such that v = w�+1 · · · wnw1 · · · w�.

3.1 A Naive Algorithm

Theorem 2. Algorithm 3 is a random planar tree generator. Its time and space
arithmetic complexity is linear.

104 O. Bodini et al.

Algorithm 2. From a valid word to a Lukasiewicz word
Input: A valid word w of length n according to (Σ, f, occ)
Output: A tabular v encoding a Lukasiewicz word

1 min ← cur ← f(w1);
2 � ← 1;
3 for i ∈ {2, . . . , n} do
4 cur ← cur + f(wi);
5 if cur < min then
6 � ← i;
7 min ← cur;

8 Create a tabular v of length n;
9 for i ∈ {1, . . . , �} do

10 v[i + � + 1] ← w[i];

11 for i ∈ {� + 1, . . . , n} do
12 v[i − � − 1] ← w[i];

13 return v;

Algorithm 3. Random Planar Tree Generator
Input: A tree-alphabet Σf of k letters and a tuple n
Output: A random planar tree satisfying Σf and n

1 Generate a random permutation σ using Fisher-Yates Algorithm;
2 Transform σ into a valid word w;
3 Transform w into a Lukasiewicz word v;
4 Transform v into a planar tree t
5 return t;

4 The Dichotomous Sampling Method

Using the diagram of Fig. 1 above, we arrive at the algorithm 3. However, this
algorithm is not optimal in the number of random bits because drawing the per-
mutation consumes more bits than necessary. We shall describe another method
to generate valid words more efficiently. The problem is just to draw a f -valid
word from a f -valid tuple n = (n1, . . . , nk). For that purpose, consider the ran-
dom variable A on the letters of Σ, assume that A1 follows the distribution Dn:
Prob(A1 = ai) =

ni∑
j nj

, draw A1 (says A1 = aj) and put it in the first place

in the word (i.e. w1 = aj). Now, A2 is conditioned by A1, just by decrease by
one nj , again draw A2 and put it in the second place, and so on. This algo-
rithm is described below (see Algorithm 4). It is clear that the built word is a
f -valid word, because it contains exactly the good number of each letters. Now,
we prove that it is drawn uniformly, because in a uniform f -valid word, the first
letter follows exactly the good distribution Dn, and the sequel follows directly
by induction.

Random-Bit Optimal Uniform Sampling for Rooted Planar Trees 105

Algorithm 4. From a tuple n to a valid word
Input: A tree-alphabet Σf of k letters and a tuple n
Output: A tabular w encoding a valid word

1 Create a tabular w of size n;
2 for i ∈ {1, . . . , n} do
3 d ← Distrib(n) (d is drawn according to the distribution Dn);
4 w[i] ← ak;
5 n ← n − ed (ed denotes the d-th canonical vector);

6 return w;

So, to obtain a random-bit optimal sampler, we just need to have an optimal
sampler for general discrete distribution (line 3). But, it is exactly the result
obtained by Knuth-Yao [KY76]. Therefore we have the following result:

Theorem 3. By replacing the two first steps of Algorithm 3 by Algorithm 4,
one obtains a random-bit optimal sampler for rooted planar tree with a given
sequence of degree.

Nevertheless, according to the authors, the Knuth-Yao algorithm can be inef-
ficient in practice (because it needs to solve the difficult question to generate
infinite DDG-trees). There is a long literature on it which is summarized in
the book of L. Devroye [Dev86]. Let us just mention the interval sampler from
[HH97] and the alias methods [Vos91,Wal77,MTW04].

We propose in Algorithm 5 a nearly optimal and very elementary algorithm,
called dichotomous sampling, to draw a random variable X following a given
discrete distribution of k parts, say, Prob(X = xi) = nk/n for 1 ≤ i ≤ k. The
principle is the following. We assume that [1, n] is partionned into k parts of
lengths n1, ..., nk. Now, we subdivide the interval [1, n] by the middle and we
select one of the part (using a random bit), if this (half-)interval is included in
one of the parts induced by the partition, we return the number associated to
this part, otherwise we restart the subdivision on this (half-)interval until we
reach an unambiguous interval.

In terms of complexity, the dichotomous sampling algorithm implies the fol-
lowing induction for Cn the mean number of flips needed for drawing when there
are n + 1 parts: C1 = 2 and Ck = 1 + 1

2 max0≤k≤m(Cm + Ck−m). First, let us
assume that Ck is concave, so let us consider C̃k = 1 + 1

2 (C̃� k
2 � + C̃� k

2). A short

calculation shows that C̃n =
ln2(n − 1)� + 1 +
n

2�ln2(n−1)� . Now, by induction,

we can easy check that Ck = C̃k. So, in particular, Ck ≤ 2 + ln2(k).
Note that the sequence Ck can also be analyzed by classical Mellin transform
techniques and the periodic phenomena we show in Fig. 3 is quite familiar.

106 O. Bodini et al.

Algorithm 5. Dichotomous sampling - Distrib(n)

Input: a tuple n = (n1, . . . , nk) such that n =
∑k

i=1 ni

Output: An integer between 1 and k according to the distribution n
1 i ← 1;
2 j ← k;
3 min ← 0;
4 max ← n;
5 while i �= j do
6 if DrawRandomBit is equal to 1 then
7 tmp ← min;
8 min ← min+max

2
;

9 while min > (tmp + ni) do
10 i ← i + 1;
11 tmp ← tmp + 1;

12 else
13 tmp ← max;
14 max ← min+max

2
;

15 while max < (tmp − ni) do
16 j ← j − 1;
17 tmp ← tmp − nj ;

18 return i;

5 Simulate-Guess-and-Prove: Analysis of Height

In this section, we study experimentally and theoretically the height of random
Motzkin trees (trees in which a node can be either a leaf, a unary or a binary
node) when the proportion of unary nodes fluctuates.

Figure 4 shows example of random Motzkin trees generated with the algo-
rithm from Sect. 3, with different proportions of unary nodes. Figure 5 shows the
evolution of the height of trees when we increase the proportion of unary nodes.
In the following, we study the height of Motzkin trees according to the proportion
of unary nodes, using exclusively probabilistic arguments.

The continuum random tree (CRT) is a random continuous tree defined by
Aldous [Ald93], which is closely related to Brownian motion. In particular, the

Fig. 3. Graphic for Mean Cost
Ck

2 + ln2(k)
of the dichotomous sampling.

Random-Bit Optimal Uniform Sampling for Rooted Planar Trees 107

0% 10% 20% 30% 40%

50% 60% 70% 80% 90%

Fig. 4. Example of Motzkin trees with 101 nodes generated with our algorithm, where
the proportion of unary nodes varies from 0 % to 90 %.

height of the CRT has the same law as the maximum of a Brownian excursion.
The CRT can be viewed as the renormalized limit of several models of large
trees, in particular, critical Galton-Watson trees with finite variance conditioned
to have a large population [GK98,Duq,Mar08]. Our model does not exactly fit
into this framework, however, it is quite clear that the proofs can be adapted to
our situation. We show here a convergence result related to the height of Motzkin
trees.

Theorem 1. Let cn with n ≥ 1 be a sequence of integers such that cn = o(n)
and (log n)2 = o(cn). Then one can construct, on a single probability space, a
family Tn with n ≥ 1 of random trees and a random variable H > 0 such that

(i) for every n ≥ 1, Tn is a uniform Motzkin tree with n vertices and cn + 1
leaves.

(ii) H has the law of the height of the CRT
(iii) almost surely,

√
cn

n height(Tn) → H

Proof. The proof’s idea is the following:

– A Motzkin tree can been seen as a binary tree with 2cn + 1 nodes in which
each node can be replaced by a sequence of unary nodes. If n is the size of
the Motzkin tree, then the number of unary node is n − 2cn − 1.

– The height of a leaf in the Motzkin tree is equal its length in the binary tree
plus the lengths of the sequences of unary nodes between the leaf and the root
of the tree.

– We study the probability that the lengths sum of the sequences of unary nodes
between a given leaf and the root is equal to a given value.

– We use this result to frame the generic height of Tn.

108 O. Bodini et al.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

H
ei

gh
t /

 s
qu

ar
e-

ro
or

 o
f n

Proportion of unary nodes (%)

Height of a random tree with n nodes,divided by the square-root of n

Fig. 5. In this example, all random trees have n = 1000 nodes. For each proportion of
unary nodes, varying from 0 to 99, 9 percent, 10 000 Motzkin trees have been generated.
The curve shows the variation of the normalized by

√
n average height of Motzkin trees.

We assume that cn for n ≥ 1 is non-decreasing, otherwise, the proof can be
easily adapted. Let us call skeleton of a Motzkin tree the binary tree obtained
by removing the vertices that have one child. Denote by Sn the skeleton of Tn.
For a leaf l, let d(l) be the distance of l to the root in Sn and D(l) the distance
of l to the root in Tn.

First, we can construct the sequence Sn with n ≥ 1 by Rémy’s algorithm
[Rem85] and it can be shown that Sn converges in a strong sense to a CRT
[CHar], in particular, height(Sn)√

cn
→ H where H has the law of the height of the

CRT.
Next, for every n ≥ 1, we can obtain Tn from Sn by replacing each edge

e of Sn with a “pipe” containing Xe nodes of degree 2. The family (Xe) is
a 2cn-dimensional random vector with non-negative integer entries, and it is
uniformly distributed over all vectors of this kind such that the sum of the
entries is n − 2cn − 1. Let us denote (Xe) = (X1, . . . , X2cn

) (we should write
(X(n)

1 , . . . , X
(n)
2cn

) but we want to make the notation lighter).
It is well known in probability that the random variable (X1, . . . , X2cn

) has the
same law as (Y1, . . . , Y2cn

) conditional on the event
∑

i Yi = n − 2cn − 1, where
the Yi are independent geometric random variables with mean mn = n−2cn−1

2cn

Moreover, since the sum
∑

i Yi has mean n − 2cn − 1 and variance ∼ cnm2
n, a

classical local limit theorem [Gne48] tells us that there exists a constant c > 0
such that for every n ≥ 1,

P(
∑

i

Yi = n − 2cn − 1) ≥ 1
c
√

cnmn
(1)

Fix ε > 0. Pick at random a realization of Rémy’s algorithm, yielding a sequence
of binary trees Sn such for every n ≥ 1, Sn has cn +1 leaves. Then almost surely,

Random-Bit Optimal Uniform Sampling for Rooted Planar Trees 109

there exists H > 0 such that the height of Sn, which we denote hn, satisfies

hn√
cn

→ H (2)

From now on, since we have chosen our sequence Sn, the symbols P and E will
refer to the probability and expectation with respect to the random variables
(Xi), (Yi), (Zi).

If a leaf l in Sn is at a distance d(l) from the root, then its distance D(l) from
the root in Tn is the sum of d(l) random variables in the family (Xe). Therefore,

P(D(l) = k) = P(X1 + . . . + Xd(l) = k)

= P(Y1 + . . . + Yd(l) = k|
∑

i

Yi = n − 2cn − 1)

=
P(Y1 + . . . + Yd(l) = k,

∑
i Yi = n − 2cn − 1)

P(
∑

i Yi = n − 2cn − 1)

≤ P(Y1 + . . . + Yd(l) = k)
P(

∑
i Yi = n − 2cn − 1)

The right-hand side is maximized when d(l) = hn. We shall now use independent
exponential random variables (Z1, . . . , Z2cn

) with mean

μn =
1

log(mn/(mn − 1))
(3)

It is easy to check that for every integer k ≥ 0, P(Z1 ∈ [k, k + 1]) = P(Y1 = k).
Therefore, we can define Yi as the integer part of Zi for each i. Since Zi ≥ Yi

for each i,

P

(
Y1 + . . . + Yhn√

cnmn
≥ (1 + ε)H

)
≤ P

(
Z1 + . . . + Zhn√

cnmn
≥ (1 + ε)H

)
.

Subtracting the expectation,

P

(
Z1 + . . . + Zhn√

cnmn
≥ (1 + ε)H

)

= P

(
Z1 + . . . + Zhn

− hnμn√
cnmn

≥ (1 + ε)H − hnμn√
cnmn

)
.

Because of (3) and (2), we have, for n large enough,
(
1 − ε

2

)
H ≤ hnμn√

cnmn
≤(

1 + ε
2

)
H. This entails that for n large enough, (1 + ε)H − hnμn√

cnmn
≤ εH

2 and
therefore,

P

(
Z1 + . . . + Zhn

− hnμn√
cnmn

≥ (1 + ε)H − hnμn

)

≤ P

(
Z1 + . . . + Zhn

− hnμn√
cnmn

≥ εH

2

)

110 O. Bodini et al.

We now use the Laplace transform: for every λ > 0, E (exp(λZ1 − μn)) = e−λμn

1−λμn
.

The Markov’s inequality yields

P

(
Z1 + . . . + Zhn

− hnμn√
cnmn

≥ εH

2

)
≤

(
e−λμn

1 − λμn

)hn

exp
(

−λ
√

cnmn
εH

2

)
.

Let (tn) be a sequence of positive real numbers such that tn tends to 0 and that√
cntn/ log n tends to infinity. Choose λ such that λμn = tn. Then,

P

(
Z1 + . . . + Zhn

− hnμn√
cnmn

≥ εH

2

)
≤

(
e−tn

1 − tn

)hn

exp
(

− tn
√

cnmnεH

2μn

)
.

For n large enough, we have mn ≥ μn/2 and e−tn

1−tn
≤ 1 + 2t2n. Therefore, for n

large enough

P

(
Z1 + . . . + Zhn

− hnμn√
cnmn

≥ εH

2

)
≤ (1 + 2t2n)hn exp

(
−εHtn

√
cn

4

)

Summing up, if n is large enough, then for every leaf l,

P

(
D(l)√
cnmn

≥ (1 + ε)H
)

≤
(1 + 2t2n)hn exp

(
− εHtn

√
cn

4

)
P(

∑
i Yi = n − 2cn − 1)

Using the estimate (1),

P

(
D(l)√
cnmn

≥ (1 + ε)H
)

≤ c
√

cnmn(1 + 2t2n)hnexp
(

−εHtn
√

cn

4

)

Since there are cn + 1 leaves, and since the probability of the union is less that
the sum of the probabilities, for n large enough,

P

(
height(Tn)√

cnmn
≥ (1 + ε)H

)
≤ c(cn + 1)

√
cnmn(1 + 2t2n)hn exp

(
−εHtn

√
cn

4

)

The upper bound can be rewritten as

c exp
(

hn log(1 + 2t2n) − εHtn
√

cn

4
+ log mn +

3
2

log(cn + 1)
)

Recall that for n large enough, hn ≤ (1+ε/2)H
√

cn and then our bound becomes

exp
(

H
√

cn

[
(1 + ε/2) log(1 + 2t2n) − εtn

4

]
+ log mn +

3
2

log(cn + 1)
)

Since tn → 0, for n large
enough, [(1 + ε/2) log(1 + 2t2n) − εtn

4] ≥ − εtn

8 and so for n large enough, our

bound becomes bn = exp
(−Hεtn

√
cn

8 + log mn + 3
2 log(cn + 1)

)
Now because of

Random-Bit Optimal Uniform Sampling for Rooted Planar Trees 111

the assumption that
√

cntn/ log n → ∞, we remark that
∑

bn < ∞. Thus by the
Borel-Cantelli lemma, almost surely, conditioned to the sequence Sn, for n large
enough, height(Tn)√

cnmn
≤ (1+ε)H Integrating with respect to the law of the sequence

(Sn), we find that almost surely, there exists a random variable H which has the
law of the height of the CRT and such that for n large enough,

height(Tn)√
cnmn

≤ (1 + ε)H

Likewise, one shows that almost surely, for n large enough,

height(Tn)√
cnmn

≥ (1 − ε)H

This being true for every positive ε, our result is established.

Remark. In the case when the number of leaves is proportional to the number
of vertices, cn ∼ kn for some constant k ∈ (0, 1/2], it can be shown by the same
arguments that height(Tn)√

n
converges to 2(1 − k)H.

In the case when (log n)2/cn does not tend to 0, a refinement in the proof is
necessary. Typically, replacing the inequality (1) with a stochastic domination
argument would prove that the height of the tree converges in distribution when-
ever cn → ∞. To prove an almost sure convergence, a more detailed construction
would be needed.

General Case. We only assume that cn tends to infinity. The construction of the
skeleton and the convergence of Rémy’s algorithm still hold. The representation
of the variables Xi as conditioned versions of the Yi can be refined in the following
manner:

P(X1 + . . . + Xd(l) ≥ A)

= P(Y1 + . . . + Yd(l) ≥ A|
∑

i

Yi = n − 2cn − 1)

=
∞∑

k=A

P(Y1 + . . . + Yd(l) = k|
∑

i

Yi = n − 2cn − 1)

=
∞∑

k=A

P(Y1 + . . . + Yd(l) = k|
2cn∑

i=d(l)

Yi = n − 2cn − 1 − k)

=
∞∑

k=A

P(Y1 + . . . + Yd(l) = k,
∑2cn

i=d(l) Yi = n − 2cn − 1 − k)

P(
∑

i Yi = n − 2cn − 1)

=
∞∑

k=A

P(Y1 + . . . + Yd(l) = k)P(
∑2cn

i=d(l) Yi = n − 2cn − 1 − k)

P(
∑

i Yi = n − 2cn − 1)

112 O. Bodini et al.

Gnedenko’s result also gives the existence of a real C such that for every integer k,

P(
2cn∑

i=d(l)

Yi = n − 2cn − 1 − k)) ≤ C√
cn − d(l)mn

(4)

From (1) and (4) we deduce that if d(l) ≤ cn/2, the following stochastic domi-
nation bound holds:

P(Y1 + . . . + Yd(l) ≥ A|
∑

i

Yi = n − 2cn − 1)

≤ C
√

2
c

∞∑
k=A

P(Y1 + . . . + Yd(l) = k)

To sum up, if d(l) ≤ cn/2,

P(X1 + . . . + Xd(l) ≥ A) ≤ C
√

2
c

P(Y1 + . . . + Yd(l) ≥ A) (5)

Recall that for every leaf l of Sn, d(l) ≤ hn, and that because of (2), the condition
d(l) ≤ cn/2 is satisfied for all leaves if n is large enough. The bound using
conditioning gave

P

(
D(l)√
cnmn

≥ (1 + ε)H
)

≤
(1 + 2t2n)hn exp

(
− εHtn

√
cn

4

)
P(

∑
i Yi = n − 2cn − 1)

But using the stochastic domination bound (5), we can improve this to

P

(
D(l)√
cnmn

≥ (1 + ε)H
)

≤ C
√

2
c

(1 + 2t2n)hn exp
(

−εHtn
√

cn

4

)

for n large enough. Taking tn = c
−1/4
n and using (2), we find that the probability

P

(
D(l)√
cnmn

≥ (1 + ε)H
)

tends to 0 as n goes to infinity, for every positive ε.
Likewise, if en is a leaf in Sn such that d(l) = hn, one can prove that the
probability P

(
D(en)√
cnmn

≤ (1 − ε)H
)

goes to 0 as n goes to infinity. This proves

that height(Sn)√
cn

converges in distribution to H. So we reach the more general
statement:

Theorem 2. Let cn with n ≥ 1 be a sequence of integers such that cn → ∞
as n → ∞. Let Tn with n ≥ 1 be a family of random trees such that for every
n ≥ 1, Tn is a uniform Motzkin tree with n vertices and cn + 1 leaves. Then√

cn

n height(Tn) converges in distribution to the law of the height of a CRT.

6 Conclusion

In this paper, we gave two new samplers for rooted planar trees that satisfy a
given partition of degrees. This sampler is now optimal in terms of random bit

Random-Bit Optimal Uniform Sampling for Rooted Planar Trees 113

complexity. We apply it to predict the average height of a random Motzkin tree
in function of its frequency of unary nodes. We then prove some unconventional
height phenomena (i.e. outside the universal Θ(

√
n) behavior). Our work can

certainly be extended to more complicate properties than the list of degrees.
Letters of a tree-alphabet could for instance encode more complicated patterns,
whose number of leaves would be given by the function f .

References

[Ald93] Aldous, D.: The continuum random tree. iii. Ann. Probab. 21(1), 248–289
(1993)

[ARS97a] Alonso, L., Remy, J.-L., Schott, R.: A linear-time algorithm for the genera-
tion of trees. Algorithmica 17(2), 162–183 (1997)

[ARS97b] Alonso, L., Remy, J.-L., Schott, R.: Uniform generation of a schröder tree.
Inf. Process. Lett. 64(6), 305–308 (1997)

[BBJ13] Bacher, A., Bodini, O., Jacquot, A.: Exact-size sampling for motzkin trees
in linear time via boltzmann samplers and holonomic specification. In:
ANALCO, pp. 52–61 (2013)

[BBJ14] Bacher, A., Bodini, O., Jacquot, A.: Efficient random sampling of binary and
unary-binary trees via holonomic equations. Arxiv, abs/1401.1140 (2014)

[BLR15] Bodini, O., Lumbroso, J., Rolin, N.: Analytic samplers and the combinatorial
rejection method. In: Proceedings of the Twelfth Workshop on Analytic
Algorithmics and Combinatorics, ANALCO 2015, San Diego, CA, USA,
January 4, 2015, pp. 40–50 (2015)

[BP10] Bodini, O., Ponty, Y.: Multi-dimensional boltzmann sampling of languages.
In: DMTCS Proceedings, number 01 in AM, Vienne, Austria, pp. 49–64
(2010). 12pp

[BRS12] Bodini, O., Roussel, O., Soria, M.: Boltzmann samplers for first-order dif-
ferential specifications. Discrete Appl. Math. 160(18), 2563–2572 (2012)

[CHar] Curien, N., Haas, B.: The stable trees are nested. Prob. Theory Rel. Fields,
to appear

[Dev86] Devroye, L.: Non-Uniform Random Variate Generation. Springer-Verlag,
New York (1986)

[Dev12] Devroye, L.: Simulating size-constrained galton-watson trees. SIAM J. Com-
put. 41(1), 1–11 (2012)

[DFLS04] Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for
the random generation of combinatorial structures. Comb. Probab. Comput.
13(4–5), 577–625 (2004)

[DPT10] Denise, A., Ponty, Y., Termier, M.: Controlled non uniform random genera-
tion of decomposable structures. Theoret. Comput. Sci. 411(40–42), 3527–
3552 (2010)

[Duq] Duquesne, T.: A limit theorem for the contour process of conditioned galton-
watson trees

[FS09] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University
Press, New York (2009)

[FZC94] Flajolet, P., Zimmermann, P., Van Cutsem, B.: A calculus for the random
generation of labelled combinatorial structures. Theor. Comput. Sci. 132(2),
1–35 (1994)

114 O. Bodini et al.

[GK98] Geiger, J., Kersting, G.: The galton-watson tree conditioned on its height.
In: Proceedings 7th Vilnius Conference (1998)

[Gne48] Gnedenko, B.V.: On a local limit theorem of the theory of probability.
Uspehi Matem. Nauk (N. S.) 3(25), 187–194 (1948)

[HH97] Hao, T.S., Hoshi, M.: Interval algorithm for random number generation.
IEEE Trans. Inf. Theor. 43(2), 599–611 (1997)

[KY76] Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number gen-
eration. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions
and Recent Results. Academic Press, New York (1976)

[Lum13] Lumbroso, J.: Optimal discrete uniform generation from coin flips, and appli-
cations. CoRR, abs/1304.1916 (2013)

[Mar08] Marchal, Ph.: A note on the fragmentation of a stable tree. Discrete Math.
Theor. Comput. Sci. Proc., pp. 489–499 (2008)

[MTW04] Marsaglia, G., Tsang, W.W., Wang, J.: Fast generation of discrete random-
variables. J. Stat. Softw. 11(3), 1–11 (2004)

[Rem85] Remy, J.-L.: Un procédé itératif de dénombrement d’arbres binaires et son
application a leur génération aléatoire. ITA 19(2), 179–195 (1985)

[Tut64] Tutte, W.T.: The number of planted plane trees with a given partition. Am.
Math. Mon. 71(3), 272–277 (1964)

[Vos91] Vose, M.D.: A linear algorithm for generating random numbers with a given
distribution. IEEE Trans. Softw. Eng. 17(9), 972–975 (1991)

[Wal77] Walker, A.J.: An efficient method for generating discrete random variables
with general distributions. ACM Trans. Math. Softw. 3(3), 253–256 (1977)

Axiomatic Characterization of Claw
and Paw-Free Graphs Using Graph

Transit Functions

Manoj Changat1(B), Ferdoos Hossein Nezhad1, and Narayanan Narayanan2

1 Department of Futures Studies, University of Kerala, Thiruvananthapuram, India
{mchangat,ferdows.h.n}@gmail.com

2 Department of Mathematics, IIT Madras, Chennai, India
naru@iitm.ac.in

Abstract. The axiomatic approach with the interval function, induced
path transit function and all-paths transit function of a connected graph
form a well studied area in metric and related graph theory. In this paper
we introduce the first order axiom:

(cp) For any pairwise distinct vertices a, b, c, d ∈ V
b ∈ R(a, c) and b ∈ R(a, d) ⇒ c ∈ R(b, d) or d ∈ R(b, c).
We study this new axiom on the interval function, induced path tran-

sit function and all-paths transit function of a connected simple and finite
graph. We present characterizations of claw and paw-free graphs using
this axiom on standard path transit functions on graphs, namely the
interval function, induced path transit function and the all-paths tran-
sit function. The family of 2-connected graphs for which the axiom (cp)
is satisfied on the interval function and the induced path transit func-
tion are Hamiltonian. Additionally, we study arbitrary transit functions
whose underlying graphs are Hamiltonian.

Keywords: Interval function · Induced path function · Hamiltonian
graph · Claw and paw-free graphs

1 Introduction

Transit functions on discrete structures are introduced by Mulder [12] mainly
to generalize the concept of betweenness in an axiomatic way. Betweenness has
been extensively studied on connected simple graphs with the three basic tran-
sit functions namely the interval function, induced path function and all-paths
function as models. Our concern here is also on these three standard path func-
tions on finite connected simple graphs. A transit function is an abstract notion
of an interval. A transit function R defined on a non empty set V is a function
R : V × V → 2V satisfying the three axioms

(t1) x ∈ R(x, y) for all x, y ∈ V ,
(t2) R(x, y) = R(y, x) for all x, y ∈ V ,
(t3) R(x, x) = {x} for all x ∈ V .
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 115–125, 2016.
DOI: 10.1007/978-3-319-29221-2 10

116 M. Changat et al.

Basically, a transit function on a simple connected undirected graph G
describes how we can get from vertex u to vertex v: via vertices in R(u, v).
An element x ∈ R(u, v), can be considered as “between” the points u and v
and hence the set R(u, v) consisting of the set of all elements between u and v
abstracts the notion of an interval on set V . One can define a subset W of V as
interval convex if W is closed with respect to intervals of all pairs of elements
in W , viz, R(u, v) ⊆ W , for all u, v ∈ W . Consequently transit functions are
introduced to generalize the three basic notions in geometry, namely, between-
ness, intervals and convexity. Transit functions particularly captured attention
on discrete sets having a structure, for e.g., on graphs and partially ordered sets,
hypergraphs etc. Graph transit functions (transit functions defined on vertex set
of a connected graph) and associated convexities are extensively studied from
different perspectives. For e.g., with emphasis on betweenness [3,5,6,10,11]; on
intervals [1,2,5,11,13–17] and on convexity [2,4,7,10,11].

The underlying graph GR of a transit function R is the graph with vertex
set V , where two distinct vertices u and v are joined by an edge if and only
if R(u, v) = {u, v}. Many of the axiomatic studies on transit functions have
captured attention due to the presence of simple first order axioms. In this
paper also, we search for more such axioms.

We continue the study along this direction by introducing and discussing
a simple first order axiom (stated later) on the interval function, induced path
function and all-paths function, the three prime examples of transit functions
of a connected graph G. These three transit functions are defined using three
natural paths in a connected graph G, namely the shortest paths, induced paths
and simply paths. A u–v shortest path in connected graph G is a u–v path in G
containing minimum number of edges. The length of a shortest u–v path P (that
is, the number of edges in P) is the standard distance d(u, v) in G. A u–v path,
say u1, u2, . . . , uk in G is an induced u–v path if there is no edge in G joining
non-consecutive vertices of P ; viz, uiuj is not an edge in G with |j − i| > 1.

The interval function of a connected graph G is defined as

I(u, v) = {w ∈ V : w lies on a shortest u−v path}.

The induced path function of G is defined as

J(u, v) = {w ∈ V : w lies on an induced u, v-path}.

The all-paths transit function of G is defined by

A(u, v) = {w ∈ V : w lies on some u−v path}.

The interval function, induced path function and the all-paths function of a
connected graph G are denoted respectively as I(G), J(G) and A(G) or simply
I, J and A, if there is no confusion regarding the graph G. From the definition
of I and J of G, it follows that I(u, v) = {u, v} if and only if uv is an edge
and J(u, v) = {u, v} if and only if uv is an edge. Hence the underlying graph
GI of I and GJ of J are both isomorphic to G. But this is not the case with

Axiomatic Characterization of Claw and Paw-Free Graphs 117

the all-paths transit function A(u, v). More on the transit function A will be
discussed in Sect. 4.

The following non-trivial betweenness axioms were considered by Mulder
in [12].

(b1) x ∈ R(u, v), x �= v ⇒ v /∈ R(u, x),
(b2) x ∈ R(u, v) ⇒ R(x, v) ⊆ R(u, v),
(m) x, y ∈ R(u, v) ⇒ R(x, y) ⊆ R(u, v).

It follows that if a transit function R satisfies the monotone axiom (m), then
R satisfies (b2). In this paper, we introduce the following axiom:

(cp) For any pairwise distinct vertices a, b, c, d ∈ V
b ∈ R(a, c) and b ∈ R(a, d) ⇒ c ∈ R(b, d) or d ∈ R(b, c).

We study the status of this axiom (cp) on the interval function, the induced
path function and the all-paths transit function. In Sect. 2, we discuss the status
of axiom (cp) on the interval function I(u, v), in Sect. 3 that of the induced path
transit function J(u, v), and in Sect. 4 on the all-paths transit function A(u, v).
In the last section, we study transit functions whose underlying graphs are both
claw-free and paw-free. These underlying graphs when 2-connected, turns out to
be Hamiltonian by already known results.

2 Interval Function

The interval function between u and v of a connected graph G = (V,E) denoted
as I(u, v), is the set of all vertices lying on all shortest u–v paths. In other words,
I(u, v) = {x ∈ V |d(u, x) + d(x, v) = d(u, v)}. The first systematic study of the
interval function is due to Mulder in [11]. Nebeský has given several axiomatic
characterization of interval function using axioms on an arbitrary transit func-
tion, [14–16]. See also Mulder and Nebeský in [13] and more recently in [1], where
the axiomatic characterization of the interval function of block graphs and trees
is attempted. In [6], some sub-family and super-family of distance hereditary
graphs is characterized using certain axioms on the interval function I. In this
section, we prove that the interval function I of a graph G satisfies the axiom
(cp) if and only if G is claw and paw-free.

Fig. 1. Paw, claw

118 M. Changat et al.

The graphs in the Fig. 1 are called as the Paw (the left figure) and Claw (the
right figure). If G is a graph and H a family of graphs, we say that G is H-free
if G has no induced subgraph isomorphic to a graph in H.

Theorem 1. The interval function I of a connected graph G, satisfies axiom
(cp) if and only if G is a claw and paw free graph.

Proof. Let I be the interval function of a connected graph G. First assume that
G contains claw and paw as induced subgraphs. It is easy to see that on vertices
a, b, c, d shown in Fig. 1, b ∈ I(a, c) and b ∈ I(a, d) but c /∈ I(b, d) and d /∈ I(b, c).
Hence if G contains claw and paw as induced subgraphs axiom (cp) is violated.

Conversely, assume that G does not contain claw and paw as induced sub-
graphs. To prove that I satisfies axiom (cp). Suppose I does not satisfy axiom
(cp). Pick up any four distinct vertices say a, b, c, d in G, where b ∈ I(a, c)
and b ∈ I(a, d) and assume that c /∈ I(b, d) and d /∈ I(b, c). Hence we have
b ∈ I(a, c)∩I(a, d). This implies that there is a shortest a–c path P and a short-
est a–d path Q through b and further the b–c subpath of P and the b–d subpath
of Q branch out from a vertex, say b′ (note that b′ can be b or a vertex after b
along P and Q), and therefore the degree of b′ is at least three. Let x, y, z be
three neighbours of b′, where x is on the a–b′ subpath of P or Q, y on the b′–c
subpath of P and z on the b′–d subpath of Q. Hence we get an induced claw
centered on b′ with three adjacent vertices to b′. As G does not contain induced
claw as a subgraph, there must be edges between the vertices x, y, z, but there
cannot be an edge between x and y and between x and z, since P and Q are
shortest paths. Hence the only possibility is that there is an edge between y and
z which creates an induced paw on vertices b

′
, y, x, z, a contradiction.

Note that the interval function I of a connected graph G always satisfy the
axioms (b1) and (b2), but I may not satisfy the monotone axiom (m). Mulder
in [11] defined the graphs which satisfy the monotone axiom (m) as interval
monotone graphs. The characterization of interval monotone graphs still remains
as an open problem. But, we have the implication that axiom (cp) implies axiom
(m) for the interval function I, which is stated as the next Proposition.

Proposition 1. If the interval function I of a connected graph G satisfies axiom
(cp), then I satisfies the monotone axiom (m).

Proof. Suppose the interval function I satisfies axiom (cp) on G, then by Theo-
rem 1, G does not contain claw and paw as induced subgraphs. Now assume
that the interval function I does not satisfy axiom (m). Hence there exist
x, y, u, v, z ∈ V , such that x, y ∈ I(u, v), but I(x, y) �⊆ I(u, v). i.e. there exist
z ∈ I(x, y) but z /∈ I(u, v).

Since x and y cannot be in the same shortest u–v path, and z /∈ I(u, v), it
is easy to see that the paths between u, v, x, y, z in G contains a subgraph G′

isomorphic to a subdivision of K2,3. Now, consider the subgraph H of G induced
by the vertices of G′.

As x ∈ I(u, v), it can be established (inductively) that every vertex in the
x–z shortest path (similarly for y–z shortest path) must be adjacent to both

Axiomatic Characterization of Claw and Paw-Free Graphs 119

neighbours of x in the u–x–v shortest path as H is claw and paw-free. But this
contradicts the fact the z /∈ I(u, v). The proposition follows. �	
The converse of Proposition 1 is not true as the interval function I of claw or
paw clearly satisfies the monotone axiom.

3 Induced Path Function

A natural generalization of the interval function I(u, v) is the function J(u, v).
The induced path interval or monophonic interval, which consists of all vertices
lying on induced paths between u and v. The induced path transit function
is also studied in different view point. The following studies form some of the
important references on the induced path transit function [1,5,6,10,17].

In this section by using the axiom (cp), we present axiomatic characterization
of induced path transit function of claw and paw free graphs.

Theorem 2. The induced path transit function J of a connected graph G satis-
fies axiom (cp) if and only if G is a claw and paw free graph.

Proof. Let J be the induced path transit function of a connected graph G. First
assume G contains the claw and paw as induced subgraphs. It is easy to see
that on vertices a, b, c, d shown in Fig. 1, we have b ∈ J(a, c) and b ∈ J(a, d) but
c /∈ J(b, d) and d /∈ J(b, c). Conversely assume that G does not contain the claw
and paw as induced subgraphs. We prove that J satisfies axiom (cp). Suppose
J does not satisfy axiom (cp) on G. Then there exists four distinct vertices say
a, b, c, d in G, such that b ∈ J(a, c) and b ∈ J(a, d), but c /∈ J(b, d) and d /∈ J(b, c)
and b ∈ J(a, c) ∩ J(a, d). So there exists an induced a–c path and an induced
a–d path containing b, but c is not in any induced b–d path and d is not in any
induced b–c path.

As J(a, c) ∩ J(a, d) �= ∅, it follows that we have some vertex b′ ∈ J(a, c) ∩
J(a, d). Now, consider some a–b′, b′–c and b′–d shortest paths (they will always
be induced). The subgraph formed by these 3 paths must contain some vertex
of degree at least 3. Consider the unique vertex closest to c along the selected
b′–c path and that closest to d along the b′–d path. Among these two, let b be
the vertex closest to a. It is easy to see that the a–b shortest path, b–c shortest
path and b–d shortest path are internally vertex disjoint. Thus b is the center of
a claw and we need at least 2 edges connecting the 3 neighbours of b, at least
one of which will violate the assumption that the paths were induced. Thus the
result holds. �	
Remark 1. Let R be the interval function I or the induced path function J of a
connected graph G satisfying axiom (cp). Then G does not contain claw and paw
as induced subgraphs. It may be noted that interval function I and induced path
function J may not be the same on G. It may also be noted that the function
I and J coincide on a distance hereditary graph (distance hereditary graph is a
graph in which every induced path is a shortest path). More precisely, the graph
G may not be distance hereditary even if both the function I and J satisfy the
axiom (cp). See the following example.

120 M. Changat et al.

Example 1. Let G be an induced cycle of length at least five. It is easy to see
that I and J satisfy the axiom (cp). But G is not distance hereditary.

Note that the induced path transit function J of a connected graph G need
not satisfy the axioms (b1), (b2) and hence (m). Mulder in [10] characterized the
graphs for which the function J satisfies the axioms (b1) and (b2) as precisely the
so called HHD-free graphs. But we show that (cp) implies (m) for the induced
path transit function, which we state as the next Proposition. Since the proof
uses similar arguments to that of Proposition 1, we omit the proof.

Proposition 2. If the induced path transit function J of a connected graph G
satisfies axiom (cp), then J satisfies monotone axiom (m).

Corollary 1. If the induced path transit function J of a connected graph G
satisfies axiom (cp), then J satisfies axiom (b2).

Example 2. Let J be the induced path transit function of the complete bipartite
graph K2,3. It is easy to see that induced path transit function J satisfies axiom
(b2) on K2,3 but J does not satisfy axiom (cp) since we have a claw as an induced
subgraph in K2,3. See Fig. 2.

Fig. 2. K2,3

Example 3. Let J be the induced path transit function of a P-graph. It is easy
to see that J of a P -graph satisfies axiom (m), but J does not satisfy axiom
(cp) of P-graph, since we have a claw as an induced subgraph in a P-graph. See
Fig. 3.

The following example shows that both Propositions 1 and 2 may not hold
for arbitrary transit functions.

Example 4. Let V = {a, b, c, d, e}. Let R be a transit function on V defined
as follows; R(a, c) = {a, b, c, e}, R(b, e) = {b, d, e} and for any other distinct
pairs x, y ∈ V , R(x, y) = {x, y}. It is easy to see that R satisfies axioms (b1),
(b2) and (cp), but R does not satisfy axiom (m) on V , since b, e ∈ R(a, c) but
R(b, e) �⊆ R(a, c). Hence if R satisfies axioms (b1), (b2) and (cp) on V , R may
not be monotone.

Axiomatic Characterization of Claw and Paw-Free Graphs 121

Fig. 3. P -graph

4 All-Paths Transit Function

The all-paths transit function of a graph G is defined as A(u, v) = {w ∈ V :
w lies on some u–v path}. An axiomatic characterization of all-paths transit
function is presented in [2]. The all-paths transit function is the coarsest path
transit function. A vertex v in a connected graph G is called a cut vertex, if the
graph G−v obtained by removing v and all edges incident to v, is disconnected.
A connected graph G having cut vertices is known as a 1-connected graph, while
without any cut vertex is known as a 2-connected graph. A maximal 2-connected
subgraph of G is called a block. The all-paths transit function has the block-
cut vertex structure and A(u, v) is trivial on blocks and 2-connected graphs, viz,
A(u, v) = V (G), for u �= v. Hence on 2-connected graphs, the function A satisfies
axiom (cp) always. We prove that A satisfies the axiom (cp) on a 1-connected
graph if and only if G is claw and paw free. But a 1-connected claw-free, paw-free
graph is nothing but a path.

Proposition 3. The all-paths transit function A of a 1-connected graph G sat-
isfies axiom (cp) if and only if G is a path.

Proof. Let G be a 1-connected graph and let the all-paths transit function A
satisfies the axiom (cp) on G. To prove that G is a path. It is enough to show that
G does not contain claw and paw as an induced subgraph. Suppose G contains a
claw or a paw as an induced subgraph. It can be easily verified that on the claw
and the paw in Fig. 1, A does not satisfy the axiom (cp), as b ∈ A(c, a)∩A(c, d),
but a /∈ A(b, d) and d /∈ A(b, a). Thus the 1-connected graph G has to be both
claw and paw-free, which implies that G is a path. It is trivial to prove that, if
G is a path, then A satisfies the axiom (cp).

A graph G is n-connected, if the removal of at least n-vertices is required for the
graph G to get disconnected.

Remark 2. The all-paths transit satisfies axiom (cp) on every n-connected graph
G, where n ≥ 2.

122 M. Changat et al.

5 Transit Functions Whose Underlying Graphs
are Hamiltonian

In this section, we study transit functions whose underlying graphs are Hamil-
tonian graphs. Recalling the definition of Hamiltonian graph (A graph G is a
Hamiltonian graph, if it contains a spanning cycle; a cycle that contains all its
vertices). Goodman and Hedetniemi in [8] obtained sufficient conditions for a
2-connected graph G to be Hamiltonian involving the induced claw and paw as
subgraphs. We quote the result of Goodman and Hedetniemi in [8] below.

Theorem 3. If a graph G is 2-connected and contains no induced subgraph
isomorphic to a claw or a paw, then G is Hamiltonian.

It is already established in [9] that the 2-connected claw-free, paw-free graphs
is either a cycle or include the class of pancyclic graphs, where a pancyclic graph
G is a connected graph with n-vertices such that G contains cycles of length
three to n.

The following remark is immediate.

Remark 3. Let G be a 2-connected graph in which the interval function I or the
induced path transit function J satisfies axiom (cp), then G is Hamiltonian.

Now consider the following axioms.

(b1) x ∈ R(u, v), x �= v ⇒ v /∈ R(u, x),
(b2) x ∈ R(u, v) ⇒ R(x, v) ⊆ R(u, v),
(d2) ∀x ∈ V , ∃y, z ∈ V , x �= y �= z such that R(x, y) = {x, y} and R(x, z) =

{x, z}.
(j2) R(u, x) = {u, x}, R(x, v) = {x, v}, u �= v,R(u, v) �= {u, v} ⇒ x ∈ R(u, v)
(cp) for any pairwise distinct vertices a, b, c, d ∈ V

b ∈ R(a, c) and b ∈ R(a, d) ⇒ c ∈ R(b, d) or d ∈ R(b, c).

The axioms (b1) and (b2) are due to Mulder in [10]. It is proved in [5] that
if R satisfies the axioms (b1) and (b2), then the underlying graph GR of V is
connected and both axioms (b1) and (b2) are necessary for the connectedness
of GR. Axiom (j2) is introduced in [5] for the special case of characterizing
the induced path transit function satisfying the betweenness axioms (b1), (b2)
and (m). It may be noted that both the interval function, the induced path
transit function and all paths transit function trivially satisfies the axiom (j2).
The axiom (d2) is a new axiom introduced for obtaining 2-connected underlying
graph GR of a transit function R.

Remark 4. Let R be a transit function satisfying axiom (d2) on G, |V (G)| ≥ 3.
Then ∀v ∈ V (G), deg(v) � 2 in GR.

The following examples show that the axioms (b1), (b2), (d2), (j2) and (cp)
form an independent set of axioms.

Axiomatic Characterization of Claw and Paw-Free Graphs 123

Example 5. (d2), (cp), (b2), (j2) � (b1).
Let V = {a, b, c, d, f}. Let R be a transit function on V defined as follows;
R(a, c) = R(a, d) = R(b, d) = R(b, f) = V , R(c, f) = {c, d, f} and for any other
distinct x, y ∈ V , R(x, y) = {x, y}. It is easy to see that R satisfies axioms
(d2), (cp), (b2), (j2) on V , but R does not satisfy axiom (b1). Since d ∈ R(a, c)
and c ∈ R(a, d), which violates (b1).

Example 6. (d2), (cp), (b1), (j2) � (b2).
Let V = {a, b, c, d, f}. Let R be a transit function on V defined as follows;
R(a, c) = {a, b, c, d}, R(a, d) = {a, d, f}, R(b, d) = {b, d, c}, R(b, f) = {b, f, a},
R(c, f) = {c, f, d} and for any other distinct x, y ∈ V , R(x, y) = {x, y}. It is easy
to see that R satisfies axioms (d2), (cp), (b1), (j2) on V , but R does not satisfy
axiom (b2). Since d ∈ R(a, c) and R(a, d) �⊆ R(a, c), which violates (b2).

Example 7. (d2), (b1), (b2), (j2) � (cp).
Let R be the interval function I of the complete bipartite graph K2,3 (see Fig. 2).
It is easy to see that I satisfies axioms (d2), (b1), (b2), (j2) on G. But I does not
satisfy axiom (cp) on G, since G contains a claw as an induced subgraph.

Example 8. (cp), (b1), (b2), (j2) � (d2).
Let R be the interval function I of a path Pn (n ≥ 4). It is easy to see that I
satisfies axioms (cp), (b1), (b2), (j2) on Pn. But I does not satisfy axiom (d2),
since there exist two vertices of degree one, which violates axiom (d2).

Example 9. (cp), (b1), (b2), (d2) � (j2).
Let V = {a, b, c, d}. Let R be a transit function on V defined as follows; R(a, c) =
{a, c, d} and for any other distinct pair x, y ∈ V , R(x, y) = {x, y}. It is easy to
see that R satisfies axioms (cp), (b1), (b2), (d2) on V , but R does not satisfies
axiom (j2) on V . Since R(a, b) = {a, b} and R(b, c) = {b, c} and R(a, c) �= {a, c}
but b /∈ R(a, c), which violates (j2).

Theorem 4. Let R be a transit function satisfying axioms (b1), (b2), (j2), (d2)
and (cp) on V , |V | ≥ 3. Then the underlying graph GR of R is Hamiltonian.

Proof. First we prove that GR does not contain claw and paw as induced
subgraphs. Suppose GR contains claw and paw as induced subgraphs, with
vertices labeled as in Fig. 1. From the figure, we have that R(a, b) = {a, b},
R(b, d) = {b, d}, R(b, c) = {b, c}, a �= c, R(a, c) �= {a, c} which implies that
b ∈ R(a, c) by axiom (j2), also, R(a, d) �= {a, d} and hence b ∈ R(a, d). But
c /∈ R(b, d) and d /∈ R(b, c), a contradiction to R satisfies axiom (cp). Further-
more GR is connected, since R satisfies axioms (b1) and (b2). Thus there exist
a path between any two vertices in GR. Now it is enough to prove that GR

is 2-connected. Suppose that GR is not a 2-connected, then GR contains a cut
vertex. Let x be a cut vertex in GR. Hence there exist s, t ∈ V with s �= t �= x
such that every s–t path in GR passes through x. Since R satisfies axiom (d2),
the degree of each vertex is at least two in GR. If the degree of every vertex in
GR is exactly two, then GR will be cycle, which is not possible according to our
assumption. So there exists a vertex of degree at least three, let z be a vertex of

124 M. Changat et al.

degree at least three such that d(x, z) is minimum. Let u, v, w be three neigh-
bours of z. Let u be the vertex on the shortest x–z path before z. Now consider
the vertices z, u, v, w. To avoid an induced claw with these vertices, there must
be edges among u, v, w. Now uv and uw cannot be edges in GR as in this case,
the degree of u will be at least three with d(u, x) < d(x, z), a contradiction to
the minimality of d(x, z). Thus the only possibility is that vw is an edge, which
results in an induced paw with vertices u, v, w, z, a contradiction to the fact that
GR is both claw and paw-free.

Suppose the degree of the cut vertex x is at least three. Let u, v, w be three
neighbours of x such that u lies in the s–x subpath of the s, t path and v lies in
the x–t subpath of s–t path in GR. Now consider the vertices u, v, w, x. To avoid
an induced claw with these vertices, there must be edges among u, v, w. Now
uv cannot be an edge, since we get an s–t path which is not passing through x,
contradicting the assumption that x is a cut vertex. If both vw and uw are edges,
then again we get an s–t path not containing x. Hence at most one of uw and
vw can be an edge which results in either an induced paw or an induced claw,
a contradiction and we have completed the proof that GR has no cut-vertices.
Thus GR is 2-connected and both claw-free and paw-free and hence by Goodman
and Hedetniemi Theorem 3 in [8] GR is Hamiltonian.

The following examples shows that there is a transit function R whose underlying
graph is Hamiltonian, but different from the interval function IGR

or the induced
path transit function JGR

of a connected graph. We can construct examples of
R with IGR

�⊆ R and R �⊆ IGR
and similarly with JGR

.

Example 10. Let V = {u, v̄, v, x, ū} and let R be a function on V . Define R as
follows; R(u, v̄) = {u, v̄}, R(u, v) = V , R(u, x) = {u, x, ū}, R(u, ū) = {u, ū},
R(v̄, v) = {v, v̄}, R(v̄, x) = {v̄, x, v}, R(v̄, ū) = {v̄, ū, u}, R(v, x) = {v, x},
R(v, ū) = {v, ū, x}, R(x, ū) = {x, ū} and for any x ∈ V , R(x, x) = {x}. It
is easy to see that R satisfies axioms (b1), (b2), (j2), (d2) and (cp) and hence by
Theorem 4, the underlying graph GR of R is Hamiltonian, but R �= IGR

�= JGR
,

more precisely R �⊆ IGR
.

Example 11. Let V = {a, b, c, d, e, f} and let R be a function on V . Define R
as follows; R(b, e) = R(c, f) = V , R(a, d) = {a, b, c, d}, R(a, c) = {a, b, c},
R(a, e) = {a, e, f}, R(b, d) = {b, d, c}, R(b, f) = {b, f, a}, R(c, e) = {c, e, d},
R(d, f) = {d, e, f} and for any other distinct x, y ∈ V , R(x, y) = {x, y}. It is
easy to see that R satisfies axioms (b1), (b2), (j2), (d2) and (cp) on V . Hence by
Theorem 4, the underlying graph GR of R is Hamiltonian, but IGR

�⊆ R. Since
I(a, d) = V in the underlying graph GI of I but R(a, d) = {a, b, c, d} on V and
{e, f} /∈ R(a, d).

The characterization of the interval function and the induced path transit
function of claw-free, paw-free graphs seems to be a difficult problem. But, from
the discussions in this section, we have the following straightforward remark:

Remark 5. Let R be a transit function satisfying axioms (b1), (b2), (j2), (d2) and
(cp) on V , |V | ≥ 3 with the diameter (the maximum of d(u, v), u, v ∈ V (GR)) of

Axiomatic Characterization of Claw and Paw-Free Graphs 125

the underlying graph GR at most two. Then GR is Hamiltonian and R = IGR
=

JGR
. Moreover GR is either the complete graphs Kn or the family of pancyclic

graphs with diameter 2. The pancyclic graphs with diameter 2 are precisely the
family of graphs Kn −M , where M is a matching (a matching is a collection of
disjoint edges).

Acknowledgments. This research work is supported by NBHM-DAE, Govt. of India
under grantNo. 2/48(9)/2014/ NBHM(R.P)/R& D-II/4364 DATED 17TH NOV, 2014.

References

1. Balakrishnan, K., Changat, M., Lakshmikuttyamma, A.K., Mathews, J., Mulder,
H.M., Narasimha-Shenoi, P.G., Narayanan, N.: Axiomatic characterization of the
interval function of a block graph. Disc. Math. 338, 885–894 (2015)

2. Changat, M., Klavžar, S., Mulder, H.M.: The all-paths transit function of a graph.
Czech. Math. J. 51(126), 439–448 (2001)

3. Changat, M., Mathew, J.: Induced path transit function, monotone and Peano
axioms. Disc. Math. 286(3), 185–194 (2004)

4. Changat, M., Mulder, H.M., Sierksma, G.: Convexities related to path properties
on graphs. Disc. Math. 290(2–3), 117–131 (2005)

5. Changat, M., Mathews, J., Mulder, H.M.: The induced path function, monotonicity
and betweenness. Disc. Appl. Math. 158(5), 426–433 (2010)

6. Changat, M., Lakshmikuttyamma, A.K., Mathews, J., Peterin, I., Narasimha-
Shenoi, P.G., Seethakuttyamma, G., Spacapan, S.: A forbiddensubgraph character-
ization of some graph classes using betweenness axioms. Disc. Math. 313, 951–958
(2013)

7. Duchet, P.: Convex sets in graphsII. Minimal path convexity. J. Combin. Theory
Ser. B. 44, 307–316 (1988). (1984)

8. Goodman, S., Hedetniemi, S.: Sufficient conditions for agraph to be Hamiltonian.
J. Combin. Theory Ser. B 16, 175–180 (1974)

9. Gould, R.J., Jacobson, M.S.: Forbidden subgraphs and Hamiltonian properties of
graphs. Disc. Math. 42(2), 189–196 (1982)

10. Morgana, M.A., Mulder, H.M.: The induced path convexity, betweenness and svelte
graphs. Disc. Math. 254, 349–370 (2002)

11. Mulder, H.M.: The Interval function of a Graph. MC Tract 132, Mathematisch
Centrum, Amsterdam (1980)

12. Mulder, H.M.: Transit functions on graphs (and posets). In: Changat, M., Klavžar,
S., Mulder, H.M., Vijayakumar, A. (eds.) Convexity in Discrete Structures. Lecture
Notes Series, pp. 117–130. Ramanujan Math. Soc., Mysore (2008)

13. Mulder, H.M., Nebeský, L.: Axiomatic characterization of the interval function of
a graph. European J. Combin. 30, 1172–1185 (2009)

14. Nebeský, L.: A characterization of the interval function of a connected graph.
Czech. Math. J. 44, 173–178 (1994)

15. Nebeský, L.: Characterizing the interval function of a connected graph. Math.
Bohem. 123(2), 137–144 (1998)

16. Nebeský, L.: Characterization of the interval function of a (finite or infinite) con-
nected graph. Czech. Math. J. 51, 635–642 (2001)

17. Nebeský, L.: The induced paths in a connected graph and a ternary relation deter-
mined by them. Math. Bohem. 127, 397–408 (2002)

Linear Time Algorithms for Euclidean 1-Center
in �d with Non-linear Convex Constraints

Sandip Das1(B), Ayan Nandy1, and Swami Sarvottamananda2

1 Indian Statistical Institute, Kolkata 700108, India
sandipdas@isical.ac.in

2 Ramakrishna Mission Vivekananda University,
Belur Math, Belur, West Bengal, India

Abstract. In this paper, we first present a linear-time algorithm to find
the smallest circle enclosing n given points in �2 with the constraint
that the center of the smallest enclosing circle lies inside a given disk.
We extend this result to �3 by computing constrained smallest enclos-
ing sphere centered on a given sphere. We generalize the result for the
case of points in �d where center of the minimum enclosing ball lies
inside a given ball. We show that similar problem of minimum inter-
secting/stabbing ball for set of hyper planes in �d can also be solved
using similar techniques. We also show how minimum intersecting disk
with center constrained on a given disk can be computed to intersect a
set of convex polygons. Lastly, we show that this technique is applicable
when the center of minimum enclosing/intersecting ball lies in a convex
region bounded by constant number of non-linear constraints with com-
putability assumptions. We solve each of these problems in linear time
complexity for fixed dimension.

1 Introduction

A classical facility location problem deals with a given set P of n points in the
plane representing n customers. It is required to find the optimal location c∗

where a facility should be placed so as to minimize the Euclidean distance from
c∗ to its farthest customer. Geometrically, this problem is equivalent to finding
the smallest circle that encloses the given set of n points where c∗ is the center
of this circle. This problem is called minimum enclosing circle or Euclidean
1-center problem. For geometric objects other than points in �d the facility
location problem is called minimum stabbing ball or minimum intersecting ball.
Originally, 1-center problem was posed by Sylvester [17] in 1857. Shamos [14],
Shamos and Hoey [15] and Preparata [12] gave O(n log n) time algorithms to
solve this problem.

Megiddo [10,11] settled the problem in �d by giving an optimal O(n) algo-
rithm. Hurtado et al. [7] extended Megiddo’s work to find 1-center constrained
inside a convex m-gon in θ(n + m)-time. Bose and Toussaint [2] proposed an
O((n + m)log(n + m) + k)-time algorithm for the 1-center that lies inside a sim-
ple m-gon. Bose and Wang [3] removed the dependency on k from the running
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 126–138, 2016.
DOI: 10.1007/978-3-319-29221-2 11

Linear Time Algorithms for Euclidean 1-Center 127

time. Roy et al. [13] addressed a query version of the problem, giving an algo-
rithm that required O(n log n)-time preprocessing on P. Barba et al. [1] solved
the problem when P is the set of vertices of a convex n-gon and the 1-center is
constrained to lie within an m-gon in expected θ(n + m) time.

Sharir and Welzl [16] formulated a framework for LP-type problems to solve
a class of optimization problems using randomization techniques. Matousek et
al. gave a randomized algorithm to solve a general LP-type problem in expected
linear time [9]. Chazelle and Matousek [4] showed whenever the LP-type problem
satisfies some additional computational constraints then a linear deterministic
algorithm can be devised using derandomization techniques on Clarkson’s linear
time LPP solution [5]. The problem posed in this paper can be transformed to
an LP-type problem with some extra constraints. To our knowledge, no one has
attempted the class of LP-type problem with such constraints. The specialty
of this paper is that we present a linear-time geometric algorithm to compute
the 1-center with constant number of additional non-linear convex constraints
of certain type.

In this paper we look at constrained version of minimum enclosing circle,
sphere and balls, where the center lies inside a given circle, sphere and ball,
respectively. We also solve the constrained version of minimum intersecting balls
for hyperplanes in �d and for convex polygons in �2. In plane, we even compute
the constrained minimum intersecting disk when the intersected objects are con-
vex polygons. We also show how our result can be generalized for O(1) number
of other types of constraints. These constraints are of the type fi(x) ≤ 0, where
x ∈ �d is the 1-center, fi’s are convex functions with computability assump-
tions as defined in Sect. 4. None of these problems have been addressed in the
literature. We solve all these problem in linear time for fixed dimension d.

The organization of paper is as follows. In Sect. 2, we provide a linear time
algorithm to find the Euclidean 1-center in �2 which is constrained to lie on a
given disk. In Sect. 3, we present an O(n) time algorithm to find the Euclidean 1-
center in �3 constrained to lie within a given ball. We discuss the generalization
to �d and to other geometric objects in Sect. 4.

2 Minimum Enclosing Circle with Center Inside
the Given Disk in Plane

Let P be set of n points in plane, P = {p1, p2, . . . , pn}. Let D be the given disk
in the plane such that the Euclidean 1-center, denoted by cD, is constrained to
lie inside it. We solve the following problem.

Problem 1. Compute Euclidean 1-center cD of P such that cD ∈ D. That is solve
the following optimization problem for c:

minc∈D max1≤i≤n ||c − pi||

We solve this problem using prune and search technique. In every iteration
we reduce the size of P by a fraction. First we solve the problem of computing

128 S. Das et al.

Euclidean 1-center, denoted by cL, constrained on the given line segment L using
the techniques in [7,10]. We summarize below the result that we use.

Lemma 1. Euclidean 1-center cL of P constrained on any given line segment
L can be computed in O(n) time.

In the algorithms that we present, we need to compute extreme points, that
is, points of P that are farthest from a given point x ∈ �2. We denote these
extreme points by Px.

Now, we present an algorithm to compute cD. First, given a line �, we give
a method to find the location of cD with respect to �. Let Cp(c) be the circle
centered at point p and radius ||c − p||.

If � does not intersect D then we know immediately the side of � that cD lies.
Otherwise, let L be the intersection of � with D. We compute cL for P such that
it lies on L. Two cases arise (1) cL lies in the interior of L and (2) cL is one of
the end-points of L.

Case 1: (cL lies in the interior of L) If PcL lie in a convex infinite wedge,
formed by ∠picLpj for points pi and pj in PcL for some i and j, then cD lies in
the direction of mid-point of pipj from cL. We can easily determine the existence
of convex infinite wedge by a linear traversal over the points in PcL . Otherwise,
if the convex infinite wedge does not exist, cL is cD.

Case 2: (cL is one of the end points of L) As in case 1, we see if all points of PcL

lie inside any convex infinite wedge, formed by ∠picLpj for points pi and pj in
PcL for some i and j. If they do not then cL is cD. Otherwise, we compute the
circles Cpi

(cL) and Cpj
(cL). Center cD will lie in their intersection with D, say

S, that is, S = Cpi
(cL) ∩ Cpj

(cL) ∩ D. Note that S does not intersect L other
than at cL since cL is 1-center constrained on L. If S is completely outside D,
except cL, then cL is cD, otherwise we know the side of L, and therefore �, that
cD lies. Thus we have the following lemma.

Lemma 2. The location of cD with respect to � can be computed in linear time.
Moreover, if cD is on L then it can be computed in linear time.

We show how Lemma 2 can be used to compute cD in theorem below.

Theorem 1. Euclidean 1-center cD for P constrained on a disk D can be com-
puted in O(n) time.

Proof. We pair the points as (p2i−1, p2i), i = 1, . . . , �n
2 �. Let �i be the perpendic-

ular bisector of the pair (p2i−1, p2i). We compute the median slope s of all �i. We
rotate the x-axis to have slope s for the duration of iteration. We treat horizontal
lines of the form y = yi, and vertical lines of the form x = xi, separately. Non-
horizontal and non-vertical lines are paired as (�i, �j) such that one has positive
slope and another has negative slope. Let (xij , yij) be the intersection point for
pair (�i, �j). Let ym be the combined median of yij ’s for the line pairs (�i, �j)’s
and yi’s for the horizontal �i’s. Let �x be the line y = ym parallel to x-axis.

Linear Time Algorithms for Euclidean 1-Center 129

By Lemma 2, we can find the location of cD with respect to line �x in O(n)
time. If cD in on L then we are done. Otherwise, first consider the lines �i’s that
are parallel to �x, and are on the side of �x that does not contain cD. For each
of these horizontal �i’s, we can drop one point between p2i and p2i−1. Secondly,
among the intersecting pairs (�i, �j), consider those for which corresponding yij
lies on the side of �x which does not contain cD. We compute the combined
median xm of the corresponding xij ’s for these pairs and xi’s for vertical �i’s left
earlier. By Lemma 2 we can find the location of cD with respect to line x = xm

parallel to y-axis, denoted by �y. If cD lies on �y then we are done. Again, we
can drop one point for vertical �i’s on the side of �y that does not contain cD.
Next, consider the pairs (�i, �j) such that neither yij lies in the same side of �x
as cD, nor xij lies in the same side of �y as cD. Note that cD will lie on one side
of either �i or �j for each of these pairs. For either �i or �j , one defining points is
always nearer to cD than the other defining point. We can drop the nearer point.
Thus we drop at least � n

16� of the points of P for the next iteration. The whole
iteration takes O(n) time. We repeat the iteration with truncated set of points
until we can not drop any further points. When we can not drop any points, at
most a constant number of points remain and we can compute cD in O(1) time
in the last iteration. All the iterations together can be done in O(n) time. �	

3 Minimum Enclosing Ball Whose Center Is Constrained
to Lie on a Given Sphere

Let P be a set of n points in �3, P = {p1, p2, . . . , pn}. Let Px be the set of points
in P farthest from point x ∈ �3.

In this section, we consider the problem of finding the Euclidean 1-center,
denoted by cS , for P where cS is constrained to lie on a given sphere S. We show
how we can solve this problem in O(n) time. We solve the following problems to
achieve this.

Problem 2. Given a line segment L, find the Euclidean 1-center of P, denoted
by cL, constrained in L, in �3.

Problem 3. Given a disk D, find the Euclidean 1-center of P, denoted by cD,
constrained in D, in �3.

Problem 4. Given a sphere S, find the Euclidean 1-center (cS) of P, constrained
in S, in �3.

3.1 Computing Euclidean 1-Center Constrained in a Line Segment
L in �3

We pair the points p2i−1, p2i for i = 1, . . . , �n
2 �. Let Hi be the bisector plane of

p2i−1p2i. If Hi does not intersect the interior of L for some i, we can drop the
point p2i−1 or p2i which is never farther than the other point from L.

Let qi be the intersection points of Hi with L for all Hi that intersect L in
the interior. Let q be the median of the qi’s. We compute set Pq. Let Hq be the

130 S. Das et al.

plane perpendicular to L at q. If Hq partitions Pq, then q is cL. Otherwise cL
and Pq lie on the same side of Hq. We consider all the qi’s on the side of Hq that
does not contain cL. We can delete one of the points p2i−1 or p2i which is never
farther from cL than the other as in the case of �2. Thus we discard one point
each for at least half of the qis, implying that we can reduce the size of set P by
at least one-fourth. We iterate with the reduced set. When we do not drop any
point we use any suitable algorithm to compute cL for the basis set of size O(1).

Lemma 3. Euclidean 1-center cL of P constrained on any given line segment
L in �3 can be computed in O(n) time.

3.2 Computing Euclidean 1-Center Constrained in a Disk D in �3

Let D be the given disk in �3. We give an algorithm to compute cD. Let H be
the hyperplane containing D. Let � be any line in hyperplane H. Let Sp(c) be
the sphere centered at point p and radius ||c − p||.

First we give a method to determine the location of cD in H with respect to
�. If � does not intersect D then we clearly know which side of � does cD lies.
Otherwise, let L be the intersection of D with �. We compute 1-center cL of P
constrained on L by the algorithm of previous Sect. 3.1. We compute the set PcL .
Center cD lies in the intersection, let us call it I, of all Sp(cL) with D, where
p ∈ PcL , that is, I = ∩p∈PcL

Sp(cL)∩D. Observe that I does not intersect L other
than cL, otherwise cL will not be the optimal constrained center, a contradiction.
This suggests an O(n log n) algorithm for determining the side of cD in D with
respect to L, if we compute the intersection of bounding half-planes of Sp(cL).
But this is not acceptable as we need to do it on O(n) time. Hence, we solve a
linear programming problem (LPP) to solve this subproblem efficiently in linear
time. The LPP is given below.

Let −→x denote the vector from cL to yet unknown cD. Let −→ay be the vector
from cL to any point y ∈ PcL . Note that ||cL −y|| ≥ ||cD −y|| as y is an extreme
point, implying that cD lies inside a ball. We can relax this condition to specify
that cL lies in the halfspace determined by the tangential hyperplane of the ball
at cL. Thus the constraints of LPP are −→x · −→ay ≥ 0, for all y ∈ PcL . We add two
extra constraints (i) −→x .h = 0, h is normal of hyperplane H and (ii) if cL is on
boundary of D, then −→x · −→

cLd ≥ 0, where d is the center of disk D. If this LPP
has a feasible solution for non-zero length of −→x then we know the location of cD
with respect to L, otherwise if the LPP is infeasible then cL is cD. The number
of constraints in LPP is at most |PcL | + 2 which is at most n + 2. We can check
feasibility of this LPP in linear time [4,6,11] (Fig. 1).

Lemma 4. The location of Euclidean 1-center cD of P constrained on any disk
D in �3 in H with respect to any line � coplanar with D can be determined in
O(n) time. Moreover, if cD lies on l then we can determine cD in O(n) time.

We use Lemma 4 to design a prune and search algorithm for computing cD.
We pair the points (p2i−1, p2i) for i = 1, . . . , �n

2 �. Let Hi be the bisector plane of

Linear Time Algorithms for Euclidean 1-Center 131

Fig. 1. Determining the location of cD
with respect to L

Fig. 2. Determining the location of cS
with respect to D

pair (p2i−1, p2i). If Hi does not intersect interior of D then we can drop one of
the points in the pair which is never farther from cD than the other point. Next
we consider all Hi’s that intersect interior of D. We compute the intersections
of Hi with H, let the intersection be the line �i. For simplicity, assume that H
is the xy-plane (Fig. 2).

As in Sect. 2, we transform x-axis to median slope of lines �i’s and pair lines �i
according to the median slope leaving vertical and horizontal lines. We calculate
intersection points of the paired lines. Then we compute the similar line �x of
Sect. 2 for �i’s. This line will divide intersections and horizontal lines by half. By
Lemma 4, we know the location of cD with respect to line �x. We can drop one
point each corresponding to some of the horizontal �i’s and therefore Hi’s. Next
we compute the line �y similar to Sect. 2 for �i’s. We take all the intersections
on the side of �x that does not contain cD, take all vertical �i’s, and choose �y
parallel to y-axis dividing these intersections and vertical lines into half. Again
by Lemma 4, we know the location of cD with respect to line �y. We can drop one
point each corresponding to some of the vertical �i’s and some of the line pairs
(�i, �j)’s. Thus, there will be corresponding number of at least �n

8 � lines �i’s, and
therefore planes Hi’s, for which we can drop the nearer one of the defining pair
of points. In all, we drop at least � n

16� points of P in each iteration. When we
drop no points we use any suitable algorithm to compute cD for O(1) number
of points. The complete algorithm runs in linear time.

Lemma 5. Euclidean 1-center cD of P constrained on any planar disk D in �3

can be computed in O(n) time.

3.3 Computing Euclidean 1-Center Constrained in a Sphere S in �3

As in the other problems in this paper, we use prune and search technique to
compute cS . In order to successfully discard a fraction of points from P we need
to determine the location of cS with respect to a given hyperplane H in �3.

132 S. Das et al.

If H does not intersect the interior of S then we immediately know the
location of cS with respect to H. Otherwise, let D be the circular disk which is
intersection of H with S. We compute Euclidean 1-center cD for P constrained
on D as in previous Sect. 3.2. cS lies in the intersection I of Sp(cD)’s where p is a
point in PcD . I does not intersect D other than cD as cD is the Euclidean 1-center
constrained on D. To determine the location of cS with respect to H efficiently
we solve an LPP as in Sect. 3.2. The constraints are −→x · −→ay ≥ 0 similarly, where−→x is the vector from cD to cS , and ay’s are vector from cD to y ∈ PcD . If cD is
on the surface of S we add another constraint −→x · −→cds ≥ 0 where s is the center
of S. If this system of constraints has a feasible solution other than cD then we
determine the location of cS with respect to H. If the constraints are infeasible
than cD is cS . We can do this in linear time using linear time algorithm for LPP
in fixed dimensions [4,6,11].

Lemma 6. Given a sphere S and a hyperplane H we can determine in linear
time the location of cS with respect to H in �3. Moreover, if cS lies on H then
cS can be determined in linear time.

We use Lemma 6 to design a prune and search algorithm to compute cS .
First we pair the point in P arbitrarily and compute their bisector planes Hi,

1 ≤ i ≤ �n/2�. If Hi does not intersect the interior of sphere S, then one of the
corresponding pair of points on the same side of the plane as S can be dropped.
Consider all Hi’s that intersect S in the interior. For convenience let us assume
that all Hi’s intersect S in the interior. We give an algorithm similar to that
given by Megiddo [11] to find a constant fraction of Hi’s for which location of
cS is determined in linear time.

We compute the intersections of Hi’s that intersect interior of S with the
xy-plane. Let the intersection be straight line �i corresponding to each such Hi.
We compute the median slope sm of lines �i in the xy-plane. We transform the
x-axis to have slope sm. We pair planes Hi and Hj such that �i has a negative
slope in the xy-plane and �j has a positive slope. We treat horizontal and vertical
�i’s separately. Next we compute planes H1

ij and H2
ij through the intersection of

Hi and Hj parallel to x-axis and y-axis respectively. See Fig. 3.
First consider the yz-plane. H1

ij ’s are perpendicular to this plane. We com-
pute intersection of H1

ij ’s with yz plane and denote the lines by l1ij . We also
compute intersection l1i of Hi’s with yz planes corresponding to horizontal �i’s
above. Let us call this set of lines l1ij and l1i L Similar to computing lines �x and
�y for �2 in Sect. 2, we compute line �y and �z for �3 in succession. First we
compute �y in yz-plane for lines in L. Let the plane that is parallel to x-axis
and passes through �y be Hy. By Lemma 6 we can determine the location of cS
with respect to Hy. We compute line �z in yz-plane for L. Let the plane that is
parallel to x-axis and passes through �z be Hz. By Lemma 6 we determine the
location of cS with respect to Hz. After this, we know the quadrant of Hy and
Hz that contains cS . We determine the location of cS with respect to at least
one eighth of the lines l1ij ’s, l1i ’s, and therefore H1

ij ’s. See Fig. 4.

Linear Time Algorithms for Euclidean 1-Center 133

Fig. 3. Pairing of Hi and Hj , and com-
putation of �1ij and �2ij

Fig. 4. Determining the location of cS
with respect to a fraction of planes
H1

ij ’s

Next we consider the xz-plane. H2
ij ’s are perpendicular to this plane. We take

only those H2
ij ’s for which we have determined the location of cS with respect

to corresponding H1
ij ’s. There will be at least �n/16� of them.

We compute intersection of H2
ij ’s with xz plane and denote the lines by l2ij .

We also computer intersection Hi’s corresponding to vertical �i’s in xy-plane
above and denote the intersection lines by l2i . Similar to computing lines �y
and �z in previous discussion we now compute lines �′

x, �′
z and corresponding

y-parallel planes H ′
x, H ′

z, such that one-eighth (total 1/64-th) of the lines l2ij ’s
and l2i ’s do not intersect the quadrant defined of H ′

x, H ′
z containing cS .

Thus we have at least total �n/128� x-parallel or y-parallel Hi’s with respect
to which cS is located, or pairs of Hi and Hj such that cS is known to be con-
tained in one of the quadrants of H1

ij and H2
ij . In the latter case, it is interesting

to note that each quadrant contains only one of Hi or Hj and therefore does
not intersect with the other one. So, as a consequence we can determine the
location of cS with respect to one of Hi or Hj . Thus we can drop one of the
corresponding pair of points that is never farther from cS than the other point.
Therefore in total we are able to drop at least �n/128� points from P. We repeat
these steps till there are no more points to drop. Then we compute cS by any
simple algorithm as the set is reduced to size O(1).

Theorem 2. Euclidean 1-center cS for P constrained on a sphere S can be
computed in O(n) time in �3.

4 Other Related Problems of Minimum Enclosing Balls
and Minimum Intersecting Disks

In this section, we show how the techniques of Sects. 2 and 3 can be applied to
solve several other facility location problems in linear time.

134 S. Das et al.

4.1 Minimum Enclosing Ball of Set of Points Whose Center Is
Constrained to Lie on a Given Ball in �d

We use the familiar techniques of prune and search method to solve the problem
of computing minimum enclosing ball of set of points in �d whose center is
constrained in a given ball recursively. We redefine the problem as computation
of Euclidean 1-center cB of a point set P in �d in linear time where cB is
constrained inside a given ball B of dimension k, 0 ≤ k ≤ d in �d. In this paper
we have shown the base cases of k = 2 and k = 3. The cases of k = 0 and k = 1
are taken care of in the discussion of the cases in higher dimensions.

Inductively assume that we are able to solve the problem for balls of dimen-
sion k − 1 in linear time. Also we assume we know how to query a fixed fraction
of some Ak−1 hyperplanes to determine the location of cB with respect to Bk−1

fraction of hyperplanes. We show in brief how we can use the solution to solve
the problem for a ball B of dimension k in linear time. First we pair the points
arbitrarily and get bisector hyperplanes Hi’s. We look only at the affine plane of
ball B which is of dimension k. The coordinates in this affine plane are denoted
by x, y and Z, where Z are rest of k − 2 coordinates. Next as in Sect. 3, we
compute the intersection of Hi’s on xy-plane. We modify the x-axis to pair
hyperplanes with positive and negative slopes in xy- plane. x and y parallel
hyperplanes are treated separately. Next we compute hyperplanes H1

ij and H2
ij

of dimension k − 1 parallel to x-axis and y-axis respectively for Hi and Hj in
the pair above. Lines �1ij and �2ij will be of dimension k − 2. We also have line
�1i and �2i corresponding to horizontal and vertical intersections in xy-plane. We
recursively query Ak−1 planes in (k − 1)-space yZ-plane, determining location
of cB with respect to Bk−1 fraction of hyperplanes �1ij ’s and �1i ’s and then Ak−1

planes in (k − 1)-space xZ-plane, determining location of cB with respect to
B2

k−1 hyperplanes �2ij ’s and �2i ’s, to drop one point corresponding to B2
k−1 planes

Hi’s. Thus Ak = 2Ak−1 and Bk = B2
k−1.

We can use the feasibility of an LPP as in Sects. 3.2 and 3.3 (except that we
add constraints to keep vector x in the k-dimensional affine space), to determine
the location of cB in affine space of dimension k with respect to any query
hyperplanes of dimension k − 1. Thus we will be able to drop a finite fraction
of points. This fraction is double exponent on d but can be improved using
techniques by Dyer [6]. Repeating the process until no points can be dropped
and then applying any simple algorithm gives us a linear time algorithm.

4.2 Minimum Intersecting Ball of Set of Hyperplanes Whose
Center Is Constrained to Lie on a Given Ball in �d

In this subsection we compute the minimum intersecting ball of set of hyper-
planes whose center is constrained on a given ball in �d. We solve this problem
recursively similarly to method of previous section. We pair the hyperplanes
arbitrarily and compute the orthogonal pair of bisector hyperplanes. If we are
able to find the location of center of intersecting ball with respect to both of
the bisector hyperplanes then we can drop one of the input hyperplanes. So,

Linear Time Algorithms for Euclidean 1-Center 135

first we take one of the bisector hyperplanes of each pair, solve the query for a
small fraction of these, take the companion bisector hyperplane and solve the
query for a still smaller fraction of these. Thus, we are able to determine the
location of the center of constrained minimum intersecting ball with respect to
a fraction of both of the orthogonal pair of bisector hyperplanes. We can discard
the hyperplane that is always the nearer of the two defining bisector. Repeating
and solving the base case gives us a linear time algorithm for this problem.

If the set contains both points and hyperplanes we drop a fraction of points
and hyperplanes in two successive steps. First we consider only the set of points
and then we consider only the set of hyperplanes. The query version of the
problem in smaller dimension is also treated similarly.

Fig. 5. Constrained minimum inter-
secting circle for convex polygons in
plane.

Fig. 6. 1-center with constant num-
ber of non-linear convex constraints
fj(x) ≤ 0 in �2.

4.3 Minimum Intersecting Circle of Set of Convex Polygons Whose
Center Is Constrained to Lie on a Given Disk in �2

In this subsection we consider the case of constrained minimum intersecting cir-
cle for set of convex polygons in plane (Fig. 5). We solve this problem by an
algorithm that is similar to the algorithm by Jadhav et al. [8]. We have shown
how to solve the problem of computing minimum enclosing circle constrained to
lie on a given disk for a set of points. This is same as constrained minimum inter-
secting circle. In the previous section we have shown how to compute minimum
intersecting circle for lines. We first extend our result to set of half plane, line-
segments, rays, and wedges. We represent the convex polygon as the intersection
of wedges, one for each vertex. In every iteration a fraction of wedges is dropped,
or replaced by a half plane, line, a ray, a line segment or a point. At any step
we have a set of points, line segments, rays, lines, wedges, and half-planes. We
apply the algorithm by taking similar type of objects at a time. Thus we are able
to convert or drop a fixed fraction of these objects at every iteration. We can
improve the efficiency by using weights. This gives us a linear time algorithm for
the problem.

136 S. Das et al.

4.4 Euclidean 1-Center for P With Constant Number of Non-linear
Convex Constraints in �d

We can use techniques described in this paper when facility has to be located
inside a convex region bounded by m = O(1) number of non-linear convex con-
straints, fj(x) ≤ 0, with some computability assumptions (Fig. 6). The com-
putability assumptions are that we can compute the following in O(1) time,
where x ∈ �d and 1 ≤ j ≤ m:

A1. whether fj(x) > 0, fj(x) = 0, or fj(x) < 0, and if fj(x) = 0, a hyperplane
at x tangential to convex region f(y) ≤ 0, y ∈ �d, and

A2. if it exists, constrained 1-center further constrained in an affine space for
O(1)-size input set, or report the non-existence, if it does not.
We can have an O(1) total number of these additional constraints. Thus we solve
the following optimization problem for c:

minc∈�d max1≤i≤n ||c − pi||
fj(c) ≤ 0, 1 ≤ j ≤ m

where fj ’s are non-linear convex constraints with computability assumptions.
Examples of non-linear convex constraints with computability assumptions
include ellipsoids, paraboloids, cylinder, polyhedra of O(1) size, etc.

As noted earlier, we need to solve the corresponding problem in �k con-
strained in an affine plane Hk for any dimension k, 1 ≤ k ≤ d − 1. We can
represent the constraints when we are solving the problem in dimension k by
pairing the constraints with the hyperplane Hk.

Let ck(Hk) be the 1-center of P, such that 1-center is constrained on k-
dimensional affine plane Hk. Euclidean 1-center of P in �d will be cd(�d). We
show briefly how these type of problems can be solved in linear time for dimen-
sion k, 1 ≤ k ≤ d − 1. In the algorithm mentioned in the Sects. 3.1, 3.2, and
3.3, we frequently check whether a bisector intersects the constraint interval,
disk, and ball or not. With our computability assumption for non-linear convex
constraints we can not do this any more. Instead we do not check if bisectors do
not intersect the convex constraint region at all. However, for k > 1, we need to
ensure that ck−1(Hk−1) satisfies non-linear convex constraints, if it exists. For
k = 1, in �1 when we are computing c1(H1), every time we check the feasibility
for the median q of intersections of bisectors with the line H1, whether fj(q) ≤ 0
for every j. This can be done by computability assumption A1. If q does not
satisfy some constraint, then we need to determine the side of q with respect to
line H1 that c1(H1) lies. For this we solve the 1-center problem by computabil-
ity assumption A2 in �d for set {q} constrained on line H1. The solution will
give us the direction c1(H1). Finally, when we do not drop any point, we can
use computability assumption A2 to compute 1-center constrained on H1 with
constraints fj ’s, if it exists, and report the non-existence, if it does not exist.

Now let us suppose k > 1. In the algorithm whenever we solve the subprob-
lem in dimension (k − 1), for any affine plane Hk−1, we shall get a ck−1(Hk−1)

Linear Time Algorithms for Euclidean 1-Center 137

satisfying the fj constraints, if it exists. Then we proceed with the LPP, where we
may need a tangential hyperplane which is provided by computability assump-
tion A1. If ck−1(Hk−1) does not exist, then we can take a point q ∈ Hk−1, solve
the problem using computability assumption A2 for set {q} and know the side of
affine plane Hk−1 that 1-center ck(Hk) lies with respect to Hk. The correctness
of this method can be proved using induction, where base case for induction is
k = 1. We again need only assumption A2, when at the end of the algorithm no
further points are dropped, and we need to compute 1-center of input size O(1)
constrained in Hk and satisfying constraints fj ’s. We can prove the optimality
of ck(Hk) by induction on k. Thus we have the following theorems.

Theorem 3. Minimum intersecting circle for a set of points and hyperplanes
where 1-center satisfies constant number of non-linear convex constraints with
computability assumptions can be computed in O(n) time in �d.

Theorem 4. Minimum intersecting circle for a set of convex polygons where
the center of minimum intersecting circle satisfies non-linear convex constraints
with computability assumptions can be computed in O(n) time in �2.

As a side note, if computability assumptions have Ω(1) computations then
also we can compute 1-center but the Ω(1) complexities will be reflected in the
overall complexity of the algorithm as a multiplicative factor, but the algorithm
would still be similar.

5 Conclusions

In this paper we solve several versions of facility location problems for which
the facility is constrained inside a convex region. These problems have not been
attempted previously. In particular we solve the Euclidean 1-center problem for
points in �2 and �3 constrained in a disk and ball respectively. The correspond-
ing Euclidean 1-center problem to compute the center such that the center lies
on the circle in sub O(n log n) time is still open. We looked at this problem but
same techniques as this paper do not seem to be applicable as the parametric
distance function on the circumference of the circle is not convex.

We also generalize algorithm to solve the problem of computing constrained
minimum intersecting balls in �d for a heterogeneous set of points and hyper
planes. We also show that the constraint region can be other type of simple
convex geometric objects and still we can compute the constrained minimum
intersecting balls in linear time. We also show how we can compute the con-
strained minimum intersecting disk for a set of convex polygons in plane. The
efficiency of algorithms, as dependency on d, presented in this paper can be
improved, from 22

d

to 3d
2
, if we use techniques by Dyer [6].

References

1. Barba, L., Bose, P., Langerman, S.: Optimal algorithms for constrained 1-center
problems. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 84–95.
Springer, Heidelberg (2014)

138 S. Das et al.

2. Bose, P., Toussaint, G.T.: Computing the constrained euclidean geodesic and link
center of a simple polygon with application. Comput. Graph. Int. Conf. CGI 1996,
102–110 (1996)

3. Bose, P., Wang, Q.: Facility location constrained to a polygonal domain. In: Rajs-
baum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 153–164. Springer, Heidelberg
(2002)

4. Chazelle, B., Matousek, J.: On linear-time deterministic algorithms for optimiza-
tion problems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)

5. Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Com-
put. 17(4), 830–847 (1988)

6. Dyer, M.E.: On a multidimensional search technique and its application to the
euclidean one-centre problem. SIAM J. Comput. 15(3), 725–738 (1986)

7. Hurtado, F., Sacristan, V., Toussaint, G.: Some constrained minimax and maximin
location problems. Studies in Locational Analysis, 15:1735 (2000)

8. Jadhav, S., Mukhopadhyay, A., Bhattacharya, B.K.: An optimal algorithm for the
intersection radius of a set of convex polygons. J. Algorithms 20(2), 244–267 (1996)

9. Matousek, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16(4/5), 498–516 (1996)

10. Megiddo, N.: Linear-time algorithms for linear programming in r3 and related
problems. SIAM J. Comput. 12(4), 759–776 (1983)

11. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J.
ACM 31(1), 114–127 (1984)

12. Preparata, F.: Minimum spanning circle. In: Steps into Computational Geometry,
Technical report, University Illinois, Urbana, IL (1977)

13. Roy, S., Karmakar, A., Das, S., Nandy, S.C.: Constrained minimum enclosing circle
with center on a query line segment. Comput. Geom. 42(6–7), 632–638 (2009)

14. Shamos, M.I.: Computational Geometry. Ph.D. thesis, Department of Computer
Science, Yale Universiy, New Haven, CT (1978)

15. Shamos, M.I., Hoey, D.: Closest-point problems. In: 16th Annual Symposium on
Foundations of Computer Science, pp. 151–162 (1975)

16. Sharir, M., Welzl, E.: A combinatorial bound for linear programming and related
problems. In: STACS 92, 9th Annual Symposium on Theoretical Aspects of Com-
puter Science, pp. 569–579 (1992)

17. Sylvester, J.J.: A question in the geometry of situation. Q. J. Math. 1, 79 (1857)

Lower Bounds on the Dilation of Plane Spanners

Adrian Dumitrescu(B) and Anirban Ghosh

Department of Computer Science, University of Wisconsin-Milwaukee,
Milwaukee, WI 53201-0784, USA
{dumitres,anirban}@uwm.edu

Abstract. (I) We exhibit a set of 23 points in the plane that has dilation
at least 1.4308, improving the previously best lower bound of 1.4161 for
the worst-case dilation of plane spanners.

(II) For every n ≥ 13, there exists an n-element point set S such that
the degree 3 dilation of S denoted by δ0(S, 3) equals 1+

√
3 = 2.7321 . . .

in the domain of plane geometric spanners. In the same domain, we show
that for every n ≥ 6, there exists a an n-element point set S such that

the degree 4 dilation of S denoted by δ0(S, 4) equals 1+
√

(5 − √
5)/2 =

2.1755 . . . The previous best lower bound of 1.4161 holds for any degree.
(III) For every n ≥ 6, there exists an n-element point set S such that

the stretch factor of the greedy triangulation of S is at least 2.0268.

Keywords: Geometric graph · Plane spanner · Stretch factor

1 Introduction

Given a set of points P in the Euclidean plane, a geometric graph on P is a
weighted graph G = (V,E) where V = P and an edge uv ∈ E is the line segment
with endpoints u, v ∈ V weighted by the Euclidean distance |uv| between them.
For t ≥ 1, a geometric graph G is a t-spanner, if for every pair of vertices u, v in
V , the length of the shortest path πG(u, v) between them in G is at most t times
|uv|, i.e., ∀u, v ∈ V, |πG(u, v)| ≤ t|uv|. A complete geometric graph on a set of
points is a 1-spanner. Where there is no necessity to specify t, we use the term
geometric spanner. A geometric spanner G is plane if no two edges in G cross.
In this paper we only consider plane geometric spanners. A geometric spanner
of degree at most k is referred to as a degree k geometric spanner.

Given a geometric spanner G = (V,E), the vertex dilation or stretch factor
of u, v ∈ V , denoted δG(u, v), is defined as δG(u, v) = |πG(u, v)|/|uv|. When G
is clear from the context, we simply write δ(u, v). The vertex dilation or stretch
factor of G, denoted δ(G), is defined as δ(G) = supu,v∈V δG(u, v). The terms
graph theoretic dilation and spanning ratio are also used in the literature. Refer
to [23,29,34] for such definitions.

Given a point set P , let G be the family of geometric spanners on P . The graph
theoretic dilation or simply dilation of P , denoted by δ(P), is defined as δ(P) =
infG∈G δ(G). If Gk is the family of degree k geometric spanners on P , we similarly
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 139–151, 2016.
DOI: 10.1007/978-3-319-29221-2 12

140 A. Dumitrescu and A. Ghosh

define δ(P, k) as the degree k dilation of P , namely δ(P, k) = infG∈Gk
δ(G). In

the case of plane geometric spanners, we use the notations δ0(P) and δ0(P, k);
clearly, δ0(P, k) ≥ δ0(P) holds for any k.

In the last few decades, great progress has been made in the field of geometric
spanners; for an overview refer to [26,34]. Common goals include constructions
of low stretch factor geometric spanners that have few edges, bounded degree
and so on. A survey of open problems in this area along with existing results
can be found in [11]. Geometric spanners find their applications in the areas
of robotics, computer networks, distributed systems and many others. Refer
to [1,2,4,13,24,31] for various algorithmic results.

The existence of plane t-spanners for some constant t > 1 (with no restriction
on degree) was first investigated by Chew [15] in the 80s. He showed that it is
always possible to construct a plane 2-spanner with O(n) edges on a set of n
points; he also observed that every plane geometric graph embedded on the 4
points placed at the vertices of a square has stretch factor at least

√
2. This was

the best lower bound on the worst-case dilation of plane spanners for almost
20 years until it was observed by Mulzer [33] using a computer program that
every triangulation of a regular 21-gon has stretch factor at least (2 sin π

21 +
sin 5π

21 +sin 3π
21)/ sin 10π

21 = 1.4161 . . . Henceforth, it was posed as an open problem
by Bose and Smid [11, OpenProblem1] (as well as by Kanj in his survey [27,
OpenProblem5]): “What is the best lower bound on the spanning ratio of plane
geometric graphs? Specifically, is there a t >

√
2.005367532 ≈ 1.41611 . . . and

a point set P, such that every triangulation of P has spanning ratio at least
t?”. We give a positive answer to the second question by showing that a set
S of 23 points placed at the vertices of a regular 23-gon, has dilation δ0(S) ≥
(2 sin 2π

23 + sin 8π
23)/ sin 11π

23 = 1.4308 . . .
The problem can be traced back to a survey written by Eppstein [25, Open-

Problem9]: “What is the worst case dilation of the minimum dilation triangula-
tion?”. The point set S also provides a partial answer for this question. From the
other direction, the current best upper bound of 1.998 was proved by Xia [36]
using Delaunay triangulations. Note that this bound is only slightly better than
the bound of 2 obtained by Chew [15] in the 1980s. For previous results on the
upper bound refer to [16,18,19,29].

The design of low degree plane spanners is of great interest to geometers.
Bose et al. [9] were the first to show that there always exists a plane t-spanner of
degree at most 27 on any set of points in the Euclidean plane where t ≈ 10.02.
The result was subsequently improved in [5,7,12,28,32] in terms of degree.
Recently, the degree was reduced to 4 with t =

√
4 + 2

√
2 (19 + 29

√
2) =

156.8194 . . . by Bonichon et al. [6]. However, the question whether the degree
can be reduced to 3 remains open at the time of this writing. If one does not
insist on having a plane spanner, Das et al. [17] showed that degree 3 is achiev-
able. While numerous papers have focused on upper bounds on the dilation of
bounded degree plane spanners, not much is known about lower bounds. In this
paper, we explore this direction and provide new lower bounds for unrestricted
degrees and when degrees 3 and 4 are imposed.

Lower Bounds on the Dilation of Plane Spanners 141

A greedy triangulation of a finite point set P is constructed in the following
way: starting with an empty set of edges E, repeatedly add edges to E in non-
decreasing order of length as long as edges in E are noncrossing. Bose et al. [10]
have showed that the greedy triangulation is a t-spanner, where t = 8(π −
α)2/(α2 sin2(α/4)) ≈ 11739.1 and α = π/6. Here we show a worst-case lower
bound of 2.0268; in light of computational experiments we carried out, we believe
that the aforementioned upper bound is very far from the truth.

Related Work. It was shown by Mulzer [33] that if Sn is the set of n points placed
at the vertices of a regular n-gon, then for every n ≥ 74,

1.3836 . . . =
√

2 −
√

3 +
√

3/2 ≤ δ0(Sn) ≤ 0.471π/ sin 0.471π = 1.4858 . . .

The upper bound holds for every n ≥ 3. Amarnadh and Mitra [3] have shown
that in the case of a cyclic polygon (a polygon whose vertices are co-circular),
the stretch factor of any fan triangulation (i.e., with a vertex of degree n − 1),
is � 1.4845.

As mentioned earlier, low degree plane spanners for general point sets have
been studied in [5,7,9,12,28,32]. The construction of low degree plane span-
ners for the infinite square and hexagonal lattices has been recently investigated
in [22].

Bose et al. [8] presented a finite convex point set for which there is a Delaunay
triangulation whose stretch factor is at least 1.581 > π/2, thereby disproving a
widely believed π/2 upper bound conjectured by Chew [15]. They also showed
that this lower bound can be slightly raised to 1.5846 if the point set need not be
convex. This lower bound for non-convex point sets has been further improved
to 1.5932 by Xia and Zhang [37].

Klein et al. [30] proved the following interesting structural result: Let S be
a finite set of points in the plane. Either, S is a subset of one of the well-known
sets of points whose triangulation is unique and has dilation 1. Or there exists
a number Δ(S) > 1 such that each finite plane graph containing S among its
vertices has dilation at least Δ(S).

Cheong et al. [14] showed that for every n ≥ 5, there are sets of n points
in the plane that do not have a minimum-dilation spanning tree without edge
crossings and that 5 is minimal with this property. They also showed that given
a set S of n points with integer coordinates in the plane and a rational dilation
t > 1, it is NP-hard to decide whether a spanning tree of S with dilation at most
t exists, regardless if edge crossings are allowed or not.

When the stretch factor (or dilation) is measured over all pairs of points on
edges or vertices of a plane graph G (rather than only over pairs of vertices) one
arrives at the concept of geometric dilation of G; see for instance [20,23].

Our Results. (I) Let S be a set of 23 points placed at the vertices of a regu-
lar 23-gon. Then, δ0(S) = (2 sin 2π

23 + sin 8π
23)/ sin 11π

23 = 1.4308 . . . (Theorem 1,
Sect. 2). This improves the previous best lower bound of (2 sin π

21 + sin 5π
21 +

sin 3π
21)/ sin 10π

21 = 1.4161 . . ., due to Mulzer [33].

142 A. Dumitrescu and A. Ghosh

(II) (a) For every n ≥ 13, there exists a set S of n points such that δ0(S, 3) ≥
1 +

√
3 = 2.7321 . . . (Theorem 2, Sect. 3). (b) For every n ≥ 6, there exists a set

S of n points such that δ0(S, 4) ≥ 1 +
√

(5 − √
5)/2 = 2.1755 . . . (Theorem 3,

Sect. 3). The previous best lower bound of (2 sin π
21 + sin 5π

21 + sin 3π
21)/ sin 10π

21 =
1.4161 . . ., due to Mulzer [33] holds for any degree. Here we sharpen it for degrees
3 and 4.

(III) For every n ≥ 6, there exists a set S of n points such that the stretch
factor of the greedy triangulation of S is at least 2.0268.

Notations and Assumptions. Let P be a planar point set. For p, q ∈ P , pq
denotes the connecting segment and |pq| denotes its Euclidean length. The
degree of a vertex (point) p is denoted by deg(p). For a specific point set P =
{p1, . . . , pn}, we denote a path consisting of vertices in the order pi, pj , pk, . . .
using ρ(i, j, k, . . .) and by |ρ(i, j, k, . . .)| its total Euclidean length. The graphs
we construct have the property that no edge contains a point of P in its interior.
The convex hull of P is denoted by conv(P).

2 A New Lower Bound on the Worst Case Dilation
of Plane Spanners

In this section, we show that the set S = {s0, . . . , s22} of n = 23 points
placed at the vertices of a regular 23-gon of radius 1 has dilation δ0(S) ≥
(2 sin 2π

23 + sin 8π
23)/ sin 11π

23 = 1.4308 . . . (see Fig. 1). We first present a theoreti-
cal proof showing that δ0(S) ≥ (sin 2π

23 + sin 4π
23 + sin 5π

23)/ sin 11π
23 = 1.4237 . . .;

we then raise the bound to δ0(S) ≥ (2 sin 2π
23 + sin 8π

23)/ sin 11π
23 = 1.4308 . . .

using a computer program. The result obtained by the program is tight as
there exists a triangulation of S (see Fig. 1 (right)) with stretch factor exactly
(2 sin 2π

23 + sin 8π
23)/ sin 11π

23 = 1.4308 . . .
Define the convex hull length of a chord sisj ∈ S as λ(i, j) = min(|i− j|, 23−

|i − j|). Observe that 1 ≤ λ(i, j) ≤ 11. Since triangulations are maximal planar
graphs, we only consider triangulations of S while computing δ0(S); in particular,
every edge of conv(S) is present. Note that there are C21 = 24, 466, 267, 020
triangulations of S. Here Cn = 1

n+1

(
2n
n

)
is the nth Catalan number and there

are Cn ways to triangulate a convex polygon with n + 2 vertices.
It is easily seen that ∀si, sj ∈ S, |sisj | = 2 sin λ(i,j)π

23 . Given a point pair
si, sj ∈ S and a connecting path consisting of k edges with convex hull lengths
n1, . . . , nk, let

f(n1, . . . , nk) =
|ρ(i, . . . , j)|

|sisj | =
∑k

h=1 sin nhπ
23

sin λ(i,j)π
23

. (1)

Observe that f is a symmetric function that can be easily computed (tabulated)
at each tuple n1, . . . , nk. Various values of f , as given by (1), will be repeatedly
used in lower-bounding the stretch factor of point pairs in specific configura-
tions, i.e., when some edges are assumed to be present. Given a chord s0si, let

Lower Bounds on the Dilation of Plane Spanners 143

s1

s2

s0

s3

s4
s5s6s7

s8

s9

s10

s11

s12

s13

s14

s15
s16 s17 s18

s19

s20

s21

s22

s1

s2

s0

s3

s4
s5s6s7

s8

s9

s10

s11

s12

s13

s14

s15
s16 s17 s18

s19

s20

s21

s22

Fig. 1. Left: The set S of 23 points placed at the vertices of a regular 23-gon. Right:
A triangulation of S with stretch factor (2 sin 2π

23
+ sin 8π

23
)/ sin 11π

23
= 1.4308 . . ., which

is achieved because of the detours for the pairs s10, s21 and s6, s18. The shortest paths
connecting the pairs are shown in blue and red, respectively (Color figure online).

lower(s0si) = {si+1, . . . , s22} and upper(s0si) = {s1, . . . si−1}. The range of
possible convex hull lengths of the longest chord in a triangulation of S is given
by the following.

Proposition 1. If � is the convex hull length of the longest chord in a triangu-
lation of S, then � ∈ {8, 9, 10, 11}.
Proof. Since S is symmetric, we can assume that s0s� is the longest chord. If
� < 8, then any triangle with base s0s� and its third vertex in lower(s0s�) has a
side of convex hull length at least 9, contradicting our assumption. On the other
hand, since λ(i, j) ≤ 11 for any 0 ≤ i, j ≤ 22, we have � ≤ 11. �	
Proof Outline. We consider every possible convex hull length �, of the longest
chord in a triangulation T of S and show that in every case the stretch fac-
tor of any resulting triangulation containing a chord of that length, is at least
f(2, 4, 5) = 1.4237 . . . Assuming that s0s� is a longest chord, we consider trian-
gles with base s0s� and third vertex in upper(s0s�) or lower(s0s�), depending on
�. For each such triangle, we show that if the edges of the triangle along with the
convex hull edges of S are present, then in any resulting triangulation there is
a pair whose stretch factor is at least f(2, 4, 5) = 1.4237 . . . Essentially, the long
chords act as obstacles which contribute to long detours for some point pairs.
In the four subsequent lemmas, we consider the convex hull lengths 8, 9, 10, 11
(from Proposition 1) successively.

Lemma 1. If � = 8, then δ(T) ≥ f(2, 4, 5) = 1.4237 . . .

Proof. Refer to Fig. 2. Let s0s8 be the longest chord. The triangle with base s0s8
and third vertex in lower(s0s8) has two other sides of convex hull lengths 7 and

144 A. Dumitrescu and A. Ghosh

s1

s2

s0

s3

s4
s5s6s7

s8

s9

s10

s11

s12

s13

s14

s15
s16 s17 s18

s19

s20

s21

s22

s1

s2

s0

s3

s4
s5s6s7

s8

s9

s10

s11

s12

s13

s14

s15
s16 s17 s18

s19

s20

s21

s22

Fig. 2. Illustrating Case 1 (left) and Case 3 (right) from Lemma 1.

8. It thus suffices to consider the triangle Δs0s8s16 only and assume that the
edges s0s8, s8s16 and s0s16 are present.

Now, consider the pair s10, s21. Note that either s0 ∈ π(s10, s21) or
s16 ∈ π(s10, s21). In the former case, δ(s10, s21) ≥ |ρ(10, 8, 0, 21)|/|s10s21| ≥
f(2, 8, 2) = 1.4308 . . . Thus, we may assume that s16 ∈ π(s10, s21) and consider
the following cases successively.

Case 1: Refer to Fig. 2 (left). If s10s16 ∈ π(s10, s21), then

δ(s3, s14) ≥ min(|ρ(3, 8, 10, 14)|, |ρ(3, 0, 16, 14)|)
|s3s14| ≥ f(5, 2, 4) = 1.4237 . . .

Case 2: If s11s16 ∈ π(s10, s21), then

δ(s3, s14) ≥ min(|ρ(3, 8, 11, 14)|, |ρ(3, 0, 6, 14)|)
|s3s14| ≥ f(5, 3, 3) = 1.4312 . . .

Case 3: Refer to Fig. 2 (right). If s12s16 ∈ π(s10, s21), then

δ(s10, s21) ≥ |ρ(10, 12, 16, 21)|/|s10s21| ≥ f(2, 4, 5) = 1.4237 . . .

Case 4: If s13s16 ∈ π(s10, s21), then

δ(s10, s21) ≥ |ρ(10, 13, 16, 21)|/|s10s21| ≥ f(3, 3, 5) = 1.4312 . . .

Case 5: If s14s16 ∈ π(s10, s21), then

δ(s10, s21) ≥ |ρ(10, 14, 16, 21)|/|s10s21| ≥ f(4, 2, 5) = 1.4237 . . .

Lower Bounds on the Dilation of Plane Spanners 145

Case 6.1: If {s10s15, s15s16} ⊂ π(s10, s21), then

δ(s3, s14) ≥ min(|ρ(3, 8, 10, 14)|, |ρ(3, 0, 16, 15, 14)|)
|s3s14| ≥ f(5, 2, 4) = 1.4237 . . .

Case 6.2: If {s11s15, s15s16} ⊂ π(s10, s21), then

δ(s10, s21) ≥ |ρ(10, 11, 15, 16, 21)|/|s10s21| ≥ f(1, 4, 1, 5) = 1.4263 . . .

Case 6.3: If s{s12s15, s15s16} ⊂ π(s10, s21), then

δ(s10, s21) ≥ |ρ(10, 12, 15, 16, 21)|/|s10s21| ≥ f(2, 3, 1, 5) = 1.4388 . . .

Case 6.4: If {s13s15, s15s16} ⊂ π(s10, s21), then

δ(s10, s21) ≥ |ρ(10, 13, 15, 16, 21)|/|s10s21| ≥ f(3, 2, 1, 5) = 1.4388 . . .

Case 6.5: If {s14s15, s15s16} ⊂ π(s10, s21), then

δ(s10, s21) ≥ |ρ(10, 14, 15, 16, 21)|/|s10s21| ≥ f(4, 1, 1, 5) = 1.4263 . . .

�	
Lemma 2. If � = 9, then δ(T) ≥ f(2, 4, 5) = 1.4237 . . .

Lemma 3. If � = 10, then δ(T) ≥ f(2, 4, 5) = 1.4237 . . .

Lemma 4. If � = 11, then δ(T) ≥ f(2, 4, 5) = 1.4237 . . .

Putting these facts1 together yields the main result of this section:

Theorem 1. Let S be a set of 23 points placed at the vertices of a regular 23-
gon. Then δ0(S) = f(2, 2, 8) =

(
2 sin 2π

23 + sin 8π
23

)
/ sin 11π

23 = 1.4308 . . .

Proof. By Lemmas 1–4, we conclude that δ0(S) ≥ f(2, 4, 5) = (sin 2π
23 + sin 4π

23 +
sin 5π

23)/ sin 11π
23 = 1.4237 . . . On the other hand, the triangulation of S in Fig. 1

(right) has stretch factor f(2, 2, 8) = (2 sin 2π
23 + sin 8π

23)/ sin 11π
23 = 1.4308 . . . and

thus f(2, 4, 5) = 1.4237 . . . ≤ δ0(S) ≤ f(2, 2, 8) = 1.4308 . . .
A C++ program (included in [21]) that generates all triangulations of S based

on a memory-efficient algorithm by Parvez et al. [35, Section4] shows that each of
the C21 triangulations has stretch factor at least f(2, 2, 8). Thereby we obtain the
following final result: δ0(S) = f(2, 2, 8) = (2 sin 2π

23 +sin 8π
23)/ sin 11π

23 = 1.4308 . . .
�	

1 Due to page limitations, the proofs of Lemmas 2, 3, 4 are deferred to the full ver-
sion [21].

146 A. Dumitrescu and A. Ghosh

Remarks. Using the program we have also checked that the next largest stretch
factor among all triangulations is f(3, 5, 3) = 1.4312 . . ., and so the result in
Theorem 1 is not affected by floating-point precision errors.

Let Sn be the set of points placed at the vertices of a regular n-gon. Using
a computer program, Mulzer obtained the values δ0(Sn) for 4 ≤ n ≤ 21 in his
thesis [33, Chapter3]. Using our C++ program, we confirmed the previous values
and extended the range up to n = 24: δ0(S22) = 1.4047 . . ., δ0(S24) = 1.4013 . . .
and surprisingly, as stated earlier, δ0(S23) = 1.4308 . . . Thus, apparently δ0(Sn)
does not exhibit a monotonic behavior.

3 Lower Bounds for the Worst Case Degree 3 and 4
Dilation

In this section, we provide lower bounds for the worst case degree 3 and 4 dilation
of point sets in the Euclidean plane. We begin with degree 3 dilation. We first
present a set P of n = 13 points (a section of the hexagonal lattice with 6
boundary points removed) that has δ(P, 3) ≥ 1 +

√
3 and then extend P to

achieve this lower bound for any n ≥ 13.

Theorem 2. For every integer n ≥ 13, there exists a set S of n points such that
δ0(S, 3) ≥ 1 +

√
3. The inequality is tight for the presented sets.

Proof. Let P = {p0} ∪ P1 ∪ P2 be a set of n = 13 points as shown in Fig. 3 (left)
where P1 = {p1, p3, p5, p7, p9, p11} and P2 = {p2, p4, p6, p8, p10, p12}. The points
in P1 and P2 lie on the vertices of two regular homothetic hexagons centered
at p0 of radius 1 and 2 respectively. Furthermore, the points in each of the sets
{p2, p1, p0, p7, p8}, {p4, p3, p0, p9, p10} and {p12, p11, p0, p5, p6} are collinear. We
first show that δ0(P, 3) ≥ 1+

√
3 and then show this lower bound can be obtained

for any n ≥ 13; details are deferred to the full version [21]. �	

p0

p1

p2

p3

p5

p6

p7

p8

p9p10

p11

p12

p4 p0

p1

p2

p3
p4

p5

p6

p7

p8

p9
p10

p11

p12

Fig. 3. Left: the point set P = {p0, p1, . . . , p12}. Right: a plane degree 3 geometric
spanner on P with stretch factor 1 +

√
3 which is achieved due to the detours for the

point pairs {p1, p3}, {p5, p7} and {p9, p11}.

Lower Bounds on the Dilation of Plane Spanners 147

p0

p1

p2

p3
p4

p5

Fig. 4. A plane degree 4 geometric graph on 6 points that has stretch factor exactly

1 +
√

(5 − √
5)/2 as achieved by the detour between p0, p1.

Lower Bounds for the Worst Case Degree 4 Dilation. We first exhibit a set P

of n = 6 points with degree 4 dilation 1 +
√

(5 − √
5)/2, and then extend it so

to achieve the same lower bound for any larger n. Consider the 6-element point
set P = {p0, . . . , p5}, where p1, . . . , p5 are the vertices of a regular pentagon
centered at p0.

Theorem 3. For every integer n ≥ 6, there exists a set S of n points such that

δ0(S, 4) ≥ 1 +
√

(5 −
√

5)/2 = 2.1755 . . .

The inequality is tight for the presented sets.

Proof. Since deg(p0) ≤ 4, there exits a point pi, 1 ≤ i ≤ 5 such that p0pi is not
present; we may assume that i = 1; see Fig. 4. Observe that

|p0p1| = 1 and |p1p2| = |p1p5| =
√

12 + 12 − 2 · 1 · 1 cos(2π/5) =
√

(5 −
√

5)/2.

Now,

δ(p0, p1) ≥ |ρ(0, i, 1)|
|p0p1| ≥ 1 +

√
(5 −

√
5)/2 = 2.1755 . . . , where i ∈ {2, 5}.

Thus, δ0(P, 4) ≥ 1 +
√

(5 − √
5)/2. As in the proof of Theorem2 (see [21])

the aforesaid 6 points can be used to obtain the same lower bound for any n ≥ 6.
To see that the above lower bound is tight, consider the degree 4 geometric

graph on P in Fig. 4 that has stretch factor exactly that, due to the detour
between p0, p1. �	

4 A Lower Bound on the Worst Case Dilation of the
Greedy Triangulation

Place 4 points at the vertices of a unit square U , and two other points in the
exterior of U on the vertical line through the center of U and close to the lower

148 A. Dumitrescu and A. Ghosh

p5

p0
p1

p2
p3

p4

1

1

p0 p1

p2
p3

p4

p5

α

a ab
x

Fig. 5. Greedy triangulation of 6 points with a stretch factors 2 − ε (left) and 2.0268
(right).

and upper side of U , as shown in Fig. 5 (left). For any given ε > 0, the points
can be placed so that the resulting stretch factor is at least δ(p0, p3) ≥ 2 − ε. A
modification of this idea gives a slightly better lower bound.

Theorem 4. For every integer n ≥ 6, there exists a set S of n points such that
the stretch factor of the greedy triangulation of S is at least 2.0268.

Proof. Replace the unit square by a parallelogram V with two horizontal unit
sides, unit height and angle α ∈ (π/4, π/2) to be determined, as shown in Fig. 5
(right). Place 4 points at the vertices of V and two other points in the exterior
of V on the vertical line through the center of the V and close to the lower
and upper side of V . First observe that the greedy triangulation is unique for
this point set. Second, observe that there are two candidate detours connecting
u = p0 with v = p3: one of length (slightly longer than) 1 + a and one of length
(slightly longer than) 2x + b, where a is the length of the slanted side of V , b is
the length of the short diagonal of V , and x is the horizontal distance between
the upper left corner of V and the center of V . A straightforward calculation
gives:

a =
1

sin α
, b =

√
1 + sin2 α − 2 sin α cos α

sin α
, and x =

1 − cot α

2
.

Let f(α) = min

(
1 +

1
sin α

, 1 − cot α +

√
1 + sin2 α − 2 sin α cos α

sin α

)
,

where α ∈ (
π
4 , π

2

)
. Setting α = 1.3416 (i.e., α = 76.87◦) yields

δ(u, v) ≥ max
α∈(π/4,π/2)

f(α) ≥ f(1.3416) = 2.0268 . . . ,

as required. As in the proofs of Theorems 2 and 3, the lower bound can be
extended for every n ≥ 6 in a straightforward way. �	

Lower Bounds on the Dilation of Plane Spanners 149

5 Concluding Remarks

We have shown that any plane spanning graph of the vertices of a regular 23-gon
requires a stretch factor of (2 sin 2π

23 + sin 8π
23)/ sin 11π

23 = 1.4308 . . .

Problem 1 Does there exist a point set S in the Euclidean plane such that
δ0(S) > (2 sin 2π

23 + sin 8π
23)/ sin 11π

23 = 1.4308 . . .?

We have shown that there exist point sets that require degree 3 dilation

1 +
√

3 = 2.7321 . . . (Theorem 2) and degree 4 dilation 1 +
√

(5 − √
5)/2 =

2.1755 . . . (Theorem 3). Perhaps these lower bounds can be improved.

Problem 2 Does there exist a point set in the Euclidean plane (perhaps a larger
section of the hexagonal lattice) that has degree 3 dilation greater than 1 +

√
3?

Does there exist a point set in the Euclidean plane that has degree 4 dilation

greater than 1 +
√

(5 − √
5)/2?

We have shown that the stretch factor of the greedy triangulation is at least
2.0268, in the worst case. We think that this lower bound is not far from the
truth.

References

1. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss,
M.: Computing the detour and spanning ratio of paths, trees, and cycles in 2D and
3D. Discrete Comput. Geom. 39(1–3), 17–37 (2008)

2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)

3. Amarnadh, N., Mitra, P.: Upper bound on dilation of triangulations of cyclic poly-
gons. In: Proceedings of the Conference Computational Science and Applications,
pp. 1–9. Springer (2006)

4. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H.J., Vigneron,
A.: Sparse geometric graphs with small dilation. Comput. Geom. 40(3), 207–219
(2008)

5. Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum
degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg
(2010)

6. Bonichon, N., Kanj, I., Perković, L., Xia, G.: There are plane spanners of degree 4
and moderate stretch factor. Discrete Comput. Geom. 53(3), 514–546 (2015)

7. Bose, P., Carmi, P., Chaitman-Yerushalmi, L.: On bounded degree plane strong
geometric spanners. J. Discrete Algorithms 15, 16–31 (2012)

8. Bose, P., Devroye, L., Löffler, M., Snoeyink, J., Verma, V.: Almost all delaunay
triangulations have stretch factor greater than π/2. Comput. Geom. 44(2), 121–127
(2011)

9. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded
degree and low weight. Algorithmica 42, 249–264 (2005)

150 A. Dumitrescu and A. Ghosh

10. Bose, P., Lee, A., Smid, M.: On generalized diamond spanners. In: Dehne, F.,
Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 325–336. Springer,
Heidelberg (2007)

11. Bose, P., Smid, M.: On plane geometric spanners: a survey and open problems.
Comput. Geom. 46(7), 818–830 (2013)

12. Bose, P., Smid, M., Xu, D.: Delaunay and diamond triangulations contain spanners
of bounded degree. Internat. J. Comput. Geom. Appl. 19(2), 119–140 (2009)

13. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph
spanners. Internat. J. Comput. Geom. Appl. 5, 125–144 (1995)

14. Cheong, O., Herman, H., Lee, M.: Computing a minimum-dilation spanning tree
is NP-hard. Comput. Geom. 41(3), 188–205 (2008)

15. Chew, P.: There are planar graphs almost as good as the complete graph. J. Com-
put. Syst. Sci. 39(2), 205–219 (1989)

16. Cui, S., Kanj, I., Xia, G.: On the stretch factor of Delaunay triangulations of points
in convex position. Comput. Geom. 44(2), 104–109 (2011)

17. Das, G., Heffernan, P.: Constructing degree-3 spanners with other sparseness prop-
erties. Internat. J. Found. Comput. Sci. 7(2), 121–136 (1996)

18. Das, G., Joseph, D.: Which triangulations approximate the complete graph? In:
Djidjev, H.N. (ed.) Optimal Algorithms. LNCS, vol. 401, pp. 168–192. Springer,
Heidelberg (1989)

19. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good
as complete graphs. Discrete Comput. Geom. 5, 399–407 (1990)

20. Dumitrescu, A., Ebbers-Baumann, A., Grüne, A., Klein, R., Rote, G.: On the
geometric dilation of closed curves, graphs, and point sets. Comput. Geom. 36,
16–38 (2006)

21. Dumitrescu, A., Ghosh, A.: Lower bounds on the dilation of plane spanners, Octo-
ber 2015. arXiv:1509.07181

22. Dumitrescu, A., Ghosh, A.: Lattice spanners of low degree. In: Govindarajan, S.,
Maheshwari, A. (eds.) CALDAM 2016. LNCS, Vol. 9602, pp. 152–163. Springer,
Switzerland (2016)

23. Ebbers-Baumann, A., Grüne, A., Klein, R.: On the geometric dilation of finite
point sets. Algorithmica 44, 137–149 (2006)

24. Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A fast algorithm for
approximating the detour of a polygonal chain. Comput. Geom. 27, 123–134 (2004)

25. Eppstein, D.: Spanning trees and spanners, in Handbook of Computational Geom-
etry (Sack, J.R., Urrutia, J. (Eds)), pp. 425–461. Amsterdam (2000)

26. Gudmundsson, J., Knauer, C.: Dilation and detour in geometric networks, in hand-
book on approximation algorithms and metaheuristics, Chapter 52 (Gonzalez,T.
(Eds.), Chapman & Hall/CRC, Boca Raton (2007)

27. Kanj, I.: Geometric spanners: recent results and open directions. In: Proceedings of
the 3rd International Conference on Communication and Information Technology,
pp. 78–82. IEEE (2013)

28. Kanj, I., Perković, L.: On geometric spanners of Euclidean and unit disk graphs. In:
Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer
Science, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 409–420 (2008)

29. Keil, M., Gutwin, C.A.: Classes of graphs which approximate the complete Euclid-
ean graph. Discrete Comput. Geom. 7, 13–28 (1992)

30. Klein, R., Kutz, M., Penninger, R.: Most finite point sets in the plane have dilation
> 1. Discrete Comput. Geom. 53(1), 80–106 (2015)

http://arxiv.org/abs/1509.07181

Lower Bounds on the Dilation of Plane Spanners 151

31. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the com-
plete graphs and almost as cheap as minimum spanning trees. Algorithmica 8,
251–256 (1992)

32. Li, X.Y., Wang, Y.: Efficient construction of low weight bounded degree planar
spanner. Internat. J. Comput. Geom. Appl. 14(1–2), 69–84 (2004)

33. Mulzer, W.: Minimum dilation triangulations for the regular n-gon, Masters thesis,
Freie Universität, Berlin (2004)

34. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

35. Parvez, M.T., Rahman, M.S., Nakano, S.-I.: Generating all triangulations of plane
graphs. J. Graph. Algorithms Appl. 15(3), 457–482 (2011)

36. Xia, G.: The stretch factor of the delaunay triangulation is less than 1998. SIAM
J. Comput. 42(4), 1620–1659 (2013)

37. Xia, G., Zhang, L.: Toward the tight bound of the stretch factor of delaunay trian-
gulations. In: Proceedings of the 23rd Canadian Conference on Computer Geome-
try (2011)

Lattice Spanners of Low Degree

Adrian Dumitrescu(B) and Anirban Ghosh

Department of Computer Science, University of Wisconsin-Milwaukee, Milwaukee,
WI 53201-0784, USA

{dumitres,anirban}@uwm.edu

Abstract. Let δ0(P, k) denote the degree k dilation of a point set P in
the domain of plane geometric spanners. If Λ is the infinite integer lattice,
it is shown that 1 +

√
2 ≤ δ0(Λ, 3) ≤ (5

√
2 + 7) 29−1/2 = 2.6129 . . . and

δ0(Λ, 4) =
√

2. If Λ is the infinite hexagonal lattice, it is shown that
2 ≤ δ0(Λ, 3) ≤ 3 and δ0(Λ, 4) = 2.

Keywords: Geometric graph · Plane spanner · Vertex dilation · Stretch
factor · Planar lattice

1 Introduction

Let P be a (possibly infinite) set of points in the Euclidean plane. A geometric
graph embedded on P is a graph G = (V,E) where V = P and an edge uv ∈ E
is the line segment connecting u and v. View G as a edge-weighted graph, where
the weight of uv is the Euclidean distance between u and v. A geometric graph
G is a t-spanner, for some t ≥ 1, if for every pair of vertices u, v in V , the length
of the shortest path πG(u, v) between u and v in G is at most t times |uv|, i.e.,
∀u, v ∈ V, |πG(u, v)| ≤ t|uv|. Obviously, the complete geometric graph on a set
of points is a 1-spanner. When there is no need to specify t, the rather imprecise
term geometric spanner is also used. A geometric spanner G is plane if no two
edges in G cross. Here we only consider plane geometric spanners. A geometric
spanner of degree at most k is called degree k geometric spanner.

Consider a geometric spanner G = (V,E). The vertex dilation or stretch fac-
tor of a pair u, v ∈ V , denoted δG(u, v), is defined as δG(u, v) = |πG(u, v)|/|uv|.
If G is clear from the context, we simply write δ(u, v). The vertex dilation or
stretch factor of G, denoted δ(G), is defined as δ(G) = supu,v∈V δG(u, v). The
terms graph theoretic dilation and spanning ratio are also used [16,21,28].

Given a point set P , let G = G(P) be the family of geometric spanners on P .
The graph theoretic dilation or simply dilation of P , denoted by δ(P), is defined
as δ(P) = infG∈G δ(G). If Gk is the family of degree k geometric spanners on P ,
we define δ(P, k) as the degree k dilation of P , namely δ(P, k) = infG∈Gk

δ(G).
In the domain of plane geometric spanners, these are denoted by δ0(P) and
δ0(P, k); clearly, δ0(P, k) ≥ δ0(P) holds for any k.

The field of geometric spanners has witnessed a great deal of interest from
researchers, both in theory and applications; see for instance the survey arti-
cles [8,18,19,28]. Typical objectives include constructions of low stretch factor
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 152–163, 2016.
DOI: 10.1007/978-3-319-29221-2 13

Lattice Spanners of Low Degree 153

geometric spanners that have few edges, bounded degree, low weight and/or
diameter, etc. Geometric spanners find their applications in the areas of robot-
ics, computer networks, distributed systems and many others. Various algorith-
mic and structural results on sparse geometric spanners can be found in [1–
3,10,11,17,22,24].

Chew [12] was the first to show that it is always possible to construct a
plane 2-spanner with O(n) edges on a set of n points; more recently, Xia [29]
proved a slightly sharper upper bound of 1.998 using Delaunay triangulations.
Bose et al. [7] showed that there exists a plane t-spanner of degree at most 27 on
any set of points in the Euclidean plane where t ≈ 10.02. The result was subse-
quently improved in [4,6,9,20,25] in terms of degree. Recently, Bonichon et al. [5]
reduced the degree to 4 with t ≈ 156.82. The question whether the degree can
be reduced to 3 remains open at the time of this writing; if one does not insist
on having a plane spanner, Das et al. [13] showed that degree 3 is achievable.

It is natural to study the existence of low-degree spanners of fundamental
regular structures, such as point lattices. Indeed, these have been the focus of
interest since the early days of computing. One such intense research area con-
cerns VLSI [23]. Other applications of spanners (not necessarily geometric) are in
the areas of computer networks and parallel computing; see for instance [26,27].
While the authors of [26,27] do examine grid structures (including planar ones),
the resulting stretch factors however are not defined (or measured) in geometric
terms. More recently, lattice structures at a larger scale are used in industrial
design, modern urban design and outer space design. Indeed, Manhattan-like
layout of facilities and road connections are very convenient to plan and deploy,
frequently in an automatic manner. Studying the stretch factors that can be
achieved in low degree spanners of point sets with a lattice structure appears to
be quite useful. The two most common lattices are the square lattice and the
hexagonal lattice.

According to an argument due to Das and Heffernan [13],[28, p. 468], the
n points in a

√
n × √

n section of the integer lattice cannot be connected in a
path or cycle with stretch factor o(

√
n), O(1) in particular. Similarly, no degree

2 plane spanner of the infinite integer lattice can have stretch factor O(1), hence
a minimum degree of 3 is necessary in achieving a constant stretch factor. In
Sect. 3 we obtain bounds on the degree 3 and 4 dilation of the infinite square
lattice in the domain of plane geometric spanners. In Sect. 4 we proceed similarly
for the infinite hexagonal lattice.

Our results. Let Λ be the infinite square lattice and Λ(m,n) be a m × n section
of Λ, where m,n ≥ 3. We show that the degree 3 and 4 dilation of these lattices
are bounded as follows: (i) 1 +

√
2 ≤ δ0(Λ, 3) ≤ (5

√
2 + 7) 29−1/2 and (ii) 1 +√

2 ≤ δ0(Λ(m,n), 3) ≤ (5
√

2 + 7) 29−1/2 (Theorem 2, Sect. 3) and (ii) δ0(Λ, 4) =
δ0(Λ(m,n), 4) =

√
2 (Theorem 3, Sect. 3).

If Λ is the infinite hexagonal lattice, we show that (i) 2 ≤ δ0(Λ, 3) ≤ 3
(Theorem 4, Sect. 4) and (ii) δ0(Λ, 4) = 2 (Theorem 5, Sect. 4).

154 A. Dumitrescu and A. Ghosh

2 Preliminaries

By the well known Cauchy-Schwarz inequality for n = 2, if a, b, x, y ∈ R+, then

g(x, y) =
ax + by√
x2 + y2

≤
√

a2 + b2,

and moreover, g(x, y) =
√

a2 + b2 when x/y = a/b. We will repeatedly use this
inequality in an equivalent form:

Fact 1. Let a, b, λ ∈ R+. Then f(λ) =
aλ + b√
λ2 + 1

≤ √
a2 + b2, and moreover,

f(λ) =
√

a2 + b2 when λ = a/b.

Notations and assumptions. Let P be a planar point set. For p, q ∈ P , pq
denotes the connecting segment and |pq| denotes its Euclidean length. The
degree of a vertex (point) p is denoted by deg(p). For a specific point set P =
{p1, . . . , pn}, we denote a path consisting of vertices in the order pi, pj , pk, . . .
using ρ(i, j, k, . . .) and by |ρ(i, j, k, . . .)| its total Euclidean length. The graphs
we construct have the property that no edge contains a point of P in its interior.

3 The Square Lattice

This section is devoted to the degree 3 and 4 dilation of the square lattice.

Theorem 1. Let Λ be the infinite square lattice and Λ(m,n) be a m×n section
of Λ, where m,n ≥ 3. Then

(i) 1 +
√

2 ≤ δ0(Λ, 3) ≤
√

4 + 2
√

2 = 2.6131 . . .

(ii) 1 +
√

2 ≤ δ0(Λ(m,n), 3) ≤
√

4 + 2
√

2 = 2.6131

Proof. (i) To prove the lower bound, consider any point p0 ∈ Λ; p0 has eight
neighbors p1, . . . , p8, as in Fig. 1. Since deg(p0) ≤ 3, p0 can be connected to at
most three neighbors from {p2, p4, p6, p8}. We may assume that the edge p0p2 is
not present; then

δ(p0, p2) ≥ |ρ(0, i, 2)|
|p0p2| ≥ 1 +

√
2, where i ∈ {1, 3, 4, 8}.

To prove the upper bound, we construct a plane degree 3 geometric graph
as follows: For all (i, j) ∈ Z2, connect (i, j) with (i + 1, j); For all j ∈ Z connect
(i, j) with (i + 1, j + 1) if i is odd, as shown in Fig. 2.

Let u = (a, b) and v = (c, d) be any two points in Λ(m,n). Clearly, if b = d,
δG(u, v) = 1. Now observe that in G we need to cover a distance of at most√

2 + 1 to go from (i, j) to (i, j + 1) or vice-versa. Thus,

δG(u, v) ≤ |a − c| + (
√

2 + 1)|b − d|√
(a − c)2 + (b − d)2

, (1)

Lattice Spanners of Low Degree 155

p0

p8

p2

p1

p3p4p5

p6

p7

1

Fig. 1. Illustrating the lower bound of 1 +
√

2 for the square lattice.

Fig. 2. A degree 3 plane spanner for the square lattice with stretch factor at most√
4 + 2

√
2 = 2.6131 . . .

since the length of the shortest path between u, v is at most the length of the
path consisting of a straight-line horizontal sub-path of length |a − c| and a zig-
zag sub-path of length (

√
2 + 1)|b − d|. Now setting |a − c| = x, |b − d| = y and

using Fact 1, yields

δG(u, v) ≤ g(x, y)=
x + (

√
2 + 1)y√

x2 + y2
≤

√
1 + (

√
2 + 1)2 =

√
4 + 2

√
2 = 2.6131 . . .

(ii) To prove the lower bound, consider a non-boundary point p0 and use
the same argument as in the proof of the lower bound in part (i). To prove the
upper bound, connect the points in Λ(m,n) as shown in Fig. 3. The following
connections are made:

Step 1. For j = 0 to n − 1 and i = 0 to m − 2, connect (i, j) with (i + 1, j).
Step 2. For j = 0 to n − 2, connect (0, j) with (0, j + 1).
Step 3. For j = 0 to n − 2, connect (i, j) with (i + 1, j + 1) if i is odd and

(i + 1, j + 1) ∈ Λ(m,n).
Step 4. If m is even, for j = 0 to n−2, connect (m−1, j) with (m−1, j+1).
Instances Λ(8, 5) and Λ(9, 5) are shown in Fig. 3. Now the analysis is exactly

the same as for part (i). �	
Interestingly enough, a twist in the spanner construction yields a slightly

better stretch factor and brings us to our main result:

156 A. Dumitrescu and A. Ghosh

(0,0)

(7,4)

(0,0)

(8,4)

Fig. 3. Connecting the points in Λ(8, 5) (left) and Λ(9, 5) (right).

Theorem 2. Let Λ be the infinite square lattice and Λ(m,n) be a m×n section
of Λ, where m,n ≥ 3. Then

(i) δ0(Λ, 3) ≤ (5
√

2 + 7) 29−1/2 = 2.6129 . . .
(ii) δ0(Λ(m,n), 3) ≤ (5

√
2 + 7) 29−1/2 = 2.6129 . . .

Proof. The following connections are made in G: For all (i, j) ∈ Z2, connect (i, j)
with (i + 1, j). For all j ∈ Z connect (i, j) with (i + 1, j + 1) if i ≡ 1 (mod 4),
and connect (i, j) with (i − 1, j + 1) if i ≡ 0 (mod 4). See Fig. 4.

Observe that the upper bound in (1) still holds, since a path with the same
structure, namely a straight line horizontal sub-path of length |a − c| followed
by a zig-zag sub-path of length (

√
2 + 1)|b − d| exists. We next derive a sharper

bound: δ0(Λ, 3) ≤ (5
√

2 + 7) 29−1/2 = 2.6129 . . .
Assume, as we may, that a ≤ c and b ≤ d. Put x = c − a and y = d − b. We

can further assume that b = 0, and so u = (a, 0).
If x ≥ y, let λ = x/y ≥ 1. We can write

δG(u, v) ≤ (
√

2 + 1)y + x√
x2 + y2

=
√

2 + 1 + λ√
1 + λ2

=: f(λ).

Its derivative is f ′(λ) =
1 − (

√
2 + 1)λ√

1 + λ2
< 0, for λ ≥ 1; f is a decreasing function

on [1,∞), and thus f(λ) ≤ f(1) =
√

2 + 1 for this range of λ.
Let now y ≥ x+1 for the remainder of the proof. If x = 0, it is easy to check

that δG(u, v) ≤ √
2 + 1.

If x = 1, λ = 1
y , where y = 2, 3, 4, 5, . . ., and so λ = 1

2 , 1
3 , 1

4 , 1
5 , . . . ∈ (0, 1).

The derivative f ′ vanishes at λ0 = 1√
2+1

=
√

2 − 1 = 0.4142 . . . On the interval
(0, 1): f is increasing on the interval (0, λ0) and decreasing on the interval (λ0, 1);
it attains a unique maximum at λ = λ0. Since λ0 ∈ (13 , 1

2), we have

f(λ) ≤ max
(

f

(
1
3

)
, f

(
1
2

))
= f

(
1
3

)
= f

(
1
2

)
=

2
√

2 + 3√
5

= 2.6065 . . .

If x = 2, λ = 2
y , where y = 3, 4, 5, 6, . . ., and so λ = 2

3 , 2
4 , 2

5 , 2
6 , . . . ∈ (0, 1).

Since λ0 ∈ (25 , 2
4), we have

f(λ) ≤ max
(

f

(
2
5

)
, f

(
1
2

))
= f

(
2
5

)
=

5
√

2 + 7√
29

= 2.6129 . . .

Lattice Spanners of Low Degree 157

If x = 3, λ = 3
y , where y = 4, 5, 6, 7, 8, 9, . . ., and so λ = 3

4 , 3
5 , 3

6 , 3
7 , 3

8 , . . . ∈
(0, 1). Since λ0 ∈ (38 , 3

7), we have

f(λ) ≤ max
(

f

(
3
8

)
, f

(
3
7

))
= f

(
3
7

)
=

5
√

2 + 7√
29

= 2.6129 . . .

We have thus shown that for x ≤ 3 we have δG(u, v) ≤ (5
√

2 + 7) 29−1/2.
Let now x ≥ 4 for the remainder of the proof. By the symmetry of the spanner
construction (recall its periodicity modulo 4), it suffices to consider four cases:

Case 1: u = (1, 0). Connect u to v using (segments are listed cumulatively):
�x
4 upward-right (diagonal) segments, x − �x

4 unit horizontal segments (going
right), and y−�x

4 upward two-segment zig-zags of length
√

2+1 each, as shown
in Fig. 4 (left). We thus have

|π(u, v)| ≤
(
y −

⌈x

4

⌉) (√
2 + 1

)
+

⌈x

4

⌉ √
2 +

(
x −

⌈x

4

⌉)

= y
(√

2 + 1
)

+
(
x − 2

⌈x

4

⌉)
≤ y

(√
2 + 1

)
+

x

2
. (2)

Consequently, by Fact 1 we have

δG(u, v) ≤
√

2 + 1 + λ/2√
1 + λ2

≤
√(√

2 + 1
)2

+
(

1
2

)2

= 2.4654 . . . (3)

Case 2: u = (2, 0). Connect u to v using: �x
4 � upward-right (diagonal) seg-

ments, x − �x
4 � unit horizontal segments (going right), and y − �x

4 � upward
zig-zags of length

√
2+1 each; see Fig. 4 (right). Observe that for x ≥ 4 we have

�x
4 � ≥ x

7 . It follows that

|π(u, v)| ≤
(
y −

⌊x

4

⌋)(√
2 + 1

)
+

⌊x

4

⌋ √
2 +

(
x −

⌊x

4

⌋)

= y
(√

2 + 1
)

+
(
x − 2

⌊x

4

⌋)
≤ y

(√
2 + 1

)
+

5x

7
. (4)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

11 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

11

Fig. 4. Left: a path connecting (1, 0) with (5, 6). Right: a path connecting (2, 0) with
(4, 5) (in red) and a path connecting (2, 0) with (10, 8) (in black) (Color figure online).

158 A. Dumitrescu and A. Ghosh

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

11 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

11

Fig. 5. Left: a path connecting (3, 0) with (8, 7). Right: a path connecting (4, 0) with
(9, 6).

Consequently, by Fact 1 we have

δG(u, v) ≤
√

2 + 1 + 5λ/7√
1 + λ2

≤
√(√

2 + 1
)2

+
(

5
7

)2

= 2.5176 . . . (5)

Case 3: u = (3, 0). Connect u to v using: �x+1
4 � upward-right (diagonal)

segments, x−�x+1
4 � unit horizontal segments (going right), and y−�x+1

4 � upward
zig-zags of length

√
2 + 1 each; see Fig. 5 (left). Observe that for x ≥ 3 we have

�x+1
4 � ≥ x

7 . It follows that

|π(u, v)| ≤
(

y −
⌊

x + 1
4

⌋) (√
2 + 1

)
+

⌊
x + 1

4

⌋ √
2 +

(
x −

⌊
x + 1

4

⌋)

= y
(√

2 + 1
)

+
(

x − 2
⌊

x + 1
4

⌋)
≤ y

(√
2 + 1

)
+

5x

7
. (6)

Consequently, δG(u, v) ≤
√(√

2 + 1
)2

+
(
5
7

)2 = 2.5176 . . . follows as in (5).
Case 4: u = (4, 0). Connect u to v using: �x+2

4 � upward-right (diagonal)
segments, x−�x+2

4 � unit horizontal segments (going right), and y−�x+2
4 � upward

zig-zags of length
√

2+1 each; see Fig. 5 (right). Observe that for x ≥ 2 we have
�x+2

4 � ≥ x
7 . It follows that

|π(u, v)| ≤ y
(√

2 + 1
)

+
(

x − 2
⌊

x + 2
4

⌋)
≤ y

(√
2 + 1

)
+

5x

7
. (7)

Consequently, δG(u, v) ≤
√(√

2 + 1
)2

+
(
5
7

)2 = 2.5176 . . . follows as in (5).
We have thus shown that for any x, y ≥ 0, we have δG(u, v) ≤ (5

√
2 +

7) 29−1/2. This completes the case analysis and thereby the proof of part (i).
As in the proof of Theorem 1, it is easy to check that upper bound in part (i)

also holds for finite sections, Λ(m,n) of Λ; see Fig. 6. This completes the proof
of Theorem 2. �	

Lattice Spanners of Low Degree 159

(0,0)

(7,4)

(0,0)

(8,4)

Fig. 6. Connecting the points in Λ(8, 5) (left) and Λ(9, 5) (right).

Theorem 3. Let Λ(m,n) = {0, . . . , m − 1} × {0, . . . , n − 1}, where m,n ≥ 2.
Then δ0(Λ, 4) = δ0(Λ(m,n), 4) =

√
2.

Proof. Trivially, the (unrestricted degree) dilation of four points placed at the
four corners of a square is

√
2. Thus, δ0(Λ(m,n), 4) ≥ δ0(Λ(m,n)) ≥ √

2.
To prove the upper bound, construct a graph G on Λ(m,n) using the following

simple rule. Connect every (i, j) ∈ Λ with its four neighbors (i+1, j), (i, j+1), (i−
1, j), (i, j −1) whenever possible. Now let u = (a, b), v = (c, d) be any two points
in Λ(m,n); then

δG(u, v) =
|a − c| + |b − d|√
(a − c)2 + (b − d)2

,

since the length of the Manhattan path in G between u and v is |a− c|+ |b − d|.
Setting |a − c| = x, |b − d| = y and using Fact 1, yields g(x, y) =

x + y√
x2 + y2

≤ √
2. �	

4 The Hexagonal Lattice

This section is devoted to the degree 3 and 4 dilation of the hexagonal lattice.

Theorem 4. Let Λ be the infinite hexagonal lattice. Then 2 ≤ δ0(Λ, 3) ≤ 3.

Proof. We first prove the lower bound. Let p0 be any point in Λ with its six
adjacent neighbors, say, p1, . . . , p6, where |p0pi| = 1, for i = 1, . . . , 6. Since
deg(p0) ≤ 3 in any plane degree 3 geometric spanner on Λ, there exists i ∈
{1, . . . , 6} such that the edge p0pi is not present; we may assume that i = 1.
Then

δ(p0, p1) ≥ |ρ(0, i, 1)|
|p0p1| ≥ 2, where i ∈ {2, 6}.

The upper bound construction of G is illustrated in Fig. 7. We classify the
points in Λ into two types. A point u ∈ Λ is of Type I if the edge between
the points u = (a, b) and (a − 0.5, b − √

3/2) is present otherwise it is of Type
II. Now let u = (a, b) and v = (c, d) be any two points of Λ. Observe that
|a−c| = m/2,m ∈ N and |b−d| =

√
3n/2, n ∈ N. Clearly, if b = d, δG(u, v) = 1.

Next, in each of the following remaining cases, we show that δ(u, v) ≤ 3.

160 A. Dumitrescu and A. Ghosh

p3

p4

p1

p2

Fig. 7. A degree 3 plane spanner G on the infinite hexagonal lattice; p1 is of Type I
and p2 is of Type II.

Case 1 : If |b − d| =
√

3/2, then

δG(u, v) ≤ 2.5 + |a − c|√
(a − c)2 +

(√
3
2

)2 ≤ 2.5 + 0.5√
0.25 + 0.75

= 3.

Here 2.5 is the maximum distance taken to transfer from the line y = b to the
line y = d. This can be easily verified by considering u either as a Type I point
or as a Type II point. Refer to Fig. 7.

Case 2 : If a = c, observe that |b − d| = k
√

3, k ∈ Z+. When |b − d| =
√

3,
the shortest path between u and v has length either 3 or 5 (see Fig. 7). Thus,
δG(u, v) ≤ 5k/k

√
3 = 2.8867 . . .

Case 3 : Now assume that |a − c| ≥ 0.5, |b − d| ≥ √
3. We trace out a path

from u to v. Observe that since |b − d|/(
√

3/2) = n, n ∈ N, the shortest path
from the line y = b to the line y = d starting from u consists of at most 2n unit
segments. Thus,

δG(u, v) ≤ (|a − c| + 0.5) + 4|b − d|/√
3√

(a − c)2 + (b − d)2
,

since the length of the shortest path from u to v is at most the length of the
path consisting of a straight line horizontal sub-path of length |a − c| + 0.5 and
a sub-path of length 2|b − d|/(

√
3/2). While tracing out the path α from u to v,

the next point in α is chosen in a way such that it is the closest to the vertical
line x = u. Since the shortest path from the line y = b to the line y = d starting
from u may have its endpoint on y = d at most |a − c| + 0.5 away from v in
terms of x-coordinate, an adjusting factor of 0.5 suffices. Write x = |a − c| and
y = |b − d|; since x ≥ 0.5 and y ≥ √

3, by Fact 1 we obtain:

g(x, y) =
x + 0.5 + 4y/

√
3√

x2 + y2
≤ x + 4y/

√
3√

x2 + y2
+

0.5√
0.52 + 3

≤ 2.7939 . . .

Equality is attained for point pairs such as p3, p4 in Fig. 7, where |a−c| = 0.5
and |b − d| =

√
3
2 (4n + 3), n ∈ N, with p3 of Type II and p4 of Type I. �	

Lattice Spanners of Low Degree 161

p1

p2

Fig. 8. A degree 4 plane spanner G on the infinite hexagonal lattice. The paths α and
β are drawn in red and blue (Color figure online).

Theorem 5. Let Λ be the infinite hexagonal lattice. Then δ0(Λ, 4) = 2.

Proof. When degree 4 is considered, the same argument in the proof of the
lower bound in Theorem 4 holds true and thus δ0(Λ, 4) ≥ 2. Next, we construct
a graph G as shown in Fig. 8. Let u = (a, b), v = (c, d) be any two points
in Λ. Observe that |a − c| = m/2,m ∈ N and |b − d| =

√
3n/2, n ∈ N. Let

α be the shortest path from y = b to y = d starting from u and β be the
horizontal path from the endpoint of α to v. Clearly, |π(u, v)| ≤ |α| + |β|. Note
that |α| = |b − d|/(

√
3/2). In the worst case, for every unit length in α we may

move away from v by 0.5 in terms of x-coordinate. Thus a horizontal path β
having length |β| ≤ |a − c| + 0.5|b − d|/(

√
3/2) suffices; see Fig. 8.

Consequently,

δG(u, v) ≤ |a − c| + 1.5|b − d|/(
√

3/2)√
(a − c)2 + (b − d)2

=
|a − c| +

√
3|b − d|√

(a − c)2 + (b − d)2
.

Now setting |a − c| = x, |b − d| = y and using Fact 1, yields g(x, y) = (x +√
3y)/

√
x2 + y2 ≤ 2, as required. �	

5 Concluding Remarks

We have given constructive upper bounds and derived close lower bounds on the
degree 3 and 4 dilation of the infinite square lattice and the infinite hexagonal
lattice in the domain of plane geometric spanners. Our bounds also apply for
finite sections of these lattices. It may be worth pointing out that in addition to
the low stretch factors achieved, the constructed spanners also have low weight
and low geometric dilation1; see for instance [14,16] for basic terms. That is, each
of these two parameters is at most a small constant factor times the optimal one
attainable.

1 When the stretch factor (or dilation) is measured over all pairs of points on edges
or vertices of a plane graph G (rather than only over pairs of vertices) one arrives
at the concept of geometric dilation of G.

162 A. Dumitrescu and A. Ghosh

We indicate below two further directions of investigation. As shown in
Theorem 2, the degree 3 dilation of the infinite square lattice is at most
(5

√
2 + 7) 29−1/2. It would be interesting to know whether this upper bound

can be improved, and so we put forward the following.

Conjecture 1. Let Λ be the infinite square lattice. Then δ0(Λ, 3) = (5
√

2 +
7) 29−1/2 = 2.6129

We have shown (Theorem 4) that the degree 3 dilation of the infinite hexag-
onal lattice is at most 3. It is shown in [15] that a suitable 13-point section of
the hexagonal lattice requires degree 3 dilation 1 +

√
3 = 2.7321 . . .

Question 1. Does a suitable larger piece of the hexagonal lattice require degree
3 dilation larger than 1 +

√
3 = 2.7321 . . .? Perhaps 3?

References

1. Agarwal, P.K., Klein, R., Kane, C., Langerman, S., Morin, P., Sharir, M., Soss,
M.: Computing the detour and spanning ratio of paths, trees, and cycles in 2D and
3D. Discrete Comput. Geom. 39(1–3), 17–37 (2008)

2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)

3. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H.J., Vigneron,
A.: Sparse geometric graphs with small dilation. Comput. Geom. 40(3), 207–219
(2008)

4. Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum
degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg
(2010)

5. Bonichon, N., Kanj, I., Perković, L., Xia, G.: There are plane spanners of degree 4
and moderate stretch factor. Discrete Comput. Geom. 53(3), 514–546 (2015)

6. Bose, P., Carmi, P., Chaitman-Yerushalmi, L.: On bounded degree plane strong
geometric spanners. J. Discrete Algorithms 15, 16–31 (2012)

7. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded
degree and low weight. Algorithmica 42, 249–264 (2005)

8. Bose, P., Smid, M.: On plane geometric spanners: a survey and open problems.
Comput. Geom. 46(7), 818–830 (2013)

9. Bose, P., Smid, M., Xu, D.: Delaunay and diamond triangulations contain spanners
of bounded degree. Int. J. Comput. Geom. Appl. 19(2), 119–140 (2009)

10. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph
spanners. Int. J. Comput. Geom. Appl. 5, 125–144 (1995)

11. Cheong, O., Herman, H., Lee, M.: Computing a minimum-dilation spanning tree
is NP-hard. Comput. Geom. 41(3), 188–205 (2008)

12. Chew, P.: There are planar graphs almost as good as the complete graph. J. Com-
put. Syst. Sci. 39(2), 205–219 (1989)

13. Das, G., Heffernan, P.: Constructing degree-3 spanners with other sparseness prop-
erties. Int. J. Found. Comput. Sci. 7(2), 121–136 (1996)

14. Dumitrescu, A., Ebbers-Baumann, A., Grüne, A., Klein, R., Rote, G.: On the
geometric dilation of closed curves, graphs, and point sets. Comput. Geom. 36,
16–38 (2006)

Lattice Spanners of Low Degree 163

15. Dumitrescu, A., Ghosh, A.: Lower bounds on the dilation of plane spanners. In:
Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, Vol. 9602, pp.
139–151, Springer, Switzerland (2016). arXiv:1509.07181

16. Ebbers-Baumann, A., Grüne, A., Klein, R.: On the geometric dilation of finite
point sets. Algorithmica 44, 137–149 (2006)

17. Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A fast algorithm for
approximating the detour of a polygonal chain. Comput. Geom. 27, 123–134 (2004)

18. Eppstein, D.: Spanning trees and spanners. In: Sack, J.R., Urrutia, J. (eds.) Hand-
book of Computational Geometry, pp. 425–461. North-Holland, Amsterdam (2000)

19. Gudmundsson, J., Knauer, C.: Dilation and detour in geometric networks. In:
Gonzalez, T. (ed.) Handbook on Approximation Algorithms and Metaheuristics,
Chap. 52. Chapman & Hall/CRC, Boca Raton (2007)

20. Kanj, I., Perković, L.: On geometric spanners of Euclidean and unit disk graphs.
In: Proceedings of 25th Annual Symposium on Theoretical Aspects of Computer
Science, Schloss Dagstuhl-Leibniz-Zentrum Fuer Informatik, pp. 409–420 (2008)

21. Keil, M., Gutwin, C.A.: Classes of graphs which approximate the complete Euclid-
ean graph. Discrete Comput. Geom. 7, 13–28 (1992)

22. Klein, R., Kutz, M., Penninger, R.: Most finite point sets in the plane have
dilation > 1. Discrete Comput. Geom. 53(1), 80–106 (2015)

23. Leighton, T.: Complexity Issues in VLSI, Foundations of Computing Series. MIT
Press, Cambridge (1983)

24. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the com-
plete graphs and almost as cheap as minimum spanning trees. Algorithmica 8,
251–256 (1992)

25. Li, X.Y., Wang, Y.: Efficient construction of low weight bounded degree planar
spanner. Int. J. Comput. Geom. Appl. 14(1–2), 69–84 (2004)

26. Liestman, A.L., Shermer, T.C.: Grid spanners. Networks 23(2), 123–133 (1993)
27. Liestman, A.L., Shermer, T.C., Stolte, C.R.: Degree-constrained spanners for mul-

tidimensional grids. Discrete Appl. Math. 68(1), 119–144 (1996)
28. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University

Press, Cambridge (2007)
29. Xia, G.: The stretch factor of the Delaunay triangulation is less than 1.998. SIAM

J. Comput. 42(4), 1620–1659 (2013)

http://arxiv.org/abs/1509.07181

AND–Decomposition of Boolean Polynomials
with Prescribed Shared Variables

Pavel Emelyanov1,2(B)

1 Institute of Informatics Systems, Lavrentiev Ave. 6, Novosibirsk, Russia
emelyanov@iis.nsk.su, emelyanov@mmf.nsu.ru

2 Novosibirsk State University, Pirogova St. 2, Novosibirsk, Russia

Abstract. In this article, we present an algorithm for conjunctive
bi–decomposition of boolean polynomials where decomposition compo-
nents share only prescribed variables. It is based on the polynomial–time
algorithm of disjoint decomposition developed before. Some examples
and evaluation of the algorithm are given.

Keywords: AND–decomposition of boolean functions · Combinator-
ial optimization · Disjoint decomposition · Sharing prescribed variables
between decomposition components · Factoring polynomials over finite
fields

1 Introduction

Decomposition of boolean functions/formulas is an important research topic
having a long history and a wide range of applications including analyses of
logic calculi, the theory of games, the (hyper)graph theory, computer algebra
algorithms and combinatorial optimization problems. However, boolean func-
tion decomposition has attracted the most attention in logic circuit synthesis.
It is related to the algorithmic complexity and practical aspects of the imple-
mentation of electronic circuits, their size, time delay, and power consumption.
Historical and modern issues of decomposition are extensively surveyed in [1,2].
Also, we mention [3–7], which are interesting in the scope of this article.

Bi–decomposition is one of the most important cases of decomposition of
boolean functions. Even though it may not be stated explicitly, this case is
considered in many papers: [3,5–8], [2, Ch. 3–6]. It has the form F (X) =
ϕ(F1(Σ1,Δ), F2(Σ2,Δ)), where ϕ ∈ {OR, AND, XOR}, Δ ⊆ X, and {Σ1, Σ2}
is a partition of the variables X \ Δ. Decomposition is called disjoint if Δ = ∅.
From here on, we will consider conjunctive decomposition only. As an applica-
tion, we mention solving a variant of the well–known NP–complete Set Splitting
Problem known also as the Hypergraph 2–Coloring Problem.

The well–known examples of decompositions are Shannon’s Expansions

F = xFx=1 ∨ x̄Fx=0 = (x ∨ Fx=0)(x̄ ∨ Fx=1),

which are powerful tools for theoretical analysis and practical applications. We
can establish other decompositions by varying operation bases. For example,
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 164–175, 2016.
DOI: 10.1007/978-3-319-29221-2 14

AND–Decomposition of Boolean Polynomials 165

F = (xFx=0 + x + Fx=0) (xFx=1 + x + 1) ,

where + stands for Exclusive–OR. In this paper, this decomposition was deduced
as a particular case of a more general decomposition. One disadvantage of these
decompositions is that we cannot control the variables sets of their components.
Also, if a boolean function F over n variables has |UF | units1 and |ZF | zeros,
then the number of its conjunctive bi–decompositions equals

|{(G,H) | F = G · H}| = 22
n−|UF |−1 = 2|ZF |−1, (∗)

It demonstrates that there exists many of such decompositions but only effi-
ciently computed ones are interesting from a practical point of view.

The authors of [9,10], independently from [11] under more simple settings
and in a more simple way, established series algorithms for conjunctive dis-
joint bi–decomposition for boolean functions represented in Algebraic Normal
Form. This form was invented by Zhegalkin [12] and also rediscovered by other
researchers. From the algebraic point of view, ANF is a polylinear multivari-
ate polynomial over the finite field of order 2 (Zhegalkin/boolean polynomials,
Reed–Muller canonical form, Positive Polarity Form). Hence, conjunctive dis-
joint decomposition of ANF coincides with factorization of these polynomials
(further details in [13]).

In [9,10] it is also demonstrated that these decomposition algorithms for ANF
can be straightforwardly transferred to the cases of full DNF and positive DNF.
The results are based on the fact that every disjoint decomposable function given
in forms DNF (and CNF as well) or ANF uniquely defines the finest partition
of its variables. For formulas in CNF/DNF, this follows from the property of a
large class of logical calculi shown in [14]. For formulas in ANF, a similar result
follows from the fact that the ring of (multivariate) polynomials over the finite
field is a unique factorization domain.

In the scope of circuit design, ANF can have some advantages among other
representations of boolean functions. For example, it allows for a more compact
representation of some classes of boolean functions, e.g. arithmetic schemes,
coders, or cyphers. In addition, it has a natural mapping to some circuit tech-
nologies (FPGA–based and nanostructure–based electronics) and good testabil-
ity properties.

Boolean functions in full DNF (i.e. given by explicit enumeration of satisfy-
ing vectors) are considered, for example, in the circuit design based on lookup
tables (LUTs; see, for example, [15]) because they allow for very efficient oper-
ations on table content. Unfortunately, this is space consuming and as such, it
bounds number of LUT inputs. Decomposition of a table into smaller tables can
enlarge the number of admissible inputs. A potentially interesting application
of full DNF decomposition is decomposition of functions in “pre–full” DNF, i.e.
whose full DNFs are reconstructed from DNF by a well–known transformation
(put x ∨ x̄ for each missing variable x in monomials), and their sizes increase

1 UF is also called the support of function supp(F). Its cardinality is also called the
weight of function wt(F).

166 P. Emelyanov

reasonably with respect to the original. In the general context of circuit design,
for the functions specified by a full DNF, AND–decomposition on the first step
of their combinatorial optimization may produce better results due to its “multi-
plicative” nature. Then, smaller components can be minimized more effectively.

Decomposition of positive boolean functions (monotone functions) given in
CNF/DNF attracted particular attention in game theory (simple/voting games)
and combinatorial optimization (decomposition of clutters). Please, see the intro-
duction of [5,6] for a summary. In [5,6], Bioch shows that the complexity of
AND–decomposition of positive functions is O(n5M), where n is the number of
variables and M is the number of products in DNF. It follows from the possibil-
ity of constructing effectively a representation of all modular sets of a monotone
boolean function. A set of variables A is called a modular set of a boolean func-
tion F (X) if F can be represented as F (X) = H(G(A), B), where {A,B} is a
partition of X, and H and G are some boolean functions. The function G(A) is
called component of F and a modular decomposition is obtained from iterative
decompositions into such components.

Partition of variables is the principal problem in the decomposition of boolean
functions. For example, methods described in [4] assume that partitions are sup-
plied. Then they allow us to verify whether a boolean function is decomposable
wrt a given variable partition, and to compute its components. The solution,
however, implies a number of steps that may be intractable. In [7], the authors
propose a graph–theoretical approach. To partition the variable set, the authors
describe a procedure to build an undirected “Blocking Edge Graph”, where a
(minimum) vertex cut determines the partition. The procedure essentially relies
on massive checking as to whether some auxiliary boolean functions are equal to
zero. Obviously, the efficiency of this step strongly depends on the representation
of boolean functions; for some of them this problem can be unfeasible.

Constructing modular sets is a possible way of solving the partition problem
for monotone functions in DNF [5,6]. For ANF, a polynomial algorithm finding
the bi–partition of variable sets is given in [9,10]. In both cases, once some
partition is detected, the components of decomposition can be easily computed.
The same ideas are used in [11].

Approaches to boolean function decomposition can be classified into alge-
braic and logic even though the latter is surely a kind of algebra. In general,
logic-based approaches to decomposition are more powerful and achieve better
results than the algebraic ones: a boolean function can be decomposable logically,
but not algebraically, since boolean factors of a boolean function can differ from
its algebraic factors [2, Ch. 4]. A standard algebraic representation of boolean
functions is polynomials, usually over finite fields, among which F2 (the Galois
field of order 2) is the best known. Then disjoint AND–decomposition corre-
sponds to factorization/decomposition of multivariate polynomials over F2 (in
general, one distinguishes between decomposition and factorization of polyno-
mials, if they are not multilinear). AND–decomposition of boolean polynomials
with shared variables exemplifies finding boolean factors.

The state of the research on the problem of factorization over finite fields is
well presented in [13], although it does not contain the key result by Shpilka and

AND–Decomposition of Boolean Polynomials 167

Volkovich [11] reported in 2010. The authors established the strong between the
factorization of polynomials over (arbitrary) finite fields and identity testing in
these fields. Their results provide that a multilinear polynomial over F2 can be
factored in time O(L3), where L is the length of the polynomial F given as a
symbol sequence, i.e. if the polynomial over n variables has |F | = M monomials
of lengths m1, . . . , mM then L =

∑M
i=1 mi = O(nM). We also refer |F | as a size

of the polynomial. Notice that in [16] these results were extended on polynomials
of arbitrary degrees over finite fields and rationals.

In this article, we present an algorithm for conjunctive bi–decomposition
of boolean polynomials where decomposition components share only prescribed
variables. It is based on the polynomial–time algorithm of disjoint decomposition.
Some examples and evaluation of the algorithm are given.

2 ∅–Decomposition

At first, we briefly outline the algorithm of disjoint decomposition of boolean
functions based on variable partition, i.e. a factorization algorithm for multilinear
polynomials over F2, presented in [9,10]. These articles contains the GCD–based
decomposition algorithm and the algorithm based on partitioning variable sets.
The latter in turn can be implemented either with explicit computation of a
product of some polynomials or instead of with multiple evaluations of smaller
polynomials.

In the next sections, we assume that the polynomial F does not have trivial
divisors of any kinds: neither x nor x + 1 divide F . Their interpretation in the
scope of decomposition depends on the problem context. We note that besides
the factors of the form x and x + 1, there is a number of other simple cases of
(in)decomposability that can be recognized easily.

We also assume that for F its variable set V ar(F) contains at least two
variables. Fx=v is evaluation of F assuming x = v. F ′

x represents a (formal)
derivative of F with respect to x. Bounding a monomial on a set of variables
means removing from monomial all variables that do not belong to this set of
variable. The monomial with the empty variable set is 1.

Algorithm of ∅–Decomposition

1. Take an arbitrary variable x.
2. Initialize Σsame := {x}, Σother := ∅, and Fsame := 0, Fother := 0.
3. Compute G := Fx=0 · F ′

x.
4. For each variable y ∈ V ar(F) \ {x}

if G′
y = 0 then Σother := Σother ∪ {y} else Σsame := Σsame ∪ {y}.

5. If Σother = ∅ then output Fsame := F, Fother := 1 and stop.
6. For each monomial of F , bound it on Σsame and add this new monomial to

Fsame if Fsame does not contain this monomial.
7. For each monomial of F , bound it on Σother and add this new monomial to

Fother if Fother does not contain this monomial.
8. Check out which of the products (Fsame + c1)(Fother + c2), c1, c2 = 0, 1, gives

the original polynomial F and output these components.

168 P. Emelyanov

This algorithm runs in O(L3) (more precise bounds rely on a careful descrip-
tion of the presentations of polynomials) and is based on identity testing for
partial derivatives of a product of polynomials obtained from the input one.
Although the algorithm has the same O-complexity as the algorithm of Shpilka
and Volkovich, the size of auxiliary data used by the algorithm is smaller, which
is significant on large inputs. For instance, the product of polynomials is com-
puted only once, in comparison to the approach described in [11]. In [10] we also
show that the algorithm can be implemented without computing the product
Fx=0 · F ′

x explicitly, which contributes to the efficiency of the decomposition of
large input polynomials.

The following statement provided without a proof quantitatively estimates
the evident fact that disjointly decomposable polylinear polynomials are rare.

Proposition 1. If a random polynomial F has M monomials defined over n > 2
variables, then

P[F is ∅–undecomposable]>1−
(

1− φ(M)
M

)n

>1−
(

1 − 1
eγ ln lnM+ 3

ln lnM

)n

,

where φ and γ are Euler’s totient function and constant respectively.

3 Δ–Decomposition

Therefore, other kinds of decomposition applicable to a wider class of polynomi-
als are quite interesting. An example of such a generalization is the decomposi-
tion where the components share a prescribed set of function variables.

Definition 1. Δ–Decomposability
A boolean function F is called AND–decomposable wrt a (possibly empty) subset
of variables Δ ⊆ var(F) (or Δ–decomposable, for short) if it is equivalent to the
conjunction F1 ∧ F2 of some functions F1 and F2 such that
1. var(ψ1) ∪ var(ψ2) = var(ϕ);
2. var(ψ1) ∩ var(ψ2) ⊆ Δ; and
3. var(ψi) \ Δ 	= ∅, for i = 1, 2.
The functions F1 and F2 are called Δ–decomposition components of F . We say
that F is Δ–decomposable with a variable partition {Σ1, Σ2} if F has some Δ-
decomposition components F1 and F2 over the variables Σ1 ∪ Δ and Σ2 ∪ Δ,
respectively.

The following function has no disjoint decomposition but it has {x}–decom-
position:

x + ux + vx + uvx + ust + vst + stx + uvstx = (x + u + v + xuv)(x + st)

The following function has no disjoint decomposition and any single shared vari-
able decomposition but it has decomposition with two shared variables

ytuv + stuv + suvx+yst+ysx+ytx+ stx+yt+ sx = (xs+yt+ st)(x+y +uv).

AND–Decomposition of Boolean Polynomials 169

The case Δ = var(F) seems trivial because such decomposition obviously
exists for every boolean function F . As well the statement (∗) from Introduc-
tion tells us that there exists a lot of AND–decomposition. Probably from the
circuit design point of view the following decomposition

uvx + uvy + uxy + vxy = (u + v + x + y)(uv + ux + uy + vx + vy + xy)

is not appropriate. However, effective finding decompositions with low degree
components or good structural properties could be very useful for cryptanalytic
purposes.

Notice that the Shannon-like decomposition mentioned in Introduction
F = (xFx=0 + x + Fx=0)(xFx=1 + x + 1) is a {x}–decomposition of F if
var(Fx=0) ∩ var(Fx=1) = ∅. Because F ′

x = Fx=0 + Fx=1 for multilinear polyno-
mials it follows that

F (U, V, x) = (G(U) + H(V))x + G(U) = xH(V) + (x + 1)G(U).

The function

F = stuv + stux + stvy + stxy + suvx + svxy + tuvy + tuxy + uvxy+
sux + sxy + tvy + txy + uxy + vxy + xy

has both disjoint decomposition and {x, y}–decomposition

F = (tv + tx+vx+x)(su+sy +uy +y) = (uv +ux+vy +xy)(st+sx+ ty +xy).

The reason is that this function has finer decomposition

F = (v + x)(t + x)(u + y)(s + y)

admitting different combinations for the bi–decompositions. Quite interesting
that the components of ∅–decomposition are irreducible over F2 in contrast
with {x, y}–decomposition where the components can be further decomposed.

Finally, the function

F = ((x + y)(u + v)(p + q) + (xy + 1)(uv + 1)(pq + 1))s + (x + y)(u + v)(p + q)

provides an example having three {s}–decompositions; the reader can easily
reconstruct them.

At first, we consider some decomposition which does not guarantee Δ–dis-
jointness of components but elucidates some details.

3.1 “Δ–unpredictable” Decomposition

The decomposition algorithm under development relies on solving the equation
XY + DX + EY + F = 0 over boolean polynomials. The idea comes from
the algorithmics of diophantine quadratic hyperbolic equations. The sequence of
transformations

xy + dx + ey = f
xy + dx + ey + de = f + de

(x + e)(y + d) = f + de

leads us to two cases:

170 P. Emelyanov

– f + de = 0. Then the following two solutions are possible:
• x = −e and an arbitrary y; and
• y = −d and an arbitrary x.

Notice that this case is impossible for boolean polynomials because the poly-
nomials of interest have no trivial divisors.

– f +de 	= 0 and f1 ·f2 = f +de. Then the following two solutions are possible:
{

x = f1 − e
y = f2 − d

or
{

x = f2 − e
y = f1 − d.

Let us return to the boolean polynomial equations. If decomposition exists
wrt some variable, then the following identities hold

(Axx + A∅)(Bxx + B∅) = (AxBx + AxB∅ + A∅Bx)x + A∅B∅ = xF ′
x + Fx=0.{

A∅B∅ = Fx=0

AxBx + AxB∅ + A∅Bx = F ′
x.

Taking into account F ′
x + A∅B∅ = F ′

x + Fx=0 = Fx=1, we get

(Ax + A∅)(Bx + B∅) = Fx=1.

Going over all possible disjoint decompositions Fx=0 = A∅B∅ and Fx=1 = f1f2,
we finally arrive at:

{
Ax = f1 + A∅

Bx = f2 + B∅

or
{

Ax = f2 + A∅

Bx = f1 + B∅.

In particular, we can choose A∅ = 1, B∅ = Fx=0, f1 = Fx=1, f2 = 1, and
it yields the Shannon–like expansion F = (xFx=0 + x + Fx=0) (xFx=1 + x + 1)
mentioned above. A simple corollary of this expansion is

F = 1 ⇐⇒
{

(x + 1)(Fx=0 + 1) = 0
x (Fx=1 + 1) = 0,

which suggests an idea of a polynomial–time SAT–ANF algorithm.
Let us briefly review the case |Δ| = 2. Given an F and variables x, y. Then

F = xyF ′′
xy + x(Fy=0)′

x + y(Fx=0)′
y + Fx=0,y=0

= (Ax,yxy + Axx + Ayy + A∅)(Bx,yxy + Bxx + Byy + B∅).

Expanding, simplifying, and equaling correspondent coefficients we have the fol-
lowing system of polynomial equations:

⎧⎪⎪⎨
⎪⎪⎩

A∅B∅ = Fx=0,y=0

AxBx + AxB∅ + A∅Bx = (Fy=0)′
x

AyBy + AyB∅ + A∅By = (Fx=0)′
y

Ax,yBx,y+Ax,y(Bx+By+B∅)+Bx,y(Ax+Ay+A∅)+AxBy+AyBx =F ′′
xy,

we can proceed analogously to the case |Δ| = 1.

AND–Decomposition of Boolean Polynomials 171

3.2 Decompositions with Non–empty Prescribed Δ

Let F be a boolean polynomial over the variables var(F) = {x1, . . . , xn} and
Δ ⊆ var(F), |Δ| = k, be a set of shared variables of the bi–decomposition
we are trying to find. Every monomial

∏
xi∈δ xi, δ ⊆ Δ, including ∅, has the

coefficients Aδ and Bδ in the corresponding components of the bi–decomposition.
These coefficients, which are polynomials over the variables var(F) \ Δ satisfy
the following system of 2k equations:

for all δ ⊆ Δ
∑

∀α,β⊆δ
α∪β=δ

AαBβ = F |δ , where F |δ = (F |x=0,x∈Δ\δ)|′y,y∈δ .

As previously noted, solving this system starts with finding all disjoint decom-
positions (i.e. var(A∅) ∩ var(B∅) = ∅):

A∅B∅ = F |∅.

Propagating these and subsequently found decompositions we can deduce all
solutions of the system. Because we are interested in Δ–decompositions, we
have to maintain the disjointness of variables sets ∪δvar(Aδ) and ∪δvar(Bδ).

To estimate the algorithm’s time complexity, we would make some prelimi-
nary remarks. [9,10] describe cubic algorithms for the disjoint bi–decomposition
of boolean polynomials. Recall that the basic idea of one of them is to partition
the variable set into two sets (if exists) with respect to one selected variable:

– one of them contains this variable and corresponds to an undecomposable
component of decomposition; and

– another one corresponds to the second component that might be further
decomposable.

Then, these decomposition components can be easily reconstructed.
It is important to note that the selected variable must not be a trivial divisor

of the polynomial of interest. If the polynomial has t trivial divisors, then it
has at least 2t−1 disjoint bi–decompositions corresponding to the bi–partitions
of this set of trivial divisors. It follows that every boolean polynomial over n
variables has at most d = max(n, 2t−1(n − t)) disjoint bi–decompositions, and
this bound can be improved under additional conditions.

Hence, precise estimation of the worst–time complexity of Δ–decompositions
is quite difficult in the presence of trivial divisors for intermediate decomposi-
tions. An upper bound for this multiplier can be O(nk) but it is quite coarse.
We give the worst–time complexity under the assumption that all intermediate
decompositions produce two components.

Estimation of the worst–time complexity of the Δ–decomposition algorithm
involves the estimation of complexity of solving 2k equations which includes

– varying decompositions of the previous steps that can produce several versions
of each equation; the number of versions for the last equation can be bounded
as 2k;

172 P. Emelyanov

– coefficients of each next equation are computed with the help of the solutions
of the previous equations; the complexity can be estimated as kS(k, n,M),
where S(k, n,M) is complexity of the summation of k boolean polynomials
with at most n variables and at most M monomials; and

– for each equation, disjoint decomposition needs to be done; let its complexity
be T (n,M).

Putting all together, we have O(k22kS(k, n,M)T (n,M)).
We can make an important observation affecting the algorithm’s complex-

ity. If the variable set of F |∅ contains all variables of F outside Δ, i.e.
var(F |∅) = var(F) \ Δ, and we deduce some decomposition A∅B∅ = F |∅,
then all subsequent decompositions can avoid the step of the partition of vari-
ables sets because it has been already determined by the couple var(A∅) and
var(B∅). This can reduce time complexity from cubic to quadratic with respect
to the lengths of polynomials. Even if not all variables of F outside Δ appear in
F |∅, we can check only these variables with respect to one part of the partition
to complete the decomposition.

3.3 Examples and Experimental Evaluation

From the circuit design point of view, optimization quality of decompositions is
essential. In contrast with disjoint decomposition when the sizes of components
are always less than the size of the original polynomial, decompositions with
shared variables have components, sizes of which can vary in wide range. We
consider the case |Δ| = 1: F (X,Y, s) = F1(X, s)F2(Y, s), X ∩ Y = ∅. The
decomposition quality is the ratio

QF =
|F |

|F1| + |F2| .

It is easy to construct a family of boolean functions over n ≥ 5 variables such
that for every function F from its decomposition quality is

QF =

{
2

n−3
2 , n is odd,

1
52

n+2
2 , n is even.

These functions base on “bi–partitions” of the set of all monomials over n−1 vari-
ables: sums of every subset and its complement2 form respectively a derivative
and 0–evaluation of the function of interest wrt a shared variable of decomposi-
tion. Decomposition components of these functions have the same construction.
A 5–variable boolean function belonging to this family is

(s + x1 + x2 + x1x2)(s + y1 + y2 + y1y2) =
s + sx1 + sx2 + sy1 + sy2 + x1y1 + x1y2 + x2y1 + x2y2+
sx1x2 + sy1y2 + x1y1y2 + x2y1y2 + x1x2y1 + x1x2y2 + x1x2y1y2

2 To exclude polynomials with trivial divisors they have to be relative prime.

AND–Decomposition of Boolean Polynomials 173

Fig. 1. Polynomial with 100 variables Fig. 2. Polynomial with 1000 variables

The total sizes of decomposition components can be also larger than the size
of the original polynomial. 3–variables function examples are

sx1y1 + s + 1 = (sx1 + s + 1)(sy1 + s + 1)
sx1 + sy1 + x1 = (sx1 + s + x1)(sy1 + s + 1)

sx1y1 + x1y1 + s = (sx1 + s + x1)(sy1 + s + y1)

and a 5–variables example is

sx1y2 + sx2y1 + x1y2 = (sx1 + sx2 + x1)(sy1 + sy2 + y2).

For all these functions the decomposition quality Q = 1
2 , i.e. we observe regres-

sion of decomposition representation instead of its improvement.
For computational evaluation of the developed decomposition algorithm, we

use Maple 17 for Windows run on 1.6 GHz notebook with 12 GB RAM. The
figures show the plots of decomposition time depending on the number of mono-
mials of random polynomials. These polynomials have 100 or 1000 variables,
surely containing two decomposition components of almost equal sizes, sharing
one variable (Figs. 1 and 2).

4 Final Remarks

Not only cases of decomposition with the prescribed Δ (empty or non) can be
interesting. Some other cases of interest are:

– The “pure” product can be spoiled by a few monomials

F (X,Y) = G(X)H(Y) + D(X,Y), where |F | |D|,

i.e. the “defect” D(X,Y) can extend or shrink this product. Its detecting
allows us to provide a more compact form of the original polynomial.

174 P. Emelyanov

– A set of shared variables Δ can be à priori unknown. It is computed in the
course of the algorithm, and the induced decompositions should fit different
optimality criteria which can involve, for instance among others, minimum Δ
or Δ such that components of decomposition are as balanced as possible.

The last generalization attracts attention to the problem how Δ–decom-
posability depends on cardinality of Δ. Is it possible to estimate probability
P(n, |F |, |Δ|) of that we can decompose, a polynomial F over n variables among
which the subset Δ is large enough?

Since decompositions with shared variables can have components, sizes of
which vary in wide range, it is interesting to estimate the average decomposition
quality over all boolean functions with n–variables.

As it is mentioned in Introduction positive boolean functions play an impor-
tant role in the combinatorial optimization and graph/game theory. We know
that the algorithm of disjoint decomposition of boolean functions in ANF can
be transferred on boolean functions in positive and full DNF. Is it possible to
do the same for Δ-decomposition?

References

1. Perkowski, M.A., Grygiel, S.: A survey of literature on function decomposition,
Version IV. PSU Electrical Engineering Department Report, Portland State Uni-
versity, Portland, Oregon, USA, November 1995

2. Khatri, S.P., Gulati, K. (eds.): Advanced Techniques in Logic Synthesis, Optimiza-
tions and Applications. Springer, New York (2011)

3. Mishchenko, A., Sasao, T.: Large-scale SOP minimization using decomposition and
functional properties. In: Proceedings of the 40th ACM/IEEE Design Automation
Conference (DAC ’03), pp. 149–154. ACM, New York (2003)

4. Steinbach, B., Lang, C.: Exploiting functional properties of Boolean functions for
optimal multi-level design by bi-decomposition. Artif. Intell. Rev. 20(3–4), 319–360
(2003)

5. Bioch, J.C.: The complexity of modular decomposition of Boolean functions. Dis-
crete Appl. Math. 149(1–3), 1–13 (2005)

6. Bioch, J.C.: Decomposition of Boolean functions. In: Crama, Y., Hammer, P.L.
(eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engi-
neering. Encyclopedia of Mathematics and its Applications, vol. 134, pp. 39–78.
Cambridge University Press, New York (2010)

7. Choudhury, M., Mohanram, K.: Bi-decomposition of large Boolean functions using
Blocking Edge Graphs. In: Proceedings of the 2010 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD ’10), pp. 586–591. IEEE Press, Pis-
cataway (2010)

8. Mishchenko, A., Steinbach, B., Perkowski, M.A.: An algorithm for bi-
decomposition of logic functions. In: Proceedings of the 38th ACM/IEEE Design
Automation Conference (DAC ’01), pp. 103–108. ACM, New York (2001)

9. Emelyanov, P., Ponomaryov, D.: On tractability of disjoint AND-decomposition
of Boolean formulas. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol.
8974, pp. 92–101. Springer, Heidelberg (2015)

AND–Decomposition of Boolean Polynomials 175

10. Emelyanov, P., Ponomaryov, D.: Algorithmic issues of conjunctive decomposition
of boolean formulas. Programming and Computer Software 41(3) (2015) 162–169
Translated: Programmirovanie, vol. 41, No. 3, pp. 62–72 (2015)

11. Shpilka, A., Volkovich, I.: On the relation between polynomial identity testing and
finding variable disjoint factors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 408–419.
Springer, Heidelberg (2010)

12. Zhegalkin, I.: Arithmetization of symbolic logics. Sb. Math. 35(1), 311–377 (1928).
In Russian

13. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, New York (2013)

14. Ponomaryov, D.: On decomposability in logical calculi. Bull. Novosibirsk Comput.
Cent. 28, 111–120 (2008)

15. Kuon, I., Tessier, R., Rose, J.: FPGA Architecture: Survey and Challenges. Now
Publishers Inc., Boston - Delft (2008)

16. Kopparty, S., Saraf, S., Shpilka, A.: Equivalence of polynomial identity testing and
polynomial factorization. Comput. Complex. 24(2), 295–331 (2015)

Approximation Algorithms for Cumulative VRP
with Stochastic Demands

Daya Ram Gaur1, Apurva Mudgal2, and Rishi Ranjan Singh3(B)

1 Department of Mathematics and Computer Science, University of Lethbridge,
4401 University Drive, Lethbridge, AB, Canada

gaur@cs.uleth.ca
2 Department of Computer Science and Engineering, Indian Institute
of Technology Ropar, Nangal Road, Rupnagar 140001, Punjab, India

apurva@iitrpr.ac.in
3 Department of Information Technology, Indian Institute of Information Technology

Allahabad, Jhalwa, Allahabad 211012, Uttar Pradesh, India
rishi@iiita.ac.in

Abstract. In this paper we give randomized approximation algorithms
for stochastic cumulative VRPs for split and unsplit deliveries. The
approximation ratios are 2(1 + α) and 7 respectively, where α is the
approximation ratio for the metric TSP. The approximation factor is
further reduced for trees and paths. These results extend the results
in [Technical note - approximation algorithms for VRP with stochastic
demands. Operations Research, 2012] and [Routing vehicles to minimize
fuel consumption. Operations Research Letters, 2013].

Keywords: Approximation algorithms · Cumulative VRPs · Stochastic
demand

1 Introduction

Given a delivery vehicle at the depot, and customers with some demands, the
objective in a Vehicle Routing Problem (VRP) [8] is to find a tour for the vehicle
in order to meet the demands of the customers so as to minimize some cost
function. Typically the objective is to minimize the total distance traveled. VRP
with some of its elements random in nature is referred to as the Stochastic Vehicle
Routing Problem.

1.1 Cumulative VRP with Stochastic Demand (Cu-VRPSD)

First we define Cu-VRP and then extend the definition to Cu-VRPSD. These def-
initions for Cu-VRP are from [10,11,17]. We are given a complete graph G(V,E)
with weights on the edges. The edge weights satisfy the triangle inequality. The
nodes correspond to the clients. There is special node r, where the vehicle is sta-
tioned. The vehicle has capacity Q. The demand at each customer node i ∈ V is
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 176–189, 2016.
DOI: 10.1007/978-3-319-29221-2 15

Approximation Algorithms for Cumulative VRP with Stochastic Demands 177

given by qi ≤ Q. The objective in Cu-VRP is to find a tour such that the total
cumulative cost as defined below is minimized.

Let a be the cost of moving the empty vehicle per unit distance and b be the
cost of moving unit weight of goods per unit distance. The cumulative cost of
moving a vehicle unit distance with weight w is a + bw, where w is the weight
of the cargo. A feasible solution to Cu-VRP is a tour T over all the nodes. The
customers are visited by the vehicle in the order specified by the tour T . The
vehicle starts from the depot with some load ≤ Q. Once empty, the vehicle
returns to the depot to refill, and continues to serve the demands along the tour.
This breaks the tour T into a collection of k directed cycles {T1, T2, T3, . . . , Tk}.
Each customer node is visited in exactly one of the cycles. The total weight of
the objects delivered in a cycle Tj is at most Q. Each cycle starts and ends
at the depot node and visits at least one customer. Let li denote the distance
traveled by the vehicle after picking the goods at the depot and offloading it at
customer i, in some cycle Tj . Let |Tj | be the length of directed cycle Tj . The
total cumulative cost C(T) of the travel schedule given by T is

C(T) = a

k∑
j=1

|Tj | + b ·
n∑

i=1

qili.

The above cumulative cost is for a single configuration of demands
{q1, q2, · · · , qn}. The goal in Cu-VRP is to find the tour T ∗ with minimum
cumulative cost C(T ∗). The problem as defined above requires that the demand
at a client node is serviced in a single visit. This version of the problem when
the goods are indivisible is known as unsplit Cu-VRP. It is also possible to ser-
vice the demands over multiple visits. The problem is then known as the split
Cu-VRP.

Suppose we model variability or uncertainty in the demands by independent
random variables χi in the range (0, Q]. We assume that the demand at a node is
unknown until the vehicle visits the node. The expected cumulative cost of a tour
T , denoted E(C(T)) is the expectation of the cumulative cost over all possible
sets of demands. Let T ∗ be the tour with minimum expected cumulative cost.
Our objective is to find a tour T such that the expected cost E[C(T)] is at most
a constant factor of E[C(T ∗)]. The optimal tour or its approximation is called
an apriori tour, because it is decided upon, before the demands at the customer
sites are realized. As above we have the split Cu-VRPSD and the unsplit Cu-
VRPSD. The Cu-VRP (Cu-VRPSD) problem when a = 1 and b = 0 reduces to
the VRP (VRPSD).

1.2 Previous Work

Vehicle routing problem with variable demands (VRPSD) is a generalization of
the VRP where the demands are stochastic and independent of each other and
the tour. The demand at a customer node is revealed only when the vertex is
visited by the vehicle. Practical applications of VRPSD are in collection or dis-
tribution logistics where the demand is unknown before visiting the customer.

178 D.R. Gaur et al.

For seminal results on the VRPSD problem, please see the PhD thesis of Bertsi-
mas [4] and the subsequent paper [5]. Even the deterministic version of VRPSD
(both split and unsplit deliveries) on trees is NP-hard [18]. For deterministic
version of the problem (CVRP), the first constant factor approximation algo-
rithms are due to [15] for uniform demands and [1] for non-uniform demands.
The analogous question on the existence of constant factor approximation algo-
rithms for VRPSD was first asked by Bertsimas [4]. The question was recently
settled by Gupta et al. [14], who gave randomized algorithms with approxima-
tion ratio matching the approximation ratio of the deterministic case. VRPSD
is an extensively studied problem, for instance see the early survey papers due
to Bertsimas and Simchi-Levi [6], Gendreau et al. [12], Stewart and Golden [20].

The variant of VRPSD that we study in this paper is known as the cumulative
vehicle routing problem with stochastic demands (Cu-VRPSD). The determin-
istic version of the problem (Cu-VRP) have been studied by [10,11,16,17,21].
The deterministic version of Cu-VRP is also known as linear fuel consumption
model for VRP [21], and as the energy minimizing model for vehicle routing
problem [16]. Cu-VRP is a type of Green VRP surveyed in the recent article by
Demir et al. [9].

In the discussion below, α refers to the approximation ratio for metric TSP.
For metric TSP, a 3/2 approximate tour can be obtained using the Christofides’
algorithm [7]. For VRPSD with identical demand distributions, the first approx-
imation algorithm with a approximation ratio of 1 + α + o(1) was given by
Bertsimas [5]. In the general case, the approximation ratio of the algorithm was
Q+α [5] for VRPSD. Bertsimas [5] conjectured that their algorithm for VRPSD
has a constant factor approximation ratio. Gupta et al. [14] recently proved the
conjecture due to [5]. They gave constant factor randomized approximation algo-
rithms for split and unsplit VRPSD. Their results are stated next.

Theorem 1 ([14, Theorem 3.1, pp. 125]). There is a randomized (1+α) approx-
imation algorithm for VRPSD with split deliveries.

and the analogous result for the case of unsplit deliveries.

Theorem 2 ([14, Theorem 4.1, pp. 126]). There is a randomized (2+α) approx-
imation algorithm for VRPSD with unsplit deliveries.

VRPSD reduces to VRP in case the demands are deterministic. The best
known approximation algorithm for split delivery VRP with a bound of 1 +α is
due to [15]. For unsplit delivery VRP, the best known bound of 2 + α is due to
[1]. These bounds above due to Gupta et al. [14] match the best known bounds
for the deterministic capacitated VRP. For the cumulative objective function
the best known bounds for the unsplit delivery Cu-VRP of 4 is due to [10]. Our
contributions outlined in the next two Theorems extend the results in [10,14] for
the VRP problem with cumulative objective function and stochastic demands
(Cu-VRPSD).

1.3 Our Contributions

A straight forward analysis of the algorithms due to [14] for the (split/unsplit)
Cu-VRPSD has O(Q) approximation factor where Q is the capacity of the

Approximation Algorithms for Cumulative VRP with Stochastic Demands 179

Table 1. Approximation ratios in this paper for metric Cu-VRPSD. α is the ratio for
metric TSP.

Graph Tree Path

Split delivery 2(1+α) 4 3

Unsplit delivery 7 3 + 2
√
3 5

vehicle. We extend the methodology in [14] to handle the cumulative cost func-
tion for stochastic demands. Our results extend the results of Gupta et al. [10,14]
and [10] as follows.

Theorem 3. Given an instance of split metric Cu-VRPSD, let T ∗ be an apri-
ori tour with minimum expected cost E[C(T ∗)]. There exists an efficiently com-
putable apriori tour T such that E[C(T)] ≤ 2(1 + α)E[C(T ∗)].

Theorem 4. There exists an efficiently computable apriori tour that is a 7 fac-
tor approximate solution for unsplit metric Cu-VRPSD.

Labbe et al. [18] studied the VRP problem on trees. In their model the
network is assumed to be a tree, and the vehicle can only traverse the edges of
the tree. They established that the VRP problem on trees is NP-complete and
gave a 2-approximation algorithm. VRP on trees is closely related to the bin
packing problem. Golden and Wong [13] have showed that the VRP problem on
trees is NP-hard to approximate within a factor of 3/2. As a corollary to the our
theorem(s) we show that

Corollary 1. Split delivery Cu-VRPSD on trees can be approximated within a
factor of 4.

We further improve the approximation ratios for the case when the graph is
restricted to be a path. Table 1 summarizes our approximation ratios for various
version of metric Cu-VRPSD.

2 Proofs

The algorithms are motivated by the algorithms given in [5,14]. Haimovich and
Rinnooy Kan [15] gave a lower bound for VRP. Bertsimas [5] extended the lower
bound in [15] for VRPSD. Gupta et al. [14] used the lower bound in [5]. Gaur
et al. [10] extended the lower bound in [15] to Cu-VRP. Here, we extend the
lower bound in [10] to handle the cumulative cost for the stochastic case of the
cumulative cost, the Cu-VRPSD.

Theorem 5. Let T denote an optimal traveling salesman tour of length τ and
let Q be the capacity of the vehicle. Let the demand at each customer node i ∈
V \ {r} be specified by a random variable χi in the range (0, Q] and let the
shortest distance between node i and depot r be di. Then, the minimum expected
cumulative cost to meet the demands of all customers (OPT) is at least

180 D.R. Gaur et al.

a.max

⎧⎨
⎩τ,

2
Q

∑
i�=r

E[χi] · di

⎫⎬
⎭ + b.

∑
i�=r

E[χi] · di.

Proof. [15] showed that for VRP the cost of the optimal tour T ∗ is lower
bounded by

CV RP (T ∗) ≥ max

⎛
⎝τ,

2
Q

∑
i�=r

qi · di

⎞
⎠ .

[5] showed that for VRPSD, the expected cost is lower bounded by

max

⎛
⎝τ,

2
Q

∑
i�=r

E[χi] · di

⎞
⎠ .

[14] used the above lower bound in their analysis for VRPSD. Following [15],
[10, Theorem 4] show that for Cu-VRP, the minimum cumulative cost is lower
bounded by

a · max

⎛
⎝τ,

2
Q

∑
i�=r

qi · di

⎞
⎠ + b ·

∑
i

qidi.

Taking the expectations over the demands in the previous equation we get
the stated bound.

2.1 Split Cu-VRPSD

Recall that in the case of split delivery, the demand qi at node i can be fulfilled
by delivering q < qi weight in the first visit and the rest in the subsequent visit.

Proof of Theorem 3: We consider two cases, a/b ≥ Q and a/b < Q. In both
the cases we use the randomized algorithm [14] below but with different vehicle
capacities. This is to trade off the relative cost of moving the goods with the
cost of moving the empty vehicle.

Let us recall that T is the optimal TSP tour of length τ and Q is the capacity
of the vehicle. The demand at each customer node i ∈ V \ {r} is specified by
a random variable χi in the range (0, Q]. The demand is revealed only when
the vehicle visits the node. We assume that each demand though stochastic is
strictly positive (non zero). The shortest distance between any node i and the
depot r is given by di.

Case (i) (a/b ≥ Q) In this case we generate subtours of capacity at most
Q using the procedure SubTours(Q) with vehicle capacity Q. The first tour
has a random capacity d in the interval (0, Q], the rest of the subtours have
capacity Q. The vehicle starts at the depot with d units of goods. Each subtour
is obtained by considering the vertices in the order specified by the optimal tour
T . If the quantity in the vehicle is sufficient to meet the demand qi at node
i then the vehicle serves the demand (reduce the current quantity by qi) and

Approximation Algorithms for Cumulative VRP with Stochastic Demands 181

Algorithm 1. Split Delivery [14]
1: procedure SubTours(C)
2: � The vehicle capacity is C
3: v0, v1, . . . , vn is the α approximate tour constructed using Christofides’ algo-

rithm. v0 is the depot.
4: d is random number between 1 and C.
5: i = 1.
6: while d > 0 do � Vehicle is not Empty
7: goto node vi. � At this point the demand qi is known.
8: if (d ≥ qi) d = d − qi and i = i + 1.
9: if (d < qi) then d = 0 and qi = qi − d.

10: Goto the depot. Load the vehicle with W = C units of goods.
11: while W > 0 do � Vehicle is not empty
12: goto node vi.
13: if (W ≥ qi) W = W − qi and i = i + 1.
14: if (i > n) return to the depot and stop. � All demands are met.
15: if (W < qi) then W = 0 and qi = qi − W .

16: if i ≤ n then GOTO Step 10.

moves onto the next node, else it partially serves the demand at node i (by the
current quantity) and returns to the depot to fill up Q units of goods. The nodes
at which the vehicle has to return to the depot to refill are referred to as the
partition nodes.

Next we compute the probability that the node is a partition node. Following
[14], node i is a partition node if there exists a positive integer x such that

i−1∑
j=1

qj ≤ d + x · Q < qi +
i−1∑
j=1

qj ,

where d is a uniform random number in the interval (0, Q] corresponding to the
capacity of the first subtour. Since d is the only random variable, we get

Pr[node i is a partition node] =
qi
Q

.

At each partition node i the vehicle has to return to the depot, and fill up.
The distance di from the depot to node i is traversed twice, once with the empty
vehicle, and second after the fill up. So the total expected length (E[L]) of the
solution tour given the demands qis is

E[L] ≤ τ + 2
n∑

i=1

Pr[node i is a partition node] · di.

E[L] ≤ τ +
2
Q

n∑
i=1

qi · di.

182 D.R. Gaur et al.

The cumulative cost is the sum of the cost of transporting the vehicle and the
cost of transporting the goods. The empty vehicle (without the goods) travels
E[L] units of distance, and the goods travel the length of the subtours. Therefore
the cost of moving the empty vehicle is a ·E[L]. In each subtour Q units of good
travel the total length of the subtour. If the subtours are T1, T2, . . . , Tm then the
total cost of moving the goods is b · Q · E[L]. Therefore the expected cumulative
cost E[C(T)] travelled by the vehicle is

E[C(T)] ≤ a · E[L] + b · Q · E[L] ≤ 2 · a · E[L],

as a/b ≥ Q. Substituting for E[L], we get

E[C(T)] ≤ 2 · a ·
{

τ +
2
Q

n∑
i=1

qi · di

}
.

The q′
is in themselves are random variables. Applying the expectations over

the demands we get,

E[C(T)] ≤ 2 · a ·
{

τ +
2
Q

n∑
i=1

E[χi] · di

}
.

Since, it is hard to compute the optimal TSP tour, we use an α approximation
to it using the Christofides’ algorithm.

E[C(T)] ≤ 2 · a ·
{

α · τ +
2
Q

n∑
i=1

E[χi] · di

}
.

Using the lower bound in Theorem 5, and comparing against the first term
in the lower bound. We get

E[C(T)] ≤ 2 · (1 + α) · OPT

where OPT is the minimum expected cost over all the apriori tours.
Case (ii) (a/b < Q) In this case we use the vehicle with capacity C = a/b

and generate the subtours using the procedure SubTours(a/b). The subtours
are feasible subtours as the capacity constraint on the vehicle is satisfied. The
probability that node i is a partition node is qi/(a/b). Therefore,

E[L] ≤ τ +
2b

a

n∑
i=1

qi · di.

The cost of moving the empty vehicle is a·E[L]. The total cost to move the goods
can be computed by focusing on each subtour. In each subtour with length Ti

the cost is b · C · Ti, as the total length of all the subtours is E[L] (and the
subtours are a partition), we infer that the total cost for moving the goods is
b · C · E[L] where the capacity of the vehicle is C = a/b. Therefore the expected
cumulative cost of the tour in this case is

E[C(T)] ≤ a · E[L] + b · C · E[L].

Approximation Algorithms for Cumulative VRP with Stochastic Demands 183

E[C(T)] ≤ 2 · a · E[L].

Substituting for E[L] we get

E[C(T)] ≤ 2 · a ·
(

τ +
2 · b

a

n∑
i=1

qi · di

)
.

E[C(T)] ≤ 2 · a · τ + 4 · b ·
n∑

i=1

qi · di.

Using the expectations on the demands we get,

E[C(T)] ≤ 2 · a · τ + 4 · b ·
n∑

i=1

E[χi] · di.

As in the case above, we use an α approximate tour. The upper bound on
the expected cost is now

E[C(T)] ≤ 2 · a · τ · α + 4 · b ·
n∑

i=1

E[χi] · di.

Comparing it to the lower bound in Theorem 5, for the approximate tour
computed using Christofides’ algorithm (α = 3/2), we get

E[C(T)] ≤ max{2α, 4} · OPT ≤ 4 · OPT.

For the case when a/b < Q, the number of trips undertaken by the vehicle to
serve a single client with demand qi is at least qi/(a/b). It is possible to combine
the consecutive deliveries to a single client. This does not increase the cumulative
cost of the vehicle, and the number of trips to the depot is bounded by 2n + 1.
��
Remark: The vehicle returns empty to the depot from each partition node, but
we have not included the negative term (−bQ · (1

Q) · ∑n
i=1 E[χi] · di) due to this

fact in the analysis. For the case (a/b ≥ Q), this does not have any effect, but
for the case when (a/b < Q), the factor reduces to 3. The overall factor for split
Cu-VRPSD still remains 2(1 + α). For instances in the Euclidean plane there
exists a PTAS to approximate the optimal TSP tour due to [3,19]. Therefore,
α = (1 + ε) and we get a reduced approximation factor of 2(2 + ε) for split
Cu-VRPSD in the Euclidean plane.

2.2 Unsplit Cu-VRPSD

In this case the demand is assumed to be indivisible, and the delivery for qi units
is made in a single visit to the client node.

Proof of Theorem 4: Modify the SubTours procedure to ensure unsplit deliv-
ery with a bounded increase in the total cumulative cost. Split delivery occurs

184 D.R. Gaur et al.

at node i, if the vehicle visits node i with q′ goods and the demand at the
node is qi > q′. In the case of split delivery, the vehicles delivers the goods par-
tially, returns to the depot to fill C units, and returns to node i to service the
remaining demand. Following [14] we modify the tour slightly, locally around
node i, to ensure that the delivery is unsplit as shown in the procedure Unsplit
SubTours as follows.

1. Visit node i as in the SubTour procedure. Instead of delivering q′ < qi units,
continue to depot r. Note that the demand qi is now known.

2. At the depot, load qi−q′ additional units, return to qi to service the demand.
3. Return to the depot. Load C − (qi − q′) units, continue to node i, but do not

service i.
4. Continue to node i + 1 as in the original tour in the case of split delivery.

In this locally modified tour, the distance between a partition node i and the
depot r is traversed 4 times, as opposed to twice in the case of split delivery
tours. The vehicle travels a distance of di empty from node i to the depot r in
Step 3 in the description above. As in the proof of Theorem 3, we analyze the
two cases.

Case (i) (a/b ≥ Q) We use the tour returned by the procedure Unsplit
SubTours(Q). In other words we use a vehicle with capacity Q. In this case
the probability that node i is a partition node is

Pr[node i is a partition node] ≤ qi
Q

.

As noted earlier the vehicle travels the distance di between node i and the
depot four times. Therefore, the expected length of the solution tour E[L], given
the demands qis is

E[L] = τ + 4
∑
i�=r

Pr[node i is a partition node] · di,

where τ is the length of the optimal TSP tour. So,

E[L] ≤ τ +
4
Q

n∑
i=1

qi · di.

The cumulative cost is calculated as in the previous Theorem for split
delivery.

E[C(T)] ≤ a · E[L] + b · Q

(
E[L] − 1

Q

∑
i

qi · di)

)
.

The negative term above is due to the fact that the vehicle returns empty to
the depot in Step 3.

E[C(T)] ≤ 2aE[L] − b
∑
i

qi · di.

Approximation Algorithms for Cumulative VRP with Stochastic Demands 185

Algorithm 2. Unsplit Delivery
1: procedure Unsplit SubTours [14](C)
2: � The vehicle capacity is C
3: v0, v1, . . . , vn is the α approximate tour constructed using Christofides’ algo-

rithm. v0 is the depot.
4: d is random number between 1 and C.
5: i = 1.
6: while d > 0 do � Vehicle is not Empty
7: goto node vi. � At the this point the demand qi is known.
8: if (d ≥ qi) d = d − qi and i = i + 1.
9: if d < qi then
10: Goto the depot, load additional qi − d.
11: Visit node i. Make the unsplit delivery.
12: Goto the depot. Load additional W = C − (qi − d).
13: Goto node i but do not deliver.
14: Set i = i + 1
15: Goto step 16

16: while W > 0 do � Vehicle is not empty
17: if (i > n) return to the depot and stop. � All demands are met.
18: goto node vi.
19: if (W ≥ qi) W = W − qi and i = i + 1.
20: if W < qi then
21: Goto the depot, load additional qi − W .
22: Visit node i. Make the unsplit delivery.
23: Goto the depot. Load additional W = C − (qi − W).
24: Goto node i but do not deliver. Set i = i + 1

Substituting for E[L] from above, we get

E[C(T)] ≤ 2a

(
τ +

4
Q

n∑
i=1

qi · di

)
− b

∑
i

qi · di.

Noting the expectation on the demands and using an α ≥ 1 approximate
tour in the equation above, we get,

E[C(T)] ≤ 2a

(
ατ +

4
Q

n∑
i=1

E[χi] · di

)
− b

∑
i

E[χi] · di.

Ignoring the negative term and comparing it with the first term in the lower
bound. The approximation ratio is

≤ 2(2 + α).

Case (ii) ((a/b) < Q). We use the tours generated by vehicle of capacity
C = a/b using the procedure Unsplit SubTours(a/b). The probability that
node i is a partition node is qi/(a/b). Therefore the expected length of the tour is

186 D.R. Gaur et al.

E[L] ≤ τ +
4b

a

∑
i

E[χi] · di.

The cost of moving the empty vehicle is a · E[L]. The cost of moving the
goods is at most

b(a/b)

(
E[L] − 1

(a/b)

∑
i

qi · di

)
.

Hence
E[C(T)] ≤ 2aE[L] − b

∑
i

qi · di.

Noting that qis are random variables, and taking the expectation over qis

E[C(T)] ≤ 2aE[L] − b
∑
i

E[χi] · di.

Substituting for E[L],

E[C(T)] ≤ 2a

(
τ +

4b

a

∑
i

E[χi] · di

)
− b

∑
i

E[χi] · di.

If we use an α approximation to optimal TSP tour τ , we get

E[C(T)] ≤ 2a · α · τ + 7b
∑
i

E[χi] · di.

Comparing it with the lower bound, we get

E[C(T)] ≤ max{2α, 7} · OPT ≤ 7 · OPT.

for α = 3/2. Due to the unsplit constraint, the solution tour visits the depot
at most 2n + 1 times. ��
Remark: We improve this bound to 3 + 2

√
3 as lim ε → 0 given a PTAS for

Euclidean instances of Cu-VRPSD. Due to lack of space, we omit the proof of
this approximation ratio.

3 Cu-VRPSDs on Tree and Path Shaped Graphs

Capacitated VRP (CVRP) on trees is known to be NP-hard as established by
[18]. They also gave a 2-approximation for CVRP. A simple reduction from bin
packing shows that it is not possible to approximate CVRP within a factor of
3/2 [13]. Solution to a CVRP instance on a tree is a collection of subtours such
that only the tree edges are used. Let τ be pre order traversal of the nodes in tree
rooted at the depot r. Then tour τ is also the optimal TSP tour. To establish
this we note that each edge in the optimal TSP tour of a tree has to be travelled
at least twice, once to deliver the goods, and second time to return to the depot.
Consider the subtree rooted at a node i, the edge between i and the parent of
i is travelled exactly twice in the pre order traversal of the tree. Hence τ is the
optimal TSP tour. Hence we have the following.

Approximation Algorithms for Cumulative VRP with Stochastic Demands 187

Fact 1. The optimal TSP tour in a tree can be computed in linear time.

This improves the bounds for the VRPSD and the Cu-VRPSD on tree.

Corollary 2. Split VRPSD on tree can be approximated within a factor of 2.
Unsplit VRPSD on tree can be approximated within a factor of 3.

Above corollary follows from the Theorems of [14] and the fact above. Using
the results in this paper we obtain the following.

Corollary 3. Split Cu-VRPSD on tree (Split Cu-VRPSDT) can be approxi-
mated within a factor of 4.

Theorem 6. Unsplit Cu-VRPSD on tree (Unsplit Cu-VRPSDT) can be approx-
imated within a factor of 3 + 2

√
3.

Due to lack of space, we omit the proofs of the theorems (6–8) given in this
section.

On Path Shaped Graphs. Next we study a restriction that has been addressed
in the literature for the case of CVRP. We assume that the network is path. The
depot is indexed by 0, and the other nodes are indexed by i in the increasing order
of distance from the depot. We also assume without any loss of generality that the
depot is at one end of the path. Archetti et al. [2] discussed the complexity of split
VRP and unsplit VRP on a line, circle and a star. They showed that split VRP on
a line/path can be solved in linear time. Unsplit VRP on a path is equivalent to
the the partition problem and is therefore NP-hard [2]. Hence unsplit Cu-VRP,
and unsplit Cu-VRPSD on paths are also NP-hard. As a corollary to Theorem
4 in [2], we note that split delivery Cu-VRP can be solved in polynomial time.

Corollary 4. Split Cu-VRP on a path shaped graph can be solved in linear time.

Proof. Archetti et al. [2, Theorem 4]) gave an O(n) time algorithm for solving
split VRPs on path shaped graphs. It is sufficient to note that the goods are
delivered to each node i using the shortest path di. As the empty vehicle moves
the minimum distance required, and the goods move the minimum distance
required, the total cumulative cost is minimum possible.

Next we consider the problem of split delivery for Cu-VRPSD on paths (split
Cu-VRPSDP). It is not known whether split Cu-VRPSDP is NP-Hard. The
algorithm due to [2] when used to split Cu-VRPSDP serves the clients in the
increasing order of the distance from the depot. When the vehicle visits the
depot to refill the last time it fills up to capacity C. The total demand for the
remaining clients might be very small compared to C. Therefore it is conceivable
that in the final trip to the depot the vehicle carries a surplus weight of C. But in
all the other refill trips to the depot the vehicle returns empty. A refined analysis
of the arguments used in the tree case leads us to the following.

188 D.R. Gaur et al.

Theorem 7. Split Cu-VRPSD on a path can be approximated within a factor
of 3.

The unsplit Cu-VRPSD on a path (unsplit Cu-VRPSDP) is also NP-hard as
unsplit VRP on a path is NP-hard [2].

Theorem 8. Unsplit Cu-VRPSD on a path can be approximated within a factor
of 5.

4 Conclusions

We study the metric cumulative vehicle routing problem with stochastic demands
(Cu-VRPSD). We use the technique due to [14] to obtain constant factor ran-
domized approximation algorithms for the cumulative vehicle routing problem
with stochastic demands. The results here extend the results in [14] to the cumu-
lative cost objective function for graphs that obey the triangle inequality. These
results extend the results in [10] for stochastic demands. We prove that a ran-
domized algorithm has approximation ratio of 2(1 + α) for the split delivery
Cu-VRPSD where α is the approximation ratio to the TSP tour. For the case
of unsplit delivery we establish a bound of 7 on the approximation ratio. For
split delivery on trees we give a bound of 4. For unsplit deliveries on trees we
give a bound of 3 + 2

√
3. For split delivery on paths the approximation ratio

is 3, and for unsplit delivery on paths the approximation is 5. For instances in
the Euclidean plane, our results imply a 4 approximation for split delivery, and
3 + 2

√
3 approximation for unsplit delivery. A natural question is to reduce the

bounds of 2(1 + α) and 7 for the split delivery and unsplit delivery Cu-VRPSD
respectively.

Acknowledgements. This work was supported in part by an NSERC Discovery
Grant. AM was supported in part by ISIRD grant from IIT Ropar. Part of the work
was done while DRG was visiting IIT (BHU) Varanasi and RRS was at IIT Ropar.
Authors would like to thank K. K. Shukla for his inputs on the split version of the
problem on trees that is noted as a corollary in the paper.

References

1. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with
a fixed error guarantee. Oper. Res. Lett. 6(4), 149–158 (1987)

2. Archetti, C., Feillet, D., Gendreau, M., Speranza, M.G.: Complexity of the VRP
and SDVRP. Transp. Res. Part C. 19(5), 741–750 (2011)

3. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM (JACM) 45(5), 753–782 (1998)

4. Bertsimas, D.: Probabilistic combinatorial optimization problems. Ph.D. thesis,
Massachusetts Institute of Technology (1988)

5. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res.
40(3), 574–585 (1992)

Approximation Algorithms for Cumulative VRP with Stochastic Demands 189

6. Bertsimas, D.J., Simchi-Levi, D.: A new generation of vehicle routing research:
robust algorithms, addressing uncertainty. Oper. Res. 44(2), 286–304 (1996)

7. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, DTIC Document (1976)

8. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1),
80–91 (1959)

9. Demir, E., Bektaş, T., Laporte, G.: A review of recent research on green road
freight transportation. Eur. J. Oper. Res. 237(3), 775–793 (2014)

10. Gaur, D.R., Mudgal, A., Singh, R.R.: Routing vehicles to minimize fuel consump-
tion. Oper. Res. Lett. 41(6), 576–580 (2013)

11. Gaur, D.R., Singh, R.R.: Cumulative vehicle routing problem: a column generation
approach. In: Ganguly, S., Krishnamurti, R. (eds.) CALDAM 2015. LNCS, vol.
8959, pp. 262–274. Springer, Heidelberg (2015)

12. Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. Eur. J. Oper.
Res. 88(1), 3–12 (1996)

13. Golden, B.L., Wong, R.T.: Capacitated ARC routing problems. Networks 11(3),
305–315 (1981)

14. Gupta, A., Nagarajan, V., Ravi, R.: Technical note - approximation algorithms for
VRP with stochastic demands. Oper. Res. 60(1), 123–127 (2012)

15. Haimovich, M., Rinnooy Kan, A.H.G.: Bounds and heuristics for capacitated rout-
ing problems. Math. Oper. Res. 10(4), 527–542 (1985)

16. Kara, I., Kara, B.Y., Yetis, M.K.: Energy minimizing vehicle routing problem. In:
Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 62–71.
Springer, Heidelberg (2007)

17. Kara, I., Kara, B.Y., Yetis, M.K.: Cumulative vehicle routing problems. In: Vehicle
Routing Problem, pp. 85–98 (2008)

18. Labbé, M., Laporte, G., Mercure, H.: Capacitated vehicle routing on trees. Oper.
Res. 39(4), 616–622 (1991)

19. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

20. Stewart, W.R., Golden, B.L.: Stochastic vehicle routing: a comprehensive app-
roach. Eur. J. Oper. Res. 14(4), 371–385 (1983)

21. Xiao, Y., Zhao, Q., Kaku, I., Yuchun, X.: Development of a fuel consumption
optimization model for the capacitated vehicle routing problem. Comput. Oper.
Res. 39(7), 1419–1431 (2012)

Some Distance Antimagic Labeled Graphs

Adarsh K. Handa, Aloysius Godinho(B), and Tarkeshwar Singh

Birla Institute of Technology and Science Pilani, K K Birla Goa Campus,
Pilani, Goa, India

{p2013100,p2014001,tksingh}@goa.bits-pilani.ac.in

Abstract. Let G be a graph of order n. A bijection f : V (G) −→
{1, 2, . . . , n} is said to be distance antimagic if for every vertex v the
vertex weight defined by wf (v) =

∑
x∈N(v) f(x) is distinct. The graph

which admits such a labeling is called a distance antimagic graph. For a
positive integer k, define fk : V (G) −→ {1+k, 2+k, . . . , n+k} by fk(x) =
f(x) + k. If wfk(u) �= wfk(v) for every pair of vertices u, v ∈ V , for any
k ≥ 0 then f is said to be an arbitrarily distance antimagic labeling
and the graph which admits such a labeling is said to be an arbitrarily
distance antimagic graph. In this paper, we provide arbitrarily distance
antimagic labelings for rPn, generalised Petersen graph P (n, k), n ≥ 5,
Harary graph H4,n for n �= 6 and also prove that join of these graphs is
distance antimagic.

Keywords: Distance antimagic graphs · Antimagic labeling

2010 Mathematics Subject Classification: 05C 78

1 Introduction

By a graph we mean a finite undirected graph without loops and multiple edges.
Throughout this paper, we consider simple graphs without isolates. For graph
theoretic terminologies and notations we refer to West [7].

Graph labeling is an assignment of numbers to graph elements such as vertices
or edges or both. The origin of graph labeling can be traced back to the concept
of β − valuations introduced by Rosa [6]. For a general overview of the current
developments in graph labeling we refer to the dynamic survey by Gallian [3].

Let G = (V,E) be a graph of order n. Let f : V → {1, 2, . . . , n} be a bijection.
For each vertex v, define the weight of v as wf (v) =

∑
x∈N(v) f(x). Then f is

said to be a distance magic labeling of G if for every pair of vertices u and v,
wf (u) = wf (v) (cf.: [1,3,5,8]) .

A natural question arises: Is it possible to assign a bijection f to the vertices
of the graph G such that wf (u) �= wf (v) for every pair of vertices u, v ∈ V ? A

A.K. Handa—Also senior lecturer in mathematics at Padre Conceicao College of
Engineering.

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 190–200, 2016.
DOI: 10.1007/978-3-319-29221-2 16

Some Distance Antimagic Labeled Graphs 191

labeling which satisfies this condition is known as distance antimagic labeling
and a graph which admits such a labeling is called a distance antimagic graph.
This topic is studied extensively by Arumugam and Kamatchi [5].

Arumugam et al. [2] have proved that the path Pn, n �= 3, the cycle Cn, n �=
4, the wheel Wn, n �= 4, and the graph G = rK2 + K1 are distance antimagic.
They also posed the following problem:

Problem: If G is distance antimagic, are G + K1, G + K2 distance antimagic?
Handa et al. [4] have introduced the concept of arbitrarily distance antimagic

labeling of a graph as follows:
Let f : V (G) → {1, 2, . . . , n} be a distance antimagic labeling of a graph

G. For a positive integer k, define fk : V (G) −→ {1 + k, 2 + k, . . . , n + k} by
fk(x) = f(x) + k. If wfk(u) �= wfk(v) for every pair of vertices u, v ∈ V ,
for any k ≥ 0 then f is called an arbitrarily distance antimagic labeling and
the graph which admits such a labeling is said to be an arbitrarily distance
antimagic graph. Note that an arbitrarily distance antimagic graph is always
distance antimagic. But the converse is not true. Using the notion of arbitrarily
distance antimagic labeling of graphs, they have answered the above problem in
an affirmative way and have also proved that join of two graphs, in particular
Pn + Pm, Pn + Cm, Pn + Wm and Cn + Wn are distance antimagic (cf.: [4]). In
[4] they have posed the following problem:

Problem: If G and H are distance antimagic, is G + H distance antimagic?
The following results are useful for our investigation.

Proposition 1. [4] Any r-regular distance antimagic graph G is arbitrarily dis-
tance antimagic.

Theorem 1. [4] Let f be a distance antimagic labeling of a graph G of order
n. If wf (u) < wf (v) whenever deg(u) < deg(v) then G is arbitrarily distance
antimagic.

Proposition 2. [4] Let G1 and G2 be two graphs of order n1 and n2 with arbi-
trarily distance antimagic labelings f1 and f2 respectively, such that n1 ≤ n2.
Let x ∈ V (G1) be the vertex with lowest weight under f1 and y ∈ V (G2) be the
vertex with highest weight under f2. If

wf1(x) +
n2∑
i=1

(n1 + i) > wf2(y) + Δ(G2)n1 +
n1∑
i=1

i (1)

then G1 + G2 is distance antimagic.

Since n1 ≤ n2 the above inequality reduces to

wf1(x) + n1n2 > wf2(y) + n1Δ(G2) (2)

Theorem 2. [4] Let G1 and G2 be graphs of order at least 4 which are arbi-
trarily distance antimagic and let Δ(G1),Δ(G2) ≤ 2. Then G1 + G2 is distance
antimagic.

192 A.K. Handa et al.

.

.

.

v1,1 v1,2 v1,3 v1,n−1 v1,n

v2,1 v2,2 v2,3 v2,n−1 v2,n

...
...

...
...

...

vr,1 vr,2 vr,3 vr,n−1 vr,n

Fig. 1. Union of paths rPn

Theorem 3. [4] Let G be a distance antimagic graph of order n ≥ 3 with dis-
tance antimagic labeling f such that the highest weight under f is less than or
equal to n(n+1)

2 − 3. Then G + K3 is distance antimagic.

In this paper, we obtain arbitrarily distance antimagic labelings for the
graphs rPn, generalised Petersen graph P (n, k) for n ≥ 5, Harary graph H4,n

for n �= 6 and also prove that join of these graphs is distance antimagic.

2 Main Results

The graph rPn is the disjoint union of r copies of Pn with vertex set V =
{vi,j | 1 ≤ i ≤ r, 1 ≤ j ≤ n} where the sequence vi,1, vi,2, . . . , vi,n (Fig. 1)
denotes the vertices of ith path in rPn.

Lemma 1. For r ∈ N and odd n ≥ 5, rPn is arbitrarily distance antimagic.

Proof. It is sufficient to provide a distance antimagic labeling of rPn for odd
n ≥ 5. We define a labeling f : V → {1, 2, · · · , rn} in each of the following cases:

Case 1: n ≡ 1(mod4).

f(vi,j) =

⎧⎪⎨
⎪⎩

2i − 1 + r(j − 2) if 1 ≤ i ≤ r, j = 2, 4, . . . , n−1
2 ,

2i + r(n − 1 − j) if 1 ≤ i ≤ r, j = n+3
2 , n+3

2 + 2, . . . , n − 1,

nr − (i−1)(n+1)
2 − j−1

2 if 1 ≤ i ≤ r, j = 1, 3, 5, . . . , n.

then the vertex weights are as follows:

wf (vi,j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2nr − (i − 1)(n + 1) − j + 1 if 1 ≤ i ≤ r, j = 2, 4, . . . , n − 1,

4i − 2 + r(2j − 4) if 1 ≤ i ≤ r, j = 3, 5, . . . , n−3
2

,

4i + 2r(n − j − 1) if 1 ≤ i ≤ r, n+5
2

, n+5
2

+ 2, . . . , n − 2,

4i − 1 + r(n − 5) if 1 ≤ i ≤ r, j = n+1
2

,

2i − 1 if 1 ≤ i ≤ r, j = 1,

2i if 1 ≤ i ≤ r, j = n.

Some Distance Antimagic Labeled Graphs 193

Case 2: n ≡ 3(mod4).

f(vi,j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2i − 1 + r(j − 2) if 1 ≤ i ≤ r, j = 2, 4, . . . , n−3
2 ,

2i + r(n − 1 − j) if 1 ≤ i ≤ r, j = n+5
2 , n+5

2 + 2, . . . , n − 1,

i + r(n−3)
2 if 1 ≤ i ≤ r, j = n+1

2 ,

nr − (i−1)(n+1)
2 − (j−1

2) if 1 ≤ i ≤ r, j = 1, 3, 5, . . . , n.

the vertex weights are as follows:

wf (vi,j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2nr − (i − 1)(n + 1) − j + 1 if 1 ≤ i ≤ r, j = 2, 4, . . . , n − 1,

4i − 2 + r(2j − 4) if 1 ≤ i ≤ r, j = 3, 5, . . . , n−5
2

,

4i + 2r(n − j − 1) if 1 ≤ i ≤ r, n+7
2

, n+7
2

+ 2, . . . , n − 3,

3i − 1 + r(n − 5) if 1 ≤ i ≤ r, j = n−1
2

,

3i + r(n − 5) if 1 ≤ i ≤ r, j = n+3
2

,

2i − 1 if 1 ≤ i ≤ r, j = 1,

2i if 1 ≤ i ≤ r, j = n.

In each of the above cases, it is easy to check that f is a bijection and the
weights of the vertices are distinct. Since the lowest weights are assigned to the
pendent vertices, it follows from Theorem 1 that the labeling f is an arbitrarily
distance antimagic labeling of rPn.

Lemma 2. The graph rPn is arbitrarily distance antimagic for all even n ≥ 4.

Proof. It is sufficient to provide a distance antimagic labeling for rPn for even
n ≥ 4. We define a distance antimagic labeling f : V → {1, 2, · · · , rn} as follows:

f(vi,j) =

{
2i + r(j − 2) − 1 if 1 ≤ i ≤ r, j = 2, 4, . . . , n,

2i + r(n − 1 − j) if 1 ≤ i ≤ r, j = 1, 3, . . . , n − 1.

then the vertex weights are as follows:

wf (vi,j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4i − 2 + r(2j − 4) if 1 ≤ i ≤ r, j = 3, 5, . . . , n − 1,

4i + 2r(n − j − 1) if 1 ≤ i ≤ r, 2, 4 . . . , n − 2,

2i − 1 if 1 ≤ i ≤ r, j = 1,

2i if 1 ≤ i ≤ r, j = n.

It is easy to check that f is a bijection and the weights of the vertices are
distinct. Since the lowest weights are assigned to the pendent vertices it follows
from Theorem 1 that the labeling f is an arbitrarily distance antimagic labeling
of rPn.

Lemma 3. rP5 is arbitrarily distance antimagic.

194 A.K. Handa et al.

Proof. It is sufficient to provide a distance antimagic labeling of rP5. We define
a labeling f : V → {1, 2, · · · , rn} in each of the following cases:

Case 1: r is even.

f(vi,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3r − i if j = 4, 1 ≤ i ≤ r,

2i − 1 if j = 2, 1 ≤ i ≤ r,

4i − 2 if j = 1, 1 ≤ i ≤ r
2 − 1,

4i if j = 5, 1 ≤ i ≤ r
2 − 1,

4r − 1 − i if j = 3, 1 ≤ i ≤ r
2 − 1,

2r − 2 if i = r j = 5.

Let S be the set of vertex labels assigned above, therefore S = {3r −
1, 3r − 2, . . . , 2r} ∪ {1, 3, 5, . . . , 2r − 1} ∪ {2, 6, . . . , 2r − 6} ∪ {4, 8, . . . , 2r − 4} ∪
{4r − 2, 4r − 3, . . . , 7r

2 } ∪ {2r − 2}. Let A = {1, 2, 3, . . . , 5r}\S. Therefore
A = {3r, 3r + 1, . . . , 7r−2

2 } ∪ {4r − 1, 4r, . . . , 5r}. The number of elements in
A is 3r

2 + 2. Now, we label the remaining vertices of rP5 with the labels in A
from left to right whilst moving downwards. It is clear that label of all vertices
are distinct.

Then the weight of vertices are as follows:

wf (vi,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2i − 1 if j = 1, 1 ≤ i ≤ r,

3r − i if j = 5, 1 ≤ i ≤ r,

3r + i − 1 if j = 3, 1 ≤ i ≤ r,

4r + 3(i − 1) if j = 2, 1 ≤ i ≤ r
2 − 1,

4r + 3i − 1 if j = 4, 1 ≤ i ≤ r
2 − 1,

7r − 2 if i = r, j = 4.

The weights of the remaining vertices which are labeled from the set A are
in increasing order, the weights of the vertices increase as we move downward
from left to right. Hence they are distinct.

Case 2: r is odd.

f(vi,j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3r − i if j = 4, 1 ≤ i ≤ r,

2i − 1 if j = 2, 1 ≤ i ≤ r,

4i − 2 if j = 1, 1 ≤ i ≤ 	 r
2
,

4i if j = 5, 1 ≤ i ≤ 	 r
2
,

4r − 1 − i if j = 3, 1 ≤ i ≤ 	 r
2
.

Let S be the set of vertex labels assigned above, therefore S = {3r − 1, 3r −
2, . . . , 2r} ∪ {1, 3, 5, . . . , 2r − 1} ∪ {2, 6, . . . , 4	 r

2
 − 2} ∪ {4, 8, . . . , 4	 r
2
} ∪ {4r −

2, 4r − 3, . . . , 4r − 1 − 	 r
2
}. Let A = {1, 2, 3, . . . , 5r}\S. Therefore A = {3r, 3r +

1, . . . , 	 7r−2
2
}∪{4r −1, 4r, . . . , 5r}. Now, we label the remaining vertices of rP5

Some Distance Antimagic Labeled Graphs 195

with the numbers from A from left to right whilst moving downwards (refer
Fig. 1). It is clear that the labels of all the vertices are distinct.

The weight of vertices are as follows:

wf (vi,j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2i − 1 if j = 1, 1 ≤ i ≤ r,

3r − i if j = 5, 1 ≤ i ≤ r,

3r + i − 1 if j = 3, 1 ≤ i ≤ r,

4r + 3(i − 1) if j = 2, 1 ≤ i ≤ r
2 ,

4r + 3i − 1 if j = 4, 1 ≤ i ≤ r
2 .

The weights of the remaining vertices which are labeled from the set A are
in increasing order, therefore the weights of the vertices increase as we move
downward from left to right. Hence they are distinct.

In each of the above cases, since the lowest weights are assigned to the pen-
dent vertices, it follows from Theorem 1 that the labeling f is an arbitrarily
distance antimagic labeling.

Observation 4. Let V (rP3) = {vi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ 3}. If f : V (rP3) →
{1, 2, . . . , 3r} is a bijection, then for any i, wf (vi,1) = wf (vi,3). Hence for any
r ∈ N, the graph rP3 is not distance antimagic.

Observation 5. If f : V (rP2) → {1, 2, . . . , 2r} be any bijection, then wf (vi,1) =
f(vi,2) and wf (vi,2) = f(vi,1). Since the labels of all the vertices are distinct, it
follows that all the vertex weights are also distinct. Therefore for any r ∈ N, the
graph rP2 is arbitrarily distance antimagic.

Theorem 6. For r ∈ N, the graph rPn is arbitrarily distance antimagic if and
only if n �= 3.

Proof. The proof of the theorem follows from Lemmas 1, 2, 3 and
Observations 4, 5.

Theorem 7. Harary graph H4,n is arbitrarily distance antimagic for all n �= 6.

Proof. Let the vertex set of H4,n be {v1, v2, . . . , vn}. It is sufficient to provide a
distance antimagic labeling of H4,n. We define a labeling f : V → {1, 2, · · · , n}
in each of the following cases:

Case 1: n is odd.
f(vi) = i, i = 1, 2, . . . , n .
The vertex weights are as follows:

wf (vi) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2n + 4 if i = 1,

2n if i = n,

4i if i = 3, 4, 5, . . . , n − 2,

3n − 4 if i = n − 1,

n + 8 if i = 2.

196 A.K. Handa et al.

Case 2: n is even. In this case we have the following two sub-cases:

Sub-case 1: n ≡ 0(mod4).

f(vi) =

⎧⎪⎨
⎪⎩

i if i = 1, 2, . . . , n − 2,

n if i = n − 1,

n − 1 if i = n.

The vertex weights are as follows:

wf (vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n + 4 if i = 1,

n + 7 if i = 2,

4i if i = 3, 4, 5, . . . , n − 4,

4n − 11 if i = n − 3,

4n − 8 if i = n − 2,

3n − 5 if i = n − 1,

2n + 1 if i = n.

Sub-case 2: n ≡ 2(mod4).

f(vi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i if i = 1, 2, . . . , n − 3,

n if i = n − 2,

n − 2 if i = n − 1,

n − 1 if i = n.

The vertex weights are as follows:

wf (vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n + 2 if i = 1,

n + 7 if i = 2,

4i if i = 3, 4, 5, . . . , n − 5,

4n − 14 if i = n − 4,

4n − 11 if i = n − 3,

4n − 10 if i = n − 2,

3n − 3 if i = n − 1,

2n + 1 if i = n.

In each of the above cases, it is easy to see that the labels of the vertices and
weights of the vertices are also distinct. By Proposition 1 the labeling f is an
arbitrarily distance antimagic labeling.

The illustration of the distance antimagic labeling for H4,8 is shown in Fig. 2.
For n ≥ 5 and k < n

2 , the generalized Petersen graph P (n, k) is a graph with
vertex set {u1, u2, . . . , un, v1, v2, . . . , vn} and edge set {uiui+1, uivi, vivi+k : 1 ≤
i ≤ n} where the subscripts are taken modulo n.

Some Distance Antimagic Labeled Graphs 197

1

2

3

4

5

6

8

7

20

15

12

16

21
24

19

17

Fig. 2. Distance antimagic labeling of H4,8

Theorem 8. The graph P (n, k) is arbitrarily distance antimagic.

Proof. It is sufficient to provide a distance antimagic labeling of P (n, k). We
define a labeling f : V → {1, 2, · · · , 2n} as follows:

f(ui) = 2i − 1, 1 ≤ i ≤ n,

f(vi) =

{
2 if i = 1
2(n − i + 2) if 2 ≤ i ≤ n.

The weights of vertices are as follows:

wf (ui) =

{
2(n + i + 1) if 1 ≤ i ≤ n − 1,

2n + 2 if i = n

wf (vi) =

⎧⎪⎨
⎪⎩

2n − 2i + 7 if 1 ≤ i ≤ k + 1,

4n − 2i + 7 if k + 2 ≤ i ≤ n − k + 1,

6n − 2i + 7 if n − k + 2 ≤ i ≤ n, k ≥ 2.

It is easy to see that the labels of the vertices and the weights of the vertices
are distinct. By Proposition 1 the labeling f is an arbitrarily distance antimagic
labeling.

3 Join of Graphs

Theorem 9. For r, k ∈ N, n,m ≥ 4, graph rPn + kPm is distance antimagic.

Proof. The proof follows from Theorems 2 and 6.

Theorem 10. The graphs rPn + K1, rPn + K2 and rPn + K3 are distance
antimagic for n ≥ 4 and n �= 5 .

198 A.K. Handa et al.

2 1

16

10 8 4

9

3

11

7

12

13 5 14 6 15

1 9 1412 4

5 27 11 29 6

3

20

10

23

7

120

Fig. 3. Distance antimagic labeling of 3P5 + K1

Proof. The proof follows from Theorems 3 and 6.

Theorem 10 also holds for n = 2. Thus we have the following corollary (Fig. 3).

Corollary 1. [5] The graph G = rK2 + K1 is distance antimagic.

Theorem 11. The graph H4,n1 + H4,n2 is distance antimagic.

Proof. From Theorem 7, the highest vertex weight is ≤ 4n − 8 and the lowest
vertex weight attained is at least 8. We have,

8 +
n2(n2 + 1)

2
+ n1n2 > 4n2 − 8 +

n1(n1 + 1)
2

+ 4n1

⇒ 16 + (
n2(n2 + 1)

2
− n1(n1 + 1)

2
) + n1n2 − 4n2 − 4n1 > 0

Thus the result follows.

Theorem 12. The graph P (n, k) + H4,m, with m,n ≥ 5, m �= 6, is distance
antimagic.

Proof. By Theorems 7 and 8, H4,m and P (n, k) are arbitrarily distance
antimagic. Let f1 and f2 be the arbitrarily distance antimagic labeling of H4,m

and P (n, k) respectively. The highest vertex weight under f1 for H(4,m) is at
most 4m − 10 and the lowest weight is at least 8. The highest weight in P (n, k)
is at most 5n+3 and the lowest weight is at least 12. We have the following two
cases:

Some Distance Antimagic Labeled Graphs 199

Case 1: 2n ≤ m
From inequality (2) we have

12 +
m(m + 1)

2
+ 2mn > 4m − 10 +

2n(2n + 1)
2

+ 8n

⇒ 2mn − 4m − 8n + 22 > 0

⇒ m(2n − 4) − 8n + 22 > 0

as n ≥ 5.

Case 2: 2n > m. From inequality (2) we have

8 +
2n(2n + 1)

2
+ 2mn > 5n + 3 +

m(m + 1)
2

+ 3m

⇒ 2mn − 5n − 3m + 5 > 0

⇒ 2n(m − 5
2
) − 3m + 5 > 0.

Since n ≥ 3 and m ≥ 5, this equality holds. Hence by Proposition 2, P (n, k) +
H4,m is distance antimagic. This completes the proof.

4 Conclusion and Scope

In this paper, we have obtained arbitrarily distance antimagic labeling for the
graphs rPn, generalised Petersen graph P (n, k) for n ≥ 5, Harary graph H4,n for
n �= 6 and have also proved that the join of these graphs is distance antimagic.
The following problems are remain open:

Problem 1: Characterize graphs which are distance antimagic.

Problem 2: If G and H are distance antimagic, is G + H distance antimagic?

Acknowledgements. The last two authors are thankful to the Department of Science
and Technology, New Delhi, for its support through the Project No. SR/S4/MS-734/11.
The authors are thankful to the referees for their critical comments and suggestions
which enabled us to improve the presentation substantially.

References

1. Arumugam, S., Froneck, D., Kamatchi, N.: Distance magic graphs-a survey. J.
Indones. Math. Soc., 11–26 (2011). Special Edition

2. Arumugam, S., Kamatchi, N.: Distance antimagic graphs. J. Combin. Math. Com-
bin. Comput. 84, 61–67 (2013)

3. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Comb. 16(6), 1–384
(2014)

4. Handa, A.K., Godinho, A., Singh, T., Arumugam, S.: Distance Antimagic Labeling
of the Join of Two Graphs (communicated)

200 A.K. Handa et al.

5. Kamatchi, N.: Distance Magic and Distance Antimagic Labeling of Graphs, Ph.D.
thesis, Kalasalingam University, Tamil Nadu, India (2012)

6. Rosa, A.: On certain valuations of the vertices of a graph. Theory of Graphs.
International Symposium, Rome, July 1966, Gordon and Breach, N.Y. and Dunod
Paris, pp. 349–355 (1967)

7. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River
(1996, 2001)

8. Vilfred, V.: Σ-labelled graph and circulant graphs, Ph.D. thesis, University of
Kerala, Trivandrum, India (1994)

A New Construction of Broadcast Graphs

Hovhannes A. Harutyunyan and Zhiyuan Li(B)

Department of Computer Science and Software Engineering, Concordia University,
Montreal, QC H3G 1M8, Canada
l zhiyua@encs.concordia.ca

Abstract. Given a graph G = (V,E) and an originator vertex v, broad-
casting is an information disseminating process of transmitting a message
from vertex v to all vertices of graph G as quickly as possible. A graph
G on n vertices is called broadcast graph if the broadcasting from any
vertex in the graph can be accomplished in �logn� time. A broadcast
graph with the minimum number of edges is called minimum broadcast
graphs. The number of edges in a minimum broadcast graph on n ver-
tices is denoted by B(n). A long sequence of papers present different
techniques to construct broadcast graphs and to obtain upper bounds
on B(n). In this paper, we follow the compounding method to construct
new broadcast graphs and improve the known upper bounds on B(n) for
many values of n.

1 Introduction

Broadcasting is an information disseminating process in an interconnection net-
work originated by one node and spreading a message to all members of the
network. Broadcasting is accomplished when every node is informed. The effi-
ciency of broadcasting often measures the performance of a modern network.
Many studies in the past decades focus on the network topologies to increase
transmitting speed. Many models are developed based on different assumptions
of the number of originators, the number of calls which can be made by one node
in one time unit and other characteristics of the network. The classical model of
broadcasting makes the following assumptions

– there is only one originator;
– each call involves only one informed node and one uninformed node;
– one node with the message calling its neighbor requires one time unit;
– one node can only participate in at most one call per time unit.

A network can be modeled as a connected simple graph G = (V,E), where V is
the set of vertices representing the members in the network and E is the set of
edges representing the communication links.

Definition 1. The broadcast scheme of a given graph G from an originator
vertex v is a sequence of parallel calls. Each call is represented by an edge with
the direction, specifying the sender and the receiver vertices. A broadcast tree is
a spanning tree of the graph with the originator at its root and generated by all
calls of a broadcast scheme.
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 201–211, 2016.
DOI: 10.1007/978-3-319-29221-2 17

202 H.A. Harutyunyan and Z. Li

Definition 2. Given a graph G and an originator vertex v, b(G, v) defines the
minimum time required by any broadcast scheme in G from the originator v.
b(G) = max{b(G, v)|v ∈ V (G)} defines the maximum time required broadcasting
from any vertex in graph G. b(G) is called the broadcast time of graph G.

It is easy to see that for any graph G, b(G) ≥ �log n�, since the number
of informed vertices is at most doubled during each time unit. Note that all
logarithms in this paper are of base 2.

Definition 3. A graph G on n vertices is called a broadcast graph if b(G, v) =
�log n� for any vertex v ∈ V , b(G) = �log n�. A broadcast graph with the mini-
mum number of edges is called a minimum broadcast graph (mbg). This minimum
number of edges is denoted by broadcast function B(n).

From the application perspective mbgs represent the cheapest graphs (with
minimum number of edges) where broadcasting can be accomplished in minimum
possible time.

The study of minimum broadcast graphs and broadcast function B(n) has a
long history. Farley, Hedetniemi, Mitchell and Proskurowski introduce minimum
broadcast graphs in [9]. In the same paper, the authors define the broadcast
function, determine the values of B(n), for n ≤ 15 and n = 2k and prove that
hypercubes are minimum broadcast graphs. Khachatrian and Haroutunian [18]
and independently Dinneen, Fellows and Faber [7] show that Knödel graphs,
defined in [19], are minimum broadcast graphs on n = 2k − 2 vertices. Park
and Chwa prove that the recursive circulant graphs on 2k vertices are mini-
mum broadcast graphs [24]. The comparison of the three classes of minimum
broadcast graphs can be found in [11]. Besides these three classes, there is no
other infinite construction of minimum broadcast graphs. The values of B(n)
are also known for n = 17 [23], n = 18, 19 [5,29], n = 20, 21, 22 [22], n = 26
[25,30], n = 27, 28, 29, 58, 61 [25], n = 30, 31 [5], n = 63 [21], n = 127 [15] and
n = 1023, 4095 [26].

Since minimum broadcast graphs are difficult to construct, a long sequence
of papers present different techniques to construct broadcast graphs in order to
obtain upper and lower bounds on B(n). However, proving that a lower bound
matches the upper bound is also extremely difficult, because most of the proofs
of lower bounds are based on vertex degree. However, minimum broadcast graphs
except hypercubes and Knödel graphs on 2k − 2 vertices are not regular. So the
upper bounds cannot match the lower bounds based on vertex degree.

Upper bounds on B(n) are provided by constructing broadcast graphs with
small number of edges. The authors in [10] construct broadcast graphs by com-
bining two or three smaller broadcast graphs and shows B(n) ≤ n

2 �log n�. This
construction is generalized in [6] using up to seven small broadcast graphs. A
tight asymptotic bound on B(n) = Θ(L(n) · n) is given in [13] by proving that
L(n)−1

2 ≤ B(n) ≤ (L(n) + 2)n, where L(n) is the number of consecutive lead-
ing 1’s in the binary representation of n − 1. In [18], the compounding method
is introduced which uses vertex cover of graphs. This method constructs new
broadcast graphs by forming the compound of several known broadcast graphs.

A New Construction of Broadcast Graphs 203

In [3], the compounding method was generalized to arbitrary n by using solid
vertex cover. A compounding method using center vertices is introduced in [28]
and shown to be equivalent to the method of using solid vertex cover in [8]. The
authors in [16] continue on the line of compounding and introduces a method of
also merging vertices. And more recently [1], compounding binomial trees with
hypercubes improves the upper bound on B(n) for many values of n.

Vertex addition is another approach to construct good broadcast graphs by
adding several vertices to existing broadcast graphs. In [15], authors add one
vertex to Knödel graphs on 2k − 2 vertices. The added vertex is connected to
every vertex in the dominating set of the Knödel graph. In [17], the same method
is applied to generalized Knödel graphs, in order to construct broadcast graphs
on any number of vertices.

Ad hoc constructions sometimes also provide good upper bounds. This
method usually constructs broadcast graphs by adding edges to a binomial tree
[13,16].

Vertex deletion is studied in [5]. Several other constructions are presented in
[5,12,13,16,27–29].

Lower bounds on B(n) are also studied in the literature. The authors in
[12] show B(n) ≥ n

2 (�log n� − log(1 + 2�log n� − n)), for any value of n. B(n) ≥
n
2 (m−p−1) is proved in [20], where m is the length of the binary representation
am−1am−2...a1a0 of n and p is the index of the leftmost 0 bit. This bound is
improved to be B(n) ≥ n

2 (m − p − 1 + b), where b = 0 if p = 0 or a0 = a1 =
ap−1 = 0 and b = 1 otherwise. The lower bound is further improved to be
B(n) ≥ n

2 (m − p + b) in [26].

Besides the general lower bounds, B(n) ≥ k2(2k−1)
2(k+1) for n = 2k −1 is shown in

[21]. The lower bounds on B(2k −3), B(2k −4), B(2k −5) and B(2k −6) is given
in [25]. The lower bounds on B(2k − 2p) and B(2k − 2p + 1), where 3 ≤ p < k
are presented in [14]. Better lower bounds on n = 24, 25 are given by [2]. Note
that 23 ≤ n ≤ 25 are the only values of n ≤ 32 for which B(n) is not known.

2 Compounding Method Based on Knödel Graph

2.1 Definitions and Notations

In 1975, Knödel defined a class of broadcast graphs on even number of vertices.

Definition 4 ([19]). A Knödel graph KGn = (V,E) is defined for even values
of n, where the vertex set is V = {v0, v1, v2, ..., vn−1} and the edge set is E =
{(vx, vy)|x + y ≡ 2s − 1 mod n, 1 ≤ s ≤ �log n�}, where 0 ≤ x, y ≤ n − 1.

By the definition above, if (vx, vy) ∈ E, we say that vx and vy are connected
on dimension s. Furthermore, vx is vy’s neighbor on dimension s or vice versa.
The following broadcast scheme of a Knödel graph on n vertices is called a
dimensional broadcast scheme [4]. That is in the first �log n� − 1 time units,
every vertex with the message calls its neighbor on dimension t at time unit t,
1 ≤ t ≤ �log n� − 1. Then at the last time unit every vertex calls its neighbor on

204 H.A. Harutyunyan and Z. Li

v0
v1

v2

v3

v4

v5

v6
v7v8

v9

v10

v11

v12

v13

v0
v1

v2

v3

v4

v5

v6
v7v8

v9

v10

v11

v12

v13

(a)

2

3

3

3

3

(b)

1

4

4

4

4

4

4

2

Fig. 1. (a): an example of KG14; (b): the broadcast scheme from v0 in KG14

dimension 1. [4] also shows the existence of other dimensional broadcast schemes
for Knödel graphs. It is also easy to see that KGn is a �log n� regular graph.
Figure 1 shows one example of a Knödel graph on 14 vertices and the dimensional
broadcast scheme from v0 in KG14.

Since KG2k−2 is a k−1 regular minimum broadcast graph, our new broadcast
graph construction will be based on KG2k−2.

Definition 5. A binomial tree BTk of degree k has 2k vertices for any k ≥ 0.
When k = 0, binomial tree BT0 is a single vertex. When k ≥ 1, binomial tree
BTk consists of two binomial trees BTk−1 having their roots r1 and r2 connected
by an edge. Either of r1 or r2 is the root of the binomial tree BTk.

Binomial trees are useful for constructing broadcast graphs, since broadcast
time of the root in a binomial tree BTk is k which is the minimum possible time.
It is easy to see that a binomial tree Bk is a broadcast tree of the broadcast
scheme from any vertex in a hypercube Qk. Furthermore, any broadcast tree on
n vertices is a subtree of BT�logn�. Figure 2 presents an example of a binomial
tree BT4, and a minimum time broadcast scheme from root vertex r2.

2.2 New Construction

In this subsection we introduce a new broadcast graph construction similar to
the compounding method in [1]. The new construction uses Knödel graphs as a
base instead and attaches a binomial tree to each vertex in the Knödel graph.

The new broadcast graph L = (V,E) on n = (2m−k − 2)2k vertices, where
m − k ≥ 3 and k ≥ 0, is constructed by 2m−k − 2 copies of binomial trees of
degree k, denoted by B0,B1,...,B2m−k−3. The roots of the binomial trees denoted
by ri, form the Knödel graph KG2m−k−2 on 2m−k −2 vertices, 0 ≤ i ≤ 2m−k −3.
Figure 3 presents the new construction for m = 6 and k = 2.

A New Construction of Broadcast Graphs 205

BT3 BT4

r1 r21

2 3 4

3

4

4 4

2 3 4

3

4

4 4

0

Fig. 2. A binomial tree BT4 is constructed by connecting the roots r1 and r2 of two
binomial trees BT3. The root of BT4 can be either one of the roots r1 or r2. The
numbers show the broadcast scheme from r2 in BT4.

The next step of the construction is to delete d vertices from L, where 0 ≤
d ≤ 2k+1 −1, in order to obtain n, the given number of vertices of the broadcast
graph. This step can be done by deleting a leaf from any binomial tree repeatedly.
Note that we do not delete the root of any binomial tree because it also belongs
to KG2k−2. It is clear that any value of n between 2m−1 + 1 and 2m − 2 can be
represented as n = 2m − 2k+1 − d, where 0 ≤ k ≤ m − 3 and 0 ≤ d ≤ 2k+1 − 1.
Thus, the number of deleted vertices is at most 2k+1 − 1.

The next step of the new construction is to connect the vertices of binomial
trees B0, B1, ..., B2m−k−3 to m − k − 1 vertices of the KG2m−k−2.

Let ri be the root of binomial tree Bi and rh be the first dimensional neighbor
of ri in KG2m−k−2. By the definition of Knödel graph, h ≡ 1− i mod 2m−k −2.
We connect each non-root vertex w in binomial tree Bi to all the neighbors of
rh. These neighbors are rj , where j + h ≡ j + 1 − i ≡ 2s − 1 mod 2m−k − 2 for
all s = 1, 2, ...,m − k − 1.

The edges of E of graph L are of three types: the edges in the Knödel graph
KG2m−k−2 denoted by EH , the edges in all binomial trees B0, B1, ..., B2m−k−3

denoted by ET and the edges between vertex w ∈ Bi and some vertices in the
Knödel graph denoted by EP . Therefore, the set of edges of graph L = (V,E)
is defined as E = EH ∪ ET ∪ EP , where EP = {(w, rj)|j + 1 − i ≡ 2s − 1
mod 2m−k − 2, 1 ≤ s ≤ m − k − 1, w ∈ Bi \ {ri}, rj ∈ KG2m−k−2}. Thus, the
number of edges in L is |E| = |EH | + |ET | + |EP |. Knödel graph KG2m−k−2 has

|EH | =
(m − k − 1)(2m−k − 2)

2

edges. All 2m−k − 2 binomial trees B0, B1, ...B2m−k−3 together have

|ET | = (2m−k − 2)(2k − 1) − d

tree edges. To count the number of edges in EP , first note that there are 2k−k−1
vertices in a binomial tree except the root and its k neighbors within the binomial

206 H.A. Harutyunyan and Z. Li

tree. After removing d leaves, there are (2m−k − 2)(2k − k − 1) − d such vertices
remaining. Each of these vertices needs m−k−1 edges to connect to the vertices
in the Knödel graph. Note that each of the vertices on the first level of any
binomial tree (the k neighbors of the root within a binomial tree) needs m−k−2
additional edges connecting to the vertices of KG2m−k−2, since it is already
adjacent to its root. Thus,

|EP | = ((2m−k − 2)(2k − k − 1) − d)(m − k − 1) + (2m−k − 2)k(m − k − 2)

Thus, the total number of edges of graph L is

|E| = (m − k)n − (m + k + 1)2m−k−1 + m + k + 1

In summary, graph L has |V | = n vertices for any n = 2m − 2k+1 − d, where
0 ≤ k ≤ m− 3 and 0 ≤ d ≤ 2k+1 − 1, 2m−k − 2 vertices and edges of KG2m−k−2,
and every vertex of any binomial tree Bi, 0 ≤ i ≤ 2m−k − 2 is connected to
m − k − 1 vertices of KG2m−k−2.

Figure 3 demonstrates our construction of graph L for k = 2 and m− k = 4.
We first construct a Knödel graph on 24 − 2 vertices. The vertices of KG14 are
labeled as r0, r1, r2, ..., r13. Each vertex of KG14 is attached a binomial tree on
4 vertices. Then, for example, we connect vertex w ∈ B0 to root vertices r0, r2
and r6, which are the neighbors of r1.

Theorem 1. L is a broadcast graph and for any n = 2m − 2k+1 − d, where
m ≥ 3, 0 ≤ k ≤ m − 3 and 0 ≤ d ≤ 2k+1 − 1

B(n) ≤ (m − k)n − (m + k + 1)2m−k−1 + m + k + 1

Proof. It is clear that n ∈ [2m−1+1, 2m −2] for any n above. Thus, �log n� = m.
To show that L is a broadcast graph, broadcast scheme for any originator is
described below.

1. If the originator is a root vertex ri in KG2m−k−2, where 0 ≤ i ≤ 2m−k−3, then
the broadcast scheme of ri consists of the broadcast scheme from originator ri
in KG2m−k−2 concatenated with the broadcast scheme in any binomial tree
from its roots. ri first completes broadcasting within the Knödel graph using
dimensional broadcast scheme by time unit m − k. So, after time m − k the
roots of all binomial trees have the message. Then it takes k time units to
broadcast in its binomial tree. Thus, the broadcasting in L completes in m
time units.

2. If the originator is a non-root vertex w in Bi, 0 ≤ i ≤ 2m−k−3 the broadcast-
ing is more complicated. By construction, w is adjacent to all the neighbors of
rh, which is the first dimensional neighbor of ri, the root of binomial tree Bi.
Consider the dimensional broadcast scheme described in Sect. 2.1 from rh
in KG2m−k−2. rh informs its neighbor on dimension t at time unit t for all
t = 1, 2, ...,m − k. Since w is adjacent to all neighbors of rh, w can play the
role of rh in the broadcast scheme from originator w in L. w informs i-th

A New Construction of Broadcast Graphs 207

B0
B1

B2

B3

B4

B5

B6

B7B8

B9

B10

B11

B12

r0
r1

r2

r3

r4

r5

r6

r7r8

r9

r10

r11

r12

r13

wB13

Fig. 3. An example of L, when m− k = 4. Solid lines and vertices ri form the Knödel
graph KG14. Each binomial tree of degree 2 is replaced by a dotted triangle. A tree
vertex w of binomial tree B0 and the dashed edges show an example of the connections
between a non-root vertex and the root vertices. w is connected to the neighbors of the
first dimensional neighbor of the root vertex of tree B0.

dimensional neighbor of vertex rh at time unit i, for all i = 1, 2, ...,m−k− 1.
Every informed vertex continues broadcasting as in the dimensional broadcast
scheme from originator rh. As a result every vertex in KG2m−k−2 except rh
can be informed by the same broadcast scheme from rh in KG2m−k−2 at the
same time. Then rh can be informed by a call from ri at time unit m − k.
Note that since the degree of vertex ri in KG2m−k−2 is m − k − 1 then ri is
idle at time unit m − k, and so it can call vertex rh. The first m − k time
units of the broadcast scheme from w in L is shown in Fig. 4. Now, every
vertex rj , 1 ≤ j ≤ 2m−k − 3 in KG2m−k−2, which is also the root of Bj , is
informed after time m− k. Next, every root rj broadcasts all vertices within
its respective binomial tree in the remaining k time units. The broadcasting
in L again takes m time units in total.

Therefore, L is a broadcast graph. And for any n = 2m − 2k+1 − d ∈ [2m−1 +
1, 2m − 2], where m ≥ 3, 0 ≤ k ≤ m − 3 and 0 ≤ d ≤ 2k+1 − 1

208 H.A. Harutyunyan and Z. Li

u1 u2 u3 um−k−1

rh

KG2m−k−2

......ut......

1 2 3 t m − k − 1

(ri)

w

m − k − 1

Fig. 4. The broadcast scheme from w in L in the first m − k time units. ut, 1 ≤ t ≤
m−k−1 is t dimensional neighbor of rh and solid arcs denote the calls of the broadcast
scheme from originator rh in KG2m−k−2. Dashed arcs denote the calls from originator
w in L. All the other calls of the broadcast scheme from originator rh in KG2m−k−2

and the broadcast scheme of originator w in graph L are the same.

B(n) ≤ (m−k)n−(m+k+1)2m−k−1+m+k+1 ��
There are small number of constructions of broadcast graphs for all n ∈ [2m−1 +
1, 2m]. In particular, upper bound

UB1 =
n�log n�

2
from [9] is the best general bound when n is close to 2m. On the other hand,
upper bound

UB2 = (m − k + 1)n − 2m−k − 1
2
(m − k)(3m + k − 3) + 2k

from [16] and upper bound

UB3 = (m − k + 1)n − (
m

2
+

k

2
+ 1)2m−k + k + 1,

where n = 2m − 2k − d, m ≥ 3, 0 ≤ k ≤ m − 3 and 0 ≤ d ≤ 2k − 1

from [1] give the best general bound on B(n) when n is close to 2m−1 + 1. Note
that [1] presents the upper bound as follows

B(n) ≤ (k + 1)n − (t − k

2
+ 2)2k + t − k + 2

where 2t < n ≤ (2k − 1)2t+1−k, t ≥ 7 and 2 ≤ k ≤ t + 1

A New Construction of Broadcast Graphs 209

After transforming the above following our notation, we get the upper bound
UB3. This is clear if one compares the multiple of n in all upper bound formulas.
When m − k + 1 ≤ �logn�

2 or m
2 ≤ k ≤ m − 2 then UB2 and UB3 are better

bounds.
Note that UB3 always generates (m2 + k

2)2m−k− 3
2m

2+(k+ 3
2)m+ 1

2k
2− 1

2k−1
edges less than UB2. Our new broadcast graph construction is similar to the last
two bounds. Thus, we will compare our new bound with UB3 from [1]. Let our
upper bound given by Theorem 1 is denoted by UB4. It is important to notice
that UB4 has a different form comparing with UB3, which is caused by the
different range of m and k. Thus, the unification of UB4 is as follows

UB4 = (m − k)n − (m + k + 1)2m−k−1 + m + k + 1

Substitute n = (2m−k − 2)2k − d = (2m−k−1 − 1)2k+1 − d,

UB4 = (m − k)((2m−k−1 − 1)2k+1 − d) − (m + k + 1)2m−k−1 + m + k + 1

Assume h = k + 1. Substituting to m − k ≥ 3 and k ≥ 0 obtains m − h ≥ 2,
h ≥ 1, and

UB4 = (m − h + 1)((2m−h − 1)2h − d) − (m + h)2m−h + m + h

Also

n = (2m−h − 1)2h − d

Since h and k are variables, h can be replaced by k. Thus, the upper bound is

UB4 = (m − k + 1)n − (m + k)2m−k + m + k

And the range of k, m and d are 1 ≤ k ≤ m − 2, m ≥ 3 and 0 ≤ d ≤ 2k − 1
respectively. So, n = (2m−k − 1)2k − d is in the range 2m−1 + 1 ≤ n ≤ 2m − 2.

The comparison between UB1 and UB4 is easy. We know that �log n� = m.
Then, UB1 = m

2 n. In order to let UB4 ≤ UB1, m− k+1 ≤ m
2 . Therefore, when

k ≥ m
2 + 1, UB4 ≤ UB1.

Furthermore comparing UB3 with UB4 now also becomes easy.

UB3 − UB4 = (
m

2
+

k

2
− 1)2m−k − m + 1

Since m − k ≥ 2, UB3 − UB4 > 0. Thus, UB3 > UB4. Theorem 1 provides the
better upper bound than UB3.

Thus, when 2m−1 + 1 ≤ n ≤ 2m − 2
m
2 +1, UB4 is the best known general

upper bound.

Observation

Note that in [1] an upper bound on d, the number of deleted vertices from
their construction, is not given (Theorem 1.2 in [1]). As a result, one can get

210 H.A. Harutyunyan and Z. Li

more than one different constructions and so more than one upper bounds on
B(n) from Theorem 1.2 in [1]. For example, if d = 2k then the theorem gives
two broadcast graph constructions: one compounding an m − k dimensional
hypercube and k dimensional binomial trees with 2k vertices deleted; or the other
one compounding an m − k − 1 dimensional hypercube and k + 1 dimensional
binomial trees. The two broadcast graph constructions above give the following
upper bounds UBd and UB3 on UB(2m − 2k+1) respectively.

UBd = (m − k)n − (
m

2
− k

2
+ 2)2m−k − 2m + k + 3

UB3 = (m − k − 1)n − (
m

2
+

k

2
+ 1)2m−k−2 + k + 2

It is clear that the second bound is better than the first one. Our calculations
show that assuming an upper bound d ≤ 2k − 1 (d is the number of deleted
vertices from their construction) will make Theorem 1.2 (5a) always generating
one broadcast graph construction and the upper bound on B(n) is the best.

3 Conclusions

In the paper we introduce a new broadcast graph L on n vertices for any n ∈
[2m−1 + 1, 2m − 2] and prove a new general upper bound on B(n) ≤ (m− k)n−
(m+k+1)2m−k−1 +m+k+1, where n = 2m −2k+1 −d, m ≥ 3, 0 ≤ k ≤ m−3
and 0 ≤ d ≤ 2k+1 − 1. The comparison shows that the new upper bound is the
best general upper bound for 2m−1 + 1 ≤ n ≤ 2m − 2

m
2 +1.

The general upper bound obtained by L is slightly smaller than recent upper
bound from [1] for the same values of n. The improvement is mainly due to the
good properties of Knödel graphs, which was used as the base of compounding
method.

References

1. Averbuch, A., Shabtai, R.H., Roditty, Y.: Efficient construction of broadcast
graphs. Discrete Appl. Math. 171, 9–14 (2014)

2. Barsky, G., Grigoryan, H., Harutyunyan, H.A.: Tight lower bounds on broadcast
function for n=24 and 25. Discrete Appl. Math. 175, 109–114 (2014)

3. Bermond, J.C., Fraigniaud, P., Peters, J.G.: Antepenultimate broadcasting. Net-
works 26, 125–137 (1995)

4. Bermond, J.C., Harutyunyan, H.A., Liestman, A.L., Perennes, S.: A note on the
dimensionality of modified Knödel graphs. Int. J. Found. Comput. Sci. 8(02), 109–
116 (1997)

5. Bermond, J.C., Hell, P., Liestman, A.L., Peters, J.G.: Sparse broadcast graphs.
Discrete Appl. Math. 36, 97–130 (1992)

6. Chau, S.C., Liestman, A.L.: Constructing minimal broadcast networks. J. Combin.
Inform. Syst. Sci 10, 110–122 (1985)

A New Construction of Broadcast Graphs 211

7. Dineen, M.J., Fellows, M.R., Faber, V.: Algebraic constructions of efficient broad-
cast networks. In: Proceedings of the 9th International Symposium on Applied
Algebra, Algebraic Algorithms and Error Correcting Codes, pp. 152–158 (1991)

8. Dinneen, M.J., Ventura, J.A., Wilson, M.C., Zakeri, G.: Compound constructions
of broadcast networks. Discrete Appl. Math. 93, 205–232 (1999)

9. Farley, A., Hedetniemi, S., Mitchell, S., Proskurowski, A.: Minimum broadcast
graphs. Discrete Math. 25, 189–193 (1979)

10. Farley, A.M.: Minimal broadcast networks. Networks 9, 313–332 (1979)
11. Fertin, G., Raspaud, A.: A survey on Knödel graphs. Discrete Appl. Math. 137,

173–195 (2004)
12. Gargano, L., Vaccaro, U.: On the construction of minimal broadcast networks.

Networks 19, 673–689 (1989)
13. Grigni, M., Peleg, D.: Tight bounds on mimimum broadcast networks. SIAM J.

Discrete Math. 4, 207–222 (1991)
14. Grigoryan, H., Harutyunyan, H.A.: New lower bounds on broadcast function. In:

Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 174–184.
Springer, Heidelberg (2014)

15. Harutyunyan, H.A.: An efficient vertex addition method for broadcast networks.
Internet Math. 5(3), 197–211 (2009)

16. Harutyunyan, H.A., Liestman, A.L.: More broadcast graphs. Discrete Appl. Math.
98, 81–102 (1999)

17. Harutyunyan, H.A., Liestman, A.L.: Upper bounds on the broadcast function using
minimum dominating sets. Discrete Math. 312, 2992–2996 (2012)

18. Khachatrian, L., Harutounian, O.: Construction of new classes of minimal broad-
cast networks. In: Conference on Coding Theory, Dilijan, Armenia, pp. 69–77
(1990)

19. Knödel, W.: Note new gossips and telephones. Discrete Math. 13, 95 (1975)
20. König, J.C., Lazard, E.: Minimum k-broadcast graphs. Discrete Appl. Math. 53,

199–209 (1994)
21. Labahn, R.: A minimum broadcast graph on 63 vertices. Discrete Appl. Math. 53,

247–250 (1994)
22. Maheo, M., Saclé, J.F.: Some minimum broadcast graphs. Discrete Appl. Math.

53, 275–285 (1994)
23. Mitchell, S., Hedetniemi, S.: A census of minimum broadcast graphs. J. Combin.

Inform. System Sci 5, 141–151 (1980)
24. Park, J.H., Chwa, K.Y.: Recursive circulant: a new topology for multicomputer

networks. In: International Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN 1994), pp. 73–80. IEEE (1994)

25. Saclé, J.F.: Lower bounds for the size in four families of minimum broadcast graphs.
Discrete Math. 150, 359–369 (1996)

26. Shao, B.: On K-broadcasting in Graphs. Ph.D. thesis, Concordia University (2006)
27. Ventura, J.A., Weng, X.: A new method for constructing minimal broadcast net-

works. Networks 23, 481–497 (1993)
28. Weng, M.X., Ventura, J.A.: A doubling procedure for constructing minimal broad-

cast networks. Telecommun. Syst. 3, 259–293 (1994)
29. Xiao, J., Wang, X.: A research on minimum broadcast graphs. Chinese J. Comput.

11, 99–105 (1988)
30. Zhou, J.G., Zhang, K.M.: A minimum broadcast graph on 26 vertices. Appl. Math.

Lett. 14, 1023–1026 (2001)

Improved Algorithm for Maximum Independent
Set on Unit Disk Graph

Ramesh K. Jallu and Guatam K. Das(B)

Department of Mathematics Indian Institute of Technology Guwahati,
Guwahati, India

{j.ramesh,gkd}@iitg.ernet.in

Abstract. In this paper, we present a 2-factor approximation algo-
rithm for the maximum independent set problem on a unit disk graph,
where the geometric representation of the graph has been given. We
use dynamic programming and farthest point Voronoi diagram con-
cept to achieve the desired approximation factor. Our algorithm runs
in O(n2 log n) time and O(n2) space, where n is the input size. We also
propose a polynomial time approximation scheme (PTAS) for the same
problem. Given a positive integer k, it can produce a solution of size

1

(1+ 1
k
)2

|OPT | in nO(k) time, where |OPT | is the optimum size of the

solution. The best known algorithm available in the literature runs in
(i) O(n3) time and O(n2) space for 2-factor approximation, and (ii)
nO(k log k) time for PTAS [Das, G.K., De, M., Kolay, S., Nandy, S.C.,
Sur-Kolay, S.: Approximation algorithms for maximum independent set
of a unit disk graph. Information Processing Letters 115(3), 439–446
(2015)].

Keywords: Maximum independent set · Unit disk graph · Approxima-
tion algorithm

1 Introduction

An intersection graph of objects is a graph, where the vertex set is the set of
objects and there is an edge between two objects if their intersection is non
empty. A unit disk graph (UDG) is an intersection graph of disks of equal radii
in the plane. Given a set C = {C1, C2, . . . , Cn} of n circular disks in the plane,
each having diameter 1, the corresponding UDG G = (V,E) is defined as follows:
each vertex vi ∈ V corresponds to a disk Ci ∈ C, and there is an edge between
two vertices if and only if the Euclidean distance between the corresponding disk
centers is at most 1.

An independent set of a graph G = (V,E) is a set of vertices V ′ ⊆ V such
that no two vertices in V ′ are adjacent in G. The objective of the independent set
problem for a given graph G is to find an independent set of maximum cardinality,
which is called as maximum independent set (MIS) or Largest independent set
of G.
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 212–223, 2016.
DOI: 10.1007/978-3-319-29221-2 18

Improved Algorithm for Maximum Independent Set on Unit Disk Graph 213

The weighted version of the independent set problem is known as maximum
weighted independent set (MWIS) problem, where each vertex v ∈ V is assigned
a positive weight wv. The objective is to find an independent set of maximum
total weight.

In this paper we consider the problem of finding a MIS on a given UDG,
where the coordinates of the disk centers have been given. We call this problem
as MIS problem on UDG. Some of the applications of MIS are in map labeling,
clustering in wireless ad-hoc networks, coding theory, etc.

The remainder of the paper is organized as follows. Next section we discuss
existing work available in the literature. Section 3 discusses preliminaries and
introduces some notations that are necessary to understand the 2-factor approx-
imation algorithm for MIS on UDG proposed in Sect. 4. We propose a PTAS in
Sect. 5. Finally we conclude the paper in Sect. 6.

2 Related Work

The MIS problem on UDG is known to be NP-hard [7]. A simple 5-factor approxi-
mation algorithm is proposed in [11] and by taking the advantage of the structure
of the given UDG, the authors proposed a heuristic algorithm which provides
a performance guarantee 3. Both the algorithms do not require geometric rep-
resentation (i.e., coordinates of the disk centers) of the UDG. If the geometric
representation is given, the later algorithm runs in O(n2) time. For a given
(k + 1)-claw free graph (k ≥ 4) and for every ε > 0, Halldórsson [8] proposed
a (k

2 + ε)- factor approximation algorithm (that does not require the geometric
representation of disks) in time O(nlogk

1
ε) using local improvement search tech-

nique for the MIS problem. Therefore there exists a (52 + ε)-factor for UDGs as
they are 6-claw free. Most of the work in the literature assume that the geometric
representation of the UDG is given, this assumption allows us to partition the
plane into grids and solve each grid. Matsui [12] considered the MIS problem on
UDG defined on a slab (i.e., all the disk centers lie between two parallel lines)
of fixed width k, and proposed an algorithm that finds an independent set of
maximum cardinality in O(n4� 2k√

3
�) time, where n denotes the number of vertices

in the UDG. The author also proposed a (1− 1
r)-factor approximation algorithm

for the MIS problem on a UDG, which runs in O(rn4� 2(r−1)√
3

�) time and uses
O(n2r) space, for any integer r ≥ 2. The algorithm can also be extended to the
weighted version of the MIS problem. For a given set R of rectangles of fixed
size, Agarwal et al. [1] proposed a 2-factor approximation algorithm for the MIS
problem that runs in O(n log n) time. The authors also proposed a PTAS that
computes an independent set of rectangles of size at least γ

(1+ 1
k)

, for any k ≥ 1,
where γ is the size of a maximum independent set of R. For a given set of arbi-
trary rectangles of bounded aspect ratio in R

d, Chan [2] proposed a PTAS that
runs in O(n

1
εd−1) time and space, where 0 < ε ≤ 1. Chan et al. [3] considered the

same problem for pseudo disks in the plane. Their algorithm produces a solution
of size (1 − ε)|OPT |, where |OPT | is the cardinality of the MIS. Recently Das

214 R.K. Jallu and G.K. Das

et al. [4] proposed a 2-factor approximation algorithm for the MIS problem with
time and space complexities O(n3) and O(n2) respectively. Their approach is,
(i) split the region into a set of disjoint strips of unit width and compute a MIS
for each non empty strip independently with the aid of dynamic programming,
(ii) find the union of the solutions for odd and even strips separately and con-
sider the one with maximum cardinality. The authors also proposed a PTAS
with the aid of two level shifting strategy of Hochbaum and Maass [9]. For any
given positive integer k > 1 the PTAS produces a solution of size 1

(1+ 1
k)2

|OPT |
in O(k4nσk log k + n log n) time and O(n + k log k) space, where OPT is an opti-
mum solution and σk ≤ 7k

3 +2. For the MIS problem on UDG, van Leeuwen [10]
proposed a fixed parameter tractable algorithm which runs in O(t222tn) time,
where the parameter t is called the thickness of the UDG. A UDG is said to
have thickness t, if each strip in the slab decomposition (of width 1) of the UDG
contains at most t disk centers.

Nieberg et al. [13] proposed a PTAS for the MWIS problem on UDG for the
case geometric representation is not given. Erlebach et al. [6] also proposed a
PTAS for finding a MWIS in an intersection graph of arbitrary radii disks, based
on dynamic programming and the shifting strategy proposed by Hochbaum and
Maass. Their approach can be extended for other geometric objects such as
squares, regular polygons, and rectangles which are approximately squares.

2.1 Our Contribution

In this paper we present a 2-factor approximation algorithm for the MIS problem
on a given UDG under the assumption that the geometric representation of the
UDG is given. Our algorithm runs in O(n2 log n) time using O(n2) space. We also
propose a polynomial time approximation scheme (PTAS) for the same problem.
Given a positive integer k, it can produce a solution of size 1

(1+ 1
k)2

|OPT | in

nO(k) time, where |OPT | is the optimum size of the solution. The best known
algorithm available in the literature runs in (i) O(n3) time and O(n2) space for
2-factor approximation, and (ii) nO(k log k) time for PTAS [4]. Hence, our 2-factor
approximation algorithm as well as PTAS are much faster than the best known
2-factor approximation algorithm and PTAS for the MIS problem on unit disk
graphs.

3 Preliminaries

Let P be the set of points (disk centers) corresponding to the given UDG and
the cardinality of P, denoted by |P| is n. From now on we deal with the point
set P instead of the given UDG. We use x(pi), y(pi) to represent the x and y
coordinates respectively for the point pi ∈ P and d(pi, pj) to denote the Euclid-
ean distance between two points pi and pj . We say that two points pi and pj

in P are independent (some times we say that pi is an independent point of
pj and vice versa in the rest of the paper) if d(pi, pj) > 1. Our objective is to

Improved Algorithm for Maximum Independent Set on Unit Disk Graph 215

find a maximum size subset P ′ of P such that all the points in P ′ are mutually
independent. Without loss of generality, we assume that no two points in P have
the same x-coordinate. A horizontal strip H is the region in the plane bounded
by two horizontal parallel lines. Let Q = {p1, p2, . . . , pm} be the set of points
lying in a horizontal strip H in increasing order of their x-coordinates.

Lemma 1. [4] Let p1, p2, p3, and p4 be four points of P lying inside a horizontal
strip H of width 1 such that x(p1) < x(p2) < x(p3) < x(p4). If p1, p2, p3 are
pairwise independent and p2, p3, p4 are also pairwise independent, then p1 and
p4 must be independent.

We define the set Si,j is as follows: (i) all the points in Si,j are mutually
independent, (ii) Si,j is a maximum cardinality subset of Q, and (iii) pj and pi are
two right most points in Si,j with j < i. Let n(Si,j) denote the number of points
in Si,j . We use Si = {Si,j | 1 ≤ j < i} to denote the collections of sets Si,j for
fixed i. We say that two points pu and pv in Si,j are consecutive if x(pu) < x(pv)
and there is no other point pw of Si,j such that x(pu) < x(pw) < x(pv). For
simplicity, the set Si,j can be viewed as a chain Ci,j . In general, a chain is a
series of connected line segments. In our context, the chain Ci,j corresponding
to the set Si,j is defined by joining consecutive points using line segments from
left to right. Therefore, Si can be viewed as a collection of chains ending at pi

(see Fig. 1). Note that these chains may or may not have a common point(s)
except pi. For a given horizontal strip H we first compute a MIS of the set
Q = {p1, p2, . . . , pm} of points lying inside the strip. The basic idea of our
algorithm is to extend the length of chains as long as possible while processing
the points from left to right iteratively. We find a largest possible independent
subset of {p1, p2, . . . , pi} in the ith iteration for 1 ≤ i ≤ m. Finally, we obtain a
MIS which is a longest chain (a chain of maximum length) after processing all
the points in the strip H.

H

1

pi

Fig. 1. Pictorial representation of the collection Si in the form of chains (not all are
drawn).

Let a variable ni be associated with each point pi in the strip which is
used to store the size of largest independent subset of {p1, p2, . . . , pi}, i.e.,
ni = max{n(si,j) | j < i}. In other words, the length of the longest chain
ending at pi is ni. Initially we set ni = 0 for every point pi in the strip, indi-
cating that the maximum length of a chain ending at pi is zero. The value of ni

gets updated while the point pi is being processed. Therefore, we have a largest

216 R.K. Jallu and G.K. Das

independent subset of {p1, p2, . . . , pi} by the time pi is processed. We define the
following sets: Sα

i = {pj ∈ Q | pj ∈ Si,j with j < i and |Si,j | = ni − α} for
α = 0, 1, 2, · · · . These sets play crucial role in the proposed algorithm. We use
FPV D(S) to denote the farthest point Voronoi diagram (FPVD) [5] of a point
set S.

4 2-Factor Approximation Algorithm

In this section we propose a dynamic programming based algorithm with the
help of FPVD to compute a MIS of the points lying in a horizontal strip H
of width 1. We partition the region containing the points in P into disjoint
strips H1,H2, . . . , Hν of width 1 using the horizontal lines at y-coordinates
h1, h2, . . . , hν + 1 such that no point in P lies on any horizontal line. The ith

strip Hi contains the points Pi = {p ∈ P | hi < y(p) < hi+1}. We compute a
MIS for each non empty strip separately.

Description of our algorithm to find a MIS for a given set {p1, p2, . . . , pm}
of points lying in a strip H of width 1 is as follows: let μ > 1 be a predefined
sufficiently large constant. For the points p1, p2, . . . , pμ, we find a maximum
independent subset in a naive way. We process the points one by one from
left to right. For every point pi in the strip we maintain a collection of sets
Si = {Si,j}, where j < i. We compute these sets for 1 < i ≤ μ in brute force
manner (because, before processing the point pμ+1 we should have the sets Si,js
in hand for every 1 < i ≤ μ and j < i) and for i > μ on the fly while pi is being
processed. We define Si,j = ∅ if pi and pj are not independent. Without loss of
generality we assume that the points in the sets are stored in increasing order
of their x-coordinate.

We also maintain the three sets S0
i , S1

i , S2
i (defined in the previous section)

and their corresponding FPVDs separately for each point pi in the strip. By
definition, each set Sα

i (0 ≤ α ≤ 2) contains the last but one points in the chains
having length ni − α ending at pi. These sets and their FPVDs of every point
up to pi should be in hand before proceeding to process the point pi+1 in the
strip.

Lemma 2. Let p� be the farthest independent point of pi+1 in Sα
i (for some

0 ≤ α ≤ 2). If p�, pi, and pi+1 are mutually independent then pi+1 is independent
with all the points in the chain Ci,�.

Proof. Let pu be a point lying left to p� (i.e., x(pu) < x(p�)) in the chain Ci,�.
By the definition of Ci,�, the points pu and pi are independent. Therefore, pu, p�,
pi are pairwise independent. Hence by Lemma 1, pu and pi+1 are independent
as p�, pi, and pi+1 are mutually independent. ��
Lemma 3. Let pi and pi+1 be independent. Also, let pu be the farthest indepen-
dent point of pi+1 in Sα

i (for some 0 ≤ α ≤ 2). If pu, pi, and pi+1 are mutually
independent then the cardinality of a MIS M ′ of {p1, p2, . . . , pi+1} having pu, pi,
and pi+1 as right most three points is greater than or equal to the cardinality of a

Improved Algorithm for Maximum Independent Set on Unit Disk Graph 217

MIS M ′′ of {p1, p2, . . . , pi+1} having pv, pi, and pi+1 as right most three points,
where pv is the farthest point of pi+1 in Sβ

i , for β ≥ α.

Proof. |M ′| ≥ |M ′′|, follows from the definition of Sα
i and Sβ

i and β ≥ α. Now
we have to prove that pv, pi, and pi+1 are mutually independent. The case β = α
is trivial. Let us consider the case β > α, i.e., β − α = 1 or 2. By the statement
of the lemma pi and pi+1 are independent, and pv and pi are independent due
to definition of Sβ

i . Now consider the chain Ci,u, since pu is the farthest point
of pi+1 in Sα

i , the length of Ci,u is ni − α. Let {s1, s2, . . . , sni−α−2, sni−α−1(=
pu), sni−α(= pi)} be the set of points in the chain Ci,u from left to right. Consider
the following two cases:

Case A: β − α = 1
Case B: β − α = 2

In Case A, sni−α−2 ∈ Sβ
i and in Case B, sni−α−3 ∈ Sβ

i .
Since sni−α−1 and pi+1 are independent and by Lemma 1, (i) sni−α−2 and pi+1,
and (ii) sni−α−3 and pi+1 are independent. Since in Case A sni−α−2 ∈ Sβ

i and
in Case B sni−α−3 ∈ Sβ

i , then pv and pi+1 are independent as pv is the farthest
point of pi+1 in Sβ

i . Thus the lemma. ��
Lemma 4. Let pi and pi+1 be independent. If pu is the farthest point of pi+1 in
S2

i , then pu and pi+1 are independent.

Proof. Note that Sα
i = {pj ∈ Q | pj ∈ Si,j with j < i and |Si,j | = ni − α} for

α = 0, 1, 2. Consider a chain Ci,j corresponding to Si,j such that n(Si,j) = ni.
Let the members of the chain Ci,j be s1, s2, . . . , sni−4, sni−3, sni−2, sni−1(=
pj), sni

(= pi) from left to right. Now consider a chain containing the points
s1, s2, . . . , sni−4, sni−3, sni

(= pi) of length ni−2. Therefore, sni−3 ∈ S2
i . Observe

that sni−3 is independent with pi+1, since sni−3, sni−2, sni−1, sni
(= pi) are pair-

wise independent and x(sni−3) < x(sni−2) < x(sni−1) < x(sni
). Therefore,

x(sni
) − x(sni−3) > 1 (by Lemma 1). Again x(pi+1) > x(pi) implies sni−3 and

pi+1 are independent. Now, since sni−3 is independent with pi+1 then pu is also
independent with pi+1 as (i) pu ∈ S2

i , (ii) sni−3 ∈ S2
i , and (iii) pu is the farthest

point of pi+1 in S2
i . Thus the lemma. ��

Lemma 5. Let pi and pi+1 be independent. If pu, pv, and pw are the farthest
points of pi+1 in S0

i , S1
i , and S2

i respectively, then either (i) pu, pi+1, or (ii)
pv, pi+1, or (iii) pw, pi+1 are independent.

Proof. Follows form Lemma 4 as pw and pi+1 are independent. ��

4.1 Algorithm

Here, we assume that the set of points {p1, p2, . . . , pi} are already processed one
by one from left to right. Now we describe the method of processing the point
pi+1. Let S0

i+1 = S1
i+1 = S2

i+1 = ∅. Note that at the time of processing pi+1, we

218 R.K. Jallu and G.K. Das

have (i) the collection {Su,v} and n(Su,v) such that 1 ≤ v < u ≤ i, and (ii) the
sets S0

u, S1
u, S2

u and their FPVDs for every u ≤ i. The steps involved in processing
the point pi+1 are as follows. If d(pi, pi+1) > 1, then we find a point p� ∈ S0

i ,
which is farthest from pi+1. If d(pi+1, p�) > 1, then Si+1,i = {pi+1}∪Si,� (i.e., we
extend the chain ending at pi corresponding to Si,� up to pi+1) and n(Si+1,i) =
n(Si,�)+1. Note that we are not storing Si+1,i explicitly. We can use a matrix M
of size m×m and store p� in the (i+1, i)th entry of M . If d(pi+1, p�) ≤ 1, then we
repeat the same process with S1

i and S2
i in order. We repeat the entire process for

pi−1, pi−2, . . . , p1. Calculate ni+1 = max{n(Si+1,j) | j < i + 1}. To find the sets
S0

i+1, S
1
i+1, and S2

i+1 we repeat the above process again. If n(Si+1,i) = ni+1 − α
then Sα

i+1 = Sα
i+1 ∪{pi} for 0 ≤ α ≤ 2. Next, we store FPVDs of S0

i+1, S
1
i+1, and

S2
i+1 to process the remaining points in the horizontal strip H. The pseudo code

of the algorithm for processing the point pi+1 is given in Algorithm 1. In the
algorithm flag variables flag1 and flag2 are used to handle the cases Sα

i = ∅
for any α = 0, 1, 2 and there is no independent point left to pi+1 respectively.

4.2 Correctness of the Algorithm

Let the current point being processed is pi+1. If d(pi+1, pi) > 1 we check for
the independence of pi+1 with the farthest point in S0

i , S1
i , and S2

i in order.
The farthest independent point, say p�, encountered first is considered to be in
the solution. The existence of p� is guaranteed by Lemma 5. By Lemma 2, pi+1

is independent with all the points in the chain Ci,�. Therefore, the points in
the chain together with pi+1 forms an independent set of {p1, p2, . . . , pi+1} and
that is the possible maximum independent set having p�, pi, and pi+1 as right
most three points (see Lemma 3). Hence, we can safely extend the chain Ci,�

up to pi+1. We considered all the points pi, pi−1, . . . , p1 (see line number 3 in
Algorithm 1) and hence we are considering all possible chains ending at pi+1.

Lemma 6. Algorithm 1 processes the point pi+1 correctly in O(i log i) time and
uses O(m2) space.

Proof. Correctness of Algorithm 1 follows from the discussion in SubSect. 4.2.
The worst case time complexity of lines 4–21 is O(log i) due to planar point
location in line number 9. Therefore, time complexity of lines 3–22 is O(i log i).
Again, time complexity of lines 27–33 is O(i log i). Computing FPVDs in line
number 34 can be done in O(i log i). Thus the total time complexity of Algorithm
1 is O(i log i).

The space complexity follows from (i) size of the matrix M , (ii) collection
{Si,j}, (iii) counters n(Si,j), (iv) sets S0

i , S1
i , S2

i , and (v) storing FPVDs of the
sets S0

i , S1
i , S2

i for 1 ≤ i ≤ m. ��
We now describe the algorithm for computing a MIS for the set of points

{p1, p2, . . . , pm} within a strip H of width 1. For a given predefined constant μ
we execute Algorithm 1 for each point pμ+1, pμ+2, . . . , pm in the strip and report
the largest set Si,j for 1 ≤ j < i ≤ m. Hence the size of a MIS for a given strip
of width 1 is equal to max{n1, n2, . . . , nm}. The pseudo code of the algorithm is
available in Algorithm 2.

Improved Algorithm for Maximum Independent Set on Unit Disk Graph 219

Algorithm 1. Processing the point pi+1

Input: (i) Su,v (in the form of matrix M) and n(Su,v) for 1 ≤ v < u ≤ i, and (ii)
S0

u, S1
u, and S2

u and their FPVDs for u ≤ i.
Output: (i) Si+1,j (in the form of matrix M) and n(Si+1,j) for j < i + 1, and (ii)

S0
i+1, S

1
i+1, S

2
i+1 and their FPVDs.

1: Let M be a matrix of size m × m and M [i, j] ← φ for 1 ≤ i, j ≤ m
2: flag1 = 0,flag2 = 0
3: for (w = i, i − 1, . . . , 1) do
4: if (d(pw, pi+1) > 1) then
5: flag2 = 1
6: for (α = 0, 1, 2) do
7: if (Sα

w �= ∅) then
8: flag1 = 1
9: Find the farthest point p� of pi+1 in FPV D(Sα

w) using planar point
location algorithm [14].

10: if (d(p�, pi+1) > 1) then
11: M [i + 1, w] ← p�

12: n(Si+1,w) = n(Sw,�) + 1
13: break /* break the for loop for (α = 0, 1, 2) */
14: end if
15: end if
16: end for
17: if (flag1 = 0) then
18: M [i + 1, w] ← pw

19: n(Si+1,w) = 2
20: end if
21: end if
22: end for
23: S0

i+1 ← ∅, S1
i+1 ← ∅, S2

i+1 ← ∅
24: if flag2 = 0 then
25: ni+1 = 1
26: else
27: ni+1 = max{n(Si+1,j) | j < i + 1}
28: Repeat line numbers 3 - 22 by replacing lines 11 - 12 by lines 29 - 33.
29: for (α = 0, 1, 2) do
30: if (n(Si+1,w) = ni+1 − α) then
31: Sα

i+1 = Sα
i+1 ∪ {pw}

32: end if
33: end for
34: Compute and store FPV D(S0

i+1), FPV D(S1
i+1), and FPV D(S2

i+1).
35: end if

Theorem 1. Algorithm 2 correctly computes a MIS for the set Q =
{p1, p2, . . . , pm} inside a strip H of width 1 in O(m2 log m) time using O(m2)
space.

220 R.K. Jallu and G.K. Das

Algorithm 2. MIS STRIP

Input: The set Q = {p1, p2, . . . , pm} of m points lying in the strip H of width 1 and
a constant μ.

Output: A maximum cardinality subset Q′ of Q such that the points in Q′ are mutu-
ally independent.

1: For the points {p1, p2, . . . , pμ} compute {Si,j}(j < i) in brute force manner.
2: for (i = μ + 1 to m) do
3: Process the point pi by calling Algorithm 1.
4: end for
5: Return a set with maximum cardinality among {Si,j} for 1 ≤ j < i ≤ m.

Proof. Correctness of the algorithm follows from Lemma 6. Time complexity of

Algorithm 2 is
m∑

i=1

O(i log i) (see for loop in line number 2 in Algorithm 2, where

it calls Algorithm 1 O(m) times). Therefore, total time complexity of Algorithm
2 is O(m2 log m) in worst case.

Space complexity of Algorithm 2 follows from Lemma 6 as we can reuse the
matrix M for every call to Algorithm 1. ��

Now, we describe an algorithm to find a MIS for the point set P. Let
MIS1,MIS2, . . . , MISν be the largest possible independent sets corresponding
to the points in P ∩H1,P ∩H2, . . . ,P ∩Hν respectively. We execute Algorithm 2
for every strip Hi for 1 ≤ i ≤ ν. Let MISodd and MISeven be the union of max-
imum independent sets in odd and even strips respectively. We report MISodd

if |MISodd| ≥ |MISeven|, otherwise we report MISeven. The pseudo code of the
algorithm is given in Algorithm 3

Theorem 2. Given a set P of n points (disk centers) corresponding to a given
UDG, a subset of at least 1

2 |OPT | mutually independent points (disks) can be
computed in O(n2 log n) time and using O(n2) space using Algorithm 3, where
|OPT | is the cardinality of a largest independent set for the point set P.

Proof. Let χ be the solution obtained by Algorithm 3. Observe that both MISodd

and MISeven are independent as all strips are of width 1 unit and two points
in P are independent if the Euclidean distance between them is greater than 1.
Also, observe that the points in any two even strips (resp. odd) are independent.
We have to prove that |χ| > 1

2 |OPT |, where OPT is a MIS of P. Since MISodd

and MISeven are union of solutions in odd and even strips respectively, hence,

|MISodd| + |MISeven| ≥ |OPT | (1)
|χ| + |χ| ≥ |MISodd| + |MISeven| (2)

From inequalities 1 and 2, |χ| ≥ 1
2 |OPT |.

The time and space complexities follow as we can execute Algorithm 3 for
every strip independently. Thus the theorem. ��

Improved Algorithm for Maximum Independent Set on Unit Disk Graph 221

Algorithm 3. MIS P
Input: The set P of n points and strips H1, H2, . . . , Hν .
Output: An independent subset of P.
1: Compute MIS1, MIS2, . . . , MISν for the points lying in strips H1, H2, . . . , Hν by

calling Algorithm 2 for each strip separately.
2: if (ν = 2u) then

3: MISodd =
u−1⋃

i=0

MIS2i+1 and MISeven =
u⋃

i=1

MIS2i

4: else
5: if (ν = 2u + 1) then

6: MISodd =
u⋃

i=0

MIS2i+1 and MISeven =
u⋃

i=1

MIS2i

7: end if
8: end if
9: if |MISodd| ≥ |MISeven| then
10: return MISodd

11: else
12: return MISeven

13: end if

5 Polynomial Time Approximation Scheme

We design a polynomial time approximation scheme (PTAS) for the maximum
independent set problem on a given UDG, where the geometric representation of
the graph has been given i.e., the center of the unit disks are given. We assume
that P be the set of centers of the unit disks associated with the UDG. Also
assume that R be an enclosing rectangle of the point set P. To design a PTAS
we use two level shifting strategy, proposed by Hauchbaum and Maass [9]. In the
first level of shifting strategy we execute k + 1 iterations as follows: in the i-th
iteration (0 ≤ i ≤ k), we partition the region R into disjoint vertical slabs such
that (i) the first slab is of width i starting from left, (ii) width of each even slab
is 1, and (iii) width of other slab is k (note that width of last slab may be less
than k). Therefore, solution of different slabs of width k are non-intersecting [1].

In an iteration of the first level, we consider only those vertical slabs contain-
ing at least one point in P, and compute maximum independent set by applying
second level shifting strategy by considering horizontal partition of each vertical
slab, add up the solutions of all slabs to get the solution of that iteration. The
iteration producing maximum size solution is reported.

Lemma 7. [4] If nk is the maximum number of mutually non-overlapping unit
disks whose centers lie in a strip of width k > 1 and intersected by a vertical line
	, then nk ≤ 7k

3 + 2.

5.1 Computing MIS for Unit Disks Centered in a k × K Square

Let Q ⊆ P be the set of points inside a cell χ of size k × k. Consider a vertical
line 	v and a horizontal line 	h that partition χ into four sub-cells each of size

222 R.K. Jallu and G.K. Das

k
2 × k

2 . Let Q(v, 	h) ⊆ Q be the set of points whose distance from 	v or 	h is
at most 1

2 , and Q1, Q2, Q3, Q4 ⊆ Q be the set of points in the four quadrants
whose distance from 	v and 	h is greater than 1

2 . To compute a MIS for the set
of points in Q, we use the following divide and conquer technique.

Consider all possible subsets Q′ ⊆ Q(v, 	h) of size at most 2 × nk, where
nk = 7k

3 + 2 (since 2 × nk is the maximum possible size of the point set in
Q(v, 	h) that can appear in an optimal solution due to Lemma 7). For each
of Q′, we do the following in each quadrant: delete all the points in Qi (i =
1, 2, 3, 4) which are not independent with Q′. Let Q′

i ⊆ Qi be the remaining
set of points. Now compute the optimum solution for Q′

i recursively using the
same procedure. If T (m, k) is the time complexity for finding MIS in χ, then
T (m, k) = 4 ∗ T (m, k

2) × m2nk = mO(k). Thus, we have the following result:

Theorem 3. Given a set P of n points in the plane and an integer k > 1, the
proposed algorithm computes an independent set of size at least 1

(1+ 1
k)2

|OPT | in
nO(k) time, where |OPT | is the optimum size of the solution.

6 Conclusion

In this paper we proposed a 2-factor approximation algorithm for the MIS prob-
lem on UDG, where the geometric representation of the UDG is given. Our
algorithm runs in O(n2 log n) time and O(n2) space, outperforming the exist-
ing algorithms in the literature with respect to time complexity by a factor of

n
log n [4]. We also proposed a PTAS for the same problem. The running time of
our proposed PTAS is nO(k). The previous best known PTAS runs in nO(k log k)

time [4].

References

1. Agarwal, P., van Kreveld, M., Suri, S.: Label placement by maximum independent
set in rectangles. Comput. Geom. 11(3), 209–218 (1998)

2. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms 46(2), 178–189 (2003)

3. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Discrete Comput. Geom. 48(2), 373–392 (2012)

4. Das, G.K., De, M., Kolay, S., Nandy, S.C., Sur-Kolay, S.: Approximation algorithms
for maximum independent set of a unit disk graph. Inf. Process. Lett. 115(3), 439–
446 (2015)

5. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational
Geometry. Springer, Heidelberg (2000)

6. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

7. Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of
NP-completeness. Freeman, New York (1979)

8. Halldórsson, M.M.: Approximating discrete collections via local improvements. In:
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 160–169. Society for Industrial and Applied Mathematics (1995)

Improved Algorithm for Maximum Independent Set on Unit Disk Graph 223

9. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM (JACM) 32(1), 130–136 (1985)

10. van Leeuwen, E.J.: Approximation algorithms for unit disk graphs. In: Kratsch, D.
(ed.) WG 2005. LNCS, vol. 3787, pp. 351–361. Springer, Heidelberg (2005)

11. Marathe, M.V., Breu, H., Hunt, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple heuris-
tics for unit disk graphs. Networks 25(2), 59–68 (1995)

12. Matsui, T.: Approximation algorithms for maximum independent set problems and
fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M., Urabe,
M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg (2000)

13. Nieberg, T., Hurink, J.L., Kern, W.: A robust PTAS for maximum weight indepen-
dent sets in unit disk graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.)
WG 2004. LNCS, vol. 3353, pp. 214–221. Springer, Heidelberg (2004)

14. Preparata, F.P., Shamos, M.: Computational Geometry: An Introduction. Springer
Science & Business Media, New York (2012)

Independent Sets in Classes Related
to Chair-Free Graphs

T. Karthick(B)

Computer Science Unit, Indian Statistical Institute, Chennai Centre,
Chennai 600 113, India

karthick@isichennai.res.in

Abstract. The Maximum Weight Independent Set (MWIS) prob-
lem on graphs with vertex weights asks for a set of pairwise nonadjacent
vertices of maximum total weight. MWIS is known to be NP -complete
in general, but solvable in polynomial time in classes of Si,j,k-free graphs,
where Si,j,k is the graph consisting of three induced paths of lengths i, j, k
with a common initial vertex. The complexity of the MWIS problem for
S1,2,2-free graphs, and for S1,1,3-free graphs are open. In this paper, we
show that the MWIS problem can solved in polynomial time for (S1,2,2,
S1,1,3, co-chair)-free graphs, by analyzing the structure of the subclasses
of this class of graphs. This extends some known results in the literature.

Keywords: Graph algorithms · Independent sets · Claw-free graphs ·
Chair-free graphs · Clique separators · Modular decomposition

1 Introduction

Let G be a finite, undirected and simple graph with vertex-set V (G) and edge-set
E(G). We let |V (G)| = n and |E(G)| = m. Let Pn and Cn denote respectively
the path, and the cycle on n vertices. If F is a family of graphs, a graph G is
said to be F-free if it contains no induced subgraph isomorphic to any graph in
F . A class of graphs G is hereditary if every induced subgraph of a member of G
is also in G. For notation and terminology not defined here, we follow [5].

In a graph G, an independent (or stable) set is a subset of mutually nonadja-
cent vertices in G. The Maximum Independent Set (MIS) problem asks for
an independent set in the given graph G with maximum cardinality. The Max-
imum Weight Independent Set (MWIS) problem asks for an independent
set of total maximum weight in the given graph G with vertex weight function
w on V (G). The M(W)IS problem is well known to be NP -complete in general
and hard to approximate; it remains NP -complete even on restricted classes
of graphs [9,35]. Alekseev [1] showed that the M(W)IS problem remains NP -
complete on H-free graphs, whenever H is connected, but neither a path nor a
subdivision of the claw (K1,3). On the other hand, the M(W)IS problem is known
to be solvable in polynomial time on many graph classes such as: chordal graphs
[12]; P4-free graphs [10]; perfect graphs [14]; 2K2-free graphs [11]; P3 ∪ P2-free
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 224–232, 2016.
DOI: 10.1007/978-3-319-29221-2 19

Independent Sets in Classes Related to Chair-Free Graphs 225

S1,1,3 Co-chair 5-appleS1,2,2

Fig. 1. Some special graphs.

graphs [28]; claw-free graphs [31,36]; chair-free graphs (or fork-free graphs) [24];
apple-free graphs [6]; and P5-free graphs [21].

For integers i, j, k ≥ 0, Si,j,k is the graph consisting of three induced paths
of lengths i, j, k with a common initial vertex. The graph S0,1,2 is isomorphic
to P4 and the graph S0,2,2 is isomorphic to P5. The graph S1,1,1 is called a
claw and the graph S1,1,2 is called a chair or fork. Also, note that Si,j,k is a
subdivision of a claw, if i, j, k ≥ 1. See Fig. 1 for some of the special graphs used in
this paper.

As mentioned earlier, the complexity status of the MWIS problem in the
graphs classes defined by a single forbidden induced subgraph of the form Si,j,k

was solved for the case i+j +k ≤ 4. However, for larger i+j +k, the complexity
of MWIS in Si,j,k-free graphs is open. In particular, the class of P6-free graphs,
the class of S1,2,2-free graphs, and the class of S1,1,3-free graphs constitute the
minimal classes, defined by forbidding a single connected subgraph on six ver-
tices, for which the computational complexity of the M(W)IS problem is open. It
is known that there is an nO(log2 n)-time, polynomial-space algorithm for MWIS
on P6-free graphs [22]. This implies that MWIS on P6-free graphs is not NP -
complete, unless all problems in NP can be solved in quasi-polynomial time. On
the other hand, MWIS is shown to be solvable in polynomial time for several
subclasses of Si,j,k-free graphs, for i + j + k ≥ 5 such as: subclasses of P6-free
graphs [3,16,29,32–34]; subclasses of S1,2,2-free graphs [17,18]; and subclasses
of S1,1,3-free graphs [17]. It is also known that the MIS problem can be solved
in polynomial time for some subclasses of Si,j,k-free graphs such as: S1,2,k-free
planar graphs and S1,k,k-free graphs of low degree [23], and S2,2,2-free sub-cubic
graphs [27]; and see [13, Table 1] for several other subclasses.

Graph decompositions techniques such as clique separator decomposition
[37,38] and modular decomposition [30] play a crucial role in structural graph
theory and in designing efficient graph algorithms. Recently, using this tech-
nique, MWIS is shown to be solvable in polynomial time for some hereditary
graph classes [3,4,6,15,17,18,26], and these results improve several results pub-
lished in various papers.

A hole is a chordless cycle Ck, where k ≥ 5. An odd hole is a hole
C2k+1, where k ≥ 2. The k-apple is the graph obtained from a chordless
cycle Ck of length k ≥ 4 by adding a vertex that has exactly one neighbor
on the cycle. The diamond is the graph K4 − e with vertex-set {v1, v2, v3, v4}

226 T. Karthick

and edge-set {v1v2, v2v3, v3v4, v4v1, v1v3}. The co-chair is the graph with
vertex-set {v1, v2, v3, v4, v5} and edge-set {v1v2, v2v3, v3v4, v4v1, v1v3, v4v5}; it
is the complement graph of the chair/fork graph (see Fig. 1).

A set M ⊆ V (G) is a module if every vertex in V (G)\M is adjacent to either
all vertices of M or to none of them. A graph G is prime if its only modules
have size 0, 1 or n.

Lozin and Milanič [24], using modular decomposition techniques [30], showed
the following:

Theorem 1 ([24]). Let G be a hereditary class of graphs. If there is a constant
p ≥ 1 such that the MWIS problem can be solved in time O(|V (G)|p) for every
prime graph G in G, then the MWIS problem can be solved in time O(|V (G)|p +
|E(G)|) for every graph G in G. �

Let C be a class of graphs. A graph G is nearly C if for every vertex v in
V (G) the graph induced by V (G) \ N [v] is in C. Let αw(G) denote the weighted
independence number of G. Obviously, we have:

αw(G) = max{w(v) + αw(G \ N [v]) | v ∈ V (G)}. (1)

Thus, whenever MWIS is solvable in time T on a class C, then it is solvable on
nearly C graphs in time n · T .

A clique in a graph G is a subset of pairwise adjacent vertices in G. A clique
separator (or clique cutset) in a connected graph G is a subset Q of vertices in
G which induces a complete graph, such that the graph induced by V (G) \ Q is
disconnected. A graph is an atom if it does not contain a clique separator.

In [17], Karthick and Maffray showed the following.

Theorem 2 ([17]). Let C be a class of graphs such that MWIS can be solved in
time O(f(n)) for every graph in C with n vertices. Then in any hereditary class
of graphs whose all atoms are nearly C the MWIS problem can be solved in time
O(n2 · f(n)). �

In this paper, using the above framework, we first show that the MWIS prob-
lem can be efficiently solved in the class of (S1,2,2, S1,1,3, diamond)-free graphs
(Sect. 2). Using this, we show that the MWIS problem can be efficiently solved
in the class of (S1,2,2, S1,1,3, co-chair)-free graphs by analyzing the structure of
the subclasses of this class of graphs (Sect. 3). These results extend some known
results for the MWIS problem in the literature such as: P4-free graphs [10], (P5,
diamond)-free graphs [2], and (P5, co-chair)-free graphs [7,15].

2 (S1,2,2, S1,1,3, diamond)-free graphs

Our analysis of the (atomic) structure of subclasses of (S1,2,2, S1,1,3, diamond)-
free graphs enables us to prove that the MWIS problem can be efficiently solved
in the class of (S1,2,2, S1,1,3, diamond)-free graphs.

Independent Sets in Classes Related to Chair-Free Graphs 227

v1

v2

v3

v4

v5 v6

H∗

v1

v2

v3v4

v5
v6

C∗
5

Fig. 2. Graphs H∗ and C∗
5 .

2.1 (S1,2,2, S1,1,3, diamond, 5-apple, C∗
5)-free graphs

Theorem 3. Let G = (V,E) be a prime (S1,2,2, S1,1,3, diamond, 5-apple, C∗
5)-

free graph. If G contains an odd hole C2k+1 with k ≥ 2, then G is claw-free (see
Fig. 2 for the graph C∗

5).

Theorem 4. The MWIS problem can be solved in polynomial time for (S1,2,2,
S1,1,3, diamond, 5-apple, C∗

5)-free graphs.

Proof. Let G be an (S1,2,2, S1,1,3, diamond, 5-apple, C∗
5)-free graph. If G is

odd-hole-free, then G is (odd-hole, diamond)-free. Since MWIS in (odd-hole,
diamond)-free graphs can be solved in polynomial time [8], MWIS can be solved
in polynomial time for G. Suppose that G is prime and contains an odd-hole.
Then by Theorem 3, G is claw-free. Since MWIS in claw-free graphs can be
solved in polynomial time [31], MWIS can be solved in polynomial time for G.
Then the time complexity is the same when G is not prime, by Theorem 1. �

2.2 (S1,2,2, S1,1,3, diamond, 5-apple)-free graphs

Theorem 5. Let G = (V,E) be an (S1,2,2, S1,1,3, diamond, 5-apple)-free graph.
Then G is nearly C∗

5 -free.

Proof. Let us assume to the contrary that there is a vertex v ∈ V (G) such
that G \ N [v] contains an induced C∗

5 , say H, with vertices named as in Fig. 2.
Let C denotes the 5-cycle induced by the vertices {v1, v2, v3, v4, v5} in H. For
i ∈ {1, 2, . . . , 6}, we define the following:

Q = the component of G \ (V (H) ∪ N(V (H))) that contains v,

Ai = {x ∈ V (G) \ V (H) | |NH(x)| = i},

A+
i = {x ∈ Ai | N(x) ∩ Q �= ∅},

A−
i = {x ∈ Ai | N(x) ∩ Q = ∅},

A+ = A+
1 ∪ · · · ∪ A+

6 and A− = A−
1 ∪ · · · ∪ A−

6 .

So, N(H) = A+ ∪ A−. Note that, by the definition of Q and A+, we have
A+ = N(Q). Hence A+ is a separator between H and Q in G.

228 T. Karthick

To prove the theorem, it is enough to show that A+ = ∅. Assume to the
contrary that A+ �= ∅, and let x ∈ A+. Then there exists a vertex z ∈ Q such
that xz ∈ E. Then since G is (5-apple, diamond)-free, |NH(x)∩V (C)| ∈ {0, 2, 3}.
Now:

(1) If |NH(x)∩V (C)| = 0, then since x ∈ N(H), xv6 ∈ E. But then {z, x, v6, v1,
v2, v5} induces an S1,1,3 in G, which is a contradiction.

(2) If |NH(x) ∩ V (C)| = 2, and if NH(x) ∩ V (C) = {vi, vi+2}, for some i ∈
{1, 2, 3, 4, 5}, i mod 5, then {z, x, vi+2, vi+3, vi+4, vi} induces a 5-apple in
G, which is a contradiction.

(3) If |NH(x) ∩ V (C)| = 2, and if NH(x) ∩ V (C) = {vi, vi+1}, for some i ∈
{1, 2, 3, 4, 5}, i mod 5, then since {z, x} ∪ V (H) does not induce a diamond
or an S1,1,3 in G, we have i �= 3. Again, since G is diamond-free, xv6 /∈ E.
But, then {z, x} ∪ V (H) induces either an S1,1,3 or an S1,2,2 in G, which is
a contradiction.

(4) If |NH(x) ∩ V (C)| = 3, then since G is diamond-free, NH(x) ∩ V (C) =
{vi, vi+1, vi+3}, for some i ∈ {1, 2, 3, 4, 5}, i mod 5. Then since G is
diamond-free, i �= 3 and xv6 /∈ E. But, then {z, x} ∪ V (H) induces either an
S1,1,3 or an S1,2,2 in G, which is a contradiction.

These contradictions show that A+ = ∅, and hence G is nearly C∗
5 -free. �

Theorem 6. The MWIS problem can be solved in polynomial time for (S1,2,2,
S1,1,3, diamond, 5-apple)-free graphs.

Proof. Let G be an (S1,2,2, S1,1,3, diamond, 5-apple)-free graph. Then by The-
orem 5, G is nearly C∗

5 -free. Since MWIS in (S1,2,2, S1,1,3, diamond, 5-apple,
C∗

5)-free graphs can be solved in polynomial time (by Theorem 4), MWIS in
(S1,2,2, S1,1,3, diamond, 5-apple)-free graphs can be solved in polynomial time
(by the consequence given below Eq. (1)). �

2.3 (S1,2,2, S1,1,3, diamond)-free graphs

Theorem 7. Let G = (V,E) be an (S1,2,2, S1,1,3, diamond)-free graph. Then
every atom of G is nearly 5-apple-free.

Theorem 8. The MWIS problem can be solved in polynomial time for (S1,2,2,
S1,1,3, diamond)-free graphs.

Proof. Let G be an (S1,2,2, S1,1,3, diamond)-free graph. Then by Theorem 7,
every atom of G is nearly 5-apple-free. Since MWIS in (S1,2,2, S1,1,3, diamond,
5-apple)-free graphs can be solved in polynomial time (by Theorem 6), MWIS
in (S1,2,2, S1,1,3, diamond)-free graphs can be solved in polynomial time, by
Theorem 2. �

3 (S1,2,2, S1,1,3, co-chair)-free graphs

Our analysis of the (atomic) structure of subclasses of (S1,2,2, S1,1,3, co-chair)-
free graphs enables us to prove that the MWIS problem can be efficiently solved
in the class of (S1,2,2, S1,1,3, co-chair)-free graphs.

Independent Sets in Classes Related to Chair-Free Graphs 229

3.1 (S1,2,2, S1,1,3, co-chair, gem)-free graphs

We use the following lemma given in [15].

Lemma 1 ([15]). If G = (V,E) is a prime (co-chair, gem)-free graph, then G
is diamond-free. �

Theorem 9. The MWIS problem can be solved in polynomial time for (S1,2,2,
S1,1,3, co-chair, gem)-free graphs.

Proof. Let G be an (S1,2,2, S1,1,3, co-chair, gem)-free graph. First suppose
that G is prime. Then by Lemma 1, G is diamond-free. Since the MWIS
problem in (S1,2,2, S1,1,3, diamond)-free graphs can be solved in polynomial
time (by Theorem 8), MWIS can be solved in polynomial time for G, by
Theorem 1. Then the time complexity is the same when G is not prime, by
Theorem 1. �

3.2 (S1,2,2, S1,1,3, co-chair, H∗)-free graphs

Theorem 10. Let G = (V,E) be a prime (S1,2,2, S1,1,3, co-chair, H∗)-free
graph. Then every atom of G is nearly gem-free (see Fig. 2 for the graph H∗).

Theorem 11. The MWIS problem can be solved in polynomial time for (S1,2,2,
S1,1,3, co-chair, H∗)-free graphs.

Proof. Let G be an (S1,2,2, S1,1,3, co-chair, H∗)-free graph. First suppose that G
is prime. By Theorem 10, every atom of G is nearly gem-free. Since the MWIS
in (S1,2,2, S1,1,3, co-chair, gem)-free graphs can be solved in polynomial time (by
Theorem 9), MWIS in (S1,2,2, S1,1,3, co-chair, H∗)-free graphs can be solved in
polynomial time, by Theorem 2. Then the time complexity is the same when G
is not prime, by Theorem 1. �

3.3 (S1,2,2, S1,1,3, co-chair)-free graphs

Theorem 12. Let G = (V,E) be a prime (S1,2,2, S1,1,3, co-chair)-free graph.
Then every atom of G is nearly H∗-free.

Theorem 13. The MWIS problem can be solved in polynomial time for (S1,2,2,
S1,1,3, co-chair)-free graphs.

Proof. Let G be an (S1,2,2, S1,1,3, co-chair)-free graph. First suppose that G
is prime. By Theorem 12, every atom of G is nearly H∗-free. Since the MWIS
problem in (S1,2,2, S1,1,3, H∗, co-chair)-free graphs can be solved in polyno-
mial time (by Theorem 11), MWIS can be solved in polynomial time for G,
by Theorem 2. Then the time complexity is the same when G is not prime, by
Theorem 1. �

230 T. Karthick

4 Conclusion

The complexity of the M(W)IS problem for S1,2,2-free graphs, and for S1,1,3-
free graphs are open. However, M(W)IS is known to be solvable in polynomial
time for subclasses of Si,j,k-free graphs [13,17–20,23,25,27]. In this paper, using
graph decomposition techniques, we showed that the MWIS problem can solved
in polynomial time for (S1,2,2, S1,1,3, co-chair)-free graphs. This extends some
known results in the literature. Note that the class of S1,2,2-free graphs, and
the class of S1,1,3-free graphs include: P4-free graphs, claw-free graphs, P5-free
graphs, and fork-free graphs (or chair-free graphs) for which the MWIS is known
to be solved efficiently by various techniques (see [10,21,24,31,36]).

Acknowledgements. The author sincerely thanks Prof. Vadim. V. Lözin and Prof.
Frédéric Maffray for the fruitful discussions, for their valuable suggestions, and for the
feedback provided by them.

References

1. Alekseev, V.E.: The effect of local constraints on the complexity of determination of
the graph independence number. In: Combinatorial-algebraic Methods in Applied
Mathematics, pp. 3–13 (1982) (in Russian)

2. Arbib, C., Mosca, R.: On (P5, diamond)-free graphs. Discrete Math. 250, 1–22
(2002)

3. Basavaraju, M., Chandran, L.S., Karthick, T.: Maximum weight independent sets
in hole- and dart-free graphs. Discrete Appl. Math. 160, 2364–2369 (2012)

4. Brandstädt, A., Giakoumakis, V.: Addendum to: maximum weight independent
sets in hole- and co-chair-free graphs. Inf. Process. Lett. 115, 345–350 (2015)

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. In: SIAM Mono-
graphs on Discrete Mathematics, vol. 3. SIAM, Philadelphia (1999)

6. Brandstädt, A., Lozin, V.V., Mosca, R.: Independent sets of maximum weight in
apple-free graphs. SIAM J. Discrete Math. 24(1), 239–254 (2010)

7. Brandstädt, A., Mosca, R.: On the structure and stability number of P5- and co-
chair-free graphs. Discrete Appl. Math. 132, 47–65 (2004)

8. Brandstädt, A., Mosca, R.: Maximum weight independent sets in odd-hole-free
graphs without dart or without bull. Graphs Comb. 31, 1249–1262 (2015)

9. Corneil, D.G.: The complexity of generalized clique packing. Discrete Appl. Math.
12, 233–240 (1985)

10. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition for cographs. SIAM J.
Comput. 14, 926–934 (1985)

11. Farber, M.: On diameters and radii of bridged graphs. Discrete Math. 73, 249–260
(1989)

12. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs.
In: Proceedings of the Fifth British Combinatorial Conference (University of
Aberdeen, Aberdeen 1975), Congressus Numerantium, No. XV, pp. 211–226. Util-
itas Mathematica, Winnipeg, Manitoba (1976)

13. Gerber, M.U., Hertz, A., Lozin, V.V.: Stable sets in two subclasses of banner-free
graphs. Discrete Appl. Math. 132, 121–136 (2004)

Independent Sets in Classes Related to Chair-Free Graphs 231

14. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

15. Karthick, T.: On atomic structure of P5-free subclasses and maximum weight inde-
pendent set problem. Theor. Comput. Sci. 516, 78–85 (2014)

16. Karthick, T.: Weighted independent sets in a subclass of P6-free graphs, Discrete
Mathematics (2015). doi:10.1016/j.disc.2015.12.008

17. Karthick, T., Maffray, F.: Maximum weight independent sets in classes related to
claw-free graphs. Discrete Appl. Math. (2015). doi:10.1016/j.dam.2015.02.012

18. Karthick, T., Maffray, F.: Weighted independent sets in classes of P6-free graphs.
Discrete Appl. Math. (2015). doi:10.1016/j.dam.2015.10.015

19. Le, N.C., Brause, C., Schiermeyer, I.: New sufficient conditions for α- redundant
vertices. Discrete Mathematics 338, 1674–1680 (2015)

20. L.e, N.C., Brause, C., Schiermeyer, I: The maximum independent set problem
in subclasses of Si,j,k-free graphs. In: Proceedings of EuroComb 2015, Electronic
Notes in Discrete Mathematics (2015) (to appear)

21. Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in P5-free graphs in
polynomial time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 570–581 (2014)

22. Lokshtanov, D. Pilipczuky, M., van Leeuwen, E. J.: Independence and efficient
domination on P6-free graphs (2015). arXiv:1507.02163v1

23. Lozin, V.V., Milanič, M.: Maximum independent sets in graphs of low degree.
In: Proceedings of Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 874–880 (2007)

24. Lozin, V.V., Milanič, M.: A polynomial algorithm to find an independent set of
maximum weight in a fork-free graph. J. Discrete Algorithms 6, 595–604 (2008)

25. Lozin, V.V., Milanič, M.: On finding augmenting graphs. Discrete Appl. Math.
156, 2517–2529 (2008)

26. Lozin, V.V., Milanič, M., Purcell, C.: Graphs without large apples and the maxi-
mum weight independent set problem. Graphs Comb. 30, 395–410 (2014)

27. Lozin, V., Monnot, J., Ries, B.: On the maximum independent set problem in
subclasses of subcubic graphs. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013.
LNCS, vol. 8288, pp. 314–326. Springer, Heidelberg (2013)

28. Lozin, V.V., Mosca, R.: Independent sets in extensions of 2K2-free graphs. Discrete
Appl. Math. 146, 74–80 (2005)

29. Lozin, V.V., Rautenbach, D.: Some results on graphs without long induced paths.
Inf. Process. Lett. 88, 167–171 (2003)

30. McConnell, R.M., Sprinrad, J.: Modular decompostion and transitive orientation.
Discrete Math. 201, 189–241 (1999)

31. Minty, G.M.: On maximal independent sets of vertices in claw-free graphs. J.
Comb.Theor. Ser. B 28, 284–304 (1980)

32. Mosca, R.: Stable sets in certain P6-free graphs. Discrete Appl. Math. 92, 177–191
(1999)

33. Mosca, R.: Independent sets in (P6, diamond)-free graphs. Discrete Math. Theor.
Comput. Sci. 11, 125–140 (2009)

34. Mosca, R.: Maximum weight independent sets in (P6, co-banner)-free graphs. Inf.
Process. Lett. 113, 89–93 (2013)

35. Poljak, S.: A note on stable sets and colorings of graphs. Commun. Math. Univ.
Carol. 15, 307–309 (1974)

36. Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un
graphe sans etoile. Discrete Math. 29, 53–76 (1980)

http://dx.doi.org/10.1016/j.disc.2015.12.008
http://dx.doi.org/10.1016/j.dam.2015.02.012
http://dx.doi.org/10.1016/j.dam.2015.10.015
http://arxiv.org/abs/1507.02163v1

232 T. Karthick

37. Tarjan, R.: Decomposition by clique separators. Discrete Math. 55, 221–232 (1985)
38. Whitesides, S.H.: A method for solving certain graph recognition and optimization

problems, with applications to perfect graphs. In: Berge, C., Chvatal, V. (eds.)
Topics on perfect graphs, Annals of Discrete Mathematics, vol. 21, pp. 281–297
(1984)

Cyclic Codes over Galois Rings

Jasbir Kaur, Sucheta Dutt, and Ranjeet Sehmi(B)

Department of Applied Sciences, PEC University of Technology, Chandigarh, India
kjasbir03@gmail.com, {suchetapec,rksehmi2003}@yahoo.co.in

Abstract. Let R be a Galois ring of characteristic pa, where p is a
prime and a is a natural number. In this paper cyclic codes of arbitrary
length n over R have been studied. The generators for such codes in
terms of minimal degree polynomials of certain subsets of codes have
been obtained. We prove that a cyclic code of arbitrary length n over R is
generated by at most min{a, t+1} elements, where t = max{deg(g(x))},
g(x) a generator. In particular, it follows that a cyclic code of arbitrary
length n over finite fields is generated by a single element. Moreover, the
explicit set of generators so obtained turns out to be a minimal strong
Gröbner basis.

Keywords: Galois ring · Cyclic codes · Gröbner basis · Minimal degree
polynomial

1 Introduction

Cyclic codes over finite rings are being studied extensively these days and the
literature is abundant with results on cyclic codes over finite rings where the
characteristic of the ring under consideration and the length of the code are
coprime. For reference see ([4,5,9,14,15]). The methodology used in most of
these papers is to focus on irreducible factors of xn − 1 and to obtain in turn,
the ideals of the ring R[x]/〈xn − 1〉 by Hensel’s lifting. However, this technique
cannot be applied to codes of general length n as the ring ceases to be a unique
factorization domain in case the length of the code and the characteristic s of
the ring are not coprime. A few expositions are available for the study of cyclic
codes over finite rings in case (n, s) �= 1. For reference see ([6,7,10,11,16,17,19]).
Dougherty et al. in [7] have given a structure theorem for codes over Galois rings
and employed Chinese remainder theorem and lifting of irreducible polynomials.
Sălăgean in [16] has given an existential proof for the existence of a minimal
strong Gröbner basis for cyclic codes of arbitrary length over a finite chain ring.
Norton et al. in [13,14] formalized the notion of generating set in standard form
for cyclic codes over principal ideal ring and obtained necessary and sufficient
conditions for the generating set to be a minimal strong Gröbner basis as defined
in [2]. The result for repeated root cyclic codes over chain ring was extended

J. Kaur — Work submitted in partial fulfillment of requirements for the degree of
Doctor of Philosophy.

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 233–239, 2016.
DOI: 10.1007/978-3-319-29221-2 20

234 J. Kaur et al.

by Sălăgean in [16]. Abualrub et al. in [1] have given a simpler approach by
introducing minimal degree polynomials to find the generators of cyclic codes of
length 2k over Z4.

In this paper we take further the approach of Abualrub and find the genera-
tors of cyclic codes of general length over Galois rings in an explicit constructive
manner. Also, the set of generators obtained turns out to be a minimal strong
Gröbner basis. The results of Garg and Dutt [8] follow from our results.

2 Preliminaries

A cyclic code over a ring R is a linear code which is closed under cyclic shifts.
It is well known that the cyclic codes of length n over a ring R are in corre-
spondence with the ideals of R[x]/

〈
xn − 1〉 and thus cyclic codes over R, writ-

ten as vectors, can be recognized as polynomials of degree less than n, that is,
c = (c0, c1, . . . , cn−1) is identified with the polynomial c0 + c1x+ . . .+ cn−1x

n−1.
A finite ring with identity is called a Galois ring if its zero divisors including

zero form a principal ideal
〈
p
〉

for some prime p [18]. For any m ≥ 1, the Galois
extension ring of Zpa can be constructed as GR(pa,m) = Zpa [x]/

〈
f(x)

〉
, where p

is a prime, a is a natural number and f(x) ∈ Zpa [x] is a monic basic irreducible
polynomial of degree m. The ring GR(pa,m) is called a Galois ring and has
pam elements. For a = 1, we obtain the finite field GF (pm) with pm elements
([12,18]).

Let I be an ideal in R[x] and A(x) be an element of I. Let lm(A(x)) denote
the leading monomial of A(x). A set G = {Bi(x), 1 ≤ i ≤ ν} of non zero
elements of I is called a Gröbner basis of I if for each A(x) ∈ I there exists
an i ∈ {1, 2, . . . , ν} such that lm(A(x)) is divisible by lm(Bi(x)). An arbitrary
subset G of R[x] is called a Gröbner basis if it is a Gröbner basis of 〈G〉 [3].

3 Generators of Cyclic Codes over a Galois Ring R
as Ideals of R[x]/

〈
Xn − 1

〉
Let R = GR(pa,m) be a Galois ring and Rn = R[x]/

〈
xn − 1

〉
. The aim of this

paper is to find the generators of cyclic codes over Galois rings as ideals of Rn.
These generators are found in terms of minimal degree polynomials of certain
subsets of the given code.

Let C be an ideal in Rn and ge(x) be a minimal degree polynomial in C
with minimum power of p in the leading coefficient. Let the leading coefficient
of ge(x) be pieue where ue is a unit and 0 ≤ ie ≤ a − 1. If ie = 0 then ge(x) is
a monic polynomial otherwise for 0 ≤ j ≤ e − 1, successively define gj(x) to be
minimal degree polynomial with minimum power of p in the leading coefficient
among all polynomials in C having the power of p in the leading coefficient less
than ij+1, where ij is the power of p in the leading coefficient of gj(x) and i0
is the minimum power of p in the leading coefficients among all polynomials in
C. Then 0 ≤ i0 < i1 < . . . < ij < ij+1 < . . . < ie. For i0 = 0, g0(x) is a monic
polynomial. Let tj be the degree of the polynomial gj(x). Clearly tj > tj+1.

Cyclic Codes over Galois Rings 235

Remark 1. It is easy to see that for any polynomial c(x) in C with power of
p in the leading coefficient l, there exists a j with 0 ≤ j ≤ e such that tj ≤
deg(c(x)) < tj−1. Then l ≥ ij and the polynomial

r(x) = c(x) − pl−ijgj(x)uxdeg(c(x))−tj

is in C for some unit u. Moreover, r(x) = 0 or deg(r(x)) < deg(c(x)). The
polynomial r(x) can be expressed as r(x) = c(x)−q(x)gj(x) for some q(x) ∈ Rn.

The following theorem gives the generators of a cyclic code over the ring R.

Theorem 1. Let C be an ideal in Rn and gj(x) be polynomials as defined above.
Then C =

〈
g0(x), g1(x), . . . , ge(x)

〉
.

Proof. Let c(x) be a polynomial in C. By Remark 1, there exists a j and a
polynomial q1(x) ∈ Rn such that the polynomial

r1(x) = c(x) − q1(x)gj(x)

is in C. Moreover, r1(x) = 0 or deg
(
r1(x)

)
< deg

(
c(x)

)
. If r1(x) = 0 then

c(x) ∈ 〈
gj(x)

〉 ⊂ 〈
g0(x), g1(x), . . . , ge(x)

〉
. If deg

(
r1(x)

)
< deg

(
c(x)

)
< tj−1

then by Remark 1 there exists a k and a polynomial q2(x) ∈ Rn such that the
polynomial

r2(x) = r1(x) − q2(x)gk(x)

is in C. Moreover, r2(x) = 0 or deg
(
r2(x)

)
< deg

(
r1(x)

)
< deg

(
c(x)

)
.

Clearly k ≥ j. If r2(x) = 0 then c(x) belongs to
〈
gj(x), gk(x)

〉 ⊂〈
g0(x), g1(x), . . . , ge(x)

〉
. If deg

(
r2(x)

)
< deg

(
r1(x)

)
, it is evident that after

repeating the argument a finite number of times we shall have the remainder
equal to zero as the degrees of the remainders form a decreasing sequence of nat-
ural numbers which is bounded below by te. Therefore back substituting for the
remainders it is clear that any polynomial c(x) in C belongs to

〈
gj(x), . . . , ge(x)

〉
where j is the smallest value such that deg

(
c(x)

) ≥ tj for 0 ≤ j ≤ e. Conse-
quently we get C =

〈
g0(x), g1(x), . . . , ge(x)

〉
. 	

The following corollaries are an immediate consequence of Theorem 1.

Corollary 1. A cyclic code C of arbitrary length n over a Galois ring of char-
acteristic pa is generated by at most k elements, with k = min{a, t + 1}, where
t = max{deg(g(x))}, g(x) a generator.

Corollary 2. A cyclic code C of arbitrary length n over an integer residue ring
of characteristic pa is generated by at most k elements, with k = min{a, t + 1},
where t = max{deg(g(x))}, g(x) a generator.

Proof. For m = 1, the Galois ring GR(pa,m) is an integer residue ring of char-
acteristic pa. 	

As finite fields are special case of Galois rings with a = 1. We have the following
corollary.

236 J. Kaur et al.

Corollary 3. A cyclic code C of arbitrary length n over finite fields is generated
by a single element.

Theorem 2. Let ge(x) be the polynomial as defined above. Then ge(x) =
piehe(x), where he(x) is a monic polynomial in Re[x]/

〈
xn − 1

〉
, Re is a Galois

ring of characteristic pa−ie .

Proof. Let ge(x) = pieuex
te + bte−1x

te−1 + . . . + b0. Suppose bj �≡ 0 (mod pie)
for some j, where 0 ≤ j ≤ te − 1. Now pa−iege(x) ∈ C and is a polynomial
of degree less than te, a contradiction. Hence bj ≡ 0 (mod pie) for every j.
Thus ge(x) = piehe(x) where he(x) ∈ Re[x]/

〈
xn − 1

〉
, Re is a Galois ring of

characteristic pa−ie . Clearly he(x) is a monic polynomial. 	

Theorem 3. Let the polynomials gj(x) be the polynomials as defined above.
Then for 0 ≤ j ≤ e − 1

1. pij+1−ijgj(x) ∈ 〈
gj+1(x), gj+2(x), . . . , ge(x)

〉
.

2. gj(x) = pijhj(x) where hj(x) is a monic polynomial in Rj [x]/
〈
xn − 1

〉
, Rj is

a Galois Ring of characteristic pa−ij .
3. hj+1(x)|hj(x) (mod pij+2−ij+1).

Proof. Let c(x) = pij+1−ijgj(x) − gj+1(x)xtj−tj+1 . Then c(x) is in C and
deg(c(x)) < tj . Now proceeding as in Theorem 1, it is easy to see that

c(x) = pij+1−ijgj(x) − gj+1(x)xtj−tj+1 ∈ 〈gk(x), gk+1(x), . . . , ge(x)〉

for some k > j. This further implies that

pij+1−ijgj(x) ∈ 〈gj+1(x), gj+2(x), . . . , ge(x)〉 (1)

This completes the proof for part 1 of the theorem.
Next, we need to show that

gj(x) = pijhj(x) (2)

for 0 ≤ j ≤ e − 1. From Theorem 2, ge(x) = piehe(x), where he(x) is a monic
polynomial in Re[x]/

〈
xn−1

〉
, Re is a Galois ring of characteristic pa−ie . Suppose

ge−1(x), ge−2(x), . . . , gj(x) satisfy (2). Then we will show that gj−1(x) satisfies
(2). From (1) we have

pij−ij−1gj−1(x) ∈ 〈gj(x), gj+1(x), . . . , ge(x)〉.

This gives

pij−ij−1gj−1(x) = gj(x)Fj(x) + . . . + ge(x)Fe(x)

= pijhj(x)Fj(x) + . . . + piehe(x)Fe(x)

= pijK(x).

Cyclic Codes over Galois Rings 237

Suppose there exists a coefficient gl,j−1 of the polynomial gj−1(x) such that
gl,j−1 �≡ 0 (mod pij−1). Multiplying both sides by pa−ij we get, pa−ij−1gj−1(x) =
0, a contradiction. Thus gj−1(x) = pij−1hj−1(x), where hj−1(x) is a monic poly-
nomial. Therefore by principle of mathematical induction (2) holds for all j.

Next, for 1 ≤ k ≤ a − 1, consider the maps

ψk : GR(pa,m) −→ GR(pk,m)

defined by
ψk(α) = α (mod pk).

ψk is a ring homomorphism for all k which can be extended to

φk : GR(pa,m)[x]/
〈
xn − 1

〉 −→ GR(pk,m)[x]/
〈
xn − 1

〉
by defining

φk(c0 + c1x + . . . + cn−1x
n−1) = ψk(c0) + ψk(c1)x + . . . + ψk(cn−1)xn−1.

From (1) and (2) we have

pij+1hj(x) ∈ 〈
pij+1hj+1(x), pij+2hj+2(x), . . . , piehe(x)

〉
,

which implies

pij+1hj(x) = pij+1hj+1(x)Fj+1(x) + pij+2hj+2(x)Fj+2(x) + . . . + piehe(x)Fe(x),

where Fk(x) ∈ Rn for j + 1 ≤ k ≤ e. Therefore

pij+1
(
hj(x) − hj+1(x)Fj+1(x)

)
= pij+2hj+2(x)Fj+2(x) + . . . + piehe(x)Fe(x)

= pij+2F (x),

where F (x) = hj+2(x)Fj+2(x) + . . . + pie−ij+2he(x)Fe(x). Now

pij+1
(
hj(x) − hj+1(x)Fj+1(x) − pij+2−ij+1F (x)

)
= 0.

It follows that the power of p in each coefficient of the polynomial

hj(x) − hj+1(x)Fj+1(x) − pij+2−ij+1F (x)

is greater than or equal to a−ij+1. As
〈
pa−ij+1

〉 ⊂ 〈
pij+2−ij+1

〉
, the coefficients of

the polynomial hj(x) − hj+1(x)Fj+1(x) − pij+2−ij+1F (x) vanish mod pij+2−ij+1 .
Thus

φij+2−ij+1

(
hj(x) − hj+1(x)Fj+1(x) − pij+2−ij+1F (x)

)
= 0.

As φij+2−ij+1 is a homomorphism, we have

φij+2−ij+1

(
hj(x)

)
= φij+2−ij+1

(
hj+1(x)Fj+1(x)

)
+ φij+2−ij+1

(
pij+2−ij+1F (x)

)
or

φij+2−ij+1

(
hj(x)

)
= φij+2−ij+1

(
hj+1(x)Fj+1(x)

)
which gives hj+1(x)|hj(x) (mod pij+2−ij+1). 	

238 J. Kaur et al.

Theorem 4. The set {g0(x), g1(x), . . . , ge(x)} is a minimal strong Gröbner
basis of C.

Proof. The result follows as an immediate consequence of Theorem 3 above and
Theorem 3.2 of [14]. 	

Some examples of minimal strong Gröbner basis are given below.

Example 1. Let G = {g0(x), g1(x), g2(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 2
with h0(x) = x3 + x2 + x + 1, h1(x) = x2 + 1 and h2(x) = x + 1. Let C be the
cyclic code of length 8 over Z8 generated by G. It is easy to see that x+1|x2 +1
over Z2 and x2 + 1|x3 + x2 + x + 1 over Z4. Also, 4(x2 + 1) ∈ 〈4(x + 1)〉 and
2(x3 + x2 + x + 1) ∈ 〈2(x2 + 1), 4(x + 1)〉. Therefore by Theorem 3 above, G is
a minimal strong Gröbner basis.

Example 2. Let G1 = {g0(x), g1(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 1 with
h0(x) = x5 + x4 + x3 + x2 + x + 1 and h1(x) = x4 + x2 + 1. Let C1 be the cyclic
code of length 6 over Z4 generated by G1. Then G1 is a minimal strong Gröbner
basis.

Example 3. Let G2 = {g0(x), g1(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 1 with
h0(x) = x3 − 1, h1(x) = x + 1. Then G2 is a minimal strong Gröbner basis for
the cyclic code C2 of length 6 over Z4.

Example 4. Let G3 = {g0(x), g1(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 1 with
h0(x) = x3 + x2 + x + 1 and h1(x) = x2 + 1. Let C3 be the cyclic code of length
4 over Z4 generated by G3. Then G3 is a minimal strong Gröbner basis.

Example 5. Let G4 = {g0(x), g1(x)} where gj(x) = 2jhj(x) for 0 ≤ j ≤ 1 with
h0(x) = x2 + 1 and h1(x) = x + 1. Then G4 is a minimal strong Gröbner basis
for the cyclic code C4 of length 4 over Z4.

4 Conclusion

A cyclic code of arbitrary length n over a Galois ring of characteristic pa is
generated by at most min{a, t + 1} elements, where t = max{deg(g(x))}, g(x)
a generator. Moreover, the set of generators so obtained is a minimal strong
Gröbner basis of the code.

Acknowledgments. The author (Jasbir Kaur) gratefully acknowledges the World
Bank funded TEQIP-II for financial support.

Cyclic Codes over Galois Rings 239

References

1. Abualrub, T., Oehmke, R.: Cyclic codes of length 2e over Z4.. Discrete Appl. Math.
128(1), 3–9 (2003)

2. Adams, W., Loustaunau, P.: An Introduction to Gröbner Basis. American Math-
ematical Society, Providence (1994)

3. Byrne, E., Fitzpatrick, P.: Gröbner bases over Galois rings with an application to
decoding alternant codes. J. Symbolic Comput. 31, 565–584 (2001)

4. Calderbank, A.R., Sloane, N.J.A.: Modular and p-adic cyclic codes. Des. Codes
Cryptogr. 6(1), 21–35 (1995)

5. Dinh, H.Q., Lopez-Permouth, S.R.: Cyclic and negacyclic codes over finitechain
rings. IEEE Trans. Inform. Theory 50(8), 1728–1744 (2004)

6. Dougherty, S.T., Ling, S.: Cyclic codes over Z4 of even length. Des. Codes Cryptogr.
39(2), 127–153 (2006)

7. Dougherty, S.T., Park, Y.H.: On modular cyclic codes. Finite Fields Appl. 13,
31–57 (2007)

8. Garg, A., Dutt, S.: Cyclic codes of length 2k over Z2m .. Int. J. Eng. Res. Dev. 1(9),
34–37 (2012)

9. Kanwar, P., Lopez-Permouth, S.R.: Cyclic codes over the integers modulo pm.
Finite Fields Appl. 3(4), 334–352 (1997)

10. Kiah, H.M., Leung, K.H., Ling, S.: Cyclic codes over GR(p2,m) of length pk. Finite
Fields Appl. 14(3), 834–846 (2008)

11. Lopez-Permouth, S.R., Ozadam, H., Ozbudak, F., Szabo, S.: Polycyclic codesover
Galois rings with applications to repeated-root constacyclic codes. Finite Fields
Appl. 19(1), 16–38 (2012)

12. McDonald, B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)
13. Norton, G.H., Sălăgean, A.: Strong Gröbner bases for polynomials over a principal

ideal ring. Bull. Aust. Math. Soc. 64(3), 505–528 (2001)
14. Norton, G.H., Sălăgean, A.: Cyclic codes and minimal strong Gröbner bases over

a principal ideal ring. Finite Fields Appl. 9(2), 237–249 (2003)
15. Rajan, B.S., Siddiqi, M.U.: Transform domain characterization of cyclic codes over

Zm.. Appl. Algebra Eng. Commun. Comput. 5(5), 261–275 (1994)
16. Sălăgean, A.: Repeated-root cyclic and negacyclic codes over a finite chain ring.

Discrete Appl. Math. 154(2), 413–419 (2006)
17. Sobhani, R., Esmaeili, M.: Cyclic and negacyclic codes over the Galois ring

GR(p2,m).. Discrete Appl. Math. 157(13), 2892–2903 (2009)
18. Wan, Z.X.: Finite fields and Galois rings. World Scientific Publishing Company,

Singapore (2011)
19. Woo, S.S.: Ideals of Zpn [x]/〈xl − 1〉.. Commun. Korean Math. Soc. 26(3), 427–443

(2011)

On the Center Sets of Some Graph Classes

Manoj Changat1, Kannan Balakrishnan2, Ram Kumar3(B),
G.N. Prasanth4, and A. Sreekumar5

1 Department of Futures Studies, University of Kerala,
Thiruvananthapuram, Kerala, India

2 Department of Computer Applications,
Cochin University of Science and Technology, Kochi 682022, Kerala, India

3 MG College, Thiruvananthapuram, Kerala, India
ram.k.mail@gmail.com

4 Government College, Chittur, palakkad, Kerala, India
5 Department of Computer Applications,

Cochin University of Science and Technology, Kochi 682022, Kerala, India

Abstract. For a set S of vertices and the vertex v in a connected graph
G, max

x∈S
d(x, v) is called the S-eccentricity of v in G. The set of vertices

with minimum S-eccentricity is called the S-center of G. Any set A
of vertices of G such that A is an S-center for some set S of vertices of
G is called a center set. We identify the center sets of certain classes of
graphs namely, Block graphs, Km,n, Kn − e, wheel graphs, odd cycles
and symmetric even graphs. A graph G is called center critical if there
does not a exist proper subset S of the vertex set whose S-center is the
center of the graph. Here we characterize this class of graphs.

Keywords: Center · Center sets · Symmetric even graphs · Block
graphs

1 Introduction

Centrality is one of the fundamental notions in graph theory which has estab-
lished close connection between graph theory and various other areas like Social
networks, Flow networks, Facility location problems etc. The main objective of
any facility location problem is to identify the location of a facility for a com-
munity or set of customers such that the distance between the location and the
community or customers is minimized. This leads to the standard notion of graph
centers, which is widely studied and still continues to be an important branch in
metric graph theory. The concept of centrality has significance in large networks
where the identification of strategically important points is one of the primary
concerns. This is accompolished using various centrality concepts such as degree,
closeness, betweenness etc. The center of a graph consists of those vertices with
minimum eccentricity, where eccentricity of a vertex is the maximum distance
of the vertex among the set of all vertices. The problem of finding the center of

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 240–253, 2016.
DOI: 10.1007/978-3-319-29221-2 21

On the Center Sets of Some Graph Classes 241

a graph has been studied by many authors since the nineteenth century begin-
ning with the classical result due to Jordan [7] that the center of a tree consists
of a single vertex or a pair of adjacent vertices. The graph center problem is
interesting from both a structural and an algorithmic point of view. Harary and
Norman in [6] proved that the center of a connected graph lies in a block of the
graph. Kopylov and Timofeev in [8] stated that given a graph G there exists a
graph H such that the subgraph induced by the center of H, is isomorphic to
G. The problem of finding the center of a graph was further considered by many
authors. [2–4,9,12] . Slater in [13] generalized the concept of center of a graph to
center of an arbitrary subset of the vertex set of the graph. He proved that the
S-center of a tree consists of a single vertex or a pair of adjacent vertices. Chang
in [14] studied the S-center of distance hereditary graphs and proved that the
S-center of a distance hereditary graph is either a connected graph of diameter
3 or a cograph.

Motivated by these studies, in this paper, we continue the work on S-centers
of different new classes of graphs. We also introduce a notion of center critical
graph as those graphs where none of the S-centers coincides with the center. We
organise the paper as follows. In Sect. 2 we fix the notation and terminologies.
In Sect. 3 the center critical graphs are characterised and in Sect. 4 centersets of
various classes of graphs are identified.

2 Preliminaries

We consider only finite simple undirected connected graphs. For the graph G,
V (G) denotes its vertex set and E(G) denotes its edge set. If the circumstances
are clear, we use V and E for V (G) and E(G) respectively. For two vertices u
and v of G, distance between u and v denoted by d(u, v), is the length of the
shortest u − v path. The degree of a vertex u, denoted by deg(u) is the number
of vertices adjacent to u. A vertex v of a graph G is called a cut-vertex if G− v
is no longer connected. Any maximal induced subgraph of G which does not
contain a cut-vertex is called a block of G. A graph G is a block graph if every
block of G is complete. The eccentricity e(u) of a vertex u is max

v∈V (G)
d(u, v). A

vertex v is an eccentric vertex of u if e(u) = d(u, v). A vertex v is an eccentric
vertex of G if there exists a vertex u such that e(u) = d(u, v). The diameter
of the graph G, diam(G), is max

u∈V (G)
e(u) and the radius, rad(G), is min

u∈V (G)
e(u).

A graph is a unique eccentric vertex (written UEV graph) if every vertex has a
unique eccentric vertex. The unique eccentric vertex of the vertex u is denoted
by ū. A graph G is self-centered if all the vertices of G have the same eccentricity.
A graph G is called even if for each vertex u of G there is a unique eccentric
vertex ū, such that d(u, ū) = diam(G). In other words they are self-centered,
UEV graphs. For more about such graphs see [10,11]. An even graph G is called
balanced if deg(u) = deg(ū) for each u ∈ V , harmonic if ūv̄ ∈ E whenever
uv ∈ E and symmetric if d(u, v) + d(u, v̄) = diam(G) for all u, v ∈ V . This
class of graphs were studied by Gobel and Veldman in [5] and Al-Addasi and

242 M. Changat et al.

Al-Ezeh in [1] For any subset S of V in the graph G = (V,E), the S-eccentricity,
eG,S(v) (in short eS(v)) of a vertex v in G is max

x∈S
(d(v, x)). The S-center of G is

CS(G) = {v ∈ V |eS(v) ≤ eS(x)∀x ∈ V }. For a graph G, an A ⊆ V is defined to
be a center set if there exists an S ⊆ V such that CS(G) = A.

Given integers i and j, we introduce the following notations

i ⊕n j = i + j if i + j ≤ n.

= i + j − n if i + j > n

i �n j = i − j if i − j ≥ 1
= i − j + n if i − j ≤ 0

3 Center Critical Graphs

We begin with the definition of center critical graphs. A graph G is said to be
center critical if for all proper subsets S of V , we have CS(G) 	= C(G).

(a) A center critical graph

v1

v2 v3

v4

v5

(b) C5, not center critical
C{v1,v2,v3,v4}(G) = {v1, v2, v3, v4, v5}

= C(G)

Now, we shall give characterisation of center critical graphs. For that we
require the following theorem from [11]

Theorem 1. A UEV graph G is self-centered if and only if each vertex of G is
an eccentric vertex.

Theorem 2. A graph G is center critical if and only if G is both self-centered
and a UEV graph.

Proof. Let G be a center critical graph having vertex set {v1, . . . , vn}. First we
shall prove that for every vi ∈ V there exists a vj ∈ V such that vi is the unique
eccentric vertex of vj . Assume the contrary. Let there exist a vertex, say vk, such
that vk is not an eccentric vertex of any vertex. Let S = V \{vk}. Then for every
vertex vi of G, eS(vi) = e(vi) since the eccentric vertices of vi are in S. Since
the eccentricities of none of the vertices change, CS(G) = C(G) contradicting

On the Center Sets of Some Graph Classes 243

our assumption that G is center critical. Hence every vertex of G is an eccentric
vertex.

Let vk be such that when ever vk is an eccentric vertex of v� then there
exists a vertex v′

k such that v′
k is also an eccentric vertex of v�. Again take

S = V \{vk}. Since every vertex v� that has vk as an eccentric vertex has another
eccentric vertex, we have eS(vk) = e(vk). As above we get that CS(G) = C(G),
a contradiction. That is, we have proved that each vertex vi, 1 ≤ i ≤ n is a
unique eccentric vertex of a vertex, say v′

i, where v′
i = vj for some j, 1 ≤ j ≤ n.

Since {v′
1, . . . , v

′
n} = V and each v′

i has a unique eccentric vertex each vertex
of G has a unique eccentric vertex. Now, it is also obvious that every vertex
is an eccentric vertex. Therefore by Theorem 1, G is self-centered. Conversely
assume that G is both self-centered and unique eccentric vertex graph, and let
rad(G) = r. Then, again by Theorem 1, every vertex of G is an eccentric vertex.
Therefore for every x ∈ V there exists a y ∈ V such that x = ȳ. Let S ⊆ V and
x ∈ V \ S. Then e(y) = r and since ȳ = x ∈ V \ S, eS(y) < r. Let z ∈ S. Then
eS(z̄) = r. Hence CS(G) 	= V which shows that G is center critical.

Remark 1. C5 is a graph that is self-centered but not center critical, as it is not
a UEV graph. In fact all odd cycles are self-centered but not UEV and hence
are not center critical.

4 Center Sets of Some Graph Classes

In this section we identify the center sets of block graphs, complete bipartite
graphs, wheels, odd cycles and symmetric even graphs. Prior to that we recall
the following lemma by Harary et al. in [6].

Lemma 1 (Lemma 1 of [6]). The center of a connected graph G is contained
in a block of G.

We generalize this lemma to any S-center of a graph and the proof is almost
similar to the proof given there.

Theorem 3. Any S-center of a connected graph G is contained in a block of G.

Proof. For an S ⊆ V , assume that CS(G) lies in more than one block of G. Then
G contains a vertex v such that G − v contains at least two components, say,
G1 and G2, each of which contains a vertex belonging to CS(G). Let u be the
vertex of S such that d(u, v) = eS(v) and P be the shortest u− v path. Then P
does not intersect at least one of G1 and G2, say G1. Let w be the vertex of G1

such that w ∈ CS(G). Then v belong to the shortest w − u path and hence

eS(w) ≥ d(w, u) = d(w, v) + d(u, v) ≥ 1 + eS(v)

contradicting the fact that w ∈ CS(G). Thus for any S ⊆ V , CS(G) lies in a
single block of G.

244 M. Changat et al.

4.1 Center Sets of Block Graphs

Proposition 1. Let G be a block graph with vertex set V and blocks B1, . . . , Br.
For 1 ≤ i ≤ r, let V (Bi) = Vi. The center sets of G are singleton sets {v}, v ∈
V (G) and Vi for 1 ≤ i ≤ r.

Proof. If S = {v}, then eS(v) = 0 ≤ eS(x) for all x ∈ V . Therefore C{v}(G) =
{v}. Hence {v}, where v ∈ V are all center sets. Let S be a proper subset of
Vi, 1 ≤ i ≤ r containing at least two elements. Hence eS(x) = 1 for every
x ∈ Vi and eS(x) > 1 for all x ∈ V − Vi. So CS(G) = Vi. Therefore each Vi,
1 ≤ i ≤ r is a center set. Consider S ⊆ V (G) containing at least 2 elements from
2 different blocks, and let x be a cut vertex of G with eS(x) = k. Also assume
that d(x, v) = k where v ∈ S. Let P : x = x0x1 . . . xrxr+1 . . . xk = v be the
shortest x − v path. See that eS(x1) = k − 1. Since the eccentricities will never
decrease to zero, we can find two vertices in P (may be identical) say xr, and
xr+1 so that eS(xr) = eS(xr+1) = k − r. Then for every vertex y in the block
containing xr and xr+1, eS(y) = k− r and as we move away from this block the
S-eccentricity increases. Hence the S-center of G is the block containing xr and
xr+1. Now let eS(xr) = k − r and eS(xr+1) = k − r + 1. Then for every y other
than xr in the block containing xr and xr+1, eS(y) = k − r + 1 and as we move
away from this block the S-eccentricity increases. Therefore S-center of G is xr.
Hence the center sets of block graphs are {v}, v ∈ V (G) and Vi, 1 ≤ i ≤ r.

As a consequence of Proposition 1, we have the following corollaries. Corollary 2,
is a theorem of Slater in [13].

Corollary 1. The center sets of the complete graph Kn with vertex set V are
{u}, u ∈ V and the whole set V .

Corollary 2 (Theorem 4 of [13]). The center sets of a tree T = (V,E) are
{u}, u ∈ V , and {u, v}, uv ∈ E.

Corollary 3. The induced subgraphs of all center sets of a block graph are con-
nected.

Now we shall find the center sets of some simple classes of graphs such as com-
plete bipartite graphs, Kn − e, Wheel graphs, etc. First we identify the center
sets of bipartite graphs Km,n, m,n > 1. When m or n is 1, Km,n is a tree whose
center sets have already been identified.

4.2 Center Sets of Complete Bipartite Graphs

Proposition 2. Let Km,n be a complete bipartite graph with bipartition (X,Y)
where |X| = m > 1 and |Y | = n > 1. Then the center sets of Km,n are

1. V = X ∪ Y
2. X
3. Y

On the Center Sets of Some Graph Classes 245

4. {v}, v ∈ V
5. {x, y}, x ∈ X, y ∈ Y

Proof. First we shall show that each of the sets described in the theorem are
center sets. Let A ⊆ V (Km,n) and let A1 = A ∩ X, and let A2 = A ∩ Y

1. If |A1| > 1 and |A2| > 1, CA(Km,n) = V .
2. If A1 = ∅ with |A2| > 1 then CA(Km,n) = X.
3. If A2 = ∅ with |A1| > 1 then CA(Km,n) = Y .
4. If |A1| = 1 and |A2| > 1 then CA(Km,n) = {x} where A1 = {x}
5. If |A2| = 1 and |A1| > 1 then CA(Km,n) = {x} where A2 = {x}
6. If |A1| = |A2| = 1 then CA(Km,n) = {x, y} where A1 = {x} and A2 = {y}
Thus CA(Km,n) is one of the sets given in the theorem and the result follows.

4.3 Center Sets of Kn − e

Next we shall find the center sets of another class of graphs, Kn−e. When n = 2,
Kn − e is a pair of isolated vertices and when n = 3, Kn − e is path and center
sets of this has been identified in Corollary 2. The following theorem identifies
the center sets of Kn − e for n ≥ 4 (Fig. 1)

Proposition 3. For the graph Kn − e(= xy), n ≥ 4, the center sets are

1. {v}, v ∈ V
2. V \ {x}
3. V \ {y}
4. V \ {x, y}
5. V

Proof. As in Proposition 2, initially we prove that all the sets described in the
theorem are center sets.

1. For each v ∈ V , C{v}(Kn − e) = {v}.
2. Let A ⊆ V be such that |A| > 1, y ∈ A and x /∈ A, then CA(Kn−e) = V \{x}.
3. For A ⊆ V such that |A| > 1, x ∈ A and y /∈ A, CA(Kn − e) = V \ {y}.
4. Let A ⊆ V be such that x, y ∈ A. Then CA(Kn − e) = V \ {x, y}.
5. For A ⊆ V be such that |A| > 1, x, y /∈ A CA(Kn − e) = V .

Now we have found the centers of all types of subsets of V and therefore above
mentioned sets are precisely the center sets of Kn − e.

v1 v2 v3 v4

u1 u2 u3 u4 u5

Fig. 1: K5,4

246 M. Changat et al.

v2

v1

v4 v5

v3 v6

Fig. 2: K6 − e, e = uv

4.4 Center Sets of Wheel Graphs

Now we shall identify the center sets of wheel graphs. The wheel graph W4 is
K4 and their center sets have already been identified. First we prove the case
for n ≥ 6. The center sets of W5, the only remaining case, will be given in the
remark after the Proposition 4 (Fig. 2).

Proposition 4. Let Wn, n ≥ 6, be wheel graph on the vertex set {v1, . . . , vn}
where vn is the universal vertex. Then the center sets of Wn are

1. {vi}, 1 ≤ i ≤ n
2. {vi, vn}, 1 ≤ i ≤ n − 1
3. {vi, vj , vn}, where vivj ∈ E(Cn−1)
4. {vi, vj , vk, vn} where vivj , vjvk ∈ E(Cn−1)

Proof. First we shall prove that each of the sets described above are center sets.

1. For 1 ≤ i ≤ n, C{vi}(G) = {vi}.
2. Let S = {vi�n−11, vi, vi⊕n−11}. eS(vi) = eS(vn) = 1 and eS(v) = 2 for all

other v ∈ V and therefore CS(G) = {vi, vn}.
3. For S = {vi, vi⊕n−11, vn}, CS(G) = S = {vi, vi⊕n−11, vn}.
4. For S = {vi, vn}, CS(G) = {vi�n−11, vi, vi⊕n−11, vn}.

For all S ⊆ V such that S 	= {vn}, eS(vn) = 1 and hence for all S ⊆ V such
that S 	= {vi}, 1 ≤ i ≤ n − 1, vn ∈ CS(G). Now, let A be such that A contain
vi and vj such that dCn−1(vi, vj) > 2. Let S ⊆ V be such that CS(G) = A then
obviously S 	= {vi}, 1 ≤ i ≤ n. We have vn ∈ CS(G) with eS(vn) = 1 Therefore
vi and vj belong to CS(G) implies there exist a vertex vk in V (Cn−1) such that
d(vi, vk) = d(vj , vk) = 1 which is impossible by the choice of vi and vj . Hence
vi and vj of V (Cn−1) belong to a center set implies dCn−1(vi, vj) ≤ 2. Also vi,
vi⊕n−12 belong to CS(G) implies vi⊕n−11 belong to CS(G). Hence the center sets
are precisely those described in the theorem (Fig. 3).

On the Center Sets of Some Graph Classes 247

v1

v3

v5

v7

v2v4

v8v6

v9

Fig. 3: W9

Remark 2. Let {v1, v2, v3, v4, v5} be the vertex set of W5 with v5 as the universal
vertex. All sets of the types given in the Proposition 4 are center sets in the
same manner. Since the outer cycle is of length 4, C{v1,v3}(W5) = {v2, v4, v5}
and C{v2,v4}(W5) = {v1, v3, v5}. By the arguments similar to that given in the
proof of Proposition 4, the center sets of W5 are precisely,

1. {v1}, {v2}, {v3}, {v4}, {v5}
2. {v1, v5}, {v2, v5}, {v3, v5}, {v4, v5}
3. {v1, v2, v5}, {v2, v3, v5}, {v3, v4, v5}, {v4, v1, v5}
4. {v1, v2, v3, v5}, {v2, v3, v4, v5}, {v3, v4, v1, v5}, {v4, v1, v2, v5}
5. {v1, v3, v5}, {v2, v4, v5}
Remark 3. The subgraph induced by any center set of a wheel graph is con-
nected. In fact, the subgraphs induced by all center sets of any graph with a
universal vertex are connected.

4.5 Center Sets of Odd Cycles

Theorem 4. Let C2n+1, n ≥ 2 be an odd cycle with vertex set V =
{v1, . . . , v2n+1}. An A ⊆ V is a center set of C2n+1 if and only if either A = V
or A does not contain a pair of alternate vertices.

Proof. If A = V then it is a center set namely, of itself. So assume A 	= V . Let
A ⊂ V be such that it contains three consecutive vertices say, v1, v2, v3. Assume
there exists an S ⊂ V with A = CS(G). Let d be the S-eccentricity of a vertex of
A. Then there exists a vertex vi in S such that d(v1, vi) = d. d(v2, vi) = d implies
v1 and v2 are the eccentric vertices of vi which means d = n or A = V . Hence
d(v2, vi) 	= d. d(v2, vi) = d + 1 implies eS(v2) ≥ d + 1. Hence d(v2, vi) = d − 1.
Then there exists a vertex vj such that d(v2, vj) = d and d(v1, vj) = d − 1.
Then as explained above d(v3, vj) cannot be d and therefore d(v3, vj) = d + 1.
This means that eS(v2) 	= eS(v3). Hence any three consecutive vertices cannot

248 M. Changat et al.

be in a center set. Now, assume that A ⊂ V is such that it contains a pair of
alternate vertices and does not contain the middle vertex, say, contains v1 and
v3 and does not contain v2. Assume A = CS(G). Let eS(v1) = eS(v3) = d.
Then eS(v2) = d + 1. Let vi be a vertex in S such that d(v2, vi) = d + 1.
Obviously d(v1, vi) = d(v3, vi) = d and this implies vi is the eccentric vertex
of v2 or d(v2, vi) = n. But since C2n+1 is an odd cycle either d(v1, vi) = n or
d(v3, vi) = n, a contradiction. Hence if A is a center set then it cannot contain
a pair of alternate vertices.

Conversely assume that A is such that it does not contain any pair of alternate
vertices of the cycle. Now take S to be the set of all vertices of C2n+1 which are
eccentric vertices of vertices of Ac and which are not eccentric vertices of any
of the vertices of A. It is obvious by the choice of A that such vertices do exist.
Since an eccentric vertex of at least one of the two neighbours of each vertex
of A belong to S and none of the eccentric vertices of any vertex of A belong
to S, for each vertex x of A, eS(x) = n − 1. Since at least one of the eccentric
vertices of each vertex of Ac belong to S, for each vertex y of Ac, eS(y) = n.
Thus A = CS(G). Hence the theorem.

Corollary 4. For the odd cycle C2n+1, n ≥ 2, if A is a center set then either
|A| ≤ n or A = V .

Proof. Let C2n+1 = (v1, v2, . . . , v2n+1, v1).
Case 1-n is odd.
Subcase 1.1- Only one among v1,v2 and v3 is in A.
Let A1 = {v1, v2, v3}, A2 = {v4, v6}, . . . , An−1 = {v2n−2, v2n}, An =
{v2n−1, v2n+1}. A contains at most one vertex from each Ai. Therefore |A| ≤ n.
Subcase 1.2- Exactly two vertices among v1,v2 and v3 are in A.
With out loss of generality we can assume that they are v1 and v2. Then v3, v4,
v2n and v2n+1 are not in A. Let A1 = {v5, v7}, A2 = {v6, v8}, A3 = {v9, v11}, . . .
,An−3 = {v2n−4, v2n−2}, An−2 = {v2n−1}. A contains at most one vertex from
each Ai. Hence |A| ≤ n − 2 + 2 = n.
Case 2- n is even.
Subcase 2.1- Only one of v1, v2 and v4 is in A.
Let A1 = {v1, v2, v4}, A2 = {v3, v5}, A3 = {v6, v8}, A4 = {v7, v9}, . . . ,
An−1 = {v2n−2, v2n}, An = {v2n−1, v2n+1}. A contains at most one vertex from
each Ai. Therefore |A| ≤ n.
Subcase 2.2- v1 and v2 are in A.
Then v3, v4, v2n and v2n+1 are not in A. Let A1 = {v5, v7}, A2 = {v6, v8},
A3 = {v9, v11}, . . . ,An−3 = {v2n−3, v2n−1}, An−2 = {v2n−2}. A contains at
most one vertex from each Ai. Hence |A| ≤ n − 2 + 2 = n.
Subcase 2.3: v1 and v4 are in A. Then v2, v3, v6 and v2n are not in A. Let
A1 = {v5, v7}, A2 = {v8, v10}, A3 = {v9, v11}, . . . ,An−3 = {v2n−3, v2n−1},
An−2 = {v2n+1}. A contains at most one vertex from each Ai. Hence |A| ≤
n − 2 + 2 = n.
Thus in all the cases |A| ≤ n.

On the Center Sets of Some Graph Classes 249

v5 v6

v3

v7

v1

v2v4

Fig. 4: C7

Corollary 5. For any m ≤ n, there exists an S ⊆ V (C2n+1) such that
|CS(C2n+1)| = m.

Proof. Let C2n+1 = (v1, v2, . . . , v2n+1, v1).
Given an m ≤ n, we shall prove the existance of a subset of V (C2n+1) of size m
which does not contain any pair of alternate vertices. Take 2n+1−m circularly
arranged 0’s. Number these 0’s 1, 2, . . . , 2n+1−m. If m is even put two 1’s each
between the first and the second 0’s, third and the fourth 0’s etc. up to (m−1)th

and the mth 0’s. If m is odd put two 1’s each between the first and the second
0’s, third and the fourth 0’s etc., up to (m−2)th and the (m−1)th 0’s and one 1
between mth and (m+1)th 0’s. In both these cases we get a circular arrangement
of 0’s and 1’s that has m 1’s and does not contain a pattern of the type 101 or
111. Starting at an arbitrary point represent these bits by v1, v2, . . . , v2n+1 and
form the vertex set corresponding to the 1′s. This is a center set have m vertices
(Fig. 4).

4.6 Center Sets of Symmetric Even Graphs

The following theorem gives the center sets of some familiar classes of graphs
such as even cycles, hypercubes etc. Here we recall the following definition. For
an S ⊆ V , a vertex x ∈ S is called an interior vertex if N(x) ⊆ S. An S ⊆ V is
called a boundary set of G if does not contain any interior vertices.

Theorem 5. Let G be a symmetric even graph. An A ⊆ V is a center set if and
only if either A = V or A is a boundary set of G.

Proof. Since symmetric even graphs are self-centered CV (G) = V . So assume
A ⊂ V . Let A be such that A = CS(G) for an S ⊂ V and let x ∈ A. Suppose
eS(x) = k with d(x, y) = k where y ∈ S. If k = diam(G) then A = V . So assume
k < diam(G). Then since G is a symmetric even graph there exists a vertex z
adjacent to x such that d(y, z) = k + 1. Therefore eS(z) ≥ k + 1 or z /∈ CS(G).
Hence if A is a center set such that A ⊂ V , then there exists an x in A such that
{x} ∪ N(x) ∩ Sc 	= ∅. Conversely, suppose that A ⊂ V satisfies the condition
given in the theorem. We need to find out an S ⊆ V such that A = CS(G).
Since G is symmetric even it is self-centered and unique eccentric vertex. Let

250 M. Changat et al.

Ac denote the set of eccentric vertices of Ac. Let x ∈ A. Then there exists a x′

adjacent to x such that x′ ∈ Ac. Then x′ ∈ Ac. Since d(x′, x′) = diam(G) and
x and x′ are adjacent d(x, x′) = diam(G) − 1. Also since G is unique eccentric
vertex there does not exist an z in Ac such that d(x, z) = diam(G). Therefore,
eAc(x) = diam(G) − 1 and for every y ∈ Ac, eAc(y) = diam(G). Since G is
self-centered for every x ∈ A, eAc(x) = diam(G) − 1 and for every y ∈ Ac,
eAc(x′) = diam(G). Therefore CAc(G) = A. Hence the theorem.

Corollary 6. For the even cycle C2n, if A is a center set then either |A| ≤ � 4n
3 �

or A = V .

Proof. Suppose A is a center set such that |A| < 2n. To prove |A| ≤ � 4n
3 �. Since

A is a center set A cannot contain three consecutive vertices of the cycle. Let
each vertex belonging to A be represented by 1 and each vertex not belonging
to A be represented by 0. Thus we get a circular arrangement of 0’s and 1’s
such that two successive 0’s contains at most two 1’s between them. From this
we can conclude that m 0’s can accommodate at most 2m 1’s between them. If
A′ 	= V is a center set of maximum cardinality then the binary representation
of A′ will have exactly � 2n

3 � zeros and hence 2n − � 2n
3 � 1’s. In other words

|A′| = 2n − � 2n
3 � = � 4n

3 �. Since A′ is a center set of maximum cardinality, we
have |A| ≤ � 4n

3 �. Hence the corollary.

Next we have another corollary similar to the Corollary 5.

Corollary 7. For any m ≤ � 4n
3 �, there exists an S ⊆ V (C2n) such that

|CS(C2n)| = m.

Proof. Similar to the proof of Corollary 5

Now, we recall the following definition.
An S ⊆ V is a dominating set in G if every vertex in V \ S is adjacent to a

vertex in S.
Next, we shall prove a result regarding the centers of dominating sets of

symmetric even graphs. But for that we require the following propositions from
[5].

Proposition 5. Every harmonic even graph is balanced.

Proposition 6. Every symmetric even graph is harmonic.

Combining the above two propositions we get the following proposition.

Proposition 7. Every symmetric even graph is balanced.

Theorem 6. Let G be a symmetric even graph and let S ⊆ V . Then CS(G) = Sc

if and only if S is a dominating set.

On the Center Sets of Some Graph Classes 251

Proof. Assume CS(G) = Sc. Suppose S ∪ N(S) 	= V . Then there exists an
x ∈ V such that x /∈ S and x /∈ N(S). That is x and all its neighbours belong
to Sc. Let x1, . . . , xk be the neighbours of x. By proposition 7, deg(u) = deg(ū).
Let y1, y2, . . . , yk be the neighbours of x̄. We have d(xi, x̄) = diam(G) − 1 for
1 ≤ i ≤ k. Since G is symmetric even there exists a vertex adjacent to x̄, say
yi, such that d(xi, yi) = diam(G) for 1 ≤ i ≤ k. Hence x̄ and all its neighbours
belong to Sc. This contradicts the condition for Sc to be a center set.

Conversely suppose S∪N(S) = V . Let x ∈ Sc. Then x̄ ∈ Sc. Since S∪N(S) =
V , x̄ ∈ N(S). Therefore there exists an z ∈ S such that z is adjacent to x̄. Then
d(x, z) = diam(G) − 1. d(x, z′) = diam(G) for some z′ ∈ S implies both y ∈ Sc

and z′ ∈ S are the eccentric vertices of x a contradiction to the fact that the
graph is unique eccentric vertex. Hence eS(x) = diam(G) − 1. Now let x /∈ Sc.
Then since every vertex is an eccentric vertex, x ∈ S and therefore there exists
a w in S such that d(x,w) = diam(G). Thus CS(G) = Sc.

For a graph G, let DB(G) denote the class of dominating boundary sets, that is,
dominating sets which are also boundary sets. We have the following theorem
on the centers of sets which belong to such a class of sets in a symmetric even
graph.

Theorem 7. Let G be a symmetric even graph. Let S ⊆ V be such that S ∈
DB(G). Then CS(G) = S′ if and only if CS′(G) = S.

Proof. Suppose CS(G) = S′. Since S ∪ N(S) = V , CS(G) = Sc. That is S′ =
Sc. For every x ∈ Sc, eSc(x) = diam(G). Since G is unique eccentric vertex
graph and S is a boundary set, for every x ∈ S, eSc(x) = diam(G) − 1. Hence
CS′(G) = CSc(G) = S. Conversely assume CS′(G) = S. To prove CS(G) = S′.
Since CS(G) = Sc we need only prove that S′ = Sc. Let x ∈ S′. If x ∈ S then
x = ȳ where y ∈ S. Then we have d(x, y) = diam(G). Since S is the S′-center of
G this implies C ′

S(G) = V . But this contradicts the fact that S is a boundary
set. Hence x ∈ Sc or S′ ⊆ Sc. Now to prove that Sc ⊆ S′. On the contrary
assume that there exists an x ∈ Sc such that x /∈ S′. Let x = y where y ∈ Sc.
Since the eccentric vertex of y, x, does not belong to S′, eS′(y) ≤ diam(G) − 1.
If z ∈ S′ then z ∈ Sc. Let z = w where w ∈ Sc. Since S ∪N(S) = V there exists
a w′ adjacent to w such that w′ belong to S. We have eS′(w′) = diam(G) − 1.
This implies y ∈ S, contradicting the choice of y. Therefore S′ = Sc.

Theorem 8. Let G be a symmetric even graph. Then

(i) S ∈ DB(G) if and only if CS(G) ∈ DB(G).
(ii) For S1, S2 ∈ DB(G), CS1(G) = S2 if and only if CS2(G) = S1.

Proof. (i) Suppose S ⊆ V is such that S ∈ DB(G) and let S′ = CS(G). Since
S′ is a center set of a symmetric even graph if and only if it is a boundary
set, to prove that S′ ∈ DB(G) we need only prove that S′ ∪ N(S′) = V .
Since S ∪ N(S) = V , S′ = Sc. Let x /∈ S′. Therefore x ∈ S since the
graph is symmetric even. Let x = ȳ where y ∈ S. Since S is a boundary set
there exists a vertex y′ adjacent to y such that y′ ∈ Sc. We have d(x, y′) =

252 M. Changat et al.

diam(G) − 1. Since G is symmetric even there exists a vertex x′ adjacent to
x such that d(x′, y′) = diam(G). That is x′ ∈ Sc or x′ ∈ S′. In other words
x ∈ N(S′). Hence S′ ∪ N(S′) = V . Conversely suppose S′ ⊆ V is such that
S′ ∈ DB(G) and CS(G) = S′ for an S′ ⊆ V . To prove S ∈ DB(G). By the
previous theorem CS(G) = S′ implies CS′(G) = S. Now S′ ⊆ V is such that
S′ ∈ DB and CS′(G) = S and hence as proved earlier we can prove that
S ∪ N(S) = V or S ∈ DB(G).

(ii) The proof is a direct conesequence of the Theorem 7.

5 Conclusion

In this article the generalisation of the center of a graph to the center of arbitrary
vertex sets have been explored in particular to some special graph classes like Kn,
Km,n, Kn − e, odd cycles and a more general class of graphs called symmetric
even graphs. In the process of identification of center sets of odd cycles and
symmetric even graphs we have devised methods for finding a set whose center is
a prescribed set. The duality property of dominating boundary sets of symmetric
even graphs with respect to the center function has been also brought to light.
For any graph there may exist subsets of the vertex set whose center is the same
as the center of the graph and therefore we can look for such sets with minimum
cardinality. Searching on this line we came across a class of graphs where none of
the proper subsets of the vertex sets has center equal to the center of the graph.
We called them the center critical graphs and characterised them as self-centred,
unique eccentric vertex graphs.

References

1. Al-Addasi, S., Al-Ezeh, H.: Characterizing symmetric diametrical graphs of order
12 and diameter 4. Int. J. Math. and Math. Sci. 30(3), 145–149 (2002)

2. Buckley, F., Miller, Z., Slater, P.J.: On graphs containing a given graph as center.
J. Graph Theory 5(4), 427–434 (1981)

3. Chang, G.J.: Centers of chordal graphs. Graphs and Combinatorics 7(4), 305–313
(1991)

4. Chepoi, V.D.: Centers of triangulated graphs. Math. Notes 43(1), 82–86 (1988)
5. Göbel, F., Veldman, H.J.: Even graphs. J. graph theory 10(2), 225–239 (1986)
6. Harary, F., Norman, R.Z.: The dissimilarity characteristic of Husimi trees. Ann.

Math. 58(1), 134–141 (1953)
7. Jordan, C.: Sur les assemblages de lignes. J. für die reine und angewandte Mathe-

matik 70, 185–190 (1869)
8. Kopylov, G.N., Timofeev, E.A.: Centers and radii of graphs. Uspekhi Matematich-

eskikh Nauk 32(6), 226–226 (1977)
9. Laskar, R., Shier, D.: On powers and centers of chordal graphs. Discrete Appl.

Math. 6(2), 139–147 (1983)
10. Mulder, H.M.: n-cubes and median graphs. J. Graph Theory 4(1), 107–110 (1980)
11. Parthasarathy, K.R., Nandakumar, R.: Unique eccentric point graphs. Discrete

Math. 46(1), 69–74 (1983)

On the Center Sets of Some Graph Classes 253

12. Proskurowski, A.: Centers of maximal outerplanar graphs. J. Graph Theory 4(1),
75–79 (1980)

13. Slater, P.J.: Centers to centroids in graphs. J. graph theory 2(3), 209–222 (1978)
14. Yeh, H.G., Chang, G.J.: Centers and medians of distance-hereditary graphs. Dis-

crete Math. 265(1–3), 297–310 (2003)

On Irreducible No-hole L(2, 1)-labelings
of Hypercubes and Triangular Lattices

Nibedita Mandal(B) and Pratima Panigrahi

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur, India

nibedita.mandal.iitkgp@gmail.com, pratima@maths.iitkgp.ernet.in

Abstract. An L(2, 1)-labeling (or coloring) of a graph G is a mapping
f : V (G) → Z+⋃{0} such that |f(u) − f(v)| ≥ 2 for all edges uv of G,
and |f(u)−f(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between
vertices u and v in G. The span of an L(2, 1)-labeling f , denoted by span
f , is the largest integer assigned by f to some vertex of the graph. The
span of a graph G, denoted by λ(G), is equal to min {span f : f is an
L(2, 1)-labeling of G}. A no-hole labeling (or no-hole coloring) is defined
to be an L(2, 1)-labeling with span k which uses all the labels from
{0, 1, · · · , k}, for some integer k not necessarily the span of the graph.
An L(2, 1)-labeling is defined as irreducible if no labels of vertices in the
graph can be decreased and yield another L(2, 1)-labeling of the same
graph. An irreducible no-hole labeling is called an inh-labeling (or inh-
coloring). The lower inh-span or simply inh-span of a graph G, denoted
by λinh(G), is defined as λinh(G) = min {span f : f is an inh-labeling
of G}. The upper inh-span of a graph G, denoted by Λinh(G), is defined
as Λinh(G) = max{span f : f is an inh-labeling of G}. Villalpando and
Laskar [8] have shown that Qn is inh-labelable for very few values of n.
The same authors [7] have given a conjecture for the inh-span of infinite
triangular lattices and have also given both lower and upper bounds of
the same for finite triangular lattices. In this paper we prove that the
hypercube Qn is inh-labelable for every n ≥ 4 and find upper bounds of
its inh-span and upper inh-span. We find the exact value of the inh-span
of all triangular lattices.

Keywords: No-hole labeling · Irreducible labeling · Irreducible no-hole
span · Hypercube · Triangular lattice

1 Introduction

The channel assignment problem is the problem of assigning frequencies to trans-
mitters. If two transmitters are too close then separation of the channels assigned
to them must be sufficient. Moreover, if two transmitters are close but not too
close, the channels assigned must be different. This problem can be modeled as
some kind of vertex labeling problem of the graph in which transmitters are taken
as vertices and based on the proximity of the transmitters and the power of the
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 254–263, 2016.
DOI: 10.1007/978-3-319-29221-2 22

On Inh-labelings of Hypercubes and Triangular Lattices 255

transmissions, edges are placed between them to represent possible interference.
The channel assignment problem that of prescribing integer labels for vertices so
that neighboring vertices receive labels that differ by at least two while vertices
with a common neighbor have different labels is called an L(2, 1)-labeling.

More precisely, an L(2, 1)-labeling(or coloring) of a simple graph G is a map-
ping f : V (G) → Z+

⋃{0} such that |f(u) − f(v)| ≥ 2 for all edges uv of G,
and |f(u) − f(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between u and
v in G. The span of an L(2, 1)-labeling f , denoted by span f , is equal to max
{f(v) : v ∈ V (G)}. The span of a graph G, denoted by λ(G), is equal to min
{span f : f is an L(2, 1)-labeling of G}. An L(2, 1)-labeling whose span is equal
to the span of G is called a span labeling. The maximum degree of a graph is
denoted by Δ.

Griggs and Yeh [4] introduced L(2, 1)-labeling and gave the following results.
For any path Pn, λ(P2) = 2 , λ(P3) = λ(P4) = 3 and λ(Pn) = 4 for n ≥ 5. For any
cycle Cn, λ(Cn) = 4. For the n dimensional hypercube Qn and for all n ≥ 5, n+
3 ≤ λ(Qn) ≤ 2n+1. For any tree T , Δ+1 ≤ λ(T) ≤ Δ+2. For any n-vertex graph
G, λ(G) ≤ n+χ(G)−2. For any graph G, λ(G) ≤ Δ2+2Δ. Further if G has diam-
eter 2, then λ(G) ≤ Δ2. Griggs and Yeh [4] also conjectured that for any graph
G with Δ ≥ 2, λ(G) ≤ Δ2. We use the following lemma by Griggs and Yeh [4].

Lemma 1. [4] If a graph G contains three vertices with maximum degree
Δ(G) ≥ 2 and one of them is adjacent to the other two vertices then λ(G) ≥
Δ(G) + 2.

In [3], Georges et al. proved that for an n-vertex graph G, λ(G) ≤ n − 1 if
and only if c(G) = 1, where c(G) is the path covering number of the complement
of G. For any integer r ≥ 2, λ(G) = n+ r − 2 if and only if c(G) = r. Whittlesey
et al. [10] studied the L(2, 1)-labeling of hypercubes and the Cartesian products
of paths. In particular, they proved that λ(Qd) ≤ 2n + 2n−t − 2, where n =
�1 + log2 d� and t =min{2n − d − 1, n}.

For a graph G and an L(2, 1)-labeling of it with span k an integer h is called
a hole in f , if h ∈ (0, k) and there is no vertex v in G such that f(v) = h. An
L(2, 1)-labeling of a graph is a no-hole labeling (or no-hole coloring) if there is
no-hole in it. The no-hole span of a graph G, denoted by μ(G), is ∞ if G has no
no-hole labeling ; otherwise μ(G) is equal to min {span f : f is a no-hole labeling
of G}. Since frequencies are typically used in a block one may want to use all
available frequencies in that block. This is assured by a no-hole labeling. Fishburn
and Roberts [2] introduced no-hole labeling. An L(2, 1)-labeling f of a graph G
is called reducible if there exists another L(2, 1)-labeling g of G such that g(u) ≤
f(u) for all vertices u ∈ V (G) and there exists a vertex v ∈ V (G) such that
g(v) < f(v). If f is not reducible then it is called irreducible. An irreducible no-
hole labeling is referred as inh-labeling (or inh-coloring). A graph is inh-labelable
(or inh-colorable) if there exists an inh-labeling of it. For an inh-labelable graph
G the lower inh-span or simply inh-span of G, denoted by λinh(G), and the upper
inh-span of G, denoted by Λinh(G), are defined as λinh(G) = min {span f : f is
an inh-labeling of G} and Λinh(G) = max {span f : f is an inh-labeling of G}.

256 N. Mandal and P. Panigrahi

If G is not inh-labelable then λinh(G) = Λinh(G) = ∞. Irreducibility will assure
that we are not wasting labels, and that each vertex is using the lowest possible
frequency allowable.

Consider a plane tiled with hexagons and transmitters located in the center
of each hexagon. Considering transmitters as vertices and two transmitters are
adjacent if their corresponding hexagons share a side, the resulting graph is a
hex graph or triangular lattice. A finite triangular lattice, denoted by Hr,c, can
be defined as below. V (Hr,c) = {uij : 1 ≤ i ≤ r, 1 ≤ j ≤ c}. uij ∼ ui+1j for
1 ≤ i ≤ r − 1, 1 ≤ j ≤ c, uij ∼ uij+1 for 1 ≤ i ≤ r, 1 ≤ j ≤ c − 1, uij ∼ ui+1j+1

for i ≡ 1 (mod 2) and 1 ≤ i ≤ r − 1, 1 ≤ j ≤ c − 1, uij ∼ ui+1j−1 for all
i ≡ 0 (mod 2) and 2 ≤ i ≤ r − 1, 2 ≤ j ≤ c. Infinite triangular lattice is defined
exactly the same way as finite triangular lattice except i and j are unrestricted.
Calamoneri [1] proved that the L(2, 1)-span of the infinite triangular lattice is 8.

Laskar and Villalpando [7] introduced irreducible no-hole labeling of graphs
and proved the following. For any graph G if λ(G) = Δ+1 and λinh(G) > Δ+1
then for any span labeling f of G either f(u) = 0 for all maximum degree vertices
u or f(u) = Δ + 1 for all these vertices. For any connected n-vertex unicyclic
graph G except C4, G is inh-labelable if and only if Δ(G) < n − 1, and the
inh-span of an inh-labelable unicyclic graph is Δ + 1 or Δ + 2. Any triangular
lattice Hr,c, where r, c ≥ 5, is inh-labelable and 8 ≤ λinh(Hr,c) ≤ 13. Laskar and
Villalpando [7] have conjectured the following.

Conjecture 1. The inh-span of the infinite triangular lattice is 9.

Villalpando and Laskar [8] showed that the n-dimensional hypercube is inh-
labelable if n = 3, 4, 5, 6, 7, 9, 10, 11. Laskar et al. [6] proved that if T is a tree
that is not a star then T is inh-labelable and λinh(T) = λ(T). Jacob et al. [5]
studied the irreducible no-hole labeling of bipartite graphs and Cartesian product
graphs and gave the following results. If G is a bipartite graph with independent
sets S1 and S2 of cardinalities n and m respectively and there exist vertices
v1, v2 ∈ S1 such that N(v1) = S2 and �m

3 � < |N(v2)| < m then G is inh-
labelable. If G is a bipartite graph with independent sets S1,S2, |S1| = |S2|, and
if for all u ∈ V (G), � |S1|

2 � + 1 ≤ deg(u) ≤ |S1| − 1, then G is inh-labelable. They
proved that for n,m ≥ 3, λinh(Pn�Pm) ≤ 6, and the upper bound becomes
sharp for n,m ≥ 4. For n,m ≥ 3, λinh(Kn�Km) = mn − 1. For n ≥ 4,m ≥ 2,
λinh(Kn�Pm) = 2n − 1.

In this paper we prove that for every n ≥ 4, the n-dimensional hypercube
is inh-labelable and give an upper bound of its inh-span. Further we improve
this upper bound for certain values of n. We also give an upper bound for the
upper inh-span of the hypercubes. Finally we disprove Conjecture 1 by proving
an improved version of it that the inh-span of both infinite triangular lattices
and every finite triangular lattices Hr,c, r, c ≥ 5, is equal to 8.

2 Our Results

We first discuss about inh-labeling of hypercubes. We recall that an n-
dimensional hypercube Qn is the simple graph whose vertices are the n-tuples

On Inh-labelings of Hypercubes and Triangular Lattices 257

with entries in {0,1} and edges are the pairs of these n-tuples that differ in
exactly one position. We have mentioned in the introduction that Villalpando
and Laskar [8] have given inh-labeling of Qn for n = 3, 4, 5, 6, 7, 9, 10, 11 only.
Here we prove that Qn, for every n ≥ 4, is inh-labelable. In fact, this inh-labeling
is not a new labeling because we prove that the L(2, 1)-labeling of Qn given by
Griggs and Yeh [4] is an inh-labeling for n ≥ 4, and hence we get an upper bound
for λinh(Qn).

Theorem 1. For all n ≥ 4, Qn is inh-labelable, and λinh(Qn) ≤ 2n + 1.

Proof. In [4] Griggs and Yeh have given the following L(2, 1)-labeling f to the
n-dimensional hypercube, n ≥ 1. For an arbitrary vertex v = (v1, v2, · · · , vn)
in Qn,

f(v) =
∑

i:vi=1

(i + 1) (mod 2n + 2), (1)

that is all labels are chosen to be in the interval [0, 2n + 1].
We show that f is an irreducible no-hole labeling for n ≥ 4. First, we prove

that f is irreducible.
Let the labeling f be reducible. So there is a vertex u whose label can be

reduced. Suppose f(u) = m and the label of u can be reduced to a label p. Then
there is no vertex at distance 1 or 2 from u with the label p and there is no
vertex adjacent to u with the label p − 1 or p + 1. Let p = m − k (mod 2n + 2),
1 ≤ k ≤ 2n + 1 and let u = (u1, u2, · · · , un). Then we consider the following
three cases for different values of k.

Case 1: In this case we take n + 2 ≤ k ≤ 2n + 1. Let k′ = 2n + 2 − k. Then
1 ≤ k′ ≤ n and p = m + k′ (mod 2n + 2).

We prove that uk′−1 = uk′ = uk′−2 = 1. Suppose uk′−1 = 0. Consider
the vertex v with vi = ui, i �= k′ − 1 and vk′−1 = 1. Then v is adjacent to
u and is labeled with the label m + k′ (mod 2n + 2) = p by definition. This
is a contradiction. So uk′−1 = 1. By the similar argument we also get that
uk′ = uk′−2 = 1.

We also prove that if for some j, 1 ≤ j ≤ n, uj = 1 then uj+k′ = uj+2k′ =
· · · uj+lk′ = 1, where j + lk′ ≤ n < j + (l + 1)k′. Suppose uj = 1 and uj+k′ = 0.
Consider the vertex v′ with v′

i = ui when i �= j, j + k′, v′
j = 0, v′

j+k′ = 1. v′ is at
distance 2 from u and labeled with the label m + j + k′ + 1 − j − 1 (mod 2n +
2) = m + k′ (mod 2n + 2) = p. This is a contradiction and so uj+k′ = 1.
Similarly we get that if uj = 1 then uj+k′ = uj+2k′ = · · · uj+lk′ = 1, where
j + lk′ ≤ n < j + (l + 1)k′.

Next we will have the following subcases depending upon the values of k′.
We note that 1 ≤ k′ ≤ n.

Subcase 1: Let 3 ≤ k′ ≤ n. We prove that at least one of uq and uk′−2−q has
value 1 for 1 ≤ q ≤ �k′−3

2 �. Now if uq = uk′−2−q = 0, 1 ≤ q ≤ �k′−3
2 �, then

consider the vertex v′′ with v′′
i = ui when i �= q, k′ −2− q and v′′

q = v′′
k′−2−q = 1.

v′′ is at distance 2 from u and labeled with the label m + q + 1 + k′ − 2 − q + 1

258 N. Mandal and P. Panigrahi

(mod 2n + 2) = m + k′ (mod 2n + 2). This is a contradiction . So, at least one
of uq and uk′−2−q has value 1.

So if 1 ≤ i ≤ k′, then ui = 1 for at least �k′−3
2 � + 3 values of i. If n − k′ ≤

i ≤ n − 1, then ui = 1 for at least �k′−3
2 � + 3 = �k′−1

2 � + 2 values of i. If
un−k′ = 1 then un = 1. If un−k′ �= 1 then for n − k′ + 1 ≤ i ≤ n − 1, ui = 1
for at least �k′−1

2 � + 2 values of i. So for at least one value of r between 0 and
�k′−1

2 �, un−k′+r = un−r = 1. Now there is a vertex v(3) with v
(3)
i = ui when

i �= n − k′ + r, n − r and v
(3)
n−k′+r = v

(3)
n−r = 0. v(3) is at distance 2 from u and

labeled with the label m−n+k′ − r −1−n+ r −1 (mod 2n+2) = m+k′ (mod
2n + 2). This is a contradiction. So p �= m + k′ (mod 2n + 2) for 3 ≤ k′ ≤ n.

Subcase 2: Let k′ = 2. Hence uk′ = uk′−1 = 1, that is u1 = u2 = 1. Again if
uj = 1 then uj+k′ = uj+2k′ = · · · uj+lk′ = 1, where j + lk′ ≤ n < j + (l + 1)k′.
Thus we get u1 = u2 = · · · = un = 1. Consider the vertex v(4) with v

(4)
i = ui

when i �= n, n − 2, v
(4)
n = v

(4)
n−2 = 0. v(4) is at distance 2 from u and labeled with

the label m − n − 1 − n + 2 − 1 (mod 2n + 2) = m + 2 (mod 2n + 2). This is a
contradiction. So p �= m + 2 (mod 2n + 2).

Subcase 3: Let k′ = 1. It is necessary for u to be non-adjacent to a vertex
labeled with m + 1 (mod 2n + 2) only if m = 2n + 1. Otherwise, if the label of
u is changed from m to m + 1(mod 2n+2) then the label of u is not reduced. If
m = 2n + 1 then either un = un−1 = 1 or there is a s (1 ≤ s ≤ n − 1) such that
us = 1, us+1 = 0.

Let un = un−1 = 1. Consider the vertex v(5) with v
(5)
i = ui when i �=

n, n − 1, v
(5)
n = v

(5)
n−1 = 0. v(5) is at distance 2 from u and labeled with the label

m − n − 1 − n (mod 2n + 2) = m + 1 (mod 2n + 2). This is a contradiction. So
there is a s (1 ≤ s ≤ n − 1) such that us = 1, us+1 = 0. Consider the vertex v(6)

with v
(6)
i = uiwhen i �= s, s + 1, v

(6)
s = 0, v

(6)
s+1 = 1. v(6) is at distance 2 from

u and labeled with the label m + 1 (mod 2n + 2). This is a contradiction. So
p �= m + 1 (mod 2n + 2).

Combining all these subcases we get that the label of u can not be reduced
to label p where p = m + k′ (mod 2n + 2) for 1 ≤ k′ ≤ n. In other words, the
label of u can not be reduced to label p where p = m − k (mod 2n + 2) for
n + 2 ≤ k ≤ 2n + 1.

Case 2: Let k = n + 1. Consider the vertex v(7) with v
(7)
i = ui when i �= n,

v
(7)
n �= un. v(7) is at distance 1 from u and labeled with the label m+n+1 (mod

2n + 2). This is a contradiction. So p �= m + n + 1 (mod 2n + 2).

Case 3: In this case we take 1 ≤ k ≤ n.
We prove that uk−1 = uk = uk−2 = 0. Suppose uk−1 = 1. Consider the vertex

v(8) where v
(8)
i = ui, i �= k − 1 and v

(8)
k−1 = 0. v(8) is adjacent to u and is labeled

with the label m − k (mod 2n + 2) = p by definition. This is a contradiction. So
uk−1 = 0. By the similar argument we conclude that uk = uk−2 = 0.

We prove that if uj = 0 for some j, 1 ≤ j ≤ n, then uj+k = uj+2k =
· · · uj+lk = 0, where j + lk ≤ n < j + (l + 1)k. Suppose uj = 0 and uj+k = 1.

On Inh-labelings of Hypercubes and Triangular Lattices 259

Consider the vertex v(9) with v
(9)
i = ui when i �= j, j +k, v

(9)
j = 1, v

(9)
j+k = 0. v(9)

is at distance 2 from u and labeled with the label m − j − k − 1 + j + 1 (mod
2n + 2) = m − k (mod 2n + 2) = p. This is a contradiction. So if uj = 0 then
uj+k = uj+2k = · · · uj+lk = 0, where j + lk ≤ n < j + (l + 1)k.

Next we will have following subcases depending on values of k.

Subcase 1: Let 3 ≤ k ≤ n. We prove that at least one of uq and uk−2−q has
value 0 for 1 ≤ q ≤ �k−3

2 �. If uq = uk−2−q = 1, 1 ≤ q ≤ �k−3
2 �, consider the

vertex v(10) with v
(10)
i = ui when i �= q, k − 2 − q and v

(10)
q = v

(10)
k−2−q = 0. v(10)

is at distance 2 from u and labeled with the label m− q − 1− k +2+ q − 1 (mod
2n + 2) = m − k (mod 2n + 2). This is a contradiction. So, at least one of uq

and uk−2−q has value 0.
So if 1 ≤ i ≤ k, then ui = 0 for at least �k−3

2 � + 3 values of i. If n − k ≤ i ≤
n−1, then ui = 0 for at least �k−3

2 �+3 = �k−1
2 �+2 values of i. If un−k = 0 then

un = 0. If un−k �= 0 then for n − k + 1 ≤ i ≤ n − 1, ui = 0 for at least �k−1
2 � + 2

values of i. So for at least one value of r between 0 and �k−1
2 �, un−k+r = un−r =

0. The vertex v(11) with v
(11)
i = ui when i �= n−k+r, n−r, v

(11)
n−k+r = v

(11)
n−r = 1

is at distance 2 from u and labeled with the label m+n−k+r+1+n−r+1 (mod
2n + 2) = m − k (mod 2n + 2). This is a contradiction. So p �= m − k (mod
2n + 2) for 3 ≤ k ≤ n.

Subcase 2: Let k = 2. Hence uk = uk−1 = 0, that is u1 = u2 = 0. Again if
uj = 0 then uj+k = uj+2k = · · · uj+lk = 0, where j + lk ≤ n < j + (l + 1)k.
Thus we get u1 = u2 = · · · = un = 0. Now the vertex v(12) with v

(12)
i = ui when

i �= n, n − 2, v
(12)
n = v

(12)
n−2 = 1 is at distance 2 from u and labeled with the label

m+n+1+n−2+1 (mod 2n+2) = m−2 (mod 2n+2). This is a contradiction.
So p �= m − 2 (mod 2n + 2).

Subcase 3: Let k = 1. If ui = 0 for all i then label of u can not be reduced
further. So either u1 = 1 or there is a s (1 ≤ s ≤ n−1) such that us = 0, us+1 = 1.

Let u1 = 1. The vertex v(13) with v
(13)
i = ui when i �= 1, v

(13)
1 = 0 is at

distance 1 from u and labeled with the label m − 2 (mod 2n + 2). This is a
contradiction. So there is a s (1 ≤ s ≤ n − 1) such that us = 0, us+1 = 1. Then
the vertex v(14) with v

(14)
i = ui when i �= s, s + 1, v

(14)
s = 1, v

(14)
s+1 = 0 is at

distance 2 from u and labeled with the label m − 1 (mod 2n + 2). This is a
contradiction. So p �= m − 1 (mod 2n + 2).

Combining all these subcases we get that the label of u can not be reduced
to label p where p = m − k (mod 2n + 2) for 1 ≤ k ≤ n.

So the label of u can not be reduced to m−k for 1 ≤ k ≤ m and the labeling
f is irreducible.

Next we show that the given labeling f is a no-hole labeling. For every label
p such that 0 ≤ p ≤ 2n + 1 we give below a list of vertices w(p) such that
f(w(p)) = p. w(0) is the vertex such that w

(0)
i = 0 for all i. From Eq. 1 we check

that f(w(0)) = 0. w(1) is the vertex such that w
(1)
i = 1 if i = 1, n − 1, n and

w
(1)
i = 0 otherwise. Then from Eq. 1 we check that f(w(1)) = 1. For 2 ≤ j ≤ n+1,

260 N. Mandal and P. Panigrahi

w(j) is the vertex such that w
(j)
i = 1 if i = j − 1 and w

(j)
i = 0 otherwise.

Then from Eq. 1 we check that f(w(j)) = j. w(n+2) is the vertex such that
w

(n+2)
i = 1 if i = 1, n − 1 and w

(n+2)
i = 0 otherwise. Then from Eq. 1 we check

that f(w(n+2)) = n + 2. For n + 3 ≤ j ≤ 2n + 1, w(j) is the vertex with w
(j)
i = 1

if i = j − n − 2, n and w
(j)
i = 0 otherwise. Then from Eq. 1 we check that

f(w(j)) = j. Hence f is a no-hole labeling.
So we get for all n ≥ 4, Qn is inh-labelable and λinh(Qn) ≤ 2n + 1 �
In the following Theorem we show that the upper bound of λinh(Qn) can be

improved for some values of n.

Theorem 2. If 2k−1 ≤ n ≤ 2k − k − 1 for some positive integer k then
λinh(Qn) ≤ 2k − 1.

Proof. Whittlesey et al. [10] have given several L(2, 1)-labelings for the hyper-
cubes. We prove that for 2k−1 ≤ n ≤ 2k − k − 1 at least one of the labelings
given by them is an inh-labeling. We first describe the labeling given by them for
2k−1 ≤ n ≤ 2k − k − 1. With vertices of Qn represented as binary n-tuples, they
find a linear mapping M : V (Qn) → V (Qk) and an injection f : V (Qk) → N
such that M ◦ f is an L(2, 1)-labeling of Qn. The mapping M is represented
by an n × k binary matrix (also denoted by M), and the k-tuple (v)M is the
matrix product v ∗ M whose calculation is in binary arithmetic. Similarly, the
injection f shall be represented by a k × 1 matrix (also denoted by f) such that
(w)f = wf . Hence, (v)(M ◦ f) = (v ∗ M)f ≡ v ∗ Mf .

In the following discussion, ei denotes the ith row of the n × n identity
matrix. Thus ei ∗M is the ith row of M . The arithmetic here will be binary, and
the operation of binary addition and subtraction will be denoted by ⊕ and �
respectively.

In [10] f is defined as f = (r1, r2, · · · , rk), where ri = 2i−1 for i = 1, 2, · · · , k.
M can be any n × k binary matrix that satisfies the following conditions.
1. No row of M is the zero vector.
2. The rows of M are distinct.
3. No row of M is an element of B′(f), where B′(f) = {∑m

j=1 ej : m =
1, 2, · · · , k}.

They have proved that if these conditions are satisfied then M ◦ f is an
L(2, 1)-labeling with span 2k − 1. Further, f is an one-to-one mapping. Hence,
as Qk has 2k vertices and span M ◦ f = 2k − 1, f is an onto mapping. It is also
proved that M is an onto mapping. Hence M ◦ f is an onto mapping and thus
M ◦ f is a no-hole labeling.

Let S = {(a1, a2, · · · , ak) : a1 = 0} − {(0, 0, · · · , 0)}. Then |S| = 2k−1 − 1.
Also S∩B′(f) = φ. Hence we can choose M in such a way that the elements of S
are the first 2k−1 − 1 row-vectors of M . Let u be a vertex of Qn labeled with an
even label p. Let for j = 1, 2, · · · 2k−1−1, u⊕ej = v(j). Then v(j) is adjacent to u
and (v(j))M = (u⊕ ej)∗M = u∗M ⊕ ej ∗M . Let u∗M = w = (w1, w2, · · · , wk)
and v(j) ∗ M = x(j) = (x(j)

1 , x
(j)
2 , · · · , x

(j)
k). Since ej ∗ M ∈ S, w1 = x

(j)
1 . Thus

x(j) ∗ f is even. Hence for j = 1, 2, · · · , 2k−1 − 1, u is adjacent to the vertex

On Inh-labelings of Hypercubes and Triangular Lattices 261

v(j) with an even label. Total number of even labels in 0, 1, · · · , 2k − 1 is 2k−1.
Hence every vertex of Qn with an even label is adjacent to a vertex with every
other even label. Similarly, every vertex of Qn with an odd label is adjacent to a
vertex with every other odd label. Hence M ◦ f is an irreducible labeling. Thus
we get, λinh(Qn) ≤ 2k − 1. �
The Lemma below gives an upper bound to the upper inh-span of an arbitrary
inh-labelable graph. Using this Lemma we give an upper bound to Λinh(Qn) for
any n.

Lemma 2. For any graph G, Λinh(G) ≤ max{3|N(u)| + |S(u)| : u ∈ V (G)},
where N(u) = {v ∈ V (G) : v ∼ u} and S(u) = {w ∈ V (G) : d(u,w) = 2}.
Proof. Let f be any irreducible no-hole labeling of G and u be an arbitrary
vertex of G. f(u) can not be reduced to f(v), f(v) − 1, f(v) + 1 for any vertex v
adjacent to u. Number of vertices adjacent to u is |N(u)|. f(u) can not be reduced
to f(w) for any vertex w at distance two from u. Number of vertices at distance
2 from u is |S(u)|. So there are at most 3|N(u)| + |S(u)| labels to which f(u)
can not be reduced to. Since f is an irreducible labeling f(u) ≤ 3|N(u)|+ |S(u)|,
otherwise, if f(u) > 3|N(u)| + |S(u)| then there will be a label to which f(u)
can be reduced. So, Λinh(G) ≤ max{3|N(u)| + |S(u)| : u ∈ V (G)}. �

Theorem 3. For all n ≥ 4, 2n + 1 ≤ Λinh(Qn) ≤ n2+5n
2 .

Proof. By Theorem 1, Qn has an inh-labeling with span 2n + 1. So Λinh(Qn) ≥
2n + 1.

Let u be any vertex of Qn. Number of vertices adjacent to u is n. Number of

vertices at distance 2 from u is (
n
2). Hence by Lemma 2, Λinh(Qn) ≤ 3n+n2−n

2 =

n2+5n
2 . �

Next we shall discuss about the inh-span of triangular lattices. Recall that Laskar
and Villalpando [7] conjectured that inh-span of the infinite triangular lattice
is 9. Here we prove that inh-span of the infinite triangular lattice is 8.

Theorem 4. The inh-span of the infinite triangular lattice is 8.

Proof. Let G be the infinite triangular lattice. Then V (G) = {uij : i, j ∈ ZZ}.
uij ∼ ui+1j for all i, j, uij ∼ uij+1 for all i, j, uij ∼ ui+1j+1 for all i ≡ 1 (mod 2),
and uij ∼ ui+1j−1 for all i ≡ 0 (mod 2). Calamoneri [1] gave the following L(2, 1)-
labeling f of the infinite triangular lattice with span 8.

f(uij) = 0 if i = 1 and j ≡ 1 (mod 3)
f(uij) = 3 if i = 1 and j ≡ 2 (mod 3)
f(uij) = 6 if i = 1 and j ≡ 0 (mod 3)
f(uij) = 2 if i = 2 and j ≡ 1 (mod 3)
f(uij) = 5 if i = 2 and j ≡ 2 (mod 3)
f(uij) = 8 if i = 2 and j ≡ 0 (mod 3)
f(uij) = 7 if i = 0 and j ≡ 1 (mod 3)

262 N. Mandal and P. Panigrahi

5 8 2 5

1 4 7 1

6 0 3 6

0 3 06 3 6 0

8 2 5

4 77

3 0 3

2

0

3

1

Fig. 1. inh-labeling of the infinite triangular lattice with span 8

f(uij) = 1 if i = 0 and j ≡ 2 (mod 3)
f(uij) = 4 if i = 0 and j ≡ 0 (mod 3).
If i is odd then f(ui+3j) = f(uij) and if i is even then f(ui+3j) = f(uij) +

3(mod 9).
Since span f = 8 and every label in [0,8] is used f is a no-hole labeling.

For any vertex v in the lattice the vertices at distance at most two from v uses
every label in [0, f(v) − 1]. Hence f is an irreducible labeling. Thus f is an
inh-labeling and so λinh(G) ≤ 8. We note that the maximum degree of G is
six. In addition there is a vertex of maximum degree adjacent to two vertices of
maximum degree. Therefore, from Lemma 1, λ(G) ≥ 8. So, λinh(G) = 8. Thus
inh-span of the infinite triangular lattice is 8. �
Recall that Laskar and Villalpando [7] proved that for any triangular lattice
Hr,c with r ≥ 5 and c ≥ 5, 8 ≤ λinh(Hr,c) ≤ 13. Here we show that for every
finite triangular lattice Hr,c with r ≥ 5, c ≥ 5 the lower bound in the above
becomes sharp. For this we need the lemma given below.

Lemma 3. Let G be a graph and G1 be an induced subgraph of it. If any L(2, 1)-
labeling f of G with span k induces an inh-labeling of G1 with the same span,
then G has an inh-labeling with span k.

Proof. We consider the L(2, 1)-labeling f of G. Since f is a no-hole labeling of
G1, for each i (0 ≤ i ≤ k) there is at least one vertex vi in G1 such that f(vi) = i.
We reduce the labels of vertices of G until we arrive at an irreducible labeling
f ′. Since f induces an irreducible labeling of G1, label of no vertex in V (G1) is
reduced. So f ′(vi) = i for 1 ≤ i ≤ k. Since span f = k we get that span f ′ = k.
Since all the labels from 0 to k are used f ′ is an inh-labeling with span k. �
Theorem 5. For any finite triangular lattice Hr,c where r, c ≥ 5,
λinh(Hr,c) = 8.

Proof. We give the following L(2, 1)-labeling f of Hr,c with span 8.
f(uij) = 0 if i = 1 and j ≡ 1 (mod 3)
f(uij) = 3 if i = 1 and j ≡ 2 (mod 3)
f(uij) = 6 if i = 1 and j ≡ 0 (mod 3)

On Inh-labelings of Hypercubes and Triangular Lattices 263

Fig. 2. inh-labeling of H3,3 with span 8

f(uij) = 2 if i = 2 and j ≡ 1 (mod 3)
f(uij) = 5 if i = 2 and j ≡ 2 (mod 3)
f(uij) = 8 if i = 2 and j ≡ 0 (mod 3)
f(uij) = 7 if i = 0 and j ≡ 1 (mod 3)
f(uij) = 1 if i = 0 and j ≡ 2 (mod 3)
f(uij) = 4 if i = 0 and j ≡ 0 (mod 3).
If i is odd then f(ui+3j) = f(uij) and if i is even then f(ui+3j) = f(uij) +

3(mod 9).
This labeling is inh-labeling for the subgraph of Hr,c induced on the vertex

set {ui,j : i = 1, 2, 3 and j = 1, 2, 3} with span 8. So by Lemma 3 there is an inh-
labeling of Hr,c with span 8 and λinh(Hr,c) ≤ 8. But λinh(Hr,c) ≥ 8 according
to [7]. Thus λinh(Hr,c) = 8. �

References

1. Calamoneri, T.: Optimal L(h, k)-labeling of regular grids. Discrete Math. Theoret.
Comput. Sci. 8, 141–158 (2006)

2. Fishburn, P.C., Roberts, F.S.: No-hole L(2, 1)-colorings. Discrete Appl. Math. 130,
513–519 (2003)

3. Georges, J.P., Mauro, D.W., Whittlesey, M.A.: Relating path coverings to vertex
labellings with a condition at distance two. Discrete Math. 135, 103–111 (1994)

4. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J.
Discrete Math. 5(4), 586–595 (1992)

5. Jacob, J., Laskar, R., Villalpando, J.: On the irreducible no-hole L(2, 1) coloring
of bipartite graphs and Cartesian products. J. Comb. Math. Comb. Comput. 78,
49–64 (2011)

6. Laskar, R.C., Matthews, G.L., Novick, B., Villalpando, J.: On irreducible no-hole
L(2, 1)-coloring of trees. Networks - Spec. Issue Trees 53(2), 206–211 (2009)

7. Laskar, R.C., Villalpando, J.J.: Irreducibility of L(2,1)-coloring and inh-colorablity
of unicyclic and hex graphs. Utilitas Math. 69, 65–83 (2006)

8. Villalpando, J., Laskar, R.: Irreducible no-hole colorings of grid graphs, hypercube
and other bipartite graphs. Joint Mathematics Meetings (2008)

9. West, D.B.: Introduction to Graph Theory. Prentice-Hall, New Delhi (2003)
10. Whittlesey, M.A., Georges, J.P., Mauro, D.W.: On the λ-number of Qn and related

graphs. SIAM J. Discrete Math. 8(4), 499–506 (1995)

Medians of Permutations: Building Constraints

Robin Milosz and Sylvie Hamel(B)

DIRO - Université de Montréal, C. P. 6128 Succ. Centre-Ville,
Montréal, QC H3C 3J7, Canada

{robin.milosz,sylvie.hamel}@umontreal.ca

Abstract. Given a set A ⊆ Sn of m permutations of [n] and a distance
function d, the median problem consists of finding a permutation π∗

that is the “closest” of the m given permutations. Here, we study the
problem under the Kendall-τ distance which counts the number of pair-
wise disagreements between permutations. This problem has been proved
to be NP-hard when m ≥ 4, m even. In this article, we investigate new
theoretical properties of A that will solve the relative order between pairs
of elements in median permutations of A, thus drastically reducing the
search space of the problem.

1 Introduction

The problem of finding medians of a set of m permutations of {1, 2, . . . , n} under
the Kendall-τ distance [10,15] is often cited in the literature as the Kemeny
Score Problem [9]. In this problem m voters have to order a list of n candidates
according to their preferences. The problem then consists of finding a Kemeny
consensus: an order of the candidates that agrees the most with the order of the
m voters, i.e., that minimizes the sum of the disagreements.

This problem is polynomial-time solvable for m = 2, has been proved to be
NP-complete when m ≥ 4, m even (first proved in [6], then corrected in [4]), but
its complexity remains unknown for m ≥ 3, m odd. In the last 10 years, different
approximation algorithms have been derived. First, a randomized algorithm with
approximation factor 11/7 [1] and then a deterministic one with approximation
factor 8/5 [16] were designed. In 2007, a PTAS result was obtained [11] and some
years later, different fixed-parameter algorithms have been described [3,8,13,14].

Solving the median problem may also be seen as solving the order of all
the n(n−1)

2 possible pairs of elements of a median. Other theoretical approaches
working in that direction and aiming at reducing the search space for this prob-
lem have also been developed. In [5], a theorem targeting pairwise ordering was
proposed along with some constraints about adjacent elements of a median. A
data reduction was proposed in [2] where a “non-dirty” element can be ordered
with respect to all other elements in a median, splitting the ordering problem
into two smaller ones.

supported by NSERC through an Individual Discovery Grant (Hamel) and by
FRQNT through a Master’s scholarship (Milosz).

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 264–276, 2016.
DOI: 10.1007/978-3-319-29221-2 23

Medians of Permutations: Building Constraints 265

In this present work, we are interested in the theoretical perspective of the
problem, investigating properties of an instance that can partly resolve and accel-
erate computation. We will derive necessary conditions for setting the order of
appearance of pairs of elements in a median, building constraints that will dras-
tically reduce the search space for this median.

This article is organized as follows: after introducing the basic definitions and
notations in Sect. 2, we resume, in Sect. 3, some related previous works aiming at
reducing the search space for the medians. Section 4 presents our approach, while
Sect. 5 presents its results on uniformly generated random sets of permutations.
Section 5 also compares our approach with the ones resumed in Sect. 3. Finally,
we conclude and give some future directions for this work in Sect. 6.

2 Median of Permutation: Definitions and Notations

A permutation π is a bijection of [n] = {1, 2 . . . , n} onto itself. The set of all
permutations of [n] is denoted Sn. As usual we denote a permutation π of [n] as
π = π1π2 . . . πn. Let A ⊂ Sn be a set of permutations of [n], we will denote its
cardinality by #A.
The Kendall-τ distance, denoted dKT , counts the number of pairwise dis-
agreements between two permutations and can be defined formally as follows:
for permutations π and σ of [n], we have that

dKT (π, σ) = #{(i, j)|i < j and [(π[i] < π[j] and σ[i] > σ[j])

or (π[i] > π[j] and σ[i] < σ[j])]},

where π[i] denotes the position of integer i in permutation π.
Given any set of permutations A ⊆ Sn and a permutation π, we have

dKT (π,A) =
∑
σ∈A

dKT (π, σ).

The problem of finding a median of A under the Kendall-τ distance can
be stated formally as follows: Given A ⊆ Sn, we want to find a permutation π∗

of Sn such that dKT (π∗,A) ≤ dKT (π,A), ∀ π ∈ Sn. Note that a set A can have
more than one median.

3 Previous Approaches

When dealing with permutations, searching through the whole set of permuta-
tions [n] quickly becomes impossible since there are n! such permutations. To
be able to find exact medians for sets of “big” permutations, we need to reduce
the search space so that the computation will take place in a reasonable time.

Here, given a set of permutations A ⊆ Sn, we present two previous approaches
that reduce the search space by discarding non relevant permutations.

266 R. Milosz and S. Hamel

3.1 Data Reduction with Non-dirty Candidates

In [2] a non-dirty pair of candidates according to a certain threshold s ∈ [0, 1]
is a pair of elements (a, b), a, b ∈ [n], which respect the following property: either
a is favored to b, i.e. element a is place to the left of element b, in a ratio of s or
more in the starting set of permutations A, or b is favored to a in a ratio of s or
more in the starting set A. A non-dirty candidate is a element which forms a
non-dirty pair with every other element of [n] according to the threshold s.

It has been proven in [2] that with s = 3/4, elements of a median permutation
will be necessarily ordered relatively to a non-dirty candidate in the majority
order. In other words, a non-dirty candidate will separate the median permuta-
tion such as all the elements that are favored to it will be to its left and all the
elements that are not will be to its right. In what follows, we will refer to this
result as the 3/4 majority rule.

Having such a non-dirty candidate allows to cut the instance of the problem
in two sub-instances, on which the approach can be re-applied. It also allows a
parallelization of the problem because the two sub-instances are independent.
Betzler’s et al. approach is strong on sets of permutations derived from real
data, since, in those cases, the permutations are often really close to each other,
greatly increasing the probability of finding non-dirty candidates.

The drawback is that non-dirty candidates are rare on uniformly generated
random sets of permutations, like shown in Table 2 and discussed in Sect. 5.

3.2 Always Theorem

In [5] a pairwise ordering theorem was described for a pair of elements (a, b)
such that if a is favored to b in all permutations of A then a will be necessarily
favored to b in any median permutation. This theorem allows to set the relative
order in pairs of elements that respect the property of being always at the right
or always at the left of the other element. We will refer to this theorem as the
always theorem.

The drawback is that the efficiency of this theorem for a set of uniformly
distributed random permutations is greatly affected by the number of permu-
tations m in our given set A. The probability that a random pair satisfies the
always theorem is p = 1

2m−1 because it has to keep the same order in each
of the m permutations and there are two possible orders a < b and b < a. For
three permutations, p = 25%, for four permutations p = 12.5% and so on (See
Table 1).

4 Our Approach

We were inspired by the two approaches resumed in Sect. 3, with the aim of
building ordering contraints for pairs of elements in a median. We ask ourselves
if there was a data reduction which was less restrictive than the 3/4 majority
rule but more englobing than the always theorem.

Medians of Permutations: Building Constraints 267

4.1 Existence of a Majority Bound?

Given that the always theorem guarantees the order of a pair of elements in a
median, if this pair is always in that order in all permutations of A, our first idea
was to find a %-majority bound, where having an element favored to another
one in at least p% of the permutations of A would guarantee the order of this
pair of elements in a median of A. Unfortunately, no such bound exists.

Proposition 1. For any given bound s, 0.5 < s < 1, it is always possible to
construct a set A in which the proportion p% of permutations favoring element
i to element j (the major order) will be at least s, s ≤ p% < 1, but for which the
order of the pair (i, j) in any median of A will contradict this major order.1 �.

4.2 Major Order Theorem

Since nothing can be derived from a majority ordering, another idea comes from
the observation that two elements that are close enough in all permutations of
A will have the tendency to be placed in their major order, in any median of A,
because there is less interference caused by other elements.

The total absence of interference between two elements is found when they
are adjacent in all permutations. In that case, we can consider them as one
heavier element and their relative order in a median permutation will clearly be
the majority order.

So, what happens if we limit the interference between two elements? Can we
then have an extension of the always theorem? The answer is yes and will be
given by our major order theorem below. But first, we need some definitions and
notations.

Let A ⊆ Sn be a set of m permutations of [n]. Let us build, for each pair of
elements (i, j), 1 ≤ i < j ≤ n, two multisets Eij(A) and Eji(A).

Multiset Eij(A) (resp. Eji(A)) will contain all the elements present between
elements i and j in all permutations of A, where element i is positioned before
(resp. after) element j, denoted i < j (resp. j < i). Mathematically, we have

Eij(A) =
⋃

π∈A,π[i]<π[j]

{k |π[i] < π[k] < π[j]},

and
Eji(A) =

⋃
π∈A,π[j]<π[i]

{k |π[j] < π[k] < π[i]}.

When there are no ambiguities, we will simply denote Eij(A) by Eij .

Example 1. For A = {13425, 41325, 42351}, we have E12 = {3, 3, 4}, which
are the elements present in the first two permutations of A, where element 1 is
positioned before element 2. E21 = {3, 5}, which are the elements between 2 and
1 in the third permutation.
1 Proof available here: http://www-etud.iro.umontreal.ca/miloszro/caldam/caldam.

html

http://www-etud.iro.umontreal.ca/miloszro/caldam/caldam.html
http://www-etud.iro.umontreal.ca/miloszro/caldam/caldam.html

268 R. Milosz and S. Hamel

To keep track of the number of permutations in A, that have a certain order
between two elements, let us introduce the left/right distance matrices L and R.

Definition 1. Let L(A), or simply L, when there are no ambiguities, be the
left distance matrix of A, where Lij(A) denotes the number of permutations
of A having element i to the left of element j. Symmetrically, let R(A), or
simply R, be the right distance matrix of A, where Rij(A) denotes the number
of permutations of A having element i to the right of element j. Obviously,
Lij + Rij = m and Lij = Rji.

Notations: Let
−→
Lx be the vector of the left distance matrix L, associated to the

element x. Note that
−→
Lx[y] = Lxy. The L1-norm of the vector ||−→Lx||1, is the sum

of the absolute values of all the elements of the vector, so here it represents the
sum of all the times where x is to the left of any element in all permutations of
A. For S, a set of elements of [n], we define LxS as LxS =

∑
s∈S Lxs, i.e. the total

number of times where x is to the left of an element of S in all permutations
of A.

−→
Rx, ||−→Rx||1 and RxS =

∑
s∈S Rxs are defined symmetrically. Note that

dKT (π,A) =
∑

i,j|π[i]<π[j] Lij .

Example 2. In set A of Example 1, L12 = 2 and R12 = 1 since 1 is to the
left of (or favored to) 2 in the two first permutations of A and to the right of 2
only in the last permutation of A. Here,

−→
L1 = [0, 2, 2, 1, 2] and ||−→L1||1 = 7. Let

S = {2, 4}, then L1S = L12 + L14 = 3.

We are now almost ready to state our major order theorem but first let us
formally define the major order between elements.

Definition 2. We say that the major order between elements i and j is i < j
(resp. j < i) if Lij > Rij (resp. Rij > Lij), the minor order is then j < i (resp.
i < j). We will use dij to denote the difference between the major and minor
order of two elements i and j, dij = |Lij −Rij | = |Rij −Lij | = |Lji −Rji| = dji.

Theorem 1 (Major Order Theorem 1.0). Let A ⊆ Sn be a set of permuta-
tions of [n]. For a pair of elements (i, j), 1 ≤ i < j ≤ n, if i < j (resp. j < i) is
their major order and dij > #Eji (resp. dij > #Eij) then this major order will
be conserved in all medians π∗ of A.

Proof of Theorem 1: Suppose, w.l.o.g., that for a pair of elements (i, j) the
major order is i < j and that the conditions of Theorem1 are fulfilled i.e. we
have dij > #Eji. By contradiction, suppose that we have a median permutation
π∗ for A in which i and j are in their minor order j < i. Let π∗ = B j K iA be
such a median, where B, K and A are the sets of elements found before (B), in
between (kernel - K) and after (A) elements i and j.

The contribution of element i to the Kendall-τ distance dKT (π∗,A) is

LiB
#of times i is left to b ∈ B,

in all σ ∈ A

+ LiK
#of times i is left to k ∈ K,

in all σ ∈ A

+ RiA
#of times i is right to a ∈ A,

in all σ ∈ A

+Lij .

Medians of Permutations: Building Constraints 269

Similarly, the contribution of element j to dKT (π∗,A) is LjB + RjK + RjA +
Lij . We will show that for either σ∗ = B i j K A or σ∗ = B K i j A, we have
dKT (σ∗,A) < dKT (π∗,A) contradicting our choice of median and, at the same
time, our choice of ordering for the pair (i, j).

We will investigate interactions between i, j and elements of the set K, since
the elements of the sets A and B stay in the same relative order with i and j in
π∗ and either choice of σ∗. (Elements in A (resp. B) will always be after (resp.
before) elements i and j).

The cost of the interaction of i with K and of j with K is respectively LiK

and RjK in the supposed median π∗. Thus, there are two possible cases: either
LiK ≤ RjK or LiK > RjK .

Case 1: LiK ≤ RjK

For this case, let σ∗ = B K i j A, i.e. we moved element j at the immediate right
of element i in our supposed median π∗ = B j K iA. In this case, we have

dKT (σ∗,A) − dKT (π∗,A)
(�1)= (LjB + LjK + RjA + Rij) − (LjB + RjK + RjA + Lij)

= (LjK + Rij) − (RjK + Lij)

= LjK − RjK + −(Lij − Rij)

= LjK − RjK − dij

(∗1)≤ LiK + #Eji − RjK − dij

Case 1≤ RjK + #Eji − RjK − dij

= #Eji − dij

< 0.

The last inequality comes from the initial condition of the theorem. Equality
(1) is obtained by taking into account only the contribution of the element that
changes position between π∗ and σ∗, i.e. element j, since the contribution of the
other elements will cancel each other out. As for inequality (∗1), it comes from
the fact that LjK ≤ LiK + #Eji since for an element k ∈ K, we will add one
to Ljk iff j is to the left of k in a permutation of A. In this same permutation,
either i is also to the left of k (captured by adding one to Lik) or to the right,
in which case, k is an element of Eji.

Thus, moving j after i gives us a permutation σ∗ which is closer to the set
A contradicting our choice of π∗ as a median of A.

Case 2: LiK > RjK

For this case, let σ∗ = B K i j A, i.e. we moved element i at the immediate left
of element j in our supposed median π∗ = B j K iA. In this case, we have

270 R. Milosz and S. Hamel

dKT (σ∗,A) − dKT (π∗,A)
(�2)= (LiB + RiK + RiA + Rij) − (LiB + LiK + RiA + Lij)

= (RiK + Rij) − (LiK + Lij)

= RiK − LiK + −(Lij − Rij)

= RiK − LiK − dij

(∗2)≤ RjK + #Eji − LiK − dij

Case 2
< LiK + #Eji − LiK − dij

= #Eji − dij

< 0.

Again, the last inequality comes from the initial condition of the theorem.
Equality (2) is obtained by taking into account only the contribution of the
element that changes position between π∗ and σ∗, i.e. element i. As for inequality
(∗2), it comes, by symmetry, from (∗1), i.e. RiK ≤ RjK + #Eji.

In each of the two cases, we were able to find a permutation σ∗, such that
dKT (σ∗,A) < dKT (π∗,A), contradicting our choice of median π∗ and our choice
of ordering for the pair of elements (i, j). Consequently, i and j can only be
placed in their major order i < j in a median permutation if the conditions are
fulfilled. �

4.3 Refined Versions of the Major Order Theorem

We tested our major order theorem 1.0 on randomly generated sets of permu-
tations (see Table 1) and saw that its efficiency, in terms of the number of pairs
of elements ordered, was not that much better than the always theorem, as n
grows. To be able to solve the ordering of a bigger number of pairs of elements,
we needed to find a way to reduce the size of our multisets Eij and Eji.

Refined Version 1. We observed that the presence of an element k in both
multisets Eij and Eji cancels its impact on the ordering of the pair of elements
(i, j). This leads to a 2.0 version of our major order theorem presented below.

Let E′
ij(A) and E′

ji(A) be those new multisets defined by E′
ij(A) = Eij(A)\

Eji(A) and E′
ji(A) = Eji(A) \ Eij(A).

Example 3. In set A of Example 1, E′
12 = E12(A)\E21(A) = {3, 3, 4}\{3, 5} =

{3, 4} and E′
21 = E21(A) \ E12(A) = {3, 5} \ {3, 3, 4} = {5}.

Theorem 2 (Major Order Theorem 2.0). Let A ⊆ Sn be a set of permuta-
tions of [n]. For a pair of elements (i, j), 1 ≤ i < j ≤ n, if i < j (resp. j < i) is
their major order and dij > #E′

ji (resp. dij > #E′
ij) then this major order will

be conserved in all medians π∗ of A.

Sketch of proof. In an informal way, let us pretend w.l.o.g. that the majority
order between i and j is i < j. We observed that every element k found between
i and j in a permutation where i and j are in the minor order j < i (i.e. k ∈ Eji),

Medians of Permutations: Building Constraints 271

will increase Ljk by one but will not increase Lik. Consequently, it will increase
||−→Lj ||1 by one but not increase ||−→Li||1 and it will increase LjS by one but not
increase LiS for those sets S that contain k.

If this element k is also found between i and j in another permutation where
i and j are in the major order i < j (i.e. k ∈ Eij), it will increase Lik by one but
will not increase Ljk. Consequently in the same way, it will increase ||−→Li||1 by
one but not increase ||−→Lj ||1 and it will increase LiS by one but not increase LjS

for those sets S that contain k. So, if this happens, it will cancel the contribution
of k in Eji.

Because only elements of Eji have an impact on the upper bound when i < j
is the major order, we are interested to minimize the size of Eji. We can cancel
one copy of k in Eji if a copy of k is found in Eij because each copy cancels the
effect of the other side’s copy in the difference between Lik and Ljk. We take
out one copy of k in both multisets and repeat the process with every common
element until the intersection of those two collections becomes empty. �

This new version 2.0 of our major order theorem was also tested on randomly
generated sets of permutations (see Table 1) and its efficiency, discussed in more
details in Sect. 5, is much better then our 1.0 version even as n grows.

Refined Version 2. Given a set of permutations A, Theorem 2 gives us a set
of ordering constraints for some pairs of elements in a median of A. We can use
this set to extend the reach of the theorem by applying a second filter over the
multisets E′

ij , E′
ji, in the following way: While investigating a pair of elements

(i, j), if we previously found a pair of constrains related to an element k, (k < i
and k < j) or (i < k and j < k), then this element k cannot be found in
between i and j in a median permutation. Regarding the proof of Theorem1,
with π∗ = BjKiA, it cannot be in K, thus its contribution to LiK , LjK , RiK

and RjK is null and so it can be removed from E′
ij and E′

ji. In this way, we
can trim the multisets E′

ij and E′
ji by taking out all copies of elements that

have been proved, by our ordering contraints, to be to the right, or to the left,
of both i and j. Let E′′

ij
1 and E′′

ji
1 be these new trimmed multisets, obtained

after this first iteration. We continue applying the same theorem but upgrading
the dij > #E′

ji condition to dij > #E′′
ji

1. We iterate this process, obtaining
at iteration t, new trimmed sets E′′

ij
t and E′′

ji
t. We stop the process when an

iteration does not find any new constraint. This gives us the following refined
version of Theorem 2:

Theorem 3 (Major Order Theorem 3.0). Let A ⊆ Sn be a set of permuta-
tions of [n]. For a pair of elements (i, j), 1 ≤ i < j ≤ n, if i < j (resp. j < i)
is their major order and dij > #E′′

ji
t, t ∈ N (resp. dij > #E′′

ij
t) then this major

order will be conserved in all medians π∗ of A. �

272 R. Milosz and S. Hamel

5 Efficiency of Our Approach

In this section, we will present the efficiency of our approach on randomly gen-
erated data and also compare it to the previous approaches briefly described in
Sect. 3. In what follows, n will represent the number of elements in our permu-
tations and m the size of the set of permutations considered.

We will base our efficiency statistics on the proportion of solved ordering of
pairs of elements. (For permutations of [n], there are n(n−1)

2 pairs to order.)
Note that for efficiency and theoretical concerns, after applying any theorem

on a set of permutations A, we apply the transitive closure on the sets of con-
straints found, since if we know that an element i is to the left of j and element
j is to the left of k, than we also know that element i will be left of k. (The
always theorem is always transitive closed but it is not the case for our major
order theorems.)

We evaluated our approach on uniformly generated random permutation sets.
For each couple m, n, statistics where calculated over 2000 (big n) to 100000
(smaller n) instances. Fisher-Yates shuffle also known as Knuth shuffle [7,12]
was used to create random permutations which guarantees that the generation
is uniform (every permutation is equally likely).

Table 1 shows the efficiency of the always theorem and versions 1.0, 2.0 and
3.0 of our Major Order theorem on sets of permutations of [n], when n = 15 or
n = 30.

Table 1. Efficiency of different approaches, in terms of the proportion of ordering of
pairs of elements solved, on sets of uniformly distributed random permutations, n=15
and n=30, m = 3, 4, 5, 10..15, 20, statistics generated over 100 000 instances for n=15
and 40 000 instances for n=30.

n = 15 n = 30

Always Maj. Order Maj. Order Maj. Order Always Maj. Order Maj. Order Maj. Order

m thm thm 1.0 thm 2.0 thm 3.0 thm thm 1.0 thm 2.0 thm 3.0

3 0.2496 0.3603 0.4981 0.6345 0.2498 0.3055 0.3962 0.5065

4 0.1248 0.2595 0.4711 0.5201 0.1248 0.1937 0.3658 0.4123

5 0.0626 0.1928 0.4648 0.5813 0.0626 0.1272 0.3478 0.4036

10 0.0020 0.0530 0.4435 0.5173 0.0020 0.0199 0.3194 0.3619

11 0.0010 0.0419 0.4478 0.5478 0.0010 0.0139 0.3174 0.3609

12 0.0005 0.0328 0.4418 0.5182 0.0005 0.0098 0.3149 0.3558

13 0.0002 0.0261 0.4457 0.5450 0.0002 0.0070 0.3147 0.3570

14 0.0001 0.0208 0.4415 0.5199 0.0001 0.0050 0.3133 0.3535

15 0.0001 0.0165 0.4453 0.5445 0.0001 0.0036 0.3130 0.3545

20 0 0.0054 0.4415 0.5248 0 0.0007 0.3096 0.3485

A first observation comes from the always theorem which solves in average,
like stated in Sect. 3, 1

2m−1 of the ordering of the pairs in an instance of a set
of m uniformly generated random permutations. The always theorem, which is

Medians of Permutations: Building Constraints 273

englobed in our Major Order theorems, sets an inferior bound on the efficiency
of the approach.

Table 1 also shows that even if our Major Order theorem 1.0 is quite stronger
than the always theorem on small sets of permutations but quickly converge to
the always theorem which keeps a stable proportion of solved pairs as n becomes
bigger.

As Table 1 is showing that our Major Order theorems greatly improves the
efficiency on small and medium scale instances (in regards to n). The partic-
ular strength of versions 2.0 and 3.0 is to extend the efficiency on big set of
permutations (bigger m) where the always theorem is hardly applicable.

Our Major Order theorems have their best efficiency on sets of three per-
mutations (m = 3), the only case where the theoretical complexity is still not
clear. On a bigger scale, Major Theorem 3.0 can still solve in average more that
33 % of the pairs for 3 random permutations of 100 elements. Figure 1 shows the
average performance of our approach on 3-permutations sets of different sizes.

Fig. 1. Efficiency of the Always and Major Order Theorems and 3/4 Majority Rule
in term of the proportion of pairs resolution, when m = 3 and n = 10..100, statistics
generated over 2000 to 400 000 instances.

To compare our approach with the 3/4 Majority Rule approach of Betzler
et al. [2], we first tested its applicability (in terms of finding non-dirty candidates)
on uniformly generated sets of m permutations of [n], for different values of m and
n. Table 2 shows that this approach is really not doing well on random sets, being
applicable less than 1 % of the time in most cases. The case where m = 4 is an
exception, where non-dirty candidates were found in much greater proportions.

In instances with sets of uniformly distributed permutations, we noticed that
the vast majority of constraints found by the 3/4 Majority Rule are also found
by the Major Order Theorem 3.0 (see Table 3). Only a few exceptions are found
in large scale testing, most of them in instances of the problem with sets of 4
permutations. In approximately 15 % of these cases the Major Order theorem
3.0 does not completely englobe the 3/4 Majority Rule.

5.1 Time Complexity of Our Approach and Implementation

We implemented the Major Order Theorems using matrices to represent the
constraints. The theoretical complexity for the preprocessing is n3mk, where n

274 R. Milosz and S. Hamel

Table 2. Applicability, in %, of the
3/4 majority rule on sets of uniformly
distributed random permutations, for
n = 8, 9, 10, 15, 20, m = 3..10, 15, 20,
statistics generated over 10 000–400 000
instances.

m\n 8 9 10 15 20

3 0.8% 0.55% 0.41% 0.12% 0.05%

4 16.4% 12.88% 10.37% 3.93% 1.92%

5 2.19% 1.57% 1.16% 0.37% 0.18%

6 0.41% 0.28% 0.2% 0.05% 0.02%

7 0.08% 0.05% 0.03% 0.01% 0%

8 0.88% 0.6% 0.43% 0.12% 0.06%

9 0.22% 0.14% 0.09% 0.02% 0.01%

10 0.05% 0.03% 0.02% 0% 0%

15 0% 0% 0% 0% 0%

20 0% 0% 0% 0% 0%

Table 3. Inclusion, in %, of 3/4 major-
ity rule in Major Order Thm 3.0 on the
same sets as Table 2.

m\n 8 9 10 15 20

3 100% 100% 100% 100% 100%

4 85.2% 84.7% 84.0% 86.7% 88.6%

5 100% 100% 100% 99.96% 100%

6 100% 100% 100% 100% 100%

7 100% 100% 100% 100% 100%

8 99.7% 100% 100% 100% 100%

9 100% 100% 100% 100% 100%

10 100% 100% 100% 100% 100%

15 100% 100% 100% 100% 100%

20 100% 100% 100% 100% 100%

is the size of the permutations, m is the number of permutations and k is the
number of iterations of the last refined version of the theorem. For each of the
n(n−1)

2 pair of elements, the construction of collections Eij and Eji implies a
scan of the m permutations of A, having each n elements. The cancelations and
removals of the elements in those collections are proportional to the scan. Note
that in our preliminary tests, k is always really small (between 4 and 9 for sets
of permutations of n = 400). As an example, on a Intel(R) Core(TM) i7 CPU
870 @ 2.93 GHz, computing the Major Order Theorem 3.0 constraints for an
instance with m = 3 and n = 400 take less than 30 s.

A simple Branch and Bound (BnB) solver, using some basic left/right con-
straints [5] and cutting non promising branches, was combined with an imple-
mentation of the Major Order Theorem 3.0 to give an evaluation of the com-
putational gain for the computation of a median of a set of permutations. The
original BnB solver would take 13 min and 53 s to solve 1000 uniformly random
instances of m = 3 and n = 15. When combined with our new constraints, the
calculation time is reduced to a mere 10 s. The source code (Java) is available2

for testing and replication of the experimental results.

6 Conclusion and Future Works

In this paper a new approach was presented that partly solve the median prob-
lem, under the Kendall-τ distance, by finding a set of ordering constraints on
pairs of elements in a median. Its reach is much larger than previous approaches
(always theorem, 3/4 Majority Rule). Therefore, it is much more efficient on data,
especially uniformly-distributed data, which is well-reflected on showed statis-
tics. Our approach has a great efficiency on small and medium scale instances of
2 http://www-etud.iro.umontreal.ca/miloszro/caldam/caldam.html.

http://www-etud.iro.umontreal.ca/miloszro/caldam/caldam.html

Medians of Permutations: Building Constraints 275

the problem and, curiously, has an even greater impact on cases where m = 3.
The constraints found by this approach may be used in any algorithm or heuristic
to accelerate computations.

It will be interesting to investigate further extensions of the Major Order
theorems. Some preliminary results done on cases where any of the multisets
Eij , E′

ij , E′′
ij

t have a cardinality equal to dij , are demonstrating a not-negligible
improvement of the solving efficiency and a total inclusion of the 3/4-Majority
Rule. The greater efficiency of the Major Order theorems on the particular m = 3
case shows great promise for further work. Are there other additional properties,
in this particular case, which may further enhance the efficiency?

Acknowledgements. Thanks to Bryan Brancotte, Sarah Cohen-Boulakia and Alain
Denise (LRI - Paris Sud) for giving us useful advices and thoughts to guide the work.
Thanks to Nicole Burke (Montreal) for a careful english revision of the article.

References

1. Ailon, N., Charikar, M., Newman, N.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM 55(5), 1–27 (2008)

2. Betzler, N., Bredereck, R., Niedermeier, R.: Theoretical and empirical evaluation
of data reduction for exact kemeny rank aggregation. Auton. Agent. Multi-Agent
Syst. 28, 721–748 (2014)

3. Betzler, N., et al.: Average parameterization and partial kernelization for comput-
ing medians. J. Comput. Syst. Sci. 77(4), 774–789 (2011)

4. Biedl, T.C., Brandenburg, F.J., Deng, X.: Crossings and permutations. In: Healy,
P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg
(2006)

5. Blin, G., Crochemore, M., Hamel, S., Vialette, S.: Median of an odd number of
permutations. Pure Math. Appl. 21(2), 161–175 (2011)

6. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proceedings of the 10th WWW, pp. 613–622 (2001)

7. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural, Medical
Research, 3rd edn., pp. 26–27. Oliver & Boyd, London (1948)

8. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament,
kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa,
K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 3–14. Springer,
Heidelberg (2010)

9. Kemeny, J.: Mathematics without numbers. Daedalus 88, 577591 (1959)
10. Kendall, M.: A new measure of rank correlation. Biometrika 30, 81–89 (1938)
11. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors, STOC 2007, pp.

95–103 (2007)
12. Knuth, D.E.: Seminumerical algorithms, The Art of Computer Programming 2.

Reading, MA, : AddisonWesley, pp. 124–125 (1969)
13. Nishimura, N., Simjour, N.: Parameterized enumeration of (locally-) optimal aggre-

gations. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol.
8037, pp. 512–523. Springer, Heidelberg (2013)

14. Simjour, N.: Improved parameterized algorithms for the kemeny aggregation prob-
lem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 312–323.
Springer, Heidelberg (2009)

276 R. Milosz and S. Hamel

15. Truchon, M.: An Extension of the Condorcet Criterion and Kemeny Orders. Inter-
nal report, Université Laval, p. 16 (1998)

16. vanZuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained
ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009)

b-Disjunctive Total Domination in Graphs:
Algorithm and Hardness Results

Arti Pandey1(B) and B.S. Panda2

1 Department of Computer Science and Engineering,
Indian Institute of Information Technology Guwahati, Ambari, G.N. Bordoloi Road,

Guwahati 781001, India
artipandey2305@gmail.com

2 Department of Mathematics, Indian Institute of Technology Kharagpur,
West Bengal 721302, India

bspanda@maths.iitkgp.ernet.in

Abstract. Let G = (V, E) be a connected graph with at least two
vertices. For a fixed positive integer b > 1, a set D ⊆ V is called a
b-disjunctive total dominating set of G if for every vertex v ∈ V , v is
either adjacent to a vertex of D or has at least b vertices in D at distance
2 from it. The minimum cardinality of a b-disjunctive total dominating
set of G is called the b-disjunctive total domination number of G, and is
denoted by γtd

b (G). The Minimum b-Disj Total Domination problem
is to find a b-disjunctive total dominating set of cardinality γtd

b (G). Given
a positive integer k and a graph G, the b-Disj Total Dom Decision
problem is to decide whether G has a b-disjunctive total dominating set
of cardinality at most k. In this paper, we initiate the algorithmic study
of the Minimum b-Disj Total Domination problem. We prove that the
b-Disj Total Dom Decision problem is NP-complete even for bipartite
graphs and chordal graphs, two important graph classes. On the positive
side, we propose a ln(Δ2 + (b − 1)Δ) + 1-approximation algorithm for
the Minimum b-Disj Total Domination problem. We prove that the
Minimum b-Disj Total Domination problem cannot be approximated
within 1

2
(1−ε) ln |V | for any ε > 0 unless NP ⊆ DTIME(|V |O(log log |V |)).

Finally, we show that the Minimum b-Disj Total Domination problem
is APX-complete for bipartite graphs with maximum degree b + 3.

Keywords: Domination · Chordal graph · Graph algorithm · Approx-
imation algorithm · NP-complete · APX-complete

1 Introduction

Let N(u) = {v ∈ V |uv ∈ E} and N [u] = N(u) ∪ {u} denote the open neigh-
borhood and closed neighborhood of a vertex u ∈ V of a graph G = (V,E). A
set S ⊆ V of a graph G = (V,E) is called a dominating set (total dominating
set) of G if N [u] ∩ S �= ∅ for every u ∈ V (N(u) ∩ S �= ∅ for every u ∈ V). The
Minimum Domination problem (Minimum Total Domination problem) is
to find a dominating set (total dominating set) of minimum cardinality.
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 277–288, 2016.
DOI: 10.1007/978-3-319-29221-2 24

278 A. Pandey and B.S. Panda

An important issue in network design is to minimize the trade-off between
resource allocation and redundancy. Resources are generally scarce and expensive
and naturally cannot be allocated to all the nodes of the network. It is desirable
that the resources are allocated to a subset of nodes which can be shared by other
nodes as well. The subset of nodes are selected in such a way that the rest of
the nodes are close to these nodes. Also redundancy is an important issue in the
event of resource failure. Clearly redundancy needs allocation of extra resources.
This problem has been addressed by using graph as a model for the network and
the subset of vertices forms a dominating set in the absence of redundancy or
a total dominating set in the presence of redundancy. Dominating set and its
variations are well studied problems (see [5–8]). However, finding a minimum
cardinality dominating set and a minimum cardinality total dominating set are
difficult problems and are well known to be NP-hard. Hence in practice these
are expensive to implement. Variations of dominating and total dominating sets
studied to date tend to focus on adding restrictions which in turn raises their
implementation costs. As an alternative route a relaxation of the domination,
called b-disjunctive domination, was proposed by Goddard et al. [4], and further
studied by others (see [9,13]). For a fixed positive integer b > 1, a set Dd ⊆ V
is called a b-disjunctive dominating set of G if for every vertex v ∈ V \Dd, v is
either adjacent to a vertex of Dd or has at least b vertices in Dd at distance 2
from it. This concept was recently extended in [10] to a relaxation of total domi-
nation, called disjunctive total domination, which allows for greater flexibility in
modeling networks where one trades off redundancy and backup capability with
resource optimization. For a fixed positive integer b > 1, a set Dd ⊆ V is called
a b-disjunctive total dominating set of G if for every vertex v ∈ V , v is either
adjacent to a vertex of Dd or has at least b vertices in Dd at distance 2 from it.

The minimum cardinality of a b-disjunctive total dominating set of G is called
the b-disjunctive total domination number of G, and is denoted by γtd

b (G). The
Minimum b-Disj Total Domination problem is to find a b-disjunctive total
dominating set of cardinality γtd

b (G). Given a positive integer k and a graph
G, the b-Disj Total Dom Decision problem is to decide whether G has a
b-disjunctive total dominating set of cardinality at most k. Some combinatorial
bounds for the 2-disjunctive total domination number of a graph G are given in
[10,11].

In this paper, we initiate the algorithmic study of the Minimum b-Disj
Total Domination problem. The main contributions of this paper are sum-
marized below. Section 2 presents some pertinent definitions and notations.
In Sect. 3, we observe that the Minimum Total Domination problem and
the Minimum b-Disj Total Domination problems differ in complexity. In
this section, we also prove that the b-Disj Total Dom Decision problem
is NP-complete for chordal graphs and bipartite graphs. In Sect. 4, we pro-
pose a ln(Δ2 + (b − 1)Δ) + 1-approximation algorithm for the Minimum b-Disj
Total Domination problem. In Sect. 5, we prove that the Minimum b-Disj
Total Domination problem can not be approximated within 1

2 (1 − ε) ln |V |
for any ε > 0 unless NP ⊆ DTIME(|V |O(log log |V |)). In Sect. 6, We show that

b-Disjunctive Total Domination in Graphs: Algorithm and Hardness Results 279

the Minimum b-Disj Total Domination is APX-complete for graphs with
maximum degree b + 3. Finally, Sect. 7 concludes the paper.

2 Preliminaries

Let G = (V,E) be a graph. Let N2
G(v) denote the set of vertices which are at

distance 2 from the vertex v in G. The degree of a vertex v ∈ V is the number
of neighbors of v, and is denoted by dG(v). The maximum degree of a graph G
is defined by Δ(G) = maxv∈V dG(v). A set I ⊆ V is called an independent set
of G if uv /∈ E for all u, v ∈ I. A set C ⊆ V is called a clique of G if uv ∈ E for
all u, v ∈ C. A set Vc ⊆ V is called a vertex cover of G if for each edge ab ∈ E,
either a ∈ Vc or b ∈ Vc. A graph G = (V,E) is said to be bipartite if V can
be partitioned into two disjoint sets X and Y such that every edge of G joins a
vertex in X to a vertex in Y . Such a partition (X,Y) of V is called a bipartition.
A graph G is said to be a chordal graph if every cycle in G of length at least four
has a chord, that is, an edge joining two non-consecutive vertices of the cycle. A
chordal graph G = (V,E) is a split graph if V can be partitioned into two sets I
and C such that C is a clique and I is an independent set. Let n and m denote
the number of vertices and number of edges of G, respectively. In this paper, we
only consider connected graphs with at least two vertices.

3 Complexity Difference in Total Domination
and b-Disjunctive Total Domination

In this section, we observe that the Minimum Total Domination problem
and the Minimum b-Disj Total Domination problem differ in complexity. In
addition, we prove that the Minimum b-Disj Total Domination problem is
NP-complete for chordal graphs and bipartite graphs.

The Total Domination Decision problem is NP-complete for split
graphs [12], but the Minimum b-Disj Total Dom Set problem is polynomial
time solvable for this graph class. The b-disjunctive total domination number for
a split graph is at least 2 and at most b. Let G be a split graph whose vertices
have been partitioned into a clique C and an independent set I. Then G admits
a b-disjunctive total dominating set of size k, k < b if and only if there exists a
set S ⊆ C of cardinality k such that every vertex in I is adjacent to at least one
vertex in S.

On the other hand, we define a graph class called G2P graphs, and we show
that the b-Disj Total Dom Decision problem is NP-complete for G2P graphs,
but the Minimum Total Domination problem is polynomial time solvable for
this class of graphs. Below we give the definition of G2P graphs.

Definition 1 (G2P graph). A graph G = (VG, EG) is said to be G2P graph
if it can be constructed from a general graph H = (VH , EH), where VH =
{v1, v2, . . . , vn} in the following way: for each vi ∈ VH , add a path vi, xi, yi of
length 2. Formally, VG = VH ∪ {xi, yi | 1 ≤ i ≤ n} and EG = EH ∪ {vixi, xiyi |
1 ≤ i ≤ n}.

280 A. Pandey and B.S. Panda

The following theorem illustrates that the Minimum Total Domination
problem is easily solvable for G2P graphs.

Theorem 1. Let G be a G2P graph constructed from a general graph H =
(VH , EH), where VH = {v1, v2, . . . , vn}, by adding a path vi, xi, yi of length 2,
for each vi ∈ VH . Then VH ∪ {xi | 1 ≤ i ≤ n} is a minimum cardinality total
dominating set of G.

Proof. Let D be a minimum cardinality total dominating set of G. Then to
totally dominate the vertex yi, xi must belong to D. Also, to totally dominate
the vertex xi, either vi or yi must belong to D. Hence for each i, 1 ≤ i ≤ n,
at least two vertices from the set {vi, xi, yi} must belong to D. Thus |D| ≥ 2n.
Also, it is easy to observe that the set VH ∪{xi | 1 ≤ i ≤ n} is a total dominating
set of cardinality 2n. Hence VH ∪ {xi | 1 ≤ i ≤ n} is a total dominating set of G
of minimum cardinality.
�

Next, we show that the b-Disj Total Dom Decision problem is NP-
complete for G2P graphs. To prove this hardness result, we provide a reduc-
tion from another variation of domination, namely b-domination problem. For
a graph G = (V,E), and a fixed positive integer b, a set D ⊆ V is called a b-
dominating set of G if every vertex v ∈ V \D has at least b neighbors in D. Given
a graph G and a positive integer k, the b-Domination Decision problem is to
decide whether G has a b-dominating set of cardinality at most k. The following
hardness result is already known for the b-Domination Decision problem.

Theorem 2. [2] The b-Domination Decision problem is NP-complete for
bipartite graphs and chordal graphs.

Now we are ready to prove the following theorem.

Theorem 3. The b-Disj Total Dom Decision problem is NP-complete for
G2P graphs.

Proof. Clearly, the b-Disj Total Dom Decision problem is in NP for
G2P graphs. To prove the NP-hardness, we provide a reduction from the
b-Domination Decision problem. Let G = (V,E), where V = {v1, v2, . . . , vn}
and a positive integer k be an instance of the b-Domination Decision problem.
We construct a graph H = (VH , EH) and a positive integer k′, an instance of the
b-Disj Total Dom Decision problem as follows: VH = V ∪{wi, zi | 1 ≤ i ≤ n},
EH = E ∪ {viwi, wizi | 1 ≤ i ≤ n} and k′ = n + k. Clearly H is a G2P graph.
Next we show that G has a b-dominating set of size k if and only if H has a
b-disjunctive total dominating set of size k′ = n + k.

Suppose that Dt is a b-dominating set of G of cardinality k, then Dt ∪ {wi |
1 ≤ i ≤ n} is a b-disjunctive total dominating set of H of cardinality n + k.

Conversely, suppose that Dbtd is a b-disjunctive total dominating set of H
of cardinality n + k. Since |N2

H(zi)| = 1, wi must belong to Dbtd for each i,
1 ≤ i ≤ n. To disjunctively totally dominate the vertex wi, either vi ∈ Dbtd

or zi ∈ Dbtd or |N2
H(wi) ∩ Dbtd| ≥ b, that is, |NG(vi) ∩ Dbtd| ≥ b. For each i,

b-Disjunctive Total Domination in Graphs: Algorithm and Hardness Results 281

1 ≤ i ≤ n, if zi ∈ Dbtd update Dbtd = (Dbtd\{zi}) ∪ {vi}. Then for updated set
Dbtd, the set D = Dbtd ∩ V is a b-dominating set of G of cardinality k.

Therefore, the b-Disj Total Dom Decision problem is NP-complete for
G2P graphs.
�

In the above theorem, if G is chordal(bipartite), then the constructed graph H
is also chordal(bipartite). By Theorem2, the b-Domination Decision problem
is NP-complete even for chordal graphs and bipartite graphs. Hence we have the
following theorem.

Theorem 4. The b-Disj Total Dom Decision problem is NP-complete for
chordal graphs and bipartite graphs.

4 Approximation Algorithm

In this section, we propose a ln(Δ2 + (b − 1)Δ) + 1-approximation algorithm
for the Minimum b-Disj Total Domination problem. Our algorithm is based
on the reduction from the instances of the Minimum b-Disj Total Domina-
tion problem to the instances of the Constrained Multiset Multicover (CMSMC)
problem. The CMSMC problem is a well studied problem in literature. Below
we recall the definition of the CMSMC problem.

Let X be a set and F be a collection of subsets of X. The Set Cover
problem is to find a smallest sub-collection, say C of F , such that C covers all the
elements of X, that is, ∪S∈CS = X. The Constrained Multiset Multicover
problem is a generalization of the Set Cover problem. In this problem, F is
the collection of multisets of X, that is, each element x ∈ X occurs in a multiset
S ∈ F with arbitrary multiplicity, and each element x ∈ X has an integer
coverage requirement rx which specifies how many times x has to be covered.
Note that each set S ∈ F is chosen at most once. So, for a given set X, a
collection F of multisets of X, and integer requirement rx for each x ∈ X, the
CMSMC problem is to find a smallest collection C ⊆ F , such that C covers each
element x in X at least rx times. In the case, when rx is constant for each x ∈ X,
then C is called a rx-cover of X, and the CMSMC problem is to find a minimum
cardinality rx-cover of X.

In [14], Rajgopalan and Vazirani proposed a greedy approximation algorithm,
say Greedy-Approx-CMSMC, for the CMSMC problem, and they proved the
following result.

Theorem 5. [14] The Greedy-Approx-CMSMC algorithm for the CMSMC
problem achieves an approximation ratio of ln(|FM |)+1, where FM is a maximum
cardinality multiset in F .

Now we describe the transformation from an instance of the Minimum b-Disj
Total Domination problem to an instance of the CMSMC problem.

Construction 1: Let G = (V,E) be an arbitrary instance of the Mini-
mum b-Disj Total Domination problem. Let V = {v1, v2, . . . , vn}. We con-
struct an instance of the CMSMC problem in the following way: X = V ,

282 A. Pandey and B.S. Panda

F = {F1, F2, . . . , Fn} where Fi is a multiset containing b copies of each element
in NG(vi) and one copy of each element in N2

G(vi), and rx = b.
Next we present the detailed algorithm to find a b-disjunctive total dominat-

ing set of a given graph G.

Algorithm 1. Approx-b-Disj-Total(G)
Input: A graph G = (V,E).
Output: A b-disjunctive total dominating set Dbtd of G.
Initialize Dbtd = ∅;
Construct the instance (X,F , rx) using Construction 1;
Compute a b-cover C of X using Greedy-Approx-CMSMC algorithm;
for i = 1 : n do

if Fi ∈ C then
Dbtd = Dbtd ∪ {vi};

return Dbtd;

Clearly, the algorithm Approx-b-Disj-Total can be implemented in poly-
nomial time. The correctness of the algorithm directly follows from the following
lemma.

Lemma 1. Dbtd = {vi1 , vi2 , . . . , vik} is a b-disjunctive total dominating set of
G if and only if C = {Fi1 , Fi2 , . . . , Fik} is a b-cover of X.

Proof. Suppose that Dbtd = {vi1 , vi2 , . . . , vik} is a b-disjunctive total dominating
set of G. Let C = {Fi1 , Fi2 , . . . , Fik}. We prove that C is a b-cover of X. Con-
sider an arbitrary element v ∈ X. Since X = V (G), v is b-disjunctively totally
dominated by Dbtd. So we have two possibilities: (i) v is adjacent to a vertex
vir ∈ Dbtd. In this case, the multiset Fir ∈ C contains b copies of v, and hence C
is a b-cover of X, (ii) v is at distance 2 away from b vertices, say vj1 , vj2 , . . . , vjb
in Dbtd. In this case, each multiset in {Fj1 , Fj2 , . . . , Fjb} contains a copy of v.
Also {Fj1 , Fj2 , . . . , Fjb} ⊆ C as {vj1 , vj2 , . . . , vjb} ⊆ Dbtd. Hence v is b-covered
by C. This proves that every element of X is b-covered by C, and hence C is a
b-cover of X.

Conversely, suppose that C = {Fi1 , Fi2 , . . . , Fik} is a b-cover of X. Let Dbtd =
{vi1 , vi2 , . . . , vik}. We show that Dbtd is a b-disjunctive total dominating set of
G. Consider any arbitrary vertex v ∈ V (G). Since X = V (G), v ∈ X. So v is
b-covered by X. Then we have the following two possibilities: (i) There exists
a multiset Fir ∈ C, which contains b copies of v. In this case v ∈ NG(vir) and
vir ∈ Dbtd. Hence v is b-disjunctively totally dominated by Dbtd, (ii) There exists
b multisets Fj1 , Fj2 , . . . , Fjb ∈ C, each containing a copy of v. In this case v is
at distance 2 from every vertex in the set S = {vj1 , vj2 , . . . , vjb}. Also S ⊆ Dbtd

as {Fj1 , Fj2 , . . . , Fjb} ⊆ C. Hence v is again b-disjunctively totally dominated by
Dbtd. This proves that Dbtd is a b-disjunctive total dominating set of G.
�
Theorem 6. The b-disjunctive total dominating set of a graph G computed
by the algorithm Approx-b-Disj-Total achieves an approximation ratio of
ln(Δ2 + (b − 1)Δ) + 1.

b-Disjunctive Total Domination in Graphs: Algorithm and Hardness Results 283

Proof. Let G be a graph, and (X,F , rx) be an instance of the CMSMC problem
constructed from G using Construction 1. Let D∗

btd be a minimum cardinal-
ity b-disjunctive total dominating set of G, and C∗ be a minimum cardinality
b-cover of X. Then by Lemma 1, |D∗

btd| = |C∗|. Also, suppose that Dbtd is the
set obtained by the algorithm APPROX-b-DISJ-TOTAL, and C is a cover of
X obtained by the algorithm Greedy-Approx-CMSMC. Then |Dbtd| = |C|
and |C| ≤ ln(|FM |) + 1 · |C∗|. By Construction 1, if the maximum degree of
graph G is Δ, then |FM | ≤ bΔ + Δ(Δ − 1) = Δ2 + (b − 1)Δ. This implies that
|Dbtd| ≤ (ln(Δ2 + (b − 1)Δ) + 1) · |Dbtd∗ |. Hence the algorithm Approx-b-Disj-
Total achieves an approximation ratio of ln(Δ2 + (b − 1)Δ) + 1.
�

5 Lower Bound on Approximation Ratio

In this section, we present an approximation hardness result for the Minimum
b-Disj Total Domination problem. To obtain this result, we give an approxi-
mation preserving reduction from the Minimum Total Domination problem.
The following approximation hardness result for the Minimum Total Domi-
nation problem is already known.

Theorem 7. [3] For a graph G = (V,E), the Minimum Total Domination
problem can not be approximated within (1− ε) ln |V | for any ε > 0 unless NP ⊆
DTIME (|V |O(log log |V |)).

Now we are ready to prove the following theorem.

Theorem 8. For a graph G = (V,E), the Minimum b-Disj Total Domina-
tion problem can not be approximated within 1

2 (1− ε) ln |V | for any ε > 0 unless
NP ⊆ DTIME(|V |O(log log |V |)).

Proof. We first describe the reduction from the instances of the Minimum
Total Domination problem to the instances of the Minimum b-Disj Total
Domination problem. Let G = (V,E), where V = {v1, v2, . . . , vn} be an
instance of the Minimum Total Domination problem. We describe the graph
H = (VH , EH), an instance of the Minimum b-Disj Total Domination prob-
lem in the following way: VH = V ∪ {wi | 1 ≤ i ≤ n} ∪ {zi,j | 1 ≤ i ≤
n, 1 ≤ j ≤ b − 1} ∪ {aj , bj , cj | 1 ≤ j ≤ b − 1}, and EH = E ∪ {viwi |
1 ≤ i ≤ n} ∪ {wizi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ b − 1} ∪ {ajbj , bjcj | 1 ≤ j ≤
b − 1} ∪ {zi,jaj | 1 ≤ i ≤ n, 1 ≤ j ≤ b − 1}. Note that |VH | = 2n + (b − 1)(n + 3),
and |EH | = |E| + n + 2(b − 1)n + 2(b − 1) = |E| + (2b − 1)n + 2(b − 1).

The graph G = (V,E), where V = {v1, v2, v3, v4} and E = {v1v2, v2v3, v3v4},
and the associated graph H = (VH , EH) are shown in Fig. 1. For the sake of
simplicity, in this example we have considered b = 4.

Observe that if D∗ is a minimum total dominating set of G, then D∗ ∪
{aj , bj | 1 ≤ j ≤ b−1} is a b-disjunctive total dominating set of H of cardinality
|D∗| + 2(b − 1). Hence for a minimum b-disjunctive total dominating set D∗

btd of
H, |D∗

btd| ≤ |D∗| + 2(b − 1).

284 A. Pandey and B.S. Panda

a1 b1 c1

c2

c3

b2

b3

a2

a3

v1

v2

v3

v4

w1

w2

w3

w4

z1,1

z1,2

z1,3
z2,1

z2,2

z2,3

z3,1

z3,3

z3,2

z4,1

z4,2

z4,3

v1

v2

v3

v4

G

H

Fig. 1. An illustration to the construction of H from G

On the other hand, let Dbtd be a b-disjunctive total dominating set of G.
Then to b-disjunctively totally dominate the vertex wi, i ∈ {1, 2, . . . , n}, we
have one of the following possibilities: (i) vi ∈ Dbtd, (ii) zi,k ∈ Dbtd for some
k ∈ {1, 2, . . . , b − 1}, (iii) |N2

H(wi) ∩ Dbtd| ≥ b.
Case (iii) ensures that one of the neighbor of vi in G must belong to Dbtd

(as |N2
H(wi)\V | = b − 1). If case (ii) holds, that is, zi,k ∈ Dbtd for some k ∈

{1, 2, . . . , b − 1}, update the set Dbtd as Dbtd = (Dbtd\zi,k) ∪ {vr}, where vr is a
neighbor of vi. If case (i) holds, that is, vi ∈ Dbtd, add a vertex from NG(vi) in
Dbtd. Do it for all i, 1 ≤ i ≤ n. Let us call the updated set as D′

btd. Note that
the set D = D′

btd ∩ V is a dominating set of G, and |D| ≤ 2|Dbtd|.
Next, suppose that the Minimum b-Disj Total Domination problem for

a graph H = (VH , EH) can be approximated with an approximation ratio of
1
2 (1 − ε) ln(|VH |) for some fixed ε > 0 by using a polynomial time approxima-
tion algorithm APPROX-b-DISJUNCTIVE. Let p be a fixed positive integer.
Then the following algorithm APPROX-TOT-DOMINATION computes a total
dominating set of a graph G.

Observe that the algorithm APPROX-TOT-DOMINATION(G) computes a
total dominating set of G in polynomial time. If there exists a minimum total
dominating set of G of cardinality at most p, then it can be computed in poly-
nomial time. Therefore, we analyze the case where the cardinality of a minimum
total dominating set of G is greater than p. Let D∗ be a minimum total dom-
inating set of G, and D∗

btd be a minimum b-disjunctive total dominating set of
H. So, |D∗| > p.

Suppose that D is a total dominating set of G computed by the algorithm
APPROX-TOT-DOMINATION. Then |D| ≤ 2|Dbtd| ≤ 2α|D∗

btd| ≤ 2α(|D∗| +
2(b − 1)) = 2α(1 + 2(b−1)

|D∗|)|D∗| < 2α(1 + 2(b−1)
p)|D∗|. Since ε is fixed, there

always exists a positive integer p such that 2(b−1)
p < ε. Hence the Minimum

Total Domination problem can be approximated with an approximation ratio

b-Disjunctive Total Domination in Graphs: Algorithm and Hardness Results 285

Algorithm 2. APPROX-TOT-DOMINATION(G)
Input: A graph G = (V, E).
Output: A total dominating set D of graph G.
begin

if there exists a minimum total dominating set D of cardinality ≤ p then
return D;

else
Construct the graph H;
Compute a b-disjunctive total dominating set Dbdt of H using the
algorithm APPROX-b-DISJUNCTIVE;
for i = 1 : n do

Let vr be a neighbor of vi in G;
if zi,k ∈ Dbtd for some k ∈ {1, 2, . . . , b − 1} then

Dbtd = (Dbtd\{zi,k}) ∪ {vr};

if vi ∈ Dbtd then
Dbtd = Dbtd ∪ {vr};

D = Dbtd ∩ V ;

return D;

of 2α(1+ ε), where 2α(1+ ε) = (1− ε)(1+ ε) ln |VH | = (1− ε′) ln |VH | for ε′ = ε2.
Since |V | is very large and |VH | = |V |+2(b− 1), ln(|VH |) ≈ ln(|V |). This proves
that the Minimum Total Domination problem can be approximated with
an approximation ratio of (1 − ε′) ln |V |. By Theorem 7, the Minimum Total
Domination problem for a graph G = (V,E) can not be approximated with an
approximation ratio of (1−ε′) ln |V | unless NP ⊆ DTIME (|V |O(log log |V |)). Hence
the Minimum b-Disj Total Domination problem for a graph H = (VH , EH)
can not be approximated with an approximation ratio of 1

2 (1 − ε) ln |VH | unless
NP ⊆ DTIME (|VH |O(log log |VH |)).
�

6 APX-completeness

By Theorem 6, the Minimum b-Disj Total Domination problem for bounded
degree graphs can be approximated within a constant. Thus, the Minimum
b-Disj Total Domination problem is in APX for bounded degree graphs. In
this section, we show that the Minimum b-Disj Total Domination problem is
APX-complete for graphs of degree at most b+3. To show the APX-completeness,
we establish an L-reduction from the Min Vertex Cover problem. The Min
Vertex Cover problem for a graph G is to find a minimum cardinality vertex
cover of G.

Theorem 9. [1] The Min Vertex Cover problem is APX-complete for graphs
with maximum degree 3.

Theorem 10. The Minimum b-Disj Total Domination problem is APX-
complete for graphs with maximum degree b + 3.

286 A. Pandey and B.S. Panda

Proof. By Theorem 9, the Min Vertex Cover problem is APX-complete
for graphs with maximum degree 3. So it is enough to give an L-reduction
from the Min Vertex Cover problem for graphs with maximum degree 3
to the Minimum b-Disj Total Domination problem for graphs with max-
imum degree b + 3. Given a graph G = (V,E) where V = {v1, v2, . . . , vn},
and E = {e1, e2, . . . , em}, an instance of the Min Vertex Cover problem,
we construct the graph H = (VH , EH), an instance of the Minimum b-Disj
Total Domination problem as follows. VH = V ∪ {uk

i , w
k
i , yk

i , zki | 1 ≤ i ≤
n, 1 ≤ k ≤ b} ∪ {ej , fj , a

k
j , b

k
j , c

k
j , d

k
j | 1 ≤ j ≤ m, 1 ≤ k ≤ b − 1}, and

EH = {ejvr, e
jvs | ej = vrvs ∈ E, 1 ≤ j ≤ m} ∪ {ejfj , fja

k
j , a

k
j b

k
j , b

k
j c

k
j , c

k
j d

k
j |

1 ≤ j ≤ m, 1 ≤ k ≤ b − 1} ∪ {viu
k
i , u

k
i w

k
i , wk

i yk
i , yk

i zki | 1 ≤ i ≤ n, 1 ≤ k ≤ b}.
If G is of maximum degree 3, then the maximum degree of H is b + 3. The

graph G = (V,E), where V = {v1, v2, v3, v4} and E = {v1v2, v2v3, v3v1, v3v4},
and the associated graph H = (VH , EH) are shown in Fig. 2. For the sake of
simplicity, in this example we have considered b = 3.

Now first we give a construction of a vertex cover of G of cardinality at most
k − 2bn − 2(b − 1)m, from a given b-disjunctive total dominating set Dbtd of H
of cardinality k.

Construction 2: Let Dbtd be a b-disjunctive total dominating set of H of cardi-
nality k. Then, to b-disjunctively totally dominate the vertex zki , yk

i must belong
to Dbtd, and to b-disjunctively totally dominate the vertex yk

i , either wk
i or zki

must belong to Dbtd. Similarly, to b-disjunctively totally dominate the vertex
dkj , ckj must belong to Dbtd, and to b-disjunctively totally dominate the vertex
ckj , either bkj or dkj must belong to Dbtd. Let S = {yk

i , wk
i | 1 ≤ i ≤ n, 1 ≤

k ≤ b} ∪ {bkj , c
k
j | 1 ≤ j ≤ m, 1 ≤ k ≤ (b − 1)}. Then, without loss of gen-

erality, we can assume that S ⊆ Dbtd. Clearly |S| = 2bn + 2(b − 1)m, and
|Dbtd\S| = k − 2bn − 2(b − 1)m. Note that for each j, 1 ≤ j ≤ m, fj is not b-
disjunctively totally dominated by S (as NH(fj)∩S = ∅ and |N2

H(fj)∩S| = b−1).
Define D′ = Dbtd\S. Now to b-disjunctively totally dominate the vertex fj , we
have the following possibilities:

(i) ej ∈ D′,
(ii) ak

j ∈ D′ for some k ∈ {1, 2, . . . , b − 1},
(iii) vr or vs belong to D′, where vr and vs are end points of edge ej in G.

If either ej or ak
j belong to D′, then remove them from D′, and add either

vr or vs in D′. Do it for all j, 1 ≤ j ≤ m. Then the updated set D′ contains at
least one end point of each edge in G. Hence Vc = D′ ∩ V is a vertex cover of G
of cardinality at most k − 2bn − 2(b − 1)m.

Now, let V ∗
c be a minimum cardinality vertex cover of G and D∗

btd be a
minimum cardinality b-disjunctive total dominating set of H, then we prove the
following claim.

Claim. |D∗
btd| = |V ∗

c | + 2bn + 2(b − 1)m.

Proof. If V ∗
c is a vertex cover of G, then V ∗

c ∪ {yk
i , wk

i | 1 ≤ i ≤ n, 1 ≤ k ≤
b} ∪ {bkj , c

k
j | 1 ≤ j ≤ m, 1 ≤ k ≤ (b − 1)} is a b-disjunctive total dominating set

of H. Hence |D∗
btd| ≤ |V ∗

c | + 2bn + 2(b − 1)m.

b-Disjunctive Total Domination in Graphs: Algorithm and Hardness Results 287

v3

u1
3 u2

3 u3
3

w1
3 w2

3
w3

3

y13

z13

y23

z23

y33

z33

u1
4 u2

4 u3
4

w1
4 w2

4
w3

4

y14

z14

y24

z24

y34

z34

u1
2 u2

2 u3
2

w1
2 w2

2
w3

2

y12

z12

y22

z22

y32

z32

u3
1u2

1
u1
1

w3
1

w2
1w1

1

y31

z31

y21

z21

y11

z11

v1

v2 v4

e1

e2

e3

e4

f1 f3

f2

a1
1

b11
c11

d11

d21
c21

b21
a2
1

a2
3

c23
b23

d23

a1
3

b13

c13

d13

a1
2

b12

c12

d12

a2
2

b22
c22

d22

f4

a1
4

b14

c14

d14 d24

c24

b24

a2
4

v1

v2 v3 v4

G

H

e1

e2

e3

e4

Fig. 2. An illustration to the construction of H from G

Conversely, if D∗
btd is a b-disjunctive total dominating set of H, then we can

construct a vertex cover of cardinality |D∗
btd| − 2bn − 2(b − 1)m (as illustrated

in Construction 2). Hence |V ∗
c | ≤ |D∗

btd| − 2bn − 2(b − 1)m. This proves that
|D∗

btd| = |V ∗
c | + 2bn + 2(b − 1)m.
�

Since G is of maximum degree 3, m ≤ 3|V ∗
c |. Hence |D∗

btd| ≤ |V ∗
c | + 3(4b −

2)|V ∗
c | = (12b−5)|V ∗

c |. As we discussed above, any b-disjunctive total dominating
set Dbtd of H can be transformed into a vertex cover Vc of G of cardinality at
most |Dbtd|−2bn−2(b−1)m. Hence |Vc|−|V ∗

c | ≤ |Dbtd|−2bn−2(b−1)m−|V ∗
c |.

Since |D∗
btd| = |V ∗

c |+2bn+2(b−1)m, we get |Vc|− |V ∗
c | ≤ |Dbtd|− |D∗

btd|. Hence
f is an L-reduction with α = 12b − 5 and β = 1.
�

Note that the constructed graph H is also bipartite. Hence, we get the fol-
lowing result as a corollary of the above theorem.

Corollary 1. The Minimum b-Disj Total Domination problem is APX-
complete for bipartite graphs with maximum degree b + 3.

7 Conclusion

In this paper, we initiated the algorithmic study of the Minimum b-Disj Total
Domination problem. We proved that the b-Disj Total Dom Decision prob-
lem is NP-complete for chordal graphs and bipartite graphs. We proposed
a ln(Δ2 + (b − 1)Δ) + 1-approximation algorithm for the Minimum b-Disj
Total Domination problem. On the negative side, we proved that the Min-
imum b-Disj Total Domination problem can not be approximated within
1
2 (1 − ε) ln |V | for any ε > 0 unless NP ⊆ DTIME(|V |O(log log |V |)). One may
try to reduce the gap between lower and upper bound on approximation ratio
of the Minimum b-Disj Total Domination problem. Finally, we showed that

288 A. Pandey and B.S. Panda

the Minimum b-Disj Total Domination is APX-complete even for bipartite
graphs with maximum degree b + 3.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor.
Comput. Sci. 237(1–2), 123–134 (2000)

2. Bean, T.J., Henning, M.A., Swart, H.C.: On the integrity of distance domination
in graphs. Australas. J. Combin. 10, 29–43 (1994)

3. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput. 206, 1264–1275 (2008)

4. Goddard, W., Henning, M.A., McPillan, C.A.: The disjunctive domination number
of a graph. Quaestiones Math. 37(4), 547–561 (2014)

5. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker Inc., New York (1998)

6. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs, Advanced
Topics. Marcel Dekker Inc., New York (1998)

7. Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer, New York (2013)
8. Henning, M.A.: A survey of selected recent results on total domination in graphs.

Discrete Math. 309, 32–63 (2009)
9. Henning, M.A., Marcon, S.A.: Domination versus disjunctive domination in trees.

Discrete Appl. Math. 184, 171–177 (2014)
10. Henning, M.A., Naicker, V.: Disjunctive total domination in graphs. J. Comb.

Optim. (2014). doi:10.1007/s10878-014-9811-4
11. Henning, M.A., Naicker, V.: Graphs with large disjunctive total domination num-

ber. Discrete Appl. Math. 17, 255–282 (2015)
12. Laskar, R.C., Pfaff, J.: Domination and irredundance in split graphs, Technical

report 430, Clemson University Department Mathematical Sciences (1983)
13. Panda, B.S., Pandey, A., Paul, S.: Algorithmic aspects of disjunctive domination

in graphs. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp.
325–336. Springer, Heidelberg (2015)

14. Rajgopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for set
cover and covering integer programs. SIAM J. Comput. 28, 526–541 (1999)

http://dx.doi.org/10.1007/s10878-014-9811-4

m-Gracefulness of Graphs

Jessica Pereira1(B), T. Singh1, and S. Arumugam2

1 Department of Mathematics, Birla Institute of Technology and Science
Pilani, K K Birla, Goa Campus, NH-17B, Zuarinagar, Goa, India

{jessica,tksingh}@goa.bits-pilani.ac.in
2 National Centre for Advanced Research in Discrete Mathematics,

Kalasalingam University, Anand Nagar, Krishnankoil 626 126, Tamil Nadu, India
s.arumugam.klu@gmail.com

Abstract. Let G = (V,E) be a (p, q)-graph without isolated vertices.
The gracefulness grac(G) of G is the smallest positive integer k for which
there exists an injective function f : V → {0, 1, 2, . . . , k} such that the
edge induced function gf : E → {1, 2, . . . , k} defined by gf (uv) = |f(u)−
f(v)|, ∀uv ∈ E is also injective. Let c(f) = max{i : 1, 2, . . . , i are edge
labels} and let m(G) = maxf{c(f)} where the maximum is taken over
all injective functions f : V → IN ∪ {0} such that gf is also injective.
This new measure m(G) is called m-gracefulness of G and it determines
how close G is to being graceful. In this paper, we prove that there are
infinitely many nongraceful graphs with m-gracefulness q − 1, we give
necessary conditions for a (p, q)-eulerian graph and the complete graph
Kp to have m-gracefulness q − 1 and q − 2. Using this, we prove that K5

is the only complete graph to have m-gracefulness q− 1. We also give an
upper bound for the highest possible vertex label of Kp if m(Kp) = q−2.

Keywords: Graceful graphs · Gracefulness of graphs · m-Gracefulness
of graphs
2010 Mathematics Subject Classification: 05C 78.

1 Introduction

By a graph G = (V,E), we mean a finite undirected graph with neither loops nor
multiple edges. The order |V | and the size |E| of G are denoted by p and q respec-
tively. For graph theoretic terminology and notations we refer to Chartrand and
Lesniak [4].

Most of the graph labeling methods trace their origin to the one introduced by
Rosa [11]. An injection f : V → {0, 1, . . . , q} is said to be graceful, if the induced
edge function gf defined by gf (uv) = |f(u) − f(v)|, ∀uv ∈ E is a bijection from
E to {1, 2, . . . , q}. Any graph which admits such a labeling is called a graceful
graph and nongraceful otherwise (cf.: [1,6,7,11]). Rosa [11] called this labeling
as β-valuation and Golomb [7] subsequently called it as graceful labeling and
this is now the popular term. Several classes of graceful and nongraceful graphs
have been reported in the literature. For more details see Gallian [6].
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 289–298, 2016.
DOI: 10.1007/978-3-319-29221-2 25

290 J. Pereira et al.

The concept of graph labeling has a wide range of applications to other
branches of science and engineering such as electrical circuit theory, energy
crises, X-ray crystallography, coding theory, astronomy, communication networks
design, cryptography and circuit design (cf.:[3,5,10,12]).

Graceful labeling is reported to have come from a problem in mechanical
engineering which requires notching a bar so that distances between any two
notches are all distinct, a problem modeled by Golomb [7] as one on nonredun-
dant distance measurement using what is known as a ‘nonredundant ruler’: It is
a ruler with p marks placed on it end-to-end so that all the

(
p
2

)
distances that can

be measured by the calibration are distinct; if the maximum distance measured
by such a ruler is least possible then the ruler is called a Golomb ruler after its
discoverer (cf.:[1,2]). Furthermore, if the distances measured by the ruler are all
the first

(
p
2

)
natural numbers then it is called graceful. It is well known that a

graceful Golomb ruler with more than four marks does not exist. Following are
some results on graceful graphs which are useful for our investigation.

Theorem 1. [7] A complete graph Kp is graceful if and only if p ≤ 4.

Theorem 2. [7] Suppose that integers, not necessarily distinct are assigned to
the vertices of a graph G, and that each edge of G is given an edge number equal
to the absolute difference of the vertex numbers at its end points. Then the sum
of the edge numbers around any circuit of G is even.

Theorem 3. [7,11] If G is a graceful eulerian graph of size q, then q ≡ 0 or 3
(mod 4).

Bloom and Golomb considered two interesting and significant problems. One
is to find largest graceful subgraph of the complete graph, which led to the
limitation of the Design of a Communication Network and the other is to increase
the maximum vertex label so that the induced edge labels are distinct which
resulted in finitely many counter examples to a “theorem” of S. Picard which
was relied upon (erroneously) for some 35 years in the field of X-ray diffraction
crystallography (cf.:[8]).

The gracefulness grac(G) of a graph G with V (G) = {v1, v2, . . . , vp} without
isolates is defined to be the smallest positive integer k for which it is possible
to label the vertices of G with distinct elements from the set {0, 1, . . . , k} in
such a way that edges receive distinct labels (see [4]). Obviously grac(G) ≥ q
and grac(G) = q if and only if G is graceful. Thus grac(G) gives a measure of
gracefulness of G.

Motivated by this, a new measure of gracefulness of graphs called m-
gracefulness is introduced in [9] and the m-gracefulness for some families
of nongraceful graphs is obtained. Let G = (V,E) be a (p, q) graph. Let
f : V (G) → N ∪ {0} be an injection such that the edge induced function
gf defined on E by gf (uv) = |f(u) − f(v)|, ∀uv ∈ E is also injective. Let
c(f) = max {i : 1, 2, . . . , i are edge labels under f}. Let m(G) = maxfc(f),
where the maximum is taken over all f . Then m(G) is called the m-gracefulness
of G, the labeling f is called the m-graceful labeling of G and the graph G is

m-Gracefulness of Graphs 291

said to be m-graceful. This new measure m(G) determines how close G is to
being graceful.

In this paper, we show that there are infinitely many nongraceful graphs with
m-gracefulness q − 1. We also give necessary conditions for an eulerian (p, q)-
graph and the complete graph Kp to have m-gracefulness q − 1 and q − 2. Using
this, we prove that K5 is the only complete graph to have m-gracefulness q − 1.
We also give an upper bound for the highest vertex label that can be used for
the complete graph Kp if m(Kp) = q − 2.

2 Main Results

Let G = (V,E) be a (p, q) graph. Let f : V (G) → N ∪ {0} be an injection
such that the edge induced function gf defined on E by gf (uv) = |f(u) − f(v)|,
∀uv ∈ E is also injective. Let f(V) and gf (E) denote the set of vertex labels and
the set of induced edge labels respectively, of the graph G under the labeling
f . Throughout the paper, we denote by MG(f) and MG(gf), the largest vertex
label and the largest edge label respectively, received by G under f . Note that
the function h : V → N defined by h(v) = MG(f) − f(v) ∀v ∈ V (G) is also an
injective vertex labeling of the graph G, with the same set of induced edge labels
gf (E). We therefore assume without loss of generality that 0 ∈ f(V). Also note
that, MG(f) ≥ grac(G) and if G is a graceful graph, then m(G) = q, MG(f) = q
and MG(gf) = q.

The following theorem shows that there are infinitely many nongraceful
graphs G with m(G) = q − 1.

Theorem 4. There exist infinitely many nongraceful (p, q)-graphs having
m-gracefulness q − 1 and grac q + 1.

Proof. Consider the cycle C5 having vertex set {v1, v2, v3, v4, v5} with two chords
v1v3 and v3v5 as shown in Fig. 1.

v3

v1

v2 v4

v5

Fig. 1. C5 with 2 chords at a common vertex

For k = 1, 2, . . ., construct graphs Gk by inserting (2k − 1) vertices
v6, v7, . . . , v2k+4 and joining each of them to v1 and v5. Then Gk is an eulerian

292 J. Pereira et al.

graph with order 2k + 4 and size 4k + 5 as shown in Fig. 2 and by Theorem 3,
it is nongraceful. Hence m(Gk) < q. Now consider the labeling f : V (Gk) → N

defined by

f(vi) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i − 1 if i = 1, 2
2k + 4 if i = 3
k + 2 if i = 4
4k + 6 if i = 5
i − 4 if 6 ≤ i ≤ k + 5
i − 3 if k + 6 ≤ i ≤ 2k + 4

v3

v1

v2 v4

v5

...

v6

v7

v8

v2k+3

v2k+4

Fig. 2. Nongraceful eulerian graph

It can be easily verified that the set of induced edge labels is gf (E) =
{1, 2, 3, . . . , 4k + 3, 4k + 4, 4k + 6}. Hence m(Gk) = q − 1 and grac(Gk) =
q + 1. 	

In the following theorem we give a necessary condition for an eulerian (p, q)-
graph to have m-gracefulness q − 1.

Theorem 5. Let G be a (p, q)-eulerian graph with m(G) = q − 1. Then q ≡
2k or (2k − 1)(mod 4), where k = MG(gf) − q.

m-Gracefulness of Graphs 293

Proof. Let T be the sum of the edge labels of G. Then by Theorem 2, since
G is eulerian and can be decomposed into cycles, T is an even number. Since
m(G) = q − 1, T = q(q−1)

2 + (q + k) and this is even only when q ≡ 2k(mod 4)
or q ≡ (2k − 1)(mod 4). 	

Now, we focus our attention on the complete graph Kp. By Theorem 1, Kp

for p > 5 is a nongraceful graph. Notice that for p even, Kp is noneulerian and
as p increases, the task of finding the m-gracefulness of Kp is a difficult problem.
We now proceed to investigate complete graphs Kp for which m(Kp) = q − 1.

Lemma 1. If m(Kp) = q − 1 under a labeling f with MG(gf) = q + k, k ≥ 1,
then none of the vertices of Kp can be assigned a label t, where 0 < t < k + 1 or
q − 1 < t < q + k.

Proof. Since m(Kp) = q − 1, the set of induced edge labels is given by

gf (E) = {1, 2, . . . , q − 1, q + k}. (1)

Let u and v be vertices of Kp for which f(u) = 0 and f(v) = q + k. If there
exists a vertex w with f(w) = t, where 0 < t < k + 1 or q − 1 < t < q + k, then
either q − 1 < gf (vw) < q + k or q − 1 < gf (uw) < q + k, a contradiction to the
set of induced edge labels given in (1). 	

Observation 6. Let f be a m-graceful labeling of Kp. If 0 and 2t are vertex
labels, then t and 4t cannot be vertex labels, since otherwise the edge label t or
2t is repeated. Hence it follows that if m(Kp) = q − 1 under a labeling f, then
MG(f) �= 2(q − 1).

Lemma 2. If m(Kp) = q − 1 under a labeling f with MG(gf) = q + k, k ≥ 1,

then no two vertices of Kp can be labeled k+ t and q− t, where 1 ≤ t ≤
⌊
q−k−1

2

⌋
.

Proof. Since MG(gf) = q + k, there exist two vertices u and v ∈ V (Kp) with
f(u) = 0 and f(v) = q+k. If there exist x and y ∈ V (Kp) such that f(x) = k+ t

and f(y) = q − t for 1 ≤ t ≤
⌊
q−k−1

2

⌋
, then gf (uy) = gf (vx) = q − t, which is a

contradiction. 	

The following theorem gives an upper bound for the highest vertex label

MG(f) that can be used for the vertices of Kp if m(Kp) = q − 1.

Theorem 7. If m(Kp) = q − 1 under a labeling f , then MG(f) ≤ 2(q − p) + 3.

Proof. Let m(Kp) = q − 1 with MG(f) = q + k, k ≥ 1. By Lemma 1, f(V) ⊆
A = {0, k + 1, k + 2, . . . , q − 2, q − 1, q + k} and by Lemma 2, the set

B =
{

A − {0, q + k} if q + k is odd
A − {0, q+k

2 , q + k} if q + k is even

294 J. Pereira et al.

can be partitioned into
⌊
q−k−1

2

⌋
disjoint pairs of labels {k + t, q − t}, 1 ≤ t ≤⌊

q−k−1
2

⌋
such that only one of the labels from each pair can be used for the

remaining (p − 2) vertices of Kp. Therefore
⌊
q−k−1

2

⌋
≥ p − 2. It follows that

k ≤ q − 2p + 3 and hence MG(f) = q + k ≤ 2(q − p) + 3. 	

Observation 8. It follows from the above theorem that if m(Kp) = q − 1 under
the labeling f , then q + 1 ≤ grac(Kp) ≤ MG(f) ≤ 2(q − p) + 3.

Theorem 9. The m-gracefulness of the complete graph Kp is q − 1 if and only
if p = 5.

Proof. Let p = 5, if we label the vertices of K5 from the set {0, 3, 4, 9, 11}, then
the set of induced edge labels obtained is {1, 2, . . . , 8, 9, 11}. Hence m(K5) = 9 =
q − 1.

Conversely, let m(Kp) = q − 1 under the labeling f and let MG(f) = q + k.
By Theorem 7, 1 ≤ k ≤ q − 2p+3. Suppose p �= 5. Let {v1, v2, . . . , vp} = V (Kp),
with f(v1) = 0 and f(v2) = q + k. Since m(Kp) = q − 1, there exists a vertex
say, v3 ∈ V (Kp) such that, either f(v3) = k + 1 or f(v3) = q − 1. Without loss
of generality, let f(v3) = q − 1. Hence {0, q + k, q − 1} ⊂ f(V). Consider Fig. 3
for the graphical representation of all the possible vertex labelings of Kp.

q − 2

q − 3

1

k + 3

q − 4 k + 4

q − 5
k + 5

1 2

1

v7 . . .

v6 . . .

v5 . . .

v4 . . .
k + 2

k + 3

1

q − 3

q − 4 k + 4

q − 5 k + 5

1 3

2

k + 4 q − 4

q − 5 k + 5

1 3

0
v1, v2, v3 . . .

q + k q − 1

Fig. 3. Graphical representation of possible vertex labels of Kp if m(Kp) = q − 1

In the figure, the number above the vertex vi, 1 ≤ i ≤ 7 is its label under f .
If by assignment of this label to vi, any edge label is repeated, then that edge
label is indicated under vi. At each level, having assigned a label to the vertex
vi, 3 ≤ i ≤ 6, note that q−(i−1) is not an induced edge label. As a consequence,
by Lemma 2, either f(vi+1) = q − (i − 1) or f(vi+1) = k + (i − 1) for 3 ≤ i ≤ 6.
Also note that, the vertex v7 cannot be assigned any label without resulting in
repetition of edge labels. Hence p ≤ 6. By our assumption, p �= 5 and since Kp is

m-Gracefulness of Graphs 295

graceful if and only if p ≤ 4, p must be 6. Hence q = 15 and since grac(K6) = 17,
by Theorem 7, 2 ≤ k ≤ 6.

Figure 3 gives f(v6) = q − 4. Therefore the set of possible vertex labels of K6

are as follows:
f(V) = {0, q + k, q − 1, q − 2, k + 3, q − 4} (2)

f(V) = {0, q + k, q − 1, k + 2, q − 3, q − 4} (3)

and
f(V) = {0, q + k, q − 1, k + 2, k + 3, q − 4, } (4)

Tables 1, 2 and 3 give the vertex labelings of K6 for 2 ≤ k ≤ 6 corresponding
to (2), (3) and (4) respectively.

Table 1. Vertex labeling of K6 with f(v4) = q − 2 and f(v5) = k + 3

k Vertex labels Edge labels No. of Repetitions

2 {0, 5, 11, 13, 14, 17} 3,6 2

3 {0, 6, 11, 13, 14, 18} 5,7 2

4 {0, 7, 11, 13, 14, 19} 6,7 2

5 {0, 8, 11, 13, 14, 20} 3,6 2

6 {0, 9, 11, 13, 14, 21} 2 2

Table 2. Vertex labeling of K6 with f(v4) = k + 2 and f(v5) = q − 3

k Vertex labels Edge labels No. of Repetitions

2 {0, 4, 11, 12, 14, 17} 3 2

3 {0, 5, 11, 12, 14, 18} 6, 7 2

4 {0, 6, 11, 12, 14, 19} 5, 6, 8 2

5 {0, 7, 11, 12, 14, 20} 7 2

6 {0, 8, 11, 12, 14, 21} 3, 4 2

The last column of each of the tables, gives a contradiction to the fact that
m(Kp) = q − 1. Hence p �= 6, so that p = 5. From Fig. 3, f(V) = {0, q + k,
q − 1, k + 2, k + 3} for k = 1 is an m-graceful labeling of K5. 	

We denote by M ′
G(gf), the second largest edge label received by G under f .

Note that if G is a graceful graph, then M ′
G(gf) = q − 1. The following theorem

gives a necessary condition for an eulerian graph to have m-gracefulness q − 2.

Theorem 10. Let G be a (p, q)-eulerian graph with m(G) = q − 2 under a
labeling f. Then q ≡ (2s + 1) or (2s + 2)(mod 4), where k = MG(gf) − q and
s = q + k − M ′

G(gf).

296 J. Pereira et al.

Table 3. Vertex labeling of K6 with f(v4) = k + 2 and f(v5) = k + 3

k Vertex labels Edge labels No. of Repetitions

2 {0, 4, 5, 11, 14, 17} 3, 6 2

3 {0, 5, 6, 11, 14, 18} 5, 6 2

4 {0, 6, 7, 11, 14, 19} 5, 7, 8 2

5 {0, 7, 8, 11, 14, 20} 3, 6, 7 2

6 {0, 8, 9, 11, 14, 21} 3 2

Proof. Let T be the sum of the edge labels of G. Since G can be decomposed into
cycles, it follows from Theorem 2 that T is an even number. Further m(G) = q−2
implies T = (q−1)(q−2)

2 +(q+k−s)+(q+k) and this is even only when q ≡ (2s+1)
(mod 4) or q ≡ (2s + 2)(mod 4) where 1 ≤ s ≤ k. 	

We now give some necessary conditions for the m-gracefulness of Kp to be
q − 2, using which we find an upper bound for the highest vertex label of Kp.

Lemma 3. If m(Kp) = q − 2 under a labeling f , MG(gf) = q + k, k ≥ 1 and
M ′

G(gf) = q+k−s, 1 ≤ s ≤ k, then none of the vertices of Kp can be assigned a
label t where 0 < t < s, s < t < k+2, q−2 < t < q+k−s or q+k−s < t < q+k.

Proof. Since f is a m-graceful labeling of Kp, the set of induced edge labels is
given by,

gf (E) = {1, 2, 3, . . . , q − 2, q + k − s, q + k}. (5)

Therefore, there exist vertices u and v of Kp for which f(u) = 0 and f(v) = q+k.
Suppose there exists x ∈ V (Kp) with f(x) = t, where 0 < t < s, s < t < k + 2,
q − 2 < t < q + k − s or q + k − s < t < q + k. If 0 < t < s or s < t < k + 2,
then q + k − s < gf (vx) < q + k or q − 2 < gf (vx) < q + k − s respectively, if
q − 2 < t < q + k − s or q + k − s < t < q + k, then q − 2 < gf (ux) < q + k − s or
q + k − s < gf (ux) < q + k respectively. Either of the cases give a contradiction
to the set of induced edge labels given in (5). 	

Lemma 4. If m(Kp) = q − 2 under a labeling f with MG(gf) = q + k, k ≥ 1
and M ′

G(gf) = q + k − s, 1 ≤ s ≤ k, then no two vertices of Kp can be labeled

k + t and q − t, where 2 ≤ t ≤
⌊
q−k−3

2

⌋
.

Proof. Since m(Kp) = q − 2, the set of induced edge labels is gf (E) =
{1, 2, 3, . . . , q − 2, q + k − s, q + k} and by Lemma 3, f(V) ⊆ {0, s, k + 2, k +
3, . . . , q −2, q +k − s, q +k}. Since q +k ∈ gf (E), there exists two vertices u and
v of Kp with f(u) = 0 and f(v) = q + k. Now, if there exist two vertices, w and

x with f(w) = q − t and f(x) = k + t for 2 ≤ t ≤
⌊
q−k−3

2

⌋
, then gf (uw) = q − t

and gf (vx) = q − t, which is a contradiction to the fact that f is an m-graceful
labeling. Therefore only one of the vertex labels from each pair {k + t, q − t} for
2 ≤ t ≤

⌊
q−k−3

2

⌋
can be assigned to the vertices of Kp. 	

m-Gracefulness of Graphs 297

Theorem 11. If m(Kp) = q −2 under a labeling f , then MG(f) ≤ 2(q −p)+1.

Proof. Let MG(gf) = q + k, k ≥ 1 and M ′
G(gf) = q + k − s, 1 ≤ s ≤ k.

Since f is a m-graceful labeling of Kp, the set of induced edge labels is gf (E) =
{1, 2, . . . , q − 2, q + k − s, q + k}. Let u and v ∈ V (Kp) such that f(u) = 0 and
f(v) = q + k = MG(f). Let w ∈ V (Kp) with f(w) = q + k − s. By Lemma 3,
f(V) ⊆ A = {0, s, k + 2, k + 3, . . . , q − 3, q − 2, q + k − s, q + k} and by Lemma
4, the set

B =
{

A − {0, s, q + k − s, q + k} if q + k is odd
A − {0, s, q+k

2 , q + k − s, q + k} if q + k is even

can be partitioned into
⌊
q−k−3

2

⌋
disjoint pairs of labels {k + t, q − t} for 2 ≤

t ≤
⌊
q−k−3

2

⌋
such that only one of the labels from each of these pairs can be

used for the remaining (p − 3) vertices of Kp. Therefore
⌊
q−k−3

2

⌋
− 1 ≥ p − 3. It

follows that k ≤ q − 2p + 1 and hence MG(f) = q + k ≤ 2(q − p) + 1. 	

Observation 12. If m(Kp) = q − 2 under a labeling f , then q +1 ≤ grac(G) ≤
MG(f) ≤ 2(q − p) + 1.

Theorem 13. For the complete graph K6 we have m(K6) = 13 = q − 2.

Proof. It is known that K6 is nongraceful and by Theorem9, m(K6) �= q − 1.
Hence m(K6) �= 15 or 14. If we label the vertices of K6 either from the set
{0, 1, 4, 10, 12, 17} or {0, 4, 6, 9, 16, 17}, then the set of induced edge labels is
{1, 2, 3, . . . , 12, 13, 16, 17}. Hence m(K6) = 13 = q − 2 and the highest vertex
label used is 17.

Corollary 1. grac(K6) = 17 = q + 2.

Problem 1. Is K6 the only complete graph with m-gracefulness q − 2 ?

Problem 2. Determine the exact value of m(Kp) for p ≥ 7.

Observation 14. 1. From Theorems 9 and 13, we observe that, grac(Kp)−q =
q − m(Kp) for p = 5, 6.

2. From Theorem4, we observe that, there are infinitely many graphs with the
property that grac(G) − q = q − m(G).

Therefore the following problem, as stated in [9] still remains open.

Problem 3. Is it true that grac(G) − q = q − m(G) ?

298 J. Pereira et al.

References

1. Bloom, G.S., Golomb, S.W.: Applications of numbered undirected graphs. Proc.
IEEE 65, 562–570 (1977)

2. Bloom, G.S., Golomb, S.W.: Numbered complete graphs, unusual rulers, and
assorted applications. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications
of Graphs. LNCS, vol. 642, pp. 53–65. Springer, Heidelberg (1978)

3. Chartrand, G.: Graphs as mathematical models. Prindle, Weber and Schmidt Inc,
Boston, Massachusetts (1977)

4. Chartrand, G., Lesniak, L.: Graphs and Digraphs, 4th edn. Chapman and Hall,
CRC, Boca Raton (2005)

5. Chen, W.K.: Applied graph theory: graphs and electrical networks. North-Holland,
Amsterdam (1975)

6. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 17, D56
(2014)

7. Golomb, S.W.: How to number a graph. In: Read, R.C. (ed.) Graph Theory and
Computing, pp. 23–37. Academic Press, New York (1972)

8. Hegde, S.M.: Labeled graphs, Digraphs: Theory and Applications, 12–01-2012
Research Promotion Workshop on IGGA

9. Pereira, J., Singh, T., Arumugam, S.: A new measure for gracefulness of graphs.
Electron. Notes Discrete Math. 48, 275–280 (2015)

10. Roberts, F.S.: Energy Mathematics and Models. Structural analysis of energy sys-
tem, pp. 84–101. SIAM, Philadelphia (1976)

11. Rosa, A.: On certain valuations of the vertices of a graph, Theory of Graphs,
Internat. Symp., Rome: Rosentiehl, P. (ed.) Gordon and Breach, New York and
Dunod, Paris, pp. 349–355 (1967)

12. Zemanian, A.H.: Infinite electrical networks. Proc. IEEE 64(1), 6–17 (1976)

Domination Parameters in Hypertrees

R. Jayagopal1(B), Indra Rajasingh1, and R. Sundara Rajan2

1 School of Advanced Sciences, VIT University, Chennai 600 127, India
jgopal89@gmail.com

2 School of Mathematical and Physical Sciences,
The University of Newcastle, Callaghan, NSW 2308, Australia

Abstract. A locating-dominating set (LDS) S of a graph G is a domi-
nating set S of G such that for every two vertices u and v in V (G) \ S,
N(u) ∩ S �= N(v) ∩ S. The locating-domination number γL(G) is the
minimum cardinality of a LDS of G. Further if S is a total dominating
set then S is called a locating-total dominating set. In this paper we
determine the domination, total domination, locating-domination and
locating-total domination numbers for hypertrees.

Keywords: Dominating set · Total dominating set · Locating-
dominating set · Locating-total dominating set · Hypertree

1 Introduction

A set S of vertices in a graph G is called a dominating set of G if every vertex
in V (G) \ S is adjacent to some vertex in S. The set S is said to be a total
dominating set of G if every vertex in V (G) is adjacent to some vertex in S.
Domination arises in facility location problems, where the number of facilities
such as hospitals or fire stations are fixed and one attempts to minimize the
distance that a person needs to travel to get to the closest facility. Domination
has also been widely used in areas like locating radar station problem, coding
theory, modelling biological networks, nuclear power plants and so on [1–4].

Total domination plays a role in the problem of placing monitoring devices
in a system in such a way that every site in the system, including the monitors,
is adjacent to a monitor site so that, if a monitor goes down, then an adjacent
monitor can still protect the system. Installing minimum number of expensive
sensors in the system which will transmit a signal at the detection of faults and
uniquely determining the location of the faults motivates the concept of locating
sets and locating-total dominating sets [5].

In a parallel computer, the processors and interconnection networks are mod-
eled by the graph G = (V,E), where each processor is associated with a vertex
of G and a direct communication link between two processors is indicated by the
existence of an edge between the associated vertices. Suppose we have limited

I. Rajasingh—This work is supported by Project No. SR/S4/MS: 846/13, Depart-
ment of Science and Technology, SERB, Government of India.

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 299–307, 2016.
DOI: 10.1007/978-3-319-29221-2 26

300 R. Jayagopal et al.

resources such as disks, input-output connections, or software modules, and we
want to place a minimum number of these resource units at the processors, so
that every processor is adjacent to at least one resource unit, then finding such
a placement involves constructing a minimum dominating set for the graph G.
Determining if an arbitrary graph has a dominating and locating-dominating
set of a given size are well-known NP -complete problems [6,7]. Occurrence of
faulty nodes in a device is inevitable. So, to diagnose these faults we make use
of locating-total domination set in this system. We place monitoring devices in
a system in such a way that every site in the system (including the monitors) is
adjacent to a monitor site.

A locating-dominating set (LDS) in a connected graph G = (V,E) is a
dominating set S of G such that for every pair of vertices u and v in V (G) \ S,
N(u) ∩ S �= N(v) ∩ S. The minimum cardinality of a locating-dominating set of
G is called the locating-domination number γL(G) [5]. The locating-domination
problem has been discussed for paths and cycles [8,9], infinite grids [10], circulant
graphs [11], fault-tolerant graphs [12] and so on.

A locating-total dominating set (LTDS) in a connected graph G = (V,E)
is a total dominating set S of G such that for every pair of vertices u and v
in V (G) \ S, N(u) ∩ S �= N(v) ∩ S. The minimum cardinality of a locating
total-dominating set of G is called the locating-total domination number γL

t (G)
[5]. The locating-total domination problem has been discussed for trees [13],
cubic graphs and grid graphs [14], corona and composition of graphs [15], claw-
free cubic graphs [16], edge-critical graphs [17] and so on. In this paper, we
determine the domination, total domination, locating-domination and locating-
total domination numbers for hypertrees.

Fig. 1. HT (3) with decimal labels and binary labels within braces

2 Domination in Hypertrees

The basic skeleton of a hypertree is a complete binary tree Tn. Here the nodes
of the tree are numbered as follows: The root node has label 1. The root is said
to be at level 0. Labels of left and right children are formed by appending a 0
and 1, respectively to the labels of the parent node. The decimal and binary
labels of the hypertree are given in Fig. 1. Here the children of the nodes x are

Domination Parameters in Hypertrees 301

labeled as 2x and 2x + 1. Additional links in a hypertree are horizontal and
two nodes are joined in the same level i of the tree if their label difference is
2i−1. We denote an n-level hypertree as HT (n). It has 2n+1 − 1 vertices and
3(2n − 1) edges. Hypertree is a multiprocessor interconnection topology which
has a frequent data exchange in algorithms such as sorting and Fast Fourier
Transforms (FFT ′s) [18]. The root-fault hypertree HT ∗(n), n ≥ 2 is a graph
obtained from HT (n) by deleting the root vertex v [19]. See Fig. 2. The following
lemma is obvious from the definition of a hypertree.

Lemma 1. The hypertree HT (n), n ≥ 3, contains 2n−2 disjoint isomorphic
copies of HT ∗(2) and 2n−3 disjoint isomorphic HT ∗(3). See Fig. 3(a) and (c).

Fig. 2. (a) HT ∗(3) by definition (b) HT ∗(3) redrawn

Lemma 2. Let G be a root-fault hypertree HT ∗(2). Then γ(G) = γt(G) = 2.

Proof. Let S be a dominating set of G. We claim that |S| ≥ 2. Suppose not, let
|S| = 1. Then there exists a vertex u in S such that deg(u) = 5. But Δ(G) = 3,
a contradiction. Hence |S| ≥ 2. Let S = {v, v′} where deg(v) = deg(v′) = 3.
See Fig. 3(a). Now, N [v] ∪ N [v′] = V (G) and hence |S| ≤ 2. Since v and v′

are adjacent in G, S is also a minimum total dominating set of G. Therefore
γ(G) = γt(G) = 2. ��

Lemma 3. Let G be a root-fault hypertree HT ∗(2). Then γL(G) = γL
t (G) = 3.

Proof. Let S be a locating-dominating set of G. We claim |S| ≥ 3. By Lemma 2,
γL(G) ≥ 2. Assume that |S| = 2. Let S = {v, v′} where deg(v) = deg(v′)
= 3. Then N(v) = {a, b, v′} and N(v′) = {a′, b′, v}. See Fig. 3(b). This implies
N(a)∩S = {v} = N(b)∩S. Suppose S = {a, b′} then N(v)∩S = {a} = N(a′)∩S.
Thus |S| ≥ 3. Now let S = {v, v′, a}. Then N(a′) ∩ S = {v′, a}, N(b) ∩ S =
{v}, N(b′) ∩ S = {v′} and N [S] = V (G). Hence γL(G) ≤ 3. Since v, v′ and a
induce a path on 3 vertices in G, S is also a minimum locating-total dominating
set of G. Therefore γL(G) = γL

t (G) = 3. ��

302 R. Jayagopal et al.

Fig. 3. (a) Circled vertices constitute a minimum dominating set of G (b) Circled ver-
tices constitute a minimum locating-dominating set of G (c) Circled vertices constitute
a minimum locating-dominating set of G

Fig. 4. (a) Circled vertices constitute a minimum dominating set S of HT(3) with
v0 ∈ S (b) Circled vertices constitute a minimum dominating set S of HT(3) with
v0 /∈ S

Theorem 1. Let G be a hypertree HT (n), n ≥ 1. Then

γ(G) =

⎧⎨
⎩

(2n+2 + 3)/7 if n ≡ 0 (mod 3)
(2n+2 − 1)/7 if n ≡ 1 (mod 3)
2(2n+1 − 1)/7 if n ≡ 2 (mod 3)

Proof. We prove the result by induction on n.

Case (i): n ≡ 0 (mod 3)
When n = 3, S = {v0, v3, v4, v5, v6} is a dominating set of HT (3). See

Fig. 4(a). Hence γ(HT (3)) ≤ 5. Any dominating set S containing v0 has at
least 5 members. On the other hand suppose v0 /∈ S. To dominate v0 in level
0, one vertex in level 1, say v1, has to be selected, see Fig. 4(b). This dominates
v0, v2, v3 and v4. Deletion of these 5 vertices v0, v1, v2, v3 and v4 from HT (3)
leaves two disjoint paths of length 5, namely, v7v11v5v12v8 and v9v13v6v14v10.
Now we need at least 4 vertices to dominate all the vertices of the two paths.
Hence γ(HT (3)) ≥ 5. Thus γ(HT (3)) = 5 = 1/7(23+2+3). See Fig. 4(b). Assume

Domination Parameters in Hypertrees 303

that the result is true for n = 3k, k ≥ 1. That is, γ(HT (3k)) = 1/7(23k+2 + 3).
Consider HT (3k + 3). By Lemma 1, there are 23k+1 vertex disjoint copies of
HT ∗(2) in HT (3k +3). Deletion of these subgraphs HT ∗(2) along with the ver-
tices of HT (3k + 3) adjacent to vertices of these subgraphs results in HT (3k).
Therefore by Lemma 2, γ(HT (3k+3)) = γ(HT (3k))+2(23k+1) and by induction
hypothesis, γ(HT (3k + 3)) = 1/7(23k+2 + 3) + 2(23k+1) = 1/7(2(3k+3)+2 + 3).

Case (ii): n ≡ 1 (mod 3)
When n = 1, the result is trivial. Assume that the result is true for n =

3k + 1, k ≥ 1. That is, γ(HT (3k + 1)) = 1/7(2(3k+1)+2 − 1). Consider HT (3k +
4). By Lemma 1, there are 23k+2 vertex disjoint copies of HT ∗(2) in HT (3k +
4). Deletion of these subgraphs HT ∗(2) along with the vertices of HT (3k +
4) adjacent to vertices of these subgraphs results in HT (3k + 1). Therefore
by Lemma 2, γ(HT (3k + 4)) = γ(HT (3k + 1)) + 2(23k+2) and by induction
hypothesis, γ(HT (3k+4)) = 1/7(2(3k+1)+2−1)+2(23k+2) = 1/7(2(3k+4)+2−1).
See Fig. 5(a).

Case (iii): n ≡ 2 (mod 3)
When n = 2, the set S consisting of the vertices in level 1 is the minimum

dominating set of HT (2). Hence γ(HT (2)) = 2 = 2/7(22+1−1). Assume that the
result is true for n = 3k+2, k ≥ 1. That is, γ(HT (3k+2)) = 2/7(2(3k+2)+1 −1).
Consider HT (3k + 5). By Lemma 1, there are 23k+3 vertex disjoint copies
of HT ∗(2) in HT (3k + 5). Deletion of these subgraphs HT ∗(2) along with
the vertices of HT (3k + 5) adjacent to vertices of these subgraphs results in
HT (3k +2). Therefore by Lemma 2, γ(HT (3k +5)) = γ(HT (3k +2))+2(23k+3)
and by induction hypothesis, γ(HT (3k + 5)) = γ(HT (3k + 2)) + 4(23k+2) =
2/7(2(3k+2)+1 − 1) + 2(23k+3) = 2/7(2(3k+5)+1 − 1). �

Fig. 5. (a) Circled vertices constitute a minimum dominating set of HT(4) (b) Circled
vertices constitute a minimum total dominating set of HT(4)

Remark 1. The dominating sets described in Theorem 1 for HT (n), when n ≡
0, 2 (mod 3) do not contain any isolated vertex. When n ≡ 1 (mod 3), to dominate
v0, either v0 or a vertex in level 1 is included in a dominating set which is an
isolated vertex. This increases the cardinality of total domination number by 1.
See Fig. 5(b). These observations yield the following result.

304 R. Jayagopal et al.

Theorem 2. Let G be a hypertree HT (n), n ≥ 1. Then

γt(G) =

⎧⎨
⎩

(2n+2 + 3)/7 if n ≡ 0 (mod 3)
(2n+2 − 1)/7 + 1 if n ≡ 1 (mod 3)
2(2n+1 − 1)/7 if n ≡ 2 (mod 3)

�

Lemma 4. Let G be a root-fault hypertree HT ∗(3). Then γL(G) = γL
t (G) = 6.

Proof. Let S be a locating-dominating set of G. Assume that |S| ≤ 5. The
vertices u and v are the only two vertices of degree 3 in G. We assume that
u and v do not belong to S. It is easy to see that the removal of u and v
disconnects G into two components G1 and G2 which are isomorphic to HT ∗(2),
see Fig. 3(c). We need at least 3 vertices each to identify all the vertices in G1

and G2. This contradicts the cardinality of S. Suppose u and v belongs to S,
then we need at least 2 vertices in each of G1 and G2 to dominate G1 and G2.
This again contradicts the cardinality of S. The case when either u or v belongs
to S is similar. Therefore γL(G) ≥ 6. Label the vertices of G as in Fig. 3(c)
and let S = {u1, u2, u3, u5, v1, v2}. It is easy to check that S is a locating-
dominating set of G. Further there are no isolated vertices in the subgraph
induced by S. Therefore S is also a locating-total dominating set of G. Hence
γL(G) = γL

t (G) = 6. �

Remark 2. Let S be a dominating set of a graph G. Pairs of vertices u and v of
V (G) \ S are said to be located by S if N(u) ∩ S �= N(v) ∩ S.

Theorem 3. Let G be a hypertree HT (n), n ≥ 1. Then

γL(G) =

⎧⎪⎪⎨
⎪⎪⎩

(2n+2 + 1)/5 if n ≡ 0 (mod 4)
(2n+2 + 2)/5 if n ≡ 1 (mod 4)
(2n+2 − 1)/5 if n ≡ 2 (mod 4)
(2n+2 − 2)/5 if n ≡ 3 (mod 4)

Proof. We prove the result by induction on n.

Case (i): n ≡ (mod 4)
When n = 4. First we claim that, at least 12 vertices are needed to locate a

pair of vertices in level 3 and level 4. In order to locate all pair of vertices in level
4, we need at least 8 vertices in level 4. Now to locate all pair of vertices in level
3, we need at least 4 vertices, which are in either level 2 or level 3 or level 4. Let S
be a locating-dominating set of HT (4). We claim that |S| ≥ 13. By our claim, we
need at least 12 vertices to locate pair of vertices in level 3 and level 4 in HT (4).
To dominate the vertex in level 0, we need one more vertex in S. Therefore
|S| ≥ 13. Let S be the set of all vertices in level 0, level 2 and the 4 alternate
vertices from left to right and the 4 alternate vertices from right to left in level 4.
See Fig. 6(b). By definition of locating-dominating set, for any two vertices x and
y in V (G) \ S, N(x) ∩ S �= N(y) ∩ S. Therefore |S| ≤ 13. Thus, S is a minimum

Domination Parameters in Hypertrees 305

locating-dominating set of HT (4) and hence γL(HT (4)) = 13 = 1/5(24+2 + 1).
Assume that the result is true for n = 4k, k ≥ 1. That is, γL(HT (4k)) =
1/5(24k+2+1). Consider HT (4k+4). By Lemma 1, there are 24k+1 vertex disjoint
copies of HT ∗(3) in HT (4k+4). Deletion of these subgraphs HT ∗(3) along with
the vertices of HT (4k + 4) adjacent to vertices of these subgraphs, results in
HT (4k). Therefore by Lemma 4, γL(HT (4k + 4)) = γL(HT (4k)) + 6(24k+1)
and by induction hypothesis, γL(HT (4k + 4)) = γL(HT (4k)) + 6(24k+1) =
1/5(24k+2 + 1) + 6(24k+1) = 1/5(2(4k+4)+2 + 1).

Case (ii): n ≡ 1 (mod 4)
When n = 1, the result is trivial. Assume that the result is true for n =

4k +1, k ≥ 1. That is, γL(HT (4k +1)) = 1/5(2(4k+1)+2 +2). Consider HT (4k +
5). By Lemma 1, there are 24k+2 vertex disjoint copies of HT ∗(3) in HT (4k +
5). Deletion of these subgraphs HT ∗(3) along with the vertices of HT (4k +
5) adjacent to vertices of these subgraphs results in HT (4k + 1). Therefore
by Lemma 4, γL(HT (4k + 5)) = γL(HT (4k + 1)) + 6(24k+2) and by induction
hypothesis, γL(HT (4k+5)) = 1/5(2(4k+1)+2+2)+6(24k+2) = 1/5(2(4k+5)+2+2).

The cases when n ≡ 2, 3 (mod 4) can be dealt with similarly. �

Fig. 6. (a) Circled vertices constitute a minimum locating-total dominating set of
HT(2) and (b) Circled vertices constitute a minimum locating-dominating set of HT(4)

Fig. 7. Circled vertices constitute a minimum locating-total dominating set of (a)
HT(3) and (b) HT(4)

306 R. Jayagopal et al.

Theorem 4. Let G be a hypertree HT (n), n ≥ 1. Then

γL
t (G) =

{
(3(2n+1) + 1)/7 if n ≡ 0 (mod 3)
2(3(2n) + 1)/7 if n ≡ 1 (mod 3)
3(2n+1 − 1)/7 if n ≡ 2 (mod 3)

Proof. We prove the result by induction on n.

Case (i): n ≡ 0 (mod 3)
When n = 3, let S be a locating-total dominating set of HT (3). HT ∗(3) is

a induced subgraph of HT (3) and hence by Lemma 4, γL
t (HT (3)) ≥ 6. In order

to locate pair of vertices in level 2 and level 3, we need all 4 vertices in level 2
and 2 vertices in level 3. But the vertices at level 0 is not dominated. Therefore
γL
t (HT (3)) ≥ 7. Let S be the set of all vertices in level 3 and a vertex in level 1

and the 2 alternate vertices from left to right in level 3. See Fig. 7(a). By defini-
tion of locating-total dominating set, for any two vertices x and y in V (G) \ S,
N(x) ∩ S �= N(y) ∩ S. Thus S is the minimum locating-total dominating set of
HT (3) and hence γL

t (HT (3)) = 7 = 1/7(3(23+1) + 1). Assume that the result
is true for n = 3k, k ≥ 1. That is, γL

t (HT (3k)) = 1/7(3(23k+1) + 1). Con-
sider HT (3k +3). By Lemma 1, there are 23k+1 vertex disjoint copies of HT ∗(2)
in HT (3k + 3). Deletion of these subgraphs HT ∗(2) along with the vertices of
HT (3k+3) adjacent to vertices of these subgraphs results in HT (3k). Therefore
by Lemma 3, γL

t (HT (3k+3)) = γL
t (HT (3k))+3(23k+1) and by induction hypoth-

esis, γL
t (HT (3k + 3)) = γL

t (HT (3k)) + 3(23k+1) = 1/7(3(23k+1) + 1) + 6(23k) =
1/7(3(2(3k+3)+1) + 1).

Case (ii): n ≡ 1 (mod 3)
When n = 1, the result is trivial. Assume that the result is true for n =

3k + 1, k ≥ 1. That is, γL
t (HT (3k + 1)) = 2/7(3(23k+1) + 1). Consider HT (3k +

4). By Lemma 1, there are 23k+2 vertex disjoint copies of HT ∗(2) in HT (3k +
4). Deletion of these subgraphs HT ∗(2) along with the vertices of HT (3k +
4) adjacent to vertices of these subgraphs results in HT (3k + 1). Therefore
by Lemma 3, γL

t (HT (3k + 4)) = γL
t (HT (3k + 1)) + 3(23k+2) and by induction

hypothesis, γL
t (HT (3k+4)) = γL

t (HT (3k+1))+3(23k+2) = 2/7(3(23k+1)+1)+
3(23k+2) = 2/7(3(23k+4) + 1). See Fig. 7(b).

The case when n ≡ 2 (mod 3) is similar with S = {2, 3, 4} being the minimum
locating-total dominating set of HT (2) as the base case. See Fig. 6(a). �

3 Conclusion

In this paper, we have proved that γ(G) = γt(G) when G is a hypertree HT (n),
n ≡ 0, 2 (mod 3) and γ(G) = γt(G) − 1 when G is HT (n), n ≡ 1 (mod 3).
We have also computed γL(HT (n)) and γL

t (HT (n)), n ≥ 1. Finding classes of
graphs G with γ(G) = γt(G) = γL(G) = γL

t (G) is under investigation.

Acknowledgement. The authors would like to thank the anonymous referees for
their comments and suggestions. These comments and suggestions were very helpful
for improving the quality of this paper.

Domination Parameters in Hypertrees 307

References

1. Cockayne, E.J., Hedetniemi, S.T.: Towards a theory of domination in graphs. Net-
works 7(3), 247–261 (1977)

2. Berge, C.: Graphs and Hypergraphs. North Holland Publisher, Amsterdam (1973)
3. Haynes, T., Knisley, D., Seier, E., Zou, Y.: A quantitative analysis of secondary

RNA structure using domination based parameters on trees. BMC Bioinform. 7,
108–118 (2006)

4. Kalbeisch, J.G., Stanton, R.G., Horton, J.D.: On covering sets and error-correcting
codes. J. Combin. Theory Ser. A 11(3), 233–250 (1971)

5. Haynes, T.W., Henning, M.A., Howard, J.: Locating and total dominating sets in
trees. Discrete Appl. Math. 154(8), 1293–1300 (2006)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of Np-Completeness. W. H. Freeman Company Publisher, San Francisco (1979)

7. Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or
locating-dominating code in a graph is NP-hard. Theoret. Comput. Sci. 290(3),
2109–2120 (2006)

8. Exoo, G.: Locating-dominating codes in cycles. Australas. J. Combin. 49, 177–194
(2011)

9. Chen, C., Lu, C., Miao, Z.: Identifying codes and locating-dominating sets on paths
and cycles. Discrete Appl. Math. 159(15), 1540–1547 (2011)

10. Honkala, I., Laihonen, T.: On locating-dominating sets in infinite grids. Eur. J.
Combin. 27(2), 218–227 (2006)

11. Ghebleha, M., Niepelb, L.: Locating and identifying codes in circulant networks.
Discrete Appl. Math. 161(13–14), 2001–2007 (2013)

12. Slater, P.J.: Fault-tolerant locating-dominating sets. Discrete Math. 249(1–3),
179–189 (2002)

13. Chena, X., Sohn, M.Y.: Bounds on the locating-total domination number of a tree.
Discrete Appl. Math. 159(8), 769–773 (2011)

14. Henning, M.A., Rad, N.J.: Locating-total dominations in graphs. Discrete Appl.
Math. 160(13–14), 1986–1993 (2012)

15. Omamalin, B.N.: Locating total dominating sets in the join, corona and composi-
tion of graphs. Appl. Math. Sci. 8(48), 2363–2374 (2014)

16. Henning, M.A., Lowenstein, C.: Locating-total domination in claw-free cubic
graphs. Discrete Math. 312(4), 3107–3116 (2012)

17. Blidia, M., Dali, W.: A characterization of locating-total domination edge critical
graphs. Discussiones Math. Graph Theory 31(1), 197–202 (2011)

18. Goodman, J.R., Sequin, C.H.: Hypertree: a multiprocessor interconnection topol-
ogy. IEEE Trans. Comput. C–30(12), 923–933 (1981)

19. Rajan, R.S., Jayagopal, R., Rajasingh, I., Rajalaxmi, T.M., Parthiban, N.: Com-
binatorial properties of root-fault hypertree. Procedia Comput. Sci. 57, 1096–1103
(2015)

Complexity of Steiner Tree in Split Graphs -
Dichotomy Results

Madhu Illuri, P. Renjith(B), and N. Sadagopan

Indian Institute of Information Technology, Design and Manufacturing,
Kancheepuram, India

{coe11b012,coe14d002,sadagopan}@iiitdm.ac.in

Abstract. Given a connected graph G and a terminal set R ⊆ V (G),
Steiner tree asks for a tree that includes all of R with at most r edges for
some integer r ≥ 0. It is known from [ND12,Garey et al. [1]] that Steiner
tree is NP-complete in general graphs. Split graph is a graph which can
be partitioned into a clique and an independent set. K. White et al. [2]
has established that Steiner tree in split graphs is NP-complete. In this
paper, we present an interesting dichotomy: we show that Steiner tree
on K1,4-free split graphs is polynomial-time solvable, whereas, Steiner
tree on K1,5-free split graphs is NP-complete. We investigate K1,4-free
and K1,3-free (also known as claw-free) split graphs from a structural
perspective. Further, using our structural study, we present polynomial-
time algorithms for Steiner tree in K1,4-free and K1,3-free split graphs.
Although, polynomial-time solvability of K1,3-free split graphs is implied
from K1,4-free split graphs, we wish to highlight our structural observa-
tions on K1,3-free split graphs which may be used in other combinatorial
problems.

1 Introduction

Steiner tree is a classical combinatorial optimization problem which continues
to attract researchers from both mathematics and computing. Interestingly, this
problem finds applications in Network Design, Circuit Layout Design, etc., [3].
Given a connected graph G and a subset of vertices (terminal set) R ⊆ V (G),
Steiner tree asks for a tree spanning the terminal set. The objective is to minimize
either the number of edges in the Steiner tree or the number of additional vertices
(Q ⊆ V (G)\R, also known as Steiner vertices). It is apparent from the definition
that Steiner tree generalizes well-known Minimum Spanning Tree (MST) and
Shortest Path problems in general graphs [4].

On the complexity front, Steiner tree in general graphs is NP-complete as
there is a polynomial-time reduction from Exact 3 Cover [5]. Under the assump-
tion, NP-complete problems are unlikely to have polynomial-time algorithms,
it is natural to identify the gap between polynomial-time solvability and NP-
completeness by restricting the input instances. Towards this end, many special
graph classes such as chordal, bipartite, planar, split, etc., were discovered in
the literature [6]. Classical problems such as Vertex cover, Clique, Odd-cycle
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 308–325, 2016.
DOI: 10.1007/978-3-319-29221-2 27

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 309

transversal have polynomial-time algorithms when the input is restricted to
chordal graphs which are otherwise NP-complete for arbitrary graphs [5]. How-
ever, other famous problems such as Hamiltonian Path (Cycle), Steiner tree,
etc., remain NP-complete even on chordal graphs [2,7]. In fact, Steiner tree
is NP-complete on Split graphs which are a strict subclass of chordal graphs
[6]. Steiner tree is considered to be a difficult combinatorial problem compared
to other problems as it is NP-complete on almost all special graph classes. For
example, it is NP-complete on planar [8], chordal [2], bipartite [5], chordal bipar-
tite [9] graphs. Due to its inherent difficulty, this problem has been an active
research problem in the literature for the past three decades.

When a combinatorial problem is NP-complete on special graph classes such
as chordal and split, it is natural to restrict the input further by means of
forbidden subgraphs. For example, Hamiltonian cycle problem is NP-complete in
chordal graphs, whereas it is polynomial-time solvable on interval graphs which
are chordal and asteroidal-triple free [10–13]. In this paper, we revisit Steiner tree
restricted to split graphs. It is known from [2], that Steiner tree on split graphs is
NP-complete. We investigate the complexity of Steiner tree on subclasses of split
graphs and present an interesting dichotomy. Towards this end, we study K1,3-
free (claw free) and K1,4-free split graphs from both structural and algorithmic
perspectives. In particular, we establish the following results;

• Steiner tree on K1,5-free split graphs is NP-complete.
• Steiner tree on K1,4-free split graphs is polynomial-time solvable.

Towards this end, we present a tight lower bound on the size of the Steiner set
and our algorithm correctly produces such a Steiner set. The above results rightly
identify the gap between NP-completeness and polynomial-time solvable input
instances of Steiner tree problem restricted to split graphs. Since our contribution
evolved from K1,3-free split graphs, we highlight structural results of both K1,3-
free and K1,4-free split graphs. Although, the complexity of Steiner tree in K1,3-
free split graphs is inferred from K1,4-free split graphs, out of combinatorial
curiosity, we investigate both graphs from structural perspective and present
polynomial-time algorithms for Steiner tree. To the best of our knowledge, this
line of investigation has not been reported in the literature. The polynomial-time
results known in the literature for Steiner tree are for trees and 2-trees [14].

As far as parameterized-complexity results are concerned, in [15] it is shown
that Steiner tree in general is Fixed-parameter Tractable(FPT) if the parameter
is the size of the terminal set and it is W [2]-hard if the parameter is the size of
the Steiner set [16]. From the domain of approximation algorithms, Steiner tree
has a polynomial-time approximation algorithm with ratio 2− 1

|R| [17]. Variants
of Steiner tree include Euclidean Steiner tree [18], Rectilinear Steiner tree [8],
and Directed Steiner tree [19,20].

Roadmap: We present the structural characteristics of K1,3-free split graphs in
Sect. 2. Using the structural observations made, we also present a polynomial-
time algorithm to output a Steiner tree in K1,3-free split graphs. Structural

310 M. Illuri et al.

characteristics of K1,4-free split graph and a polynomial-time algorithm to out-
put a Steiner tree in K1,4-free split graphs is presented in Sect. 3. Hardness result
is addressed in Sect. 4.

Graph-theoretic Preliminaries: In this paper, we work with connected, sim-
ple, unweighted graphs. Notations are as per [6,21]. For a graph G the vertex set
is V (G) and the edge set is E(G) = {{u, v} | u, v ∈ V (G) and u is adjacent to v
in G and u �= v}. The neighborhood of vertex v is NG(v) = {u | {u, v} ∈ E(G)}.
The degree of a vertex v is dG(v) = |NG(v)|. δ(G) = min {dG(v) | v ∈ V (G)}.
For a graph G and S ⊆ V (G), G[S] represents the subgraph of G induced on the
vertex set S. The subgraph relation is represented as G[S] � G. A Split graph
G = I + C is such that G can be partitioned into an Independent Set I and a
Clique C, V (G) = I∪C. A clique C is maximal if there does not exist a clique C

′

such that C ⊆ V (C
′
). For all split graphs mentioned in this paper we consider

C to be a maximal clique unless otherwise stated. K1,r is a split graph on r + 1
vertices such that |C| = 1 and |I| = r, E(K1,r) = {{x, v} | x ∈ C, v ∈ I}. K1,3 is
also termed as claw. Centre vertex of a K1,r is the vertex of degree r. A graph
G is K1,r-free if G forbids K1,r as an induced subgraph. For a vertex u ∈ C,
N I

G(u) = NG(u) ∩ I and dIG(u) = |N I
G(u)|. For S ⊆ C, N I

G(S) =
⋃

v∈S N I
G(v),

and dIG(S) = |N I
G(S)|. For a split graph G, ΔI

G = maximum{dIG(v)}, v ∈ C and
V3 = {u ∈ C | dIG(u) = 3}. Two edges e1 and e2 are non adjacent if they do not
share an end vertex in common. A set of edges M ⊆ E(G) forms a matching of G
if every pair of edges in M are non adjacent. Maximum matching is a matching
of maximum cardinality in G. α(G) denotes the size of the maximum matching
in G.

2 K1,3-free Split Graphs: Structural Results

In this section, we analyze the structure of K1,3-free split graphs and we present
some interesting structural results. Further, we show that for a claw-free split
graph G, if ΔI

G = 2, then |I| ≤ 3. This acts as a good handle in yeilding a
linear-time algorithm for Steiner tree problem which we see in the later half of
this section.

Theorem 1. Let G be a connected split graph. G is claw free if and only if one
of the following conditions hold.

1. ΔI
G ≤ 1

2. ΔI
G = 2 and for every u, v ∈ C such that dIG(u) = 2, N I

G(u) ∩ N I
G(v) �= ∅

Proof. Necessity: Suppose ΔI
G ≥ 3, and let v ∈ C has at least 3 neighbours,

say x, y, z ∈ I. Then the set {v, x, y, z} forms a claw in G with v as its centre
vertex. It follows that if G is claw-free, then ΔI

G ≤ 2. Now suppose ΔI
G = 2. Let

u ∈ C such that there exist vertices x, y ∈ I, {x, y} ⊆ N I
G(u). We assume on the

contrary that there exist v ∈ C, v �= u such that N I
G(u) ∩ N I

G(v) = ∅. Since C
is a clique, {u, v} ∈ E(G). It follows that vertices {u, x, y, v} forms a claw in G

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 311

with u as its centre, a contradiction. This proves Condition 2, and completes the
proof of the forward direction.
Sufficiency: On the contrary assume that G is not claw free. No claw in G can
have its centre vertex in the set I, since for any v in I, the set NG(v) ⊆ C and
hence induces a clique in G. So every claw in G has its centre vertex in the set C.
Consider a claw with the vertex set {v, x, y, z}, with the centre v being in C. No
two of the other three vertices of the claw can be in C, because then there would
be an edge between them. So at most one of {x, y, z} is in C, and the rest (of
which there are at least two) are in I. It follows that if G contains a claw, then
ΔI

G ≥ 2. Equivalently, if ΔI
G ≤ 1 then G is claw-free. Finally, consider the case

where ΔI
G = 2. Suppose the vertex set {v, x, y, z} induces a claw in G, with its

centre vertex being v. Then v is in C, and at least two of {x, y, z} are in I, as we
argued above. Since ΔI

G = 2 we get that exactly two of {x, y, z}, say x and y, are
in I. Then z is in C, and {x, z}, {y, z} /∈ E(G). It follows that N I

G(v)∩N I
G(z) = ∅

which is a contradiction to Condition 2. Therefore, our assumption that there
exist a claw in G is wrong, and this completes the sufficiency. Therefore, the
theorem follows. ��
Lemma 1. For a claw-free split graph G, if ΔI

G = 2, then |I| ≤ 3.

Proof. Since ΔI
G = 2, let there exist a vertex v ∈ C such that dIG(v) = 2. On the

contrary, assume that |I| > 3, that is, {a, b, c, d} ⊆ I such that N I
G(v) = {a, b}.

Let X = NG(a) and Y = NG(b) as shown in Fig. 1. If there exist a vertex
t ∈ C such that t /∈ X, and t /∈ Y , then vertices {a, b, v, t} induces a claw.
Therefore, C = X ∪ Y . If X ⊆ Y , then C ∪ {b} induces a larger clique, which
is a contradiction to the assumption on the maximality of clique C. Therefore,
X �⊆ Y and similarly, Y �⊆ X. It follows that, X − Y �= ∅ and Y − X �= ∅. For
every vertex v ∈ X ∩Y , {v, c} /∈ E(G) and {v, d} /∈ E(G) otherwise, N I

G(v)∪{v}
induces K1,3. Therefore, the vertices c, d can have adjacency in two disjoint sets
X − Y or Y − X.

v

 ua

b

c

d z Y

X

I C

w
v

 ua

b

c

d
z Y

X

I C

Case 1 Case 2

Fig. 1. An illustration for the proof of Lemma 1

Case 1: NG(c)∩X �= ∅ and NG(d)∩Y �= ∅. Edge {u, c} ∈ E(G) where u ∈ X−Y
and {z, d} ∈ E(G) where z ∈ Y −X. Observe that {a, z}, {c, z} /∈ E(G) otherwise

312 M. Illuri et al.

N I
G(z)∪{z} induces K1,3. Similarly, {d, u} /∈ E(G) otherwise N I

G(u)∪{u} induces
K1,3. From the discussion, it follows that the vertices {u, a, c, z} induces a claw,
which is a contradiction. Similar argument holds for NG(c)∩Y �= ∅ and NG(d)∩
X �= ∅.
Case 2: NG(c) ⊆ X and NG(d) ⊆ X. Let {c, u}, {d,w} ∈ E(G) such that u,w ∈
X − Y . Note that there exist at least one vertex z ∈ Y − X. If {c, z} /∈ E(G),
then the vertices {u, a, c, z} induces a claw. If {c, z} ∈ E(G), then the vertices
{w, a, d, z} induces a claw as, {d, z} /∈ E(G). The argument is symmetric for
NG(c) ⊆ Y and NG(d) ⊆ Y .

Cases 1 and 2 give a contradiction to the fact that G is claw free. Therefore,
our assumption that |I| > 3 is wrong, and hence, the lemma follows. ��

2.1 Application: Steiner Tree in K1,3-free Split Graphs

Using the structural results presented in Sect. 2, in this section, we present
a polynomial-time algorithm to find minimum Steiner tree in K1,3-free split
graphs. Optimum version of Steiner tree problem is defined as follows;

OPT Steiner tree(G,R)
Instance: Graph G(V,E), Terminal Set R ⊆ V (G)
Question: Find a minimum cardinality set S ⊆ V (G)\R such
that G[S ∪ R] is connected?

We here consider the Steiner tree problem on split graph G0 = I0 + C0. Due
to pruning, we iteratively construct split graphs G1, G2 from the input graph
G = G0. We simplify the input by pruning the vertices which are not part of
any optimum solution. The pruned graph G1 is the graph induced on the vertex
set V (G0)\(S1 ∪ S2 ∪ S3). Clearly, G1 � G0 and let G1 = I1 + C1. We prune
three sets of vertices S1, S2, S3 one after the other and are defined as follows.
S1 = {a ∈ I0 | a /∈ R}. S2 = {u ∈ C0 | u /∈ R and N I0

G (u) ∩ R = ∅}. Let
R

′
= {v ∈ C0 | v ∈ R}. S3 =

⋃
v∈R′

{v} ∪ N I0

G (v). Consider the Steiner tree

optimization problems P1, and P2 defined as follows.

P1: OPT Steiner tree(G0, R)
P2: OPT Steiner tree(G1, R\S3)

Lemma 2. An optimum solution Q to P2 is also an optimum solution to P1.

Proof. Note that the first two sets S1, S2 pruned from G0 are not part of any
optimum solution. S3 ⊆ R induces a connected subgraph of G0 which is also
pruned to obtain G1. If V (G1) ∩ R = ∅, then Steiner set of P2 is empty. i.e., R
induces a connected subgraph of G0. On the other hand if V (G1) ∩ R �= ∅, then
there exist at least one vertex v ∈ C1 in the Steiner set Q of P2. Q ⊆ C1 connects
all terminal vertices R\S3. If S3 �= ∅, then there exist at least one vertex u ∈ S3

such that u ∈ C0 and u ∈ R. {u, v} ∈ E(G0) and therefore, Q ∪ R induces a
connected subgraph of G0 and Q is a minimum Steiner set for P1. Hence, the
lemma follows. ��

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 313

2.1.1 A Polynomial-Time Algorithm to Find a Minimum Steiner
Tree

Given a K1,3-free split graph G0 with terminal vertex set R ⊆ V (G0), we present
a polynomial-time algorithm to find a minimum Steiner tree. As part of pre-
processing step, we prune the sets S1, and S2, which are not part of any optimum
solution. Further, we delete terminals which are in C, and their neighbours in
I, namely the set S3. Now we have an instance of Steiner Tree in claw-free split
graphs where all the terminals are in the independent set. An optimum solution
to the pruned graph is also an optimum solution to the original graph by the
previous lemma. We now present a sketch of algorithm and the detailed one is
presented in Algorithm 1. If ΔI

G = 0, then the instance is trivial. If ΔI
G = 1,

then Steiner set should contain one neighbor vertex in C of each terminal in I.
In the remaining case, ΔI

G = 2 and therefore, by Lemma 1 |I| ≤ 3. The only
non-trivial case is when |I| = 3. From the constraints of the instance, we know
that it is necessary and sufficient to pick exactly two Steiner vertices from C in
this case.

Algorithm 1. Steiner tree in Claw free Split graphs. Steiner tree(G0, R)
/*G0 is a claw-free split graph and R ⊆ V (G0) is the set of
terminal vertices */

1: Find the pruned graph G1=Pruning(G0, R)
2: Initialize the output set of Steiner vertices S = ∅ and unmark every vertices

in I1 ⊆ V (G1)
3: if ΔI

G1 = 1 then
4: for every unmarked vertex d ∈ I1 do
5: include w ∈ C1 in S where {d,w} ∈ E(G1).
6: mark vertex d.
7: end for
8: else
9: include vertex x ∈ C1 in S where |N I

G1(x)| = 2. i.e.,N I
G1(x) = {a, b}

10: if |I1| = 3. i.e.,I1 = {a, b, c} then
11: include y ∈ C1 in S where {c, y} ∈ E(G1)
12: end if
13: end if
14: Run standard Breadth First Search in the graph G[S ∪ R] and output the

BFS tree.

2.1.2 Proof of Correctness of Algorithm 1
By Lemma 2, a minimum Steiner set of pruned graph G1 is an optimum Steiner
set for G0. Therefore, pruning in Step 1 is a solution preserving operation. We
present a case analysis to show that our algorithm outputs a minimum Steiner
tree of a claw-free split graph.

Case 1: ΔI
G1 ≤ 1. Note that for every vertex d ∈ I1, Step 5 includes exactly one

vertex w ∈ NG1(d) in S, which is a minimum Steiner set.

314 M. Illuri et al.

Algorithm 2. Pruning the input instance of Steiner tree. Pruning(G0, R)
/* G0 :input claw-free split graph, R :set of terminal vertices
*/

1: Find the sets S1, S2, S3 in order and prune those vertices from G0. i.e.,
G1 = G0\S where S = S1 ∪ S2 ∪ S3

2: Return the pruned graph G1.

Case 2: ΔI
G1 = 2. Observe |I| ≤ 3 by Lemma 1. |S| = 1, 2 for |I| = 2, 3,

respectively, which is done by Steps 9, 11. Therefore, S is a minimum Steiner
set for G1, and by Lemma 2, S is also a minimum Steiner set for G0. Step 14
outputs a Steiner tree by running standard Breadth First Search algorithm on
G[S ∪ R].

2.1.3 Run Time Analysis
We represent the input claw-free split graph using an adjacency list, as we can
easily find a neighbor of a given vertex. Vertices in adjacency list are arranged
such that C0 follow I0. Intuition behind this ordering is that, first neighbor of
a vertex v ∈ C0 encountered in the list is always a vertex u ∈ I0, if it exists. If
ΔI

G1 = 1, then u ∈ NG1(v) can be determined in constant time. Therefore,
Algorithm 1 takes linear time O(n), n = |V (G0)| to output a minimum
Steiner set.

3 K1,4-free Split Graphs: Structural Results

In this section, we first analyze the structure of K1,4-free split graphs. Subse-
quently we investigate Steiner tree problem restricted to K1,4-free split graphs.
Towards this end, we give a nice bound on the cardinality of any minimum
Steiner set. Further, we present a structural characterization of K1,4-free split
graph meeting the bound. Interestingly, the characterization yields a polynomial-
time algorithm to output a minimum Steiner tree, which we shall present in
Sect. 3.1.

Before we present the structural results, we introduce some additional ter-
minologies. A split graph G is a l-split graph if ΔI

G = l. Note that a K1,4-free
split graph is a l-split graph for some l, 0 ≤ l ≤ 3, and the converse does not
always hold. In a split graph G, closed neighborhood of a vertex u ∈ C is
[N(u)] = {u} ∪ N I

G(u). For a l-split graph G = I + C, 0 ≤ l ≤ 2, we construct
a labeled graph M such that V (M) = I and E(M) = {{a, b} | a, b ∈ I and
NG(a) ∩ NG(b) �= ∅} and label the edge {a, b} as vab. Note that v in vab denotes
a vertex v ∈ NG(a) ∩ NG(b). Also, we pick exactly one v ∈ NG(a) ∩ NG(b) to
label the edge {a, b}. For any edge set E∗ ⊆ E(M), we define the corresponding
vertex set V ∗ as follows. Corresponding to each edge {a, b} ∈ E∗, include exactly
one vertex v ∈ NG(a) ∩ NG(b) in V ∗. It follows that, V ∗ ⊆ C and |V ∗| = |E∗|.

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 315

Clearly, |V ∗| ≤ |E∗| as we are including not more than one vertex in V ∗ corre-
sponding to each edge in E∗. Suppose |V ∗| < |E∗|, then there exist at least two
edges labelled vab, vcd in E∗ such that v ∈ NG(a)∩NG(b) and v ∈ NG(c)∩NG(d).
Since edges {a, b}, {c, d} ∈ E∗ can share atmost one vertex in common, it fol-
lows that, dIG(v) ≥ 3, which is a contradiction as G is l-split, l ≤ 2 and M is the
labelled graph of G. Therefore, |V ∗| = |E∗|. We also define the Corresponding
clique set V c of a vertex set V ′ ⊆ I as follows. Corresponding to each vertex
u ∈ V ′, include exactly one vertex w in V c such that {u,w} ∈ E(G). Clearly,
V c ⊆ C and |V c| ≤ |V ′|. For a 1-split graph, |V c| = |V ′|. We now present some
structural observations on K1,4-free split graphs.

Lemma 3. Let G be a 3-split graph. G is K1,4 free if and only if for every u ∈ V3

and for every v �= u ∈ C, N I
G(u) ∩ N I

G(v) �= ∅.
Proof. Necessity: On the contrary, let us assume there exist v ∈ C such that
N I

G(u) ∩ N I
G(v) = ∅. Since dIG(u) = 3, vertices {u, v} ∪ N I

G(u) induces a K1,4,
which is a contradiction and the necessary condition follows.
Sufficiency: On the contrary, assume that G is not K1,4 free and there exists
a K1,4 induced on {u, v, w, x, y} with u as the centre vertex. No K1,4 in G can
have its centre vertex in the set I, since for any u in I, the set NG(u) is a subset
of the set C and hence induces a clique in G. So every K1,4 in G has its centre
vertex in the set C particularly, u ∈ C. Since G is a 3-split graph, dIG(u) = 3.
This implies that there exist at least one vertex of K1,4, say v ∈ C, and u ∈ V3.
It follows that N I

G(u) ∩ N I
G(v) = ∅, which is a contradiction and the sufficiency

follows. This completes the proof of the lemma. ��
Corollary 1. Let G be a K1,4-free 3-split graph. For any v ∈ C, the graph H
induced on the vertex set V (G) \ N I

G(v) is a l-split graph for some 0 ≤ l ≤ 2.

On the contrary, suppose there exists a vertex w ∈ C such that dIH(w) = 3. i.e.,
w ∈ V3. It follows that N I

G(w)∩N I
G(v) = ∅. By previous lemma, N I

G(w)∪{w, v}
induces a K1,4, which is a contradiction. ��
Corollary 2. Let G be a K1,4-free split graph and v ∈ C. If N I

G(v) =
{v1, v2, v3}, then NG(v1) ∪ NG(v2) ∪ NG(v3) = C.

Proof. By Lemma 3, for every u ∈ C, N I
G(v) ∩ N I

G(u) �= ∅. This implies that
for every u ∈ C, {v1, v2, v3} ∩ N I

G(u) �= ∅. It follows that NG(v1) ∪ NG(v2) ∪
NG(v3) = C. ��

Now onwards, we investigate the Steiner tree problem on K1,4-free split
graphs. For our discussions on Steiner tree problem, we fix the terminal set
R to be I. Observe that l-split graphs for l = 1, 2 are K1,4-free split graphs. If G
is a 1-split graph, then there does not exist a vertex v ∈ C such that dIG(v) ≥ 2.
Therefore, the corresponding clique set of I forms the minimum Steiner set S
of G where |S| = |I|. We shall now consider 2-split graphs for discussions. For
a 2-split graph G, recall that the labelled graph M is such that V (M) = I,
E(M) = {{a, b} | a, b ∈ I and there exist v ∈ C such that {a, b} = N I

G(v)}. The
following lemma gives the cardinality of a minimum Steiner set of any 2-split
graphs.

316 M. Illuri et al.

Lemma 4. Let G be a 2-split graph, and M be the labeled graph of G with
α(M) = k. Then any minimum Steiner set S of G is such that |S| = |I| − k.

Proof. If M is a connected graph, then the minimum Steiner set in G corresponds
to the minimum edge cover in M . For any graph M with maximum matching P ,
the cardinality of minimum edge cover is |V (M)| − |P |. Therefore, a minimum
Steiner set S is such that |S| = |V (M)|−|P | = |I|−k. If M is not connected, let
C1, C2, . . . , Cr be the components such that C1, C2, . . . , Ci, i ≤ r are non-trivial
components with at least one edge and Ci+1, Ci+2, . . . , Cr are trivial ones. For
components C1, C2, . . . , Ci, we find the maximum matching P where k = |P | and
Q ⊆ C be the corresponding vertex set of the matching P . Clearly, |N I

G(Q)| =
2|Q| = 2|P | = 2k. Let Q′ be the corresponding clique set of I\N I

G(Q). From
the definition of the corresponding clique set, |Q′| ≤ |I\N I

G(Q)|. Note that,
there does not exist two vertices x, y ∈ I\N I

G(Q) such that NG(x) ∩ NG(y) �= ∅,
otherwise it contradicts the maximality of P . Since there does not exist the
possibility to have two such vertices x, y ∈ I\N I

G(Q), it follows that |Q′| =
|I\N I

G(Q)| and the graph induced on V (G)\N I
G(Q) is a 1-split graph. Therefore,

|Q′| = |I| − 2k, and I \ N I
G(Q) ⊆ N I

G(Q′). It follows that the set S = Q′ ∪ Q
forms a Steiner set of G and |S| = |I| − 2k + k = |I| − k. ��
Lemma 5. For any 2-split graph G, OPT Steiner tree problem is polynomial-
time solvable.

Proof. Finding the labeled graph M of G, incurs O(n) effort where n = |V (G)|.
Maximum matching P of M can be found in O(n

3
2) time. Note that the cor-

responding vertex set Q of P can be found in linear time. Similarly, the corre-
sponding clique set also can be obtained in linear time. Therefore, the overall
running time for finding the Steiner set is O(n

3
2) and OPT Steiner tree in any

2-split graph is polynomial-time solvable. ��
The following lemma characterizes a special 2-split graph constructed from a
3-split graph. Particularly, Lemma 6 gives an upper bound on the matching size
of the labelled graph of a 2-split graph.

Lemma 6. Let G1 = I1 + C1 be a K1,4-free 3-split graph. For any x ∈ V3, let
G2 be the graph induced on V (G1)\N I

G1(x), and M be the labelled graph of G2.
Then size of any maximum matching α(M) ≤ 2

Proof. Recall from Corollary 1 that, G2 is a l-split graph for some 0 ≤ l ≤ 2.
On the contrary, let α(M) ≥ 3. Let vertices {a, b, c, d, e, f} ⊆ V (M) be those
vertices participating in the matching of size at least 3 such that {u, v, w} ⊆ C1

and {a, b} ⊆ N I
G1(u), {c, d} ⊆ N I

G1(v), {e, f} ⊆ N I
G1(w) as shown in Fig. 2.

Clearly, from Lemma 3, N I
G1(x) ∩ N I

G1(u) �= ∅. Similarly, N I
G1(x) ∩ N I

G1(v) �= ∅
and N I

G1(x) ∩ N I
G1(w) �= ∅. We consider the following scenario.

Suppose {g, v} ∈ E(G1) and {g, u} /∈ E(G1). Since N I
G1(x) ∩ N I

G1(u) �=
∅, without loss of generality, {h, u} ∈ E(G1). Observe that {u, v} ∪ N I

G1(v)
induces a K1,4. Therefore, {g, u} ∈ E(G1). Similar argument holds true for w
and {g, w} ∈ E(G1). Since the clique C1 is maximal, g is not adjacent to all

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 317

v

 u
a

b

c

d

w

I C

e

f

g x

v

 u
a

b

c

d

w

I C

e

f

g y

(iii)

non-adjacency

h

i

v

 u
a

b

c

d

w

I C

e

f

g

x

(ii)

h

i

(i)

Fig. 2. An illustration for the proof of lemma 6

vertices of C1, and therefore there exist y ∈ C1 such that {g, y} /∈ E(G1).
Clearly, N I

G1(y) ∩ N I
G1(u) �= ∅, N I

G1(y) ∩ N I
G1(v) �= ∅ and N I

G1(y) ∩ N I
G1(w) �= ∅.

Observe that in G2, dIG2(y) = 3, and G2 is not a l-split graph, l ≤ 2. This is a
contradiction to Corollary 1. It follows that our assumption α(M) ≥ 3 is wrong
and therefore, α(M) ≤ 2. This completes the proof of the lemma. ��
We now present some structural observations pertaining to 3-split graphs.

Lemma 7. For a K1,4-free 3-split graph G1, any Steiner set S of G1 is such
that |S| ≥ |I1| − 5.

Proof. Observe that V3 �= ∅ as G1 is 3-split. For any v ∈ V3, G2 is the graph
induced on V (G1)\N I

G1(v). By Corollary 1, G2 is a l-split graph, l ≤ 2. Let
S2 be the minimum Steiner set of G2 such that N I

G2(S2) = I2 and |I2| =
|I1| − 3. If M is the labeled graph of G2, then by Lemma 6, α(M) ≤ 2. Let
{{a, b}, {c, d}} ⊆ E(M) be the matching edges of a maximum matching in M .
Observe that there exist two vertices v1, v2 ∈ C2 such that N I

G2(v1) = {a, b},
N I

G2(v2) = {c, d}. Notice that for each vertex w ∈ I2\{a, b, c, d}, there exist a
vertex u ∈ C2\{v1, v2} in S2 such that {w, u} ∈ E(G2). The graph induced
on V (G2)\{a, b, c, d} is a 1-split graph, |S2| ≥ |I2| − 4 + 2 and it follows that
|S2| ≥ |I1|−3−2 = |I1|−5. It can be concluded that |S| ≥ |I1|−5 as |S| ≥ |S2|.
This completes the proof of the lemma. ��
We below characterize K1,4-free 3-split graphs based on the cardinality of a
minimum Steiner set. In particular, in Theorem 3, we characterize K1,4-free
split graphs whose minimum Steiner set is |I1| − 4, and in Theorem 4, we char-
acterize K1,4-free split graphs whose minimum Steiner set is |I1| − 3. To present
Theorem 2 to Theorem 5, we fix the following notation. Let G1 = I1 + C1 be a
K1,4-free 3-split graph. For any u ∈ V3, let G2 = I2 + C2 be the graph induced
on V (G1)\N I

G1(u), and M be the labelled graph of G2. In Theorem 2, we present
a stronger result of Lemma 7.

318 M. Illuri et al.

Theorem 2. For a K1,4-free 3-split graph G1, any minimum Steiner set S of
G1 is such that |S| ≥ |I1| − 4.

Proof. On the contrary assume that there exist a minimum Steiner set S ⊆ C1

such that |S| ≤ |I1| − 5.
Suppose that S ∩ V3 = ∅. Note that V3 �= ∅, say u ∈ V3 and for every vertex

z ∈ S, N I
G1(z) ∩ N I

G1(u) �= ∅ as per Lemma 3. i.e., for every z ∈ S, there exist
an edge {z, i} ∈ E(G1), where i ∈ N I

G1(u). The graph G2 = I2 + C2 induced
on V (G1)\N I

G1(u) is a l-split graph, l ≤ 2 by Corollary 1. Consider the Steiner
set S2 ⊆ C2 of G2 such that N I

G2(S2) = I2. Note that |S2| = |I2| as G2 is a
l-split graph, l ≤ 2 and for each vertex w ∈ S2, N I

G1(w) ∩ N I
G1(u) �= ∅. Notice

that |I2| = |I1| − 3 and |S| ≥ |S2| implies that |S| ≥ |I1| − 3. This shows that
S ∩ V3 = ∅ is not possible.

Next we shall consider the scenario S ∩ V3 �= ∅. Consider the l-split graph,
l ≤ 2 G2 induced on V (G1)\N I

G1(u) where u ∈ S ∩ V3. Let the labeled graph
of G2 be M . For S

′
= S\{u} and V

′
= I1\N I

G1(u) note that N I
G2(S

′
) = V

′
.

Clearly, |S′ | = |S| − 1 ≤ |I1| − 5 − 1 and |V ′ | = |I1| − |N I
G1(u)| = |I1| − 3.

We now claim that there exist at least 3 vertices say {v1, v2, v3} ⊆ S
′
such that

dIG2(vi) = 2, i = 1, 2, 3 and N I
G2(vi) ∩ N I

G2(vj) = ∅, 1 ≤ i �= j ≤ 3. Suppose
if there exist at most two vertices v1, v2 ∈ S

′
such that dIG2(v1) = dIG2(v2) = 2

and N I
G2(v1) ∩ N I

G2(v2) = ∅, then observe that |V ′ | ≤ |S′ | + 2. It follows that
|V ′ | ≤ |I1|−6+2 = |I1|−4, which is a contradiction as |V ′ | is |I1|−3. Therefore,
there exist at least 3 vertices v1, v2, v3 ∈ S

′
such that dIG2(vi) = 2, i = 1, 2, 3

and N I
G2(vi)∩N I

G2(vj) = ∅, 1 ≤ i �= j ≤ 3. Consider the labeled graph M of G2.
There exist {a, b, c, d, e, f} ⊆ I2 such that {a, b} = N I

G2(v1), {c, d} = N I
G2(v2),

{e, f} = N I
G2(v3). It follows that {a, b}, {c, d}, {e, f} forms a matching of size 3

in M which is a contradiction to Lemma 6. Therefore our assumption is wrong
and |S| ≥ |I1| − 4. This completes the proof. ��

We show in Theorem 3 that the lower bound in Theorem 2 is tight.
Theorem 3. For any minimum Steiner set S of G1, |S| = |I1| − 4 if and only
if α(M) = 2.

Proof. Necessity: If S∩V3 = ∅, then for every vertex z ∈ S, N I
G1(z)∩N I

G1(u) �= ∅.
i.e., for every z ∈ S, there exist an edge {z, i} ∈ E(G1), where i ∈ N I

G1(u).
Similar to the proof of Theorem 2, it follows that |S| ≥ |I1| − 3. Therefore,
S∩V3 �= ∅. Let u ∈ S∩V3 and the graph G2 induced on vertex set V (G1)\N I

G1(u)
is a l-split graph, l ≤ 2 by Corollary 1. Let S

′
= S\{u}. Clearly in N I

G2(S
′
) = I2.

Note that |S′ | = |I1| − 5 and |I2| = |I1| − 3. This implies that there exist
a matching of size at least 2 in M . From Lemma 6, α(M) ≤ 2. Therefore,
α(M) = 2.
Sufficiency: Let {a, b}, {c, d} ∈ E(M) be the edges that form the matching of
size 2 such that label({a, b}) = vab and label({c, d}) = wcd. Clearly, dIG1(u) =
dIG1(v) = dIG1(w) = 3 and |N I

G1(X)| = 7, where X = {u, v, w}. Let Y be the
corresponding clique set of I1\N I

G1(X). Observe that X ∪ Y forms a Steiner set
of G1, |Y | = |I1| − 7 and |X ∪ Y | = |I1| − 4. This completes the proof. ��

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 319

Apart from the labelled graph M , we make use of one more labelled graph
in Theorem 4, which is defined as follows. H2 = I2H + C2

H is the l-split graph,
l ≤ 2 induced on the vertex set V (G1)\V3, and M2 is the labeled graph of H2.
Note that the two labeled graphs M and M2, are constructed differently. M is
constructed on the vertex set V (M) = I1\N I

G1(u) whereas M2 is the labeled
graph on V (M2) = I1. We fix S ⊆ C1 to be a minimum Steiner set of G1. The
following theorem characterizes K1,4-free 3-split graphs with |S| = |I1| − 3.

Theorem 4. |S| = |I1| − 3 if and only if one of the following is true.

1. S ∩ V3 �= ∅ and α(M) = 1.
2. S ∩ V3 = ∅ and α(M2) = 3.

Proof. Necessity: If |S| = |I1| − 3 then we come across the following two cases.
Case 1: S ∩ V3 �= ∅.

Let u ∈ S ∩ V3 and S
′
= S\{u}. Observe that, in G2, the l-split graph, l ≤ 2

induced on the vertex set V (G1)\N I
G1(u), N I

G2(S
′
) = I2. i.e., |S′ | = |S| − 1 =

|I1|−3−1 and |I2| = |I1|−3. This implies that there exist a matching of size at
least 1 in M . By Lemma 6, α(M) ≤ 2. Suppose α(M) = 2, then by Theorem 3,
|S| = |I1|−4. However, we know that |S| = |I1|−3 and therefore α(M) �= 2. We
can therefore conclude that α(M) ≤ 1. If α(M) = 0, then since G1 is connected
and K1,4-free, |I2| = 3. In this case, S = {u}, |S| = |I1|− 2. Therefore, it follows
that α(M) = 1.
Case 2: S ∩ V3 = ∅.

Since S ∩ V3 = ∅, S is a minimum Steiner set in G1 and since H2 is the
induced on the vertex set V (G1)\V3, S is also a minimum Steiner set in H2.
Observe that if α(M2) = k, then the size of the minimum Steiner set in H2 is
|V (I2H)| − k by Lemma 4. Since V (I2H) = I1 we can conclude that α(M2) = 3.
Sufficiency: Case 1: S ∩ V3 �= ∅ and α(M) = 1
Let u ∈ S ∩ V3 and {a, b} ∈ E(M) be the edge that forms the matching of size
1, such that label({a, b})=vab. Clearly, |N I

G1(X)| = 5, where X = {u, v}. Let Y
be the corresponding clique set of I1\N I

G1(X). Observe that S = X ∪ Y forms
a Steiner set of G1, |Y | = |I1| − 5 and |S| = |X ∪ Y | = |I1| − 3.
Case 2: S ∩ V3 = ∅ and α(M2) = 3

Let {a, b}, {c, d}, {e, f} ∈ E(M2) be the edges that form the matching of
size 3, such that label({a, b})=vab, label({c, d})=wcd, label({e, f})=xef . Clearly,
|N I

G1(Y)| = 6, where Y = {v, w, x}. Let Z be the corresponding clique set of
I1\N I

G1(Y). Observe that S = Y ∪ Z forms a Steiner set of G1, |Z| = |I1| − 6
and |S| = |Y ∪ Z| = |I1| − 3. This completes the proof. ��
Theorem 5. |I1| − 4 ≤ |S| ≤ |I1| − 2.

Proof. The lower bound is true by Theorem 2. Theorems 3, and 4 characterizes
the 3-split graphs such that |S| = |I1| − 4, and |S| = |I1| − 3, respectively. We
shall now look into the upper bound. Since G1 is 3-split, there exist u ∈ V3. Let
Y be the corresponding clique set of I1\N I

G1(u). Observe that N I
G1(Y ∪{u}) = I1

and |S| ≤ |Y | + 1. Since |Y | ≤ |I1| − 3, it follows that |S| ≤ |I1| − 2. Therefore
the theorem. ��

320 M. Illuri et al.

3.1 Polynomial-Time Algorithm to Find a Minimum Steiner Tree

Using the structural results presented in Section 3, in this section, we shall
present a polynomial-time algorithm to find a minimum Steiner tree in K1,4-free
split graphs. Algorithm 3 finds a minimum Steiner set S of a given K1,4-free
split graph G0 with R ⊆ V (G0) being terminal vertices. Further, the minimum
Steiner tree T is obtained using standard Breadth First Search on G[R ∪ S].

We shall now present a sketch of the algorithm and a detailed one is pre-
sented in Algorithm 3. As part of preprocessing, we prune the sets S1, S2, and
S3 as defined in Sect. 2.1. Since G1 is a K1,4-free split graph, G1 is l-split, l ≤ 3.
We come across four cases as follows. If G1 is a 0-split graph, then R is con-
nected and the minimum Steiner set S = ∅. If G1 is a 1-split graph, then the
corresponding clique set of I1 is a minimum Steiner set. If G1 is a 2-split graph,
then we find the labelled graph M of G1 and the maximum matching P of M .
Subsequently, we find the corresponding vertex set Q ⊆ C of the matching P
and the corresponding clique set Q′ of I\N I

G(Q). The minimum Steiner set is
S = Q∪Q′ (from Lemma 4). Given a 3-split graph, we perform a transformation
to obtain a 2-split graph. We identify the size of a minimum Steiner set and the
Steiner set with the help of the labelled graph associated with the transformed
2-split graph. Interestingly, based on the matching size, we get to identify the
size of minimum Steiner set and the corresponding clique set helps us to identify
the Steiner set. It is important to highlight the fact that if matching size is 1, we
look at two different labelled graphs to identify the minimum Steiner set. The
detailed algorithm is presented in Algorithm 3.

Algorithm 3. Compute Steiner Tree K1,4-free(G0, R)

/*G0 is the K1,4-free split graph and R ⊆ V (G0) is the set of
terminal vertices */

1: G1 = Pruning(G0, R) i.e., G1 = G0\(S1 ∪ S2 ∪ S3)
2: Initialize the output Steiner set S = ∅
3: if G1 is a 1-split graph then
4: Find corresponding clique set S of I1

5: else if G1 is a 2-split graph then
6: S=Compute Steiner 2-split graph(G1)
7: else
8: S=Compute Steiner 3-split graph(G1)
9: end if

10: Obtain the Breadth First Search tree T in the graph induced on vertices
S ∪ R.

11: Output T

3.1.1 Proof of Correctness of Algorithm 3
Step 1 of Algorithm 3 prunes the input graph G0 to obtain G1 and by Lemma 2,
an optimal Steiner set of G1 is also an optimal Steiner set of G0. If G1 is a 1-split

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 321

Algorithm 4. Compute Steiner 2-split graph(G)
/*G is K1,4-free and 2-split graph */

1: Initialize the Steiner set S2 = ∅
2: Construct the labeled graph M of G
3: Find a maximum matching P in M and find the corresponding vertex set

S1 of P
4: Find the corresponding clique set S2 of the vertex set I\N I

G(S1)
5: Return Steiner set S1 ∪ S2

Algorithm 5. Compute Steiner 3-split graph(G)
/*G = I + C is K1,4-free 3-split graph*/

1: Initialize Steiner set S2 = ∅, S1 = {u} where u ∈ V3 and edge set P 1 = ∅
2: for every vertex v ∈ V3 do
3: Find the 2-split graph G2 induced on V (G)\N I

G(v) and the labeled graph
M of G2

4: Find a maximum matching P ∗ of M
5: if |P 1| ≤ |P ∗| then
6: Update P 1 = P ∗

7: Update S1 = {v} ∪ corresponding vertex set of P 1 in G2

8: end if
9: end for

10: if |P 1| < 1 then
11: Find the 2-split graph H2 induced on V (G)\V3

12: Find the labeled graph M2 of H2 and a maximum matching P 2 of M2

13: if |P 2| = 3 then
14: S1 = corresponding vertex set of P 2 in H2

15: end if
16: end if
17: Find the corresponding clique set S2 of the vertex set I\N I

G(S1)
18: Return Steiner set S1 ∪ S2

graph, then |S| = |I1| and our algorithm correctly computes such a Steiner set S
in step 4. If G1 is a 2-split or 3-split graph, then Algorithm 3 calls Algorithm 4,
or Algorithm 5, respectively. Now we shall look into Algorithm 4 in detail. The
algorithm finds the labeled graph M in Step 2. Note that Algorithm 4 in Step
3 finds a maximum matching P in M , and finds the corresponding vertex set
S1 of P such that |S1| = |P |. Step 4 finds S2 such that |S2| = |I1| − 2|P |. The
Steiner set S1 ∪ S2 is returned in Step 5 where |S1 ∪ S2| = |I1| − |P |, which is
correct due to Lemma 4 and hence Algorithm 4 returns an optimum Steiner set.

In Algorithm 5, for every v ∈ V3, we find G2 and its labeled graph M in
Step 3. A maximum matching on M is obtained in Step 4. Step 6 and 7 updates
maximum matching P 1 and its corresponding vertex set S1 found so far. Note
that by Theorem 5, Steiner set S of G is bounded as |I| − 4 ≤ |S| ≤ |I| − 2. We
can see the following cases.

322 M. Illuri et al.

Case (i) |S| = |I| − 4. By Theorem 3, |P 1| = 2 and it follows that |S1| = 3 and
|N I

G(S1)| = 7. Step 17 finds S2 such that |S2| = |I| − 7. Step 18 returns S1 ∪ S2

where |S1 ∪ S2| = |I| − 4.

Case (ii) |S| = |I| − 3. By Theorem 4, either |P 1| = 1 or |P 2| = 3. If |P 1| = 1,
then |S1| = 2 and |N I

G(S1)| = 5. Step 17 finds S2 such that |S2| = |I| − 5. Note
that |S1 ∪ S2| = |I| − 3. If |P 2| = 3, then |S1| = 3 and |N I

G(S1)| = 6. Step 17
finds S2 such that |S2| = |I| − 6. Observe |S1 ∪ S2| = |I| − 3.

Case (iii) |S| = |I| − 2. It follows that |P 1| = 0. Since we initialized S1 with
a vertex u ∈ V3, |S1| = 1 and |N I

G(S1)| = 3. Observe that |S2| = |I| − 3 and
|S1 ∪ S2| = |I| − 2. This completes the case analysis and Algorithm 5 correctly
computes a Steiner set of G. Therefore, Algorithm 3 correctly computes the
minimum Steiner tree in Step 10.

3.1.2 Run-Time Analysis of Algorithm 3
Let n,m represents the size of vertex set, and the edge set, respectively of the
input graph G0. We shall first analyze the run-time of Algorithms 4 and 5 as
Algorithm 3 invokes Algorithm 4 or Algorithm 5 at Steps 6, 8, respectively.
For Algorithm 4, observe that creation of the labeled graph in Step 2 needs
O(n) effort as |E(M)| + |V (M)| = O(n). Step 3 finds a maximum matching of
M which can be done in O(n

3
2) time using general graph maximum matching

algorithm [22]. Corresponding clique set in Step 4 can be found in O(n) time.
Therefore, the run-time of Algorithm 4 is O(n

3
2). Consider Algorithm 5, Steps 3

to 8 are iterated at most n times. Step 3 needs O(n) effort. Finding a matching
of M2 in step 4 needs O(n

3
2) time. Steps 6, 7 incurs constant effort. Therefore,

the iteration of Steps 3 to 8 involves O(n
5
2) effort. Note that Steps 11, 12 need

O(n), O(n
3
2), respectively and Step 14 incurs a O(n) effort. Finding S2 in step

17 can be done in O(n) time. Overall, the run-time of Algorithm 5 is O(n
5
2).

Now we shall discuss run time of Algorithm 3. Pruning of verices in step
1 of Algorithm 3 takes O(n.Δ) effort where Δ denotes maximum degree of the
input graph G. Step 4 takes O(n) time. Steps 6, 8 takes O(n

3
2) time, O(n

5
2) time,

respectively. Step 10 incurs O(n+m) time. Therefore the run time of Algorithm 3
is O(n

5
2). Thus, Steiner tree in K1,4-free split graph is polynomial-time solvable.

4 Steiner Tree in K1,5-free Split Graphs is NP-complete

In the earlier section, we have presented a polynomial-time algorithm for Steiner
tree in K1,4-free split graphs. In this section, we present the other half of the
dichotomy, which is to show that Steiner tree in K1,5-free split graph is NP-
complete. Interestingly, the reduction presented in [2] generates instances of K1,5-
free split graphs. For the sake of completeness, we present our observations along
with proofs. Towards this attempt, we recall the classical problem Exact 3 cover
[23] which is a candidate NP-complete problem for our investigation.

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 323

Exact-3-cover(Z,T)
Instance: A Collection T of 3 element subsets of a set Z =
{u1, u2, . . . , u3q}.
Question: Is there a sub collection T

′ ⊆ T = {c1, c2, . . . , cn} such that
for every ui ∈ Z, 1 ≤ i ≤ 3q ui belongs to exactly one member of T

′
?

We recall the decision version of Steiner tree problem, restricted to K1,5-free
split graphs.

Steiner tree(G,R,k)
Instance: K1,5-free Split Graph G(V,E), Terminal Set R ⊆
V (G), Integer k ≥ 0
Question: Is there a set S ⊆ V (G)\R such that |S| ≤ k and
G[S ∪ R] is connected?

Theorem 6. Steiner tree problem in K1,5-free split graph is NP-complete.

Proof. Steiner tree is in NP. Given a certificate S = (G,R, k), we show that
there exist a deterministic polynomial-time algorithm for verifying the validity
of the certificate S. Note that the standard Breadth First Search algorithm can
be employed to check whether S ∪ R is connected. |S| = k can be verified in
linear time and therefore, overall certificate verification need O(n + m) time,
where n = |V (G)|, m = |E(G)|. Therefore, we can conclude that Steiner tree is
in NP.
Steiner tree is NP-Hard. An instance of Exact 3 cover(Z,T) is reduced to an
instance of Steiner tree (G,R,k) problem as follows: I = Z, C = {vi | ci ∈ T},
1 ≤ i ≤ n and V (G) = I ∪ C. Informally, for every element u ∈ Z, create a
vertex u such that u ∈ I. For every member ci ∈ T , create a vertex vi such that
vi ∈ C. E(G) = {{vi, vj} | vi, vj ∈ C}, 1 ≤ i �= j ≤ n ∪ {{vl, u} | vl ∈ C, u ∈ I,
and u ∈ cl}. R = I and k = |Z|

3 . In this reduction, |V (G)| = |Z| + |T | and
|E(G)| =

(|T |
2

)
+3|T |. The above construction is therefore polynomial to the size

of input. We now show that instances created by this reduction are K1,5-free
split graphs. On the contrary, assume that there exist a K1,5 induced on vertices
{u, v, w, x, y, z}. Note that at most two vertices (say u, v) from clique C can
be included in the K1,5. Clearly, w, x, y, z ∈ I and without loss of generality,
dIG(v) = 4. This implies that there exist a 4 element subset c ∈ T corresponding
to the clique vertex v ∈ C, which is a contradiction as all subsets are of size 3
in collection T . Therefore it follows that the reduced graph G is K1,5-free split
graph. We now show that there exist an Exact-3-cover(Z,T) if and only if there
exist a Steiner tree(G,R,k) in the reduced graph G on at most k Steiner vertices.
For Necessity: If there exist T

′ ⊆ T , |T ′ | = |Z|
3 which covers all the elements of

Z, then the set of vertices S = {v ∈ C | c ∈ T
′} where v is the corresponding

vertex of c forms a Steiner set in G as R = Z. Also note that |S| = |Z|
3 . For

Sufficiency: If there exist a Steiner set S ⊆ C in the reduced graph G on at
most k = |Z|

3 Steiner vertices, then observe that for all vertex v ∈ S, dIG(v) = 3,

324 M. Illuri et al.

|S| = |Z|
3 and |N I

G(S)| = |Z|. It follows that there does not exist u, v ∈ S

such that N I
G(u) ∩ N I

G(v) �= ∅. Therefore, T
′

= {c ∈ T | v ∈ S} where v is
the corresponding vertex of c forms an exact 3 cover of Z. This completes the
proof of the claim. We can conclude that Steiner tree problem is NP-complete
in K1,5-free split graphs. ��

5 Conclusions and Future Work

We have presented an interesting dichotomy result that Steiner tree problem
is polynomial-time solvable in K1,4-free split graphs and NP-complete in K1,5-
free split graphs. This result is tight and it identifies the right gap between
NP-completeness and polynomial-time solvability of Steiner tree in split graphs.
Using the structural results presented here, an interesting direction for further
research would be to explore the complexity of other classical problems which
are NP-complete restricted to split graphs.

References

1. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing steiner
minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)

2. White, K., Farber, M., Pulleyblank, W.: Steiner trees, connected domination and
strongly chordal graphs. Networks 15(1), 109–124 (1985)

3. Vo, S.: Steiner tree problems in telecommunications. In: Resende, M.G.C., Parda-
los, P.M. (eds.) Handbook of Optimization in Telecommunications, pp. 459–492.
Springer, Heidelberg (2006)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

7. Bertossi, A.A., Bonuccelli, M.A.: Hamiltonian circuits in interval graph general-
izations. Inf. Process. Lett. 23, 195–200 (1986)

8. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

9. Muller, H., Brandstadt, A.: The NP-completeness of steiner tree and dominating
set for chordal bipartite graphs. Theoret. Comput. Sci. 53(2), 257–265 (1987)

10. Keil, J.M.: Finding hamiltonian circuits in interval graphs. Inf. Process. Lett.
20(4), 201–206 (1985)

11. Hung, R.W., Chang, M.S.: Linear-time certifying algorithms for the path cover
and hamiltonian cycle problems on interval graphs. Appl. Math. Lett. 24, 648–652
(2011)

12. Panda, B.S., Das, S.K.: A linear time recognition algorithm for proper interval
graphs. Inf. Process. Lett. 87, 153–161 (2003)

13. Ibarra, L.: A simple algorithm to find hamiltonian cycles in proper interval graphs.
Inf. Process. Lett. 109, 1105–1108 (2009)

Complexity of Steiner Tree in Split Graphs - Dichotomy Results 325

14. Wald, J.A., Colbourn, C.J.: Steiner trees, partial 2-trees, and minimum IFI net-
works. Networks 13(2), 159–167 (1983)

15. Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1, 195–207
(1972)

16. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg
(2009)

17. Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In:
Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Com-
puting, pp. 396–402 (2005)

18. Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the
euclidean steiner tree problem. Arch. Hist. Exact Sci. 68(3), 327–354 (2014)

19. Jones, M., Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Suchý, O.: Parame-
terized complexity of directed steiner tree on sparse graphs. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 671–682. Springer, Heidelberg
(2013)

20. Zosin, L., Khuller, S.: On directed steiner trees. In: Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 59–63 (2002)

21. West, D.B.: Introduction to Graph Theory, 2nd edn. Pearson Education, New Delhi
(2003)

22. Micali, S., Vazirani, V.V.: An O(
√
V E) algorithm for finding maximummatching in

general graphs. In: IEEE Annual Symposium on Foundations of Computer Science
(1980)

23. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of the
Symposium on the Complexity of Computer Computations, pp. 85–103 (1972)

Relative Clique Number of Planar
Signed Graphs

Sandip Das1, Prantar Ghosh2, Swathyprabhu Mj1,3, and Sagnik Sen1(B)

1 Indian Statistical Institute, Kolkata, India
sen007isi@gmail.com

2 Chennai Mathematical Institute, Chennai, India
3 Ramakrishna Mission Vivekananda University, Kolkata, India

Abstract. A signed relative clique number of signed graph (where edges
are assigned positive or negative signs) is the size of a largest subset
X of vertices such that every two vertices are either adjacent or are
part of a 4-cycle with an odd number of negative edges. The signed
relative clique number is sandwiched between two other parameters of
signed graphs, namely, the signed absolute clique number and the signed
chromatic number, all three notions defined in [R. Naserasr, E. Rollová,
and É. Sopena. Homomorphisms of signed graphs. Journal of Graph
Theory, 2014]. Thus, together with a result from [P. Ochem, A. Pinlou,
and S. Sen. Homomorphisms of signed planar graphs. arXiv preprint
arXiv:1401.3308, 2014.], the lower bound of 8 and upper bound of 40 has
already been proved for the signed relative clique number of the family
of planar graphs. Here we improve the upper bound to 15. Furthermore,
we determine the exact values of signed relative clique number of the
families of outerplanar graphs and triangle-free planar graphs.

Keywords: Signed graphs · Signed graph homomorphism · Signed chro-
matic number · Signed relative clique number · Planar graphs

1 Introduction

A signed graph (G,Σ) is a graph G with an assignment of positive and negative
signs to its edges where Σ is the set of negative edges and G is its underlying
graph. We denote the set of positive edges by Σc. In general, the set of vertices
and the set of edges of the signed graph (G,Σ) are denoted by V (G) and E(G).

To re-sign a vertex v of a signed graph (G,Σ) is to switch the signs of the
edges incident to v. Two signed graphs (G,Σ) and (G,Σ′) are equivalent if we
can obtain (G,Σ′) by re-signing some vertices of (G,Σ). The class of all signed
graphs equivalent to (G,Σ) is denoted by [G,Σ]. Such a class of signed graphs
is called a switch class. Any element of a switch class [G,Σ] is a presentation
of it. We use the notation (G,Σ) ∈ [G,Σ] to mean (G,Σ) is a presentation of
[G,Σ]. When the set of negative edges Σ is known from the context, we can
denote the signed graph (G,Σ) by (G). Given a signed graph an adjacent vertex
of v is called its neighbor. The set of all neighbors of v is denoted by N(v)
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 326–336, 2016.
DOI: 10.1007/978-3-319-29221-2 28

http://arxiv.org/pdf/1401.3308

Relative Clique Number of Planar Signed Graphs 327

while d(v) = |N(v)| is the degree of v. Let N [v] = N(v) ∪ {v} denote the closed
neighborhood of v.

Given two signed graphs (G,Σ) and (H,Λ), φ : V (G) −→ V (H) is a homo-
morphism of (G,Σ) to (H,Λ) if there exists (G,Σ′) ∈ [G,Σ] and (H,Λ′) ∈ [H,Λ]
such that for each edge uv of (G,Σ′), the images induces an edge φ(u)φ(v) in
(H,Λ′) of the same sign as as uv. We write (G,Σ) → (H,Λ) whenever there exists
a homomorphism of (G,Σ) to (H,Λ). The signed chromatic number χs((G,Σ))
of the signed graph (G,Σ) is the minimum order (number of vertices) of a signed
graph (H,Λ) such that (G,Σ) → (H,Λ).

The signed graphs and their switch classes have been studied since the begin-
ning of the last century [3,10] while the homomorphism of signed graphs have
been introduced and studied recently by Naserasr, Rollova and Sopena [7]. Fol-
lowing their work a number of research works has been done on this topic in a
short time [2,5,6,8,9]. In [7], apart from capturing and extending several classical
theorems and conjectures, including the Four-Color Theorem and the Hadwiger’s
Conjecture, the chromatic number for signed graph was introduced and stud-
ied. Other than the chromatic number, two more related parameters, namely,
the signed relative clique number and the signed absolute clique number were
introduced in [7]. The definitions are based on the observation that two vertices
of a signed graph cannot have the same image under any homomorphism if and
only if either they are adjacent or part of a 4-cycle with odd number of negative
edges. Note that, the parity of the number of negative edges in a cycle remains
invariant under re-signing. A cycle of a signed graph is balanced if it has even
number of negative edges and is unbalanced if it has odd number of negative
edges.

A relative signed clique [7] of a signed graph (G) is a set R ⊆ V (G) of vertices
such that any two vertices from R are either adjacent or part of an unbalanced
4-cycle. The signed relative clique number ωrs((G)) of a signed graph (G) is
the maximum order of a signed relative clique of (G). A signed clique [7] or
simply an s-clique is a signed graph (G) for which the whole vertex set V is
a relative clique. In other words, an s-clique is a signed graph (G) for which
χs((G)) = |V (G)|. The signed absolute clique number ωas((G)) of a signed graph
(G) is the maximum order of an s-clique contained in (G) as a subgraph.

The signed chromatic number χs(G) of an undirected graph G is the maxi-
mum of the signed chromatic numbers of all the signed graphs with underlying
graph G. The signed chromatic number χs(F) of a family F of graphs is the
maximum of the signed chromatic numbers of the graphs from the family F .
The signed relative and absolute clique number of an undirected graph and of a
family of graphs are defined similarly.

Let Pg be the family of planar graphs with girth (length of the smallest
cycle) at least g. In particular, P3 denotes the family of planar graphs. It is
easy to observe that given a signed graph (G), we have ωas((G)) ≤ ωrs((G)) ≤
χs((G)) [7]. The bound χs(P3) ≤ 48 [7] was improved to χs(P3) ≤ 40 in [8].
Whereas, in [7] it was shown that ωas(P3) = 8. Thus, 8 ≤ ωrs(P3) ≤ 40. The
tightness of this bound was asked in the “2nd Autumn meeting on signed graphs”
(October 2013, Thezac, France).

328 S. Das et al.

In the next section we show that ωrs(P3) ≤ 15 and study the parameter for
outerplanar and planar graphs with girth at least g for all g ≥ 3 in general. In
every other case we provide tight bounds. We also provide a general bound for
signed relative clique number of graphs with bounded degree.

2 Results

First we develop an easy relation between the signed relative clique number and
the maximum degree of a graph.

Proposition 1. Every signed graph with maximum degree Δ has signed relative

clique number at most
Δ(Δ + 1)

2
+ 1.

Proof. Let (G) be a signed graph with maximum degree Δ. Let R be a relative
clique of maximum order in (G). Let v ∈ R be a vertex. Now, v has Δ adjacent
vertices and each of these vertices can have at most (Δ − 1) adjacent vertices
excluding v. But, if a vertex u non-adjacent to v is in R, then u and v have to
be in an unbalanced 4-cycle. For that, u needs to be adjacent to at least two
neighbors of v. There are at most Δ · (Δ − 1) edges between the neighbors of v
and the vertices at distance 2 from v. Now, there are (|R| − Δ − 1) vertices of R
that are each adjacent to at least two neighbors of v. Hence we have,

2(|R| − Δ − 1) ≤ Δ · (Δ − 1) ⇒ 2|R| − 2Δ − 2 ≤ Δ2 − Δ

⇒ 2|R| ≤ Δ2 + Δ + 2

⇒ |R| ≤ Δ · (Δ + 1)
2

+ 1

Hence, we are done.

We consider the problem of determining the signed relative clique number for
the families of outerplanar graphs and of outerplanar graphs with given girth.
Let Og denote the family of outerplanar graphs with girth at least g. We list the
related results below.

Theorem 1.

(a) ωrs(Ok) = 4 for k = 3, 4.
(b) ωrs(Ok) = 2 for k ≥ 5.

Proof. (a,b) An unbalanced 4-cycle is an s-clique. Hence, ωrs(Ok) ≥ 4 for
k = 3, 4. We know from [7] that

ωrs(O4) ≤ ωrs(O3) ≤ χs(O3) ≤ 5.

So it is enough to show that there does not exist a signed graph (G,Σ) with
signed relative clique number 5.

Relative Clique Number of Planar Signed Graphs 329

We will prove this by contradiction. Assume that (G,Σ) is a signed outer-
planar graph of minimum order with ωrs((G,Σ)) > 4. Moreover, assume (G,Σ)
is such that if we delete any edge of (G,Σ), it will no longer have signed relative
clique number greater than 4.

Let R be a signed relative clique of maximum order in (G,Σ) and let
S = V (G) \ R. Note that S induces an independent set of (G,Σ) as deleting
any edge between two vertices of S will not decrease the signed relative clique
number of the graph (G,Σ).

First note that, for any z ∈ S, we have d(z) ≥ 2 as otherwise the vertex
z does not help connecting any two (or more) vertices of R by an unbalanced
4-cycle and hence can be deleted to get a signed planar graph with relative signed
chromatic number equal to that of (G,Σ) but with order less than (G,Σ), which
contradicts the minimality of (G,Σ).

In fact, any z ∈ S with d(z) = 2 must be the internal vertex of a 2-path
that connects two vertices of R. But, we can replace that 2-path by an edge and
obtain another signed outerplanar graph to contradict the minimality of (G,Σ).
Hence, d(z) ≥ 3 for all z ∈ S.

As (G,Σ) is an outerplanar graph, there exists a vertex x ∈ V (G) with
d(x) ≤ 2. By the above discussion we know that x ∈ R. Clearly d(x) = 2 as
otherwise |R| ≤ 4.

Assume that N(x) = {w, z}. Now as |R \ {x,w, z}| ≥ 2, without loss of
generality, we can assume that at least two vertices of R are connected to x by
unbalanced 4-cycles. Hence at least three vertices of R, including x, must be
connected to both w and z. It is easy to note that it is not possible to obtain
this keeping the graph outerplanar. So, this is a contradiction.

(b) As any two non-adjacent vertices of a signed relative clique must be part
of an unbalanced 4-cycle, it is not possible to have a outerplanar signed relative
clique with girth at least 5 of order more than 2. Hence the upper bound is
obtained.

An edge has signed relative clique number 2. Hence the lower bound is
obtained.

Now we consider the problem of determining the signed relative clique num-
ber for the families of planar graphs and of planar graphs with given girth.

Theorem 2.

(a) 8 ≤ ωrs(P3) ≤ 15.
(b) ωrs(P4) = 6.
(c) ωrs(Pk) = 2 for k ≥ 5.

Proof. (a) Naserasr, Rollova and Sopena [7] showed that ωas(P3) = 8 which
implies the lower bound as ωrs(P3) ≥ ωas(P3).

For proving the upper bound we first define a partial order ≺ for signed
graphs. We have (G1, Σ1) ≺ (G2, Σ2) if either of the following conditions hold.

330 S. Das et al.

(i) |V (G1)| < |V (G2)|,
(ii) |V (G1)| = |V (G2)| and |E(G1)| < |E(G2)|.

We prove ωrs(P3) ≤ 15 by contradiction. Let (G,Σ) be a minimal (with
respect to ≺) signed planar graph with ωrs((G)) ≥ 16. Let R be a signed relative
clique of order 16 of (G) and let S = V (G) \ R. For convenience, let us call the
vertices of R as good vertices.

First note that any z ∈ S must have d(z) ≥ 4 as otherwise we can delete it and
make its neighbors adjacent to each other keeping the graph planar contradicting
the minimality of (G). Moreover, S induces an independent set as deleting the
edges between the vertices of S does not affect the relative clique R.

Borodin [1] showed that any planar graph with minimum degree at least four
has an edge uv such that d(u) + d(v) ≤ 11. So we can say that there is a good
vertex v in our graph with degree at most 7. Fix this vertex v for the rest of this
proof.

Now we will prove that the following four configurations are forbidden in G.
Recall that unbalanced 4-cycles are re-sign invariant. This is implicit throughout
the rest of the proof. We will use the Jordan curve theorem extensively during
the rest of the proof. A region enclosed by a cycle C refers to one of the regions
(the exterior or the interior) created due to drawing the closed curve of the cycle
C in a planar embedding of G. We will provide a pointer (a vertex or an edge)
to uniquely determine the region, irrespective of the planar embedding of G.

(1) Forbidden configuration 〈Two vertices with at least seven common good
neighbours〉: Let two vertices x and y have seven good neighbors. Re-sign
the common good neighbors in such a way that all of them are connected
to y with a positive edge. Out of those seven good neighbors at least four
of them, say, a, b, c, d, are connected to x with edges of the same sign α for
some α ∈ {+,−}. Assume without loss of generality that the vertices a, b, c, d
are placed in a clockwise order around x in some planar embedding of G.
For vertices a and c to be in an unbalanced 4-cycle the edges ab and bc are
essential. Likewise, for vertices b and d to be in an unbalanced 4-cycle, edges
bc and cd are essential. This implies that the vertices a, b, c, d are consecutive
neighbors around x in the given planar embedding of G. Now its easy to see
that the vertices a and d cannot be part of an unbalanced 4-cycle.

(2) Forbidden configuration 〈A good vertex with degree at most 2 〉: As G is
minimal, G is connected. So there are no degree zero vertex in the graph.
If a good vertex x has degree one then the good vertices other than the
neighbor of x cannot be in a 4-cycle with v. Let y be a good vertex of degree
two with neighbors a, and b. Then each good vertex other than y, a, and b
will have to be adjacent to a and b to be in an unbalanced 4-cycle with y.
Thus, vertices a and b will have at least twelve common good neighbours
which is forbidden.

Now suppose that the neighbors v1, v2, ..., vk of the vertex v of G are placed in
a clockwise order around v in some planar embedding of G for some k ≤ 7. Note
that a neighbor of v may or may not be good. We say that vi and vj (for i < j)

Relative Clique Number of Planar Signed Graphs 331

are consecutive good neighbors of v if both vi and vj are good and either vl ∈ S
for all l ∈ {i+1, i+2, .., j−1} or vl′ ∈ S for all l′ ∈ {j+1, j+2, ..., k, 1, 2, ..., i−1}.
Then we have the following forbidden configurations for G.

(3) Forbidden configuration 〈Adjacent non-consecutive good neighbours of v〉:
Among k neighbours of v, without loss of generality, let v1 and vt be adjacent
good vertices which are not consecutive with 2 < t < k. Note that the cycle
v1vtvv1 divides the plane into two regions by Jordan curve theorem. Call
those two regions R1 and R2. Let vr and vs be good neighbors of v with
r ∈ {2, 3, ..., t−1} and s ∈ {t+1, t+2, ..., k}. Assume that vr belongs to the
region R1. Then vs is in R2 as we are working with a fixed planar embedding
of G. Note that |R \ N [v]| ≥ 8. Let y be a vertex in R \ N [v]. If y is in the
region R2, then it has to be adjacent to v1 and vt to be in an unbalanced
4-cycle with vr ∈ R1. If y is in the region R1, then also it has to be adjacent
to v1 and vt to be in an unbalanced 4-cycle with vs ∈ R2. This forces v1 and
vt to have at least eight common good neighbours, a forbidden configuration.

(4) Forbidden configuration 〈A neighbor of v with at least three good neighbors
from R \ N [v]〉: Without loss of generality let v1 has at least three good
neighbours a, b, c ∈ R \N [v] which are placed in a clockwise order around v1
in the planar embedding of G. Moreover, assume that a, b, c are consecutive
good neighbors of v1. We will prove that a, b, c are all adjacent to v2 in the
following three steps.
Step 1: First, we will show that c should be adjacent to v2. If c is adjacent to
any other vertex vi where i �= 1, 2, then the cycle cvivv1c divides the plane
into two regions: R1 containing v2, and R2 containing a and b. Suppose r is
a good vertex in the region R1. Then the only possible unbalanced 4-cycle
containing a and r as vertices is rv1avir as the edge ac is forbidden. This
forces the edge bvi for v and b to be in an unbalanced 4-cycle. Now any good
vertex r′ in the region R2 has to be adjacent to both v1 and vi to have an
unbalanced 4-cycle with v or r unless we have the edge cv2. Thus, v1 and
vi have more than eight common good neighbors, a forbidden configuration.
This implies that the region R1 does not contain any good vertex. Thus,
v2 ∈ S. But v2 must have at least four good neighbors which is not possible
in this case. This is a contradiction.
Step 2: We will now show that the vertex b is adjacent to v2. Recall that we
have the edge cv2 already. If b is adjacent to vi where i �= 1, 2, then the plane
is divided into three regions: R1 enclosed by the cycle cv1vv2c not containing
a, R2 enclosed by the cycle bv1cv2vvib not containing a, and R′ enclosed by
bv1vvib containing a.
First we will show that a is not adjacent to vi. If we have the edge avi then
the cycle av1vvia divides the region R′ into two parts: R3 not containing
b, and R4 not containing v. Clearly, R1 does not have a good vertex in it
as no good vertices in R1 can be in an unbalanced 4-cycle with a. Thus,
regions R2, R3, and R4 together contain at least nine good vertices as |R \
{v, v1, v2, vi, a, b, c}| ≥ 9. For a to be in unbalanced 4-cycle with c edges ab
and bc are forced, as c cannot be adjacent to vi for i > 2. If g is a good vertex

332 S. Das et al.

in R4, then in order that g be in unbalanced 4-cycle with v, vertex g has to
be adjacent to both v1 and vi. Edge gv1 violates the consecutive ordering of
the good vertices a, b, c around v1. Thus R4 is empty. Good vertices in R2,
in order to be in unbalanced 4-cycle with a, will have to be adjacent to b
and vi.
As vertices b and vi have a as common neighbor, R2 cannot have more than
five good vertices to avoid the forbidden configuration (1). This forces at
least four good vertices in R3, and all of them have to be adjacent to v1 and
vi, in order to be in unbalanced 4-cycle with c. Now v1 and vi at least seven
common neighbours including v, a, c. This is a forbidden configuration. Thus,
a and vi are not adjacent. Moreover, R2 does not have any good vertex as a
good vertex in R2 will force the edge avi.
Vertex a has to be adjacent to vj , j > i, for a to be in an unbalanced 4-cycle
with v. The cycle av1vvj divides R′ into two regions: R5 not containing b, and
R6 containing b. Note that R5 does not have a good vertex as it cannot form
an unbalanced 4-cycle with c. Edge ab is forced, for c to be in unbalanced
4-cycle with a. As R2 also does not contain good vertices, R6 must contain
at least nine good vertices, and all of them have to be adjacent to b and vi
to be in unbalanced 4-cycle with c. This is a forbidden configuration.
Thus, bv2 is an edge.
Step 3: Finally, we will show that a also has to be adjacent to v2. Recall
that we have the edges cv2 and bv2 due to Step 1 and 2. If a and v2 are
non-adjacent, then the edge bc is forced for a to be in an unbalanced 4-cycle
with c. Consider the three regions: R1 enclosed by cv1vv2c not containing
a, R2 enclosed by av1vvia not containing b, and R3 enclosed by abv2vvia
not containing v1. Good vertices in region R1 cannot be in an unbalanced
4-cycle with a as the vertex a is not adjacent to v and v2 according to our
supposition. Also, good vertices of region R2 cannot be in an unbalanced
4-cycle with c. So, there are at least nine good vertices in R3. Any good
vertex from R3 should be adjacent to v2 and b to be in an unbalanced 4-cycle
with c. This is a forbidden configuration. Therefore, a is adjacent to v2.
Now, we have four regions: R1 enclosed by cv1vv2c not containing b, R2

enclosed by cv1bv2c not containing a, R3 enclosed by bv1av2b not containing
v, and R4 enclosed by vv1av2v not containing c. Vertices from R2 and R3

cannot be adjacent to v1 as a, b, c are consecutive good neighbors of v1.
So, R2 and R3 does not contain any good vertex as they cannot be in an
unbalanced 4-cycle with v. A good vertex from R4 must be adjacent to both
v1 and v2 for being in an unbalanced 4-cycle with c. A good vertex from R1

must be adjacent to both v1 and v2 for being in an unbalanced 4-cycle with
a. Thus at least nine good vertices in R1 and R4 are common neigbhours to
v1 and vi. This is a forbidden configuration. Hence, we are done.

Note that |R \ N [v]| ≥ 8. For v to be in an unbalanced 4-cycle with vertices
of R \ N [v], each vertex in R \ N [v] has to be adjacent to at least two of the
neighbours of v. So, there are at least 16 edges between R \ N [v] and N(v).
As |N(v)| ≤ 7, by pigeonhole principle there exists a vertex in N(v) which

Relative Clique Number of Planar Signed Graphs 333

is adjacent to at least three good vertices from R \ N [v]. This is a forbidden
configuration, hence the proof.

(b) The lower bound follows from the example shown in Fig. 1.

x1

x2

x3 x4 x5 x6

Fig. 1. A signed triangle-free planar graph with signed relative clique number 6. The
negative edges are denoted by “dashed” edges and the vertices corresponding to the
relative clique are x1, x2, ..., x6.

Let (G,Σ) be a triangle-free planar signed graph of minimum order with
ωrs((G,Σ)) > 6. Let R be a relative clique of order 7 in (G) and let S = V (G)\R.
Observe that for any vertex v the set N(v) is independent as the whole graph is
triangle-free.

A separating 4-cycle is a 4-cycle in (G) that divides the plane into two regions,
each of them containing at least one good vertex. First we will show that (G)
cannot have a separating 4-cycle. Let abcda be a separating 4-cycle that divides
the plane into two regions: R1 and R2. As we have at least three vertices in
R\{a, b, c, d}, we can assume without loss of generality that r is a good vertex in
R1, and r′, r′′ are good vertices in R2. The vertex r cannot be adjacent to either
of r′ or r′′. Therefore, without loss of generality, let arcr′a be an unbalanced
4-cycle. This means arcr′′a is the only possible unbalanced 4-cycle containing r
and r′′. That is, a and c are both adjacent to at least five good vertices r, r′, r′′, b
and d. We can re-sign these five vertices in such a way that each of them has
positive signed edges with a. Note that at least three of these five vertices have
the same signed edges with b. It is easy to check that these three cannot be
part of the same relative clique keeping the graph triangle-free planar. Thus,
(G) cannot have a separating 4-cycle.

Let vertices u, v of (G) have three common good neighbors x, y, z. They
divide the plane into three regions: Rz enclosed by uxvyu not containing z, Rx

enclosed by uyvzu not containing x, and Ry enclosed by uzvxu not containing y.
For each t ∈ {x, y, z} there is least one good vertex not belonging to the region
Rt. As Rt is bounded by a 4-cycle there can be no good vertex in Rt. Thus
Rx, Ry, and Rz have no good vertices in them. As |R \ {u, v, x, y, z}| ≥ 2, we

334 S. Das et al.

have a contradiction. Therefore, two vertices of (G) cannot have three or more
common good neighbors.

Now let a good vertex u be adjacent to three other good vertices x, y, z. Then
x, y, z cannot have a common neighbor other than u as two vertices of (G) cannot
have three or more common good neighbors. Therefore, for each {s, t} ⊂ {x, y, z}
there exists a common neighbor wst �= u in (G).

Suppose first that one of wst vertices, say wxy is a good vertex. Assume wxy

and z are adjacent. Consider the regions: R1 enclosed by uzwxzxu not containing
y, R2 enclosed by uywyzzu not containing x, and R3 enclosed by uxwxyyu not
containing z. As x, y, z are all good vertices and R1, R2, R3 are all enclosed by a
4-cycle, they do not contain any good vertex. Thus, there can be no good vertex
other than x, y, z, wxy in (G), a contradiction. So, wxy and z are not adjacent.
Therefore, wxy and z have at least two common neighbors w1, w2. Note that
w1, w2 /∈ {u, x, y, z, wyz, wxz} as the graph is triangle-free. Now consider the
regions enclosed by zwxzxwxyw1z: R5 not containing y, and R6 containing y. A
good vertex in R5 cannot be in an unbalanced 4-cycle with y as the graph is
triangle-free. Similarly, a good vertex in R6 cannot be in an unbalanced 4-cycle
with either x, y, or z.

Therefore, wst ∈ S for all {s, t} ⊂ {x, y, z}. Consider the region R4 enclosed
by xwxyywyzzwzxx containing u. Note that R4 is a union of three regions, each
enclosed by 4-cycles containing u with at least one good vertex outside. Thus,
R4 cannot contain any good vertex other than u. Hence any good vertex w /∈
{x, y, z, u} must be adjacent to two distinct vertices s, t ∈ {x, y, z} in order to
be in an unbalanced 4-cycle with u. Then we can replace wst with w and repeat
the previous argument to arrive at a contradiction. Thus, a good vertex cannot
have three or more good neighbors.

Now note that for any r ∈ S, we have d(r) ≥ 2 as otherwise r can be
deleted to get a signed triange-free planar graph, whose signed relative clique
number is equal to that of (G) but with order less than (G), which contradicts the
minimality of (G). Also due to the minimality of (G) the set S is an independent
set as edges between the vertices of S does not affect the relative clique.

Now assume that there is some z ∈ S with d(z) ≥ 4. Further assume that the
neighbors of z are v1, v2, ..., vk arranged in a clockwise order around z in a fixed
planar embedding of (G) for some k ≥ 4. As v1 and v3 are good vertices, they
must be in an unbalanced 4-cycle. Thus, they must have a common neighbor
other than z. This creates a separating 4-cycle. Hence we can conclude that for
any z ∈ S we must have d(z) = 2 or 3.

Consider the underlying graph G of (G). Now delete each z ∈ S and add
edges between the neighbors of z. After that replace multiple edges with a single
edge to make the resultant graph H a simple graph. Note that this new graph
H is also a planar graph (may not be triangle-free). Also, V (H) = R as we
have deleted all the vertices from S. Thus, |H| ≥ 7. Furthermore, the only non-
adjacent pairs of vertices in H are those good vertices that were in an unbalanced
4-cycle consisting of only good vertices in (G). As H is planar and has at least
seven vertices, it cannot be a complete graph. Thus, H must have at least a pair

Relative Clique Number of Planar Signed Graphs 335

of non-adjacent vertices. This implies that there is an unbalanced 4-cycle abcda
in (G) with a, b, c, d ∈ R.

Let e, f ∈ R\{a, b, c, d} be two good vertices of (G). Fix a planar embedding
of (G). The cycle abcda divides the plane into two regions: R1 containing e, f ,
and R2 containing no good vertices as (G) cannot have a separating 4-cycle. If
a vertex of S is in R2, then it cannot affect the relative clique R. This implies
R2 does not contain any vertex.

Note that there cannot be any edge between {e, f} and {a, b, c} as no good
vertex can have three or more good neighbors. Then each vertex from {e, f}
must have at least two common neighbors with each vertex from {a, b, c}. By
contracting the edge cd and some of the edges between these common neighbors
and {a, b, c} we will obtain a K5 minor, a contradiction.

(c) As any two non-adjacent vertices of a signed relative clique must be part
of an unbalanced 4-cycle, the vertices of a signed relative clique in a planar graph
with girth at least 5 must be all adjacent to each other. So, it is not possible to
have a planar signed relative clique with girth at least 5 of order more than 2.
Hence the upper bound is obtained.

An edge has signed relative clique number 2. Hence the lower bound is
obtained.

3 Conclusive Remarks

Homomorphism of oriented graphs with respect to push operation has been intro-
duced and studied recently by Klostermeyer and MacGillivray [4]. The nature
of this above mentioned homomorphism has certain similarities with homomor-
phisms of signed graphs. Relative push clique number was defined in [9] in an
way analogous to the definition of relative signed clique number. We would like
to comment that the exact same bounds proved for relative signed clique number
can also be proved for relative push clique number using similar techniques.

References

1. Borodin, O.V.: On the total coloring of planar graphs. J. Reine Angew. Math. 394,
180–185 (1989)

2. Foucaud, F., Naserasr, R.: The complexity of homomorphisms of signed graphs and
signed constraint satisfaction. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS,
vol. 8392, pp. 526–537. Springer, Heidelberg (2014)

3. Harary, F.: On the notion of balance of a signed graph. Mich. Math. J. 2(2), 143–
146 (1953)

4. Klostermeyer, W.F., MacGillivray, G.: Homomorphisms and oriented colorings of
equivalence classes of oriented graphs. Discrete Math. 274(1–3), 161–172 (2004)

5. Naserasr, R., Rollová, E., Sopena, É.: Homomorphisms of planar signed graphs to
signed projective cubes. Discrete Math. Theoret. Comput. Sci. 15(3), 1–12 (2013)

6. Naserasr, R., Rollová, E., Sopena, É.: Homomorphisms of signed bipartite graphs.
In: Nešetřil, J., Pellegrini, M. (eds.) The Seventh European Conference on Combi-
natorics, Graph Theory and Applications, pp. 345–350. Springer, Heidelberg (2013)

336 S. Das et al.

7. Naserasr, R., Rollová, E., Sopena, É.: Homomorphisms of signed graphs. J. Graph
Theor. 79(3), 178–212 (2015)

8. Ochem, P., Pinlou, A., Sen, S.: Homomorphisms of signed planar graphs (2014).
arXivpreprint arXiv:1401.3308

9. Sen, S.: A contribution to the theory of graph homomorphisms and colorings. Ph.D.
thesis, University of Bordeaux, France (2014)

10. Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4(1), 47–74 (1982)

http://arxiv.org/abs/1401.3308

The cd-Coloring of Graphs

M.A. Shalu and T.P. Sandhya(B)

Indian Institute of Information Technology, Design and Manufacturing (IIITD&M)
Kancheepuram, Chennai 600127, India

{shalu,mat11d001}@iiitdm.ac.in

Abstract. A vertex set partition of a graph G into k independent sets
V1, V2, . . . , Vk is called a k-color domination partition (k-cd-coloring) of
G if there exists a vertex ui ∈ V (G) such that ui dominates Vi in G
for 1 ≤ i ≤ k. We prove that deciding whether a graph G admits a
k-cd-coloring is in P for k ≤ 3 and NP-complete for k > 3. We also
characterize the class of all 3-cd-colorable graphs. In addition, we provide
a polynomial time algorithm to find an optimal cd-coloring of P4-free
graphs and split graphs.

Keywords: Vertex coloring · cd-coloring · Time complexity · Split
graphs

1 Introduction

A university conducts a summer camp for students and has k dormitories to
accommodate them. In order to foster the interaction among students, two stu-
dents are allotted in the same dormitory only if they do not know each other. In
addition, to resolve conflicts in a dormitory, university assigns a student adju-
dicator for each dormitory in such a way that the adjudicator knows every one
in the assigned dormitory. This can be modeled into a graph theory problem as
follows. Construct a graph G with the set of students as the vertex set and two
vertices are adjacent in G only if the corresponding students know each other.
So the problem is to find a partition V1, V2, . . . , Vk of V (G) such that (a) Vi

is an independent set in G for 1 ≤ i ≤ k and (b) for every i, there exists ui

(adjudicator) in V (G) such that uix ∈ E(G) for all x ∈ Vi and for 1 ≤ i ≤ k.
Note that if Vi = {u}, a singleton set for some i, then u may be treated as an
adjudicator of Vi, since there is no scope for conflict in Vi. Next, we formally
define the above problem.

Let x ∈ V (G) and A ⊆ V (G). We say x dominates A if either (i) A = {x}
or (ii) x /∈ A and xa ∈ E(G) for all a ∈ A. For a graph G, a partition of V (G)
into k independent sets V1, V2, . . . , Vk is called a k-color domination partition
(k-cd-coloring) of G if there exists a vertex ui ∈ V (G) such that ui dominates
Vi in G for 1 ≤ i ≤ k [7–9]. We define minimum cd-coloring of a graph G as

χcd(G) = min{k : G admits a k-cd-coloring}.

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 337–348, 2016.
DOI: 10.1007/978-3-319-29221-2 29

338 M.A. Shalu and T.P. Sandhya

Note that if G1, G2, . . . , Gl are the components of a graph G, then χcd(G) =
l∑

i=1

χcd(Gi). The main results of this paper are

– k-cd-coloring is in P for k ≤ 3 and NP-complete for k > 3,
– a characterization of the class of graphs that admits a 3-cd-coloring, and
– a polynomial time algorithm to find an optimal cd-coloring of (i) P4-free
graphs and (ii) split graphs.

All graphs considered in this paper are finite, simple, and undirected. For
graph terminologies, we refer [10]. A clique (independent set) is a subset of
vertices of a graph G which are pairwise adjacent (respectively, non-adjacent)
in G. The size of a maximum clique (independent set) in G is denoted by ω(G)
(respectively, α(G)). A k-vertex coloring of a graph G is a partition V1, V2, . . . , Vk

of V (G) such that Vi is an independent set in G for 1 ≤ i ≤ k. The chromatic
number of G is defined as χ(G) = min{k : G admits a k-vertex coloring}. A
graph G is a split graph if there exists a vertex partition V (G) = V1 ∪ V2 where
V1 is a clique and V2 is an independent set in G. For a graph H, G is said to
be H-free if no induced subgraph of G is isomorphic to H. For a set X ⊆ V (G),
G[X] denotes the graph induced by X in G. For a set A ⊆ V (G), we denote
G[V (G)\A] as G\A. Define [A,B] =

{{a, b} : a ∈ A, b ∈ B
}
where A and B are

two non-empty disjoint sets. The join G1 +G2 of two vertex disjoint graphs G1

and G2 is a graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪
[V (G1), V (G2)]. The union G1 ∪G2 ∪ . . .∪Gk of pairwise vertex disjoint graphs
G1, G2, . . . , Gk is a graph with vertex set V (G1)∪V (G2)∪. . .∪V (Gk) and edge set
E(G1)∪E(G2)∪. . .∪E(Gk). We denote 2K1

∼= K1∪K1 and 3K1
∼= K1∪K1∪K1.

For a vertex v of a graph G, N(v) = {u ∈ V (G) : uv ∈ E(G)}, N [v] = {v}∪N(v),
and A(v) = V (G) \ N [v]. Often we denote an edge {a, b} in a graph as ab or ba.
For convenience, we use the following notations: Let A and B be two disjoint
subsets of V (G). We say A ⊕ B in G if ab ∈ E(G) for all a ∈ A and for all
b ∈ B. In addition, A � B in G if ab /∈ E(G) for all a ∈ A and for all b ∈ B.
In particular, if A = {x}, then we simply denote {x} ⊕ B in G, by x ⊕ B in G.
Similarly, we denote {x}�B in G, by x�B in G. We denote the complement of
a graph G by Gc. Let Kn, Cn, and Pn respectively denote the complete graph,
the cycle, and the path on n vertices. In addition, let K1,n

∼= K1 ⊕ Kc
n. Next,

we analyze the algorithmic complexity of k-cd-coloring.

Graph k-cd-colorability

Instance : A graph G = (V,E).
Question : Is G k-cd-colorable ?

Proposition 1. k-cd-colorability is NP-complete for k ≥ 4.

Proof. For a graph G, let G′ ∼= K1 + G where V (G′) = {x} ∪ V (G) and xu ∈
E(G′) for all u ∈ V (G). We prove that G is k-colorable if and only if G′ is
(k+1)-cd-colorable. Suppose that V1, V2, . . . , Vk is a k-vertex coloring of G. Then
V1, V2, . . . , Vk, Vk+1 = {x} is a (k + 1)-cd-coloring of G′ in which x dominates

The cd-Coloring of Graphs 339

Vi for 1 ≤ i ≤ k + 1. Next, we assume that G′ admits a (k + 1)-cd-coloring.
Consider a (k +1)-cd-coloring of G′ with a vertex partition V1, V2, . . . , Vk, Vk+1.
Since x is adjacent to every vertex of V (G) in G′, w.l.o.g., let Vk+1 = {x}. Then
V1, V2, . . . , Vk is a k-vertex coloring of G. Hence G is k-colorable if and only
if G′ is (k + 1)-cd-colorable. Since k-colorability is NP-complete for k ≥ 3 [6],
k-cd-colorability is NP-complete for k ≥ 4.
�
It is easy to prove the following proposition.

Proposition 2. For a graph G,

1. χcd(G) = 1 if and only if G ∼= K1.
2. χcd(G) = 2 if and only if either G is a bipartite graph with a dominating edge

or G ∼= 2K1.
�

By Propositions 1 and 2, k-cd-colorability is solvable in polynomial time for
k ∈ {1, 2} and NP-complete for k ≥ 4. So it remains to explore the complexity
of 3-cd-colorability.

The paper is organized as follows. In Sect. 2, we give the details of the graph
decompositions that is used in the characterization of 3-cd-colorable graphs. We
also prove that the Neighbourhood Bipartition Problem (NBP) is solvable in
linear time, which is an integral part of the characterization of 3-cd-colorable
graphs. In Sect. 3, we prove that 3-cd-colorability is solvable in polynomial time
by characterizing the class of all 3-cd-colorable graphs. In Sect. 4, we prove that
an optimal cd-coloring for graph classes such as P4-free graphs and split graphs
can be obtained in polynomial time.

2 Decompositions in 3-cd-colorable Graphs

In this section we discuss all graph decompositions which are used in the char-
acterization of the class of 3-cd-colorable graphs and show that recognizing the
class of all graphs that admits these decompositions can be done in polynomial
time. We say a graph G admits a d-pair (x, y) in G if V (G) = {x, y} ∪ X ∪ Y
such that

(i) G[X ∪ {y}] is a bipartite graph with at least one edge,
(ii) Y is an independent set in G, and
(iii) x ⊕ (X ∪ {y}), y ⊕ Y , and x � Y in G (see Fig. 1(i))

Note that, if (x, y) is a d-pair in a graph G, then A(x) is an independent set
in G. Clearly, (u, v) is a d-pair in G (Fig. 1(ii)) since the partition V (G) =
{u, v} ∪ {a, b, c} ∪ {d, e, f} = {u, v} ∪ X ∪ Y satisfies all the conditions. Since
A(v) is not an independent set, (v, u) is not a d-pair in G. So we say a set
A = {u, v} ⊆ V (G) is a d-pair if at least one of (u, v) or (v, u) is a d-pair in G.
Also note that if u dominates V (G) and N(u) induces a bipartite graph with
at least one edge, then (u, v) is a d-pair in G for every vertex v in V (G) \ {u}.
Consider a pair of adjacent vertices x and y of a graph G. Then checking whether

340 M.A. Shalu and T.P. Sandhya

x

y

X ∪ {y}
(i)

Y

G : u
a

v

b

c

d
e

f

(ii)

Fig. 1. (i) a d-pair (x, y), and (ii) (u, v) is a d-pair but (v, u) is not a d-pair in G.

G satisfies the following conditions: (i) N(x) induces a bipartite graph with at
least one edge, (ii) A(x) is an independent set in G, and (iii) y dominates A(x)
can be done in O(n+m) time where n and m denote the numbers of vertices and
edges of G respectively. We also repeat the above process by changing the roles
of x and y. So testing whether A = {x, y} ⊆ V (G) is a d-pair takes O(m + n)
time. To test whether a graph G admits a d-pair, we repeat the above process
for every pair of adjacent vertices in G and it can be done in O(m(n+m)) time.
So we have the following:

Observation 1. Testing whether a graph G has a vertex subset which is a d-pair
can be done in O(m(n+m)) time, where n and m denote the numbers of vertices
and edges of G respectively.
�
Consider a vertex x of a graph G with n = |V (G)| and m = |E(G)|. Then
checking whether G\{x} is a bipartite graph takes O(n+m) time. Next, consider
an edge yz in G \ {x}. Then we need O(n + m) time to check whether yz is a
dominating edge of G \ {x}. So testing whether G \ {x} has a dominating edge
can be done in O(m(n + m)) time, by repeating the above process for every
edge in G \ {x}. That is, to check whether G \ {x} is a bipartite graph with
a dominating edge takes O(n + m) + O(m(n + m)) = O(m(n + m)) time. We
repeat this process for every vertex in G. Hence to test the existence of a vertex
x in G such that G \ {x} is a bipartite graph with a dominating edge takes
O(nm(n + m)) time.

Observation 2. Testing whether a graph G has a vertex x such that G \ {x}
is a bipartite graph with a dominating edge takes O(nm(n + m)) time, where n
and m denote the numbers of vertices and edges of G respectively.
�
We say (x1, x2, x3) is a cd-triangle of a graph G if V (G) = {x1, x2, x3} ∪ X1 ∪
X2 ∪ X3 such that (i) {x1, x2, x3} is a clique in G, (ii) Xi is an independent set
in G for 1 ≤ i ≤ 3, (iii) xi ⊕ Xi in G for 1 ≤ i ≤ 3, and (iv) xi+1 � Xi in G for
1 ≤ i ≤ 3, i (mod 3) (see Fig. 2(i)). In addition, there is no restriction of edges
between xi and Xi+1 for 1 ≤ i ≤ 3, i (mod 3). For example, the graph G1 in
Fig. 2(ii) has a cd-triangle (a, b, c) with X1 = {g}, X2 = {f, e}, and X3 = {d}.
Note that (a, g, f) is not a cd-triangle in G1 since {a, g, f} does not dominate
V (G1).

The cd-Coloring of Graphs 341

x1

x3 x2

X3

X2

X1

(i)

a

c b

f

g

d e
(ii)

G1 :

Fig. 2. (i) a cd-triangle (x1, x2, x3) and (ii) (a, b, c) is a cd-triangle in G1

Observation 3. Let (x1, x2, x3) be a cd-triangle of a graph G. Then

(i) N(x1) ∩ N(x2) ∩ N(x3) = ∅,
(ii) A(x1) ∩ A(x2) ∩ A(x3) = ∅, and
(iii) X1 = N(x1) ∩ A(x2), X2 = N(x2) ∩ A(x3), and X3 = N(x3) ∩ A(x1).

Proof. Let A = {x1, x2, x3}. Then by definition of a cd-triangle, every vertex in
V (G) \ A has at least one non-neighbour and neighbour in A, which proves (i)
and (ii). Next, we prove that X1 = N(x1) ∩ A(x2). Let y ∈ X1. By definition
of a cd-triangle, yx1 ∈ E(G) and yx2 /∈ E(G). So y ∈ N(x1) ∩ A(x2) and hence
X1 ⊆ N(x1)∩A(x2). Conversely, let y ∈ N(x1)∩A(x2). Since x2 ⊕X2 in G and
y ∈ A(x2), y /∈ X2. Since yx1 ∈ E(G) and x1�X3 in G, y /∈ X3. So y /∈ X2∪X3.
Hence y ∈ X1. So N(x1) ∩ A(x2) ⊆ X1. Hence X1 = N(x1) ∩ A(x2). Similarly,
X2 = N(x2) ∩ A(x3) and X3 = N(x3) ∩ A(x1).
�
Consider a 3-tuple (x1, x2, x3) in a graph G with n = |V (G)| and m = |E(G)|.
By Observation 3, we need O(n+m) time to find X1,X2, and X3. Then to check
whether each Xi (for 1 ≤ i ≤ 3) is an independent set, we need O(n2) time. So
to check whether (x1, x2, x3) is a cd-triangle or not, O(n+m) +O(n2) = O(n2)
time is needed. We repeat the above process with every 3-tuple (x1, x2, x3) in
V (G). Hence checking whether G has a cd-triangle takes O(n5) time.

Observation 4. Testing whether a graph G has a cd-triangle takes O(n5) time,
where n denotes the number of vertices of G.
�
Next, we introduce neighbourhood bipartition problem (NBP) which plays an
important role in the characterization of graphs with χcd = 3 and show that
NBP is in P.

2.1 Neighbourhood Bipartition (NB)

Let x and y be two non-adjacent vertices of a graph G. We say G admits a
neighbourhood bipartition (NB) with respect to x and y if the vertex set of G can
be partitioned as V (G) = {x, y}∪X ∪Y such that (i) X and Y are independent

342 M.A. Shalu and T.P. Sandhya

x

y

X

Y

(i)

H :

b

a

c

d

e

f

g

h

(ii)

Fig. 3. (i) A partial schematic representation of a NB, and (ii) A graph H that admits
a NB with respect to a, b with X = {c, e, h} and Y = {d, f, g}.

sets in G, and (ii) x ⊕ X and y ⊕ Y in G(see Fig. 3). Note that the zigzag line
in Fig. 3 (for example, between {x} and Y) represents no restriction on edges
between respective sets.

Neighbourhood Bipartition Problem (NBP)
Instance : A graph G = (V,E), x, y ∈ V (G), and xy /∈ E(G).
Question : Does G admit a neighbourhood bipartition with respect to x and
y? It is easy to prove the following :

Observation 5. If a graph G admits a NB with respect to x and y such that
V (G) = {x, y} ∪ X ∪ Y , then (i) N [x] ∪ N [y] = V (G), (ii) N(x) \ N(y) ⊆ X,
and (iii) N(y) \ N(x) ⊆ Y .
�
Next, we prove that NBP is in P by reducing it into a 2-SAT problem.

Observation 6 [∗]1. Let G be a graph with two non-adjacent vertices x, y ∈
V (G). Then NBP of G with respect to x and y can be solved in O(n+m) time,
where n and m denote the numbers of vertices and edges of G respectively.
�

As pointed out by a referee, Observation 6 can also be proved as follows:
For a given graph G with two non-adjacent vertices x and y, if some vertex is
adjacent to none of x and y then NB does not exist with respect to x and y. If
this is not the case, then let X = {u ∈ V (G)\{x, y} : xu ∈ E(G), yu /∈ E(G)},
Y = {u ∈ V (G)\{x, y} : yu ∈ E(G), xu /∈ E(G)}, and S = {u ∈ V (G)\{x, y} :
xu, yu ∈ E(G)}. If any vertex u of S is adjacent to any vertex of X, then update
Y = Y ∪ {u} and vice versa. Continue this process until every vertex in S has
no neighbour in X and Y . If both X and Y are independent sets, and G[S] is
a bipartite graph then G admits a NB with respect to x and y. Note that, this
algorithm takes O(n + m) + O(nm) + O(n + m) = O(nm) time where n and m
denote the numbers of vertices and edges of the given graph G respectively.

We say a graph G admits a NB-triplet (x, y, z) if V (G) = {x, y} ∪ X ∪ Y ∪ Z
such that (i) xy /∈ E(G), z ∈ X ∪Y , (ii) X,Y, and Z are independent sets in G,
1 Due to space constraints, proofs of the results marked with a [∗] is deferred to a
longer version of the paper.

The cd-Coloring of Graphs 343

x

y z

X

Y

Z

(i)

H :

b

a

c

d

e
f

g

h

i

j

(ii)

Fig. 4. (i) a NB-triplet (x, y, z) where z ∈ X ∪ Y and (ii) an example of a NB-triplet

(iii) x ⊕ X, y ⊕ Y , and z ⊕ Z in G, and (iv) xz, yz ∈ E(G), x � Z and y � Z
in G (See Fig. 4(i)). For example, in Fig. 4(ii), (a, b, e) is a NB-triplet in H with
X = {c, e, h}, Y = {d, f, g}, and Z = {i, j}. If a graph G admits a NB-triplet
(x, y, z) with V (G) = {x, y} ∪ X ∪ Y ∪ Z, then G[V (G) \ Z] admits a NB with
respect to x and y.

Let x and y be a pair of non-adjacent vertices in a graph G. By Observation
6, checking whether G[N(x) ∪ N(y) ∪ {x, y}] admits a NB with respect to x
and y takes O(n + m) time where n and m denote the numbers of vertices
and edges of G respectively. In addition, we check (i) whether A(x) ∩ A(y) is
an independent set and (ii) the existence of a vertex z in N(x) ∪ N(y) such
that z ⊕ (A(x) ∩ A(y)). This can be done in O(n + m) time. So for a pair of
non-adjacent vertices x and y, testing whether there exists a vertex z such that
G admits a NB-triplet (x, y, z) takes O(n + m) time. So we repeat the above
process for every pair of non-adjacent vertices in G to test whether G admits a
NB-triplet and it can be done in O(n2(n+m)) time. So we have the following.

Observation 7. Testing whether a graph G admits a NB-triplet is O(n2(n +
m)), where n denotes the number of vertices G.
�
By Observations 1, 2, 4, and 7, we have the following theorem.

Theorem 1. Testing whether a graph G admits a d-pair, cd-triangle, NB-triplet
or G has a vertex x such that G\{x} is a bipartite graph with a dominating edge
takes O(n5) time, where n denotes the number of vertices of G.
�

3 Three-cd-coloring

In this section, we explore the structure of a graph G with χcd(G) = 3. First,
we prove a result that is used throughout this section.

Proposition 3. Let G be a k-cd-colorable graph with cd-color classes
V1, V2, . . . , Vk such that ui dominates Vi for 1 ≤ i ≤ k. If ui ∈ Vi for some
i, 1 ≤ i ≤ k, then Vi = {ui}.

344 M.A. Shalu and T.P. Sandhya

Proof. If not, there exists x ∈ Vi such that x �= ui. Since Vi is a color class in
G, xui /∈ E(G). Hence ui is not adjacent to x and ui does not dominate Vi, a
contradiction. So Vi = {ui}.
�
Next, we introduce the notion of cd-core of a cd-coloring. To this end, we note
that a k-cd-coloring contains two lists: (i) V1, V2, . . . , Vk, a k-vertex coloring of
G and (ii) u1, u2, . . . , uk such that ui dominates Vi in G for 1 ≤ i ≤ k. Consider
a graph H with vertex set {a, b, c, d, e} and edges ab, bc, cd, da, and de. Next, we
provide two 2-cd-colorings of H : (I) (i) V1 = {a, c, e} and V2 = {b, d} and (ii)
d dominates V1 and a dominates V2, and (II) (i) V1 = {a, c, e} and V2 = {b, d}
and (ii) d dominates V1 and c dominates V2. So the same vertex partition of H
has distinct set of dominating vertices. This leads us to the notion of cd-core of
a k-cd-coloring and it plays an important role in the characterization of 3-cd-
colorable graphs. Consider a k-cd-coloring of a graph G with vertex partition
V1, V2, . . . , Vk such that ui dominates Vi in G for 1 ≤ i ≤ k. Then {u1, u2, . . . , uk}
is called the cd-core of the given k-cd-coloring. Note that {a, d} is the cd-core of
(I) and {c, d} is the cd-core of (II) in the graph H.

Let C(G) denote the set of cd-core of all possible χcd-cd-colorings of G.
That is,

C(G) = {S ⊆ V (G) : S is a cd-core of a χcd(G)-cd-coloring of G}
The cd-core-number of a graph G is defined as

cd-core-no(G) = min{|S| : S ∈ C(G)}
Let S be the cd-core of a χcd(G)-cd-coloring of a graph G. Then S is called a
minimum cd-core of G if |S| =cd-core-no(G). We can easily prove the following:

Observation 8. For a graph G,

(i) cd-core-no(G) ≤ χcd(G)
(ii) cd-core-no(G) = 1 if and only if G has a vertex that dominates V (G).
�

For example, we consider the graphs G1, G2, and G3 in Fig. 5. Since Gi � K1,
χcd(Gi) ≥ 2 for 1 ≤ i ≤ 3 (by Proposition 2(1)). Consider the graph G1.

x1

x2
x3

x4

x5

G1 :

(i)

G2 :
u v

y2

y1

y3

y5

y4

y6

(ii)

G3 : v1 v3

v2 v4

(iii)

Fig. 5. (i) cd-core-no(G1) = 1 and χcd(G1) = 2, (ii) χcd(G2) = 2 =cd-core-no(G2),
and (iii) cd-core-no(G3) = 2 and χcd(G3) = 4

The cd-Coloring of Graphs 345

V1 = {x1}, V2 = {x2, x3, x4, x5} is a 2-cd-coloring of G in which x1 dominates
V1 and V2. Hence χcd(G1) = 2 and cd-core-no(G1) = 1 (by Observation 8(ii)).
Next, consider the graph G2 in Fig. 5. Since no vertex dominates V (G2), cd-core-
no(G2) ≥ 2. Also, V1 = {y1, y2, y3, v}, V2 = {y4, y5, y6, u} is a 2-cd-coloring of
G2 in which u dominates V1 and v dominates V2. Hence χcd(G2) = 2 =cd-core-
no(G2). Next, we consider G3. Since G3 is a disconnected graph that contains
a clique of size 3 and an isolated vertex, χcd(G3) ≥ 4 and cd-core-no(G3) ≥ 2.
Moreover V1 = {v1}, V2 = {v2, }, V3 = {v3}, and V4 = {v4} is a 4-cd-coloring of
G3 in which v1 dominates V1, V2, and V3 and v4 dominates V4. Hence χcd(G3) = 4
and cd-core-co(G3) = 2.

Next we characterize the class of all graphs G with χcd(G) = 3. By Obser-
vation 8(i), cd-core-no(G) ≤ χcd(G) = 3. Then there are three cases: (i) cd-core
no(G) = 1 (Lemma 1), (ii) cd-core-no(G) = 2 (Lemma 2), and (iii) cd-core-
no(G) = 3 (Lemmas 3, 4, 5, and 6). Next, we study each case in detail.

Lemma 1. If G is a graph with χcd(G) = 3 and cd-core-no(G)= 1, then G has
a vertex u such that (i) N [u] = V (G) and (ii) N(u) induces a bipartite graph
with at least one edge in G.

Proof. Let {u} be a cd-core of a 3-cd-coloring V1, V2, and V3 in G. W.l.o.g.,
let u ∈ V1. Then by Proposition 3, V1 = {u}. Since {u} is a cd-core of V1, V2,
and V3, N(u) = V2 ∪ V3. Clearly, N(u) induces a bipartite graph with at least
one edge, else N(u) is an independent set and G is a star with χcd(G) = 2, a
contradiction.
�
Note that by Lemma1, a graph G with χcd(G) = 3 and cd-core-no(G)= 1 admits
a d-pair. Next, we show that every connected graph with χcd(G) = 3 and cd-
core-no(G) = 2 admits a d-pair in G.

Lemma 2 [∗]. Let G be a connected graph with χcd(G) = 3 and cd-core-no(G)=
2. Then every minimum cd-core is a d-pair in G.
�
Let G be a connected graph with χcd(G) = 3 = cd-core-no(G). Let V1, V2, and
V3 be a 3-cd-coloring of G such that vi dominates Vi in G for 1 ≤ i ≤ 3. Then
G[{v1, v2, v3}] ∼= 3K1,K2 ∪ K1, P3, or K3. Next, we explore each case in detail.

Lemma 3. If G is a connected graph with χcd(G) = 3 = cd-core-no(G), then
the cd-core of any 3-cd-coloring of G is not an independent set.

Proof. Let V1, V2, and V3 be a 3-cd-coloring of G such that vi dominates Vi in
G for 1 ≤ i ≤ 3 and let A = {v1, v2, v3}. We have to prove that G[A] � 3K1. On
the contrary, assume that A is an independent set. Suppose v1 ∈ V2. Since v2
dominates V2, v1v2 ∈ E(G), a contradiction. Hence v1 /∈ V2. Similarly v1 /∈ V3.
Hence v1 ∈ V1 and V1 = {v1}, by Proposition 3. Using similar arguments,
V2 = {v2} and V3 = {v3}. Hence G ∼= 3K1, a contradiction to the fact that G is
connected. So A is not an independent set in G.
�

346 M.A. Shalu and T.P. Sandhya

Lemma 4. Let G be a connected graph with χcd(G) = 3 = cd-core-no(G). Sup-
pose G admits a 3-cd-coloring V1, V2, and V3 such that vi dominates Vi in G for
1 ≤ i ≤ 3. If G[{v1, v2, v3}] ∼= K2 ∪ K1, then there exists a vertex x such that
G \ {x} is a bipartite graph with a dominating edge.

Proof. W.l.o.g., let v1v2 ∈ E(G) and v2v3, v1v3 /∈ E(G). Suppose v3 ∈ V1. Since
v1 dominates V1, v3v1 ∈ E(G), a contradiction. So v3 /∈ V1. Similarly v3 /∈ V2.
Hence v3 ∈ V3 and V3 = {v3}, by Proposition 3. So V (G) \ {v3} = V1 ∪ V2

induces a bipartite graph with dominating edge v1v2, since v1 dominates V1 and
v2 dominates V2.
�
Lemma 5 [∗]. Let G be a connected graph with χcd(G) = 3 = cd-core-no(G).
Suppose G admits a 3-cd-coloring V1, V2, and V3 such that vl dominates Vl in
G for 1 ≤ l ≤ 3. If G[{v1, v2, v3}] ∼= P3, then either (1) there exists a vertex x
such that G \ {x} is a bipartite graph with a dominating edge or (2) G admits a
NB-triplet.
�
Lemma 6 [∗]. Let G be a connected graph with χcd(G) = 3 = cd-core-no(G). If
the cd-core of a 3-cd-coloring induces K3 in G, then G admits a cd-triangle.
�
Next, we summarize the above results for 3-cd-coloring to get a characterization
of graphs G with χcd(G) ≤ 3.

Theorem 2. Let G be a connected graph. Then χcd(G) ≤ 3 if and only if G is
one of the following:

(i) G is either K1 or a bipartite graph with a dominating edge,
(ii) there exists a vertex x in G such that G \ {x} is a bipartite graph with a

dominating edge, or
(iii) G admits a d-pair, NB-triplet, or a cd-triangle

Proof. Assume that G is a connected graph with χcd(G) ≤ 3. Then by Lemmas
1, 2, 3, 4, 5, 6, and Proposition 2, G is either K1 or a bipartite graph with a
dominating edge or there exists a vertex x in G such that G \ {x} is a bipartite
graph with a dominating edge or G admits a d-pair, NB-triplet or a cd-triangle.
Conversely, if G is either K1 or a bipartite graph with a dominating edge, then
χcd(G) ≤ 2. Suppose that there exists a vertex x in G such that G \ {x} is a
bipartite graph with vertex partition V (G) \ {x} = X ∪Y and has a dominating
edge uv. W.l.o.g., let x ⊕ X and y ⊕ Y in G. Then V1 = {x}, V2 = X, and
V3 = Y is a 3-cd-coloring of G such that x dominates V1, u dominates V2 and
v dominates V3. If G admits a d-pair (x, y), then V (G) = {x, y} ∪ X ∪ Y such
that (i) x ⊕ X and X induces a bipartite graph with partition X1 ∪ X2 and (ii)
y ∈ X, y ⊕Y , x�Y and Y is an independent set in G. Then V1 = X1, V2 = X2,
and V3 = {x}∪Y is a 3-cd-coloring of G such that x dominates V1 and V2, and y
dominates V3. If G admits a NB-triplet (x, y, z) then V (G) = {x, y}∪X ∪Y ∪Z
such that (i) z ∈ X ∪ Y , (ii) X,Y, and Z are independent sets in G, (iii)
xz, yz ∈ E(G), x ⊕ X, y ⊕ Y , and z ⊕ Z in G, and (iv) x � Z and y � Z in G.

The cd-Coloring of Graphs 347

Then V1 = X, V2 = Y , and V3 = {x, y} ∪ Z is a 3-cd-coloring of G such that
x dominates V1, y dominates V2, and z dominates V3. If G admits a cd-triangle
(x, y, z) then V (G) = {x1, x2, x3} ∪ X1 ∪ X2 ∪ X3 such that (i) {x1, x2, x3} is
a clique in G, (ii) Xi is an independent set in G for 1 ≤ i ≤ 3, (iii) xi ⊕ Xi

in G for 1 ≤ i ≤ 3, and (iv) xi+1 � Xi in G for 1 ≤ i ≤ 3 i (mod 3). Then
V1 = {x2} ∪ X1, V2 = {x3} ∪ X2, and V3 = {x1} ∪ X3 is a 3-cd-coloring of G
such that x1 dominates V1, x2 dominates V2, and x3 dominates V3. So in all the
cases, χcd(G) ≤ 3.
�
By Theorems 1 and 2, deciding whether a graph G admits a 3-cd-coloring is
solvable in polynomial time. So we have the following theorem.

Theorem 3. The 3-cd-colorability of a connected graph G is solvable in O(n5)
time where n denotes the number of vertices of G.
�

4 P4-free Graphs and Split Graphs

Since k-cd-colorability is NP-complete for k ≥ 4, we turn our attention into
finding an optimal cd-coloring of some classes of graphs, in particular the class
of P4-free graphs and split graphs. In this section, we provide a polynomial
time algorithm to find an optimal cd-coloring of (i) P4-free graphs and (ii) split
graphs. First, we have the following lemma.

Lemma 7 [∗]. If G and H are two vertex disjoint graphs with at least one vertex
each, then χcd(G + H) = χ(G) + χ(H).
�
Note that an optimal vertex coloring for a P4-free graph G can be computed
in O(n + m) time where n and m denote the numbers of vertices and edges of
G respectively [3]. Next, we provide a linear time algorithm to find an optimal
cd-coloring of P4-free graphs.

Lemma 8 [∗]. If G is a connected P4-free graph, then an optimal cd-coloring of
G can be found in O(n+m) time where n and m denote the numbers of vertices
and edges of G respectively and χcd(G) = χ(G).
�
Theorem 4 [∗]. If G is a P4-free graph with components G1, G2, . . . , Gp, then
an optimal cd-coloring of G can be found in O(n+m) time where n and m denote

the numbers of vertices and edges of G respectively and χcd(G) =
p∑

i=1

χ(Gi).
�

Next, we discuss an optimal cd-coloring of a connected split graph.

Theorem 5 [∗]. If G is a connected split graph, then an optimal cd-coloring of
G can be found in O(n2) time where n denotes the number of vertices of G and
χcd(G) = ω(G).
�

348 M.A. Shalu and T.P. Sandhya

5 Conclusion

Coloring and domination are two well studied topics in graph theory and
cd-coloring is introduced by combining these two topics. A k-vertex coloring
V1, V2, . . . , Vk of a graph G is called a k-d-coloring [5] if for every vertex v ∈ V (G),
there exists some i, 1 ≤ i ≤ k such that Vi ⊆ N [v]. We note that a k-d-coloring
demands that every student is an adjudicator of some dormitory. But a k-cd-
coloring only requires an adjudicator for every dormitory (see Introduction).
Note that d-coloring of split graphs is NP-complete [1]. But the cd-coloring of
split graphs is in P. In this paper, we proved that k-cd-coloring is in P for k ≤ 3
and k-cd-coloring is in NP-complete for k > 3. We also introduced the concept
of cd-core and cd-core-number in order to explore the class of all 3-cd-colorable
graphs. Using this notion, we gave a characterization of all the graphs that admit
a 3-cd-coloring. Moreover, we proved that computation of an optimal cd-coloring
of split graphs and P4-free graphs takes only polynomial time. It is an interest-
ing problem to find the time complexity of an optimal cd-coloring of bipartite
graphs.

Acknowledgment. The authors wish to thank the anonymous referees whose sug-
gestions improved the presentation of this paper.

References

1. Arumugam, S., Chandrasekar, K.R., Misra, N., Philip, G., Saurabh, S.: Algorith-
mic aspects of dominator colorings in graphs. In: Iliopoulos, C.S., Smyth, W.F.
(eds.) Combinatorial Algorithms. LNCS, vol. 7056, pp. 19–30. Springer, Heidelberg
(2011)

2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Inf. Process. Lett. 8, 121–123 (1979)

3. Chvátal, V., Hoàng, C.T., Mahadev, N.V.R., de Werra, D.: Four classes of perfectly
orderable graphs. J. Graph Theory 11, 481–495 (1987)

4. Feder, T., Hell, P., Klein, S., Motwani, R.: Complexity of graph partition problems.
In: Proceedings of the 31st Annual ACM STOC, pp. 464–472 (1999)

5. Gera, R., Horton, S., Rasmussen, C.: Dominator colorings and safe clique parti-
tions. Congressus Numerantium 181, 19–32 (2006)

6. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations. Plenum Press,
New York (1972)

7. Swaminathan, V., Sundareswaran, R.: Color Class Domination in Graphs: Math-
ematical and Experimental Physics. Narosa Publishing house, New Delhi (2010)

8. Venkatakrishnan, Y.B., Swaminathan, V.: Color class domination number of mid-
dle graph and center graph of K1,n, Cn, Pn. Adv. Model. Optim. 12, 233–237 (2010)

9. Venkatakrishnan, Y.B., Swaminathan, V.: Color class domination numbers of some
classes of graphs. Algebra Discrete Math. 18, 301–305 (2014)

10. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, USA (2000)

Characterizations of H-graphs

H.P. Patil(B) and V. Raja

Department of Mathematics, Pondicherry University, Puducherry 605014, India
{hpppondy,vraja.math}@gmail.com

Abstract. The purpose of this paper is to introduce the new family of
H-graphs that generalizes the existing notions of trees, higher dimen-
sional trees and k-ctrees. Further, we establish the characterizations of
both the wheel-graphs G〈Wn〉 for n ≥ 6 and Tk-graphs for k ≥ 4, where
Tk is not a star. Finally, we determine the conditions under which the
Tk-graphs are split graphs and also propose some open problems for
further research.

Keywords: Cycle · Path · Tree · Wheel · Connected graph · Triangu-
lated graph

1 Introduction

We follow the terminology of Harary [5]. Given a graph G, V (G) and E(G) denote
the sets of vertices and edges of G, respectively and G denotes the complement
of G. Pn and Cn denote a path of n vertices and cycle of n vertices, respectively.
For a vertex v of a graph G, a neighbour of v is a vertex adjacent to v in G
and the neighbourhood N(v) of v is the set of all neighbours of v. The degree
of v, denoted by deg(v) and is |N(v)|. For any connected graph G, nG denotes
the graph with n components, each being isomorphic to G. For any two disjoint
graphs G and H, G+H denotes the join of G and H, as defined in [5]. A tree is a
connected graph without cycles and we denote any tree of order k by Tk. A star
is a tree K1,n for n ≥ 1. The graph K1+Cn−1 for n ≥ 4, is a wheel and is denoted
by Wn ; moreover, Cn−1 is the rim of Wn and the vertex corresponding to K1

is the hub of Wn. A graph G is n-connected if the removal of any m vertices
for 0 ≤ m < n, from G results in neither a disconnected graph nor a trivial
graph. A graph G is triangulated if every cycle of length strictly greater than
3 possesses a chord, that is, an edge joining two nonconsecutive vertices of the
cycle. Equivalently, G does not contain an induced subgraph isomorphic to Cn

for n > 3.
While trees are equivalently defined by the following recursive construction

rule :

Step 1. A single vertex K1 is a tree.
Step 2. Any tree of order n ≥ 2, can be constructed from a tree Q of order
(n − 1) by inserting an nth - vertex and joining it to any vertex of Q.

c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 349–356, 2016.
DOI: 10.1007/978-3-319-29221-2 30

350 H.P. Patil and V. Raja

Now, the object of this paper is to extend the above tree-construction rule
by allowing the base to be any graph. It is natural that a connected graph,
which is not a tree possesses a structure that look like a tree. For example, k-
trees in [2,3,6] and k-ctrees in [7]. This kind of structure is actually reflected by
constructing the new family of graphs, whose recursive growth just starts from
any given graph. With this view, for every graph H, there is associated another
graph, we call H-graph that is constructed as follows:

Definition 1.1. Let H be any graph of order k. H-graph, denoted by G〈H〉, is
a graph that can be obtained by the following recursive construction rule:

1. H is the smallest H-graph.
2. To a H-graph G〈H〉 of order n ≥ k, insert a new (n + 1)th-vertex and join it

to any set of k distinct vertices: vi1 , vi2 , . . . , vik of G〈H〉, so that the induced
subgraph 〈{vi1 , vi2 , . . . , vik}〉 is isomorphic to H.

The interest in the class of H-graphs is motivated by the notions of partial
k-trees [1], k-trees [2,6] or k-ctrees [7].

Remark 1.1. The notion of K1-graphs are the usual concept of trees.
2. The notion of K2-graphs is equivalent to the notion of 2-trees, which are

studied in detail in [6]. Actually, they form a special subclass of planar graphs.
In fact, the maximal outerplanar graphs are the only outerplanar K2-graphs.

2 Tk-graphs and Characterizations

Definition 2.1. Let Tk be a tree of order k. A graph H is called a Tk-graph if
there exists a tree Tk, such that H is isomorphic to G〈Tk〉.

Generally speaking, every Tk-graph G〈Tk〉 of order ≥ k + 1, can be reduced
to a tree Tk by sequentially removing the vertices of degree k from G〈Tk〉.
Definition 2.2. Let G〈Tk〉 be a Tk-graph of order ≥ k +1. A vertex v of G〈Tk〉
is called a T-vertex if its neighbourhood N(v) in G〈Tk〉 induces Tk.

Next, we present a simple characterization of Tk-graphs involving T -vertices
of degree k and is simply the restatement of the recursive definition of Tk-graphs.

Proposition 2.1. A graph G of order ≥ k + 1, is a Tk-graph if and only if G
contains a T -vertex v of degree k and G − v is a Tk-graph.

An immediate consequence of the above proposition is the following result.

Corollary 2.2. Let G〈Tk〉 be a Tk-graph of order p ≥ k. If p ≥ k + 2, then
G〈Tk〉 contains a subgraph isomorphic to Tk + 2K1.

We first propose the following problem for further research.

Characterizations of H-graphs 351

Open Problem. Characterize the class of star-graphs G〈K1,n〉 for n ≥ 2.

Notice that for n = 1, the above problem is solved in [6], by showing that
this class of star-graphs are 2-connected, triangulated and K4-free. For n = 2,
the above problem appears as an open problem in [8] for further research. We
now characterize the Tk-graphs, where Tk is not a star.

Theorem 2.3. Let Tk be a tree, different from a star of order ≥ 4. Then a
graph G of order p ≥ k + 1, is a Tk-graph if and only if G is isomorphic to
Tk + (p − k)K1.

Proof. Suppose that G is isomorphic to Tk+(p−k)K1. Immediately, G contains
T -vertices, say v1, v2, . . . , vp−k, each of degree k in G. By sequentially removing
a T -vertex vi (1 ≤ i ≤ p − k) from G, reduces to Tk. From Proposition 2.1, G is
a Tk-graph.

Next, we prove the converse by induction on p. Assume that Tk is a tree,
different from a star, of order k ≥ 4.
If p = k + 1, then by the definition of Tk-graph, G is isomorphic to Tk +K1,
which is obviously true.

Assume that the result is true for any m < p. Next, we consider a Tk-graph
G of order p. By definition of Tk-graph, there exists a T -vertex v in G. From
Proposition 2.1, G − v is a Tk-graph of order p − 1. By induction hypothesis, we
have G − v is isomorphic to Tk +(p − k − 1)K1. Consequently, G − v is the join
of two disjoint graphs Tk and I = (p − k − 1)K1.

Now, we claim that v is adjacent to each vertex of Tk in G. If this is not so,
then v certainly has some neighbours in I. Since N(v) induces a tree Tk, v can
not be adjacent to only the vertices of I. This implies that v has the neighbours
from both Tk and I. Moreover, v can not be adjacent to exactly one vertex in
Tk ; since otherwise, N(v) induces a star. This shows that v has at least two
neighbours x and y in Tk.

Next, we discuss two cases, depending on the nature of v in I.

Case 1. Suppose that v has exactly one neighbour, say a in I. Immediately, v is
adjacent to k − 1 vertices of Tk. Since (k − 1) ≥ 3, there exists an edge with
the ends x and y such that v is adjacent to both x and y in Tk. Consequently,
N(v) contains a triangle with vertices x, y and a. This is a contradiction.

Case 2. Suppose that v has two or more neighbours in I. Let a and b be two
neighbours of v in I. Moreover, v is adjacent to both x and y in Tk. Since
each x and y is adjacent to both a and b in I. Consequently a cycle C4 with
vertices x, b, y and a appears in N(v). This is a contradiction.

In each case, we arrived at a contradiction. Hence, v is adjacent to only the
vertices of Tk in G and the result follows by the principle of induction.

The immediate consequence of the above theorem is the following corollary.

Corollary 2.4. A graph G is a Pk-graph, of order p ≥ k + 1 for k ≥ 4 if and
only if G is isomorphic to Pk + (p − k)K1.

352 H.P. Patil and V. Raja

3 Tk-graphs and Split Graphs

Now, we determine the conditions under which Tk-graphs are split graphs. We
begin with the following definitions.

Definition 3.1. A double-star D(m,n) for m,n ≥ 1, is a K1-graph, obtained
from a graph K2, by joining m isolated vertices to one end of K2 and n isolated
vertices to the other end of K2.

Definition 3.2. For any triangle K3 with vertices a, b and c, there are three
special families of K2-graphs as follows :

1. T (m)−graph for m ≥ 1, is a K2-graph, obtained from K3, by joining m
isolated vertices to both vertices a and b of K3.

2. T (m,n)-graph for m,n ≥ 1, is a K2-graph, obtained from T (m), by joining
n isolated vertices to both vertices b and c of K3 in T (m).

3. T (m,n, k)-graph for m,n, k ≥ 1, is a K2-graph, obtained from T (m,n), by
joining k isolated vertices to both vertices a and c of K3 in T (m,n).

Proposition 3.1. A Tk-graph of order p ≥ k + 1, is a split graph if and only if
the following statements hold:

1. k = 1. There are only two split graphs :
(a) G(K1,Kp−1) is a K1-graph K1 + Kp−1.
(b) G(K2,Kp−2) is a double-star D(m,n), where m + n + 2 = p ; m,n ≥ 1.

2. k = 2. There are only two split graphs :
(a) G(K2,Kp−2) is a K2-graph K2 + Kp−2.
(b) G(K3,Kp−3) is one of the following K2-graphs : T (n1) for n1 + 3 =

p ; T (n1, n2) for n1+n2+3 = p and T (n1, n2, n3) for n1+n2+n3+3 = p.
3. k ≥ 3. There are only two split graphs :

(a) G(K2,Kk−1) is a K2-graph K2 + Kk−1.
(b) G(K3,Kk−2) is a K2-graph T (n1, n2) for n1 + n2 + 3 = k + 1.

Proof. Suppose that a Tk-graph of order p ≥ k +1 is a split graph of the form :
G(K, I). Immediately, Tk is a P5-free tree ; since otherwise, 2K2 appears as a
forbidden subgraph in Tk. So, we have all possible P5-free trees of order k and
these are the only four trees ; K1,K2, a star and a double-star.

We next discuss three cases, depending on k.

Case 1. Assume that k = 1. Then Tk is K1. Clearly, a Tk-graph T is a nontrivial
P5-free tree. In this case, a star K1 + Kp−1 and a double-star D(m,n) with
m+n = p−2 ; m,n ≥ 1, are the only split graphs of the form : G(K1,Kp−1)
and G(K2,Kp−2), respectively ; since otherwise, 2K2 appears as a forbidden
subgraph in T .

Case 2. Assume that k = 2. Then Tk is K2. Clearly, the notion of K2-graph is
equivalent to the notion of 2-tree and further, it is shown in [6] that every K2-
graph T is 2-connected, triangulated and K4-free. Consequently, the complete
sets K in T are the only K2 and K3.
We now discuss two possibilities, depending on K.

Characterizations of H-graphs 353

2.1. If K = K2, then T is isomorphic to K2 + Kp−2 and so it is the split
graph of the type G(K2,Kp−2).
2.2. If K = K3, then one of the following types of K2-trees : T (n1) with
n1 + 3 = p , T (n1, n2) with n1 + n2 + 3 = p and T (n1, n2, n3) with n1 + n2 +
n3 + 3 = p, is a split graph of the form G(K3,Kp−3).
Furthermore, notice that both the above conditions (2.1) and (2.2) happen
simultaneously ; since otherwise, a forbidden subgraph 2K2 appears in T .

Case 3. Assume that k ≥ 3. Since Tk is a P5-free tree, Tk is either a star
or a double-star. Since k ≥ 3, Tk contains P3 as an induced subgraph. By
Corollary 2.2, Tk-graph of order p ≥ k + 2, contains a subgraph isomorphic
to Tk + 2K2. Consequently, P3 +2K2 is an induced subgraph of Tk +2K2. It
is easy to check that a forbidden subgraph C4 appears in P3+2K2 and hence
in Tk + 2K2. This is a contradiction and proves that p = k + 1. Moreover,
K2 and K3 are the complete sets in Tk-graph. Consequently, K2 + Kk−1

is the split graph of the form G(K2,Kk−1) and a K2-graph T (n1, n2) with
n1 + n2 + 3 = k + 1, is a split graph of the form G(K3,Kk−2).

It is easy to prove the converse.

4 Wheel-Graphs and Characterizations

Definition 4.1. A graph H is called a wheel-graph if there exists a wheel Wk

for k ≥ 4 such that H is isomorphic to G〈Wk〉.
Notice that every wheel-graph G〈Wk〉 of order ≥ k + 1, can be reduced to a

wheel Wk by sequentially removing the vertices of degree k from G〈Wk〉.
Definition 4.2. Let G〈Wk〉 for k ≥ 4, be a wheel-graph of order ≥ k + 1. A
vertex v of G〈Wk〉 is called a W-vertex if its neighbourhood N(v) in G〈Wk〉
induces Wk.

We next present a simple characterization of the wheel-graphs involving
W -vertices of degree k and is the restatement of the recursive definition of the
wheel-graph.

Proposition 4.1. A graph G of order ≥ k + 1, is a wheel-graph if and only if
G contains a W -vertex v of degree k and G − v is a wheel-graph.

Remark 4.1. Let G〈Wk〉 for k ≥ 4, be a wheel-graph of order ≥ k + 1. If v is a
W -vertex of degree k in G〈Wk〉, then the graph induced by the neighbourhood
N(v) contains exactly one vertex of degree k−1 and the remaining k−1 vertices
have degree 3.

In [6], it is shown that the class of W4-graphs are equivalent to the family
of 4-trees and further, it is proved that this class of graphs are 4-connected,
triangulated and K6-free. We first propose the following problem for further
research.

354 H.P. Patil and V. Raja

Open problem. Characterize the class of W5-graphs.
Notice that the graphs in the class of wheel-graphs G〈W5〉 have highly irregu-

lar structures and it also seems to be difficult for us, in finding a characterization
of W5-graphs. So, we next characterize the graphs in the class of wheel-graphs
G〈Wk〉 for k ≥ 6.

Theorem 4.2. Let Wk be any wheel for k ≥ 6. A graph G of order p ≥ k + 1,
is a wheel-graph over Wk if and only if G is the union of two disjoint subgraphs
Wk and a forest F such that each component T of F contains a unique vertex,
which is adjacent to all the vertices of Wk and the remaining vertices of T are
adjacent to all the vertices of the rim Ck−1 in Wk.

Proof. Suppose that G satisfies the hypothesis of the theorem. By hypothesis,
G contains at least one W -vertex of degree k. By sequentially removing the W -
vertices of degree k from G reduces to Wk. By Proposition 4.1, G is a wheel-graph
over Wk.

Conversely, assume that G is a wheel-graph over Wk for k ≥ 6. Let V (Wk) =
{u1, u2, . . . , uk−1, uk}, where ui ∈ V (Ck−1) for 1 ≤ i ≤ k − 1 and uk is the hub
of Wk.

Now, we prove the result by induction on p ≥ k + 1. If p = k + 1, then by
the definition of wheel-graph, G = Wk ∪ F , where F contains a single W -vertex
b adjacent to all the vertices of Wk. In this case, F = K1 and the result holds
trivially.
If p = k + 2, then G = Wk ∪ F , where F contains exactly two vertices b1 and
b2, in which one vertex say, b1 is adjacent to all the vertices of Wk and b2 yields
two cases for discussion, based on its adjacency.

Case 1. b2 is adjacent to b1. Since b2 is the W -vertex of degree k, b2 is adjacent to
exactly k−1 vertices of Wk −uk. If this is not so, then deg(b1) = deg(uk) = k
in 〈N(b2)〉 and this is impossible from Remark 4.1. In this case, F is a tree T
isomorphic to K2 and it contains a unique vertex b1, that is adjacent to each
vertex of Wk and b2 is adjacent to all the vertices of Wk − uk.

Case 2. b2 is not adjacent to b1. Since b2 is the W -vertex of degree k, b2 must
be adjacent to all the vertices of Wk. In this case, F = 2K1. Thus, F has
two components T1 and T2, each being isomorphic to K1. Further, each Ti

contains a unique vertex bi, that is adjacent to all the vertices of Wk.

In either case, the result holds trivially.
Assume that the result holds for all the wheel-graphs of order m < p and let

G be a wheel-graph of order p ≥ k + 1 over Wk. By Proposition 4.1, G contains
a W -vertex u of degree k and G − u is a wheel-graph of order p − 1 over Wk. By
the induction hypothesis, G − u is the union of two disjoint subgraphs : Wk and
a forest F1 such that each component-tree T of F1, has a unique vertex, that is
adjacent to all the vertices of Wk and the remaining vertices are adjacent to all
the vertices of Wk − uk. Since u is a W -vertex of degree k in G, 〈N(u)〉 = Wk

and further, there exist two sets: A and B such that

A ⊆ Wk, B ⊆ F1 with |A| + |B| = k and 〈A ∪ B〉 = Wk. (4.1)

Characterizations of H-graphs 355

Further, it is not difficult to check that |A| > 2 ; since otherwise 〈N(u)〉 would not
be isomorphic to Wk. We discuss four possibilities, depending on the cardinality
of B :

1. |B| = 0. By (4.1), we have 〈A〉 = Wk. Consequently, u is adjacent to all the
vertices of Wk. In this case, G = Wk ∪ F , where F = F1 ∪ 〈{u}〉 and hence
the desire property is established.

2. |B| = 1. Then 〈B〉 = K1 and let V (B) = {b}. By (4.1), we have 〈A〉 =
(Wk − ui) for some i ∈ {1, 2, . . . , k}. Necessarily, we have N(u) = ((V (Wk) −
{uk}) ∪ {b}), so that 〈N(u)〉 = Wk. If this is not so, then we arrive at a
contradiction (as in Case 1) and by Remark 4.1. By induction hypothesis,
G = Wk ∪ F , where F is the forest isomorphic to F1 together with the edge
bu. This immediately establishes the desired property.

3. |B| = 2. Let V (B) = {b1, b2}. By (4.1), we have |A| = k − 2.

Next, we discuss two cases depending on uk in A :

Case 3.1. Assume that uk ∈ A. Since |A| = k − 2 and uk ∈ A, there are exactly
k − 3 vertices of Ck−1 in A. It is well-known that the independence number
β◦(Ck−1) is at most (k−1

2) < (k − 3). This means that among the k − 3
vertices of Ck−1, there exist certainly two adjacent vertices ui and ui+1 for
some i ∈ {1, 2, . . . , k−1} in A. Clearly, {uk, ui, ui+1, b1, b2} ⊂ N(u). Further,
it is easy to observe that deg(ui) ≥ 4 and deg(ui+1) ≥ 4 in 〈N(u)〉. This is
not possible because of Remark 4.1.

Case 3.2. Assume that uk /∈ A. Since |A| = k − 2 and uk /∈ A, it follows
that 〈A〉 = Pk−2 for k ≥ 6. Without loss of generality, let us assume that
V (Pk−2) = {u1, u2, . . . , uk−2}. Clearly, N(u) = {u1, u2, . . . , uk−2, b1, b2}.
Since k ≥ 6, evidently there are exactly k − 4 vertices of degree 4 in N(u).
Thus, 〈N(u)〉 contains at least two vertices of degree 4 and is impossible by
Remark 4.1.

In either case, we arrived at a contradiction.

4. |B| ≥ 3. Let Y = {b1, b2, b3} ⊆ B. By (4.1), we get, 3 ≤ |A| ≤ k − 3.

Now, we discuss two cases, depending on uk in A.

Case 4.1. uk ∈ A. Since |A| ≥ 3, consider the set X = {ui, uj} ⊂ A for
i, j ∈ {1, 2, . . . , k − 1}. It is easy to see that (X ∪Y) ⊂ N(u) and deg(ui) ≥ 4
and deg(uj) ≥ 4 in 〈N(u)〉. This is impossible by Remark 4.1.

Case 4.2. uk /∈ A. Since |A| ≥ 3, consider the set X = {ui, uj , ut} ⊆ A for
i, j, t ∈ {1, 2, . . . , k − 1}. We see that (X ∪ Y) ⊆ N(u) and immediately,
K3,3 appears as a subgraph in 〈X ∪ Y 〉. Thus, 〈N(u)〉 contains a subgraph
isomorphic to K3,3. Since 〈N(u)〉 = Wk, it follows that Wk contains K3,3

as a subgraph and this is not possible.

In either case, we arrived at a contradiction. Thus, we have exhausted all the
possible admissible cases and in each case, we established the desired property.

356 H.P. Patil and V. Raja

5 Open Problems

1. It seems to be interesting to find the characterizations, centers, colorings and
dominations of the wheel-graphs G〈W5〉.

2. It is note worthy to characterize the class of wheel-graphs G〈Wk〉 for k ≥ 5,
which are hamiltonian.

Acknowledgments. The authors are thankful to the Referees for their many valuable
suggestions and helpful comments, to improve our paper. The first author-Research
supported by UGC-SAP DRS-II (2015) and the second author- Research supported by
UGC-BSR-SRF, Research Fellowship, Government of India, New Delhi, India.

References

1. Arnborc, S., Proskurowski, A.: Characterization and recognition of partial 3-trees.
SIAM J. Alg. Disc. Math. 7(2), 305–314 (1986)

2. Beineke, L.W., Pippert, R.E.: Properties and characterizations of k-trees. Mathe-
matica 18, 141–151 (1971)

3. Dewdney, A.K.: Higher-dimensional tree structures. J. Comb. Theory (B) 17, 160–
169 (1974)

4. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Academic press,
New York (1980)

5. Harary, F.: Graph Theory. Addision-Wesley, Reading (1969)
6. Patil, H.P.: On the structure of k-trees. J. Comb. Inform. Syst. Sci. 11(2–4), 57–64

(1986)
7. Patil, H.P., Pandiya Raj, R.: Characterizations of k-ctrees and graph valued func-

tions. JCMCC 84, 91–98 (2013)
8. Patil, H.P., Raja, V.: H-trees involving line graphs and split graphs (Preprint)

On the Power Domination Number
of Graph Products

Seethu Varghese(B) and A. Vijayakumar

Department of Mathematics, Cochin University of Science and Technology,
Cochin 682022, India

{seethu333,vambat}@gmail.com

Abstract. The power domination number, γP(G), is the minimum car-
dinality of a power dominating set. In this paper, we study the power
domination number of some graph products. A general upper bound
for γP(G � H) is obtained. We determine some sharp upper bounds for
γP(G � H) and γP(G × H), where the graph H has a universal vertex.
We characterize the graphs G and H of order at least four for which
γP(G � H) = 1. The generalized power domination number of the lexi-
cographic product is also obtained.

Keywords: Domination number · Power domination number · Zero
forcing number · Graph products

1 Introduction

Power domination is a variation of domination introduced in [3] to address
the problem of monitoring electrical networks with phasor measurement units
(PMU). It was described as a graph parameter in [11]. In power domina-
tion there is an additional propagation possibility, due to the possible use of
Kirchhoff’s laws in an electrical network. It gives to power domination a very
different flavour since a vertex may then eventually monitor another vertex far
apart.

All graphs G = (V (G), E(G)) considered are finite and simple, that is, with-
out multiple edges or loops. A graph G is nontrivial if |V (G)| ≥ 1. The degree of
a vertex v in G, denoted by dG(v) or d(v), is the number of vertices adjacent to
v in G. The open neighbourhood of a vertex v of G, denoted by NG(v), is the set
of vertices adjacent to v. The closed neighbourhood of v is NG[v] = NG(v) ∪ {v}.
For a subset S of vertices, the open (resp. closed) neighbourhood NG(S) (resp.
NG[S]) of S is the union of the open (resp. closed) neighbourhoods of its ele-
ments. We denote by Kn the complete graph on n vertices, by Km,n the bipartite
complete graph with partite sets of order m and n. The path and cycle on n
vertices are denoted by Pn and Cn, respectively. The join of two graphs G and
H, denoted by G ∨ H, is the graph with vertex set V (G) ∪ V (H) and the edge
set E(G) ∪ E(H) ∪ {gh : g ∈ V (G), h ∈ V (H)}. The graph K1 ∨ Cn−1 is called
the wheel, Wn and the graph K1 ∨ Pn−1 is called the fan, Fn. A vertex v in a
c© Springer International Publishing Switzerland 2016
S. Govindarajan and A. Maheshwari (Eds.): CALDAM 2016, LNCS 9602, pp. 357–367, 2016.
DOI: 10.1007/978-3-319-29221-2 31

358 S. Varghese and A. Vijayakumar

graph G is said to dominate its closed neighbourhood NG[v]. A subset S ⊆ V (G)
of vertices is a dominating set if NG[S] = V (G) and a total dominating set if
NG(S) = V (G). The minimum cardinality of a dominating (resp., total dominat-
ing) set in a graph G is called its domination (resp., total domination) number,
denoted by γ(G) (resp., γt(G)). A γ(G) (resp., γt(G))-set is a dominating (resp.,
total dominating) set of cardinality γ(G) (resp., γt(G)).

For power domination, we need to define the set of vertices monitored by
an initial set S (of PMU) iteratively. The set of vertices monitored by a set S,
denoted by M(S), initially consists of all vertices in NG[S]. This step is called the
domination step. Then this set is iteratively extended by including all vertices
that are the unique unmonitored neighbour of a monitored vertex. This second
part is called the propagation step. This step is continued until no such vertices
exist. The set S is called a power dominating set (PDS) of G if M(S) = V (G).
The power domination number of a graph G, denoted by γP (G), is the minimum
cardinality of a power dominating set of G.

Power domination was then generalized in [6] by adding the possibility of
propagating to more than one vertex, up to k vertices for k a non-negative inte-
ger. The set of monitored vertices for k-power domination following the notation
of [6] is defined as follows:

Definition 1. [6] Let k ≥ 0. If G is a graph and S ⊆ V (G), then the sets(Pi
G,k(S)

)
i≥0

of vertices monitored by S at step i are as follows:

P0
G,k(S) = NG[S] (domination step), and

Pi+1
G,k (S) =

⋃{NG[v] : v ∈ Pi
G,k(S) such that

∣∣NG[v] \ Pi
G,k(S)

∣∣ ≤ k}
(propagation steps).

Recall that since Pi
G,k(S) is always a union of neighbourhoods, Pi

G,k(S) ⊆
Pi+1

G,k (S). If Pi0
G,k(S) = Pi0+1

G,k (S) for some i0, then Pj
G,k(S) = Pi0

G,k(S) for any
j ≥ i0. We thus define P∞

G,k(S) = Pi0
G,k(S). Observe that P∞

G,1(S) = M(S).

Definition 2. [6] A k-power dominating set of G (k-PDS) is a set S ⊆ V (G)
such that P∞

G,k(S) = V (G). The k-power domination number, γP,k(G), of G is
the minimum cardinality of a k-power dominating set of G. A γP,k(G)-set is a
k-PDS in G of cardinality γP,k(G).

Clearly, γP,0(G) = γ(G) and γP,1(G) = γP(G). The computational complex-
ity of the power domination problem is studied in [1,10,11]. Linear-time algo-
rithms for this problem are known for trees [11] and interval graphs [13]. Upper
bounds for the power domination number are obtained in [15]. The power domi-
nation problem for various products of graphs are studied in [4,8,9]. Generalized
power domination is further studied in [7].

The vertex set of all the four standard graph products constructed from
graphs G and H is V (G) × V (H). The vertices u = (g, h) and v = (g′, h′) in
V (G) × V (H) are adjacent in the Cartesian product G�H if either g = g′ and
hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G) and they are adjacent in the direct
product G×H if gg′ ∈ E(G) and hh′ ∈ E(H). The edge set of the strong product

On the Power Domination Number of Graph Products 359

G � H is E(G�H) ∪ E(G × H) and u and v are adjacent in the lexicographic
product G ◦ H if gg′ ∈ E(G) or g = g′ and hh′ ∈ E(H). Let G ∗ H be any of
the four graph products. Then the subgraph of G ∗ H induced by {g} × V (H)
is called an H-fiber, denoted by gH and the subgraph induced by V (G) × {h} is
called a G-fiber denoted by Gh. All these products are associative and all but the
lexicographic product are also commutative. For a detailed study on all graph
products, see [12].

Definition 3. [2] Color-change rule: If G is a graph with each vertex coloured
either white or black, u is a black vertex of G, and exactly one neighbour v of u is
white, then change the colour of v to black. Given a colouring of G, the derived
coloring is the result of applying the color-change rule until no more changes are
possible.

Definition 4. [2] A zero forcing set for a graph G is a set Z ⊆ V (G) such that
if initially the vertices in Z are coloured black and the remaining vertices are
coloured white, the entire graph G may be coloured black by repeatedly applying
the colour-change rule. The zero forcing number of G, Z(G), is the minimum
cardinality of a zero forcing set.

If Z is a zero forcing set of G, then the sets
(Bi

G(Z)
)
i≥0

of vertices that are
coloured black at step i are as follows: B0

G(Z) = Z, and Bi+1
G (Z) =

{
v : vu ∈

E(G), u ∈ Bi
G(Z) such that NG[u] \ Bi

G(Z) = {v}} ∪ Bi
G(Z). The colour change

rule in a zero forcing set and the propagation rule in power domination are
closely related.

In this paper, a general upper bound for γP(G�H) is obtained. We prove
in Sect. 2.1 that Z(G) is an upper bound for the power domination number of
G�H where H has a universal vertex. In Sect. 2.1, we also characterize the
graphs G and H of order at least four for which γP(G�H) = 1. In Sect. 2.2,
we obtain a sharp upper bound for γP(G × H) in terms of the total domination
number of G where H has a universal vertex. The generalized power domination
number of the lexicographic product is determined in Sect. 2.3.

2 Power Domination in Some Graph Products

2.1 The Cartesian Product

We first give a general upper bound for the power domination number of Carte-
sian product of two graphs.

Theorem 1. For any two nontrivial graphs G and H,

γP(G�H) ≤ min{γP(G)|V (H)|, γP(H)|V (G)|}.

Proof. Let S be a PDS of G and S′ be the set {(g, h) : g ∈ S, h ∈ V (H)}.
Then P0

G � H,1(S
′) = {V (gH) : g ∈ P0

G,1(S)}. In order to prove that S′ is a
PDS of G�H, it is enough to prove that for a vertex g in G, if g ∈ Pi

G,1(S),

360 S. Varghese and A. Vijayakumar

then V (gH) ∈ Pi
G � H,1(S

′) for all i ≥ 0. The proof is by induction. The
property holds for i = 0 and so suppose that it is true for some i ≥ 0.
Let g be a vertex in Pi+1

G,1 (S). If g ∈ Pi
G,1(S), then by induction hypothesis

V (gH) ∈ Pi
G � H,1(S

′). Otherwise, there exists a neighbour g′ of g in Pi
G,1(S)

such that
∣∣NG[g′]\Pi

G,1(S)
∣∣ ≤ 1. By induction hypothesis, V (g′

H) ∈ Pi
G � H,1(S

′)
and therefore, for h ∈ V (H),

∣∣NG � H [(g′, h)] \ Pi
G � H,1(S

′)
∣∣ =

∣∣{(v, h) : g′v ∈
E(G), (v, h) /∈ Pi

G � H,1(S
′)}∣∣ =

∣∣{v : g′v ∈ E(G), v /∈ Pi
G,1(S)}∣∣ =

∣∣NG[g′] \
Pi

G,1(S)
∣∣ ≤ 1. Therefore, NG � H [(g′, h)] ⊆ Pi+1

G � H,1(S
′) which implies that

(g, h) ∈ Pi+1
G � H,1(S

′). Since this is true for any h, V (gH) ∈ Pi+1
G � H,1(S

′). Simi-
larly we can prove that γP(G�H) ≤ γP(H)|V (G)|.
�
It is easy to observe that S ⊆ V (G) is a PDS of a graph G if and only if N [S] is
a zero forcing set of G. The following theorem shows that we can obtain a power
dominating set for G�H from a zero forcing set of one of the factor graphs
when the other factor has a universal vertex.

Theorem 2. Let G and H be two nontrivial graphs. If H has a universal vertex,
then γP(G�H) ≤ Z(G).

Proof. Let Z be a zero forcing set of G and x be a universal vertex of H.
Let Z ′ = Z × {x}. Clearly, P0

G � H,1(Z
′) contains all vertices of gH, g ∈ Z.

We now prove by induction that for a vertex g in G, if g ∈ Bi
G(Z), then

V (gH) ∈ Pi
G � H,1(Z

′) for all i ≥ 0. Clearly it holds for i = 0. Suppose that the
property holds for some i ≥ 0. Let g be a vertex in Bi+1

G (Z). If g is not in Bi
G(S),

then there exists a neighbour g′ of g in Bi
G(Z) such that

∣∣NG[g′] \ Bi
G(Z)

∣∣ = 1.
By induction hypothesis, V (g′

H) ∈ Pi
G � H,1(Z

′) and therefore, for h ∈ V (H),∣∣NG � H [(g′, h)] \ Pi
G � H,1(Z

′)
∣∣ =

∣∣{(v, h) : g′v ∈ E(G), (v, h) /∈ Pi
G � H,1(Z

′)}∣∣ =∣∣{v : g′v ∈ E(G), v /∈ Bi
G(Z)}∣∣ =

∣∣NG[g′] \ Bi
G(Z)

∣∣ = 1. Hence the ver-
tex (g′, h) has only one neighbour yet to be monitored, which implies that
NG � H [(g′, h)] ⊆ Pi+1

G � H,1(Z
′). Therefore (g, h) ∈ Pi+1

G � H,1(Z
′). Since h is

arbitrary, V (gH) ∈ Pi+1
G � H,1(Z

′). Now, since Z is a zero forcing set of G,
there exists some nonnegative integer j such that Bj

G(Z) = V (G) and hence
V (G�H) ⊆ Pj

G � H,1(Z
′).
�

The bound in Theorem 2 is sharp for G = Pm, Cm,Wm or Fm and H =
Kn,m, n ≥ 4 [14].

Theorem 3. For any nontrivial graph G, γP(G�Pn) ≤ γ(G), n ≥ 2.

Proof. Let D be a dominating set of G. Let x be an end vertex of Pn. Take
D′ = D × {x}. Since D is a dominating set of G, V (Gx) ∈ P0

G � Pn,1(D
′) and

therefore the next propagation step covers all the vertices of Gy-fibre, where
xy ∈ E(Pn). The propagation continues in a similar fashion till the last G-fibre
and thus D′ is a PDS of G�Pn.
�

On the Power Domination Number of Graph Products 361

The bound in Theorem 3 is sharp for graphs G with γ(G) = 1. For n = 2,
the bound attains for the graph G = P , where P is the Petersen graph.

From Theorems 2 and 3, we obtain the following corollary.

Corollary 1. For any nontrivial graph G, γP(G�K2) ≤ min{γ(G), Z(G)}.
In general, it remains difficult to identify the graphs G for which γP(G) = 1.

Such graphs are identified only in the case of trees [11]. We here characterize the
graphs G and H of order at least four for which γP(G�H) = 1. The condition
clearly implies that the factor graphs G and H are connected.

Theorem 4. Let G and H be two graphs of order at least four. Then
γP(G�H) = 1 if and only if one of the graphs has a universal vertex and
the other is isomorphic to a path.

Proof. Suppose that γP(G�H) = 1. Let S = {(g, h)} be a PDS of G�H. Then,
since G and H are connected graphs of order greater than two, at least one of
the vertices g or h has degree greater than one. But, if both g and h have degree
at least two, then no more vertices get monitored after the domination step.
Therefore, assume that g has degree one in G and h has degree at least two in
H. Let dH(h) = r and A = {h′ ∈ NH(h) : NH [h′] ⊆ NH [h]}.

Claim: |A| = r. If possible assume that |A| ≤ r−1. Then the set B = NH(h)\A is
nonempty. Let g′ be the neighbour of g. Since r ≥ 2, the dominated vertex (g′, h)
has at least two neighbours in its H-fiber and therefore the first propagation step
is possible only from the dominated vertices in the gH-fiber. Since g has degree
one, the vertices in the set {(g, h′) : h′ ∈ A} can monitor their corresponding
neighbour in the g′

H-fiber. The remaining dominated vertices in the gH-fiber
given by {(g, h′) : h′ ∈ B} have unmonitored neighbours both in gH- and g′

H-
fibers. Since G is a connected graph of order at least four, g′ has degree at
least two. But as no more propagation is possible from any of the dominated
vertices in the gH-fiber, the next stage of propagation occurs from the monitored
vertices in the g′

H-fiber, which in turn implies that dG(g′) = 2. Let C = {h′ ∈
NH(h) : h′ ∈ A, h′ /∈ NH(v) for every v in B} i.e. C ⊆ A is the set of vertices in
A that are adjacent to none of the vertices in B. Assume that C is nonempty.
If g′′ is the other neighbour of g′, then the vertices in the set {(g′, h′) : h′ ∈ C}
can hence monitor their neighbour in the g′′

H-fiber. Since |B| ≥ 1, the vertex
(g′, h) and the other monitored vertices g′

H-fiber given by {(g′, h′) : h′ ∈ A \ C}
have unmonitored neighbours in their corresponding G- and H-fibers. Again,
since |V (G)| ≥ 4 and G is connected, g′′ has at least one neighbour other than
g′, which in turn prevents anymore propagation from the monitored vertices in
the g′′

H-fiber as each of the monitored vertex (g′′, h′), h′ ∈ C in the g′
H-fiber

has unmonitored neighbours in their corresponding G- and H-fibers. Hence the
claim.

Suppose now that there exists a vertex x in H which is not adjacent to h.
Let P be a path in H connecting h and x. Then there exist adjacent vertices p, q
in P such that p ∈ N(h) and q /∈ N(h), which is a contradiction to the claim
proved above. Hence h is a universal vertex of H. Therefore the propagation

362 S. Varghese and A. Vijayakumar

occurs from every vertex in the gH-fiber to their neighbouring H-fiber after the
domination step. Further propagation is possible only if the neighbour of g in G
has degree two. Continuing the same, we get that every vertex of G has degree
at most two. Thus G is isomorphic to a path of order at least four with g as one
of the end vertices.

To prove the sufficiency part, assume that G is a path and h is a universal
vertex of H. Then it is easy to observe that {(g, h)} is a PDS of G�H, where
g is an end vertex of G.
�

2.2 The Direct Product

Upper bounds for the domination number of the direct products are studied
in [5]. We obtain some sharp upper bounds for the power domination number of
direct products under the condition that one of the factor graphs has a universal
vertex.

Let D be a total dominating set of a graph G. As any total dominating set
is a PDS, let γPD

(G) denote the least cardinality of a subset S of D such that
S is a PDS of G. Note that γPD

(G) ≤ |D| and hence γPD
(G) is well-defined.

Theorem 5. Let G be a graph without isolated vertices and H be a nontrivial
graph with a universal vertex h. Then γP(G × H) ≤ min{|D| + γPD

(G)}, where
the minimum is taken over all total dominating sets D of G. If G has a γt(G)-
set D′ which is also its zero forcing set, then D′ × {h} is a PDS of G × H and
γP(G × H) ≤ γt(G).

Proof. Let S be a PDS of G with cardinality γPD
(G) such that S ⊆ D. We prove

that the set S′ given by S′ = (D×{h})∪ (S ×{h′}), for some h′ ∈ V (H), h′ �= h,
is a PDS of G×H. Since h is a universal vertex of H and D is a total dominating
set of a graph G with no isolated vertices, P0

G×H,1(S
′) contains all the vertices

of V (Gv), v �= h. Therefore, only those vertices in the Gh-fiber that are not in
(D×{h})∪NG×H(S) are yet to be monitored. Now, in order to prove that S′ is a
PDS of G×H, it is enough to prove that for a vertex g in G, if g ∈ Pi

G,1(S), then
(g, h) ∈ Pi

G×H,1(S
′) for all i ≥ 0. The proof is by induction. Let g be a vertex in

P0
G,1(S). If g ∈ S, then, since S ⊆ D, (g, h) ∈ S′. Otherwise, g is adjacent to some

g′ in S. Then, by definition of S′, the vertex (g′, h′) in S′ dominates the vertex
(g, h) and therefore (g, h) ∈ P0

G×H,1(S
′). The property holds for i = 0. Suppose

that it is true for some i ≥ 0. Let g be a vertex in Pi+1
G,1 (S). If g ∈ Pi

G,1(S),
then by induction hypothesis, (g, h) ∈ Pi

G×H,1(S
′). Otherwise, there exists a

neighbour g′ of g in Pi
G,1(S) such that |NG[g′] \ Pi

G,1(S)| ≤ 1. For any h′′ �= h,
we have (g′, h′′) ∈ P0

G×H,1(S
′). Therefore,

|NG×H [(g′, h′′)] \ Pi
G×H,1(S

′)|
= |{(u, v) : u ∈ NG(g′), v ∈ NH(h′′), (u, v) /∈ Pi

G×H,1(S
′)}|

= |{(u, h) : u ∈ NG(g′), (u, h) /∈ Pi
G×H,1(S

′)}|
= |{u : u ∈ NG(g′), u /∈ Pi

G,1(S)}|(by the induction hypothesis)
= |NG[g′] \ Pi

G,1(S)|
≤ 1.

On the Power Domination Number of Graph Products 363

Hence NG×H [(g′, h′′)] ⊆ Pi+1
G×H,1(S

′) and (g, h) ∈ Pi+1
G×H,1(S

′).
If G has a γt(G)-set D′ which is also its zero forcing set, then take S′ =

D′ ×{h}. Then the dominated set, P0
G×H,1(S

′) in G×H is given by V (G×H)\
{(g, h) : g /∈ D}. Therefore, only those vertices in the Gh-fiber that are not in S′

are yet to be monitored. For a vertex g in G, if g ∈ B0
G(D′), then (g, h) ∈ S′. Let

g be a vertex in B1
G(D). If g /∈ D′, then, since D′ is a zero forcing set of G, there

exists a neighbour g′ of g in D′ such that all the neighbours of g′ except g are in
D′. Therefore for any h′ �= h in H, the vertex (g′, h′) in P0

G×H,1(S
′) has (g, h) as

the single unmonitored neighbour and hence (g, h) belongs to P1
G×H,1(S

′). Now
one can prove by induction that if g ∈ Bi

G(D′), then (g, h) ∈ Pi
G×H,1(S

′) for all
i ≥ 0. Since D′ is a zero forcing set of G, this property implies that S′ is a PDS
of G × H and γP(G × H) ≤ |S′| = γt(G).
�
We now give examples of graphs G for which the bounds in Theorem 5 is sharp.
For any graph G that contains a strong support vertex v (i.e. v is adjacent to two
or more end vertices of G), none of its γt(G)-set is its zero forcing set. Because
any γt(G)-set D contains v and no end vertices of v and if we colour the vertices
of D black and the remaining vertices of G white, none of the end vertices of v
will receive the colour black in the derived colouring of G. For the graph G in
Fig. 1, γt(G) = 3, γPD

(G) = 2 for the total dominating set D = {u, v, w} and for
H = K1,n, n ≥ 3, we get that γP(G × H) = 5 = γt(G) + γPD

(G).

Fig. 1. The graph G

For cycles, any minimum total dominating set is its zero forcing set. It is
obtained in [14] that γP(Km × Cn) = γt(Cn) for m ≥ 3, n ≥ 4. Thus the bound
is sharp. The graph G′ given in Fig. 2 has a γt(G′)-set D = {u, v, w, x} which
is also its zero forcing set. Also, one can observe that if we colour the vertices
of D black and the remaining vertices of G′ white, then by applying the colour-
change rule, the vertices that are marked i will receive the colour black in the
ith step for all i, 1 ≤ i ≤ 7 and if H is a graph of order at least three and with
a universal vertex h, then the H-fiber iH is monitored by the set D × {h} in
the ith propagation step in G′ × H. As D is a zero forcing set of G′, we get that
D × {h} is a PDS of G′ × H (as explained in the proof of Theorem 5). (The
arrow mark in Fig. 2 indicates the direction in which the propagation occurs.)

In Theorem 5, we have assumed that G has no isolated vertices. If G contains
p isolated vertices, then let G′ be the subgraph of G induced by the nonisolated
vertices. Then G = G′ ∪ p K1 and G × H is the disjoint union of G′ × H and
p.|V (H)| isolated vertices. Consequently, γP(G × H) = γP(G′ × H) + p |V (H)|.

364 S. Varghese and A. Vijayakumar

Fig. 2. The graph G′

Theorem 6. For any nontrivial graph G, γP(G × K2) ≤ 2γP(G). The equality
holds if G is a bipartite graph.

Proof. Let S be a PDS of G. Let S′ = (S×{h})∪(S×{h′}), where h, h′ ∈ V (K2).
We prove that S′ is a PDS of G × K2. For that we prove that for all i ≥ 0 and a
vertex g in G, if g ∈ Pi

G,1(S), then both (g, h) and (g, h′) belong to Pi
G×K2,1(S

′).
If g ∈ S, then clearly (g, h), (g, h′) ∈ S′. If g is adjacent to some g′ in S, then
the vertices (g′, h) and (g′, h′) dominate (g, h′) and (g, h), respectively. Assume
now that the property holds for some i ≥ 0. Let g be a vertex in Pi+1

G,1 (S).
If g is not in Pi

G,1(S) then, there exists a neighbour g′ of g in Pi
G,1(S) such

that |NG[g′] \ Pi
G,1(S)| ≤ 1. Hence (g′, h) and (g′, h′) are in Pi

G×K2,1(S
′) and

|NG×H [(g′, h)] \ Pi
G×K2,1(S

′)| = |{(u, h′) : u ∈ NG(g′), (u, h′) /∈ Pi
G×K2,1(S

′)}| =
|NG[g′] \ Pi

G,1(S)| ≤ 1. Therefore, (g, h′) ∈ Pi+1
G×K2,1(S

′). Similarly, we get that
(g, h) ∈ Pi+1

G×K2,1(S
′).

If G is a bipartite graph, then G × K2 consists of two copies of G, hence the
equality clearly holds.
�

2.3 The Lexicographic Product

The power domination number of the lexicographic product is determined in [8].
In this subsection, we compute the generalized power domination number of the
lexicographic product.

Let Fk be the family of all nontrivial graphs H such that for each H ∈ Fk

either γP,k(H) = 1 or H is the union of two vertex disjoint graphs H1 and H2

(i.e. H = H1 + H2), where γP,k(H1) = 1, 1 ≤ |V (H2)| ≤ k and there is no
adjacency between H1 and H2.

Theorem 7. Let G be a nontrivial graph without isolated vertices and 1 ≤ k ≤
|V (H)|−1. Then for any nontrivial graph H, γP,k(G◦H) =

{
γ(G); H ∈ Fk

γt(G); H /∈ Fk.

Proof. Assume first that H is in Fk and γP,k(H) = 1. Let {h} be a k-PDS of H
and D be a dominating set of G. Then we prove that D×{h} is a k-PDS of G◦H.
For a vertex g of G, if g /∈ D, then any vertex of gH is in the neighbourhood
of (g′, h), for some g′ ∈ D with gg′ ∈ E(G). If g ∈ D, then any neighbour of
a vertex of gH not in gH is dominated and also the set {(g, h′) : h′ ∈ NH [h]}
is dominated. Therefore, since {h} is a k-PDS of H, the fiber gH is monitored.

On the Power Domination Number of Graph Products 365

Suppose now that H = H1+H2, where γP,k(H1) = 1, 1 ≤ |V (H2)| ≤ k and there
is no adjacency between H1 and H2. Since G has no isolated vertices, there exists
a γ(G)-set D of G such that every vertex u ∈ D has a neighbour v ∈ V (G) \ D
such that N [v] ∩ S = {u} (v is called the private neighbour of u). We prove that
D × {h} is a k-PDS of G ◦ H, for a k-PDS {h} of H1. For a vertex g of G, the
fiber gH is dominated if g /∈ D. Assume that g ∈ D. Clearly, every neighbouring
H-fibers of gH is dominated. Therefore, since {h} is a k-PDS of H1, the vertices
in the set {g} × V (H1) is monitored. Let g′ be a private neighbour of g in G
with respect to D. Then for any u ∈ NG[g′], u �= g, we get u is not in D and
hence the fiber uH is dominated. Therefore the set of unmonitored neighbours
of any vertex of g′

H is given by {(g, h′) : h′ ∈ V (H2)}. Since |V (H2)| ≤ k, the
fiber gH is monitored. Hence γP,k(G ◦ H) ≤ γ(G).

Assume that G ◦ H has a k-PDS S with |S| < γ(G). Then there exists an
H-fiber gH that contains no vertex of N [S]. Therefore the vertices of gH are
monitored by propagation. But every vertex in V (G ◦ H) \ V (gH) has either 0
or |V (H)| neighbours in gH-fiber and therefore, since |V (H)| ≥ 2 and 1 ≤ k ≤
|V (H)| − 1, there can be no propagation in gH. Hence γP,k(G ◦ H) ≥ γ(G).

Suppose now that H is not in Fk. Let D be total dominating set of G. Then
for any h of H, D × {h} is a dominating set of G ◦ H and hence a k-PDS of
G ◦ H. Thus γP,k(G ◦ H) ≤ γt(G).

Let S be a γP,k(G ◦ H)-set of G ◦ H. Suppose that there is an H-fiber gH
that contains at least two vertices of S. Let S′ be obtained by removing from
S all vertices of gH but one and adding an arbitrary vertex of a neighbouring
H-fiber (if there is none yet). Then N [S] ⊆ N [S′] and hence S′ is a k-PDS of
G ◦ H with |S′| ≤ |S|. Repeating this process if necessary, we may now assume
that every H-fiber of G ◦ H contains at most one vertex in S.

Suppose that there exists an H-fiber gH such that for any neighbour g′

of g in G, V (g′
H) ∩ S is empty. Since γP,k(H) > 1, there does not exist any

h in H such the vertex (g, h) monitors the entire gH-fiber. But, since S is a
k-PDS of G ◦ H and 1 ≤ k ≤ |V (H)| − 1, at least |V (H)| − k vertices of
gH are to be monitored by the vertices in V (gH) ∩ S so that the remaining
at most k(≤ |V (H)| − 1) unmonitored vertices of gH can be monitored by
propagation from any vertex of its neighbouring H-fiber. Since gH contains at
most one vertex in S, there should exist some h in H such that the vertex
(g, h) monitors at least |V (H)| − k vertices of gH. If H is connected, then this
implies that {h} is a k-PDS of H, which is a contradiction. Therefore assume
that H is not connected. Now, take H1 as the subgraph induced by the set of
vertices {h′ : (g, h′) is monitored by (g, h) in G ◦ H}. Then {h} is a k-PDS of H1

and |V (H1)| ≥ |V (H)| − k. Now take H2 as the subgraph induced by the set of
remaining vertices of H i.e. H2 is the subgraph induced by the set of vertices h′,
where (g, h′) is not monitored by (g, h) in G◦H and we get that 1 ≤ |V (H2)| ≤ k.
Let u be a vertex in H2. Suppose that u is adjacent to some vertex v in H1.
Then by definition of H2 and the propagation rule in k-power domination, we
get that v has at least k neighbours in H2 other than u. But this is not possible
as H2 contains at most k vertices. Therefore we can infer that there can be

366 S. Varghese and A. Vijayakumar

no adjacency between vertices of H1 and H2, which implies that H is in Fk, a
contradiction. Therefore, any vertex g of G has a neighbour g′ in G such that
V (g′

H) ∩ S is nonempty. Hence the set {g′ ∈ V (G) : V (g′
H) ∩ S �= φ} is a total

dominating set of G and we conclude that γP,k(G ◦ H) = |S| ≥ γt(G).
�
Theorem 8. Let G be a nontrivial graph without isolated vertices and H be a
connected nontrivial graph. If k ≥ |V (H)|, then γP,k(G ◦ H) = γP,� k

|V(H)|�(G).

Proof. Let � =
⌊

k
|V (H)|

⌋
. We first prove that γP,k(G ◦ H) ≤ γP,�(G). Let S be a

minimum �-PDS of G. Take S′ = S×{h} for some h ∈ V (H). For a vertex g of G,
if g is in S, then any neighbour of a vertex of gH not in gH is dominated and also
the vertex (g, h) dominates all its neighbours in its H-fiber. Since H is connected
and k ≥ |V (H)|, {h} is a k-PDS of H and therefore once all the neighbouring
H-fibers of gH is dominated, the fiber gH is monitored by propagation. Let j
be the smallest integer such that V (gH) ∈ Pj

G◦H,k(S′).
We now prove that if g is a vertex in Pi

G,�(S), then V (gH) ∈ Pj+i
G◦H,k(S′)

for all i ≥ 0. Let g be a vertex in P0
G,�(S). If g is in S, then by definition

of j, V (gH) is contained in Pj
G◦H,k(S′). If g is not in S, then the vertices of

the fiber gH is in the neighbourhood of (g′, h) for some vertex g′ in S with
gg′ ∈ E(G) and any vertex of gH is dominated. Hence the property is true for
i = 0. Let g be a vertex in P1

G,�(S). If g is not in P0
G,�(S), then there exists

some neighbour g′ of g in P0
G,�(S) such that |NG[g′] \ P0

G,�(S)| ≤ � and we also
get that V (g′

H) ∈ Pj
G◦H,k(S′). Then for any h′ ∈ V (H), the vertex (g′, h′) is in

Pj
G◦H,k(S′) and it has at most |V (H)|.� (≤ k) unmonitored neighbours in G ◦H

after the stage j. Therefore all the neighbouring H-fibers of (g′, h′) is monitored
by propagation in the (j + 1)th stage and NG◦H [(g′, h′)] ⊆ Pj+1

G◦H,k(S′). Hence
V (gH) ∈ Pj+1

G◦H,k(S′). Therefore the property holds for i = 1. Similarly the
property can be proved for i ≥ 2. Thus the propagation in G ◦ H continues in a
similar manner and since S is a �-PDS of G, S′ is a k-PDS of G ◦ H.

To prove the lower bound, let S′ be a k-PDS of G ◦ H. Let S′
G =

{g : (g, v) ∈ S′ for some v ∈ V (H)}. For any vertex (g, h) in P0
G◦H,k(S′), clearly

g ∈ P0
G,�(S

′
G). Let (g, h) be a vertex in P1

G◦H,k(S′). If (g, h) /∈ P0
G◦H,k(S′),

then there exists some neighbour (g′, h′) of (g, h) in P0
G◦H,k(S′) such that

|NG◦H [(g′, h′)] \ P0
G◦H,k(S′)| ≤ k. We know that for any vertex (u, v) in G ◦ H,

if uu′ ∈ E(G), then (u, v) has |V (H)| neighbours in u′
H. If r is the number of

neighbours (u, v) of (g′, h′) with V (uH) ∩ P0
G◦H,k(S′) = φ that get monitored

by (g′, h′) at the stage 1, then r = m.|V (H)| for some nonnegative integer m.
Indeed, m is the number of unmonitored neighbours of g′ after the domina-
tion step by S′

G in G. Also r ≤ k and thus m ≤ �. Therefore the vertex g′

in P0
G,�(S

′
G) monitors its m unmonitored neighbours at the stage 1 and hence

NG[g′] ⊆ P1
G,�(S

′
G) and g ∈ P1

G,�(S
′
G). In a similar fashion, the propagation

occurs in G and we get that if (g, h) ∈ Pi
G◦H,k(S′), then g ∈ Pi

G,�(S
′
G) for all

i ≥ 0. Hence S′
G is a �−PDS of G.
�

On the Power Domination Number of Graph Products 367

If G contains p isolated vertices, then G ◦ H is the disjoint union of G′ ◦ H
and p copies of H, where G′ is the subgraph of G induced by the nonisolated
vertices of G. Consequently, γP,k(G ◦ H) = γP,k(G′ ◦ H) + p γP,k(H). We have
G � Km

∼= G ◦ Km and therefore γP,k(G � Km) = γP,k(G ◦ Km),m ≥ 2.

Acknowledgments. The first author is supported by Maulana Azad National Fel-
lowship (F1- 17.1/2012-13/MANF-2012-13-CHR-KER-15793) of the University Grants
Commission, India.

References

1. Aazami, A.: Domination in graphs with bounded propagation: algorithms, formu-
lations and hardness results. J. Comb. Optim. 19(4), 429–456 (2010)

2. AIM Minimum Rank: Special Graphs Work Group: Zero forcing sets and the min-
imum rank of graphs. Linear Algebra Appl. 428(7), 1628–1648 (2008)

3. Baldwin, T.L., Mili, L., Boisen Jr., M.B., Adapa, R.: Power system observability
with minimal phasor measurement placement. IEEE Trans. Power Syst. 8(2), 707–
715 (1993)

4. Barrera, R., Ferrero, D.: Power domination in cylinders, tori and generalized
Petersen graphs. Networks 58(1), 43–49 (2011)

5. Brešar, B., Klavžar, S., Rall, D.F.: Dominating direct products of graphs. Discrete
Math. 307(13), 1636–1642 (2007)

6. Chang, G.J., Dorbec, P., Montassier, M., Raspaud, A.: Generalized power domi-
nation of graphs. Discrete Appl. Math. 160(12), 1691–1698 (2012)

7. Dorbec, D., Henning, M.A., Löwenstein, C., Montassier, M., Raspaud, A.: General-
ized power domination in regular graphs. SIAM J. Discrete Math. 27(3), 1559–1574
(2013)

8. Dorbec, D., Mollard, M., Klavžar, S., Špacapan, S.: Power domination in product
graphs. SIAM J. Discrete Math. 22(2), 554–567 (2008)

9. Dorfling, M., Henning, M.A.: A note on power domination in grid graphs. Discrete
Appl. Math. 154(6), 1023–1027 (2006)

10. Guo, J., Niedermeier, R., Raible, D.: Improved algorithms and complexity results
for power domination in graphs. Algorithmica 52(2), 177–202 (2008)

11. Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529
(2002)

12. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs. CRC Press,
Taylor and Francis, Boca Raton (2011)

13. Liao, C.-S., Lee, D.-T.: Power domination problem in graphs. In: Wang, L. (ed.)
COCOON 2005. LNCS, vol. 3595, pp. 818–828. Springer, Heidelberg (2005)

14. Varghese, S.: Studies on some generalizations of line graph and the power domina-
tion problem in graphs. Ph. D thesis, Cochin University of Science and Technology,
Cochin, India (2011)

15. Zhao, M., Kang, L., Chang, G.J.: Power domination in graphs. Discrete Math.
306(15), 1812–1816 (2006)

Author Index

Arumugam, S. 289
Atik, Fouzul 26

Balakrishnan, Kannan 240
Banerjee, Sandip 37
Bantva, Devsi 49
Baswana, Surender 1
Bazgan, Cristina 61
Berlinkov, Mikhail V. 73
Bhattacharya, Binay 85
Bodini, Olivier 97
Brankovic, Ljiljana 61

Casel, Katrin 61
Changat, Manoj 115, 240

Das, Guatam K. 212
Das, Sandip 85, 126, 326
David, Julien 97
Dumitrescu, Adrian 139, 152
Dutt, Sucheta 233

Emelyanov, Pavel 164

Fernau, Henning 61

Gaur, Daya Ram 176
Ghosh, Anirban 139, 152
Ghosh, Prantar 326
Godinho, Aloysius 190

Hamel, Sylvie 264
Handa, Adarsh K. 190
Harutyunyan, Hovhannes A. 201
Hossein Nezhad, Ferdoos 115

Illuri, Madhu 308

Jallu, Ramesh K. 212
Jayagopal, R. 299

Kameda, Tsunehiko 85
Karthick, T. 224

Kaur, Jasbir 233
Kumar, Ram 240

Li, Zhiyuan 201

Mandal, Nibedita 254
Marchal, Philippe 97
Milosz, Robin 264
Misra, Neeldhara 37
Mj, Swathyprabhu 326
Mudgal, Apurva 176
Mukhopadhyay, Asish 14

Nandy, Ayan 126
Nandy, Subhas C. 37
Narayanan, Narayanan 115

Panda, B.S. 277
Pandey, Arti 277
Panigrahi, Pratima 26, 254
Patil, H.P. 349
Pereira, Jessica 289
Prasanth, G.N. 240

Raja, V. 349
Rajasingh, Indra 299
Renjith, P. 308

Sadagopan, N. 308
Sandhya, T.P. 337
Sarvottamananda, Swami 126
Sehmi, Ranjeet 233
Sen, Sagnik 326
Shafiul Alam, Md. 14
Shalu, M.A. 337
Singh, Rishi Ranjan 176
Singh, Tarkeshwar 190, 289
Sreekumar, A. 240
Sundara Rajan, R. 299

Varghese, Seethu 357
Vijayakumar, A. 357

	Preface
	Organization
	Contents
	Randomization for Efficient Dynamic Graph Algorithms
	1 Introduction
	2 Fingerprinting
	3 Random Sampling
	4 Maintaining Witnesses
	5 Foiling the Adversary
	5.1 Fully Dynamic Maximal Matching

	6 Conclusion
	References

	Algorithms for Problems on Maximum Density Segment
	1 Introduction
	2 SPLITHULL Algorithm for Maximum Density Segment
	2.1 LR Pass
	2.2 RL Pass
	2.3 Analysis

	3 k Maximum Density Segments
	3.1 Small k
	3.2 Medium k
	3.3 Large k

	4 Conclusions
	References

	Distance Spectral Radius of Some k-partitioned Transmission Regular Graphs
	1 Introduction and Background
	2 Exact Value of the Distance Spectral Radius
	References

	Color Spanning Objects: Algorithms and Hardness Results
	1 Introduction
	2 Shortest Color Spanning Intervals
	2.1 Standard Parameterizations
	2.2 Frequency and Sparsity
	2.3 Polynomial Time Cases and XP Algorithms

	3 Smallest Color Spanning Squares and Circles
	References

	On Hamiltonian Colorings of Trees
	1 Introduction
	2 Preliminaries
	3 On Hamiltonian Colorings of Trees
	4 Hamiltonian Coloring of Some Families of Tree
	References

	On the Complexity Landscape of the Domination Chain
	1 Introduction
	2 The Complexity of the Domination Chain
	3 On the Classical Complexity of Irredundant Set Problems
	4 A Special Flavour of Minimax/Maximin Problems
	5 Approximation Results
	6 Further Algorithmic Observations
	7 Consequences for Everywhere Dense Graphs
	8 Summary, Open Problems and Prospects
	References

	On the Probability of Being Synchronizable
	1 Synchronizing Automata
	2 The Probability of Being Synchronizable
	3 Searching for Stable Pairs
	4 Conclusions
	References

	Linear-Time Fitting of a k-Step Function
	1 Introduction
	2 Preliminaries
	2.1 Model
	2.2 Bisector
	2.3 Optimal 1-Step Function

	3 Anchored 2-Step Function Problem
	3.1 Doubly Anchored 2-Step Function
	3.2 Left- or Right-Anchored 2-Step Function

	4 k-Step Function
	4.1 Approach
	4.2 Feasibility Test
	4.3 Identifying a Big Component

	5 Algorithm
	5.1 Optimal k-Step Function
	5.2 Analysis of Algorithm

	6 Conclusion and Discussion
	References

	Random-Bit Optimal Uniform Sampling for Rooted Planar Trees with Given Sequence of Degrees and Applications
	1 Introduction
	2 Words and Trees
	2.1 Valid Words and Lukasiewicz Words
	2.2 The Tree Classes

	3 A Random Sampler as a Proof of Tutte's Theorem
	3.1 A Naive Algorithm

	4 The Dichotomous Sampling Method
	5 Simulate-Guess-and-Prove: Analysis of Height
	6 Conclusion
	References

	Axiomatic Characterization of Claw and Paw-Free Graphs Using Graph Transit Functions
	1 Introduction
	2 Interval Function
	3 Induced Path Function
	4 All-Paths Transit Function
	5 Transit Functions Whose Underlying Graphs are Hamiltonian
	References

	Linear Time Algorithms for Euclidean 1-Center in d with Non-linear Convex Constraints
	1 Introduction
	2 Minimum Enclosing Circle with Center Inside the Given Disk in Plane
	3 Minimum Enclosing Ball Whose Center Is Constrained to Lie on a Given Sphere
	3.1 Computing Euclidean 1-Center Constrained in a Line Segment L in 3
	3.2 Computing Euclidean 1-Center Constrained in a Disk D in 3
	3.3 Computing Euclidean 1-Center Constrained in a Sphere S in 3

	4 Other Related Problems of Minimum Enclosing Balls and Minimum Intersecting Disks
	4.1 Minimum Enclosing Ball of Set of Points Whose Center Is Constrained to Lie on a Given Ball in d
	4.2 Minimum Intersecting Ball of Set of Hyperplanes Whose Center Is Constrained to Lie on a Given Ball in d
	4.3 Minimum Intersecting Circle of Set of Convex Polygons Whose Center Is Constrained to Lie on a Given Disk in 2
	4.4 Euclidean 1-Center for P With Constant Number of Non-linear Convex Constraints in d

	5 Conclusions
	References

	Lower Bounds on the Dilation of Plane Spanners
	1 Introduction
	2 A New Lower Bound on the Worst Case Dilation of Plane Spanners
	3 Lower Bounds for the Worst Case Degree 3 and 4 Dilation
	4 A Lower Bound on the Worst Case Dilation of the Greedy Triangulation
	5 Concluding Remarks
	References

	Lattice Spanners of Low Degree
	1 Introduction
	2 Preliminaries
	3 The Square Lattice
	4 The Hexagonal Lattice
	5 Concluding Remarks
	References

	AND--Decomposition of Boolean Polynomials with Prescribed Shared Variables
	1 Introduction
	2 --Decomposition
	3 --Decomposition
	3.1 ``--unpredictable'' Decomposition
	3.2 Decompositions with Non--empty Prescribed
	3.3 Examples and Experimental Evaluation

	4 Final Remarks
	References

	Approximation Algorithms for Cumulative VRP with Stochastic Demands
	1 Introduction
	1.1 Cumulative VRP with Stochastic Demand (Cu-VRPSD)
	1.2 Previous Work
	1.3 Our Contributions

	2 Proofs
	2.1 Split Cu-VRPSD
	2.2 Unsplit Cu-VRPSD

	3 Cu-VRPSDs on Tree and Path Shaped Graphs
	4 Conclusions
	References

	Some Distance Antimagic Labeled Graphs
	1 Introduction
	2 Main Results
	3 Join of Graphs
	4 Conclusion and Scope
	References

	A New Construction of Broadcast Graphs
	1 Introduction
	2 Compounding Method Based on Knödel Graph
	2.1 Definitions and Notations
	2.2 New Construction

	3 Conclusions
	References

	Improved Algorithm for Maximum Independent Set on Unit Disk Graph
	1 Introduction
	2 Related Work
	2.1 Our Contribution

	3 Preliminaries
	4 2-Factor Approximation Algorithm
	4.1 Algorithm
	4.2 Correctness of the Algorithm

	5 Polynomial Time Approximation Scheme
	5.1 Computing MIS for Unit Disks Centered in a k K Square

	6 Conclusion
	References

	Independent Sets in Classes Related to Chair-Free Graphs
	1 Introduction
	2 (S1, 2, 2, S1, 1, 3, diamond)-free graphs
	2.1 (S1, 2, 2, S1, 1, 3, diamond, 5-apple, C5*)-free graphs
	2.2 (S1, 2, 2, S1, 1, 3, diamond, 5-apple)-free graphs
	2.3 (S1, 2, 2, S1, 1, 3, diamond)-free graphs

	3 (S1, 2, 2, S1, 1, 3, co-chair)-free graphs
	3.1 (S1, 2, 2, S1, 1, 3, co-chair, gem)-free graphs
	3.2 (S1, 2, 2, S1, 1, 3, co-chair, H*)-free graphs
	3.3 (S1, 2, 2, S1, 1, 3, co-chair)-free graphs

	4 Conclusion
	References

	Cyclic Codes over Galois Rings
	1 Introduction
	2 Preliminaries
	3 Generators of Cyclic Codes over a Galois Ring Ras Ideals of R[x]/"426830A to.Xn-1"526930B to.
	4 Conclusion
	References

	On the Center Sets of Some Graph Classes
	1 Introduction
	2 Preliminaries
	3 Center Critical Graphs
	4 Center Sets of Some Graph Classes
	4.1 Center Sets of Block Graphs
	4.2 Center Sets of Complete Bipartite Graphs
	4.3 Center Sets of Kn-e
	4.4 Center Sets of Wheel Graphs
	4.5 Center Sets of Odd Cycles
	4.6 Center Sets of Symmetric Even Graphs

	5 Conclusion
	References

	On Irreducible No-hole L(2,1)-labelings of Hypercubes and Triangular Lattices
	1 Introduction
	2 Our Results
	References

	Medians of Permutations: Building Constraints
	1 Introduction
	2 Median of Permutation: Definitions and Notations
	3 Previous Approaches
	3.1 Data Reduction with Non-dirty Candidates
	3.2 Always Theorem

	4 Our Approach
	4.1 Existence of a Majority Bound?
	4.2 Major Order Theorem
	4.3 Refined Versions of the Major Order Theorem

	5 Efficiency of Our Approach
	5.1 Time Complexity of Our Approach and Implementation

	6 Conclusion and Future Works
	References

	b-Disjunctive Total Domination in Graphs: Algorithm and Hardness Results
	1 Introduction
	2 Preliminaries
	3 Complexity Difference in Total Domination and b-Disjunctive Total Domination
	4 Approximation Algorithm
	5 Lower Bound on Approximation Ratio
	6 APX-completeness
	7 Conclusion
	References

	m-Gracefulness of Graphs
	1 Introduction
	2 Main Results
	References

	Domination Parameters in Hypertrees
	1 Introduction
	2 Domination in Hypertrees
	3 Conclusion
	References

	Complexity of Steiner Tree in Split Graphs - Dichotomy Results
	1 Introduction
	2 K1,3-free Split Graphs: Structural Results
	2.1 Application: Steiner Tree in K1,3-free Split Graphs

	3 K1,4-free Split Graphs: Structural Results
	3.1 Polynomial-Time Algorithm to Find a Minimum Steiner Tree

	4 Steiner Tree in K1,5-free Split Graphs is NP-complete
	5 Conclusions and Future Work
	References

	Relative Clique Number of Planar Signed Graphs
	1 Introduction
	2 Results
	3 Conclusive Remarks
	References

	The cd-Coloring of Graphs
	1 Introduction
	2 Decompositions in 3-cd-colorable Graphs
	2.1 Neighbourhood Bipartition (NB)

	3 Three-cd-coloring
	4 P4-free Graphs and Split Graphs
	5 Conclusion
	References

	Characterizations of H-graphs
	1 Introduction
	2 Tk-graphs and Characterizations
	3 Tk-graphs and Split Graphs
	4 Wheel-Graphs and Characterizations
	5 Open Problems
	References

	On the Power Domination Number of Graph Products
	1 Introduction
	2 Power Domination in Some Graph Products
	2.1 The Cartesian Product
	2.2 The Direct Product
	2.3 The Lexicographic Product

	References

	Author Index

